ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-116

BASIC

ECMA BASIC-1
ECMA BASIC-2
ECMA GRAPHICS MODULE

Free copies of this document are available from ECMA,

European Computer Manufacturers Association

114 Rue du Rhone — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-116

BASIC

ECMA BASIC-1
ECMA BASIC-2
ECMA GRAPHICS MODULE

June 1986

BRIEF HISTORY

The first version of the language BASIC, acronym for Beginner's All-purpose Symbolic
Instruction Code, was produced in June 1965 at the Dartmouth College in the USA.

In January 1978, ECMA published a Standard for Minimal BASIC, ECMA-55, prepared in coopera-
tion with ANSI X3J2 and fully compatible with the corresponding ANSI standard. This Stan-
dard ECMA-55 served as a basis for the ISO Standard on Minimal BASIC.

With the continuation of the work, a draft Standard for full BASIC was agreed by ANSI X3J2,
EWICS TC2 and ECMA/TC21 in January 1985. This draft is composed of a mandatory Core module
and five optional modules.

Starting from this draft, ECMA/TC21 prepared a Standard for fully defined subsets of the
language. These subsets, called ECMA BASIC-1 and ECMA BASIC-2, are designed for business
applications, requiring extended file facilities. ECMA BASIC-1 has no exception handling
facilities and a reduced set of file operations. In addition, all the keywords in
ECMA BASIC-1 are reserved words, reducing the complexity of the interpreter or compiler
needed. ECMA BASIC-2 provides full exception handling capabilities, full file operations
and fixed decimal capabilities. The set of reserved words is minimal. Both subsets provide
the full flow control capabilities provided in the ANSI standard. An additional module
(ECMA GRAPHICS) provides a minimum of graphic capabilities and can be used with either
subset.

Compatibility with the ANSI standard has been a primary design objective, and the ECMA
Standard is fully wupward compatible with corresponding implementations of the ANSI
Standard.

Approved as an ECMA Standard by the General Assembly of June 26, 1986.

SOR VERTLFL L e BRI b B ESEL CRBIBEI A b

T TRED S e i EEREE il & SRt 4 D ¥ CE M

|
H
1
b
i

‘TABLE OF CONTENTS

INTRODUCTION

1.1 Scope
1.2 Related Standards

CONFORMANCE

2.1 Program Conformance

2.2 Implementation Conformance

2.3 Errors

2.4 Exceptions

2.5 Relationship to the ANSI Standard

SYNTAX SPECIFICATION AND DEFINITIONS

3.1 Method of Syntax Specification
3.2 Definitions of Terms

BASIC

Batch-mode

Can

End-of-line
Error

Exception
External
Identifier
Interactive mode

O 0 ~N oy UL

=
o

Internal

Keyword

Line

Machine Infinitesimal
May

Native

Overflow

Print Zone
Program Unit
Reserved Word
Rounding

Shall

Significant Digits
Truncation
Underflow

[
=

W W WL W WWWWWWWWWWWWWWWwWww
PN N NN NN PDNDRNRDNDNNNRNNDNNDNNNN
O R T e Tl el =l el
W N HE O WVW®NO U E WD

N
=

PROGRAM

:

4.1 Characters

4.2 Programs, Lines and Blocks
4.3 Program Annotation

4.4 TIdentifiers

NUMBERS

5.1 Numeric Constants

5.2 Numeric Variables

5.3 Numeric Expressions

5.4 Implementation-Supplied Numeric Functions
5.5 Numeric Assignment Statement

3%}

(S, I, I =

10
10
10
10
10
10
10
11
11
11,
11
11
11
11
12
12
12
12
13
13
13
13

15

15
16
19
19

23

23
24
25
26
31

10.

11.

12.

13.

14.

15.

- ii -

5.6 Numeric Arithmetic and Angle
STRINGS

6.1 String Constants
6.2 String Variables
6.3 String Expression

6.4 Implementation-Supplied String Functions

6.5 String Assignment Statements
6.6 String Declarations

ARRAYS

7.1 Array Declarations
7.2 Numeric Arrays
7.3 String Arrays

CONTROL STRUCTURES

8.1 Relation Expression
8.2 Control Statements
8.3 Loop Structures

8.4 Decision Structures

PROGRAM SEGMENTATION

9.1 User-Defined Functions
9.2 Subprograms
9.3 Chaining

INPUT AND OUTPUT

10.1 Internal Data

10.2 Input

10.3 Output

10.4 Formatted Output

10.5 Array Input and Output

FILES

11.1 File Operations

11.2 File Pointer Manipulation
11.3 File Data Creation

11.4 File Data Retrieval

11.5 File Data Modification (BASIC-2 only)

EXCEPTION HANDLING AND DEBUGGING

12.1 Exception Handling (BASIC-2 only)
12.2 Debugging (BASIC-1 and BASIC-2)

GRAPHICS

13.1 Coordinate Systems
13.2 Attributes and Screen Control
13.3 Graphic Output

REAL TIME (not in ECMA BASIC)
FIXED DECIMAL NUMBERS (BASIC-2 only)

15.1 Fixed Decimal Precision
15.2 Fixed Decimal Program Segmentation

TABLE 1 - Standard BASIC Character Set

31

35

35
35
37
38
41
L2

45

45
L7
50

53

53
S5k
56
58

63

63
68
73

76

76
77
80
84
88

93

98

108
1151,
118
125

130

130
135

138

138
141
143

146

147
149

152

= dad =

TABLE 2 - Exception Codes

APPENDICES

APPENDIX 1 - Organization of the Standard

APPENDIX 2 - Scope Rules

APPENDIX 3 - Implementation-defined Features

APPENDIX 4 - Index of Syntactic Objects

APPENDIX 5 - Combined List of Production Rules

APPENDIX 6 - Differences between Minimal BASIC and ECMA BASIC

APPENDIX 7 - Language Elements under Consideration for future
Removal

NOTE
Sections 4 to 15 are further subdivised in:

.y.1 General Description
.y.2 Syntax

.y.3 Examples

.y.4 Semantics

.y.5 Exceptions

.y.6 Remarks

KoX X X X X

155
159
160
162
163
167
183
194

196

1. INTRODUCTION

1.1

1.2

This

INTRODUCTION

Standard is designed to promote the interchangeability of BASIC programs among a vari-

ety of automatic data processing systems. Programs conforming to this Standard will be said
to be written in ECMA BASIC.

Two levels of the language are specified in this Standard: ECMA BASIC-1 and ECMA BASIC-2.
In addition this Standard defines an optional Graphics module.

Scope
This Standard establishes:

The syntax of programs written in ECMA BASIC.

The formats of data and the minimum precision and range of numeric representations
and the minimum length and set of characters in strings which are acceptable as input
to an automatic data processing system being controlled by a program written in
ECMA BASIC.

The formats of data and the minimum precision and range of numeric representations
and the minimum length and set of characters in strings which can be generated as
output by an automatic data processing system being controlled by a program written
in ECMA BASIC.

The semantic rules for interpreting the meaning of a program written in ECMA BASIC.

The errors and exceptional circumstances which shall be detected.

Although the BASIC language was originally designed primarily for interactive use, this
Standard describes a language that is not so restricted. This Standard is not meant to
preclude the use of any particular implementation technique, for example interpreters,
incremental or one-pass compilers.

Related Standards

ECMA-6 7-Bit Coded Character Set

ECMA-35 Code Extension Techniques

ECMA-53 Representation of Source Program for Program Interchange: - APL,
COBOL, FORTRAN, Minimal BASIC and PL/1

ECMA-55 Minimal BASIC

ISO 2014 Writing of Calendar Dates in all-numeric form

IS0 2711 Representation of Ordinal Dates

IS0 3307 Representation of Time of the Day

IS0 7942 GRAPHICAL KERNEL System (GKS)

IEC 559 Binary Floating Point Arithmetic for Microprocessor Systems.

ANST X3.113-198X American National Standard for BASIC

2. CONFORMANCE

CONFORMANCE

This Standard specifies two levels of the language: ECMA BASIC-1 and ECMA BASIC-2. In addi-
tion this Standard defines a Graphics module.

ECMA BASIC-1 includes all the parts defined in Section 4 to 12, with the exception of those
portions of Section 11 that describes enhanced files and Section 12.1, Exception Handling.
All the keywords, listed in 3.2.19 under the heading BASIC-1 are reserved words.

ECMA BASIC-2 includes all the parts defined in Section 4 to 12 and in Section 15. The key-
words, listed in 3.2.19 under the heading BASIC-2 are reserved words.

The graphics module is specified in section 13. It is optional, and it can be used together
either with ECMA BASIC-1 or ECMA BASIC-2.

There are two aspects of the conformance to the language defined in this Standard: confor-
mance by a program written in the ECMA BASIC language, and conformance by an implementation
which processes such programs.

Broadly speaking, the conformance requirements are structured so that any program conform-
ing to this standard will produce the same results when executed by any implementation con-
forming to the standard (though some implementation-defined features are noted in Appendix

3)s
2.1 Program Conformance
A program conforms to this Standard only when

- the program and each statement or other syntactic element contained therein is syntac-
tically valid according to the syntactic rules specified by this Standard as belonging
to that level, and

- the program as a whole violates none of the global constraints imposed by this level
of the Standard on the application of the syntactic rules.

2.2 Implementation Conformance

An implementation conforms to a level of this Standard only when
- it accepts and processes all programs conforming to that level of this Standard,
- it reports reasons for rejecting any program which does not conform to this Standard,

- it interprets errors and exceptional circumstances according to the specifications of
this Standard,

- it interprets the semantics of each statement of a conforming program according to the
specifications in this Standard,

- it interprets the semantics of a conforming program as a whole according to the speci-
fications in this Standard,

- it accepts as input, manipulates, and can generate as output numbers of at least the
precision and range specified in this Standard,

- it accepts as input, manipulates, and can generate as output strings of at least the
length and composed of at least those characters specified in this Standard,

- it is accompanied by documentation available to the user that describes the actions
taken in regard to features referred to as ''undefined" or "implementation-defined" in
this Standard, and

- it is accompanied by documentation available to the user that describes and identifies
all enhancements to the language defined in this Standard.

This Standard makes no requirement concerning the interpretation of the semantics of any
statement or program as a whole that does not conform to this Standard.

2.3 Errors

2.4

2o

5

This Standard does not include specific requirements for reporting syntactic errors in
the text of a program.

Implementations conforming to this Standard may accept programs written in an enhanced
language without having to report all constructs not conforming to this Standard.

Whenever a statement or other program element does not conform to the syntactic rules
given herein, and that statement or other program element, does not have a clear, well
documented implementation-defined meaning, an error shall be reported. Errors shall be
reported in a clear and well documented way and whenever feasible the implementation
should indicate the erroneous statement and the position of the error within the
statement.

Exceptions

An exception is a circumstance arising in the course of execution of a program when an
implementation recognizes that the semantic rules of this Standard cannot be followed or
that some resource constraint is about to be exceeded. All exceptions described in this
Standard shall be detected, reported and processed when they occur, unless some mecha-
nism provided in 12.1 (BASIC-2 only) or an enhancement to this Standard has been invoked
by the user to handle exceptions.

In the absence of programmer-specified recovery procedures, exceptions shall be handled
by the recovery procedures specified in this Standard. If no recovery procedure is spec-
ified in this Standard, or if restrictions imposed by the hardware or the operating en-
vironment make it impossible to follow the procedure specified in this Standard, then
the way in which the exception is handled depends on the context. If the exception oc-
curred in the invocation of a function or subprogram, then the exception is ''propagated
back" to the invoking statement in the invoking program unit (see 12.1). If this propa-
gation procedure reaches the main-program, or if the exception occurred in the main-
program, then the exception shall be handled by terminating the program.

The way in which the exception handling mechanism reports an exception is
implementation-defined, except that the contents of the report shall identify at least
the exception code and the line number of the line in which the original exception oc-
curred.

Except in the case of files, when several exception are caused by the execution of a
single statement of a program, this Standard does not specify an order in which these
exceptions shall be detected or reported. If an implementation determines that a partic-
ular statement in a conforming program will always cause an exception when executed, the
implementation may issue a warning to the user. Nonetheless, the implementation must ac-
cept and execute the program, according to the normal semantic rules specified herein.

Relationship to the ANSI Standard
This Standard ECMA BASIC defines a subset of the ANSI BASIC Standard, ANST X3.113-198X.

The ANSI standard defines a set of modules, only one of which (the Core module) is
mandatory. On the other hand, only the graphics module is optional in the ECMA standard.

Programs written in ECMA BASIC-1 will run on implementations conforming to the ANSI
standard if the implementation implements at least the Core module. Provided that the
implementation-defined elements are defined in a compatible way in the two implementa-
tions, the programs will act in the same way and give the same results.

Programs written in BASIC-2 will run on implementations conforming to the ANSI Standard
if the implementation implements at least the Core module and the Enhanced Files module.
Provided that the implementation-defined elements are defined in a compatible way in the
two implementations, the program will act in the same way and give the same results.

The reverse will not always be true. In view of the modular nature of the ANSI standard,
programs conforming to the ANSI standards will run on an ECMA BASIC implementations only
if they use the set of facilities defined in the ECMA BASIC Standard. Real-time programs
will not run on ECMA BASIC implementations.

A further difference exists in reserved words. All keywords defined in ECMA BASIC-1 are
reserved and cannot be used as identifiers. Only a limited number of keywords is re-
served in the ANSI Standard. Thus programs written in ECMA BASIC-1 will run on an ANSI
implementation, with the limitations defined above. A program written in ANSI BASIC, and
which uses only the facilitites defined in ECMA BASIC-1, is not granted to run on an
ECMA BASIC-1 implementation, unless the limitations on identifiers have been observed.

The ECMA graphics module is a subset of the ANSI one. Thus programs conforming-to the
ECMA module will run on an ANSI implementation, but programs conforming to the ANSI mod-
ule will not run on an ECMA implementation unless they use only the facilities defined
in ECMA BASIC.

5. SYNTAX SPECIFICATION AND DEFINITIONS

3.

3.1

SYNTAX SPECIFICATION AND DEFINITTIONS

Method of Syntax Specification

The syntax, through a series of rewriting rules known as 'productions'", defines syntac-
tic objects of various types, such as a program or expression, and describes which
strings of symbols are objects of these types.

In the syntax, upper-case-letters, digits, and (possibly hyphenated) lower-case words
are used as "metanames', i.e. as names of syntactic objects. Most of these metanames are
defined by productions in terms of other metanames. In order that this process termi-
nates, certain metanames are designated as '"terminal'" metanames, and productions for
them are not included in the syntax. With the exception of the construct
"[implementation-defined]", all terminal metanames occur for the first time and are de-
fined in 4.1. It should be noted in particular that all upper-case-letters are terminal
metanames which denote both themselves and their lower-case equivalents (except in the
productions defining upper-case-letters and lower-case-letters, in which the letters de-
note only themselves). The digits are terminal metanames which denote themselves. In ad-
dition, the construct '"[implementation-defined]" is not a unique syntactic object, but
each occurrence of it is defined by each implementation in an appropriate fashion for
the object in question. In some cases a recommendation as to the representation of the
object is given in the corresponding remarks section.

We illustrate further details of the syntax by considering some examples from 5.1. The
production

fraction = period integer

indicates that a fraction is a period followed by an integer. Since 'period" is a termi-
nal metaname (i.e., it does not occur on the left-hand side of any production), the se-
mantics in 4.1 identify the particular character denoted by a period.

What is integer? The production
integer = digit digit¥®

indicates that an integer is a digit followed by an arbitrary number of other digits. An
asterisk is a syntactic operator indicating that the object it follows may be repeated
any number of time, including zero times.

What is a digit? In 4.1 the production
digit=0/1/2/3/4/5/]6/] 7] 8]9

indicates that a digit is either a 0, a 1, ..., or a 9. The slant is a syntactic opera-
tor meaning '"or" and is used to indicate that a metaname can be rewritten in one of sev-
eral ways.

Since the digits are terminal metanames, our decipherment of the syntax for a fraction
comes to an end. The semantics in 4.1 identify the digits in terms of the characters
they represent.

A question-mark is a syntactic operator like the asterisk, indicating that the object it
follows may be omitted. For example, the production

exrad = E sign? integer

indicates that an exrad consists of the letter E or e followed by an optional sign fol-
lowed by an integer.

Parentheses may be used to group sequences of metanames together. For example,

variable-list = variable (comma variable)¥

defines a variable-list to consist of a variable followed by an arbitrary number of
other variables separated by commas. If we wish parentheses actually to appear in syn-
tactic objects, rather than just wish to use them to describe syntactic objects, then we
indicate their presence by the metanames "left-parenthesis" and '"right-parenthesis'.

When several syntactic operators occur in the same production, the following order of
precedence is employed. The operators '"?" and '"*" apply only to the word or parenthe-
sized expression they immediately follow. The operator "/'" applies to the sequence of
words and expressions, separated by spaces, which occur since the beginning of the en-
tire expression, the last "/", or the last unmatched left parenthesis. Thus, for

example,

significand = integer period? / integer? fraction
is equivalent to
significand = (integer (period)?) / ((integer)? fraction)

Spaces in the syntax are used to separate terms in a production from each other. Special
conventions are observed regarding spaces in BASIC programs (see 4.1).

Some syntactic objects are defined by more than one production. For
example, in 5.2 we find
simple-variable > simple-numeric-variable
and in 6.2 we find
simple-variable > simple-string-variable.

Those two productions are equivalent to the single production below (provided no other
definition of simple-variable exists)

simple-variable = simple-numeric-variable / simple-string-variable.

In all cases, a greater-than-sign is used in place of an equals-sign to indicate a mul-
tiple definition, such definitions are equivalent to a single definition containing the
various right-hand sides separated by slants.

In order to maintain the same numbering of productions in the ECMA and ANSI standards
productions not used in the ECMA Standard are identified by the construct: [deleted].

As an illustration of the method of syntax specification, following is a description of
the syntax of this method. The terminal metanames occurring below are defined in 4.1.

1. production = metanames spaces (equals-sign / greater-than-sign)
spaces syntax-expression

2. metaname = lower-case-letter metacharacters¥®

3. metacharacter = lower-case-letter / hyphen

L. spaces = space® end-of-line? space® space

5. syntax-expression = syntax-term (spaces ? slant spaces? syntax-term)%*

6. syntax-term = syntax-factor (spaces syntax-factor)¥

7. syntax-factor = syntax-primary repetition?

8. syntax-primary = metaname / digit digit® / upper-case-letter

upper-case-letter® / left-parenthesis space®
syntax-expression space¥® right-parenthesis
9. repetition = asterisk / question-mark

3.2 Definitions of Terms

For the purpose of this Standard, the following terms have the meanings indicated.

3.2.1

3.2.2

3.2.4

3.2.5

3.2.6

3.2.7

3.

2.8

2.9

- 10 -

BASIC

A term applied as a name to members of a special class of languages which possess
similar syntaxes and semantic meanings, acronym for Beginner's All-purpose Symbolic
Instruction Code.

Batch-mode

The processing of programs in an environment where no provision is made for user in-
teraction.

Can

The word '"can" is used in a descriptive sense to indicate that standard-conforming
programs are allowed to contain certain constructions and that standard-conforming
implementations are required to process such programs correctly.

End-of-1line

The character(s) or indicator which identifies the termination of a line. Lines of
three kinds may be identified in BASIC: program lines, print lines, and input-reply
lines. End-of-lines may vary between the three cases and may also vary depending upon
context. Thus, for example, the end-of-line in an input-reply may vary on a given
system depending on the source for input being used in interactive or batch mode.

Typical examples of end-of-line are carriage-return, carriage-return line-feed, and
end of record (such as end of card).

Error
A flaw in the syntax of a program which causes the program to be incorrect.

Exception

A circumstance arising in the course of executing a program when an implementation
recognizes that the semantic rules of this Standard cannot be followed or that some
resource constraint is about to be exceeded. Certain exceptions (nonfatal exceptions)
may be handled by automatic recovery procedures specified in this Standard. These and
other exceptions may also be handled by recovery procedures specified in the program
(see 12.1, BASIC-2 only). If no recovery procedure is given in this Standard (fatal
exceptions) or if restrictions imposed by the hardware or operating environment make
it impossible to follow the given procedure, and if no recovery procedure is speci-
fied in the program, then the way in which the exception is handled depends on the
context. If the exception occurred in an invocation of a function, picture, or sub-
program, then the exception is 'propagated back' to the invoking statement of the in-
voking program unit (see 12.1, BASIC-2 only). If this propagation procedure reaches
the main program, or if the exception occurred in the main program, then the excep-
tion shall be handled by terminating the program.

External

With respect to procedures, refers to a procedure lexically not contained within a
larger program-unit.

Identifier

A character string used to name a variable, an array, an array-value, an exception-
handler, a function, subprogram, or a program.

Interactive mode

The processing of programs in an environment which permits the user to respond di-
rectly to the actions of individual programs and to control the initiation and termi-
nation of these programs.

- 11 -

3.2.10 Internal

With respect to record-type, refers to data representations such that both the type
and exact value of the written data are preserved and retrievable by subsequent read
operations.

With respect to procedures, refers to a procedure lexically contained within a
larger program: unit and sharing data with that unit.

3.2.11 Keyword

A character string, usually with the spelling of a commonly used or mnemonic word,
which provides a distinctive identification of a statement or a component of a
statement of a programming language.

The keywords in ECMA BASIC are:

ACCESS, AND, ANGLE, AREA, ARTTHMETIC, ARRAY, ASK, AT, BASE, BEGIN, BREAK, CALL, CASE,
CAUSE, CHAIN, CLEAR, CLIP, CLOSE, COLLATE, COLOR, DATA, DATUM, DEBUG, DECIMAL,
DECLARE, DEF, DEGREES, DELETE, DEVICE, DIM, DISPLAY, DO, ELAPSED, ELSE, ELSEIF, END,
ERASE, ERASABLE, EXIT, EXLINE, EXTERNAL, EXTYPE, FILETYPE, FIXED, FOR, FUNCTION, GO,
GOSUB, GOTO, HANDLER, IF, IMAGE, IN, INPUT, INTERNAL, IS, KEY, KEYED, LENGTH, LET,
LINE, LINES, LOOP, MARGIN, MAT, MISSING, NAME, NATIVE, NEXT, NOT, NUMERIC, OF, OFF,
ON, OPEN, OPTION, OR, ORGANIZATION, OUTIN, OUTPUT, POINT, POINTER, POINTS, PRINT,
PROGRAM, PROMPT, RADIANS, RANDOMIZE, READ, RECORD, RECSIZE, RECTYPE, RELATIVE, REM,
REST, RESTORE, RETRY, RETURN, REWRITE, SAME, SELECT, SEQUENTTAL, SET, SETTER, SIZE,
SKIP, STANDARD, STATUS, STEP, STOP, STRING, STYLE, SUB, TAB, TEMPLATE, TEXT, THEN,
THERE, TIME, TIMEOUT, TO, TRACE, UNTIL, USE, USING, VARIABLE, VIEWPORT, WHEN, WHILE,
WINDOW, WITH, WRITE, ZONEWIDTH.

Keywords may also be spelled using lower-case letters or mixed upper-case and lower-
case letters.

3.2.12 Line

Two types of lines are described in the Standard, a physical line and a logical line.
A physical line is an ordered sequence of characters which terminates with an end-of-
line. A physical line starts with a line-number or with an ampersand. A logical line
consists of a line-number followed by an ordered sequence of text where each line-
continuation has logically been replaced by a space.

3.2.13 Machine Infinitesimal

The smallest positive value (other than zero) which can be represented and manipu-
lated by a BASIC implementation.

3.2.14 May

The word '"may" is used in a permissive sense to indicate that a standard-conforming
implementation may or may not provide a particular feature.

3.2.15 Native

With respect to record-type, refers to a record with a specified structure for the
fields within the record, so as to be compatible with records generated by other lan-
guages on the same system. With respect to numeric or string data, refers to data for
which certain semantic rules are left implementation-defined (e.g. collating se-
quence, precision) so as to be directly implementable on the host hardware.

3.2.16 Overflow

With respect to numeric operations, the term applied to the condition which exists
when a prior operation has attempted to generate a result which exceeds MAXNUM (see
5.4.4), or which exceeds the maximum value that can be represented by the declared

- 12 -

format of a fixed point variable or array. With respect to string operations, the
term applied to the condition which exists when a prior operation has attempted to
generate a result which has more characters than can be contained in a string of max-
imal length, as determined by the language processor. With respect to string assign-
ment, the term applied to the condition which exists when a prior operation has at-
tempted to assign a value that is longer than the declared or default maximum of a
string-variable or string-defined-function.

3.2.17 Print Zone

A contiguous set of character positions in a printed output line which may contain an
evaluated print-statement element.

3.2.18 Program Unit

A self-contained part of a BASIC program consisting either of the main-program, which
is the sequence of lines up to and including the line containing an END statement, or
of an external-sub-def or external-function-def.

3.2.19 Reserved Word
BASIC-1

A character string whose usage as a routine-identifier, string-identifier or
numeric-identifier is forbidden in an ECMA BASIC-1 program.These words are:

- the no-argument supplied function names: DATE, EXLINE, EXTYPE, MAXNUM, PI,
RND, TIME, TRANSFORM, DATE$, and TIMES$,

- the identifier used in array-values: CON, IDN, ZER, and NUL$,

- the following keywords: ACCESS, AND, ANGLE, AREA, ARITHMETIC, ASK, AT, BASE,
BEGIN, BREAK, CALL, CASE, CHAIN, CLEAR, CLIP, CLOSE, COLLATE, COLOR, DATA,
DATUM, DEBUG, DECIMAL, DECLARE, DEF, DEGREES, DEVICE, DEVICE, DIM, DISPLAY,
DO, ELAPSED, ELSE, ELSEIF, END, ERASE, ERASABLE, EXIT, EXTERNAL, FILETYPE,
FOR, FUNCTION, GO, GOSUB, GOTO, GRAPH, IF, IMAGE, INPUT, INTERNAL, IS,
LENGTH, LET, LINE, LINES, LOOP, MARGIN, MAT, MISSING, NAME, NATIVE, NEXT,
NOT, NUMERIC, OFF, ON, OPEN, OPTION, OR, ORGANIZATION, OUTIN, OUTPUT, POINT,
POINTER, POINTS, PRINT, PROGRAM, PROMPT, RADIANS, RANDOMIZE, READ, RECSIZE,
RECTYPE, REM, REST, RESTORE, RETURN, SAME, SELECT, SEQUENTIAL, SET, SETTER,
SIZE, SKIP, STANDARD, STATUS, STEP, STOP, STREAM, STRING, STYLE, SUB, TAB,
TEXT, THEN, THERE, TIMEOUT, TO, TRACE, UNTIL, USING, VARIABLE, VIEWPORT,
WHILE, WINDOW, WITH, WRITE, ZONEWIDTH.

The function names EXLINE and EXTYPE are not used in ECMA BASIC-1, but are
reserved for compatibility with ECMA BASIC-2.

BASIC-2

A character string whose usage as a routine-identifier, string-identifier or
numeric-identifier is forbidden in an ECMA BASIC-2 program.These words are:

- the no-argument supplied function names: DATE, EXLINE, EXTYPE, MAXNUM, PI,
RND, TIME, TRANSFORM, DATE$ and TIMES$,

- the identifiers used in array-values: CON, IDN, ZER, and NUL$,
- the keywords NOT, ELSE, PRINT and REM.

3.2.20 Rounding

The process by which a representation of a value with lower precision is generated
from a representation of higher precision taking into account the value of that por-
tion of the original number which is to be omitted. For example, rounding X to the
nearest integer may be accomplished by INT(X+0.5) (see 5.4).

- 13 -

3.2.21 Shall

The word '"shall" is used in an imperative sense to indicate that a program is re-
quired to be constructed, or that an implementation is required to act, as specified
in order to meet the constraints of standard conformance.

3.2.22 Significant Digits

The contiguous sequence of digits between the high-order nonzero digit and the low-
order digit, without regard for the location of the radix point. Commonly, in a nor-
malized floating point internal representation, only the significant digits of a rep-
resentation are maintained in the significand. In fixed-point representation, the low
order digit is the rightmost one explicitly specified, and non-significant high order
digits may be maintained.

3.2.23 Truncation

The process by which a representation of a value with lower precision is generated
from a representation of higher precision by merely deleting the unwanted low-order
digits of the original representation.

3.2.24 Underflow

With respect to numeric operations, the terms applied to the condition which exists

when a prior operation has attempted to generate a result, other than zero, which is
less in magnitude than machine infinitesimal.

- 14 -

4. PROGRAM ELEMENTS

- 15 -

4. PROGRAM ELEMENTS

A BASIC program is a sequence of lines containing statements. Each line is itself a se-
quence of characters.

4.1 Characters

4.1.1

4.1.2

General Description
The character set for ECMA BASIC is contained in the Standard ECMA-6.

Syntax
1. character = quotation-mark / non-quote-character
2. quoted-string-character = double-quote / non-quote-character
3. non-quote-character = ampersand / apostrophe / asterisk / circumflex-accent
/ colon / comma / dollar-sign / equals-sign /
exclamation-mark / greater-than-sign /
left-parenthesis / less-than-sign /
number-sign / percent-sign / question-mark /
right-parenthesis / semicolon / slant /
underline / unquoted-string-character
4. double-quote = quotation-mark quotation-mark
5. unquoted-string-character = space / plain-string-character
6. plain-string-character = digit / letter / period / plus-sign / minus-sign
7. digit = 0/1/2/3/4/5/6/7/8/9
8. letter = upper-case-letter / lower-case-letter
9. upper-case-letter = A/B/C/D/E/F/G/H/T/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y]Z
10. lower-case-letter = a/b/c/d/e/f/g/h/iljlk/1/m/n/o/plalx/s/t/u/v/w/x]y]z
11. other character = [implementation-defined]

The syntax as described generates programs which contain no spaces other than those
occurring in remark-strings, in certain quoted-strings, unquoted-strings, and
literal-strings, or where the presence of a space is explicitly indicated by the
metaname space.

Special conventions shall be observed regarding spaces. With the following excep-
tions, spaces may occur anywhere in a BASIC program without affecting the execution
of that program and may be used to improve the appearance and readability of the pro-
gram. Spaces shall not appear:

- immediately preceding the line-number of a line
- within line-numbers

- within keywords

- within identifiers

- within numeric-constants

- within multicharacter relation symbols.

In addition, spaces which appear in quoted-strings, unquoted-strings, and format-
strings shall be significant (though spaces which precede or follow an unquoted-
string are not part of that string).

All keywords in a program, when used as such, shall be preceded and followed by some
character other than a letter, digit, underline or dollar-sign. A keyword may also be
followed by an end-of-line.

Examples

None.

- 16 -

4.1.4 Semantics

The letters shall be the set of capital (upper-case) and small (lower-case) latin
letters contained in the character set in positions 4/1 to 5/10 and 6/1 to 7/10, re-
spectively.

The digits shall be the set of Arabic digits contained in the character set in posi-
tion 3/0 to 3/9.

The remaining characters shall correspond to the remaining graphic characters in po-
sition 2/0 to 2/15, 3/10 to 3/15, 5/14, and 5/15 of the ECMA character set.

The names of the characters are specified in Table 1. Table 1 shall apply when the
standard collating sequence is in effect, either by default or by explicit use of a
COLLATE option (see 6.4, 6.6, and 8.1). The coding for the native collating sequence
shall be implementation-defined.

All characters other than letters denote themselves. Letters denote themselves
within quoted-strings, unquoted-strings and line-input-replies. Corresponding upper-
case-letters and lower-case-letters shall be equivalent when used in identifiers and
keywords. Quoted-string-characters also denote themselves, except for the double-
quote, which denotes one occurrence of the quotation-mark in the value of the string.

4.1.5 Exceptions

None.
4.1.6 Remarks

Other-characters may be defined by an implementation to be part of the character set
for BASIC. These characters may be used in strings and may be accepted as characters
in data supplied in response to a request for input or generated as the value of the
CHR$ function (see 6.4). The effects of these other-characters are implementation-
defined.

Programs written using other-characters (except for end-of-line characters) are not
themselves standard-conforming programs.

4.2 Programs, Lines, and Blocks

4.,2.1 General Description

A BASIC program is a sequence of lines. Each line contains a unique line-number which
facilitates program editing and serves as a label for the statement contained in that
line.

A BASIC program is divided logically into a number of program-units The first of
these is the main-program, which is terminated by an end-line. Following the main-
program may be zero or more external-sub-def or external-function-def. Certain
logical groupings of lines within a BASIC program are called blocks.

4.2.2 Syntax
The syntax elements available only in ECMA BASIC-2 are printed in bold.

1. program > program-name-line? main-program procedure-par

2. program-name-line = line-number PROGRAM program-name function-parm-1list?
tail

3. program-name = routine-identifier

4. main-program = unit-block¥* end-line

5. unit-block = internal-proc-def / block

6. internal-proc-def > internal-function-def / internal-sub-def /

detached-handler

7. block

8. statement-line
9. line-number
10. statement

11. declarative-statement

12. imperative-statement

13. stop-statement

14. conditional-statement
15. tail

16. end-of-line

17. end-line

18. end-statement

19. procedure-part

20. procedure

21. remark-line

22. line

23. program-unit
24. line-continuation

>

n

>

- 17 -

statement-line / loop / if-block / select-block /
image-line / protection-block

line-number statement tail

digit digit¥*

declarative-statement / imperative-statement /
conditional-statement

data-statement / declare-statement /
dimension-statement / null-statement /
option-statement / remark-statement
array-assignment / array-input-statement /
array-line-input-statement /
array-print-statement / array-read-statement /
array-write-statement / ask-statement /
break-statement / call-statement /
cause-statement / chain-statement /
close-statement / debug-statement /
erase-statement / exit-do-statement /
exit-for-statement / exit-function-statement /
exit-handler-statement / exit-sub-statement /
gosub-statement / goto-statement /
handler-return-statement / input-statement /
let-statement / line-input-statement /
numeric-function-let-statement /
open-statement / print-statement /
randomize-statement / read-statement /
restore-statement / return-statement /
set-statement / stop-statement /
string-function-let-statement /
trace-statement / write-statement

STOP

if-statement / on-gosub-statement / on-goto-statement

tail-comment? end-of-line
[implementation-defined]

line-number end-statement tail

END

remark-1line* procedure

external-function-def / external-sub-def
line-number (null-statement / remark-statement)
end-of-line

case-line / case-else-line / do-line / else-line /

elseif-then-line / end-function-line /
end-handler-line / end-if-line / end-line /
end-select-line / end-sub-line / end-when-line
/ external-function-line / external-sub-line /
for-line / handler-lime / internal-def-line /
internal-function-line / internal-sub-line /
if-then-line / image-line / loop-line /
next-line / program-name-line / remark-line /
select-line / statement-line / use-line /
when-line / when-use-name-line

main-program / procedure

ampersand space® tail ampersand

A program shall be composed of a sequence of lines. Exactly one of these lines shall
be an end-line; the lines up to and including this end-line constitutes the main-
program.

4,2.3

-.18 -

Line-number zero is not allowed; leading zeroes shall have no effect. Lines shall
occur in ascending line-number order. All references to line-numbers within a
program-unit shall be to line-numbers of lines within that program-unit. The number
of digits in a line-number shall not exceed 5. The value of a line-number shall not
exceed 50000.

The manner in which the end of a 1line is detected is determined by the
implementation; e.g., the end-of-line may be a carriage-return character, a carriage-
return character followed by a line-feed character, or the end of a physical record.

A physical line in a program shall contain at most 132 characters before each end-of-
line indicator.

At any place where a space may be used, except in quoted-strings, unquoted-strings,
literal-strings, and remark-strings (see 4.1 and 4.3), a line-continuation may be
substituted for a space with no effect other than that of the space it replaces.

Parameters in the program-name-line shall not be explicitly dimensioned or declared
in the main-program.

Examples
2. 100 PROGRAM Graphic & ! This program draws a graph
& (x, & ! x is x-coordinate
& y) ! y is y-coordinate
18. 999 END

L.2.4 Semantics

4.2.5

L.2

.6

The program-name-line is the operand of the chain-statement (see 9.3). The
relationship between the program-name and the program-designator in a program
executing a chain-statement is implementation-defined. Parameters in the program-
name-line are evaluated as described in 9.1. Their scope is the main-program. For a
program executed in isolation, the program-name has no effect. The effect of a
parameter-list in a program-name-line for a program executed in isolation is
implementation-defined.

Lines in a program shall be executed in sequential order, starting with the first
line, until

- some other action is dictated by execution of a line, or

- an exception occurs (unless, in BASIC-2, it is a nonfatal exception which is not
handled by a user defined exception-handler), or

- a chain-statement is executed, or

- a stop-statement or end-statement is executed.

The end-statement shall serve both to mark the physical end of the main-program and
to terminate execution of the program when encountered.

Execution of a stop-statement shall also cause termination of execution of the
program.

Exceptions
None.
Remarks

References to non-existent line-numbers in a program-unit are syntax errors.
Implementations may therefore treat them as exceptions, if they are documented as
such.

- 19 -

4.3. Program Annotation

4.3.1

4.3.4

General Description

BASIC programs may be annotated by comments at the end of program lines or by
separate remark-statements.

Syntax

"

. remark-statement REM remark-string
character®
tail-comment

exclamation-mark remark-string

1
2. remark-string
3. null-statement
4. tail-comment

Line-continuation shall not occur in remark-strings.

Examples

1. REM FINAL CHECK
4, | COMPUTE AVERAGE

Semantics

If the execution of a program reaches a line containing a remark-statement or null-
statement, then it shall proceed to the next line with no other effect.

A tail-comment has no effect upon the execution of the line in which it occurs. The
remark-string in the tail-comment serves solely as a comment about the line.

Exceptions
None.
Remarks

None.

4.4 TIdentifiers

L.4.1

L.4.2

General Description

Identifiers are used to name variables, arrays, array-values, functions, programs,
subprograms and exception-handlers.

Syntax
1. identifier > numeric-identifier / string-identifier /
routine-identifier
2. numeric-identifier = letter identifier-characters®
3. identifier-character = letter / digit / underline
4. string-identifier = letter identifier-character®dollar-sign
5. routine-identifier = letter identifier-character®

An identifier shall contain at most 31 characters, including the dollar-sign in the
case of a string identifier.

A given numeric-identifier may name a simple-numeric-variable, a one-dimensional,
two-dimensional or three-dimensional numeric-array, a numeric-function, or a numeric-
array-value, but not more than one of these in a program-unit. Likewise, a given
string-identifier may name a simple-string-variable, a one-dimensional, two-
dimensional or three-dimensional string-array, a string-function, or a string-array-
value, but not more than one of these in a program-unit.

A given identifier may name an internal-subprogram, an internal-function-def or a
detached-handler but not more than one of these in a program-unit.

L.4.3

L.bL. L

L.4.5

L.4.6

- 20 -

A given routine-identifier shall not name more than one of an external-function-def,
an external-sub-def or a main-program in a program.

A numeric-identifier which names an external-function-def may not be used as a
routine-identifier.

The names of the no-argument supplied functions or array-values CON, DATE, EXLINE,
EXTYPE, IDN, MAXNUM, PI, RND, TIME, TRANSFORM and ZER shall not be used as numeric-
identifiers to name any other entity. The names of the no-argument supplied
functions or array-values DATE$, NUL$, and TIME$ shall not be used as string-
identifiers to name any other entity. The keywords listed in 3.2.19 shall not be used
as identifiers. Note that the list in 3.2.19 is different for BASIC-1 and BASIC-2.

Examples
2. X
sum
4. A$
last_names$
5. INVERT
Semantics

Each program-unit is a distinct entity in that identifiers used to name variables,
arrays, detached-handlers, internal-function-definitions, or internal-procedures
defined within program-units shall be local to each invocation of the program-unit in
which they occur; i.e., they shall name different objects in different program-units
and in different invocations of the same program-unit. Identifiers used to name
supplied-functions or program-units, however, shall be global to the entire program;
i.e., they shall name the same object wherever they occur.

If the name of implementation-supplied function or the keyword TAB is implicitly or
explicitly defined or declared as the identifier of a user-defined function, array,
or variable, then the defined declared interpretation of the identifier shall
override the interpretation specified by the Standard within the scope of the
definition or declaration. Therefore, within that scope, the implementation-supplied
function or the tab-call shall be unavailable.

Within any program-unit, identifiers which differ only in the cases of the letters
they contain shall denote the same objects (e.g., X1 identifies the same object as
x1). Identifiers which differ in any other respect shall denote different objects.

Exceptions

None.
Remarks

No implementation-defined enhancement to this Standard may extend the list of words
unavailable for use as simple-variables. Since all arrays must be declared (see
7.1.), and since all defined-functions must be declared or defined in the program-
unit in which they are referenced, implementations may supply built-in functions
other than those specified in this Standard provided that any declaration for such
identifiers within a program overrides the implementation-supplied interpretation.
Note, however, that in some cases the use of a parameterless function supplied by an
implementation as an enhancement would be syntactically indistinguishable from a

- 21 -

variable having the same name. Therefore, implementations which provide such
functions must also provide a syntactic means for identifying them as functions.
Examples of such syntax are a requirement to declare such functions explicitly in any
program-unit where they are used or requiring the use of empty parentheses (e.g.
""NEWFUNCTION()") with reference to such functions.

An operating system may impose additional restrictions on the length and form or
identifiers for procedures which are compiled independently of the main-program.

A supplied-function may be overridden by defining a user-defined function or simple-
variable with the same name.

In ECMA BASIC-2, an identifier may have the same spelling as a keyword (other than
PRINT, ELSE, REM or NOT).

- 22 -

5. NUMBERS

- 23 -

5. NUMBERS

Numbers constitute one of two primitive data types in BASIC (the other is strings). With
numbers are associated constants, variables, and implementation-supplied functions, from
which expressions can be formed.

5.1 Numeric Constants

5.1.1 General Description

Numeric-constants denote scalar numeric values. A numeric-constant is a decimal
representation, in positional-notation, of a number. There are four general syntactic
forms of numeric-constants:

- implicit point unscaled representation d...d

- explicit point unscaled representation ds..drd...d

- explicit point scaled representation sd...drd...dEsd...d
- implicit point scaled representation sd...dEsd...d

where d is a digit, r is a period, s is an optional sign, and E is the explicit
character E or e. A numeric-constant not preceded by a sign is assumed to be
positive.

5.1.2 Syntax

1. constant > numeric-constant

2. numeric-constant = sign? numeric-rep

3. sign = plus-sign / minus-sign

L. numeric-rep = significand exrad?

5. significand = integer period? / integer? fraction
6. integer = digit digit¥*

7. fraction = period integer

8. exrad = E sign? integer

5.1.3 Examples

2. =21
4, 1E10
5e-1
LEHL
5. 500.
1.2
T+ +255

5.1.4 Semantics

The value of a numeric-constant is the number represented by that constant. "E" and
"e"" stand for 'times ten to the power"; if no sign follows the symbols E and e, then
a plus-sign is understood.

A program can contain numeric-constants which have an arbitrary number of digits. An
implmentation must retain either the exact value of a numeric-constant, or that value
rounded to an implementation-defined precision. The implementation-defined precision
for numeric constants shall not be less than ten or six significant decimal digits,
depending on upon whether the arithmetic option in force is DECIMAL or NATIVE
respectively. Numeric-constants can also have an arbitrary number of digits in the
exrad, though nonzero constants whose magnitude is outside an implementation-defined
range may be treated as exceptions (see 5.6). Nonzero constants whose magnitudes are
less than machine infinitesimal shall be replaced by =zero, while constants whose
magnitudes are larger than MAXNUM shall be reported as causing an overflow.

5

5.

5.

o2

1.5

1.6

- 2 -

Exceptions
- The evaluation of a numeric-constant causes an overflow (1001, fatal).
Remarks

It is recommended that implementations report constants whose magnitudes are less
than machine infinitesimal as underflows (1501, nonfatal replace by zero and
continue). In BASIC-2 implementation, this permits interception by exception
handlers.

Although this Standard contains no provision for named constants, their effect can be
achieved through no-argument defined-functions (see 9.1).

Numeric Variables

5.2.1

5.2.2

5.

5.

2.3

2.4

General Description

Numeric-variables may be either simple-numeric-variables or references to elements of
numeric-arrays.

Syntax
1. variable > numeric-variable
2. numeric-variable = simple-numeric-variable / numeric-array-element
3. simple-numeric-variable = numeric-identifier
4. numeric-array-element = numeric-array subscript-part
5. numeric-array = numeric-identifier
6. subscript-part = left-parenthesis subscript (comma subscript)®

right-parenthesis
index

7. subscript

8. index = numeric-expression
9. simple-variable > simple-numeric-variable
10. array-name > numeric-array

The number of subscripts in a subscript-part shall be one, two, or three.

Examples
3. X

sum

b. V(4)

table(i, j+1)
Semantics

At any instant in the execution of a program, a numeric-variable is associated with a
single numeric value. The value associated with a numeric-variable may be changed by
the execution of statements in the program.

Simple-numeric-variables are declared implicitly through their appearance in a
program-unit. The scope of a numeric-variable shall be the program-unit in which it
appears, unless it is a parameter of an internal-function-definition (see 9.1).

An index is a numeric-expression whose value shall be rounded to the nearest integer;
the rounded value of X is defined to be INT(X+.5).

A numeric-array-element is called a subscripted numeric-variable and refers to the
element in the array selected by the value(s) of the subscript(s). The acceptable
range of values must be explicitly declared in a dimension-statement or a declare-
statement (see 7.1). Subscripts shall have values within the appropriate range.

At the initiation of execution the values associated with all numeric-variables shall
be implementation-defined.

5+2.5

5.2.6

- 25 -

Exceptions
- A subscript is not in the range of the declared bounds (2001, fatal).
Remarks

Since initialization of variables 1is not and hence may vary from
implementation to implementation, programs that are intended to be transportable
should explicitly assign a value to each variable before any expression involving
that variable is evaluated.

specified,

There are many commonly used alternatives for associating implementation-defined
initial values with variables; it is recommended that all variables be recognizably
undefined in the sense that an exception will result from any attempt to access the
value of any variable before that variable is explicitly assigned a value (3101,
nonfatal: supply an implementation-defined value and continue).

5.3 Numeric Expressions

5.3.1

5:3.2

5,3.3

General Description

Numeric-expressions may be constructed from numeric-variables,
numeric-function-refs using the operations of addition, subtraction, multiplication,
division, and exponentiation (i.e., raising to a power).

numeric-reps, and

Syntax
1. expression numeric-expression
2. numeric-expression sign? term (sign term)*
3. term factor (multiplier factor)¥
4. factor primary (circumflex-accent primary)¥
5. primary numeric-rep numeric-variable / numeric-function-ref /

6. numeric-function-ref

left-parenthesis numeric-expression
right-parenthesis
numeric-function function-arg-list?

7. numeric-function numeric-defined-function / numeric-supplied-function
8. function-arg-list left-parenthesis function-argument (comma
function-argument)*right-parenthesis
9. function-argument expression / actual-array
10. actual-array array-name
11. multiplier asterisk / slant

The number and types of arguments in a numeric-function-ref shall agree with the
number and types of corresponding parameters in the definition of the numeric-
function. An actual-array shall have the same number of dimensions as the
corresponding parameter.

Whenever numeric arguments are passed to an external-function-definition, the
ARITHMETIC options in effect for the external-function-definition and the invoking
program-unit must agree.

Each numeric-function referenced in an expression within a program-unit shall either
be implementation-supplied, or shall be defined in an internal-function-def or
declared in a declare-statement occuring in a lower-numbered line, within the same
program-unit, than the first reference to that numeric-function.

Examples
2. 3K - Y2
cost¥*quantity + overhead
L., 27(-X)

5. SQR(X"2+Y"2)
6. value(X, Y, a$)

- 26 -

5.3.4 Semantics

The formation and evaluation of numeric-expressions follows the normal algebraic
rules. The symbols circumflex-accent (~), asterisk (%), slant (/), plus-sign (+), and
minus-sign (-) represent the operations of exponentiation, multiplication, division,
addition, and subtraction or negation, respectively. Unless parenthesis dictate

otherwise, exponen-tiations shall be performed first, then multiplications and

divisions, and finally additions, subtractions, and negations. In the absence of
parenthesis, operations of the same precedence shall be evaluated from left to right.
Thus A-B-C shall be interpreted as (A-B)-C; A"B'C, as (A"B)"C; A/B/C, as (A/B)/C;
-A+B as (-A)+B; and -A"B as -(A"B).

If an underflow occurs in the evaluation of a numeric-expression, then the value
generated by the operation which resulted in the underflow shall be replaced by zero.

For those mathematical operators which are associative, commutative, or both, full
use of these properties may be made in order to revise the order of evaluation of the
numeric-expression except where constrained by the use of parenthesis.

&

0 is defined to be 1.

A numeric-function-ref is a notation for the invocation of a predefined algorithm,
into which the argument values, if any, shall be substituted for the parameters (see

5.

L, 6.4 and 9.1) used in the function-definition. The result of evaluating a

numeric-function, achieved by the execution of the defining algorithm, shall be a
scalar numeric value which replaces the numeric-function-ref in the numeric-
expression.

5.3.5 Exceptions

Evaluation of a numeric-expression results in division by zero (3001, fatal).
Evaluation of a numeric-expression results in an overflow (1002, fatal).

Evaluation of the operation of exponentiation results in a negative number being
raised to a non-integral power (3002, fatal).

Evaluation of the operation of exponentiation results in zero being raised to a
negative power (3003, fatal).

5.3.6 Remarks

The accuracy with which the evaluation of a numeric expression takes place may vary

from implementation to implementation, subject to the constraints of 5.6.

Tt is recommended that implementations report underflow as an exception (1502,
nonfatal: replace by zero and continue). In BASIC-2 implementation, this permits
interception by exception handlers.

Implementations may evaluate primaries and operations within a numeric-expression in
any order which is consistent with the semantics of 5.3.4. Of course, an operation
must be evaluated after its operands. For example, in the expression "A+B+C+D*E", the
primaries and additions may be evaluated in any order. However, the multiplication

must be performed before the addition implied by the third plus-sign, since the
product "D*E" is one of the operands of that addition.

5.4 Implementation-Supplied Numeric Functions

5.4.1 General Description

Predefined algorithms are supplied by the implementation for the evaluation of
commonly used numeric functions. Additional functions related to other features of
this Standard are defined in 6.4, 7.1 and 7.2.

5.4.2

5.4.3

5.4.4

- 27 -

Syntax
1. numeric-supplied-function > ABS / ACOS / ANGLE / ASIN / ATN / CEIL / COS / COSH /
COT / CSC / DATE / DEG / EPS / EXP / FP /
MAXNUM / INT / IP / LOG / LOG10 / LOG2 / MAX /
MIN / MOD / PI / RAD / REMAINDER / RND /
ROUND / SEC / SGN / SIN / SINH / SQR / TAN /
TANH / TIME / TRUNCATE
2. randomize-statement = RANDOMIZE
Examples
2. RANDOMIZE
Semantics

The values of the numeric-supplied functions, as well as the number of arguments
required for each function, shall be as described below. In all cases, X and Y stand
for numeric-expressions, and N stands for an index, i.e., the rounded integer value
of a numeric-expression. Each function accepts numeric arguments within the range of
the negative number with the largest magnitude to the largest positive number, except
where noted. For functions which return a value in angle measure (ACOS, ANGLE, ASIN
and ATN), the value shall be in radians unless OPTION ANGLE DEGREES is in effect (see
5.6), when the value shall be in degrees. In the semantics below, "pi'' (lower-case)
stands for the true value of that constant.

Function

Function value
ABS(X)

The absolute value of X.
ACOS(X)

The arccosine of X in radians or degrees (see 5.6), where 0 < ACOS(X) < pi; X
shall be in the range -1 < X < 1.

ANGLE(X, Y)

The angle in radians or degrees (see 5.6) between the positive x-axis and the
vector joining the origin to the point with coordinates (X, Y), where -pi <
ANGLE(X, Y) < pi. X and Y must not both be 0. Note that counterclockwise is
positive, e.g., ANGLE(1,1) = 45 degrees.

ASIN(X)

The arcsine of X in radians or degrees (see 5.6), where -pi/2 < ASIN(X) <
pi/2; X shall be in the range -1 < X < 1.

ATN(X)

The arctangent of X in radians or degrees (see 5.6), i.e., the angle whose
tangent is X, where -(pi/2) < ATN(X) < (pi/2).

CEIL(X)

The smallest integer not less than X.
COS(X)

The cosine of X, where X is in radians or degrees (see 5.6).
COSH(X)

The hyperbolic cosine of X.

- 28 -

COT(X)
The cotangent of X, where X is in radians or degrees (see 5.6).
€SC(X)

The cosecant of X, where X is in radians or degrees (see 5.6).

DATE
The current date in decimal form YYDDD, where YY are the last two digits of
the year and DDD is the ordinal number of the current day of the year; e.g.,
the value of DATE on May 9, 1977 was 77129. If there is no calendar
available, then the value of DATE shall be -1.

DEG(X)
The number of degrees in X radians.

EPS(X)
The maximum of (X-X', X"-X, sigma) where X' and X" are the predecessor and
successor of X and sigma is the smallest positive value representable.If X
has no predecessor then X'=sX and if X has no successor then X"=X". Note
EPS(0) is the smallest positive number representable by the implementation,
and is therefore implementation-defined. Note also that PS may produce
different results for different arithmetic options (see 5.6).

EXP(X)
The exponential of X, i.e., the value of the base of natural logarithms
(e = 2.71828...) raised to the power X; if EXP(X) is less than machine
infinitesimal, then its value shall be replaced by zero.

FP(X)
The fractional part of X, i.e., X - IP(X).

INT(X)
The largest integer not greater than X; e.g., INT(1.3)=1 and INT(-1.3)=-2.

IP(X)
The integer part of X, i.e., SGN(X)¥INT(ABS(X)).

LOG(X)
The natural logarithm of X; X shall be greater than zero.

LOG10(X)
The common logarithm of X; X shall be greater than zero.

LOG2(X)
The base 2 logarithm of X; X shall be greater than zero.

MAX(X, Y)
The larger (algebraically) of X and Y.

MAXNUM

The largest finite positive number representable and manipulable by the
implementation; implementation-defined. MAXNUM may represent different
numbers for different arithmetic options (see 5.6).

- 29 -

MIN(X, Y)

The smaller (algebraically) of X and Y.
MOD(X, Y)

X modulo Y, i.e., X-Y*INT(X/Y). Y shall not equal zero.
PI

The constant 3.14159... which is the ratio of the circumference of a circle
to its diameter.

RAD(X)
The number of radians in X degrees.
REMAINDER(X, Y)

The remainder function, i.e., X-Y*IP(X/Y). Y shall not equal zero.

RND
The next pseudo-random number in an implementation-defined sequence of
pseudo-random numbers uniformly distributed in the range 0 < RND < 1.
ROUND(X, N)
The value of X rounded to N decimal digits to the right of the decimal point
(or -N digits to the left if N < 0); i.e., INT(X*10 N+.5)/10°N.
SEC(X)
The secant of X, where X is in radians or degrees (see 5.6).
SGN(X)
The sign of X: -1 if X < 0, 0 if X = 0, and +1 if X > O.
SIN(X)
The sine of X, where X is in radians or degrees (see 5.6).
SINH(X)
The hyperbolic sine of X.
SQR(X)
The non-negative square root of X; X shall be non-negative.
TAN(X)
The tangent of X, where X is in radians or degrees (see 5.6).
TANH(X)
The hyperbolic tangent of X.
TIME

The time elapsed since the previous midnight, expressed in seconds; e.g., the
value of TIME at 11:15 AM is 40500. If there is no clock available, then the
value of TIME shall be -1. The value of TIME at midnight shall be zero (not
86400) .

TRUNCATE(X, N)

The value of X truncated to N decimal digits to the right of the decimal
point (or -N digits to the left if N < 0); i.e., IP(X*10"N)/10°N.

- 30 -

If OPTION ANGLE DEGREES is in effect, the term "in radians or degrees" in the above
list of function values shall mean degrees. If OPTION ANGLE RADIANS is in effect, the
term '"in radians or degrees" shall mean radians. The accuracy requirements (see
5.6.4) for the periodic trigonometric functions SIN, COS, TAN, SEC, CSC, COT are
limited to providing full accuracy of mtl decimal digits only for arguments n the
range of -2%pi to 2%pi. Loss of accuracy outside this range is limited to the result
of loss of precision in performing those range reductions on arguments necessary to
compute values of these functions, i.e., "SIN (x)" may be evaluated as if it were
written "SIN (MOD (x, 2%pi))" and similarly for the other functions.

If no randomize-statement is executed, then the RND function shall generate the same
sequence of pseudo-random numbers each time a program is run. Execution of a
randomize-statement shall override this implementation-supplied sequence of pseudo-
random numbers, generating a new (and unpredictable) starting point for the list of
pseudo-random numbers used subsequently by the RND function. The sequence of pseudo-
random numbers shall be global to the entire program, not local to individual
program-units.

5.4.5 Exceptions

- The value of the argument of the LOG, LOG10, or LOG2 function is zero or negative
(3004, fatal).

- The value of the argument of the SQR function is negative (3005, fatal).

- The magnitude of the value of a numeric-supplied-function is larger than MAXNUM or
is mathematical infinity (1003, fatal).

- The value of the second argument of the MOD or REMAINDER function is zero (3006,
fatal).

- The value of the argument of the ACOS or ASIN function is less than -1 or greater
than 1 (3007, fatal).

- An attempt is made to evaluate ANGLE(0,0) (3008, fatal).
5.4.6 Remarks

In the case of implementations which do not have access to a randomizing device such
as a real-time clock, the randomize-statement may be implemented by means of an
interaction with the user.

This Standard requires that overflows be reported only for the final values of
numeric-supplied-functions; exceptions which occur in the evaluation of these
functions need not be reported, though implementations shall take appropriate actions
in the event of such exceptions to insure the accuracy of the final values. When
overflows are reported for the final values of numeric-supplied-functions, it is
recommended that the name of the function generating the overflow be reported also.

It is recommended that, if the magnitude of the value of a numeric-supplied-function
is nonzero, but less than machine infinitesimal, implementations report this as an
underflow, set the value to zero (1503, nonfatal: return zero and continue). In
BASIC-2 implementations, this permits interception by exception handlers.

The time-zone used for DATE and TIME is implementation-defined.

It may not be possible, for reasons of overflow, to express the year in full format
in DATE. When this full format is needed, the function DATE$ should be used.

- 31 -

5.5 Numeric Assignment Statement

5.5.1 General Description

5.5.2

5+9.3

5.5.4

5.5.5

5.5.6

A let-statement provides for the simultaneous assignment of the computed value of a
numeric-expression to a list of numeric-variables.

Syntax
1. let-statement > numeric-let-statement
2. numeric-let-statement = LET numeric-variable-list equals-sign
numeric-expression
3. numeric-variable-list = numeric-variable (comma numeric-variable)¥
Examples
2. LET P = 3.14159
LET A(X,3) = SIN(X)*Y + 1
LET A, Y(1), Z = I+l
LET T(I,J), I, J=1+J
Semantics

The subscripts, if any, of variables in the numeric-variable-list shall be evaluated
in sequence from left to right. Next the numeric-expression on the right of the
equals-sign shall be evaluated (see 5.3). Finally, the value of that numeric-
expression, if necessary rounded to the nearest value which can be retained by the
variable, shall be assigned to the numeric-variables in the numeric-variable-list in
order from left to right.

Exceptions

None.
Remarks
Note that: LET A =1
LET A, B(A) = 2
is not equivalent to: LET A = 1
LET A = 2
LET B(A) = 2

5.6 Numeric Arithmetic and Angle

5.6.1

5.6.2

General Description

Unless specified otherwise, the values of all numeric-variables shall behave
logically as floating-point decimal numbers with an implementation-defined precision
of at least ten decimal digits. By use of an option-statement, a program may choose
to take advantage of a more efficient, but possibly less accurate, representation for
numeric values.

Unless specified otherwise the trigonometric functions (see 5.4) require arguments or
generate values in radian measure. By use of an option-statement, a program may
change the angle measure of all such functions to degrees.

Syntax
1. option-statement OPTION option-list
2. option-list option (comma option)*

3. option > ARITHMETIC (DECIMAL / NATIVE / FIXED) / ANGLE
(DEGREES / RADIANS)

5,

5.

6.3

6.4

- 32 -

4. declare-statement = DECLARE type-declaration

5. type-declaration > numeric-type

6. numeric-type > NUMERIC numeric-declaration (comma
numeric-declaration)®

7. numeric-declaration > simple-numeric-variable

An option-statement with an ARITHMETIC option, if present at all, shall occur in a
lower-numbered line than any numeric-expression, or a dimension-statement or a
declare-statement referencing a numeric-array or fixed-declaration in the same
program-unit.

The option ARITHMETIC FIXED is relevant only to BASIC-2.
A program-unit shall contain at most one ARITHMETIC option.

An ANGLE option, if present at all, shall occur in a lower-numbered line than any
reference to any numeric-supplied-function in the same program-unit.

A program-unit shall contain at most one ANGLE option.

A declare-statement, if present at all, must occur in a lower-numbered line than any
reference to the variables declared therein.

Examples
1. OPTION ARITHMETIC DECIMAL, ANGLE DEGREES

Semantics

The ARITHMETIC option controls the logical behavior of numeric entities within the
program-unit containing the option.

If OPTION ARITHMETIC DECIMAL is specified, or if no ARITHMETIC option is specified,
then the values of the numeric-variables shall behave logically as decimal floating-
point numbers, with an implementation-defined precision, say m, of at least ten
significant decimal digits and with an implementation-defined range of at least 1E-38
to 1E+38.

The results of decimal computations can be described in terms of floating-point
decimal intermediate results with at least m+l decimal digits of precision (but may
be implemented in some other equivalent fashion). The value of a numeric-variable
shall be assumed to be exact. Numeric-constants shall be evaluated accurately to at
least m decimal digits of precision. Numeric operations and functions shall also be
evaluated accurately to at least m+l decimal digits of precision with respect to the
computed value of their operands and arguments (which may themselves be intermediate
results). In all cases, the intermediate result of an evaluation shall be represented
as a floating-point decimal number with at least mtl decimal digits of precision,
thus, when the true result can be expressed as a decimal number with mt+l significant
digits, the computed result shall be exact. In no case shall the error for evaluation
of an individual constant, operation, or function be greater than 5 in the (m+2)nd
significant digit. Implementations are free to use any method of numeric evaluation
which always yields results whose absolute error (with respect to the true result) is
no greater than the absolute error of the results generated by the preceding
specification.

If OPTION ARITHMETIC NATIVE is specified, then the values of numeric variables and
constants shall be represented and manipulated in an implementation-defined fashion,
with an implementation-defined precision of at least six decimal digits and with an
implementation-defined range of at least 2E-38 to 1E+38. Decimal values need not be
represented exactly, as long as the error is within the limits of this precision.

- 33 -

The ANGLE option controls the evaluation of the trigonometric functions within the
program-unit containing the option. If OPTION ANGLE RADIANS is specified, or if no
ANGLE option is specified, then the numeric-supplied-functions COS, COT, CSC, SEC,
SIN, and TAN use arguments in radian measure, and the numeric-supplied-functions
ACOS, ANGLE, ASIN and ATN generate results in radian measure.

If OPTION ANGLE DEGREES is specified, then the numeric-supplied-functions COS, COT,
CSC, SEC, SIN, and TAN use arguments in degree measure, and the numeric-supplied-
functions ACOS, ANGLE, ASIN, and ATN generate results in degree measure.

If the execution of a program reaches a line containing an option-statement, then it
shall proceed to the next line with no further effect.

A simple-numeric-variable that appears in a numeric-type shall establish that
variable as a simple-numeric-variable.

If execution reaches a line containing a declare-statement, it shall proceed to the
next line with no further effect.

5.6.5 Exceptions
None.
5.6.6 Remarks

The representations chosen for numeric values when OPTION ARITHMETIC NATIVE is
specified may be the same as that for OPTION ARITHMETIC DECIMAL.

No minimum accuracy is specified for the evaluation of numeric expressions and
functions when OPTION ARITHMETIC NATIVE has been chosen. However, it is recommended
that implementations maintain at least six decimal digits of precision.

The value 2E-38 is specified for the maximum value of the lower bound of positive
numbers to allow an implementation employing the IEC 559 floating point binary
arithmetic to be standard conforming.

- 34 -

6. STRINGS

- 35 -

6. STRINGS

Character strings constitute one of two primitive data types in BASIC (the other is num-
bers). Strings consist of arbitrary sequences of characters. Their lengths are variable,
not fixed, although a maximum length for a string may be specified. With strings are asso-

ciated constants, variables, and implementation-supplied functions, from which expressions
can be formed.

6.1 String Constants

6.1.1 General Description

A string-constant is a character string of fixed length enclosed within quotation-

marks. A quotation-mark itself may be included in a string-constant by representing
it by two adjacent quotation-marks.

6.1.2 Syntax

1. constant > string-constant

2. string-constant quoted-string

3. quoted-string quotation-mark quoted-string-character®
quotation-mark

n

The length of a string-constant, i.e., the number of quoted-string-characters con-
tained between the quotation-marks, shall be limited only by the implementation-

defined maximum number of characters preceding each of end-of-line indicator (i.e.,
at least 132).

6.1.3 Examples

2. ”XYZ"
"1E10"
IIHe Said’ lIIIDonItllII.II

6.1.4 Semantics

The value of a string-constant shall be the sequence of all quoted-string-characters
between the initial and final quotation-marks. The double-quote, when appearing in-
side a quoted-string,shall denote a single quotation-mark. Spaces in string-
constants, including trailing spaces, shall be significant. A string consisting only
of two quotation-marks shall represent the null string. Upper-case-letters and lower-
case-letters shall be distinct within string-constants.

6.1.5 Exceptions
None.
6.1.6 Remarks
The maximum length of a string-constant is constrained by the maximum length of a

physical line. The maximum length of the constant would therefore be 3 less than that

for the line, allowing for a continuation character ("&"), and the leading and trail-
ing quotation-mark, e.g.:

100 LET A$ = &
&"abc...unseen characters here...xyz"

As the maximum physical line length must be at least 132, the maximum string-constant
length must be at least 129.

6.2 String Variables

6.2.1 General Description

String-variables may be either simple-string-variables or references to elements of
one-dimensional, two-dimensional, or three-dimensional string-arrays.

6.2.2

6.2.3

6.2.4

- 36 -

Explicit declarations of simple-string-variables are not required. A dollar-sign
serves to distinguish a string-variable from a numeric-variable.

Syntax
1. variable > string-variable
2. string-variable = (simple-string-variable / string-array-element)
substring-qualifier?
3. simple-string-variable = string-identifier
4. string-array-element = string-array subscript-part
5. string-array = string-identifier
6. substring-qualifier = left-parenthesis index colon index right-parenthesis
7. simple-variable > simple-string-variable
8. array-name > string-array
Examples
2. K$
name$ (X:Y)
ITEM$(1,n)(z:z+5)
L, A$(L)
table$(I,J)
Semantics

At any instant in the execution of a program, a string-variable is associated with a
single string-value. The value associated with a string-variable may be changed by
the execution of statements in the program.

The length of the character string associated with a string-variable can vary during
the execution of a program from a length of zero characters (signifying the null or
empty string) to the maximum allowed for that string-variable (see 6.6.4).

Simple-string-variables may be declared explicitly (see 6.6) or may be declared im-
plicitly through their appearance in a program-unit. The scope of a string-variable
shall be the program-unit in which it appears, unless it is a parameter of an
internal-proc-def, in which case its scope is that definition.

A string-array element is called a subscripted string-variable and refers to the ele-
ment in the one-dimensional, two-dimensional or three-dimensional array selected by
the value(s) of the subscript(s). Subscripts shall have values within the appropriate
range (see 7.1).

The substring-qualifier provides a means for specifying a portion of the value asso-
ciated with a string-variable. A$(M:N) shall specify that substring of the value as-
sociated with A$ from its Mth through Nth characters (M and N are indices).

Characters in a string shall be numbered from the left starting with one. There are
no exceptions associated with substring-qualifiers; if either M or N is not in the
range from 1 to LEN(A$), the M shall be considered to be MAX(M,1) and N shall be con-
sidered to be MIN(N,LEN(A$)). If M > N, even after this adjustment, then A$(M:N)
shall be the null string occuring before the Mth character of A$ if M < LEN(A$) or

- 37 -

the null string immediately following A$ if M > LEN(A$). For example, if A} =
"1.234", then A$(1:1) = "1", A$(1:3) = "123", A$(0:3) = "123", A$(2:5) = "234",
A$(3:2) is the null string preceding the third character of A$, and A$(5:7) is the
null string following A$. At the initiation of execution the values associated with
all string-variables shall be implementation-defined.

6.2.5 Exceptions
- A subscript is not in the range of the declared bounds (2001, fatal).

6.2.6 Remarks

Since initialization of variables is not specified, and hence may vary from implemen-
tation to implementation, programs that are intended to be transportable should ex-
plicitly assign a value to each variable before any expression involving that vari-
able is evacuated.

There are many commonly used alternatives for associating implementation-defined ini-
tial values with variables; it is recommended that all variables be recognizably un-
defined in the sense that an exception will result from any attempt to access the
value of any variable before that variable is explicitly assigned a value (3102, non-
fatal: supply an implementation-defined value and continue).

6.3 String Expressions

6.3.1 General Description

String-expressions are composed of string-variables, string-constants, string-
function-references, or a concatenation of these.

6.3.2 Syntax

1. expression > string-expression
2. string-expression = string-primary (concatenation string-primary)#*
3. string-primary = string-constant / string-variable /

string-function-ref / left-parenthesis
string-expression right-parenthesis

4. string-function-ref = string-function function-arg-1list?
5. string-function = string-defined-function / string-supplied-function
6. concatenation = ampersand

The number and types of arguments in a string-function-ref shall agree with the num-
ber and types of the corresponding parameters specified in the definition of the
string-function. An actual-array shall have the same number of dimensions as the cor-
responding parameter.

Each string-function referenced in an expreséion within a program-unit shall either
be implementation-supplied, or shall be defined in an internal-function-def or de-
clared in a declare-statement occurring in a lower-numbered line, within the same
program-unit, than the first reference to that string-function.

6.3.3 Examples
2. A2$ & B$(4:22) & 223"
3. X$(1,3)(1:J)

6.3.4 Semantics

The value of a string-expression shall be the concatenation of the values of the
string-primaries in the expression (e.g., if A$ = "COME " and B$ = "IN", then A$ & B$
= "COME IN" and B$ & A$ = "INCOME ").

- 38 -

Within a string-expression, string-primaries shall be evaluated from left to right.
For each string-primary, first the subscripts, if any, shall be evaluated, then the
substring-qualifiers, and then the value of the primary itself.

A string-function-ref is a notation for the invocation of a predefined algorithm,
into which the argument values, if any, shall be substituted for the parameters (see
6.4 and 9.1) used in the function-def. The result of evaluating a string-function,
achieved by the execution of the defining algorithm, shall be a scalar string value
which replaces the string-function-ref in the string-expression.

6.3.5 Exception

- Evaluation of a string-expression causes a string overflow (1051, fatal).
6.3.6 Remarks

The ampersand is used both for concatenation and line-continuation. Thus:

100 PRINT "ABC" &&%
& "XYZ"

will print the sequence of characters ABCXYZ.

6.4 Implementation-Supplied String Functions
6.4.1 General Description

Predefined algorithms are supplied by the implementation for the evaluation of com-
monly used string-valued functions and numeric-valued functions whose arguments are
strings.

6.4.2 Syntax

1. string-supplied-function > (CHR / DATE / LCASE / LTRIM / REPEAT / RTRIM / STR /
TIME / UCASE / USING) dollar-sign

2. numeric-supplied-function > LEN / ORD / POS / VAL

3. numeric-function-ref > MAXLEN left-parenthesis (simple-string-variable /
string-array) right-parenthesis

6.4.3 Examples

None.
6.4.4 Semantics

The values of the implementation-supplied functions, as well as the number and types
of arguments required for each function, are described below. In all cases, M repre-
sents an index, i.e., the rounded integer value of some numeric-expression; X stands
for a numeric-expression; V$ represents a simple-string-variable or string-array;
and A$ and B$ stand for string-expressions.

Function
Function value
CHR$ (M)

The one-character string consisting of the character occupying ordinal posi-
tion M+l in the collating sequence for the declared character set, i.e., the
first character is returned for an argument of zero. M shall be at least zero
and less than the number of characters in the declared character set (see
table 1). For example, for the standard character set, CHR$(53) = '"5", and
CHR$(65) = "A". The values of CHR$ for the native character set are
implementation-defined.

- 39 -

DATE$

The date in the string representation "YYYYMMDD" according to ISO 2014. For
example, the value of DATE$ on May 9, 1977 was '"19770509". If there is no
calendar available, then the value of DATE$ shall be '00000000".

LCASE$ (A$)

The string of characters resulting from the value associated with A$ by re-
placing each upper-case-letter in the string by its lower-case version.

LEN(A$)

The number of characters in the value associated with A$. Note that LEN(''"''')
= 1, since the value of the string constant consists of precisely one
quotation-mark.

LTRIM$ (A$)

The string of characters resulting from the value associated with A$ by
deleting all leading space characters.

MAXLEN(V$)

The maximum length associated with the simple-string-variable or string-array
(see 6.6). If there is no effective limit on string length, the value re-
turned shall be MAXNUM.

ORD(A$)

The ordinal position of the character named by the string associated with A$
in the collating sequence of the declared character set, where the first mem-
ber of the character set is in ordinal position zero. The acceptable values
of A$ are single characters in the character set and two-character or three-
character mnemonics for characters in the character set. Values of A$ with
two or more characters shall be treated with upper-case-letters and lower-
case-letters equivalent. The acceptable values for the standard character set
are shown in Table 1. The acceptable values for the native character set are
implementation-defined. For example, for the standard character set,
ORD("BS") = 8, ORD("A") = 65, ORD("a") = 97, ORD("5") = 53, ORD("SOH") = 1,
ORD("Soh") = 1, and ORD("ABC") causes an exception.

POS(A$,BY)

The character position, within the value associated with A$, of the first
character of the first occurrence of the value associated with B$. If there
is no such ocurence, then POS(A$,B$) shall be zero. POS(A$,"") shall be one,
for all values of A$.

POS(A$,B$,M)

The character position, within the value associated with A, of the first
character of the first ocurence of the value associated with B$, starting at
the Mth character of A$. If the value associated with B$ does not occur
within the designated portion of the value associated with A$, or if M is
greater than LEN(A$), the value returned is zero. Otherwise, the value re-
turned is equivalent to

6.4.5

- 40 -

LET templ = MAX(1, MIN(M, LEN(A$) + 1))
LET temp2$ = A$(templ: LEN(A$))
LET temp3 = POS(temp2$, B$)
IF temp3 = O THEN
LET POS =0
ELSE
LET POS = temp3 + templ - 1
END IF

For example, if A$ has the value '"GRANSTANDING", then POS(A$,"AN",1) = 3,
POS(A$,"AN",4) = 8, and POS(A$,"AN",9) = 0. POS(A$,"",M) shall be MAX(M,1),
as long as M <= LEN(A$).

REPEAT$ (A$,M)
The string consisting of M copies of A$; M > 0.
RTRIM$ (A$)

The string of characters resulting from the value associated with A$ by
deleting all trailing space characters.

STR$ (X)

The string generated by the print-statement as the numeric-representation of
the value associated with X. No leading or triling spaces shall be included
in this numeric-representation. For example, STR$(123.5) = "123.5" and
STR$(-3.14) = "-3,14",

TIME$

The time of day in 24-hour notation according to ISO 3307. For example, the
value of TIME$ at 11:15 AM is ''11:15:00". If there is no clock available,
then the value of TIME$ shall be '99:99:99". The value of TIME$ at midnight
is '"00:00:00".

UCASE$ (A$)

The string of characters resulting from the value associated with A$ by re-
placing each lower-case-letter in the string by its upper-case version.

USING$(A$,X)

The string consisting of the formatted representation of X, using A$ as a
format-item, according to the semantics of 10.4. The exceptions defined in
10.4.5 for formatted output also apply to the USING$ function.

VAL(A$)

The value of the numeric-constant associated with A$, if the string associ-
ated with A$ is a numeric-constant. Leading and trailing spaces in the string
are ignored. If the evaluation of the numeric-constant would result in a
value which causes an underflow, then the value returned shall be zero. For
example, VAL(" 123.5 ") = 123.5, VAL("2.E-99") could be zero, and
VAL(""MCMXVII") causes an exception.

Exceptions
- The value of the argument of VAL is not a valid numeric-constant (4001, fatal).

- The value of the argument of VAL is a valid numeric-constant, but evaluating this
constant results in an overflow (1004, fatal).

- L] -

- The value of the argument of CHR$ is not in the appropriate range (4002, fatal).

- The value of the argument of ORD is neither a valid single character nor a valid
mnemonic (4003, fatal).

- The value of the second argument of REPEAT$ is not > 0 (4010, fatal).
6.4.6 Remarks

It is recommended that if the magnitude of the value of the VAL function is less than
machine infinitesimal, implementations report this as an exception (1504, nonfatal:
replace with zero and continue). In BASIC-2 implementations, this permits intercep-
tion by exception handlers.

The time zone used for DATE$ and TIME$ is implementation-defined.

The effect of the functions UCASE$, and LCASE$ is fully defined only for the ECMA
character set as defined in 4.1.4. For other-characters, such as accented letters,
the effect is implementation-defined, and may be specified in other national version
of this Standard to accommodate the needs of local alphabets.

6.5 String Assignment Statements

6.5.1 General Description

A let-statement provides for the simultaneous assignment of the computed value of a
string-expression to a list of string-variables.

6.5.2 Syntax

1. let-statement > string-let-statement

2. string-let-statement = LET string-variable-list equals-sign
string-expression

3. string-variable-list = string-variable (comma string-variable)%*

6.5.3 Examples

2. LET A$ = "ABC"
LET A$(I) = B$(3:4)
LET A$, B$ = "NEGATIVE DISCRIMINANT"
LET C$(7:10) = "wxyz"
LET A$ = "ABCD" &&
& ||XYZ||

6.5.4 Semantics

The subscripts and substring-qualifiers, if any, of variables in the string-variable-
list shall be evaluated in sequence from left to right. Next the string-expression on
the right of the equals-sign shall be evaluated (see 6.3). Finally, the value of that
string-expression shall be assigned to the string-variables in the string-variable-
list in order from left to right.

When a value is assigned to a string-variable with a substring-qualifier, it shall
replace the substring of the value of the string-variable specified by the substring-
qualifier. The length of the value of the string-variable may change as a result of
this replacement. For example, if A$ = "1234", then assigning "32" to A$(2:3) results
in "1324", assigning " to A$(2:3) results in "14", assigning A$(1:2) to A$(2:3) re-
sults in "1124", and assigning "5" to A$(2:1) results in "15234".

6.5.5 Exceptions

- The assignment of a value to a string-variable causes a string overflow (1106,
fatal).

6.5.6

- L2 -

Remarks

The order of assignment of values to string-variables in the string-variable-list is
important in statements such as

LET A$(1:2), A$(2:3) = "X"

where different order of assignment may produce different results.

6.6 String Declarations

661

6.6.2

General Description

An option-statement may be used to define an ordering on the set of all string char-
acters.

A declare-statement may be used to set a maximum length for specified string-
variables in a program-unit.

Syntax
1. option > COLLATE (NATIVE / STANDARD)
2. type-declaration > string-type

3. string-type

I

STRING length-max? string-declaration (comma
string-declaration)¥*
4. length-max

asterisk integer
5. string-declaration > simple-string-declaration
6. simple-string-declaration = simple-string-variable length-max?

An option-statement with a COLLATE option, if present at all, shall occur in a lower-
numbered line than any string-expression, or a dimension-statement or declare-
statement referencing a string-array or string-variable within the same program-unit.
A program-unit shall contain at most one COLLATE option.

No simple-string-variable shall be declared more than once in a program-unit. A
simple-string-variable which is a formal-parameter or a parameter shall not occur in
a declare-statement.

Examples

1. COLLATE NATIVE
3. STRING*8 last_name$*20, first_name$, middle_name$

Semantics

The COLLATE option identifies the collating sequence to be used within a program-unit
for comparing strings (see 8.1) and for computing values of the CHR$ and ORD func-
tions (see 6.4). OPTION COLLATE NATIVE specifies that the native collating sequence
of the host system shall be used. OPTION COLLATE STANDARD specifies that the collat-
ing sequence shall correspond to the order of the characters in Table 1. If no
COLLATE option appears in a program-unit then the STANDARD collating sequence shall
be used within that program-unit.

Simple-string-variables whose string-identifiers appear in string-types may have a
maximum length less than or equal to the implementation-defined default value. The
maximum is determined, in descending order of precedence, from:

- the length-max in the string-declaration for that variable;

- the length-max in the string-type of the declare-statement containing that
variable, or

- the implementation-defined default.

The length-max guarantees that string values up to that length may be stored in the
variable and that an attempt to store a longer value will cause a string overflow ex-

6.6.5

6.6.6

- L3 -

ception. The implementation-defined maximum string length default shall be at least
13 characters.

A length-max of 0 in a string-type shall establish the associated string-variable as
having a maximum length of zero; i.e., the null string.

Exceptions

None.

Remarks

The native collating sequence may be the standard collating sequence.

The COLLATE option may be extended, on national versions of this Standard, to
accommodate specific needs of local alphabets.

- Ll -

7. ARRAYS

- 45 -

ARRAYS

Arrays are indexed collections of numbers or strings. Array elements can be manipulated by
scalar numeric and string operations (see 5 and 6). In addition, entire arrays may be ma-
nipulated by matrix statements.

7.1 Array Declarations

7.1.1

General Description

An option in the option-statement may be used to define the lower bound for all array
subscripts within a program-unit which are not explicitly stated. By use of an
option-statement the subscripts of all such arrays may be declared to have a lower
bound of zero or one; if no such declaration occurs, the lower bound shall be one.

Arrays may have one, two, or three dimensions. The number of dimensions and subscript
bounds for each dimension are declared in the declare-statement or dimension-
statement. All array-names, except those appearing in a function-parm-list or a
procedure-parm-list, must be declared in one and only one such statement. If not ex-
plicitly declared, the lower subscript bound for a given dimension is one or zero,
depending on the BASE option. Upper bounds must always be explicitly declared.

A one-dimensional array with subscripts 1 to 10 or 1980 to 1989 or -9 to O contains
10 elements. A two-dimensional array with subscript bounds 1 to 10 for each dimension
contains 100 elements. Similarly, a three-dimensional array with subscript-bounds 1
to 10 for each dimension contains 1000 elements.

A declare-statement can be used to dimension numeric-arrays as well as to declare
maximum lengths for string-variables and string-arrays, and to dimension string-
arrays. A dimension-statement can be used to dimension arrays, but not to declare the
maximum length of strings in string-arrays.

Syntax
1. dimension-statement = DIM dimension-list
2. dimension-list = array-declaration (comma array-declaration)
3. array-declaration = numeric-array-declaration / string-array-declaration
L. numeric-array-declaration = numeric-array bounds
5. bounds = left-parenthesis bounds-range (comma bounds-range)*
right-parenthesis
6. bounds-range = signed-integer TO signed-integer / signed-integer
7. signed-integer = sign? integer
8. string-array-declaration = string-array bounds
9. option >BASE (0/ 1)
10. string-declaration > string-array-declaration length-max?
11. numeric-declaration > numeric-array-declaration
12. numeric-function-ref > MAXSIZE maxsize-argument / SIZE bound-argument /

LBOUND bound-argument / UBOUND bound-argument
13. maxsize-argument = left-parenthesis actual-array right-parenthesis
14. bound-argument = left-parenthesis actual-array (comma index)?
right-parenthesis

The number of bounds-ranges in ''bounds" shall be one, two or three.

An array which is named as a formal-array of a defined-function, a subprogram or a
program shall not be declared in a declare-statement or dimension-statement (since
the formal-array in the function-parm-list or procedure-parm-list serves as its dec-
laration). Any other array shall be declared in a lower numbered line than any
reference to that array or one of its elements. Any reference to an array and its el-
ements must agree in dimensionality with the declaration of that array in a declare-
statement, a dimension-statement, or as a function-parameter or procedure-parameter.

7

7.

1.3

1.4

- 46 -

No numeric-array or string-array shall be dimensioned or declared more than once in a
program-unit.

If the optional lower bound (the first signed-integer) is included in the bounds-
range, it shall be less than or equal to the upper bound (the second signed-integer).

If the lower bound is not specified, then the upper bound must not be less than the
default lower bound, which may be zero or one, depending on the BASE option.

An option-statement with a BASE option, if present at all, shall occur in a lower-
numbered line than any declare-statement or dimension-statement or any MAT statement
that uses a numeric-array-value in the same program-unit. A program-unit shall con-
tain at most one BASE option.

If a bound-argument does not specify an index, the actual-array must be declared as
one-dimensional.

Examples

1. DIM A(6), B(10,10), B$(100), D(1 TO 5, 1980 TO 1989)
DIM A$(4,4), C(-5 TO 10)
10. A$(3 TO 21) * 8
12. SIZE(A,1)
SIZE(B$,2)
SIZE(X)
LBOUND(A)
UBOUND(CS$,2)

Semantics

Each array-declaration declares the named array to be either one-dimensional, two-
dimensional, or three-dimensional, according to whether one, two, or three bounds-
ranges are specified in the bounds for the array. In addition, the bounds specify the
maximum and optionally minimum values that subscripts for the array shall have. If a
minimum subscript is not explicitly declared and no BASE option occurs within the
program-unit, then it shall be implicitly declared to be one.

The BASE option in an option-statement is local to the program-unit in which it oc-
curs and declares the minimum value for all array subscripts in that program-unit
which are not explicitly declared.

If the execution of a program reaches a line containing a dimension-statement, then
it shall proceed to the next line with no further effect.

String-array-declarations appearing in a string-declaration may include a length-max,
which sets the maximum length of each element of the string-array. As with simple-
string-variables, if there is no length-max in the string-declaration, then the
length-max, if any, of the string-type takes effect. If there is no length-max in ei-
ther, then the implementation-defined length-max, if any, shall take effect.

The value of SIZE(A,N) where A is an actual-array and N is an index, shall be the
current number or permissible values for the Nth subscript of the array named by A
(the value of N is rounded to the nearest integer, and the subscripts of A are in-
dexed from left to right, starting at one). The value of SIZE(A) shall be the current
number of elements in the entire array A.

The value of MAXSIZE(A) shall be the total number of elements of the entire array
named by A permitted by the array-declaration.

The value of LBOUND(A,N), where A is an actual-array and N is an index, shall be the
current minimum value allowed for the Nth subscript of the array named by A. The
value of UBOUND(A,N) shall be the current maximum value allowed for the Nth subscript
of array A. As in the SIZE function, the value of N is rounded to the nearest inte-

7.1.5

- L7 -

ger, and the subscripts of array A are indexed from left to right, starting at one.
The LBOUND and UBOUND functions may be called with a single arguments provided that
arguments is a vector, in which case the value of LBOUND and UBOUND are the current
minimum and maximum values allowed for the subscript of the vector. (Here, and in the
following sections, the word 'vector'" shall mean a '"one-dimensional array" and the
word "matrix'' shall mean a '"two-dimensional array").

Exceptions

- The value of the index in a SIZE reference is less than one or greater than the
number of dimensions in the array (4004, fatal).

- The value of the index in an LBOUND reference is less than one or greater than the
number of dimensions in the array (4008, fatal).

- The value of the index in a UBOUND reference is less than one or greater than the
number of dimensions in the array (4009, fatal).

7.1.6 Remarks

The dimension statement is retained for compatibility with Minimal BASIC. All its ca-
pabilities are included within the declare-statement.

If an implementation supports more than three dimensions, SIZE, LBOUND, and UBOUND
should work for those extra dimensions, and an exception should be generated only
when an attempt is made to inquire about a dimension beyond those declared.

7.2 Numeric Arrays

7.2.1

7.2.2

General Description

Numeric-arrays in BASIC may be manipulated element by element. However, it is often
more convenient to regard numeric-arrays as entities rather than as indexed collec-
tions of entities, and to manipulate the entire entity at once. BASIC provides a num-
ber of standard operations to facilitate such manipulations.

Syntax

1. array-assignment > numeric-array-assignment

2. numeric-array-assignment = MAT numeric-array equals-sign
numeric-array-expression

3. numeric-array-expression = (numeric-array numeric-array-operator)? numeric-array
/ scalar-multiplier numeric-array /
numeric-array-value /
numeric-array-function-ref

4. numeric-array-operator = sign / asterisk

5. scalar-multiplier = primary asterisk

6 numeric-array-value > scalar-multiplier? (CON / IDN / ZER) redim?

7. redim = left-parenthesis redim-bounds (comma redim-bounds)*

right-parenthesis

redim-bounds = (index TO)? index

9 numeric-array-function-ref= (TRN / INV) left-parenthesis numeric-array
right-parenthesis

10. numeric-function-ref > DET (left-parenthesis numeric-array
right-parenthesis) / DOT left-parenthesis
numeric-array comma numeric-array
right-parenthesis

[e]

The number of redim-bounds in a redim shall be one, two, or three.

A numeric-array being assigned a value by a numeric-array-assignment shall have the
same number of dimensions as the value of the numeric-array-expression.

7

7

2+3

2.4

- 48 -

The numeric-arrays in a numeric-function-ref involving DOT shall be one-dimensional.
There must be no more than two redim-bounds following IDN.

The numeric-arrays in a sum or difference shall have the same number of dimensions.
The numeric-array serving as the argument of DET, INV or TRN shall be two-
dimensional.

The numeric-arrays serving as operands for the numeric-array-operator asterisk
(matrix multiply) shall be either one-dimensional or two-dimensional, and at least
one of them shall be two-dimensional.

Examples

In the following examples A, B and C are doubly-subscripted numeric-arrays, X, Y, and
7 are singly-subscripted numeric-arrays, and W is a numeric-expression.

2. MAT A = B MAT X = Y

MAT A =B + C MAT X =Y - Z
MAT A = B*C MAT X = A%Y MAT X = Y®A
MAT A = W * B MAT X = W % CON
MAT A = ZER(%4,3) MAT X = ZER
MAT A = INV(B) MAT A = TRN(B)

10. DET(B) DOT(X, Y)

Semantics

Array Assignments and Redimensioning

Execution of a numeric-array-assignment shall cause the numeric-array-expression to
be evaluated and its value assigned to the array named to the left of the equals-
sign. If necessary, this array shall have its size changed dynamically; i.e., its
number of dimensions shall be unchanged, but its size in each dimension shall be
changed to conform to the size of the array which is the value of the numeric-array-
expression.

When the size of a numeric-array is changed dynamically, the current upper bounds for
its subscripts shall be changed to conform to the new sizes. That is,

new_lower_bound = old_lower_bound

new_upper_bound = old_lower_bound + new_size - 1

The new sizes need not individually be less than or equal to the sizes determined in
the array-declaration for that numeric-array, as long as the new total number of ele-
ments for the numeric-array does not exceed the total number of elements determined
by the array-declaration for that array.

Array Expression

The evaluation of numeric-array-expressions shall follow the normal rules of matrix
algebra. The symbols asterisk (%), plus (+), and minus (-) shall represent the opera-
tions of multiplication, addition, and subtraction respectively.

The dimensions of numeric-arrays in numeric-array-expressions shall conform to the
rules of matrix algebra. The numeric-arrays in a sum or difference shall have the
same sizes in each dimension. The numeric-arrays in a product shall have sizes L x M
and M x N for some L, M and N (in which case the product shall have size L x N), or
an M element vector and a size M x N matrix (in which case the product shall be an N
element vector), or a size L x M matrix and an M element vector (in which case the
product shall be an L element vector). All elements in a numeric-array shall be used
when evaluating a numeric-array-expression; i.e., each numeric-array shall be treated
as an entity.

7

.2

.5

- 49 -

When a scalar-multiplier is present in a numeric-array-expression, the primary shall
be evaluated, and then each element of the numeric-array shall be multiplied by this
value.

If an underflow occurs in the evaluation of a numeric-array-expression, then the
value generated by the operation which resulted in the underflow shall be replaced by
Zero.

Array Values

Numeric-array-values shall be assigned to the numeric-array on the left of the equals
sign. If no redim is present, the size of the numeric-array generated shall be the
same as the size of the numeric-array to which it is to be assigned. If a redim is
present, a numeric-array of the dimensions specified shall be generated, and the
numeric-array to which it is assigned shall be redimensioned as described above. In a
redim-bounds, the values of the indices are the lower and upper bounds of the corre-
sponding dimension in the associated array-value. If the redim-bounds consists of a
single index, its value shall be the upper bound, and the lower bound shall be the
current default lower bound in effect. If a redim is used with the IDN constant, then
it shall produce a square matrix; i.e., the number of rows shall equal the number of
columns. If a redim is not used with the IDN constant, the numeric-array being as-
signed to shall be square.

The ZER constant shall generate a numeric-array, all of whose elements are zero. The
CON constant shall generate a numeric-array, all of whose elements are one. The IDN
constant shall generate an identity matrix, i.e., a square matrix with ones on the
main diagonal and zeros elsewhere. If only one redim-bounds is used with IDN, then
the effect is just as if that redim-bounds had been specified twice.

If a scalar-multiplier is used with an IDN, ZER or CON constant, then the primary
(see 5.3) is evaluated and each non-zero element of the IDN, ZER or CON constant is
replaced by the value of the primary.

Array Functions

The function TRN shall produce the transpose of its argument. An N x M matrix is re-
turned for an M x N argument.

The function INV shall produce the inverse of its argument. The argument must be a
square matrix.

The function DET shall return the determinant of its argument. The argument must be a
square matrix.

The value of DOT(X, Y) shall result in a scalar value, which is the result of the in-
ner product multiplication of the one-dimensional numeric-vectors X and Y.

Exceptions

- The sizes of numeric-arrays in a numeric-array-expression do not conform to the
rules of matrix algebra (6001, fatal).

- The total number of elements required for a redimensioned array exceeds the number
of elements reserved by the array's original dimensions (5001, fatal).

- The first index in a redim-bounds is greater than the second (6005, fatal).

- A redim-bounds consists of a single index which is less than the default lower
bound in effect (6005, fatal).

- The redim following IDN does not specify a square matrix, or no redim is present
and the receiving matrix is not square (6004,fatal).

- The argument of the DET function is not a square numeric matrix (6002, fatal).

- 50 -

- The argument of the INV function is not a square numeric matrix (6003, fatal).

Evaluation of a numeric-array-expression results in an overflow (1005, fatal).

Evaluation of DET or DOT results in an overflow (1009, fatal).

- Application of INV to a singular matrix, or loss of all significant digits (3009,
fatal).

7.2.6 Remarks

7.3

7.3.1

7.3.2

7.

7.

It is recommended that implementations report underflow as an exception (1505, nonfa-
tal: replace by zero and continue). In BASIC-2 implementation, this permits intercep-
tion by exception handlers.

String Arrays

3.3

3.4

General Description

As with numeric-arrays, string-arrays may be regarded as entities rather than as in-
dexed collections of entities. BASIC provides the ability to concatenate and assign
entire arrays of strings.

Syntax

1. array-assignment > string-array-assignment

2. string-array-assignment = MAT string-array substring-qualifier? equals-sign
string-array-expression

3. String-array-expression = string-array-primary (concatenation
string-array-primary)? / string-primary
concatenation string-array-primary /
string-array-primary concatena-tion
string-primary / string-array-value

4, string-array-primary = string-array substring-qualifier?

5. string-array-value = (string-primary concatenation)? NUL dollar-sign

redim?

A string-array being assigned a value by a string-array-assignment shall have the
same number of dimensions as the value of the string-array-expression.

Two string-arrays being concatenated shall have the same number of dimensions.

Examples
2. MAT A$ = A$ & B$
MAT A$ = NUL$(5,6)
MAT A$ = ("Number') & B$

MAT A$(4:6) = (" ') & B$
Semantics

Execution of a string-array-assignment shall cause the string-array-expression to be
evaluated and its value assigned to the array named to the left of the equals-sign.
If appropriate, this array shall have its size changed dynamically; i.e., its number
of dimensions shall be unchanged, but its size in each dimension shall be changed to
conform to the size of the array which is the value of the string-array-expression.

When the size of a string-array is changed dynamically, the current upper bounds for
its subscripts shall be changed to conform to the new sizes. That is,

new_lower_bound = old_lower_bound
new_upper_bound = old_lower_bound + new_size - 1

The new sizes need not individually be less than or equal to the sizes determined in
the string-array-declaration for that string-array, as long as the new total number

- 51 -

of elements for the string-array does not exceed the total number of elements deter-
mined by the array-declaration for that array.

When a string-array on the left of a string-array-assignment has a substring-
qualifier, the assignment to each element of the string-array shall replace the sub-
string of the value of each element specified by the substring-qualifier. The
substring-qualifier on the 1left shall be evaluated before the string-array-
expression.

String-array-expressions involve the operations of concatenation and substring ex-
traction. Two string-arrays being concatenated shall have the same size in each di-
mension; the concatenation shall be performed element by element. When concatenation
is by scalar, this scalar shall be prefixed or suffixed, as appropriate, to every el-
ement of the string-array. When a substring-qualifier is applied to a string-array,
then the specified substring shall be extracted from each element in the array.

The order of evaluation and assignment shall be as follows:
- evaluate the substring-qualifiers in the string-array on the left;

- evaluate the string-array-expression from left to right, by evaluating each
string-primary or string-array-primary as follows: evaluate first the subscripts,
if any, then the substring qualifiers, and then the value of the primary itself;

- concatenate;
- make the assignment.

The string-array-value NUL$ is an array all of whose elements are the null string. If
a redim is not present, the size of the string-array generated shall be the same as
the size of the string-array to which it is to be assigned. If a redim is present, a
string-array of the dimensions specified shall be generated and the string-array to
which it is assigned shall be redimensioned as described above. The rules in 7.2.4
for redims with numeric-array-values apply to NUL$ as well.

7.3.5 Exceptions
- The arrays in a string-array-expression have different sizes (6101, fatal).
- The first index in a redim-bounds is greater than the second (6005, fatal).

- A redim-bounds consists of a single index which is less than the default lower
bound in effect (6005, fatal).

- The total number of elements required for a redimensioned array exceeds the number
of elements reserved by the array's original dimensions (5001, fatal).

- Evaluation of a string-array-expression results in a string overflow (1052, fatal).
- Assignment of a value to a string-array causes a string overflow (1106, fatal).
7.3.6 Remarks

None.

- 52 -

8. CONTROL STRUCTURES

- 53 -

CONTROL_STRUCTURES

Control structures govern the order of execution of lines in a program, both by statements
which make explicit reference to line-numbers and also by explicitly-constructed loops and
decision mechanisms which make no reference to line-numbers.

8.1 Relational Expressions

8.1.1 General Description

Relational-expressions enable the values of expressions to be compared in order to
influence the flow of control in a program.

8.1.2 Syntax

1. relational-expression = disjunction
2. disjunction = conjunction (OR conjunction)¥*
3. conjunction = relational-term (AND relational-term)¥
L. relational-term = NOT? relational-primary
5. relational-primary = comparison / left-parenthesis relational-expression
right-parenthesis
6. comparison = numeric-expression relation numeric-expression /
string-expression relation string-expression
7. relation = equality-relation / greater-than-sign /
less-than-sign / not-greater / not-less
8. equality-relation = equals-sign / not-equals
9. not-equals = less-than-sign greater-than-sign / greater-than-sign
less-than-sign
10. not-less = greater-than-sign equals-sign / equals-sign
greater-than-sign
11. not-greater = less-than-sign equals-sign / equals-sign

less-than-sign
8.1.3 Examples

2. NOT X < Y OR A$ = B$ AND B$

3. A<= X AND X <= B
1<=1AND I <= 10 AND A(I) = X
I < NAND (J > M OR A(I) < B(J))

c$

8.1.4 Semantics

The relation ''less than or equal to" is denoted by not-greater. The relation 'greater
than or equal to" is denoted by not-less. The relation ''not equal to'" is denoted by
not-equals. The relations ''greater than", '"less than'", and "equals" are denoted by
the corresponding syntactic sign.

The relation of equality shall hold between two numeric-expressions if and only if
the two numeric-expressions have the same value.

The relation of equality shall hold between two string-expressions if and only if the
values of the two string-expressions have the same length and contain identical se-
quences of characters. ’

In the evaluation of relational-expressions involving string-expressions, the rela-
tion 'less than" shall be interpreted to mean "earlier in the collating sequence
than", and the other relations shall be defined in a corresponding manner. More pre-
cisely, if two unequal strings in a relational-expression have the same length, then
one shall be '"less than" the other if, in the leftmost character position in which
they differ, the character in that string precedes the character in the other accord-
ing to the established collating sequence (see 6.6). If the two strings in a
relational-expression have different lengths and one has zero length or is an initial

8.1.5

8.1.6

- 54 -

leftmost segment of the other, then the shorter string shall be 'less than" the
other. Otherwise the relationship between two strings of unequal length shall be de-
termined by the contents of the shorter string and the leftmost portion of the longer
string which is of the same length as the shorter string.

The precedence of the operators AND, OR, and NOT shall be as implied by the formal
syntax. That is, NOT operates only on the relational-primary immediately following
it, AND applies to the relational-terms immediately preceding and following it, and
OR applies to the conjunctions immediately preceding and following it.

The order of evaluation of relational-expressions shall be as follows. The
relational-expression shall take on the truth-value of the disjunction which consti-
tutes it. The conjunctions immediately contained in the disjunction shall be evalu-
ated from left to right until a true conjunction is found or none are left. As soon
as a true conjunction is found, the whole disjunction is evaluated as true, and any
remaining conjunctions are not evaluated. If no true conjunctions are found, the dis-
junction is false. For each conjunction, the relational-terms immediately contained
in it are evaluated from left to right until a false relational-term is found or none
are left. As soon as a false relational-term is found, the whole conjunction is eval-
uated as false and any remaining relational-terms are not evaluated. If all the
relational-terms are true, then the conjunction is true. For each relational-term,
the relational-primary immediately contained in it is evaluated, its truth value re-
versed if and only if NOT is also immediately contained in the term, and the result-
ing value assigned to the relational-term. A relational-primary shall be evaluated
according to the description above of the various relations, if it is a comparison.
Otherwise, it shall take on the value of the relational-expression immediately con-
tained within it. This relational-expression shall be evaluated by re-applying the
rules of this paragraph to it.

Exceptions
None.
Remarks

The specification for evaluation of relational-expressions guarantees that certain
parts of the expression will not be evaluated if not necessary. For instance, if an
array A has subscripts from 1 to 10:

1 < X AND X < 10 AND A(X) = KEY

will never cause an exception for subscript out of range.

8.2 Control Statements

8.2.1

8.2.2

General Description

Control statements allow for the interruption of the normal sequence of execution of
statements by causing execution to continue at a specified line, rather than at the
one with the next higher line-number.

The goto-statement allows for an unconditional transfer. The on-goto-statement allows
control to be transferred to a selected line. The gosub-statement and return-
statement allow for subroutine calls. The on-gosub-statement and return-statement al-
low for selected subroutine calls.

Syntax

1. control-transfer = gosub-statement / goto-statement / if-statement /
io-recovery / on-gosub-statement /
on-goto-statement

2. goto-statement = (GOTO / GO TO) line-number

8.2.3

- 55 =

3. on-goto-statement = ON index (GOTO / GO TO) line-number (comma
line-number)* (ELSE imperative-statement)?

4. gosub-statement (GOSUB / GO SUB) line-number

. return-statement = RETURN

6. on-gosub-statement ON index (GOSUB / GO SUB) line-number (comma
line-number)* (ELSE imperative-statement)?

v

Examples
2. GO TO 999
GOTO 999

3. ON L+l GO TO 400, 400, 500

ON X GO TO 100, 200, 150, 9999 ELSE LET A = 1
4. GO SUB 5000

GOSUB 5160
6. ON A+7 GOSUB 1000, 2000, 7000, 4000

ON F1-2 GOSUB 4360, 4460, 4660 ELSE PRINT F$

8.2.4 Semantics

Execution of a goto-statement shall cause execution of the program to be continued at
the line with the specified line-number.

The index in an on-goto-statement shall be evaluated and its value rounded to obtain
an integer, whose value shall be used to select a line-number from the list following
the GOTO (the line-numbers in the list are indexed from left to right, starting with
1). Execution of the program shall continue at the line with the selected line-
number. If the on-goto-statement contains an ELSE clause, and the value of the index
in the on-goto-statement is less than one or greater than the number of line-numbers
in the list, then the imperative-statement following the ELSE shall be executed; if
the imperative-statement in the ELSE part does not transfer control to another line,
then execution shall be continued in sequence, i.e., with the line following that
containing the on-goto-statement.

The execution of the gosub-statement or on-gosub-statement and the return-statement
can be described in terms of stacks of line-numbers, one associated with each invoca-
tion of a program-unit or internal-proc-def (but may be implemented in some other
fashion). (The stack is conceptual; the Standard does not require that this method be
used). Prior to execution of the first gosub-statement or on-gosub-statement in the
invocation of a program-unit or internal-proc-def, the stack in that entity shall be
empty. Each time a gosub-statement is executed, the line-number of the gosub-
statement shall be placed on top of this stack and execution of the program-unit or
internal-proc-def shall be continued at the line specified in the gosub-statement.

The index in a on-gosub-statement shall be evaluated by rounding to obtain an inte-
ger, whose value shall be used to select a line-number from the list following the
GOSUB (the numbers in the list are indexed from left to right, starting with 1). The
line-number of the on-gosub statement shall be placed on top of the stack for the ap-
propriate program-unit or internal-proc-def, and execution shall continue at the line
with the line-number selected by the index. If the on-gosub-statement contains an
ELSE clause, and the value of the index in the on-gosub-statement is less than one or
greater than the number of line-numbers in the list, then the imperative-statement
following the ELSE shall be executed and the stack of line-numbers shall not be
changed; if the imperative-statement in the ELSE part does not transfer control to
another line, execution shall then continue in sequence, i.e., with the line follow-
ing that containing the on-gosub-statement.

Each time a return-statement is executed, the line-number on top of the stack shall
be removed from the stack and execution of the program-unit or internal-proc-def
shall continue at the line following the one with that line-number.

- 56 -

A return-statement, gosub-statement and on-gosub-statement within an internal-proc-
def shall interact only with the stack for that internal-proc-def. All other such
statements interact only with the stack for the program-unit containing the state-
ment.

It is not necessary that equal numbers of gosub-statements or on-gosub-statements and
return-statements be executed before termination of a program-unit or internal-proc-
def; the stack of line-numbers associated with the current invocation of a program-
unit or internal-proc-def shall be emptied upon termination of that program-unit or
internal-proc-def.

8.2.5 Exceptions

- The value of the index in an on-goto-statement or an on-gosub-statement without an
ELSE clause is less than one or greater than the number of line-numbers in the
list (10001, fatal).

- An attempt is made to execute a return-statement without having executed a corre-
sponding gosub-statement or on-gosub-statement within the same program-unit or
internal-proc-def (10002, fatal).

8.2.6 Remarks

The syntactic element control-transfer is defined solely to permit describing limita-
tions on transfers to line numbers. It is not generated by other productions.

References to nonexistent line-numbers in a program-unit, including those in control-
transfers, are syntax errors (see 4.2). There is, therefore, no exception defined in
this Standard for such references. Implementations may, however, choose to treat them
as exceptions, if they are so documented, since the effect of non-standard programs
is implementation-defined.

8.3 Loop Structures

8.3.1 General Description

Loops provide for the repeated execution of a sequence of statements. Do-loops pro-
vide for the construction of loops with arbitrary exit conditions. The for-statement
and next-statement provide for the construction of counter-controlled loops.

8.3.2 Syntax

1. loop = do-loop / for-loop

2. do-loop = do-line do-body

3. do-line = line-number do-statement tail

L. do-statement = DO exit-condition ?

5. exit-condition = (WHILE / UNTIL) relational-expression
6. do-body = block¥* loop-line

7. exit-do-statement = EXIT DO

8. loop-line = line-number loop-statement tail

9. loop-statement = LOOP exit-condition?

10. for-loop = for-line for-body

11. for-line = line-number for-statement tail
12. for-statement = FOR control-variable equals-sign initial-value TO

limit (STEP increment) ?

13. control-variable = simple-numeric-variable
14. initial-value = numeric-expression
15. limit numeric-expression

16. increment numeric-expression
17. for-body block® next-line
18. exit-for-statement EXIT FOR

19.

next-line

line-number next-statement tail

8.3.3

8.3.4

- 57 -

20. next-statement = NEXT control-variable

The control-variable in the next-statement which terminates a for-loop shall be the
same as the control-variable in the for-statement which begins the for-loop.

A for-loop contained in the for-body of another for-loop shall not employ the same
control-variable as that other for-loop. No line-numbers in a control-transfer out-
side a for-loop or do-loop shall refer to a line in the for-body of that for-loop or
in the do-body of that do-loop.

An exit-do-statement may only occur in a do-loop. An exit-for-statement may only oc-
cur in a for-loop.

Examples

2. 10 DO WHILE I <= N AND A(I) <> 0
20 IETI =I+1
30 LOOP

2. 100 DO

110 LET I =1+ 1
120 PRINT "MORE ENTRIES (ENTER 'NO' IF NONE)"
130 INPUT A$(I)
140 LOOP UNTIL A$(I) = "NO"
2. 10 DO
20 INPUT X
30 IF O < X AND X <= 7 AND X = INT(X) THEN EXIT DO
40 PRINT "INPUT AN INTEGER BETWEEN 1 AND 7"
50 LOOP
10. 100 FOR I = 1 TO 10
150 LET A(I) = I
200 NEXT I
12. FOR I = A TO B STEP -1
20. NEXT C7

Semantics

An exit-condition shall be said to require exit from a loop if the value of the
relational-expression following the keyword WHILE is false or if the value of the re-
lational expression following the keyword UNTIL is true.

If execution of a program reaches a do-line, then the exit-condition, if any, in that
do-line shall be evaluated. If there is no exit-condition, or if it does not require
exit from the loop, then execution shall proceed to the next line. If the condition
requires exit from the loop, then execution shall continue at the line following the
associated loop-line. If execution of a program reaches a loop-line, then the exit-
condition in that loop-line, if any, shall be evaluated. If there is no exit condi-
tion, or if it does not require exit from the loop, then execution shall resume at
the associated do-line; if the condition requires exit from the loop, then execution
shall continue at the line following the loop-line.

The action of the for-statement and the next-statement is defined in terms of other
statements, as follows.

8.3.5

8.3.6

- 58 -

110 FOR v = initial-value TO limit STEP increment (lines)
150 NEXT v

shall be equivalent to

110 LET ownl limit

120 LET own2 = increment

130 LET v = initial-value

140 DO UNTIL (v-ownl) * SGN(wn2) > O (lines)
150 LET v = v + own2

160 LOOP

Here v is any simple-numeric-variable, and ownl and own2 are variables associated
with the particular for-loop and not accessible to the programmer. The variables
ownl and own2 shall be distinct from similar variables associated with other for-
loops. In the above equivalence, a control-transfer to the for-line shall be inter-
preted as a control-transfer to the first let-statement, and a control-transfer to
the next-line shall be interpreted as a control-transfer to the last let-statement.

In the absence of a STEP clause in a for-statement, the value of the increment shall
be +1.

Execution of an exit-do-statement shall cause execution to continue the line follow-
ing the loop-line of the smallest do-loop in which the exit-do-statement occurs. Exe-
cution of the exit-for-statement shall cause execution to continue at the line fol-
lowing the next-line of the smallest for-loop in which the exit-for-statement occurs.

Exceptions
None.
Remarks

On exit from a for-loop through the next-statement, the value of the control-variable
is the first value not used; on all other exits from a for-loop the control-variable
retains its current value.

8.4 Decision Structures

8.4.1

8.4.2

General Description

An if-statement allows for conditional transfers, for the conditional execution of a
single imperative-statement, or for the execution of one of two alternative
imperative-statements.

An if-block allows for the conditional execution of a sequence of lines or for the
execution of one of several alternative sequences of lines.

A select-block allows for the conditional execution of any one of a number of alter-
native sequences of lines, based on the value of an expression.

Syntax
2. if-clause = imperative-statement / line-number
3. if-block = if-then-line then-block elseif-block® else-block?
end-if-line
L, if-then-line = line-number IF relational-expression THEN tail
5. then-block = block¥
6. elseif-block = elseif-then-line block*
7. elseif-then-line = line-number ELSEIF relational-expression THEN tail
8. else-block = else-line block¥*
9. else-line = line-number ELSE tail

10. end-if-line = line-number END IF tail

- 59 -

11. select-block = select-line remark-line* case-block case-block*
case-else-block? end-select-line

12. select-line = line-number select-statement tail

13. select-statement = SELECT CASE expression

14. case-block = case-line block¥

15. case-line = line-number case-statement tail

16. case-statement = CASE case-list

17. case-list = case-item (comma case-item)¥*

18. case-item = constant / range

19. range = (constant TO / IS relation) constant

20. case-else-block = case-else-line block¥

21. case-else-line = line-number CASE ELSE tail

22. end-select-line = line-number END SELECT tail

The constants appearing in case-statements in a select-block shall be the same type
(i.e., either numeric or string) as the expression in the select-statement. The
ranges and constants specified in case-lists in a select-block shall not overlap.

No line-number in a control-transfer outside an if-block, then-block, elseif-block,
else-block, select-block, case-block, or case-else-block shall refer to a line inside
that if-block, then-block, elseif-block, else-block, select-block, case-block, or
case-else-block, respectively, other than to the if-then-line of that if-block or the
select-line of that select-block.

A line-number in a control-transfer inside an elseif-block, else-block, case-block,
or case-else-block may not refer to the associated elseif-then-line, else-line, case-
line or case-else-line.

8.4.3 Examples

1. IF X => Y2 THEN GOSUB 900 ELSE GOSUB 2000
IF X$ = "NO" OR X$ = "STOP" THEN LET A = 1
IF A = B THEN 100
IF A$ = B$ THEN 200 ELSE 300

3. 10 IF X = INT(X) THEN

20 PRINT X; "IS AN INTEGER"
30 ELSE

40 PRINT X; "IS NOT AN INTEGER"
50 END IF

100 IF A = O THEN

110 PRINT "ONE ROOT"

120 ELSEIF DISC < O THEN

130 PRINT '"COMPLEX ROOTS"
140 ELSE

150 PRINT "REAL ROOTS"

160 END IF

11. 10 SELECT CASE A$(1:1)
20 CASE IIAII TO Ilzll’ IIaH TO llzll

30 PRINT A$; "starts with a letter"

40 CASE "0" TO "9"

50 PRINT A$; '"starts with a digit"

60 CASE ELSE

70 PRINT A$; '"doesn't start with a letter or a digit"

80 END SELECT

- 60 -

10 SELECT CASE X
20 CASE IS < O

30 PRINT X; '"is negative"
LO CASE IS > 0

50 PRINT X; "is positive"
60 CASE ELSE

70 PRINT X; "is zero"

80 END SELECT

Semantics

If the value of the relational-expression in an if-statement is true and an
imperative-statement follows the keyword THEN, then this imperative-statement shall
be executed; if a line-number follows the keywork THEN, then execution of the program
shall be continued at the line with that line-number. If the value of the relational-
expression is false and an imperative-statement follow the keyword ELSE, then this
imperative-statement shall be executed; if a line-number follows the keyword ELSE,
then execution of the program shall be continued at the line with that line-number,
if no ELSE is present, then execution shall be continued in sequence, i.e., with the
line following that containing the if-statement.

If-blocks shall be executed as follows. If a then-block, elseif-block, or else-block
does not contain a block, the effect is as if it did contain a block consisting of a
remark-line. If the value of the relational-expression in the if-then-line is true,
then execution shall continue at the first line of the corresponding then-block. If
false, then the relational-expressions of each corresponding elseif-then-line, if
any, shall be evaluated in order. As soon as a true relational-expression is found,
execution shall continue at the first line of the blocks of that elseif-block. If no
true relational-expression is found in the elseif-then-lines, then, if an else-block
is present, execution shall continue at the first 1line of the block of that else-
block. If there is no else-block, execution shall continue at the line following the
end-if-line. When execution reaches the end of a then-block, an elseif-block, or an
else-block, it shall continue at the line following the corresponding end-if-line.

The expression in a select-statement in a select-block shall be evaluated and its
value compared with the case-items in the case statements until a match is found. A
match shall occur when

- the value of the expression equals that of a constant appearing as a case-item, or

- the value is greater than or equal to that of the first constant appearing in a
range containing the word TO, but less than or equal to the second, or

- the value satisfies the relationship indicated by the relation appearing before the
constant in a range.

If and when a match is found, the rest of the case-block headed by the case-statement

in which the match was found shall be executed. If no case-item is matched, then the

case-else-block, if it is present, shall be executed. When execution reaches the end

of a case-block or case-else-block, it shall continue at the line following the end-

select-line.

Nesting of blocks is permitted subject to the same nesting constraints as for-loops
(i.e. no overlapping blocks).

- 61 -

8.4.5 Exception

- A select-block without a case-else-block is executed and no case-block is selected
(10004, fatal).

8.4.6 Remarks

None.

- 62 -

9. PROGRAM SEGMENTATION

- 63 -

9. PROGRAM SEGMENTATION

BASIC provides three mechanisms for the segmentation of programs. The first provides for
user-defined functions, whose values may be used in numeric-expressions and string-
expressions. The second enables subprograms to be defined, which communicate via parameters
and which can be invoked via a call-statement. The third enables separate programs to be
executed sequentially without user intervention.

Functions and subprograms (which we refer to collectively as '"routines") are of two types:
internal and external. External routines are independent program-units lexically following
the main-program. Internal routines are contained within a program-unit (the main-program
or an external routine) and are considered to be part of that program-unit. An internal
routine cannot contain another internal routine.

In general, an external routine does not share anything (including, but not limited to,
variables, DATA statements, internal routines, OPTIONs, and DEBUG status) with other
program-units. Information is exchanged between external routines and other program-units
by means of parameters and, in the case of external functions, returned values. In general,
an internal routine shares everything with its surrounding program-unit, with the exception
of its parameters. There are no local variables for internal routines. See Appendix 2 for
more detail on scope rules.

Within a program-unit, a routine must always be defined or declared in a line lexically
preceding its first invocation in that program-unit. It is not an error for a routine to be
defined or declared without being invoked. An external routine may be invoked throughout
the program; an internal routine may be invoked only from within its containing program-
unit.

No control-transfer within an internal or external routine may refer to a line-number
outside that routine, nor may a control-transfer outside a routine refer to a line-number
within it.

9.1 User-Defined Functions

9.1.1 General Description

In addition to the implementation-supplied functions provided for the convenience of
the programmer (see 5.4, 6.4 and elsewhere), BASIC allows the programmer to define
new functions within a program-unit or program.

9.1.2 Syntax

1. function-def = internal-function-def / external-function-def

2. internal-function-def internal-def-line / internal-function-line block*
end-function-line
3. internal-def-line line-number def-statement tail
4. def-statement numeric-def-statement string-def-statement
5. numeric-def-statement DEF numeric-defined-function function-parm-list?
equals-sign numeric-expression
6. numeric-defined-function numeric-identifier
7. string-def-statement DEF string-defined-function length-max?
function-parm-1list? equals-sign
string-expression
8. string-defined-function string-identifier
9. function-parm-list left-parenthesis function-parameter (comma
function-parameter)® right-parenthesis
10. function-parameter simple-variable / formal-array
11. formal-array array-name left-parenthesis comma* right-parenthesis
12. internal-function-line line-number FUNCTION (numeric-defined-function /

(string-defined-function length-max?))
function-parm-1list? tail

- 64 -

line-number END FUNCTION tail
14. external-function-def external-function-line unit-block¥® end-function-line
15. external-function-line > line-number EXTERNAL FUNCTION
(numeric-defined-function /
(string-defined-function length-max?))
function-parm-1list? tail
16. numeric-function-let-statement = LET numeric-defined-function equals-sign
numeric-expression

1

13. end-function-line

1

17. string-function-let-statement = LET string-defined-function equals-sign
string-expression

18. exit-function-statement = EXIT FUNCTION

19. type-declaration > def-type / internal-function-type /
external-function-type

20. def-type = DEF function-list

21. internal-function-type = FUNCTION function-list

22. external-function-type = EXTERNAL FUNCTION function-list

23. function-list = defined-function (comma defined-function)¥*

24 . defined-function > numeric-defined-function / string-defined-function

No line-number in a control-transfer outside an internal-function-def shall refer to
a line in an internal-function-def other than to an internal-function-line, nor shall
a line-number in a control-transfer inside an internal-function-def refer either to a
line outside that internal-function-def or to the associated internal-function-line.

A line-number in a control-transfer inside an external-function-def shall not refer
to the associated external-function-line.

If a defined-function is defined by an external-function-def, it shall not be defined
more then once in the program. If a defined-function is defined by an internal-
function-def, it shall not be defined more than once in the containing program-unit.

Within a program-unit, no more than one function (internal or external) of a given
name shall be declared or defined.

If a defined-function is defined by an external-function-def, then a declare-
statement with external-function-type containing that defined-function shall occur in
a lower-numbered line than the first reference to that defined-function in the same
program-unit.

If a defined-function is defined by an internal-function-def other than an internal-
def-line, then either the internal-function-def, or a declare-statement with
internal-function-type naming that defined-function, shall occur in a lower-numbered
line than the first reference to that defined-function in the same program-unit.

If a defined-function is defined by an internal-def-line, then either the internal-
def-line, or a declare-statement with def-type naming that defined-function, shall
occur in a lower-numbered line than the first reference to that defined-function in
the same program-unit.

Self-recursive functions need not declare themselves; that is, if a function-def con-
tains a reference to itself, that reference does not require a type-declaration con-
taining the defined-function in a lower-numbered line. An exit-function statement
shall occur only within a function-def.

Within each function-def (other than an internal-def-line) shall occur at least one
numeric-function-let-statement or string-function-let-statement with defined-function
the same as the defined-function in the internal-function-line or external-function-
line of the function-def.

9.1.3

- 65 -

The number and type of function-arguments in a numeric-function-ref or string-
function-ref shall agree with the number and type of function-parameters in the cor-
responding function-def. That is,

- The number of function-arguments shall be the same as the number of function-
parameters.

- The function-arguments in the function-arg-list shall be associated with the corre-
sponding function-parameters in the function-parm-list (i.e., the first with the
first, the second with the second, etc.), and the types shall correspond as fol-

lows:
Parameter Argument
simple-numeric-variable numeric-expression
simple-string-variable string-expression
formal-array (numeric) actual-array (numeric)
formal-array (string) actual-array (string)

The number of dimensions of an actual-array shall be one more than the number of com-
mas in the corresponding formal-array. A formal-array shall have no more than three
dimensions (two commas).

Whenever a numeric argument is passed to a corresponding numeric parameter in a dif-
ferent program-unit, the ARITHMETIC options in effect for the two program-units must
agree.

The ARITHMETIC option external-function-def of numeric type must agree with that of
the invoking program-unit.

A given function-parameter shall occur only once in function-parm-list. Function-
parameters shall not be explicitly declared or dimensioned within the internal-
function-def or external-function-def.

A defined-function appearing in a def-type or internal-function-type shall be defined
elsewhere in the same program-unit by an internal-def-line or internal-function-def
(other than an internal-def-line), respectively.

A defined-function appearing in an external-function-type shall be defined elsewhere
in the program by an external-function-def.

Examples

5. DEF E = 2.7182818
DEF AVERAGE(X, Y) = (X+Y)/2
7. DEF FNA$(S$, T$) = S$ & T$
DEF Right$(A$, n) = A$(Len(A$)-n+l : Len(A$))
14. 100 EXTERNAL FUNCTION ANSWER(A$)
120 SELECT CASE UCASE$(A$)
130 CASE "YES"

140 LET ANSWER=1
150 CASE '"'NO"
160 LET ANSWER=2
170 CASE ELSE
180 LET ANSWER=3

190 END SELECT
200 END FUNCTION
21. FUNCTION AVERAGE, REVERSE$

9.1.4

- 66 -

Semantics

A function-def specifies the means of evaluating a function based on the values of
the parameters appearing in the function-parm-list and possibly other variables or
constants.

Function Parameters

When a defined-function is referenced (i.e., when an expression involving the func-
tion is evaluated), then the arguments in the function reference, if any, shall be
evaluated from left to right and their values shall be assigned to the parameters in
the function-parm-list for the function-def (i.e., arguments shall be passed by value
to the parameters of the function). The number of dimensions in a formal-array is one
more than the number of commas in the formal-array. Upon invocation of a function-
def, a formal-array has the same bounds as the corresponding actual-array. A simple-
string-variable or string-array which is a function-parameter shall have the
implementation-defined default as its maximum length.

Function Evaluation

If a function is defined in a def-statement, then the expression in that statement
shall be evaluated and its value assigned as the value of the function. If a function
is defined in an internal-function-def or external-function-def, then the lines fol-
lowing the internal-function-line or external-function-line shall be executed in se-
quential order until

- some other action is dictated by execution of a line, or
- a fatal exception occurs, or

- a chain-statement or stop-statement is executed, or

- an exit-function-statement is executed, or

- an end-function-line is reached.

The value of the defined-function shall be set by execution of one or more numeric-
function-let-statements or string-function-let-statements. Upon exit from the
function-def, the value shall be that most recently assigned to the defined-function
in that invocation. If, upon exit, no such value has been assigned, then the result
shall be consistent with the implementation-defined policies for uninitialized vari-
ables. A length-max following a string-defined-function establishes the maximum
length of the string value to be returned by that function-def. If no length-max is
specified, then the maximum length shall be the same as for a string-variable without
a length-max.

An exit-function-statement, when executed, shall terminate the execution of the
function-def in which it is immediately contained. An end-function-line marks the
textual end of a function-block, and also shall terminate execution of the function-
block. Execution of a stop-statement in a function-block shall terminate execution of
the entire program.

A function-def may refer, directly or indirectly, to the function being defined;
i.e., recursive function invocations are permitted.

Lines in a function-def shall not be executed unless the function it defines is ref-
erenced. If the execution of a program reaches an internal-def-line, it shall proceed
to the next line without further effect. If execution reaches an internal-function-
line, it shall proceed to the line following the associated end-function-line without
further effect.

Scopes of Variables, Arrays, Channel Numbers, and Data

A function-parameter appearing in the function-parm-list of a function-def shall be
local to each invocation of that function-def; i.e., it shall name a variable or ar-
ray distinct from any variable or array with the same name outside the function-ref.

9.1.5

9.1.6

- 67 -

The treatment of variables and arrays which are not named as function-parameters in a
function-def shall depend upon whether the function-def is internal or external. If
the function-def is external, then such variables and arrays shall be local to each
invocation of that program-unit, i.e., they shall be distinct from objects with the
same names outside that function-def or within other invocations of that function-
def; in addition, they shall be initialized or not initialized in a manner consistent
with the implementation-defined policies for the main-program each time the function-
def is invoked. If the function-def is internal, then those variables and arrays
shall be global to the containing program-unit and shall retain their assigned values
each time the function-def is invoked; if these values are changed during the course
of executing the internal-function-def, the changes remain in effect when execution
is returned to the surrounding program-unit.

With one exception, the scope of channel-numbers (see 9.2) is always the program-
unit. Nonzero channel-numbers within a function-def shall be local to each invocation
of that function-def if it is external, and shall be global to the containing
program-unit in which it occurs if it is internal. Channel zero shall be global to
the entire program. Files shall be assigned to nonzero channels within a program-unit
by means of an open-statement before use. Files assigned to channels local to a
function-def shall be closed upon exit from that function-def.

The scope of internal data is always the program-unit. Thus, data within an external-
function-def shall be local to each invocation of that program-unit. Hence read-
statements and restore-statements within such a function-def shall refer only to data
in data-statements within that function-def and not to data in other program-units.
Upon invocation of such a function-def, the pointer for the data within that
function-def shall be reset to the beginning of the data (see 10.1). Data within an
internal-function-def shall be part of the data sequence for the containing program-
unit, and read-statements and restore-statements within such a function-def shall re-
fer to the entire sequence of data in that program-unit.

Exceptions

- A string-function-let-statement attempts to assign a value whose length exceeds the
maximum for the string-defined-function (1106, fatal).

Remarks

Incompatible COLLATE options are allowed between an invoking and invoked program-unit
(even if they communicate via string parameters) because COLLATE does not dictate the
internal representation of strings, but only their order in a string comparisons and
the values of the CHR$ and ORD functions.

It is not an error for an internal-function-def to appear before a declare-statement
with def-type or internal-function-type containing the name of that internal func-
tion. It is not an error for a function to be defined by an internal-function-def or
to appear in a declare-statement, but not to be referred to in that program-unit.

An internal-function-type or def-type may be omitted if the corresponding definition
appears before first reference. An external-function-type is always required when an
external-function is referenced in a program-unit.

It is not an error for a function to be defined by an internal-function-def or to ap-
pear in a declare-statement, but not to be referred to in that program-unit.

It is not an error for an internal-function-def to appear before a declare-statement
with def-type or internal-function-type containing the name of that internal func-
tion.

- 68 -

An internal-function-type or def-type may be omitted if the corresponding definition
appears before the first reference to that function. An external-function-type is al-
ways required when an external-function is referenced in a program-unit other than
its own.

The requirement that both internal and external functions be declared or defined be-
fore they are used allows several program-units within a program each to contain an
internal function with the same name as an external function. This facilitates the
use of function libraries where the programmer may not know the names of all the
external-function-defs in the library.

9.2 Subprograms

9.2.1 General Description

Subprograms provide a mechanism for the logical segmentation of programs, allowing
parameters to be passed between program segments. Subprograms, like defined-
functions, may be internal or external to a program-unit.

9.2.2 Syntax

1. subprogram-def = internal-sub-def / external-sub-def

2. internal-sub-def = internal-sub-line block* end-sub-line

3. internal-sub-line = line-number sub-statement tail

4. sub-statement = SUB subprogram-name procedure-parm-list?

5. subprogram-name = routine-identifier

6. procedure-parm-list = left-parenthesis procedure-parameter (comma

procedure-parameter)* right-parenthesis

7. procedure-parameter > simple-variable / formal-array / channel-number
8. channel-number = number-sign integer

9. end-sub-line = line-number end-sub-statement tail

10. end-sub-statement = END SUB

11. exit-sub-statement = EXIT SUB
12. external-sub-def = external-sub-line unit-block® end-sub-line
13. external-sub-line = line-number EXTERNAL sub-statement tail

14. call-statement = CALL subprogram-name procedure-argument-list?
15. procedure-argument-list = left-parenthesis procedure-argument (comma

procedure-argument)® right-parenthesis
expression / actual-array / channel-expression

16. procedure-argument

17. type-declaration > internal-sub-type / external-sub-type
18. internal-sub-type = SUB sub-list

19. external-sub-type = EXTERNAL SUB sub-list

20. sub-list = subprogram-name (comma subprogram-name)¥

No line-number in a control-transfer outside an internal-sub-def shall refer to a
line in an internal-sub-def other than to an internal-sub-line, nor shall a line-
number in a control-transfer inside an internal-sub-def refer either to a line out-
side that internal-sub-def or to the associated internal-sub-line.

A line-number in a control-transfer inside an external-sub-def shall not refer to the
associated external-sub-line.

If a subprogram-name is defined by an external-sub-def, it shall not be defined more
than once in the program. If a subprogram-name is defined by an internal-sub-def, it
shall not be defined more than once in the containing program-unit.

Within a program-unit, no more than one subprogram (internal or external) of a given
name shall be declared or defined.

.3

- 69 -

If a subprogram-name is defined by an external-sub-def, then a declare-statement with
external-sub-type containing that subprogram-name shall occur in a lower-numbered
line than the first reference to that subprogram-name in a call-statement in the same
program-unit.

If a subprogram-name is defined by an internal-sub-def, then either the internal-sub-
def, or a declare-statement with internal-sub-type containing that subprogram-name,
shall occur in a lower-numbered line than the first reference to that subprogram-name
in the same program-unit.

Self-recursive subprograms need not declare themselves; that is, if a subprogram-def
contains a reference to itself in a call-statement, that reference does not require a
type-declaration containing that subprogram-name in a lower-numbered line.

An exit-sub-statement shall occur only within a subprogram-def.

The number and type of procedure-arguments in a call-statement shall agree with the
number and type of procedure-parameters in the corresponding subprogram-def. That is,

- The number of procedure-arguments shall be the same as the number of procedure-
parameters.

- The procedure-arguments in the procedure-arg-list shall be associated with the cor-
responding procedure-parameters in the procedure-parm-list (i.e., the first with
the first, the second with the second, etc.), and the types shall correspond as
follows:

Parameter Argument
simple-numeric-variable numeric-expression
simple-string-variable string-expression
formal-array (numeric) actual-array (numeric)
formal-array (string) actual-array (string)
channel-number channel-expression

An actual-array shall have the same number of dimensions as the corresponding formal-
array. The number of dimensions in a formal-array is one more than the number of com-
mas in the formal-array.

Whenever a numeric argument is passed to a corresponding numeric parameter in a dif-
ferent program-unit, the ARITHMETIC option in effect for the two program-units must
agree.

A given procedure-parameter shall occur only once in a procedure-parm-list.
Procedure-parameters shall not be explicitly declared or dimensioned within the
internal-sub-def or external-sub-def.

The channel-number zero shall not be used as a procedure-parameter.

A subprogram-name appearing in an internal-sub-type shall be defined elsewhere in the
same program-unit by an internal-sub-def.

A subprogram-name appearing in an external-sub-type shall be defined elsewhere in the
program by an external-sub-def.

Examples

2. 100 SUB exchange(a,b)
110 LET t = a
120 LET a = b
130 LET b = t
140 END SUB
4. SUB CALC(X, Y, Z$)
SUB SORT(A(), B(,), A$, #3)

9.2.4

- 70 -

13. 2000 EXTERNAL SUB OPEN (#1, fnames$, result)
14. CALL CALC (3%A+2, 7715, "NOM)
CALL SORT (Zvect, Ymat), (L$), #N)

Semantics

When a call-statement is executed, control shall be transferred to the subprogram
named in to call-statement. Execution of the subprogram shall begin at the line fol-
lowing the sub-line and shall continue in sequential order until

- some other action is dictated by execution of a line, or
- a fatal exception occurs, or

- a chain-statement is executed, or

- a stop-statement or exit-sub-statement is executed, or

- an end-sub-line is reached.

The end-sub-line serves both to mark the textual end of a subprogram and, when exe-
cuted, to terminate execution of the subprogram. The exit-sub-statement, when exe-
cuted, shall terminate the execution of the innermost subprogram in which it is con-
tained. When execution of a subprogram terminates, execution shall continue at the
line following the call-statement which initiated execution of the subprogram.

Execution of a stop-statement in a subprogram shall terminate execution of the entire
program.

A subprogram may call itself, either directly or indirectly through another proce-
dure; i.e., recursive subprogram invocations are permitted.

Lines in a subprogram-def shall not be executed unless the subprogram it defines is
referenced through a call-statement. If execution reaches an internal-sub-line, it
shall proceed to the line following the associated end-sub-line without further ef-
fect.

Subprogram parameters

When a call-statement is executed, its procedure-arguments shall be identified, from
left to right, with the corresponding procedure-parameters in the sub-statement for
the subprogram.

Procedure-arguments which are numeric-variables or string-variables without
substring-qualifiers shall be passed by reference, i.e., any reference to the corre-
sponding procedure-parameter within the subprogram shall result in a reference to the
procedure-argument, and any assignment to the procedure-parameter shall result in an
assignment to the corresponding procedure-argument.

If a procedure-argument is an array element, its subscripts shall be evaluated once
at each entry to the subprogram.

A procedure-argument which is an expression, but not a numeric-variable or a string-
variable without a substring-qualifier, shall be evaluated once at each entry to the
subprogram and the value so obtained shall be assigned to a location local to the
subprogram. This local value shall be used in any reference to the corresponding
procedure-parameter, and this local location shall be used as the destination of any
assignment to the procedure-parameter. Any necessary evaluation of procedure-
arguments shall take place from left to right.

References within a subprogram to the procedure-parameters which are formal-arrays
shall result in interferences to the corresponding arrays in the procedure-argument-
list; assignments to or redimensioning of such arrays shall result in assignments to
or redimensioning of the corresponding arrays in the procedure-argument-list. Upon
entry to the subprogram, a formal-array as a procedure-parameter has the same bounds
as the corresponding procedure-argument.

- 71 -

For a procedure-parameter which is a simple-string-variable or string-array, the as-
sociated maximum length shall be the implementation-defined default, in the case of
passing by value; when passing by reference, the maximum length shall be that of the
corresponding procedure-argument.

If both an array and one of its elements are named as procedure-arguments in a call-
statement and the array is redimensioned during execution of the subprogram, then any
subsequent reference within the subprogram to the procedure-parameter associated with
the array-element shall produce implementation-defined results.

A procedure-argument which is a channel-expression shall be evaluated once on entry
to the subprogram and the resulting channel shall be used whenever the value of the
corresponding procedure-parameter is referenced in the subprogram.

The attributes of the file (see 11.1.4) assigned to this channel shall be passed un-
changed to the subprogram, and changes to attributes and contents of the file within
the subprogram must be immediately effective, regardless of which of the channel-
numbers is used in the subsequent reference, and shall remain in effect upon exit
from the subprogram.

A file need not be assigned to a channel designated by a procedure-argument when a
call-statement is executed. If an open-statement within a subprogram assigns a file
to that channel, then that assignment shall remain in effect upon exit from the sub-
program.

Scopes of variables, arrays, channel numbers, and data

A procedure-parameter appearing in the procedure-parm-list of a subprogram-def which
has been passed by value shall be local to each invocation of the subprogram-def;
i.e., it shall name a variable or array distinct from an variable or array with the
same name outside the subprogram-def.

For a procedure-parameter which has been passed by reference, its name shall be local
to each invocation of the subprogram-def, but that name refers to the same object as
the corresponding procedure-argument see Subprogram parameters, above).

The treatment of variables and arrays which are not named as parameters in a
subprogram-def shall depend upon whether the subprogram-def is internal or external.
If the subprogram-def is external, then such variables and arrays shall be local to
each invocation of that program-unit, i.e., they shall be distinct from objects with
the same names outside that subprogram-def or within other invocations of that
subprogram-def; in addition, they shall be initialized or not initialized in a manner
consistent with the implementation-defined policies for the main-program each time
the subprogram-def is invoked. If the subprogram-def is internal, then those vari-
ables and arrays shall be global to the containing program-unit and shall retain
their assigned values each time the subprogram-def is invoked; if these values are
hanged during the course of executing the subprogram-def, the changes remain in ef-
fect when execution is returned to the surrounding program-unit.

With one exception, the scope of channel-numbers which are not procedure-parameters
is always the program-unit. Nonzero channel-numbers within a subprogram-def shall be
local to each invocation of that subprogram-def if it is external, and shall be
global to the program-unit in which it occurs if it is internal. Channel zero shall
be global to the entire program. Files shall be assigned to nonzero channels within a
program-unit by means of an open-statement before use. Files assigned to channels lo-
cal to a subprogram-def shall be closed upon exit from that subprogram-def.

The scope of internal data is always the program-unit. Thus, data within an external-
sub-def shall be local to each invocation of that program-unit. Hence read-statements
and restore-statements within such a subprogram-def shall refer only to data in data-
statements within that subprogram-def and not to data in other program-units. Upon

- 72 -

invocation of such a subprogram-def, the pointer for the data within that subprogram-
def shall be reset to the beginning of the data (see 10.1). Data within an internal-
sub-def shall be part of the data sequence for that program-unit, and read-statements
and restore-statements within such a subprogram-def shall refer to the entire se-
quence of data in that program-unit.

9.2.5 Exceptions

None.
9.2.6 Remarks

Implementations may extend the language by making the use of an internal-sub-type op-
tional, even when the internal-sub-defs occur after the call-statements referring to
them.

An alias is said to exist for an object whenever two or more distinct names exist for
the object within the same scope. When parameters are passed by reference, aliases
may be created in certain circumstances. Parameter passing by value does not create
aliases, since distinct objects are created for each parameter.

Any call-statement creates aliases whenever :

- channel-expressions which round to the same integer value are passed to different
formal channel-numbers,

- the same actual-array is passed to different formal-arrays,

- the same simple variable or array element is passed to different formal simple-
variables,

- an array is passed to a formal-array and an element of that array is passed to a
formal simple-variable,

- a channel-expression is passed to an internal subprogram, or

- an argument which is not a channel-expression is passed by reference to an internal
subprogram.

In the first four cases, the alias arises because two or more formal parameters name
the same object, or parts of the same object. In the latter two cases, the alias
arises because an object is 'visible" to an internal subprogram, both as a parameter
and as an object global to the entire program-unit.

When the state of an object referred to by an aliased procedure-parameter is changed,
that change must be immediately effective in every subsequent reference to the ob-
ject, regardless of which of the object's names is used in the reference. Events
which potentially affect the state of the object referred to by a procedure-parameter
include assignment, input/output operations, and array redimensioning.

Thus, the program :

100 DECLARE INTERNAL SUB S
110 LET A = 0

120 CALL S(A,A)

130 SUB S(B,C)

140 LET A = 1

150 LET B = 2

160 LET C = 3

170 IF A <> BOR B <> C OR A <> C THEN
180 PRINT "This shouldn't happen."
190 END IF

200 END SUB

210 END

9.3

9+3+1

9.3.2

9.3

9.3.

- 73 -

would never print the error message in a conforming implementation.

Remarks about the following topics in 9.1.6 apply analogously to subprograms (9.2.6):

- Program-units with different COLLATE options;

- Functions which are defined or declared, but not referenced;

- Functions which are defined before they are declared;

- The requirement that external, but not internal, functions aiways be declared
(rather than defined);

- Internal functions with the same name in different program-units.

Chaining

.3

e

5

General Description

The chain-statement allows separate programs to be executed serially without program-
mer intervention. Such a facility is useful for segmenting large programs.

Syntax

1. chain-statement
2. program-designator

CHAIN program-designator (WITH function-arg-list)?
string-expression

1

The association of the function-arguments in the function-arg-list in the chain-
statement with the function parameters in the function-parm-list in the program-name-
line shall follow the same rules set down for defined-functions (see 9.1).

Examples

1. CHAIN "PROG2"
CHAIN A$ WITH (X, FILENAMES$)

Semantics

A chain-statement shall terminate execution of the current program, close all files,
and initiate execution of the program designated by the program-designator. The way
in which a program is associated with its program-designator is implementation-
defined.

If the program being chained to contains a program-name-line, then the arguments of
the chain-statement are evaluated and assigned to the corresponding parameters in the
program-name-line (i.e., parameters are passed by value). The bounds of a formal-
array shall therefore be adjusted to equal those of the corresponding actual-array,
in accordance with the rules for passing array parameters to functions (see 9.1).

It is implementation-defined whether upper-case-letters and lower-case-letters are
treated as equivalent in a program-designator.

The initial values of variables in a chained-to program are implementation-defined.
Exceptions
- The program identified by the program-designator is not available (10005, fatal).

- The number and type of arguments in a chain-statement do not agree with the number
and type of the corresponding parameters in the program-name-line of the program
being chained to, or a program-name-line with a function-parm-list is not present
(4301, fatal).

- An actual-array does not have the same number of dimensions as the corresponding
formal-array (4302, fatal).

- Numeric parameters are passed between programs with a chain-statement and the
ARITHMETIC options of the program-units disagree (4303, fatal).

- 74 -

9.3.6 Remarks

In a typical implementation a program-designator will be the name of a file contain-
ing that program. The program chained to need not be a BASIC program.

If exception 4301, 4302, or 4303 occurs, it may be reported by the chained-from pro-
gram, the chained-to program, or some intermediate system program.

- 75 -

10. INPUT AND OUTPUT

- 76 -

10. INPUT AND OUTPUT

Input and output facilities are provided for the interaction of a BASIC program with col-
lections of data. Data may be obtained by a program from statements within that program,
from a standard source external to that program, or from a named source external to that
program (see 11.4). Output data may be directed to a standard destination external to that
program or to named destination external to that program (see 11.3 and, for BASIC-2 only,
11.5).

10.1 Internal Data

10.1.1 General Description

The read-statement provides for the assignment of values to variables from a sequence
of data created from one or more data-statements. The restore-statement allows data
in a program to be reread.

10.1.2 Syntax
1. read-statement > READ (missing-recovery colon)? variable-list
2. variable-list = variable (comma variable)*
3. missing-recovery = IF MISSING THEN io-recovery-action
L. io-recovery-action = exit-do-statement / exit-for-statement / line-number
5. restore-statement = RESTORE line-number?
6. data-statement = DATA data-list
7. data-list = datum (comma datum)3*
8. datum = constant / unquoted-string
9. unquoted-string = plain-string-character / plain-string-character

unquoted-string-character®
plain-string-character

An io-recovery-action containing an exit-for-statement shall occur only within a for-
body. An io-recovery-action containing an exit-do-statement shall occur only within a
do-body.

If a line-number occurs in a restore-statement, the line-number shall refer to a line
containing a data-statement.

10.1.3 Examples

1. READ X, , Z
READ IF MISSING THEN 1350: X(1), A$
5. RESTORE
RESTORE 1000
6. DATA 3.14159, PI, 5E-30, ", "
9. COMMAS CANNOT OCCUR IN UNQUOTED STRINGS.

10.1.4 Semantics

Data from the totality of data-statements in each program-unit shall behave as if
collected into a single data sequence. The order in which data appear textually in
the totality of all data-statements determines the order of the data in the data se-
quence.

If the execution of a program reaches a line containing a data-statement, then it
shall proceed to the next line with no further effect.

Execution of a read-statement shall cause variables in the variable-list to be as-
signed values, in order, from the sequence of data in the program-unit containing the
read-statement. A conceptual pointer is associated with this data sequence. At the
initiation of execution of the program-unit, this conceptual pointer points to the

- 77 =

first datum in the data sequence. Each time a read-statement is executed, each vari-
able in the variable-list in sequence is assigned the value of the datum indicated by
the pointer and the pointer advanced to point beyond that datum.

If an attempt is made to read data beyond the end of the data sequence, an exception
shall occur unless a missing-recovery is present in the read-statement. In that case,
the specified io-recovery-action shall be taken. If the io-recovery-action is an
exit-do-statement or exit-for-statement, that statement shall have its normal effect
(see 8.3). If the io-recovery-action is a line-number, then execution shall continue
at the line having that line-number.

The type of a datum in the data sequence shall correspond to the type of the variable
to which it is to be assigned; i.e., numeric-variables require numeric-constants as
data and string-variables require string-constants or unquoted-strings as data. An
unquoted-string which is also a numeric-constant may be assigned to either a string-
variable or a numeric-variable by a read-statement.

If the evaluation of a numeric datum causes an underflow, then its value shall be re-
placed by zero.

Subscripts and substring-qualifiers in the variable-list shall be evaluated after
values have been assigned to the variables preceding them (i.e., to the left of them)
in the variable-list.

Execution of a restore-statement resets the pointer for the data sequence in the
program-unit containing the restore-statement to the beginning of the sequence, so
that the next read-statement executed will read data from the beginning of the se-
quence. If a line-number is present, then the pointer for the data sequence in the
program-unit containing the restore-statement is set to the first datum in the data-
statement with the given line-number, so that the next read-statement executed will
read data from the beginning of the designated data-statement.

10.1.5 Exceptions

- The variable-list in a read-statement requires more data than are present in the
remainder of the data-list and a missing-recovery has not been specified (8001,
fatal).

- An attempt is made to assign a value to a numeric-variable from a datum which is
not a numeric-constant (8101, fatal).

- The evaluation of a numeric datum causes an overflow (1006, fatal).

- The assignment of a datum to a string-variable results in a string overflow (1053,
fatal).

10.1.6 Remarks

Implementations may choose to treat underflows as exceptions (1506, nonfatal: supply
zero and continue). In BASIC-2 implementations, this permits interception by excep-
tion handlers.

10.2 Input

10.2.1 General Description

Input-statements provide for user interaction with a program by allowing variables to
be assigned values supplied from a source external to the program. The input-
statement enables the entry of mixed string and numeric data, with data items being
separated by commas.)

A prompt for input may be specified to replace the usual prompt supplied by the im-
plementation.

- 78 -

The line-input-statement enables an entire line of input, including embedded spaces
and commas, to be assigned as the value of a string-variable.

10.2.2 Syntax

1. input-statement > INPUT input-modifier-1list? variable-list

2. input-modifier-list = input-modifier (comma input-modifier)* colon

3. input-modifier = prompt-specifier / timeout-expression / time-inquiry
4. prompt-specifier = PROMPT string-expression

5. timeout-expression = TIMEOUT numeric-time-expression

6. numeric-time-expression = numeric-expression

7. time-inquiry = ELAPSED numeric-variable

8. line-input-statement > LINE INPUT input-modifier-1list? string-variable-list
9. input-prompt = (implementation-defined)
10. input-reply = data-list comma? end-of-line
11. line-input-reply = character® end-of-line

At most one prompt-specifier, one timeout-expression, and one time-inquiry shall oc-
cur in an input-modifier-list. These may occur in any sequence.

10.2.3 Examples

1. INPUT X

INPUTAS$ Y(2)
INPUT PROMPT "What is your name? '': N$
INPUT TIMEOUT 3%N, ELAPSED T, PROMPT Pstring$: N$

8. LINE INPUT A$
LINE INPUT PROMPT "'": A$, B$

10. 2, SMITH, -3
25, 0, -10.2

11. He said, "Don't'".

10.2.4 Semantics

Execution of input-statement shall cause execution of the program to be suspended un-
til a valid input-reply, as specified below, has been supplied. An input-statement
shall cause variables in the variable-list to be assigned, in order, values from the
input-reply.

In interactive mode,the user of the program shall be informed of the need to supply
data by the output of an input-prompt.

Input modifier list

If a prompt-specifier is present in the input-statement, then the implementation-
defined input-prompt shall not be output; instead, the value of the string-expression
in the prompt-specifier shall be output (unless the input-reply is terminated by a
comma, see below). In batch mode, the input-reply shall be requested from the exter-
nal source by an implementation-defined means.

If a timeout-expression is present in an input-modifier-list, then the numeric-time-
expression contained therein shall be evaluated to obtain a (possibly fractional)
number S of seconds. If no valid input-reply or line-input-reply has been supplied
within S seconds, then an exception shall occur. A time-inquiry returns the (possibly
fractional) number of seconds elapsed between the issuance of the input-prompt and
the reception of the end-of-line of the last input-reply for this input-statement.
This value is assigned to the numeric-variable in the time-inquiry. If no clock is
provided by an implementation, then a timeout-expression shall have no effect. If a

- 79 -

clock is provided, a time-inquiry result shall always be positive. If no clock is
provided, a time-inquiry result shall be -1. The values (minimum and maximum) and
resolution of both timeout expressions and time-inquiries are implementation-defined.

Assignment of Values

The assignment of a value from the input-reply to the corresponding variable shall
take place as soon as an item of data in the input-reply has been validated with re-
spect to the type of the datum and the allowable range of values for that datum.

Subscripts and substring-qualifiers in a variable-list or string-variable-list shall
be evaluated after values have been assigned to the variables preceding them (i.e.,
to the left of them) in the variable-list or string-variable-list.

The type of each datum in the input-reply shall correspond to the type of the vari-
able to which it is to be assigned; i.e., numeric-constants shall be supplied as in-
put for numeric-variables, and either string-constants or unquoted-strings shall be
supplied as input for string-variables. An unquoted-string which is also a numeric-
constant may be assigned to either a string-variable or a numeric-variable by an
input-statement.

If the evaluation of a numeric datum causes an underflow, then its value shall be re-
placed by zero.

If an input-reply supplied in response to a request for input does not end with a
comma, then the number of data in all the input-replies submitted shall equal the
number of variables requiring values.

If the last character other than a space before the end-of-line in an input-reply is
a comma, then this shall be taken to signify that further data are to be supplied. As
many values as are contained in that input-reply shall be assigned to variables in
the variable-list. The input-prompt (but not the string-expression of the prompt-
specifier, if there is one) shall then be reissued, and execution of the program
shall remain suspended until another valid input-reply has been supplied, from which
further data shall be obtained.

When a line-input-statement is executed, a line-input-reply shall be requested for
each string-variable in the string-variable-list in the same fashion as an input-
reply is requested. That is, the value of the first line-input-reply shall be as-
signed to the first variable in the variable-list. If there are further variables in
the variable-list, the input-prompt (but not the string-expression of the prompt-
specifier, if there is one) shall then be reissued, and execution of the program
shall remain suspended until a second valid line-input-reply has been supplied and
assigned to the second variable in the variable-list. This process continues until a
valid line-input-reply has been supplied for each variable in the variable-list. The
characters of each line-input-reply, including any leading and trailing spaces, shall
be concatenated to form a single string, which shall become the value of the corre-
sponding string-variable, except that the end-of-line, which terminates a line-input-
reply, shall not be included. Quotation marks within a line-input-reply are treated
as actual characters. Thus, two adjacent quotation-marks are taken as two characters,
not as one.

10.2.5 Exceptions

- The line supplied in response to a request for an input-reply is not a syntacti-
cally correct input-reply (8102, nonfatal: request that a new input-reply be sup-
plied).

- A datum supplied as input for a numeric-variable is not a numeric-constant (8103,
nonfatal: request that the current input-reply be resupplied).

- 80 -

- There are insufficient data in an input-reply not containing a final comma (8002,
nonfatal: request that the current input-reply be resupplied).

- There are too many data in an input-reply or there are just enough data and the
input-reply ends with a comma (8003, nonfatal: request that the current input-
reply be resupplied).

- The evaluation of a numeric datum causes an overflow (1007, nonfatal: request that
the current input-reply be resupplied).

- The assignment of a datum or a line-input-reply to a string-variable results in a
string overflow (1054, nonfatal: request that the current input-reply or line-
input-reply be resupplied).

- The value of a numeric-time-expression is less than zero (8402, fatal).

1

A valid input-reply or line-input-reply has not been supplied within the number of
seconds specified by a timeout-expression in an input-modifier-list (8401, fatal).

10.2.6 Remarks

This Standard requires that users in the interactive mode always be given the option
of resupplying erroneous input-replies; in batch mode this may be treated as a fatal
exception. This Standard does not require an implementation to provide facilities for
correcting erroneous input-replies, though such facilities may be provided.

It is recommended tat the default input-prompt consist of a question-mark followed by
a single space.

This Standard does not require an implementation to output (i.e. echo) an input-reply
or line-input-reply.

Implementations may choose to treat underflows as exceptions (1507, nonfatal: supply
zero and continue). In BASIC-2 implementation, this permits interception by exception
handlers.

If an input datum is an unquoted-string, leading and trailing spaces are ignored (see
4.1). If it is a quoted-string, then all spaces between the quotation-marks are sig-
nificant (see 6.1).

10.3 Output

10.3.1 General Description

The print-statement is designed for generation of tabular output in a consistent for-
mat. The set-statement with MARGIN can be used to specify the width of output-lines.
The set-statement with ZONEWIDTH can be used to specify the width of print zones
within a print-line. The ask-statement is used to inquire about the current MARGIN
and ZONEWIDTH. Generalizations of the print-statement are described in 10.4, 10.5,
and 11.3.

10.3.2 Syntax

1. print-statement > PRINT print-list
2. print-list = (print-item? print-separator)® print-item?
3. print-item = expression / tab-call
L. tab-call = TAB left-parenthesis index right-parenthesis
5. print-separator = comma / semicolon
6. set-statement = SET set-object
7. set-object > (MARGIN / ZONEWIDTH) index
8. ask-statement > ASK ask-io-list
9. ask-io-list = ask-io-item comma ask-io-item)¥
10. ask-io-item = (MARGIN / ZONEWIDTH) numeric-variable

- 81 -

A given ask-io-item must appear at most once in an ask-statement.

10.3.3 Examples

1. PRINT X

PRINT X, Y

PRINT X, Y, Z,

PRINT ,,, X

PRINT

PRINT "X EQUALS", 10

PRINT X, (Y+Z)/2

PRINT TAB(10); A$ "IS DONE."
6. SET MARGIN 120

SET ZONEWIDTH 20

10.3.4 Semantics

The execution of a print-statement shall generate a string of characters and end-of-
lines for transmission to an external device. This string of characters shall be de-
termined by the successive evaluation of each print-item and print-separator in the
print-1list.

If an expression in a print-list invokes a function which causes a print-statement to
be executed which transmits characters to the same device as the original print-
statement, then the effect is implementation-defined.

Printing numeric values

Numeric-expressions shall be evaluated to produce a string of characters consisting
of a leading space if the number is positive, or a leading minus-sign if the number
is negative, followed by the decimal representation of the absolute value of the num-
ber and a trailing space. The possible decimal representations of a number are the
same as those described for numeric-constants in 5.1 and shall be used as follows.

Each implementation shall define two quantities, a significance-width d to control
the number of significant decimal digits printed in numeric representations, and an
exrad-width e to control the number of digits printed in the exrad component of a nu-
meric representation. The value of d shall be at least six and the value of e shall
be at least two.

Each expression whose value is exactly an integer and which can be represented with d
or fewer decimal digits shall be output using the implicit point unscaled representa-
tion.

All other values shall be output using either explicit point unscaled representation
or explicit point scaled representation. Values which can be represented with d or
fewer digits in the unscaled representation no less accurately than they can in the
scaled representation shall be output using the unscaled representation. For example,
if d = 6, then 10" (-6) is output as .000001 and 107 (-7) is output as 1.E-7.

Values represented in the explicit point unscaled representation shall be output with
up to d significant decimal digits and a period; trailing zeros in the fractional
part may be omitted. A number with a magnitude less than 1 shall be represented with
no digits to the left of the period. This form requires up to d+3 characters counting
the sign, the period and the trailing space. Values represented in the explicit point
scaled representation shall be output in the format

significand E sign integer

where the value x of the significand is in the range 1 < x < 10 and is to be repre-
sented with exactly d digits of precision, and where the exrad component has one to e
digits. Trailing zeros may be omitted in the fractional part of the significand and

- 82 -

leading zeros may be omitted from the exrad. A period shall be printed as part of the
significand. This form requires up to dt+et+5 characters counting the two signs, the
period, the "E" and a trailing space.

Printing string values

String-expressions shall be evaluated to generate the corresponding string of charac-
ters.

Print separators and tabs

The evaluation of the semicolon separator shall generate the null string, i.e.,
string of zero length.

The evaluation of a tab-call or a comma separator depends upon the string of charac-
ters already generated by the current or previous print-statements. The 'current
line" is the (possibly empty) string of characters generated since the beginning of
execution or since the last end-of-line was generated.

The '"columnar position" of the current line is the print position that will be occu-
pied by the next character output to that line. Print positions shall be numbered
consecutively from the left, starting with position one. Each time a character in po-
sitions 2/0 through 7/14 of the standard character set is generated, the columnar po-
sition shall be increased by one. Each time an end-of-line is generated, the columnar
position shall be reset to one. The effect of other characters on the columnar posi-
tion is implementation-defined.

The "margin" is the maximum columnar position in which a character may appear. Prior
to execution of a set-statement with MARGIN, the margin shall be implementation-
defined, but must be not less than the default zone width. A margin of MAXNUM shall
indicate that the columnar position may be arbitrarily large.

Each print-line is divided into a fixed number of print zones where the number of
zones and the length of each zone is implementation-defined. All print zones, except
possibly the last one on a line, which may be shorter, shall have the same width. The
default width of a zone shall be at least d+e+6 print positions. The zone width may
be changed by the execution of a set-statement with ZONEWIDTH. ZONEWIDTH may be set
to any value greater than zero, but not greater than the current margin.

The purpose of the tab-call is to set the columnar position of the current line to
the specified value prior to printing the next print-item. More precisely, the argu-
ment of the tab-call shall be evaluated and rounded to the nearest integer n. If n is
less than one, an exception shall occur. If n is greater than the margin m, then n
shall be reduced by an integral multiple of m so that it is in the range 1 < n < m;
i.e., n shall be set equal to MOD(n-1,m) + 1.

If the columnar position of the current line is less than or equal to n, then spaces
shall be generated, if necessary, to set the columnar position to n; if the columnar
position of the current line is greater than n, then an end-of-line shall be gener-
ated followed by n-1 spaces to set the columnar position of the new current line
to n.

The evaluation of the comma print-separator depends upon the columnar position. If
this position is neither in the last print zone on a line nor beyond the margin, then
one or more spaces shall be generated to set the columnar position to the beginning
of the next print zone on the line. If the initial columnar position is in the last
print zone on a line, then an end-of-line shall be generated. Finally, if the initial
columnar position is beyond the margin (as it would be if evaluation of the last
print-item exactly filled the line), then an end-of-line shall be generated.

-.83 -

Overlength output lines

Whenever the columnar position is greater than one and the generation of the next
print-item would cause a character to appear beyond the margin, then an end-of-line
shall be generated prior to the characters generated by that print-item.

During the generation of a print-item, whenever that generation would cause a charac-
ter to appear beyond the margin, an end-of-line shall be generated prior to that
character, resetting the columnar position to one.

End of print-list

When evaluation of a print-list is completed, if that print-list did not end with a
print-separator, then a final end-of-line shall be generated; otherwise, no such fi-
nal end-of-line shall be generated.

A completely empty print-list shall generate an end-of-line, thereby completing the
current line of output. If this line contained no characters, then a blank line shall
result.

Setting the margin

Execution of a set-statement with a MARGIN shall cause its index to be evaluated and
to become the new margin. The change in the margin shall take effect immediately,
even if a line of output is partially filled. The set-statement with a MARGIN affects
only unformatted output.

Setting the zone width

Execution of a set-statement with a ZONEWIDTH shall cause its index to be evaluated
and to become the new zone width. The change in the zone width shall take effect im-
mediately, even if a line of output is partially filled. The set-statement with a
ZONEWIDTH affects only unformatted output.

Ask-statement

Execution of an ask-statement shall cause the variables in the ask-io-list to be as-
signed values corresponding to the current margin, if MARGIN is present, or current
zonewidth, if ZONEWIDTH is present. If the columnar position may be arbitrarily
large, then the value MAXNUM shall be returned to the numeric-variable in the ask-
statement with MARGIN.

10.3.5 Exceptions

- The value of the index in a tab-call is less than one (4005, nonfatal: supply one
and continue).

- The value of the index in a set-statement with a MARGIN is less than the current
zonewidth (4006, fatal).

- The value of the index in a set-statement with a ZONEWIDTH is less than one or
greater than the current margin (4007, fatal).

10.3.6 Remarks

The character string generated by printing the value of a numeric-expression contains
a single trailing space. If the generation of that space would cause the columnar po-
sition to exceed the margin by more than one, then implementations may choose not to
generate that space, thereby allowing the number to be printed in the final print
zone on a line.

- 84 -

Implementations may choose to use a lower-case '"e'" in printing numerical values using
the explicit point scaled representation.

The print-separator following a tab-call is significant in the same manner that it is
significant following an expression.

10.4 Formatted Output

10.4.1 General Description

A print-statement may control the format of output by specifying an image to which
that output must conform. The image is specified either within the print-statement or
in a separate image-line.

10.4.2 Syntax

10.
11.

12.

13.
14.

15.

0 N O U FE oW

print-statement
formatted-print-1list
image

output-list

. image-line
. format-string

literal-string
literal-item

. format-item

justifier
floating-characters

i-format-item

digit-place
f-format-item

e-format-item

PRINT formatted-print-list

USING image (colon output-list)?

line-number / string-expression

expression (comma expression)¥® semicolon?
line-number IMAGE colon format-string end-of-line
literal-string (format-item literal-string)®*
literal-item*

letter / digit / apostrophe / colon / equals-sign /
exclamation-mark / left-parenthesis /
question-mark / right-parenthesis /

semicolon / slant / space / underline

(justifier? floating-characters (i-format-item /
f-format-item / e-format-item)) / justifier
greater-than-sign / less-than-sign

(plus-sign®* / minus-sign) dollar-sign? / dollar-sign®
(plus-sign / minus-sign)?

digit-place digit-place¥® (comma digit-place
digit-place¥)®

asterisk / number-sign / percent-sign

period number-sign number-sign®* / i-format-item
period number-sign¥

(i-format-item / f-format-item) circumflex-accent
circumflex-accent circumflex-accent
circumflex-accent®

An image which is a line-number shall refer to an image-line in the same program-
unit. Any leading spaces following the colon in an image-line are part of the format-
string.

All digit-places in an i-format-item shall be the same character, i.e., all shall be
number-signs, all shall be percent-signs, or all shall be asterisks.

10.4.3 Examples

10 LET sum = 20
20 PRINT USING "The answer is ###.#": sum

produces "The answer is 20.0".

30 PRINT USING 40: 342, 42.021
40 IMAGE : RATE OF LOSS #### EQUALS ####.## POUNDS
produces '"RATE OF LOSS 342 EQUALS 42.02 POUNDS".

10 LET A$ = "CHEHEE HERE FRE FEEE. #EEE TN
20 PRINT USING A$: 1, 1, 1

produces " 1 1.0000 1000. OOOOE-03'".

- 85 -

60 PRINT USING 70: '"ONE", "TIWO", "THREE"
70 IMAGE : Z<H#H#E>H#HFE #HE##HHH#FZ
produces "ZONE TWO THREE Z".

80 LET A$ = "Pay $¥*.## on ### %% 19%%"
90 PRINT USING A$: 1, "May'", 2, 83
produces "Pay $%*1.00 on May 02 1983".

10 PRINT USING "'<%%.## >---$## ## $$$+sseknrs 3 1, -1234.567, 2
produces 003.10 -$1234.57 $4¥kpM,

10 PRINT USING "'<$$$$.## $$$$.### "y -,02, -.02
produces " $-.02 $-.200E-001".

10 PRINT USING '@k sk ghftts 1234.7777
produces g1 ,234.78".

10.4.4 Semantics

A print-statement with a formatted-print-list identifies a format-string to be used
to control the output generated by the evaluation of the output-list. If the image is
specified via a line-number, then the format-string is contained in the image-line
with the indicated line-number; otherwise, it is the value of the string-expression.

Format string analysis

The selected format-string shall be analyzed as a number of format-items separated by
possibly zero-length literal-strings.

Format-items shall be found within the format-string by scanning the latter from left
to right. A search shall be made for the first character which is the start of a syn-
tactically correct format-item, and the longest such format-item starting at that
character identified. The scan for format-items shall continue in this way up to the
end of the format-string, the search for the start of each new format-item beginning
at the character immediately beyond the previously identified format-item. Corre-
sponding to each format-item shall be an output field whose length equals the number
of characters in the format-item (including the justifier, floating-characters,
digit-places, commas, period, number-signs, and circumflex-accents). Characters which
are not part of any format-item shall be literal-items.

Format-strings which are defined in image-lines shall be interpreted as ending with
the last character in the line which is not a space or end-of-line.

Literal strings and output fields

A sequence of values to be output shall be generated by evaluating each expression in
the output-list in sequence. As each value is generated, the literal-string preceding
the next format-item in the format-string shall first be copied unchanged into the
string of characters being generated. Then a number of characters equal to the length
of the output field determined by that format-item shall be generated, as follows.

Formatted numeric output

Numeric values shall be rounded and represented in a manner corresponding to the
format-item used. If a justifier is present in the format-item, it shall be replaced
by the character immediately to its right. If, however, the character to its right is
a period, or if there is no character to its right, then the justifier shall be re-
placed by a number-sign.

First, a representation for the magnitude of the value shall be generated.

- For an i-format-item, the value shall be rounded to the nearest integer and repre-
sented using implicit point unscaled notation.

- 86 -

- For an f-format-item, the value shall be represented using explicit point unscaled
notation, rounding the representation or extending it on the right with zeros in
accordance with the number of number-signs following the period in the format-
item.

- For both i-format-items and f-format-items, leading zeros to the left of the im-
plicit or explicit decimal point shall not be generated, unless this results in no
digits being generated. In that case, the character "0" shall be generated immedi-
ately to the left of the explicit or implicit decimal point. After this, if there
remain unfilled digit-places, then leading zeros shall be generated in the integer
or to the left of the period when a percent-sign is used as a digit-place, leading
asterisks when an asterisk is used as a digit-place, and leading spaces when a
number-sign is used as a digit-place, such that the number of characters to the
left of the implicit or explicit decimal point is equal to the number of digit-
places in the format-item.

- For an e-format-item, the value shall be represented using explicit or implicit
point scaled notation, corresponding to the use of an f-format-item or i-format-
item, respectively, within the e-format-item. The significand for nonzero values
shall be scaled by powers of ten such that the leftmost digit-place or number-sign
position is occupied by a nonzero digit. In all other respects, the significand
shall be generated according to the above rules for i-format-items and f-format-
items. The number of circumflex-accents in an e-format-item shall determine the
number of characters in the exrad. The first of these characters shall be the let-
ter E, the next a mandatory sign, and the remaining characters the representation
of the magnitude of the exrad, with leading zeros being generated so that the num-
ber of characters in the exrad equals the number of circumflex-accents in the
format-item. If the exponent is zero, the mandatory sign is positive; the exponent
of zero is zero.

Second, commas shall be inserted in the numeric representation wherever a comma oc-
curs in the format-item, provided at least one digit has been generated to the left
of the point of insertion; if no digit has been generated to the left of this point,
then an asterisk shall be inserted if the digit-place immediately to the left is an
asterisk, and a space inserted if the digit-place immediately to the left is a
number-sign.

Third, leading characters composed of sign, dollar-sign, and space shall be generated
according to the following table:

Floating-characters Leading Characters Generated
First® Last Non-negative Negative
- $ " $II ll_$||
$ - |l$ " H$_Il
= none mnon n_n
+ $ II+$II H_$|I
$ + Il$+l| ||$_||
+ none II+H { . 1
$ none II$II II$_H
none none i =it

* may be several occurrences

Finally, the representation of the numeric value so generated shall be extended by
spaces on the left so that its length equals that of the format-item. This has the
effect of right-justifying a numeric-representation in an output field.

- 87 -

Formatted string output

A string value may be output using any type of format-item. The string shall be ex-
tended by spaces so that its length equals that of the format-item. These space shall
be added on the left (for right-justification) if the format-item begins with a
greater-than-sign, on the right (for left-justification) if it begins with a less-
than-sign, and equally on either side (for centering) otherwise; if the number of
spaces required in the last case is odd, the extra space shall be added on the right.

Formatted Output Completion

If the number of values to be output exceeds the number of format-items in the
format-string, an end-of-line shall be generated each time the end of the format-
string is reached and the format-string reused for the remaining expressions. If
format-items remain in the format-string after all values have been output, then the
next literal-string, if any, shall be output. Generation of characters is always ter-
minated beginning at the first unused format-item. Finally, an end-of-line shall be
generated after all other character generation is completed, unless the output-list
ends with a semicolon, in which case no such end-of-line shall be generated.

The current margin shall not affect the output; in particular, no end-of-line shall
be generated upon formatted output just because the margin is exceeded. If the execu-
tion of a program reaches an image-line, it shall proceed to the next line with no
further effect.

10.4.5 Exceptions
- An invalid format-string is specified in a formatted-print-list (8201, fatal).

- A formatted-print-list contains an output-list, but there is no format-item in the
format-string (8202, fatal).

- An output string, whether generated from a string-expression or a numeric-
expression, is longer than its corresponding format-item (8203, nonfatal: fill the
output field with asterisks, report the unformatted representation of the value on
the next line, and continue printing on the following line in a position identical
to the position which would have resulted if no exception had occurred).

- The exrad for numeric output exceeds the space allocated by circumflex-accents in a
format-item (8204, nonfatal: fill the output field with asterisks, report the un-
formatted representation of the value, and continue).

10.4.6 Remarks

Since format-strings may be evaluated dynamically, errors in them (even if occurring
in an image-line and therefore statically determined) may be treated as exceptions.

Implementations may choose to use a lower case '"e' in printing numerical values using
the explicit point scaled representation.

The integer part of a number generated with an i-format-item or f-format-item may
validly contain more digits than there are digit-places in the format-item, as long
as the floating-characters provide sufficient room.

Negative numeric values always generate a minus-sign. The corresponding format-item
must provide room for this minus-sign with floating-characters, since digit-places
are completely filled by digits, or by leading spaces, zeros, or asterisks. In par-
ticular, a format-item with no floating-characters, or with only a single dollar-sign
as a floating-character, will cause exception 8203 if an attempt is made to fill that
field with a negative value.

- 88 -

10.5 Array Input and Output

10.5.1 General Description

Statements are provided which enable entire arrays to be input or output. These
statements generalize the input and output statements which manipulate single values
(see 10.1 to 10.4).

10.5.2 Syntax

1. array-read-statement > MAT READ (missing-recovery colon)? redim-array-list

2. redim-array-list = redim-array (comma redim-array)¥*

3. redim-array = array-name redim?

4. array-input-statement > MAT INPUT input-modifier-1list? (redim-array-list /
variable-length-vector)

5. variable-length-vector = array-name left-parenthesis question-mark

right-parenthesis
6. array-line-input-statement> MAT LINE INPUT input-modifier-list?
redim-string-array-list

7. redim-string-array-list = redim-string-array (comma redim-string-array)

8. redim-string-array = string-array redim?

9. array-print-statement > MAT PRINT (array-print-list / (USING image colon
array-output-list))

10. array-print-list = array-name (print-separator array-name)¥*
print-separator?

11. array-output-list = array-name (comma array-name)* semicolon?

A redim and the array in its redim-array shall have the same number of dimensions.

A variable-length-vector must be one-dimensional.

10.5.3 Examples

1. MAT READ A
MAT READ A(M,N), B
4. MAT INPUT A$(3,4)
MAT INPUT X(?)
MAT INPUT PROMPT "Enter data: '": X(?)
8. MAT LINE INPUT A$
9. MAT PRINT A; B, C;

10.5.4 Semantics

The array read statement

Execution of an array-read-statement shall cause arrays in the redim-array-list to be
assigned, in order, values from the data sequence created by data-statements in the
program-unit containing that statement. Values shall be assigned to all elements in
each array in row major order, (i.e., the last subscript varying most rapidly, then
the next to last subscript, if any, etc.) with each successive value being obtained
from the datum in the data sequence indicated by the pointer for the sequence and the
pointer being advanced beyond that datum.

The type of each datum in the data sequence shall correspond to the type of the
array-element to which it is to be assigned (see 10.1).

If a redim is present then dynamic redimensioning shall take place before values are
assigned to the redimensioned array. The redimensioning shall be done according to
the rules for bounds in array-declarations. The values of the indices shall be used
as the new lower and upper bounds for the array. If an exception occurs when attempt-
ing to redimension an array, it shall retain its old dimensions. Redims in the redim-

- 89 -

array-list shall be evaluated after values have been assigned to the arrays preceding
them (i.e., to the left of them) in the redim-array-list.

The handling of insufficient data with or without a missing-recovery shall work as
described in 10.1.

If the evaluation of a numeric datum causes an underflow then its value shall be re-
placed by zero.

The array input statement

Execution of an array-input-statement shall cause execution of the program to be sus-
pended until a valid input-reply, as specified below, has been supplied. An array-
input-statement shall cause arrays in the redim-array-list to be assigned, in order,
values from the input-reply. Values shall be assigned to all elements in each array
in row major order.

In the interactive mode, the user of the program shall be informed of the need to
supply data by the output of an input-prompt. The prompt is identical to that of the
input-prompt of the input-statement.

The input-modifier-list, if present, shall work as described in 10.2.

The type of each datum in the input-reply shall correspond to the type of the array-
element to which it is to be assigned.

If a redim is present then dynamic redimensioning shall take place as described above
for the array-read-statement before values are assigned to the redimensioned array.
Redims in the redim-array-list shall be evaluated after values have been assigned to
the redim-arrays preceding them (i.e., to the left of them) in the redim-array-list.

If the recovery procedure for an input exception causes input data to be re-supplied
to an array which was redimensioned after the original assignment of data to it, but
before the exception occurred, the effect is implementation-defined. Data in response
to a request for array input need not be supplied in a single input-reply. If the
array-list has not been completely supplied with data and the input-reply contains a
final comma, then the input-prompt shall be issued and a further input-reply shall be
requested to obtain more data.

If the evaluation of a numeric datum causes an underflow then its value shall be re-
placed by zero.

Input of variable length vectors

If a variable-length-vector occurs in an array-input-statement, then as many data as
are present in the input-reply (or sequence of input-replies up to and including the
first which does not end with a comma) shall be supplied as input for that vector.
Assignment of data shall begin with the current lower bound for the vector. After as-
signment, the vector shall be redimensioned dynamically by setting the upper bound
for its subscript equal to the subscript of the element receiving the last datum. The
number of data values assigned to the variable-length-vector shall not exceed the
original size for that vector as specified in its array-declaration.

The type of each datum in the input-reply shall correspond to the type of the array.

The array-line-input-statement

When an array-line-input-statement is executed, a line-input-reply shall be requested
for each element of each string-array in the string-array-list in the same fashion
that an input reply is requested and shall assign the entire contents of successive
line-input-replies (excluding their end-of-lines) in row major order to elements of
the string-arrays in the string-array-list. The number of line-input-replies re-
quested shall equal the number of elements requiring values.

- 90 -

In the interactive mode, the user of the program shall be informed of the need to
supply data by the output of an input-prompt.

The input-modifier-list, if present, shall work as described in 10.2.

If a redim is present then dynamic redimensioning shall take place as described above
for the array-read-statement before values are assigned to the redimensioned array.
Redims in the redim-string-array-list shall be evaluated after values have been as-
signed to the redim-string-arrays preceding them (i.e., to the left of them) in the
redim-string-array-list.

The array print statement

Execution of an array-print-statement shall cause the values of all elements in all
arrays in the array-print-list to be printed. An end-of-line shall be generated prior
to any characters generated by an array-print-statement if the current line of output
is nonempty.

For an array-print-statement with an array-print-list, the characters generated for
transmission to an external device by the printing of a two-dimensional array are al-
most precisely those that would be generated if the elements in that array had been
listed, row by row, in the print-list of a print-statement, separated by the separa-
tor which follows the array-name in the array-print-list (or separated by a comma if
no separator follows the array name). The only additional characters generated shall
be an end-of-line each time a row of the array has been printed (if such an end-of-
line has not already been generated). A three-dimensional array shall be printed like
a series of two-dimensional arrays, one for each value of the first subscript, with
an extra end-of-line generated between each value of the first subscript. When a one-
dimensional array is printed, it shall be treated like a row-vector, and printed as
if it were a 1 x N array.

Finally, an extra end-of-line shall be generated between the output for successive
arrays in an array-print-list.

For an array-print-statement with an array-output-list, the characters generated for
transmission to an external device are exactly those that would be generated if the
elements of each array had been listed array by array, in row-major order, in the
output-list of a print-statement, using the same image as that in the array-print-
statement. No additional end-of-lines shall be generated. As with a print-statement
using an image, if there is no trailing semicolon in the array-output-list, a final
end-of-line shall be generated after all other output from the array-print-statement.
If there is such a semicolon, then this final end-of-line shall not be generated.

10.5.5 Exceptions

- The redim-array-list in an array-read-statement requires more data than are present
in the remainder of the data sequence and no missing-recovery has been specified
(8001, fatal).

- An attempt is made to assign a value to an element of a numeric-array from a datum
in the data sequence which is not a numeric-constant (8101, fatal).

- The assignment of a datum during execution of an array-read-statement results in a
string overflow (1053, fatal).

- The evaluation of a numeric datum in a data-list causes an overflow (1006, fatal).

- The line supplied in response to a request for array input is not a syntactically
correct input-reply (8102, nonfatal: request that a new input-reply be supplied).

- A datum supplied as input for a numeric-array is not a numeric-constant (8103,
nonfatal: request that the current input-reply be resupplied).

- 91 -

- There are insufficient data in an input-reply not containing a final comma (8002,
nonfatal: request that the current input-reply be resupplied).

- There are too many data in an input-reply or there are just enough data and the
input-reply ends with a comma (8003, nonfatal request that the current input-reply
be resupplied).

- The evaluation of a numeric datum in an input-reply causes an overflow (1007,
nonfatal: request that the current input-reply be resupplied).

- The assignment of a string datum during execution of an array-input-statement or an
array-line-input-statement causes a string overflow (1054, nonfatal: request that
the current input-reply or line-input-reply be resupplied).

- The total number of elements required for a redimensioned array exceeds the number
of elements reserved by the array's original dimensions (5001, fatal).

- The first index in a redim-bounds is greater than the second index (6005, fatal).

- A redim-bounds consists of a single index which is less than the default lower
bound in effect (6005, fatal).

- A valid input-reply or line-input-reply has not been supplied within the number of
seconds specified by a timeout-expression in an input-modifier-list (8401, fatal).

- The value of numeric-expression used as a time-expression is less than zero (8402,
fatal).

- An invalid format-string is specified in an array-print-statement (8201, fatal).

- An array-print-statement contains an array-output-list, but there is no format-item
in the format-string (8202, fatal).

10.5.6 Remarks

This Standard does not require an implementation to output (i.e., echo) the input-
reply or line-input-reply.

This Standard does not require an implementation to provide facilities for correcting

erroneous input-replies, though such facilities may be provided.

Implementations may choose to treat underflows as exceptions (1507, nonfatal: supply
zero and continue). In BASIC-2 implementations, this permits interception by
exception handlers.

- 92 -

11. FILES

- 93 -

11. FILES

Two different levels of file processing are defined for BASIC-1 and BASIC-2. The different
combinations of file organization and record types permitted for the two levels are de-
tailed below.

The production rules permitted in BASIC-2 only are so identified. In the text, the usage of
indentation permits to distinguish the parts of the text valid for BASIC-1 only or for
BASIC-2 only from the parts of text valid for both levels. Although the features permitted
in BASIC-1 are a true subset of those permitted in BASIC-2, when the identification of
these features would be too difficult to present in a single text, this text is repeated
for each of the two levels and so identified.

By convention, production rules referring to BASIC-1 and BASIC-2 are called core rules and
production rules referring only to BASIC-2 are called enhanced rules.

Files are organized collections of data external to BASIC programs. They provide the user
with a means of saving data developed during execution of a program and then retrieving and
modifying that data during subsequent execution of BASIC programs. The process by which ex-
ternal data is transferred to or from a program is called input or output, respectively. An
implementation-defined means must be provided for the creation, preservation and retrieval
of files. Input and output operations to these files must perform as specified in this sec-
tion.

This section describes the logical appearance of files and devices to a BASIC program. In
some cases, these attributes may reflect physical characteristics, but in general this
Standard makes no presumptions concerning the physical representation or organization of
files or devices.

The meaning of certain terms used throughout this section is as follows. A "file element"
is an entity, a sequence of which constitutes a file. Thus, for keyed and sequential files,
a file element is a record, for relative files it is a record area, for stream files, it is
a value. Associated with each file during execution is a '"file pointer", which always
uniquely identifies a particular file element upon completion of any statement, or points
to the end of file. If the pointer is at the beginning of the file, then it identifies the
first file element, if any. If a file is an empty sequence, then the beginning and end of
file are the same, and the pointer identifies this location. Whenever reference is made to
the "next" file element, it is understood that if none such exists, the end of file is sub-
stituted. For sequential, stream and keyed files, the "end of file" is the location immedi-
ately following the last file element. For relative files, the "end of file" immediately
follows the last existing record, and thus identifies an empty record area.

BASIC-1

There are two kinds of file-organization: sequential and stream. A sequential
file is a sequence of records. A stream file is a sequence of values.

There are two kinds of record-type: display and internal. A display record is a
sequence of characters. An internal record is a sequence of typed values. Dis-
play records provide for the exchange of data between systems employing differ-
ent internal representations for numeric and string values, and also manipulate
data in human-readable form. Internal records provide for efficient manipulation
of data within a single system.

The following combinations of file-organization and record-type are supported:

- sequential display
- sequential internal
- stream internal

All other combinations of file-organization and record-type are implementation-
defined.

- 9l -

There are five statements which operate on the file as a whole and are thus
called '"file operations'": OPEN, CLOSE, ERASE, SET and ASK. There are five
statements which apply to individual file elements and are known as ''record
operations": INPUT, PRINT, READ, WRITE and SET with pointer-control, including
the variations using MAT and LINE. References to "INPUT operations', "WRITE
operations', and so forth should be understood to include any of the statements
using the keyword in question, e.g. "WRITE operations" includes WRITE and
MAT WRITE. The five record operations can affect data within a file, variables
within the program and the file pointer.

PRINT and WRITE affect file data and the pointer, READ and INPUT affect program
variables and the pointer. SET with pointer-items obviously affects only the
pointer.

BASIC-2

There are four kinds of file-organization: sequential, stream, relative and
keyed. Sequential and keyed files are sequences of records. A relative file is a
sequence of record areas, each of which may or may not contain a record. A
stream file is a sequence of values.

There are three kinds of record-type: display, internal and native. An internal
record is a sequence of typed values. A native record is a sequence of fields,
as described by a programme-specified template. Display records provide for the
exchange of data between systems employing different internal representations
for numeric and string values, and also manipulate data in human-readable form.
Internal records provide for efficient manipulation of data within a single sys-
tem. Native records provide for the exchange of data among different language
processors within a single system.

The following combinations of file-organization and record-type are supported:

- sequential display

- sequential internal

- stream internal

- relative internal (enhanced internal)
- keyed internal (enhanced internal)

- sequential native (enhanced native)

- relative native (enhanced native)

- keyed relative (enhanced native)

All other combinations of file-organization and record-type are implementation-
defined.

Within each subsection, the syntax rules for sequential display, sequential in-
ternal and stream internal are presented first, followed by additional syntax
productions which pertain to enhanced files. Some of the enhanced productions
apply only to enhanced native files: these are preceded by an "N'".

There are five statements which operate on the file as a whole and are thus
called "file operations'": OPEN, CLOSE, ERASE, SET and ASK. There are seven
statements which apply to individual file elements and are known as ''record
operations": INPUT, PRINT, READ, WRITE, REWRITE, DELETE and SET with pointer-
control, including the variations using MAT and LINE. References to '"INPUT
operations", "WRITE operations', and so forth should be understood to include
any of the statements using the keyword in question, e.g. "WRITE operations' in-
cludes WRITE and MAT WRITE. The seven record operations can affect data within a
file, variables within the program and the file pointer. PRINT, WRITE, REWRITE
and DELETE affect file data and the pointer, READ and INPUT affect program vari-
ables and the pointer. SET with pointer-items affects only the pointer.

- 95 -

Devices

Not all input or output is to or from a file, as defined above. An implementation may allow
file processing statements to apply as well to devices, such as a terminal, a line printer
or communications line.

When the term 'file" is used throughout chapter 11, it should generally be understood to
mean any source or destination of external data, i.e. either a true file or a device. In
certain contexts where it is necessary to distinguish between the two, the terms '"true
file" and "Device''will be used for emphasis.

Devices differ from files in the following ways:

It is implementation-defined whether data written to any given device is stored there and
may later be retrieved by input operations (see 11.1).

It is implementation-defined whether a given device is erasable (see 11.1).

RELATIVE and KEYED file-organizations are not allowed for devices (see 11.1). (not rele-
vant to BASIC-1)

A device need not support all access modes (see 11.1).

A device need not support the minimum record size of 132 (see 11.1). However, the
implementation must document the minimum record-size for each device supported.

It is implementation-defined whether a given device has record-setter capability (see
11.2).

It is implementation-defined what condition causes the data-found condition to be set
true or false for a given device (see 11.2).

For interactive terminal devices only, the semantics of the input-control-items prompt-
specifier, timeout-expression, and time enquiry must be supported. The implementation
must define which devices, if any, are interactive terminal devices. The effect of these
input-control-items on other devices and on true files is implementation-defined (see
11.4).

It is implementation-defined whether the following conditions are treated as fatal excep-
tions, as defined in 11, or as nonfatal, as defined in 10 (in which case the recovery
procedure is applied), when these conditions occur within INPUT operations on a device
(see 11.4).

Section 11 Section 10 Condition
8105 8102 Syntax error in input-reply
8101 8103 Datum from a numeric-variable not
a numeric-constant
8012 8002 Too few data in input-reply
8013 8003 Too many data in input-reply
1008 1007 Numeric overflow on input
1105 1054 String overflow on input

The following tables provide an overview of the various file facilities. For the full spec-
ifications, see 11.1 through 11.4.

TABLE 1 FILE-ORGANIZATION VERSUS OPERATIONS AND RECORD-SETTERS.

This table illustrates which combination of record operations and record-setter are le-
gal under a given file-organization, thus the organization is defined by the capabili-
ties of record manipulation it allows. Combinations of operations and record-setters
which do not appear in the table are syntax errors. Organizations permitted in BASIC-1
and BASIC-2 are identified by *, those permitted only in BASIC-2 are identified by %%,

Operation SEQUENTIAL

record-setter

INPUT
absent *OK
NEXT *OK
BEGIN *OK
END *O0K 4
SAME 0K

PRINT
absent 0K
NEXT %OK
BEGIN %OK
END 0K
SAME 0K

READ
absent *OK
NEXT *OK
BEGIN 0K
END *O0K 4
SAME %OK
RECORD SNEX 1
KEY SAEX 1

WRITE
absent %*OK
NEXT 0K
BEGIN 0K
END *OK
SAME 0K
RECORD SREX 1
KEY (exact) *REX 1

REWRITE and DELETE

absent
NEXT
BEGIN
END
SAME
RECORD
KEY

- 96 -

File Organization

Sk TD
Y*kTD
*kTD
*%TD
*%TD
®*&TD
B)

(SN G, G, S, RS RS |

SET with pointer-items

absent
NEXT
BEGIN
END
SAME
RECORD
KEY

%*OK
0K
%*OK
*OK
StOK
R*NEX 1
F*NEX 1

STREAM RELATIVE

*ID
*ID
*TD
*TD
*TD

NN

*ID
*TD
*TD
*TD
*TD

NN NN

*OK
*0K
*OK
*OK 4
*OK
FNEX 1
WREX 1

*OK
*OK
F*OK
*OK
*OK
NNEX 1
KNEX 1

*%TD
*%TD
E)
*%TD
*%TD
#*%TD
#*TD

(SN G R O I G, B &) G)

*OK
*0K
*OK
*OK
*OK
*REX 1
NAEX 1

*%TD 2
*RTD 2
#*%TD 2
*%ID 2
*%TD 2

*%TD 2
*%ID 2
*%ID 2
#*&%TD 2
#*%TD 2

#OK
#**OK
#**OK
%*%OK
#*%OK
*H%OK
NXEX 1

#*OK
#*%OK
#*%OK
#*%OK
#%OK
#*%OK
R*NEX 1

#*%OK
#OK
F*ROK
JXOK 4
#*%OK
#**ROK
KNEX 1

%*%OK
%OK
% OK
%kOK
#OK
FOK
NEX 1

KEYED

*XTD
#*%TD
#*XTD
*%TD
#*kTD

NN

*%TD
*%TD
*kTD
*RTD
*&TD

N NN

#*OK
#*OK
F*kOK
#*%OK
#*%OK
FNREX
#*%OK

FREX
NREX
FREX
KNEX
FNEX
RNEX
#*HOK

#*ROK
*OK
#*NOK
F*%OK
SkOK
B 004
#*HOK

#**OK
#*kOK
#*OK
#*%OK
#*%OK
F*REX
%*%OK

H W W Wwww

- 97 -

OK - Semantics defined by Standard
EX - Exception

ID - Implementation-defined

* BASIC-1 and BASIC-2

%% - BASIC-2 only

Notes to the Table 1

1. RECORD is valid only with RELATIVE files and KEY with KEYED files. (BASIC-2 only)

2. INPUT and PRINT are defined for record-type DISPLAY, and DISPLAY is defined only for

SEQUENTIAL.

3. WRITE to a KEYED file must specify an exact key search. (BASIC-2 only)

4. END implies that data-found will be false.

5. REWRITE and DELETE are implementation-defined for file-organizations other then

RELATIVE and KEYED. (BASIC-2 only)

- TABLE 2 RECORD OPERATIONS VS CONTROLS

This table illustrates which control features are allowed syntactically with the various
operations. SET is only allowed with pointer-items. The permitted record setting are

NEXT, BEGIN, END, SAME.

CONTROLS
record-setter | io-recovery interpretation
missing not image template
missing
INPUT *A %A
PRINT *A *A *A
READ RA KA kA
WRITE KA KA A
REWRITE WA kA A
DELETE A KA
SET KA KA KA

A = allowed
! BASIC-1 and BASIC-2
BASIC-2 only

pvs
-
I

g
1}

- TABLE 3 FILE-ORGANIZATION VS RECORD-TYPE

This table illustrates which combination of file-organization and record-type are defined

by this standard.

Record-type
ORGANIZATION DISPLAY INTERNAL NATIVE
SEQUENTTIAL %A *A eep
STREAM *A
RELATIVE FkA FkA
KEYED wNA A

A = allowed
% = BASIC-1 and BASIC-2
%% = BASIC-2 only

-.98 -

11.1 File Operations

11.1.1 General Description

There are four statements which affect a file as an entity. The open-statement makes
a file accessible to the program, establishing the connection between the file and
the program. Since the format for identifying files may vary with the operating sys-
tem, it is assumed only that with each file is associated a string of characters,
called its name, which identifies the file to the operating system. A file is identi-
fied within a program by the number of a channel through which it is accessed. The
close-statement terminates the accessibility effected by they open-statement. The
erase-statement deletes all or part of the data within a true file, but may have no
effect on a device. The ask-statement is used to inquire about the current status of
the file.

11.1.2 Syntax
BASIC-1 and BASIC-2

1. open-statement = OPEN channel-setter NAME file-name
file-attribute-list

2. channel-setter = channel-expression colon

3. channel-expression = number-sign index

4. file-name = string-expression

5. file-attribute-list = (comma file-attribute)®

6. file-attribute > core-file-attribute

7. core-file-attribute = access-mode / file-organization / record-type /
record-size

8. access-mode = ACCESS (INPUT / OUTPUT / OUTIN / string-expression)

9. file-organization = ORGANIZATION (file-organization-value

/string-expression)
10. file-organization-value > core-file-org-value
SEQUENTIAL / STREAM
RECTYPE (record-type-value / string-expression)

11. core-file-org-value

12. record-type

13. record-type-value > core-record-type-value

DISPLAY / INTERNAL

RECSIZE (VARIABLE / string-expression) (LENGTH

index)?

16. close-statement CLOSE channel-expression

17. erase-statement ERASE REST ? channel-expression

18. ask-statement > ASK channel-setter ask-item-list

19. ask-item-list

20. ask-item

21. ask-attribute-name > core-attribute-name

22. core-attribute-name ACCESS / DATUM / ERASABLE / FILETYPE / MARGIN / NAME
/ ORGANIZATION / POINTER / RECSIZE / RECTYPE /
SETTER / ZONEWIDTH

14. core-record-type-value

15. record-size

I

ask-item (comma ask-item)¥
ask-attribute-name variable variable%®

1}

BASIC-2 only

23. file-organization-value > enhanced-file-org-value

24. enhanced-file-org-value = RELATIVE / KEYED
N25. record-type-value > enhanced-record-type-value
N26. enhanced-record-type-value= NATIVE

27. file-attribute > enhanced-file-attribute

28. enhanced-file-attribute
29. collate-sequence

collate-sequence

COLLATE (STANDARD / NATIVE / string-expression)
30. ask-attribute-name > enhanced-attribute-name

31. enhanced-attribute-name RECORD / KEY / COLLATE

- 99 -

A given file-attribute must appear at most once in a file-attribute-list.
A given ask-attribute-name must appear at most once in a ask-item-list.

The number and types of variables in an ask-item must agree with the table below in
Semantics.

11.1.3 Examples

1. OPEN #3: NAME "myfile"
OPEN #N: NAME A$, ACCESS OUTIN, ORGANIZATION STREAM, RECTYPE INTERNAL, RECSIZE
VARTABLE LENGTH N
OPEN #N+1: NAME "MY" & F$, ORGANIZATION ORG$

16. CLOSE #N

17. ERASE #3
ERASE REST #.4

18. ASK #3: ACCESS AC$, DATUM DT$, NAME NM$, ORGANIZATION ORG$, POINTER P$, RECSIZE
RS$ NUMCHARS, RECTYP RT$

ASK #N: KEY K$
11.1.4 Semantics

Files are accessed through channels to which they may be assigned during execution of
a program-unit. A channel is a logical path through which external data may be trans-
ferred to or from a BASIC program. Within a program-unit, a channel is identified by
a channel number local to that program-unit. The channel number is an integer from 0
up to and including some implementation-defined maximum. This maximum must be at
least 99. A file, identified by its file-name, is open if it is currently assigned to
a channel and closed otherwise. A channel is active if it currently has some file as-
signed to it and inactive otherwise. At the initiation of execution of a program, all
channels except channel zero shall be inactive. Channel zero shall always be active.
Execution of the open-statement, close-statement, or erase-statement (see below) for
channel zero shall cause a nonfatal exception.

Input and output from and to channel zero shall have the same source and destination
as input-statements and print-statements which do not contain channel-expressions.
Channel zero shall behave as a device with the file-attributes sequential, display,
and outin, and without record-setter or erase capability.

Open-statement

The open-statement makes the file identified by the file-name accessible to the pro-
gram through the channel number specified in the channel-expression. It is
implementation-defined whether file names differing only in the case of the letters
(upper or lower) denote the same file or different files. Following a successful
open-statement, the associated channel shall be active and the file open. An attempt
to open a file on a channel which is already active causes an exception. The effect
of attempting to open a file which is already open is implementation-defined. The
number of channels other than channel zero which may be active simultaneously is at
least one.

After a successful open, a true file shall be accessible in accordance with the asso-
ciated file-attributes, whether explicitly specified or in effect by default. This
accessibility consists of the ability to perform certain operations and manipulate
the file pointer in certain ways. See the preceding section for an overview of which
statements are allowed under which attributes. If an attempt is made to OPEN a file
which cannot be made accessible with the requested attributes (i.e., if not all the
associated operations can be successfully executed for this file), then an exception
results.

- 100 -

For a device, a successful open guarantees that, with two exceptions, all the file
processing statements will have the same effects as for a true file. In particular,
on output, the same data will be generated, and on input, values and characters will
be interpreted and assigned to variables in the same way. A device, however, might
not support the semantics associated with the recorder-setter (see Section 11.2) or
the erase-statement (below). The ask-statement may be used to determine whether a
particular device supports these capabilities.

BASIC-1 only

If a file is opened successfully with a given file-organization, record-type,
and record-size, then closed, and then opened at a later time with a different
value for one of these file-attributes, then it is implementation-defined
whether the file is thus accessible. Also, for files with record-type INTERNAL,
if a different ARITHMETIC option is in effect for the two executions, it is
implementation-defined whether the file is thus accessible. Conversely, if a
true file is reopened at a later time with the same values for the file-
attributes mentioned and, for files with record-type INTERNAL, the same
ARTTHMETIC option is in effect, and the user has employed the implementation-
defined means to preserve the file unchanged in the interim, then the file must
be accessible and the contents of the file faithfully preserved. Devices are not
required to preserve data. In the foregoing, ''same ARITHMETIC option' refers to
DECIMAL or NATIVE.

If a file with record-type INTERNAL opened in one program-unit is accessed by
another program-unit with a different ARITHMETIC option, the results are
implementation-defined.

Implementations must provide true files for which all access-modes are avail-
able. Implementations may also support true files for which some access-modes
are not available. A device need not support all access-modes.

Implementations conforming to this standard need only to accept and process the
following combinations of file-organization-value and record-type-value:

- sequential display,
- sequential internal,
- stream internal.

The effect of the other combination is implementation-defined.

When a string-expression is used as an attribute value, its value must be one of
the associated keywords for that attribute. Upper-case-characters and lower-
case-characters shall be treated as equivalent within such string values. Imple-
mentations may define additional file attribute values.

BASIC-2 only

If a file is opened successfully with a given file-organization, record-type,
and record-size, then closed, and then opened at a later time with a different
value for one of these file-attributes, then it is implementation-defined
whether the file is thus accessible. Also, for files with record-type INTERNAL
or NATIVE, if a different ARITHMETIC option is in effect for the two executions,
it is implementation-defined whether the file is thus accessible. Conversely, if
a true file is re-opened at a later time with the same values for the file-
attributes mentioned and, for files with record-type INTERNAL or NATIVE, the
same ARITHMETIC option is in effect, and the user has employed the
implementation-defined means to preserve the file unchanged in the interim, then
the file must be accessible and the contents of the file faithfully preserved.
Devices are not required to preserve data. In the foregoing, 'same ARITHMETIC

- 101 -

option'" refers to DECIMAL, NATIVE or FIXED (see 15.1), not to the default
specification in the FIXED option. If a KEYED file is re-opened with a different
collate-sequence, an exception results.

If a file with record-type INTERNAL or NATIVE opened in one program-unit is
accessed by another program-unit with a different ARITHMETIC option, the results
are implementation-defined.

Implementations must provide true files for which all access-modes are avail-
able. Implementations may also support true files for which some access-modes
are not available. A device need not support all access-modes.

Implementations conforming to this standard need only to accept and process the
following combinations of file-organization-value and record-type-value:

- sequential display
- sequential internal
- stream internal

- relative internal

- keyed internal

- sequential native

- relative native

- keyed relative

The effect of the other combinations is implementation-defined.

When a string-expression is used as an attribute value, its value must be one of
the associated keywords for that attribute. Upper-case-characters and lower-
case-characters shall be treated as equivalent within such string values. Imple-
mentations may define additional file attribute values.

Access-mode

An access-mode specifies the direction in which data may be transferred from and to a
file, either by one of the keywords INPUT, OUTPUT, or OUTIN, or by a string-
expression whose value is one of these keywords.

If access-mode is INPUT, then it shall be possible to read data from the file, but
not to change the file. In particular, READ, SET with pointer-items, and INPUT
statements (including variations with MAT and LINE) are allowed, but not PRINT,
WRITE, REWRITE or DELETE. REWRITE and DELETE apply only to BASIC-2.

If the access-mode is OUTPUT, then it shall be possible to add new data to the file,
but not to change existing data in it, nor to retrieve data from it. In particular,
PRINT, SET with pointer-items, and WRITE are allowed, but not READ, INPUT , REWRITE
or DELETE. REWRITE or DELETE apply only to BASIC-2.

If the access-mode is OUTIN, then all record-operations (including REWRITE and DELETE
for BASIC-2) are allowed for the file.

The erase-statement shall be allowed only for a file with an access-mode of OUTIN.

If no access-mode is specified explicitly in the file-attribute-list, then the
access-mode shall be OUTIN if the file can be both read and written INPUT if it can
only be read, and OUTPUT if it can only be written. Channel zero shall behave as if
opened with OUTIN.

For a file opened with access-mode OUTPUT, the pointer shall be set to the end of the
file following the OPEN, otherwise, it shall be set to the beginning of file.

=102 =

File-organization

The file-organization specifies the logical relationship between file elements, and
the means by which the file pointer can be manipulated to identify the elements. The
organization is specified with one of the keywords SEQUENTIAL, STREAM, RELATIVE or
KEYED, or with a string-expression whose value is one of these keywords. Devices are
accessed as either SEQUENTIAL or STREAM, RELATIVE and KEYED are allowed only for true
files. RELATIVE and KEYED apply only to BASIC-2.

If no file-organization is explicitly specified in the open-statement, then the orga-
nization shall be determined from available system information about the file. If
such information is insufficient, the system shall attempt to open the file as
SEQUENTIAL. Channel zero shall behave as if opened with SEQUENTIAL.

- A sequential file is a sequence of records. The order of the records is established
by the order in which they were written. Records can be added only to the end of
the file. The only means for identifying records with the file pointer is relative
to the current position of the pointer, and the two special locations BEGIN (which
identifies the first record in the sequence, if any), and END, immediately follow-
ing the last record (the only location where it is possible to add records). A
single record operation may affect several DISPLAY records, but only one INTERNAL
or, for BASIC-2, NATIVE record.

- A stream file is much like a sequential file, except that it is a sequence of indi-
vidual values, rather than of records. The order of values is established by the
order in which they were written. Values can be added only to the end of the file.
The only means for identifying values is relative to the current pointer position,
or BEGIN and END (specifying respectively, the first value, if any, in the se-
quence, and the location immediately following the last value). One record opera-
tion may typically read or write a contiguous series of values within a stream
file.

BASIC-2 only

- A relative file is a sequence of record-areas, each of which may or may not
contain a record. The record-areas are numbered sequentially beginning with
1. Thus the order of the record-areas and the records within them is estab-
lished by the identifying integer associated with each. The file pointer may
be manipulated with the use of this record number as well as by those means
provided for sequential files. For relative files, the beginning of file is
the first record-area, regardless of whether it contains a record. The end of
file immediately follows the last existing record. Thus if the highest exist-
ing record number is 44, end of file refers to record-area 45. If there are
no records in the file, end of file refers to record-area number 1. Records
within a relative file may not only be read and written, but also changed
(with REWRITE) and deleted (with DELETE). Moreover, records may be added, not
only at the end of file, but also at any empty record-area, including those
past the end of file. A record operation processes at most one record.

- A keyed file is a sequence of records, each of which is identified by a string
called a key. The logical sequence of records is established by the collating
order of their keys. (See collate-sequence, below.) The file pointer may be
manipulated with respect to the keys, as well as by the means provided for
sequential files. As with sequential files, beginning of file refers to the
first existing record in the sequence (if any), and end of file refers to the
location immediately following the last record. Records may be added anywhere
within the sequence. An exact key, however, must always be specified for
record creation, and no duplicate keys are allowed. Records may also be read,
changed or deleted. A record operation processes at most one record.

- 103 -

Record-types

A record-type specifies the logical representation of data within a record or as an
individual file element. The record-type affects how data is interpreted and trans-
formed when being transferred between a program and a file. A record-type is speci-
fied with one of the keywords DISPLAY, INTERNAL or NATIVE or with a string-expression
whose value is one of these keywords. NATIVE apply only for BASIC-2.

If no record-type is explicitly specified on the OPEN, the record-type is determined
from available system information about the file. If such information is insuffi-
cient, then the file shall be opened as DISPLAY. Channel zero behaves as if opened
with DISPLAY.

- The display type specifies that a record is a sequence of characters. On output,
the characters are processed in accordance with the semantics of the PRINT
statement, and on input with those of the INPUT statement (see 10). READ and WRITE
are also allowed for display records; they follow the semantic rules for INPUT and
PRINT, respectively.

- The internal type specifies that a record is a sequence of typed values (or that
each file element is a value), in the same sense that a program variable contains
a value. The essential aspect of internal format is that (for a true file) values
are preserved and retrievable. Thus, if a numeric or string value is written from
a program variable, and later read into another variable, the two variables must
be strictly equal (assuming the original variable to be unchanged). Since INPUT
and PRINT statements are essentially character-oriented, they cause an exception
when used on a file opened as internal.

BASIC-2 only

- The native type specifies that a record is a sequence of fields, as described
by a program-specified TEMPLATE. This TEMPLATE, in conjunction with the list
of operands of the associated record operation, specifies the size, type,
number, and order of fields within the record. This allows data in a file to
be put in a form suitable for exchange with other language processors which
have similar record specification capabilities. Values are preserved subject
to certain restrictions regarding the size of the fields in the record. As
with the internal type, INPUT and PRINT cause an exception when used on a
file opened as native.

Record-size

A record-size specifies the maximum length of records in a file. It is specified ex-
plicitly with the keyword LENGTH.

Unless an enhancement to this Standard provides for fixed-length records, all files
shall be composed of variable-length records, i.e., of records whose lengths are in-
dependent of each other. The length of a record of type DISPLAY shall be the number
of characters in that record. The length of records of other types (INTERNAL or, for
BASIC-2 only, NATIVE) shall be implementation-defined. An attempt to perform a record
operation for a record whose length exceeds the maximum set (either explicitly or by
default) in the OPEN operation shall use an exception. A specified LENGTH index must
be greater than zero.

If no record-size is explicitly specified in the open-statement, then the record-size
is determined from available system information about the file. If such information
is insufficient, then the file shall be opened as VARIABLE. If the index is omitted,
then the maximum length of records shall be implementation-defined. Channel zero
shall behave as if opened with VARIABLE and the length index omitted.

Implementations must support record-sizes of at least 132 for true files.

- 104 -

Collate-sequence (BASIC-2 only)

The collate-sequence specifies, for a KEYED file, the collating sequence of the
record keys. A collate-sequence is specified with one of the keywords STANDARD or
NATIVE, or with a string-expression whose value is one of these keywords. Collate-
sequence has meaning only for a KEYED file. For other file-organizations, it has no
effect.

The collate-sequence of a file governs all record operations for that file and the
file-operation ERASE. Thus, the logical appearance of the file, when operated on by
READ, WRITE, REWRITE, DELETE, SET with pointer-control, ERASE and ASK must be in ac-
cordance with the specified collate-sequence (see file-organization, above and 11.2).

The collate-sequences STANDARD and NATIVE imply exactly the same ordering as in the
option-statement (see 6.6). Thus, if the collate-sequence associated with a file and
a program-unit agree, it follows that an earlier key in the file will always compare
as less than a later key. When the sequences disagree, this relationship may not
hold. Nonetheless, it must be possible for a program-unit with a different collate-
sequence to access a KEYED file; the collate-sequence affects only the logical order
of the records, not their contents. Implementations with KEYED files must support
both collate-sequences.

If no collate-sequence is specified in the open-statement, then the collate-sequence
shall be determined from available system information about the file. If such infor-
mation is insufficient, the system shall attempt to open the file with the same
collate-sequence as that in effect for the program-unit containing the open-
statement. Since channel zero has file-organization SEQUENTIAL (not KEYED), it has no
associated collate-sequence.

Close-statement

Execution of a close-statement shall close the file assigned to the specified chan-
nel, causing the channel to become inactive. If no file is assigned to the channel,
no action occurs. Upon exit from an external-sub-def or external-function-def, any
files opened by such a procedure whose channels are not formal parameters shall be
closed. Upon program termination, any files still open shall be closed.

Erase-statement

For a true file, execution of an erase-statement shall delete all or part of the data
within the file assigned to the specified channel. The file-attributes associated
with the file are not changed. If the REST option is omitted, then all file elements
are deleted, the file becomes empty, and the file pointer points to the end of file
(which is the same as the beginning file).

If the REST option is specified, then all file elements at or beyond the current lo-
cation of the file pointer are deleted. All file elements preceding it are left un-
changed. The file pointer is then set to end of file.

The erase-statement may not be effective for a device. The ask-statement can be used
to determine if a device supports this capability.

An erase-statement executed for channel zero shall cause an exception, but no other
effect shall occur.

An erase-statement is allowed only for a file opened with access-mode OUTIN. For
other access-modes, there is no effect on the file and an exception results.

Ask-statement

Execution of an ask-statement shall cause the variables in the ask-item-list to be
assigned values corresponding to the attributes of the file currently assigned to the
specified channel, as indicated in the following table. If the channel is inactive,

- 105 -

then all such string-variables shall be assigned the null string, and all such
numeric variables shall be assigned 0. In all cases below, A$ represents a string-
variable and N represents a numeric-variable.

In BASIC-2 the following responses can be expected:
Ask-item
Values
ACCESS A$
The access-mode of the file, i.e., "INPUT", "OUTPUT", or "OUTIN".
COLLATE A$

The collate-sequence associated with a KEYED file, i.e. '"STANDARD" or
""NATIVE". For file-organizations other than KEYED, the null string is as-
signed.

DATUM A$

The type of the next datum in the file following the current pointer posi-
tion, i.e., "NUMERIC", "STRING", "NONE" (if no data follow), or "UNKNOWN" (if
it is impossible to determine the type or whether more data follow). DATUM is
well-defined only for STREAM INTERNAL files. For other file organizations, it
is implementation-defined.

ERASABLE A$

"YES" or ''NO" depending on whether or not this file is erasable, i.e., if the
ERASE statement can delete file elements.

FILETYPE A$

"FILE" or "DEVICE" depending on whether this is a true file capable of pre-
serving data, or is a device.

KEY A$

The key associated with the record identified by the file pointer in a keyed
file. If the pointer is at the end of file or if this is not a keyed file,
the null string is assigned.

MARGIN N

The current margin for a display file (MAXNUM if the record may be of arbi-
trary length). If the file is not DISPLAY, zero is assigned.

NAME A$
The name of the file assigned to the channel.
ORGANIZATION A$

The file-organization of the file, i.e., 'SEQUENTIAL", '"STREAM", "'RELATIVE"
or "KEYED'".

POINTER A$

The current pointer position for the file, i.e., "BEGIN'", "MIDDLE", or "END",
where MIDDLE shall mean neither BEGIN nor END, and END shall be the pointer
position for an file, or a position beyond the end, in the case of a RELATIVE
file. UNKNOWN may be returned in the case of devices for which an implemen-
tation cannot determine which of the above values is correct.

-.106 -

RECORD N

The number of the record-area identified by the file-pointer. For non-
relative files, zero is assigned.

RECSIZE A$ N

The record-size of the file, i.e. '"VARIABLE" and the maximum length for its
records (MAXNUM if there is no effective limit on record-length, e.g., a com-
munication line).

RECTYPE A$
The record-type for the file, i.e. '"DISPLAY", "INTERNAL'" or 'NATIVE".
SETTER A$

"YES" or ''NO" depending on whether or not this file has record-setter capa-
bility.

ZONEWIDTH N

For DISPLAY files, the current zonewidth. For non-DISPLAY files, zero is re-
turned.

In BASIC-1, the following responses can be expected:

ask-attribute value

ACCESS as BASIC-2

COLLATE null string

DATUM as BASIC-2

ERASABLE as BASIC-2

FILE TYPE as BASIC-2

KEY null string

MARGIN as BASIC-2

NAME as BASIC-2
ORGANIZATION SEQUENTIAL or STREAM
POINTER as BASIC-2, except that END means an empty file
RECORD zZero

RECSIZE as BASIC-2

RECTYPE DISPLAY or INTERNAL
SETTER as BASIC-2

ZONEWIDTH as BASIC-2

The effect of executing an ask-statement for channel zero is as follows:

ask-attribute value

ACCESS OUTIN

COLLATE null string
DATUM UNKNOWN
ERASABLE NO

FILETYPE DEVICE

KEY null string
MARGIN current margin
NAME implementation-defined
ORGANIZATION SEQUENTIAL
POINTER UNKNOWN

RECORD zero

RECSIZE VARIABLE MAXNUM
RECTYPE DISPLAY

SETTER NO

ZONEWIDTH current zonewidth

- 107 -

11.1.5 Exceptions

- The value of a channel-expression is not between 0 and the implementation-defined
maximum (7001, fatal).

- Channel zero is specified in an open-statement, a close-statement, or an erase-
statement (7002, nonfatal do nothing and continue).

- A nonzero channel specified in an open-statement is already active (7003, fatal).

- A string-expression used to specify a file-attribute does not have a recognizable
value (7100, fatal).

- Access to a file in an open-statement is not possible in accordance with the speci-
fied or default file-attributes (71xx fatal: the values and meanings for xx are
implementation-defined).

- A KEYED file is re-opened with a different collate-sequence from that of an earlier
open (7050, fatal). (BASIC-2 only)

- A LENGTH index is not greater than zero (7051, fatal).
- A device is opened as RELATIVE or KEYED (7052, fatal). (BASIC-2 only)
- A nonzero channel specified in an erase-statement is inactive (7004, fatal).

- An erase-statement is used on a file which has not been opened as OUTIN (7301,
fatal).

- An erase-statement is used on a device without erase capability which has been
opened with OUTIN (7311, nonfatal: do nothing and continue).

11.1.6 Remarks

It is recommended that implementations recognize as file-names at least those strings
of characters consisting of an upper-case-letter followed by at most three more
upper-case-letters or digits. It is also recommended that information required by the
operating system, for the purpose of protecting the security of files be considered
part of the file-name.

It is recommended that implementations use the file-name to distinguish between the
opening of a true file, and opening of non-file devices, such as a communications
line or a line printer.

It is recommended that the number of channels which may be active simultaneously be
at least four in addition to channel zero.

It is recommended that the default maximum length of records in a file be infinite,
i.e., that records be allowed to be of any length.

It is also recommended that record-size for INTERNAL and, for BASIC-2 only, NATIVE
files has a meaning comparable to that for DISPLAY, i.e., that it specifies the maxi-
mum number of characters or bytes within the record.

Additional values may be returned by an ASK statement if an implementation supports
access-modes, file-organizations, record-types, record-sizes and collate-sequences in
addition to those specified in this Standard.

If implementations return a status code following various file operations, it is rec-
ommended that this be made accessible through an additional ASK attribute to be
called IOSTAT which returns a single string value, e.g., "ASK IOSTAT S$" returns a
value in S$ reflecting the status of the file following the last attempted operation.

The maximum length of a KEY is implementation-defined. (BASIC-2 only)

- 108 -

11.2 File Pointer Manipulation

11.2.1 General Description

The pointer for an open file can be altered in certain ways, without also performing
any data transfer. The rules for pointer manipulation with the set-statement with
pointer-items also apply when used in conjunction with other record operations.

11.2.2 Syntax
BASIC-1 and BASIC-2

1. set-object > channel-setter pointer-items

2. pointer-items (pointer-control / io-recovery / pointer-control
comma io-recovery)

POINTER core-record-setter

core-record-setter

BEGIN / END / SAME

missing-recovery / not-missing-recovery

. not-missing-recovery = IF THERE THEN io-recovery-action

. pointer-control
record-setter
core-record-setter
io-recovery

n v v

n

N o FoWw
e & a

BASIC-2 only (Enhanced Files productions):

8. pointer-control > enhanced-record-setter

9. record-setter > enhanced-record-setter

10. enhanced-record-setter = RECORD index / KEY (exact-search / inexact-search)
string-expression

11. exact-search = equals-sign?

12. inexact-search = greater-than-sign / not-less

11.2.3 Examples

1. SET #N: POINTER BEGIN, IF MISSING THEN EXIT DO
SET #3: RECORD N+1, IF MISSING THEN 1200
SET #4: KEY "Jones", IF THERE THEN EXIT DO

11.2.4 Semantics

Execution of a set-statement with pointer-items shall set the pointer for the file
assigned to the specified channel. After the pointer has been set, an optional io-
recovery may take effect. The semantics associated with the record-setter and when
the io-recovery takes effect are uniform for all the record operations (see 11.3,
11.4 and, for BASIC-2, 11.5). If any of the exceptions listed below in 11.2.5 occurs,
the file pointer remains unchanged from its state before the SET with pointer-
control. A device may not be able to achieve the effect of a record-setter. The ask-
statement may be used to determine whether a device has record-setter capability.

Record-setters
BASIC-1

An absent record-setter leaves the file pointer unchanged from its previous
state. The io-recovery (see below), if present, still has its usual effect.

A record-setter of NEXT indicates that the pointer is to be set to the next
record (for SEQUENTIAL files) or value (for STREAM files) at or beyond the cur-
rent location. For a SEQUENTIAL file, the only case in which NEXT would have
some effect is if there were a partial record pending (see 11.3). In this case,
an end-of-record shall be generated and the pointer left at end of file.

= 109 =

BASIC-2

An absent record-setter leaves the file pointer unchanged from its previous
state. The io-recovery (see below), if present, still has its usual effect.

A record-setter of NEXT indicates that the pointer is to be set to the next ex-
isting record (for non-STREAM files) or value (for STREAM files) at or beyond
the current location. In the case of a RELATIVE file, NEXT shall therefore cause
the pointer to skip over any empty record areas to the next existing record. If
the pointer is already at or beyond the end of file, or is pointing to an exist-
ing record, NEXT shall leave the pointer unchanged. This capability allows
RELATIVE files to be processed as if they were SEQUENTIAL. In the case of STREAM
and KEYED files, the pointer is always pointing to an existing file element or
end of file and so is left unchanged. For a SEQUENTIAL file, the only case in
which NEXT would have some effect is if there were a partial record pending (see
Section 11.3). In this case, an end-of-record shall be generated and the pointer
left at end of file.

A record-setter of BEGIN causes the pointer to be set to the beginning of file, i.e.,
to the first file element. If the file is empty, the location is also the end of
file.

A record-setter of END causes the pointer to be set to end of file, defined as imme-
diately beyond the last file element (if any) in the case of SEQUENTIAL, STREAM, and
KEYED files, and as immediately beyond the last existing record in the case of a
RELATIVE file (or at record-area number 1, if no records exist).

A record-setter of SAME allows the user to access the same file-element(s) that have
most recently been processed since the OPEN for that channel. Its use is valid only
if the most recently executed record operation which accessed the channel meets these
conditions : it was not a delete-statement, and no exception occurred during its
execution at least until after the file pointer had been set.

If these conditions are not met, no pointer manipulation takes place and an exception
results. If they are met and the most recent operation was a READ, INPUT, SET with
pointer-items, or REWRITE, then the file pointer is reset to the same file element it
was just set to by the record-setter of that operation. If this operation had no
record-setter, then SAME resets the pointer to the same location it had at the
beginning of that operation. If the most recent operation was a WRITE or PRINT, then
SAME sets the pointer to the first file element created by that operation.

A record-setter with RECORD is valid only for use with RELATIVE files. If an attempt
is made to use this record-setter on a file not opened as RELATIVE, the pointer is
left unchanged and an exception results. The index is evaluated by rounding to an
integer, and the pointer set to the corresponding record-area, whether or not it con-
tains a record. If the index evaluates to an integer less than one, the pointer is
left unchanged and an exception is generated.

A record-setter with KEY is valid only for use with a KEYED file. If an attempt is
made to use this record-setter on a file not opened as KEYED, the pointer is left un-
changed and an exception results. For an exact-search the pointer is set to the
record whose key equals that of the string-expression; if none such exists, the
pointer is set to the first record whose key is greater than the ring-expression. If
there is no such record, the pointer is set to end of file. For an inexact-search
with not-less, the pointer is set exactly as for an exact-search, except for the set-
ting of the data-found condition (see below). For an inexact-search with greater-
than-sign, the pointer is set to the first record whose key is strictly greater than
the string-expression; if none exists, it is set to end of file.

= 110 =

Io-recovery

At the completion of pointer manipulation there shall be set a condition called data-
found, which is either true or false. If data-found is true, and if a not-missing-
recovery has been specified, then the io-recovery-action takes effect. If the data-
found condition is false and a missing-recovery has been specified, then the io-
recovery-action also takes effect. Except for these two cases, the io-recovery-
action, if any, is ignored. The data-found condition is false if:

- in BASIC-2 only, an exact-search has been specified, but no record was found whose
key was equal to the string-expression, or

- after the pointer is set, it points to end of file, or
- in BASIC-2 only, after the pointer is set, it points to an empty record-area, or

- for a device, there is an implementation-defined condition signifying that no data
is available for input; otherwise, the data-found condition is true.

If the io-recovery-action 1is an exit-do-statement or exit-for-statement, the
statement shall have its normal effect (see 8.3). If the io-recovery-action is a
line-number then execution shall continue at the specified line.

11.2.5 Exceptions

- A set-statement with pointer-items is executed for an inactive channel (7004,
fatal).

- A record-setter is used with channel =zero (7002, nonfatal: do nothing and
continue).

- A record-setter is used on a device without record-setter capability (7205, nonfa-
tal: do nothing and continue).

- The record-setter SAME is used, and the most recently executed operation for the
channel was a delete-statement (7204, fatal). (BASIC-2 only)

- The record-setter SAME is used, and the most recently executed operation for the
channel caused an exception before pointer manipulation took place (7204, fatal).

- The record-setter SAME is used, and no record operation has been executed on that
channel since the OPEN (7204, fatal).

- The record-setter RECORD is used on a file opened with a file-organization other
than RELATIVE (7202, fatal). (BASIC-2 only)

- The record-setter KEY is used on a file opened with a file-organization other than
KEYED (7203, fatal). (BASIC-2 only)

- The index of a RECORD record-setter evaluates to an integer less than one (7206,
fatal). (BASIC-2 only)

- A record-setter specifies an exact-search for the null string (7207, fatal).
(BASIC-2 only)

11.2.6 Remarks

For devices, data-found could be set false by such conditions as no more cards in a
card reader, control-Z sent from a terminal (which signifies end-of-file for some
systems), or that the device is for output only, e.g., a line printer.

= 111 =

BASIC-2
Given a RELATIVE file, with three existing records, numbers 2, 5, and 6:
1 2 3 L 5 6 7

RECORD RECORD ===

pointer

If READ RECORD 2 has just taken place, then the following record-setters will
have the described effect :

record-setter resulting pointer position in front of

BEGIN
END

SAME
NEXT
absent
RECORD n

85w uN N

11.3 File Data Creation

11.3.1 General Description

Statements are provided to allow the user to send data developed within the program
to an external destination. In the case of true files, such data can be retrieved and
modified by later programs. The facilities generalize the output capabilities pre-
sented in Section 10 to files. New facilities are also defined to allow output to the
various record-types. The set-objects MARGIN or ZONEWIDTH are not part of a data cre-
ation statement, but are included in this section because of their interaction with
display records.

11.3.2 Syntax
BASIC-1 and BASIC-2
> PRINT channel-expression print-control (colon
(print-list / output-list))?
> MAT PRINT channel-expression print-control colon
(array-print-list / array-output-list)
=(comma print-control-item)%*

1. print-statement

2. array-print-statement

3. print-control

4. print-control-item = core-record-setter / not-missing-recovery / USING
image
5. set-object > channel-setter (MARGIN / ZONEWIDTH) index

6. write-statement

WRITE channel-expression write-control colon
expression-list

7. array-write-statement = MAT WRITE channel-expression write-control colon
array-list

8. write-control = (comma write-control-item)¥

9. write-control-item > record-setter / not-missing-recovery

10. expression-list = expression (comma expression)¥

11. array-list = array-name (comma array-name)¥

= 112. -

BASIC-2 only (Enhanced Files productions):

N12. write-control-item > template-identifier

N13. template-identifier = WITH (line-number / string-expression)

N14. declarative-statement > template-statement

N15. template-statement = TEMPLATE colon template-element-list

N16. template-element-list = template-element (comma template-element)®

N17. template-element = fixed-field-count (field-specifier / left-parenthesis
template-element-1list right-parenthesis) /
variable-field-count field-specifier

N18. fixed-field-count = SKIP? (integer OF)?

N19. variable-field-count = question-mark OF

N20. field-specifier = numeric-specifier / string-specifier

N21. numeric-specifier = NUMERIC asterisk numeric-field-size

N22. numeric-field-size = fixed-point-size / E

N23. fixed-point-size = integer-size period? / integer-size? period
fraction-size

N24. integer-size = integer

N25. fraction-size = integer

N26. string-specifier = STRING asterisk string-field-size

N27. string-field-size = integer

Within a print-statement or array-print-statement, an image must not be used with a
print-list, only an output-list may be used when an image is present as a

print-control.

i.e.,

The line-number of a template-identifier must refer to a template-statement in the
same program-unit. (BASIC-2 only)

The integer in a fixed-field-count must be greater than zero. (BASIC-2 only)

In a fixed-point-size,
zero. (BASIC-2 only)

the integer-size or fraction-size must be greater than

String-field-size must be greater than zero. (BASIC-2 only)

The record-setter in a write-control must not specify an inexact-search. (BASIC-2

only)
A given print-control-item must appear at most once in print-control.

A given write-control-item must appear at most once in write-control.

11.3.3 Examples

1. PRINT #3: A, B, C
PRINT #3, END, USING 123: A$, B+C;
2. MAT PRINT #N, SAME, IF THERE THEN EXIT FOR: A$, B$, C
. #3: MARGIN N+1
6. WRITE #3, RECORD 47, IF THERE THEN 666: A+B, C$ & D$
WRITE #X+Y WITH TEMPLATES3$: X, Y, Z + W
7. MAT WRITE #3, KEY "Whoever", IF THERE THEN 666,
WITH 111: A, B$
TEMPLATE: STRING*S, 2 OF NUMERIC*3..4
TEMPLATE: ? OF NUMERIC®5.2, ? OF STRING¥5
N16. 5 OF STRING*22, 3 OF NUMERICXE, ? OF NUMERIC*.6

w

N15.

11.3.4 Semantics

All data creation statements follow a general pattern which will be described here.
In all cases, the function of a data creation statement is to add one or more new
file elements to a file. Previously existing file elements are not affected. Details

- 113 =

on aspects peculiar to each of the various forms are presented below, under the head-
ings of each statement type.

First, the channel to which the data will be sent is determined from the channel-
expression. The file-attributes are checked against the intended operations. All data
creation statements require an access-mode of OUTPUT or OUTIN. If the channel is ac-
tive and the file-attributes are compatible with the data creation statement, then
the next phase begins. Otherwise, an exception results and the file, the file
pointer, and all program variables remain unchanged.

The second phase of processing involves setting the file pointer, based on the
record-setter (or its absence). This is done exactly as described in 11.2. The data-
found condition is now set, again as described in 11.2. If data-found is true and a
not-missing-recovery is present, then the io-recovery-action is taken. If data-found
is true, and a not-missing-recovery is absent, then an exception results. In either
case, no further change is made to the pointer position or the file.

If data-found is false, then the third phase begins, the actual output of data at the
location indicated by the pointer. The operands are evaluated in succession from left
to right until enough data to fill a file-element has been generated. Only then is
the file-element actually added to the file and the pointer advanced immediately be-
yond the file-element just created. In particular, this means that an exception dur-
ing data transfer will never result in a partial file-element being added to the
file. However, if a statement can create several file-elements, those which have al-
ready been created before the exception occurs continue to exist in the file. Follow-
ing the completion of data transfer, the file pointer is always left pointing at the
next file-element (or end of file if none such exists) beyond the last one created.
If an exception prevented the creation of any file elements, the pointer is left as
it was set in the second phase.

Print-statement

The transfer of data with the print-statement works just as described in 10.3 and
10.4, except that the sequence of characters generated constitutes a record of a
DISPLAY file, rather than current line, and end-of-record is generated in place of
end-of-line. Note that it is possible to create records containing zero characters.
End-of-record is the implementation-defined means whereby it is indicated that the
storage of a file-element in a file is completed, i.e., no change or addition to this
record is possible with a data creation statement. Except for the special case dis-
cussed below, no data is actually added to the file until a valid end-of-record has
been generated, i.e., partial records are not added to the file. The effective margin
for the file, which is used to control when end-of-record is generated, is taken from
the value of RECSIZE established when the file was opened, or from a set-statement
with MARGIN for this channel executed since the open (see below).

In one special case, a partial record is added to a file. If the print-list or
output-list contains a trailing print-separator, then upon successful completion of
the statement, a partial record has been created at the end of file, with the pointer
left at end of file, i.e. just beyond the partial record. Note that if there is an
exception before completion of the statement, then the partial record is not added to
the file, as would also be true of a complete record. If and only if the next opera-
tion for the channel is a print-statement with an absent record-setter, then the se-
quence of characters it generates is appended to the end of the partial record, in
accordance with the usual rules regarding the margin. If the next operation for that
channel is anything other than such a print-statement, then before any other process-
ing takes place, an end-of-record is added to complete the partial record, and the
pointer left at end of file.

- 114 -

Array-print-statement

The transfer of data with the array-print-statement works just as described in 10.5,
except that the sequence of characters generated constitutes a record of a DISPLAY
file, rather than the current line, and end-of-record is generated in place of end-
of-line. Note that by the rules of 10.5, a partial record is never created by the
array-print-statement with an array-print-list, but may be created with an array-
output-list containing a trailing semicolon. Since an array-print-statement always
starts a new line, it may not be used to complete a partial record. The effective
margin is controlled as described under print-statement and '"Setting the margin'
(below).

Setting the margin

Associated with each open DISPLAY file is a margin, the maximum number of characters
which a record can contain. The margin is used by print-statement and array-print-
statement to determine when an end-of-record should be generated. Upon open, the ef-
fective margin is the LENGTH index in RECSIZE, or the implementation-defined length,
which must be not less than the default zone width, if LENGTH is not specified ex-
plicitly. The set-statement with a MARGIN changes the margin for the active channel
to the specified index. If a partial record exists in the file affected by the mar-
gin, the new margin is used when subsequently attempting to complete the partial
record. A margih of MAXNUM indicates that a record may be arbitrarily large. The mar-
gin index must evaluate to greater than zero. The effect of a set-statement with
MARGIN ends when the file is closed.

The maximum margin supported is implementation-defined.

Setting the zone width

Associated with each open DISPLAY file is a zone width, which controls the effect of
PRINT as described in 10.3. Upon open, the zone width for a file is set to the
implementation-defined default value, which shall be at least dt+et6. The set-
statement with ZONEWIDTH changes the zone width for the active channel to the
specified index.

All zones are the same width, except possibly the last, which may be shorter. If a
partial record exists in the file affected by the set-statement with ZONEWIDTH, the
new zone width is used when subsequently attempting to complete the partial record.
In a set-statement with ZONEWIDTH the index must evaluate to greater than zero. The
effect of the set-statement with ZONEWIDTH ends when the file is closed.

The maximum zone width is implementation-defined.

Display record-type

DISPLAY records are sequences of characters; the characters generated by the PRINT
operations are as described in Section 10. The accuracy of numeric values is limited
only by the implementation-defined significance-width or length of the format-item,
and by the ARITHMETIC option in effect.

Channel zero

PRINT to channel zero works in accordance with the semantics for a device without
record-setter or erase capability. The destination of the output data is the same as
if the channel-expression had been omitted. Also, if there is an exception for which
a different recovery procedure is specified in Section 10 than in 11, the procedure
of Section 10 shall be used. A set-statement with MARGIN or ZONEWIDTH specifying
channel zero has the same effect as if the channel-setter were omitted.

= 115 ~-

Write operation

The write-statement and array-write-statement are used to create records of any type.
Successive expression values are arranged in corresponding sequences of values or
fields or characters, and written out to the file. Partial records are never created.

File organization

For STREAM files, one statement may create several file-elements, specifically one
file-element is created for each expression or array-element evaluated. If an excep-
tion occurs during internal evaluation, previously created values remain in the file,
the pointer is left at end of file, and any remaining values are ignored.

For INTERNAL SEQUENTIAL or NATIVE files, the values or fields generated by the ex-
pressions or arrays form one record. Thus, if an exception occurs before the state-
ment is completed, no record is added to the file, and the file pointer is left un-
changed from phase two. NATIVE files apply only to BASIC-2.

BASIC-2 only

Since records in a KEYED file are identified by their keys, it is necessary when
creating a new record that an explicit key be associated with it; thus when at-
tempting to write to a KEYED file, an exact-search must always be specified in
the record-setter. If data-found is false, then a new record is inserted into
the file, with a key equal to the string-expression of the exact-search.

Display record-type

A WRITE operation type on a display record generates exactly the same sequence of
records and characters as would a PRINT operation with the same expression-list or
array-list. Note, however, that not all PRINT facilities are available for WRITE,
which is record-oriented, rather than line-oriented.

For DISPLAY files, one statement may create several file-elements in the case of mar-
gin overflow. If a fatal exception occurs during generation of an element, any
elements previously created by that statement remain in the file, the pointer is left
at the end of the file, and any remaining expressions are ignored.

Internal record-type

An internal record (of a STREAM file) is a sequence of values. There are two types of
values, numeric and string. The sequence of values and their types are determined by
the sequence and types of the expressions and array-elements from which the values
are generated. When a value stored in a file is later retrieved, the effect is as if
the expression or array-element with which it was created were assigned to the input
variable with a let-statement.The length and content of string values are preserved.
Numeric values are also preserved consistent with the usual limitations on precision
associated with the prevailing ARITHMETIC option.

Native record-type (BASIC-2 only)

The TEMPLATE describes the location, size, and type of fields within a record. When
writing to a native file, a TEMPLATE must always be used. It must not be used with
any other record-type. A TEMPLATE is associated with a particular data creation
statement by means of the template-identifier in the statement which specifies the
template-statement to be used or a string-expression whose value must be a syntacti-
cally correct template-element-list. The string-expression, is evaluated before the
expression-list or array-list of the write-statement or array-write-statement.
Several statements may use the same template-statement.

When generating data for a native record, each expression within the expression-list
is associated with a numeric-specifier or string-specifier within a TEMPLATE; the
specifier is then used to transform the value of the expression into a field within a

= 116 =

record. The association takes place from left to right within the expression-list and
the templates-element-list, each expression using the next available field-specifier.
If the type of the expression (numeric or string) disagrees with the type of the
specifier, an exception results. The number of expressions must not be greater than
the number of specifiers. Extra specifiers beyond the last expression are ignored.
The contents of the field are determined by the value of the expression and the size
characteristics of the specifier.

For string values, the string-field-size is the number of characters in the field.
The string value is left-justified within the field. If the value's length exceeds
that of the field, an exception results. If shorter, the field is padded on the right
with spaces.

Numeric fields are used to retain numeric values (both magnitude and sign). The sign
is always stored in the field, but the numeric-field-size explicitly describes only
the storage of the number's magnitude. For a numeric-field-size of E, the value is
retained with the implementation-defined number of significant digits for the pre-
vailing ARITHMETIC option. For a fixed-point-size, the integer-size describes the
number of available digit places to the left of the decimal point, and the fraction-
size, to the right of the decimal point. An omitted integer-size or fraction-size is
treated as equivalent to zero. The numeric value is stored in accordance with these
sizes. If the value contains significant digits to the right of the available field
positions, the value is rounded when stored. This may result in a field with a value
of zero. If the value contains significant digits to the left of the available field
positions, an exception results.

The fixed-field-count in a template-statement indicates skipping and/or repetition
for individual specifiers or a series of specifiers. The integer of the fixed-field-
count indicates the number of repetitions and the keyword SKIP indicates that the af-
fected specifiers shall generate skipped fields. A field-count applies to the entity
(either a field-specifier or a parenthesized template-element-list) in the same
template-element. For an integer field-count (indicating repetition) the effect is
just as if the entity governed by the field-count had been written out explicitly the
equivalent number of times. When SKIP is used within a field-count, it indicates that
the specifiers governed by it are not associated with values from the expression-list
or array-list. Rather, as the record is being generated, fields within the record are
assigned the value zero if numeric and spaces if string, corresponding to the usual
size and type of the field-specifier in question. If a field-specifier is governed by
several SKIPs (from various levels above it) the effect is just as if it were gov-
erned by only one, as described above. For example, given the following expression-
lists and templates-element-lists,

A, B, C and NUMERIC*4, NUMERIC*5, NUMERIC%6
D, E and NUMERIC*4, SKIP NUMERIC*5, NUMERIC¥6

A and D will occupy equivalent field locations, as will C and E. The second field in
the second record will be the same size as occupied by B in the first record, with a
value of zero.

As an illustration of the preceding description, equivalent pairs of template-
element-lists are shown below:

1 - STRING*4, STRING*4, STRING¥L4
2 - 3 OF STRING*4
1 - STRING®5, STRING*4, NUMERIC*2, NUMERIC*2, NUMERIC*2, STRING*4, NUMERIC¥*2,

NUMERIC*2, NUMERIC¥2
2 - STRING%5, 2 OF (STRING%4, 3 OF NUMERIC*2)

= 117 =

1 - SKIP NUMERIC*3, SKIP NUMERIC*3, NUMERIC*L, SKIP STRING%5, SKIP STRING%6
2 - SKIP 2 OF NUMERIC*3, NUMERIC*4, SKIP (STRING*5, SKIP STRING%6)

Note that in 2 of the last example, the SKIP immediately in front of STRING%6 is su-
perfluous. A variable-field-count is used only in conjunction with arrays (see
below).

If execution reaches a template-statement, it proceeds to the next line with no fur-
ther effect.

Array-write-statement

An array-write-statement behaves just like the write-statement would if the arrays
were written out explicitly as array-elements in row major order (the last subscript
varying most rapidly). Thus, for example, if "DIMA (3), B(2,2)" and OPTION BASE 1 are
in effect, the following two statements are equivalent:

MAT WRITE #3: A, B
WRITE #3: A(1),A(2),A(3), B(1,1),B(1,2),B(2,1),B(2,2)
X.7

BASIC-2 only

When writing to a NATIVE record, arrays in an array-list can use the variable-
field-count. If a fixed-field-count is used, then the number and type of the
specifiers must match the array-elements as with WRITE. When the first element
of an array is to be associated with a field-specifier, and if a template-
element has just been completed (or if this is the first array in the list), and
if the next template-element has a variable-field-count, then the field-
specifier is used for all the elements of the array. When evaluation of the
array is complete, the next array, if any, uses the next template-element which
may or may not also have a variable-field-count. An array must use either a
template-element with a variable-field-count or template-elements with fixed-
field-counts, but not both.

11.3.5 Exceptions

- The value of the index in a set-statement with MARGIN is less than the current
zonewidth for that file (4006, fatal).

- The value of the index in a set-statement with a ZONEWIDTH is less than one, or
‘greater than the current margin for that file (4007, fatal).

- A set-statement with MARGIN or ZONEWIDTH specifies an inactive channel (7004,
fatal).

A set-statement with MARGIN or ZONEWIDTH specifies a file not opened as DISPLAY
(7312, fatal).

1

A set-statement with a MARGIN or ZONEWIDTH specifies a file opened as INPUT (7313,
fatal).

The following exceptions for data creation statements are grouped according to the
phase of processing during which they are detected. Phase 1 exceptions imply no
change to the file or file pointer. Phase 2 exceptions imply no change to the file.
Phase 3 exceptions imply that some file-elements may have been created.

Phase 1 Exceptions:
- A data creation statement attempts to access an inactive channel (7004, fatal).

- A print-statement or array-print-statement attempts to access a file opened as
INTERNAL or, for BASIC-2 only, NATIVE (7317, fatal).

- {118 -

- The record-setter cannot be processed correctly, as described in 11.2.5, exceptions
7002 and 7202-7207 (use the procedure of 11.2.5).

- A data creation statement attempts to access a file opened as INPUT (7302, fatal).

- A write-statement or array-write-statement attempts to access a KEYED file, but
does not specify an exact-search in its record-setter (7314, fatal). (BASIC-2
only)

- The string-expression of a template-identifier is not a syntactically correct
template-element-list (8251, fatal). (BASIC-2 only)

- A template-identifier is used on a file opened as DISPLAY or INTERNAL (7315,
fatal). (BASIC-2 only)

- A write-statement or array-write-statement does not have a template-identifier when
attempting to access a file opened as NATIVE (7316, fatal). (BASIC-2 only)

Phase 2 Exceptions:

- For a data creation statement, the condition data-found is true, and a not-missing-
recovery has not been specified (7308, fatal).

Phase 3 Exceptions:

- An attempt is made to create a record larger than the value of RECSIZE (8301,
fatal).

- An expression or array-element does not agree in type (numeric or string) with its
associated TEMPLATE field-specifier (8252, fatal). (BASIC-2 only)

- A template-element with a variable-field-count does not coincide with the first el-
ement of an array (8253, fatal). (BASIC-2 only)

- There are not enough field-specifiers in a template-statement for all the
expressions or array-elements (8254, fatal). (BASIC-2 only)

- A numeric value has significant digits to the left of the available digit places in
the field of a template (8255, fatal). (BASIC-2 only)

- A string value is longer than the length of its field in the template (8256,
fatal). (BASIC-2 only)

11.3.6 Remarks (BASIC-2 only)

Implementations may provide syntactic enhancements to template-element-list, e.g., to
allow for additional data types. The exception for incorrect syntax then applies to
the enhanced definition of template-element-list.

The variable-field-count is especially useful when writing an array whose size may
change in the program, since the use of the fixed-field-count implies knowing the ex-
act size in advance.

11.4 File Data Retrieval

11.4.1 General Description

Statements are provided to allow the program to retrieve data from a file to which it
has previously been written or from a device. The facilities generalize the input ca-
pabilities presented in Section 10 to files. New facilities are also defined to allow
input from the various record-types.

- 119 -

11.4.2 Syntax

BASIC-1 and BASIC-2

1. input-statement > INPUT channel-expression input-control colon
variable-1list (comma SKIP REST)?

2. array-input-statement > MAT INPUT channel-expression input-control colon
(redim-array-list / variable-length-vector)

3. line-input-statement > LINE INPUT channel-expression input-control colon

string-variable-list

L. array-line-input-statement> MAT LINE INPUT channel-expression input-control colon
redim-string-array-list

5. input-control = (comma input-control-item)®

6. input-control-item = core-record-setter / missing-recovery /
prompt-specifier / timeout-expression /
time-inquiry

7. read-statement > READ channel-expression read-control colon
variable-list (comma SKIP REST)?

8. array-read-statement > MAT READ channel-expression read-control colon
redim-array-list

9. read-control = (comma read-control-item)®

10. read-control-item > record-setter / missing-recovery

BASIC-2 only (Enhanced Files productions):

N1l. read-control-item > template-identifier

A given input-control-item must appear at most once in input-control. (BASIC-2 only)
A given read-control-item must appear at most once in read-control. (BASIC-2 only)

A variable-length-vector must be declared as one-dimensional. (BASIC-2 only)

11.4.3 Examples

11.4.4.,

1. INPUT #3: A, B, C, A$
2. MAT INPUT #W, BEGIN, IF MISSING THEN EXIT DO: A, B$
3. LINE INPUT #G, NEXT: A$, B$, C$
MAT LINE INPUT #4, IF MISSING THEN 1234: A$, B$(N), C$(8)
4. MAT LINE INPUT #4, IF MISSING THEN 1234: A$, B$(N), C$(8)
7. READ #3, SAME, WITH 333: W$, SKIP REST
8. MAT READ #N, RECORD W+2, IF MISSING THEN 111, WITH 222: N, W(Q)

Semantics

All data retrieval statements follow a general pattern, which will be described here.
Details on the aspects peculiar to each of the various forms are presented below, un-
der the headings for each statement type.

First, the channel from which data will be retrieved is determined from the channel-
expression. Then, the file-attributes are checked against the intended operation. All
data retrieval statements require an access-mode of INPUT or OUTIN. If the channel is
active and the file-attributes are compatible with the data retrieval statement, then
the next phase begins. Otherwise, an exception results and the pointer and all pro-
gram variables remain unchanged.

The second phase of processing involves setting the file pointer, based on the
record-setter if present. In the absence of a record-setter the file pointer does not
change. This is done exactly as described in 11.2. The data-found condition is now
set, again as described in 11.2. If data-found is false and a missing-recovery is
present, then the io-recovery-action is taken, otherwise an exception results. In ei-
ther case, no further change is made to the pointer position.

= 120 -

If data-found is true, then the third phase begins, the actual input of data from the
element indicated by the pointer. Data is transferred from the file element(s) to
each of the operands (variables or arrays), from left to right, with successive data
or values or fields from the file being assigned to successive variables or arrays.
Note in particular that evaluation of subscripts, substring-qualifiers, and redims is
delayed until after assignment of data to previous operands, but occurs before as-
signment of data to the operand to which they apply. Note also that assignment of a
string value to a string variable with a substring-qualifier takes place in accor-
dance with the usual semantics of string assignment described in 6.5. If an exception
occurs during data transfer, variables and array-elements for which a legal assign-
ment has been made retain their new values, but all subsequent variables and array-
elements retain their original values. Following a successful data retrieval
operation, the pointer is advanced to the next file element, i.e., the next record,
record-area, or value in the file.

One data retrieval operation usually affects only one file element. The three cases
in which several file elements may be processed are:

- LINE or MAT LINE INPUT,

- READ from a STREAM file, and

- INPUT or READ from a DISPLAY file with records with trailing commas (indicating
continuation of data).

The SKIP REST option is allowed only for non-stream files. It causes the remainder of
the record from which the last datum or value or field was taken to be ignored. It is
still mandatory that the record contain enough data to satisfy the variables or
arrays in the list.

During this third phase of processing, a number of exception conditions may arise.
Each such exception is associated with a particular file element. In all cases, the
pointer is advanced to the file element immediately following the one with which the
exception is associated. The following table summarizes these exceptions and which
file-element they apply to.

Exception
File-element larger than RECSIZE

Invalid redim, subscript,
substring-qualifier, redim too
large.

Bad TEMPLATE: wrong type,
field-count of "?'" on other

than first element of an array,
too few specifiers (BASIC-2 only)

Bad data: wrong type,syntax,
overflow
Insufficient data in file-element

Insufficient data in file

Excess data in file-element

Associated file-element

The oversize file-element

The file-element from which
data would have been taken

The file-element from which
data would have been taken

File-element containing the
bad data

The file-element with
insufficient data

End of file (i.e. no associated
file-element)

" The file-element with excess
data

- 121 -

Input-statement

The effect of a prompt-specifier, timeout-expression, and time-enquiry is as de-
scribed in 10.2. These input-control-items apply only to interactive terminal
devices. For other devices and true files, their effect is implementation-defined.
The transfer of data with the input-statement also works just as described in 10.2,
except that records are treated like input-replies, and end-of-record is treated like
end-of-line. Each datum (as defined in 10.1) is assigned in order to a variable in
the variable-list. All the INPUT operations (as opposed to the READ operations) are
valid only for a file opened as DISPLAY. For any other record-type, an exception re-
sults. The input-statement may process several records if the last non-blank charac-
ter in a record is a comma. If, following a record with a trailing comma, end of file
is encountered before all variables have been assigned values, then the remaining
variables shall retain their old values, the file pointer shall be positioned to end
of file, and an exception shall result.

When any of the INPUT statements is executed for a device and a phase 3 exception oc-
curs, implementations may use the recovery procedures specified for true files in
this section, or, if an equivalent exception is specified in Section 10, that recov-
ery procedure may be used instead. This is to allow input from several interactive
devices to use the nonfatal recovery procedures.

Array-input-statement

The array-input-statement behaves just like the input-statement would if the arrays
were written out explicitly as array-elements in row major order (the last subscript
varying most rapidly). The only additional capability is that of allowing a redim to
change the dimensions of the array in accordance with the redim rules for the array-
input-statement without a channel-expression (see 10.5). Thus, for example, if "DIM
A(3)" and OPTION BASE 1 are in effect, the following two statements are equivalent:

MAT INPUT #N: A
INPUT #N: A(1), A(2), A(3)

The following two statements are also equivalent:

MAT INPUT #N: A$(2,2), C(2)
INPUT #N: A$(1,1), A$(1,2), A$(2,1), A$(2,2), C(1), C(2)

However, the effect of
MAT INPUT #N: A(1), B(A(1))

depends on the first datum encountered, since it controls the effective size of array
B. Nonetheless, it behaves exactly as would an input-statement for which the appro-
priate number of array-elements for B had been coded. If an array is encountered
whose redim yields a size less than 1 in any dimension, then it, and all subsequent
arrays, shall retain their old values, and an exception shall result.

Variable-length-vectors

The transfer of data and consequent redimensioning of the array of a variable-length-
vector takes place just as described in 10.5.

Line-input-statement

The line-input-statement behaves exactly as described in 10.2, except that records
are treated like input-replies, and end-of-record like end-of-line. The content of
each successive record is assigned as the value of successive string-variables, in-
cluding any leading or trailing spaces. A record may contain a null string, and it

= 122 =

shall be assigned in the normal way. If end of file is encountered before all vari-
ables have been assigned values, then the remaining variables shall retain their old
values, the file pointer shall be positioned to end of file, and an exception shall
result.

Array-line-input-statement

The array-line-input-statement behaves just as would a line-input statement for which
the array-elements had been coded out explicitly, instead of as arrays. See semantics
above for array-input-statements. Note that here too, the size of a later array may
depend on the value assigned to an earlier array, e.g.:

MAT LINE INPUT #N: A$(1), B$(VAL(A$(1)))

If the first record contained the string " 12 ", then twelve subsequent records would
be read into the array B$. If an array is encountered whose redim yields a size less
than 1 in either dimension, then it, and all subsequent arrays, shall retain their
old values, and an exception results.

Input-statements for channel zero

Input from channel zero works in accordance with the semantics for non-file devices.
For those exceptions for which a different recovery procedure is specified in Section
10 than in 11, the procedure of Section 10 shall be used.

Read-operation

The read-statement and array-read-statement are used to retrieve data from files with
records of any type. Successive data or values or fields are assigned to successive
variables or arrays in the operand list. READ may access several file elements for
SEQUENTIAL or STREAM files, but only one for RELATIVE and KEYED files. RELATIVE or
KEYED files are provided only in BASIC-2.

File organizations

For non-STREAM files (SEQUENTIAL files in BASIC-1 and RELATIVE and KEYED files in
BASIC-2), the variables receive values from the sequence of data or values or fields
within a record. There must be just enough data within the record (or records in the
case of DISPLAY records with trailing commas) to satisfy the variable-list (except
for SKIP REST, see above). For STREAM files, the variables receive their values di-
rectly from the sequence that constitutes the file, beginning with the file-element
indicated by the pointer, and so file-element boundaries are insignificant. If end of
file is encountered before all variables have been assigned values, then the remain-
ing variables shall retain their old values, the file pointer shall be positioned to
end of file, and an exception shall result.

Display record-type

Records in DISPLAY files are sequences of characters. The retrieval of string data
shall take place as described in 10.2. Note that retrieving data from a record cre-
ated with PRINT does not necessarily preserve the same value, since, for instance,
leading and trailing spaces are not saved in unquoted strings n input. For numeric
data, the accuracy shall be consistent with the usual semantics for assignment of a
numeric-constant to a numeric-variable, i.e. at least six significant digits for
OPTION ARITHMETIC NATIVE and at least ten digits for OPTION ARITHMETIC DECIMAL. For a
numeric-constant with no more significant digits than the implementation-defined pre-
cision, the exact value is assigned with OPTION ARITHMETIC DECIMAL.

A READ operation on a DISPLAY record assigns values exactly as would an INPUT opera-
tion with the same variable-list or redim-array-list. Note, however, that not all the
INPUT facilities are available for READ, which is record-oriented.

- 123 -

Internal record-type

An internal record (and a stream file) is a sequence of values. There are two types
of value, numeric and string. For INTERNAL file elements, the values must be re-
trieved with a variable of the same type as that of the value, otherwise an exception
results. Thus, the contents of an INTERNAL file element are self-typed. The sequence
of values and their types are determined by the record operation which created or
modified the file-element(s). When a value is retrieved, the effect is as if the ex-
pression with which it was created were assigned to the input variable with a let-
statement. The length and content of string values are preserved. Numeric values are
also preserved, consistent with the usual limitations on precision and type associ-
ated with the prevailing ARITHMETIC option.

Native record-type (BASIC-2 only)

The TEMPLATE describes the location and type of fields within the record. When read-
ing from a native record, a TEMPLATE must always be used. It must not be used with
any other record-type. A TEMPLATE is associated with a particular data retrieval
statement by means of the template-identifier in the statement, which specifies the
template-statement to be used, or a string-expression whose value must be a syntacti-
cally correct template-element-list. The string-expression is evaluated before any
input takes place and before any redims, substring qualifiers, or subscripts are
evaluated. Several statements may use the same template-statement.

When retrieving data from a native record, each variable within the variable-list is
associated with a field-specifier within a template; the specifier is then used to
return data from a field within a record. This association takes place from left to
right, within the variable-list and template-element-list, each variable using the
next available field-specifier. A variable is associated with a specifier after a
value has been assigned to the previous variable, and any subscripts, substring-
qualifiers, or redims for this variable have been evaluated. If the type of the vari-
able (numeric or string) disagrees with the type of the specifier, an exception re-
sults. The number of specifiers must not be less than the number of variables. Extra
specifiers beyond the variables are ignored. The contents of the next field in the
record is interpreted according to the specifier, and the resulting value placed in
the variable.

When retrieving data, the specifiers of all fields within a record must be compatible
with the specifiers with which they were created, otherwise the results are
implementation-defined. In order to be compatible, the creating and retrieving speci-
fiers for a field must both be of type STRING, with equal string-field-sizes, or both
NUMERIC with a numeric-field-size of E, or both NUMERIC with equal integer-sizes and
fraction-sizes. An omitted integer-size or fraction-size is treated as equivalent to
Zero.

When the TEMPLATE specifiers are compatible with the record, then the values are re-
trieved in accordance with the field sizes. For strings, a value is assigned with
length equal to the string-field-size, and contents as originally stored in the
record, including any spaces used for padding. For numbers, a value is assigned whose
accuracy is limited only by the numeric-field-size and ARITHMETIC option. For numbers
stored with a field size of E, or with a fixed-point-size and with no more signifi-
cant digits than the implementation-defined precision, the exact value is retained
under OPTION ARITHMETIC DECIMAL. Otherwise, the numbers are rounded according to the
OPTION in effect and stored in the variable. Section 11.3.4 describes how values are
stored in the fields of native records an the effect of field-counts. The only dif-
ference upon retrieval is that SKIP specifiers do not generate fields of zero or
spaces, but cause the affected fields simply to be skipped over. As before, such
specifiers are not associated with variables.

- 124 -

Array-read-statement

In general, an array-read-statement behaves just like the read-statement would if the
arrays were written out explicitly as array-elements. As with INPUT, there is delayed
evaluation of redims.

BASIC-2 only

For this reason, when reading from a native record, a variable-field-count is
provided. If a fixed-field-count is used, then the number and types of the
specifiers must match the array-elements, as with READ. When the first element
of an array is to be associated with the next specifier, however, and if a
template-element has just been completed (or if this is the first array in the
list), and the next template-element is a variable-field-count, then the associ-
ated specifier is used for all the elements of the array. When the array has
been filled, the next array, if any, uses the next template-element, which may
or may not also have a variable-field-count. An array must either use a
template-element with a variable-field-count or template-elements with fixed-
field-counts, but not both.

11.4.5 Exceptions

The exceptions are grouped according to the phase of processing during which they are
detected. Phase 1 exceptions imply no change to the file pointer or variables. Phase
2 exceptions imply no change to the variables. Phase 3 exceptions imply that some
variables may have received values from the file.

Phase 1 Exceptions:

- A data retrieval attempts to access an inactive channel (7004, fatal).

An input-statement, array-input-statement, line-input-statement, or array-line-
input-statement attempts to access a file opened as INTERNAL or, in BASIC-2 only,
NATIVE (7318, fatal).

- The record-setter cannot be processed correctly, as described in 11.2.5, exceptions
7002 and 7202-7207 (use the procedure of 11.2.5).

- A data retrieval statement attempts to access a file opened as OUTPUT (7303,
fatal).

- The string-expression of a template-identifier is not a syntactically correct
template-element-1list (8251, fatal). (BASIC-2 only)

- A template-identifier is used on a file opened as DISPLAY or INTERNAL (7315,
fatal). (BASIC-2 only)

- A read-statement or array-read-statement does not have a template-identifier when
attempting to access a file opened as NATIVE (7316, fatal). (BASIC-2 only)

- The SKIP REST option is used on a file opened as STREAM (7321, fatal).
Phase 2 Exceptions:

- For a data retrieval statement, the condition data-found is false and a missing-
recovery has not been specified (7305, fatal).

Phase 3 Exceptions:

- An attempt is made to access a record larger than the value of RECSIZE (8302,
fatal).

- The first index in a redim-bounds is greater than the second (6005, fatal).

- A single index used in redim bounds is less than the default lower bound in effect
for the program unit (6005, fatal).

= 125 -

- The total number of elements required for a redimensioned array exceeds the number
of elements reserved by the array's original dimensions (5001, fatal).

- A variable or array-element does not agree in type (numeric or string) with its as-
sociated TEMPLATE specifier (8252, fatal). (BASIC-2 only)

- A variable-field-count in a template-element does not coincide with the first ele-
ment of an array (8253, fatal). (BASIC-2 only)

- There are not enough TEMPLATE specifiers for all the variables or array-elements
(8254, fatal). (BASIC-2 only)

- A data retrieval statement, other than a line-input-statement or an array-line-
input-statement, attempts to access a DISPLAY record that is not a syntactically
legal input-reply (8105, fatal).

- The datum of a DISPLAY record to be assigned to a numeric variable is not a
numeric-constant (8101, fatal).

- A value in an INTERNAL record does not agree in type (numeric or string) with the
variable to which it is to be assigned (8120, fatal).

- A value, datum, or field (for BASIC-2 only) in a file causes numeric overflow upon
assignment to the variable (1008, fatal).

- A value, datum, or field (for BASIC-2 only) in a file causes string overflow upon
assignment to a variable (1105, fatal).

- There are not enough data, values, or fields (for BASIC-2 only) within a record of
a non-STREAM file for the operands of a data retrieval statement and the record is
not DISPLAY with a trailing comma (8012, fatal).

- End of file is encountered while seeking further data for the operands of a data of
a data retrieval statement (8011, fatal).

- There are too many data in a record for the operands of a data retrieval statement
and SKIP REST is not specified (8013, fatal).

- There is just enough data in a DISPLAY record with a trailing comma to satisfy a
request for input, and SKIP REST is not specified (8013, fatal).

11.4.6 Remarks

Implementations may choose to treat underflows as exceptions (1508, nonfatal: supply
zero and continue). In BASIC-2, this permits interception by exception handlers.

11.5 File Data Modification (BASIC-2 only)
11.5.1 General Description

Statements are provided to allow the user to modify data previously stored in a file.
Such data can either be changed or deleted. The modifications are always done at the
record level.

11.5.2 Syntax

Core productions :
None.

=.126' =

BASIC-2 only (Enhanced Files productions):

1. imperative-statement > rewrite-statement / array-rewrite-statement /
delete-statement

2. rewrite-statement = REWRITE channel-expression rewrite-control colon
expression-list

3. array-rewrite-statement = MAT REWRITE channel-expression rewrite-control colon

array-list

4. rewrite-control = (comma rewrite-control-item)®
5. rewrite-control-item > missing-recovery / record-setter
6. delete-statement = DELETE channel-expression delete-control
7. delete-control = (comma delete-control-item)¥*
8. delete-control-item = missing-recovery / record-setter
N9. rewrite-control-item > template-identifier

The line-number of a template-identifier must refer to a template-statement in the
same program-unit.

A given rewrite-control-item must appear at most once in rewrite-control.

A given delete-control-item must appear at most once in delete-control.

11.5.3 Examples

2. REWRITE #N, KEY = B$, IF MISSING THEN 666: A,B,C$
3. MAT REWRITE #3, RECORD N-1, WITH 111: X,Y,Z
6. DELETE #3, KEY "JONES"

11.5.4 Semantics

The data modification statements are modeled closely on certain aspects of data re-
trieval statements and data creation statements. Like the data retrieval statements,
they operate on existing records. Like the data creation statements, they can alter
the state of a file. The data modification statements are specified only for file-
organizations RELATIVE and KEYED. For other file-organizations, their effect is
implementation-defined. The data modification statements may be used only with
access-mode OUTIN. Except for access-mode, the first and second phase of processing
(i.e. checking of file attributes and setting the file pointer) for these statements
is exactly like that for the data retrieval statements (see 1l.4.4), because they op-
erate on existing records. The third phase of processing, undertaken only if the op-
eration is legal, the file pointer successfully set, and data-found is true, is de-
scribed below under the individual headings.

Rewrite-statement

The rewrite-statement generates exactly one record, and that record is identical to
the one that would be generated by a write-statement with the same expression-list or
array-list and template-identifier, if any (see 11.3.4), with one exception : for a
NATIVE record, fields governed by SKIP are not filled with zero or spaces, but rather
the previous contents of the fields are left unchanged. This effect of SKIP occurs
only if the TEMPLATE used by the REWRITE is compatible with TEMPLATE last used to al-
ter the record (see 11.4.4 for the definition of "compatible"). The result of using
an incompatible TEMPLATE containing SKIP is implementation-defined. The use of an in-
compatible TEMPLATE without SKIP is defined above since the entire record is re-
placed.

If no exceptions occur during the generation of data to be used for modification of
existing data, then the record pointed to by the file pointer is replaced by the
record just generated, and the file pointer advanced to the next file-element. This

= 127 =

implies that the identifying record-number in a RELATIVE file, or identifying key in
a KEYED file is not changed. If there is an exception, the pointer is left as it was
set in the second phase (see 11.3.4 and 1l1.4.4) and the data in the file is un-
changed.

Array-rewrite-statement

An array-rewrite-statement behaves just like rewrite-statement would if the array-
elements were written out explicitly. The rules for matching arrays and specifiers in
a TEMPLATE are exactly the same as for the array-write-statement (see 11.3.4).

Delete-statement

The delete-statement causes the record indicated by the file pointer to be deleted,
and the file pointer advanced to the next file-element. This implies that for a
RELATIVE file, the affected record-area no longer contains a record, and for a KEYED
file, the affected record is eliminated from the sequence of records constituting the
file.

11.5.5 Exceptions

The following exceptions are grouped according to the phase of processing during
vhich they are detected. Phase 1 exceptions imply no change to the file or file
pointer. Phase 2 exceptions imply no change to the file. Phase 3 exceptions also im-
ply no change to the file.

Phase 1 Exceptions:
- A data modification statement attempts to access an inactive channel (7004, fatal).
- A data modification statement attempts to access channel zero (7320, fatal).

- The record-setter cannot be processed correctly, as described in 11.2.5, exceptions
7002 and 7202-7207 (use the procedure of 11.2.5).

- A data modification statement attempts to access a file opened as INPUT or as
OUTPUT (7322, fatal).

- The string-expression of a template-identifier is not a syntactically correct
template-element-1list (8251, fatal).

- A template-identifier is used on a file opened as INTERNAL or DISPLAY (7315,
fatal).

- A rewrite-statement or array-rewrite-statement does not have a template-identifier
when attempting to access a file opened as NATIVE (7316, fatal).

Phase 2 Exceptions:

- For a data modification statement, the condition data-found is false, and a
missing-recovery has not been specified (7305, fatal).

Phase 3 Exceptions:

- An attempt is made to rewrite a record larger than the value of RECSIZE (8301,
fatal).

- An expression or array-element does not agree in type (numeric or string) with its
associated TEMPLATE specifier (8252, fatal).

- A template-element with a variable-field-count does not coincide with the first el-
ement of an array (8253, fatal).

= 128 =

- There are not enough TEMPLATE specifiers for all the expressions or array-elements
(8254, fatal).

- A numeric value has significant digits to the left of the available digit places in
the field of a template (8255, fatal).

- A string value is longer than the length of its field in the template (8256, fatal)
11.5.6 Remarks

Note that the DELETE and REWRITE will affect the record indicated by the file
pointer, even if the pointer is set with NEXT or left as is from previous operation
(i.e. if the record-setter is absent).

- 129 -

12. EXCEPTION HANDLING AND DEBUGGING

- 130 -

12. EXCEPTION HANDLING AND DEBUGGING

12.1 Exception Handling (BASIC-2 only)
12.1.1 General Description

Exception handling facilities provide a means of regaining control of a program af-
ter an exception has occurred.

12.1.2 Syntax

BASIC-2 only

1. protection-block = when-use-block / when-use-name-block
2. when-use-block = when-line when-block use-line exception-handler
end-when-1line

3. when-line = line-number WHEN EXCEPTION IN tail

4. when-block = block¥*

5. use-line = line-number USE tail

6. exception-handler = block¥

7. end-when-line = line-number END WHEN tail

8. when-use-name-block = when-use-name-line when-block end-when-line

9. when-use-name-line = line-number WHEN EXCEPTION USE handler-name tail
10. handler-name = routine-identifier

11. handler-return-statement = RETRY / CONTINUE

12. exit-handler-statement = EXIT HANDLER

13. cause-statement = CAUSE EXCEPTION exception-type

14. exception-type = index

15. detached-handler = handler-line exception-handler end-handler-line
16. handler-line = line-number HANDLER handler-name tail

17. end-handler-line = line-number END HANDLER tail

18. numeric-supplied-function > EXLINE / EXTYPE
19. string-supplied-function > EXTEXT dollar-sign

Handler-return-statements and exit-handler-statements shall only occur within
exception-handlers. The no-argument numeric-supplied-functions EXLINE and EXTYPE
shall be invoked only within exception-handlers. EXTEXT$ takes a single numeric argu-
ment, which is an index.

No line-number in a control-transfer outside a protection-block shall refer to a line
in that protection-block other than its when-line or when-use-name-line. No line-
number in a control-transfer inside an exception-handler shall refer to a line out-
side that exception-handler other than its own end-handler-line or end-when-line, nor
shall a line-number in a control-transfer outside an exception-handler refer to a
line inside that exception-handler or to its end-handler-line or end-when-line.

A detached-handler referred to in a when-use-name-line within an internal-proc-def
must be defined in the same internal-proc-def. A detached-handler referred to in a
when-use-name-line that is not within an internal-proc-def must be defined in the
same program-unit but not within an internal-proc-def. No two handler-lines in the
same program unit shall have the same handler-name. A detached-handler may not appear
within a protection-block.

A protection-block may not appear within an exception-handler.

12.1.3 Examples
Example 1 : handling errors in input-replies by allowing the input-reply to be
resupplied after issuing a suitable message

100 WHEN EXCEPTION IN
110 PRINT "Enter your age and weight!

- 131 -

120 INPUT a, w

130 IF a > 10 THEN

140 PRINT "What is your height"
150 INPUT h

160 END IF

170 USE

180 PRINT "Please enter numbers only"
190 RETRY

200 END WHEN

Example 2 : dynamic file opening

100 HANDLER file_trouble

110 LET file_ok$ = "false"

120 IF EXTYPE = 7107 THEN

130 LET message$ = '"doesn't exist"

140 ELSEIF EXTYPE = 7102 THEN

150 LET message$ = "is the wrong type'

160 ELSE

170 LET message$ = '"couldn't be used"

180 END IF

190 PRINT "file"; filename$; message$; "try again"
200 END HANDLER

500 DO

510 INPUT filename$

520 LET file_ok$ = "true"

530 WHEN . EXCEPTION USE file-trouble

540 OPEN #n: NAME filename$! other parameters omitted
550 END WHEN

560 LOOP UNTIL file ok$ = "true"
Example 3: Nested handlers

100 WHEN EXCEPTION IN

110 DO

120 READ #1, IF MISSING THEN EXIT DO: A

130 LET I = I+l ! T initialized outside loop
140 WHEN EXCEPTION IN

150 LET B(I) = 1000%*A%*A

160 USE

170 ! Assume it is numeric overflow

180 LET B(I) = MAXNUM

190 CONTINUE

200 END WHEN

210 LOOP

220 USE

230 IF EXTYPE = 8101 THEN ! non-numeric data
240 RETRY ! get next data item
250 ELSE ! give up

260 PRINT 'Unable to process file'

270 STOP

280 END IF

290 END WHEN

13. CAUSE EXCEPTION I

- 132 -

12.1.4 Semantics

When an exception occurs during the execution of a program-unit, the action taken
shall depend upon whether or not the exception occurs within a when-block. If the ex-
ception occurs outside a when-block, then the default exception handling procedures
specified in this Standard shall be applied (see 2.4). If the exception occurs within
a when-block, then the default exception handling procedures, which require that an
exception be reported, shall not be applied; instead, control shall be transferred to
the exception-handler associated with the inner-most protection-block within which
the exception occurred.

When the protection-block is a when-use-block, the associated exception-handler is
that which follows the use-line of the protection-block. When the protection-block is
a when-use-name-block, the associated exception-handler is the detached-handler named
in the when-use-name-line of the protection-block. In all respects, a detached-
handler behaves semantically as though it were an exception-handler in the when-use-
block of the when-block with the exception.

Within an exception-handler, the type of the exception which caused that handler to
be executed shall be obtainable as the value of the parameterless function EXTYPE.
The values of EXTYPE for all exceptions defined in this Standard are specified in
Table 2, along with the description of each exception in this Standard. The line-num-
ber of the line whose execution caused the exception shall be obtainable as the value
of the parameterless function EXLINE.

There are four means of exiting from an exception-handler.

- Execution of the handler-return-statement CONTINUE shall cause control to be trans-
ferred to the statement lexically following that which caused the exception. If
the exception occurred in a line which begins or is part of a structure (such as a
do-line, loop-line, for-line, if-then-line, elseif-then-line, select-line, or
case-line), then control shall be transferred to the statement lexically following
the entire structure of which the line is a part.

- Execution of the handler-return-statement RETRY shall cause control to be trans-
ferred to the statement or line which caused the exception, causing the statement
or line to be re-executed; if that statement was performing data retrieval, then
the previous input-reply or line-input-reply shall be discarded and a new one re-
quested.

- If control reaches an end-when-line which terminates an exception-handler or
reaches an end-handler-line, then control shall be transferred to the line follow-
ing the end-when-line of the protection-block within which the exception occurred
with no further effect.

- Execution of an exit-handler-statement shall cause the exception to be propagated
to the lexical environment surrounding the innermost protection-block containing
the exception (also note the effect of calls and function invocations - see
below); i.e. the effect on handling the exception is as if the exception-handler
did not exist (except for the effect of any statements already executed in the
handler), and the rules for handling the original exception depend upon whether or
not the exception occurs within some outer when-block.

If execution reaches a use-line in a when-use-block, or an end-when-line in a when-
use-name-block, then control shall be transferred to the 1line following the
protection-block of which the use-line or end-when-line is a part. If execution
reaches an end-handler-line of a detached-handler, control shall continue at the line
following the end-when-line of the when-use-name-block causing the exception. If exe-
cution reaches a handler-line of a detached-handler other than by the occurrence of
an exception, control shall then continue at the line immediately following the end-
handler-1line.

-.133 -

A separate GOSUB stack is associated with each exception-handler (see 8.2) so RETURN
never attempts to transfer control into or out of an exception handler.

Execution of a cause-statement shall result in the occurrence of a fatal exception
and the setting of EXTYPE to the rounded value of the exception-type.

If an exception is caused by a statement lexically within an exception-handler, then
this new exception shall be handled by the default exception-handling procedures.

If a fatal exception occurs in a procedure-part or internal-proc-def and either:

- the line causing the fatal exception is not contained in a when-block and therefore
no exception-handler is entered, or

- an exception-handler is entered, an exit-handler-statement is executed with the
handler, and there is no lexically surrounding when-block to intercept the
exception,

then the fatal exception shall be propagated back to the line that invoked the

procedure-part or internal-proc-def. This propagation shall continue to occur until

either:

- a user-defined exception-handler resolves the exception by execution of a handler-
return-statement o by causing control to pass to an end-handler-line or to an end-
when-line which terminates the exception-handler, or

- the main program or a parallel-section is reached, in which case the default
exception-handling procedures are applied.

If an exception-handler is invoked as a result of this process, then the value re-
turned by the EXTYPE function shall be 100000 plus the value that would have been re-
turned by EXTYPE in the procedure-part or integral-proc-def in which the exception
originally occurred. The value of EXLINE shall be the line-number of the most recent
line to which the exception was propagated, i.e., the line lexically within the when-
block associated with the exception-handler, not the line of the original exception.

The default exception-handling procedures shall always report the EXTYPE and EXLINE
of the original exception.

The value of EXTYPE for exceptions defined by local enhancements to this Standard
shall be negative. When negative values of EXTYPE are propagated, the value shall be
-100000 plus the value that would have been returned by EXTYPE for the original
exception.

Values of EXTYPE from 1 to 999 will not be used by future enhancements to this
Standard, nor shall they be used by local enhancements to this Standard.

The value of EXTEXT$ shall be the text part of the error message provided by the sys-
tem for the exception number obtained by rounding its argument to an integer. If its
argument is not the exception number of a standard system exception, the value of
EXTEXT$ shall be the null string.

If the main-program is reached and no exception-handler is invoked there as a result
of the original exception, then the exception shall be handled by the default excep-
tion handling procedures specified in this Standard.

12.1.5 Exceptions

A cause-statement is executed (exception-type, fatal).
12.1.6 Remarks

Users should note that there are two kinds of exception propagation specified in this
section. First, there is ''lexical" propagation, outward to surrounding protection-
blocks within a program-unit or internal-proc-def. If this process propagates the ex-
ception outside of any such protection-block, "invocation' propagation takes effect,
passing the exception back to invoking statements.

- 134 -

The function EXLINE should be used with caution, as the use of editing facilities
which renumber lines in a program (see 16.2) may invalidate computations involving
EXLINE. For example, the program fragment

1000 SELECT CASE INT(EXLINE/100)
1010 CASE 1, 2

1100 CASE 3 TO 7

would probably behave differently if lines 100 through 800 were renumbered.

When a fatal exception is propagated back to invoking statements and the default
exception-handling procedure is applied as a result, only the original exception's
EXTYPE and EXLINE must be reported. Implementations may, however, also report the
line-numbers of the lines through which the exception was propagated, or any other
information deemed useful.

It is not possible to pass a nonfatal exception back to a calling routine since it
will be handled either by an exception-handler in the called routine or by the system
handler. An exception handler may, however, cause a fatal exception with a cause-
statement.

The cause-statement is not intended actually to simulate any given exception, but
rather to raise a fatal exception with a specified value of EXTYPE. In particular, if
the specified EXTYPE is the same as for some nonfatal exception, implementations need
not apply the recovery procedure as though that nonfatal exception had actually oc-
curred. It is presumed that a program will normally contain an exception-handler to
receive and process the exception.

All positive values of EXTYPE are reserved for future versions of this Standard. Ex-
ceptions defined by local enhancements to this Standard should be identified by nega-
tive values for EXTYPE, following the categories established in Table 2. The value
returned by EXTYPE for an exception defined in a local enhancement and occurring in a
procedure-part or internal-proc-def should be -100000 plus the negative value identi-
fying that exception. For example, if an implementation chose an EXTYPE value of
-4029 for an invalid argument in a new built-in function, and if that exception oc-
curred in a subprogram, but was not handled there, then the value of EXTYPE in an
exception-handler in a calling program should be -104029.

It is recommended that implementations use the "zero-th" value in a class of EXTYPE
values to represent 'other exceptions of this type'". For example, an EXTYPE value of
1000 might represent all overflows not defined in this Standard.

Values of EXTYPE from 1 to 999 may only occur from cause-statements in application
programs. These values should be encouraged for use, since they will not be assigned
standard meanings in future enhancements to this Standard.

CONTINUE should be used with caution. For instance, if an exception occurs within a
def-statement, on-gosub-statement, on-goto-statement, or if-statement, CONTINUE will
transfer control to the lexically following line. Such action may not be equivalent
to resumption of normal flow of control.

= 135 =

The following example illustrates the effect of CONTINUE with control structures:

100 WHEN EXCEPTION IN

120 INPUT PROMPT '"enter your age and weight'": a, w
130 DO WHILE a > 1
140 IF a < 9999999999 THEN
150 INPUT PROMPT '"What is your height ": h
160 PRINT "Check the following:"
170 PRINT "Age:'"; a, "Weight:"; w, "Height:"; h
200 INPUT PROMPT "Enter your age'': a
210 END IF
220 PRINT '"Lexically following IF"
230 LOOP
240 PRINT "Lexically following DO WHILE"
For exception in line : CONTINUE transfers control to line:
120 130
130 240
140 220
150 160

The precise format of the values of the EXTEXT$ function is implementation-defined.
In particular, implementations may choose to omit, or to mark in a special way, those
fields in an error message that are specific to a particular instance of an excep-
tion, such as the line number at which the exception occurred or the value of an out-
of-range subscript.

12.2 Debugging (BASIC-1 and BASIC-2)

12.2.1 General Description

Debugging facilities are provided by language statements in order to allow test
points to be built into a program. These statements allow the user to set break
points, to trace the action of the program, and to turn the debugging system on and
off within each program-unit.

12.2.2 Syntax

1. debug-statement
2. break-statement
3. trace-statement

DEBUG (ON / OFF)
BREAK
TRACE ON (TO channel-expression)? / TRACE OFF

n

n

12.2.3 Examples

3. TRACE ON
TRACE ON TO #3

12.2.4 Semantics

Each program-unit shall have a debugging status, which is either active or inactive
at any given time. The debugging status of a program-unit shall persist between invo-
cations of that program-unit (with the exception of the main program). Changes in the
debugging status of one program-unit shall not affect the debugging status of any
other program-unit. At the beginning of execution of the program, debugging shall be
inactive for all program-units.

Execution of the debug-statement DEBUG ON shall cause debugging to become active for
the program-unit in which that debug-statement occurs. Debugging shall remain active
for the remainder of that invocation of that program-unit, and for each subsequent
invocation of that program-unit, until the debug-statement DEBUG OFF is executed in
that program-unit. Execution of the debug-statement DEBUG OFF shall cause debugging
to become inactive for the remainder of that invocation of that program-unit, and for

= 136 =

each subsequent invocation of that program unit, until the debug-statement DEBUG ON
is executed in that program-unit.

The execution of a break-statement when debugging is active shall cause an exception.
The standard recovery procedure from this exception shall be to report the line-
number of the break-statement and to signify to the user that interaction with the
debugging system is possible. The actions allowed by the debugging system, including
the method for continuing execution or terminating execution of the program, are
implementation-defined. If the execution of a program reaches a line containing a
break-statement, and debugging is inactive, then it shall proceed to the next line
with no other effect.

The execution of a trace-statement when debugging is active shall turn tracing on (if
ON is specified) or off (if OFF is specified) in the program-unit containing the
trace-statement. Prior to the execution of any trace-statement upon each separate en-
try to a program-unit, tracing shall be off. If the execution of a program reaches a
line containing a trace-statement, and debugging is inactive, then it shall proceed
to the next line with no other effect.

The execution of a trace-statement shall not affect the debugging status, nor shall
the execution of a debug-statement affect the tracing status (ON or OFF).

Whenever tracing is on and debugging is active in a program-unit, the following
actions shall occur each time a line of the specified type is executed :

- for any line which interrupts the sequential order of execution of lines in a pro-
gram, both the line-number of that line and the line-number of the next line to be
executed shall be reported; and

- for any line which assigns a value to a variable or to an element of an array, both
the line-number of that line and any values assigned by execution of that line
shall be reported. Whenever tracing has been turned on via a trace-statement with
a channel-expression, trace reports shall be directed to the (display format) file
assigned to the specified channel. If no channel-expression has been specified,
the trace report shall be directed to the device associated with channel zero.

The contents of the trace report are implementation-defined, but shall include at
least the name of the variable traced, as that name lexically appears in the state-
ment causing the TRACE report, and its value; if the variable is an array element,
the value(s) of its subscripts shall also be included.

12.2.5 Exceptions

- A break-statement is executed when debugging is active (10007, nonfatal: the recov-
ery procedure is to report the line-number of the statement and to permit interac-
tion with the debugging system).

- An attempt is made to direct a trace report to an inactive channel. (7401, fatal).

- An attempt is made to direct a trace report to a file which is not display format
opened with access OUTPUT or OUTIN (7402, fatal).

12.2.6 Remarks

Since an array-assignment assigns a value to each element of an array, tracing an
array-assignment causes reporting of all new array element values.

The form of all trace reports is implementation-defined.

Implementations may provide debugging facilities through commands in addition to
statements. It is recommended that such commands use the same keywords as the
statements.

= 137 =

13. GRAPHICGS

= 138 =

13. GRAPHICS

The facilities provided in section 13.1 through 13.3 are a subset of those provided by
level Ob of the Graphical Kernel System (GKS) as defined in ISO 7942. The values of the
EXTYPE function for exceptions defined in GKS are 11000 plus the value of the GKS error
number.

In GKS terms, any BASIC program that includes statements from Section 13 of this Standard
has implied calls to the functions OPEN GKS, OPEN WORKSTATION (#0, 'Maindev'", 1), and
ACTIVE WORKSTATION #0 before any graphics statements are executed, and calls to the func-
tions DEACTIVE WORSTATION #0, CLOSE WORKSTATION #0 and CLOSE GKS as the program terminates.

13.1 Coordinate Systems

13.1.1 General Description

The coordinates used to produce graphic output may be chosen to suit the application.
The range of this system of '"'problem coordinates'" (world coordinates) is established
by a SET WINDOW statement. This range is mapped into a rectangular portion of an ab-
stract viewing surface which can be specified by a SET VIEWPORT statement. It is pos-
sible to specify what part of this abstract viewing surface will be presented to the
user on the display surface by a SET DEVICE WINDOW statement. This rectangle, in
turn, may be located on the display surface by a SET DEVICE VIEWPORT statement.

No output will be produced outside the device viewport. It is possible to guarantee
that all graphic output which lies outside the viewport will be eliminated by en-
abling clipping.

Ask statements are provided to determine the current values for the parameters estab-
lished by execution of one of the set statements or by default.

13.1.2 Syntax

1. set-object > WINDOW boundaries / VIEWPORT boundaries / DEVICE
WINDOW boundaries / DEVICE VIEWPORT boundaries
/ CLIP string-expression

2. boundaries = boundary comma boundary comma boundary comma boundary

3. boundary = numeric-expression

L. ask-statement > ASK ask-object status-clause?

5. status-clause = STATUS numeric-variable

6. ask-object > WINDOW boundary-variables / VIEWPORT

boundary-variables / DEVICE WINDOW
boundary-variables / DEVICE VIEWPORT
boundary-variables / DEVICE SIZE
numeric-variable comma numeric-variable comma
string-variable / CLIP string-variable

7. boundary-variables = numeric-variable comma numeric-variable comma
numeric-variable comma numeric-variable

13.1.3 Examples

1. WINDOW 0, PI*2, -1, 1
VIEWPORT .5%width, width, .S5%height, height
DEVICE WINDOW 0, .8, 0, 1
DEVICE VIEWPORT .3, .5, .1, 1
CLIP "Off"

- 139 -

4. ASK WINDOW X1, X2, Y1, Y2
ASK VIEWPORT L, R, B, T
ASK DEVICE WINDOW XMIN, XMAX, YMIN, YMAX
ASK DEVICE VIEWPORT LEFT, RIGHT, BOTTOM, TOP
ASK DEVICE SIZE Width, Height, Unit$
ASK CLIP CLIP_STATE$

13.1.4 Semantics

Graphic output is specified in problem coordinates. A normalization transformation
defines the mapping from the problem coordinate system onto the normalized device co-
ordinate (NDC) space which can be regarded as an abstract viewing surface.

The normalization transformation is specified by defining the limits of a rectangular
area, called a window, in problem coordinates. The window is mapped linearly onto a
specified rectangular area, called a viewport, in NDC space.

Execution of a set-statement with the keyword WINDOW shall establish the boundaries
of the window. The parameters represent the problem coordinates of the left, right,
bottom, and top edges, in that order, of the window rectangle. At the start of pro-
gram execution the window values are (0, 1, 0, 1).

Execution of a set-statement with the keyword VIEWPORT shall establish the viewport
boundaries. The parameters represent the normalized device coordinates of the left,
right, bottom, and top edges, in that order, of the viewport rectangle. Viewport co-
ordinates must not be less than zero not more than one. The value of the left coordi-
nate shall be less than the right, and the bottom less than the top. At the start of
program execution the viewport values are (0, 1, 0, 1).

The viewport may also be used to define a clipping rectangle. Execution of a set-
statement with the keyword CLIP shall enable or disable clipping to the viewport
boundary (see Section 13.3) depending on whether the value of the string-expression
is "ON" or "OFF". The letters in the value of the string-expression may be any combi-
nation of upper-case and lower-case. At the start of program execution, clipping
shall be enabled.

A device transformation is used to map a rectangle in NDC space called a device win-
dow uniformly onto a rectangle on a physical surface called a device viewport. This
transformation shall perform equal scaling with a positive scale for both axes. To
ensure equal scaling, the device transformation maps the device window onto the
largest rectangle that can fit within the device viewport such that the aspect ratio
of the device window is preserved and the lower-left corner of the device window is
mapped onto the lower-left corner of the device viewport.

Execution of a set-statement with the keyword DEVICE WINDOW shall establish the
boundaries of the device window. The parameters represent the normalized device coor-
dinates of the left, right, bottom, and top edges, in that order, of the device widow
rectangle. These coordinates shall not be less than zero not greater than one. The
value of the left coordinate shall be less than the right, and the bottom less than
the top. At the start of program execution, the device window values are (0, 1, O,
1). To ensure that no output outside the device window is displayed, clipping takes
place at the device window boundaries. This clipping may not be disabled. Execution
of a set-statement with the keywords DEVICE WINDOW shall cause the display surface to
be cleared if it is not already clear.

- 140 -

The figure below illustrates the relationship between the window, the viewport, the
device window, and the device viewport; clipping is assumed '"ON'".

Window Viewport

Device viewport

Device window

Problem coordinates NDC Space DC Space

Execution of a set-statement with the keywords DEVICE VIEWPORT shall establish the
boundaries of the device viewport. The parameters represent the coordinates of the
left, right, bottom, and top edges, in that order of the device viewport rectangle.
Units for the device viewport shall be meters on a device capable of producing a pre-
cisely scaled image and appropriate device dependent coordinates otherwise. The left
and bottom edges of a display surface are represented by the coordinate value zero.
At the start of program execution, the device viewport is the entire screen. Execu-
tion of a set-statement with the keywords DEVICE VIEWPORT shall cause the display
surface to be cleared if it is not already clear.

If a status-clause is included in an ask-statement, a status associated with the exe-
cution of the ask-statement shall be returned in the numeric-variable. If the
statement returned meaningful values for the ask-object, a value of zero shall be re-
turned in the status-clause. If the ask-statement could not return meaningful values
for the ask-object a nonzero value shall be returned in the status-clause that is de-
fined with the semantics of the particular ask-object. If an ask-statement with a
particular ask-object is always expected to return meaningful values, the semantics
for that ask-object do not specify alternate status values and zero shall always be
returned.

Execution of an ask-statement with one of the keywords WINDOW, VIEWPORT, DEVICE
WINDOW, or DEVICE VIEWPORT shall provide the current values for the specified rectan-
gle. Values for the left, right, bottom and top sides, respectively, shall be as-
signed to the boundary-variables equal to the values last established by a set-
statement, or, if no appropriate set-statement has been executed, equai to the
default value.

Execution of an ask-statement with the keywords DEVICE SIZE shall assign to the first
numeric variable the size in the horizontal direction and shall assign to the second
numeric variable the size in the vertical direction of the available display surface.
The string-variable shall be assigned the value '"METERS'" if the sizes are in meters
or the value "OTHER" if the units of measure are device coordinates of other units.
The values "METERS" and "OTHER'" shall consist of upper-case-letters.

Execution of an ask-statement with the keyword CLIP shall assign the value "ON" to
the string-variable if clipping is enabled and the value "OFF" if it is disabled. The
values returned shall be all upper-case-letters.

= 141 -

13.1.5 Exceptions

- The boundaries in a set-statement specify a rectangle of zero width or height
(11051, nonfatal: continue with current values).

- The boundaries in a set-statement with the keywords VIEWPORT, DEVICE WINDOW, or
DEVICE VIEWPORT specify a rectangle of negative width or height (11051, nonfatal:
continue with current values).

- A boundary of the viewport is not in the range [0, 1] (11052 nonfatal: continue
with current values).

- A boundary of the device window is not in the range [0, 1] (11053, nonfatal: con-
tinue with current values).

- A boundary of the device viewport is not in the display space (11054, nonfatal:
continue with current values).

' - The value of the string-expression in a set-statement with the keyword CLIP is nei-
ther '"ON" nor "OFF'" after conversion to upper-case (4101, nonfatal: continue with
current value).

13.1.6 Remarks

The manner in which a particular graphic display device is selected by a program is
implementation-defined.

The meaning of a window with the left edge greater than the right or the bottom edge
greater than the top is implementation-defined. If possible, implementations should
provide appropriately inverted images. The effect of all graphic output is defined in
terms of the abstract problem space, in which lower values are to the left and down,
and higher values to the right and up. When this problem space is mapped to NDC, it
may be inverted as indicated by the order of the WINDOW boundaries. This relaxes the
GKS rule that states that reversal window coordinates causes an error.

SET WINDOW, SET VIEWPORT, SET DEVICE WINDOW, and SET DEVICE VIEWPORT correspond to
the GKS functions SET WINDOW, SET VIEWPORT, SET WORKSTATION WINDOW, and SET
WORKSTATION VIEWPORT, respectively. The GKS transformation number is one in these
statements as defined above. The GKS workstation number is #0 in these statements.

SET CLIP corresponds to the GKS function SET CLIPPING INDICATOR.

ASK WINDOW and ASK VIEWPORT correspond to the GKS function INQUIRE NORMALIZATION
TRANSFORMATION for normalization transformation one.

ASK CLIP corresponds to the GKS function INQUIRE CLIPPING INDICATOR.

ASK DEVICE WINDOW and ASK DEVICE VIEWPORT correspond to the current workstation win-
dow and current workstation viewport parameters, respectively, of the GKS function
INQUIRE WORKSTATION TRANSFORMATION with a workstation identifier of one.

ASK DEVICE VIEWPORT before any SET DEVICE VIEWPORT may be used to find the device co-
ordinates of the full available device surface.

ASK DEVICE SIZE corresponds to the device coordinate units and maximum display sur-
face size in device coordinate units parameters of the GKS function INQUIRE MAXIMUM
DISPLAY SURFACE SIZE.

13.2 Attributes and Screen Control

13.2.1 General Description

A graphical display device may possess several styles of lines or points, each with a
particular width or texture. A particular style may be selected for graphic output. A

- 142 -

graphic device also may be able to draw lines and/or fill areas in a variety of col-
ors. Particular colors may be selected for line drawing and screen background.

The current style and color of the geometric object may be determined by ask-
statements. The number of colors and the number of line or point styles available may
also be determined by ask-statements.

The clear-statement clears the entire screen, returning it to its background color.
For hard-copy devices, the clear-statement causes the paper to advance, the pen to
move aside, or similar action.

This Standard provides text of one style and size that shall be output horizontally
with the initial-point at the left.

13.2.2 Syntax

1. imperative-statement > clear-statement

2. clear-statement = CLEAR

3. set-object > primitive-1 STYLE index / primitive-2 COLOR index

L, primitive-2 = primitive-1 /TEXT / AREA

5. primitive-1 = POINT / LINE

6. rgb-list > [deleted]

7. ask-object > primitive-1 STYLE numeric-variable / primitive-2
COLOR numeric-variable / MAX primitive-1 STYLE
numeric-variable / MAX COLOR numeric-variable

8. mix-list = [deleted]

9. text-facet = [deleted]

13.2.3 Examples

3. LINE STYLE 2
TEXT COLOR 5

7. Max color color_max
Max point style PtStyles

13.2.4 Semantics

Execution of a clear-statement shall clear the graphic display if not already clear.
For soft-copy devices, it shall erase the screen. For hard-copy devices, it shall ad-
vance the medium or allow the device operator to change it.

Execution of a set-statement with the keywords LINE STYLE or POINT STYLE shall cause
the index to be evaluated by rounding to obtain an integer N and shall establish the
style for subsequent lines or points to be the Nth one of the set of available line
or point styles. The number of line styles available is implementation-defined, but
shall be at least three. A line style of one must correspond to drawing of solid
lines. A line style of two shall correspond to drawing of dashed lines. A line style
of three shall correspond to dotted lines. All other values for line style are
implementation-defined. At the initiation of program execution, the line style shall
be one.

Point styles produce centered symbols. The number of point styles is implementation-
defined, but shall be at least three. A point style of one must correspond to a
dot (.), a point style of two to a plus sign (+), a point style of three to an
asterisk (*). All other values for point-style are implementation-defined. At the
start of program execution, the point style shall be three.

Execution of an ask-statement with the keywords LINE STYLE or POINT STYLE shall as-
sign the number of the actual current line style or point style to the numeric-
variable.

- 143 -

Execution of an ask-statement with the keywords MAX LINE STYLE or MAX POINT STYLE
shall assign to the numeric-variable the largest value of LINE STYLE or POINT STYLE,
respectively, available.

All values for style shall be valid from one to the number returned by ASK MAX POINT
STYLE or ASK MAX LINE STYLE.

Execution of a set-statement with the one of the keyword pairs POINT COLOR, LINE
COLOR, TEXT COLOR, or AREA COLOR shall cause the index to be evaluated by rounding to
obtain an integer N and shall establish the color index of subsequent points, lines,
text, or filled areas to be the Nth one of the set of colors, if possible with the
current graphics device. This color is called a foreground color. At the initiation
of execution, the color associated with each index is implementation-defined, and the
foreground color indices shall all have the value one. The number of colors available
is implementation-defined.

Execution of an ask-statement with one of the keyword pairs POINT COLOR, LINE COLOR,
TEXT COLOR, or AREA COLOR shall assign to the numeric-variable the current value of
the color index for points, lines, text or filled areas, as appropriate.

Execution of an ask-statement with the keywords MAX COLOR shall assign to the
numeric-variable the largest distinct value available as an index for SET POINT
COLOR, SET LINE COLOR, SET TEXT COLOR, or SET AREA COLOR. All values for color index
from zero to this value should be valid.

13.2.5 Exceptions

- A color index in a set-statement with the keywords POINT COLOR, LINE COLOR, TEXT
COLOR, or AREA COLOR is less than zero or greater than the maximum color index for
the implementation (11085, nonfatal: use the implementation default).

- The value of the numeric-expression in a set-statement with the keywords LINE STYLE
is less than or equal to zero or greater than the maximum style available (11062,
nonfatal: use the value one).

- The value of the numeric-expression in a set-statement with the keywords POINT
STYLE is less than or equal to zero or greater than the maximum style available
(11056, nonfatal: use the value three).

13.2.6 Remarks

It is recommended that implementations make the value returned by ASK MAX COLOR the
same as the number of colors (not counting background color) available for simultane-
ous display, not the total number of different colors available on the device.

The CLEAR statement corresponds to the GKS function CLEAR WORKSTATION (#0,
CONDITIONALLY). SET LINE STYLE and SET POINT STYLE corresponds to the GKS functions
SET LINETYPE and SET MARKER TYPE, respectively. SET LINE COLOR, SET POINT COLOR, SET
TEXT COLOR, and SET AREA COLOR correspond to the GKS functions SET POLYLINE COLOUR
INDEX, SET POLYMARKER COLOUR INDEX, SET TEXT COLOUR INDEX, and SET FILL AREA COLOUR
INDEX, respectively.

The following ask-objects correspond to various parameters of the GKS function
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES: LINESTYLE is linetype, POINSTYLE is
marker type, LINE COLOR is polyline colour index, POINT COLOR is polymarker colour
index, TEXT COLOR is text colour index and AREA COLOR is fill area colour index.

13.3 Graphic Output
13.3.1 General Description

The statements described in this section are used to generate various kinds of
graphic output. The user may cause points, line segments, or filled-in areas to be

- 144 -

drawn on the screen. There is a facility for including text within the drawing. The
effect of the graphic output statements depends on the current values of the various
set-objects described in section 13.1 and 13.2.

13.3.2 Syntax

1. imperative-statement > graphic-output-statement

2. graphic-output-statement > geometric-statement / graphic-text-statement
3. geometric-statement > graphic-verb geometric-object colon point-list
L, graphic-verb > GRAPH

5. geometric-object = POINTS / LINES / AREA

6. point-list = coordinate-pair (semicolon coordinate-pair)¥*
7. coordinate-pair = numeric-expression comma numeric-expression

8. array-geometric-statement = [deleted]

9. size-select = [deleted]

10. array-point-list = [deleted]

11. graphic-text-statement = graphic-verb TEXT initial-point (comma USING image
colon expression-list / colon
string-expression)

12. initial-point = comma AT coordinate-pair

13. array-cells-statement = [deleted]

14. point-pair = [deleted]

A graphic-output-statement with LINES as the geometric-object must contain at least
two coordinate-pairs in its point-list. A graphic-output-statement with AREA as the
geometric-object must contain at least three coordinate-pairs in its point-list.

13.3.3 Examples

3. GRAPH LINES: 3,4; 5,6; 66.66,77.77
11. GRAPH TEXT, AT XP, YP: "here is the label: " & TEXT$
GRAPH TEXT, AT 0,Y_VALUE, USING "##. ## ~~"": Y_VALUE

13.3.4 Semantics

The graphic-output-statement

Graphic-output-statements are the means by which the user generates all graphic out-
put. The geometric-statement is used to draw a series of marked points, a contiguous
set of line segments, or a filled polygon area. The graphic-text-statement produces
alphanumeric labels.

The geometric-statement

The geometric-statement makes use of a sequence of points specified in problem
coordinates. That sequence is determined by the coordinate-pairs in the point-list,
the first coordinate-pair designating the first point and so on through the end of
the point-list.

If the geometric-object is POINTS, then a point marker of the style and color indi-
cated by the current value of POINT STYLE and POINT COLOR shall be drawn at each
point in the sequence. If the geometric-object is LINES, then a line segment shall be
drawn connecting each successive pair of points in the sequence, the first to the
second, the second to the third, and so on. Thus, the number of line segments shall
be one fewer than the number of points in the sequence. The style and color of the
segments are determined by the current value of LINE STYLE and LINE COLOR. If the
geometric-object is AREA, then a filled polygon is drawn whose edges consist of the
sequence of line segments as described above for LINES. If the first and last points
in the sequence are not coincident, then the line segment joining them completes the
outline. The color of the interior and edge is determined by the current value of
AREA COLOR. The interior of the polygon is defined as the set of all points (pixels)

- 145 -

such that any line segment beginning at that point and extended indefinitely in any
direction will cross the polygon boundary an odd number of times. The fill pattern
shall be solid on devices where this is possible.

The graphic-text-statement

The graphic-text-statement draws a label consisting of the string of characters gen-
erated by its string-expression, or by its image and expression-list. The characters
used for labels shall have an implementation-defined size and style. The effect of
clipping on characters which lie partly in and partly out of the viewport on the
screen is implementation-defined.

13.3.5 Exceptions

- A graphic-output-statement with LINES as the geometric-object specifies fewer than
two points (11100, fatal)

- A graphic-output-statement with AREA as the geometric-object specifies fewer than
three points (11100, fatal)

13.3.6 Remarks

The graphic-text-statement is designed to give easy access to a device's hardware-
generated character set.

Text is described with respect to problem coordinates and may become distorted when
the aspect ratio of the window and viewport differ.

If a device is unable to fill a polygon, it is recommended that the outline of the
polygon be drawn and the interior be hashed or shaded in a manner corresponding to
the current color number.

It is recommended that the result of filling an area consisting solely of colinear
points be a line segment through those points, that filling or drawing a line through
a set of coincident points result in a dot being drawn.

GRAPH POINTS correspond to the GKS function POLYMARKER. GRAPH LINES correspond to the
GKS function POLYLINE. GRAPH AREA correspond to the GKS function FILL AREA. GRAPH
TEXT is an extension of the GKS function TEXT in that it allows formatting of text
with USING.

- 146 -

15. FIXED DECIMAL NUMBERS

15.

- 147 -

FIXED DECIMAL NUMBERS (BASIC-2 only)

This Section specifies an option in which the values of all numeric variables behave logi-
cally as fixed-point decimal numbers with program-defined precisions. Use of this option
also implies that numeric-constants and numeric-expressions generally, are represented as
fixed-point decimal numbers. Implementation of this Section is mandatory in BASIC-2.

The main intent of this data type is to provide an interface with non-BASIC processors, and
as a result, the precision and accuracy requirements for numeric-expressions are not speci-
fied.

15.1 Fixed Decimal Precision

15.1.1 General Description

An option is provided which allows definition of all numeric variables in a program-
unit as having fixed-point decimal numbers as values. The specification of this op-
tion defines a default precision for the values of variables. In addition, other pre-
cision attributes can be specified for individual variables.

15.1.2 Syntax

1. option > ARITHMETIC FIXED fixed-point-type

2. fixed-point-type = asterisk fixed-point-size

3. numeric-type > NUMERIC fixed-point-type? fixed-declaration (comma
fixed-declaration)¥

L. fixed-declaration = simple-numeric-variable fixed-point-type? /

numeric-array-declaration fixed-point-type?

An option-statement with an ARITHMETIC FIXED option, if present at all, shall occur
in a lower-numbered line than any numeric-expression, numeric-variable, or any
declare-statement with NUMERIC in the same program-unit.

A fixed-declaration, if present at all, shall occur in a lower-numbered line than any
reference to the variable or array declared therein.

A fixed-point-size may appear in a declare-statement only if the ARITHMETIC FIXED op-
tion has been specified for the program-unit.

Variables and arrays shall not be described more than once, in either a declare-
statement, a dimension-statement, or as a function-parameter or procedure-parameter.

15.1.3 Examples

1. ARITHMETIC FIXED*8.2
3. NUMERIC*5.2 A, B, C%5.5, D (1 TO 8)%6.6
NUMERIC E (1 TO 10, 1961 TO 1981)

15.1.4 Semantics

When the ARITHMETIC FIXED option is specified, then the values of numeric constants,
variables, and expressions shall behave logically as fixed-point decimal numbers. In
the case of variables, this means that the set of values they are capable of assuming
are exactly those values which can be expressed with integer-size decimal digits to
the left of the decimal point and fraction-size digits to the right, together with
the sign. The sign is not counted in the size of the representation. Each implementa-
tion shall define a maximum precision, P, which controls the number of decimal digits
available for the representation of numeric values. This precision shall not be less
than 18.

The semantics for numeric-constants are as specified in Section 5.1, except as fol-
lows. Each numeric constant has a precision attribute defined by the number of sig-
nificant decimal digits. The first significant digit is either the first nonzero
digit, or the digit immediately to the right of the decimal point, whichever is far-

- 148 -

ther left. The last significant digit is the last explicitly written or the digit im-
mediately to the left of the decimal point, whichever is farther right. In the spe-
cial case of zero, there is at least one significant digit, namely immediately to the
left of the decimal point. A numeric-constant written in scaled notation is inter-
preted as if expressed in the equivalent unscaled notation.

For example:

constant as written significant digits
12.34 12.34

12.300 12.300

12 .300E-4 .0012300

12.300E7 123000000.
00.00E-3 .00000

0.0E3 0.

"If the number of significant digits exceeds P, the implementation shall round the
value to no fewer than P digits. If the number of significant digits to the left of
the decimal point exceeds P, an overflow exception results.

Each simple-numeric-variable and numeric-array has a precision attribute defined in
terms of the number of digits maintained in the integer part and the fraction part,
namely integer-size and fraction-size. The representation of variables and arrays is
governed by (in descending order of precedence):

- the fixed-point-size specified in the fixed-declaration of the variable or array,
or,

- the fixed-point-size following DECLARE NUMERIC in a declare-statement containing a
fixed-declaration for the variable or array, or

- the default fixed-point-size specified in the ARITHMETIC FIXED option.

The precision attribute of a numeric-array applies to each of its elements. The sig-

nificant digits for a numeric-variable are the same as if the variable were written

out with its full precision as a numeric-constant.

The semantics of numeric-expressions and numeric-supplied-functions are as specified
in 5.3 and 5.4, except a follows. The precision attribute of the result obtained by
evaluating a numeric-supplied-function or numeric-expression is implementation-
defined. The accuracy of such evaluation is also implementation-defined.

Assignment of a numeric value to a numeric-variable, whether done by internal assign-
ment (such as with LET), or from an external source (such as with INPUT), proceeds as
follows. The integer part and fraction part of the value are moved to the integer
part and fraction part of the variable, aligned on the decimal point. If any nonzero
digits are truncated on the left of the integer part, an overflow exception results.
If any digits are truncated on the right of the fraction part, the resulting value in
the variable is rounded to the precision of the variable. If necessary, the value is
extended with zeros on the left of the integer part, or the right of the fraction
part so as to fill all the digit places of the receiving variable.

The semantics for input and output are as specified in Section 10, except as follows.
When a numeric-expression is used as a print-item in a print-statement, its value is
always printed in unscaled representation, either implicit point or explicit point.
The digits printed are exactly the significant digits, as defined above. Note that
for numeric-expressions other than variables and constants, significant digits are
implementation-defined. Implicit point representation shall be used when there are no
significant digits to the right of the decimal point; otherwise explicit point repre-
sentation shall be used.

The semantics for file areas are as specified in Section 11, with the following
additions. For DISPLAY records, the rules given above for input, output, and

- 149 -

assignment are used. For INTERNAL records, the values are self-typed, and so input
and output takes place as defined above. Thus, the result of WRITE A and READ B,
where they access the same value in the file, is the same as LET B = A. Note that it
is implementation-defined whether an INTERNAL file accessed with one ARITHMETIC
option is accessible with another. The ARITHMETIC FIXED option with different default
precisions is not considered to be a different option for the purposes of
accessibility. For NATIVE records, assignment of values to and from fields of fixed-
point-size takes place in accordance with the usual rules for fixed-point assignment.
When a value is moved to a field with a size of E (indicating floating-point), at
least the first P significant digits must be retained exactly. When a value obtained
from such a field is assigned to a variable, the field is treated as a scaled
numeric-constant, as described above. Again, note that it is implementation-defined
whether a NATIVE file accessed with one ARITHMETIC option is accessible with another.
The ask-attribute DATUM returns the type of the next datum in a file. For numeric
data in STREAM INTERNAL files written with the FIXED option, the type returned by the
ask-attribute DATUM shall be:

"NUMERIC*ii.ff",

where ii is the two digit number for integer-size and ff the two digit number for
fraction-size.

15.1.5 Exceptions

- The number of significant digits in the integer part of a numeric-constant
exceeds P (1001, fatal).

- In an option-statement or a declare-statement, the sum of integer-size and
fraction-size in a fixed-point-size exceeds P (1010, fatal).

- Upon assignment of a numeric value to a variable, the number of significant digits
in the integer part exceeds the variable's integer-size (1011, fatal).

15.1.6 Remarks

It is recommended that the accuracy of transcendental functions such as LOG, COSH,
ATN, SIN, and EXP be no less than that specified for OPTION ARITHMETIC DECIMAL. It is
recommended that for non-transcendental functions, such as ABS INT, and MAX, and for
the operations +, -, %, /, and ~, an intermediate result be maintained as floating-
point decimal with P+2 significant digits. This would imply that whenever all the
intermediate results of a numeric-expression are exact within P+2 decimal digits and
the final result is exact within P decimal digits, then the final result is exactly
correct.

15.2 Fixed Decimal Program Segmentation

15.2.1 General Description

When the fixed decimal option is specified for a program-unit, it applies to all nu-
meric entities in the scope of that unit, including parameters, formal parameters,
and (in the case of an external-function-def) the result of function evaluation.

15.2.2 Syntax
1. function-parameter > numeric-fixed-parameter
2. procedure-parameter > numeric-fixed-parameter
3. numeric-fixed-parameter = simple-numeric-variable fixed-point-type /
fixed-formal-array
L4, fixed-formal-array = formal-array fixed-point-type
5. internal-function-line > line-number FUNCTION fixed-defined-function

function-parm-1list? tail

--150 -

6. external-function-line > line-number EXTERNAL FUNCTION fixed-defined-function
function-parm-1list? tail

7. numeric-def-statement > DEF fixed-defined-function function-parm-1list?
equals-sign numeric-expression

8. defined-function > fixed-defined-function

9. fixed-defined-function = numeric-defined-function fixed-point-type

A numeric-variable or actual-array appearing in a call-statement shall have the same
integer-size and fraction-size as the corresponding procedure-parameter. For all
other numeric function-argument or procedure-arguments and their corresponding
function-parameters or procedure-parameters, it is necessary only that the ARITHMETIC
options of their respective program-units agree, i.e., that both be DECIMAL or NATIVE
or FIXED.

An option-statement with an ARITHMETIC FIXED option shall occur in a lower-numbered
line within the program-unit than any internal-function-def that declares a numeric-
defined-function or specifies numeric parameters.

A fixed-point-type may appear in an internal-function-line or numeric-def-statement
only if the ARITHMETIC FIXED option has been specified for the program-unit.

A numeric-fixed-parameter may be used only if the ARITHMETIC FIXED option has been
specified for the program-unit.

When a fixed-defined-function is declared in a function-type, the fixed-point-sizes
specified either explicitly or by default in the declaration and the corresponding
definition must agree.

15.2.3 Examples

3. A()*8.2
B(,)*u.n4
5. 123 FUNCTION SUMVECTOR¥®5.2 (V()*5.2)
6. 234 EXTERNAL FUNCTION ANSWER*1 (A$)
7. DEF AVERAGE®*10.3 (X*10.3, Y%10.3) = (X+Y)/2

15.2.4 Semantics

When the ARITHMETIC FIXED option is specified for a program-unit, the values of nu-
meric procedure-parameters, numeric function-parameters, and numeric-defined-
functions shall be represented and manipulated as fixed-point decimal numbers. If the
fixed-point-size of one of these is not explicitly specified in the appropriate
procedure-parameter or function-parameter, internal-def-line or internal-function-
line or external-function-line, then it is assumed to be the default specified in the
ARITHMETIC FIXED option. The fixed-point-size of a normal-array applies to each of
its elements.

The evaluation and assignment of the arguments in a function reference to the parame-
ters of the function-def proceed as described in 9.1, with the following addition. In
the case where the fixed-point-size of an argument differs from that of the corre-
sponding parameter, the assignment rules given in 15.1.4 apply.

The association of the procedure-arguments in a call-statement with the procedure-
parameters in the corresponding sub-statement proceeds as described in Section 9.2,
with the following addition. In the case where the fixed-point-size of a procedure-
argument which is a numeric-expression, but not a numeric-variable, differs from that
of the corresponding procedure-parameter, the assignment rules given in 15.1.4 apply.

- 151 -

15.2.5 Exceptions

- In a numeric-fixed-parameter or fixed-defined-function, the sum of the integer-size
and fraction-size in a fixed-point-size exceeds P (1010, fatal).

- Upon assignment of a numeric value to a numeric-fixed-parameter or fixed-defined-
function, the number of significant digits in the integer part exceeds the
integer-size of the numeric-fixed-parameter of fixed-defined-function (1011,
fatal).

15.2.6 Remarks

None.

TABLE 1

= 152 =

Standard BASIC Character Set

The name of the characters indicated in the table correspond to the name of the characters in
Standard ECMA-6. Where different names are used in this Standard for the syntax of BASIC, these

names are indicated between parentheses.

ORDINAL
POSITION CODE GRAPHIC ACRONYM
0. 0/0 NUL
1. 0/1 SOH
2: 0/2 STX
3. 0/3 ETX
b, o/h EOT
5. 0/5 ENQ
6. 0/6 ACK
7. 0/7 BEL
8. 0/8 BS
9. 0/9 HT
10. 0/10 LF
11. 0/11 VT
12 0/12 FF
13. 0/13 CR
14, 0/14 SO
15. 0/15 ST
16. 1/0 DLE
17. 1/1 DC1
18. 1/2 DC2
19. 1/3 DC3
20. 1/4 DCL
21 1/5 NAK
22. 1/6 SYN
23, 1/7 ETB
2. 1/8 CAN
25. 1/9 EM
26. 1/10 SUB
27. 1/11 ESC
28. 1/12 FS
29. 1/13 GS
30. 1/14 RS
31. 1/15 Us
32. 2/0 SP
33. 2/1 !

34, 2/2 "

35. 2/3 #

36. 2/4 $

37, 2/5 %

38. 2/6 &

39. 2/7 '

40. 2/8 (

41. 2/9)

42, 2/10 %

NAME

NULL
START OF HEADING
START OF TEXT

END OF TEXT

END OF TRANSMISSION
ENQUIRY

ACKNOWLEDGE

BELL

BACKSPACE
HORTZONTAL TABULATION
LINE FEED

VERTICAL TABULATION
FORM FEED

CARRIAGE RETURN
SHIFT OUT

SHIFT IN

DATA LINK ESCAPE
DEVICE CONTROL ONE
DEVICE CONTROL TWO
DEVICE CONTROL THREE
DEVICE CONTROL FOUR
NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE

END OF TRANSMISSION BLOCK
CANCEL

END OF MEDIUM
SUBSTITUTE

ESCAPE

FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE

EXCLAMATION MARK
QUOTATION MARK
NUMBER SIGN

DOLLAR SIGN

PERCENT SIGN
AMPERSAND
APOSTROPHE

LEFT PARENTHESIS
RIGHT PARENTHESIS
ASTERISK

4L3.
Ll
45.
L6.
47.
48.
49.
50.
51.
52.
53,
54,
55,
56.
57.
58.
59.
60.
61.
62.
63.
6L,
65.
66.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78.
79.
80.
81.
82.
83
84,
85.
86.
87.
88.
89.
90.
91.
92.
93.
94,
95.
96.
97.
98.

2/11
2/12
2/13
2/14
2/15
3/0
3/1
3/2
3/3
3/4
3/5
3/6
3/7
3/8
3/9
3/10
3/11
3/12
3/13
3/14
3/15
4/0
4/1
L/2
4/3
L/n
4/5
4/6
L/7
L/8
L/9
4/10
4/11
4/12
4/13
L/14
4/15
5/0
5/1
5/2
5/3
5/k
5/5
5/6
5/7
5/8
5/9
5/10
5/11
5/12
5/13
5/14
5/15
6/0
6/1
6/2

O 0O N O U F WM O~ -

/A ee

e —mm N K X D <O HNIXIOWOZIICTRGGCHIIQREHEODODOQE > ® 2 VI

'

- 153 -

PLUS SIGN

COMMA

MINUS SIGN
FULL STOP (Period)

SOLIDUS

(Slant)

DIGIT ZERO
DIGIT ONE
DIGIT TWO
DIGIT THREE
DIGIT FOUR
DIGIT FIVE
DIGIT SIX
DIGIT SEVEN
DIGIT EIGHT
DIGIT NINE

COLON

SEMICOLON
LESS-THAN SIGN
EQUALS SIGN

GREATER-

THAN SIGN

QUESTION MARK
COMMERCIAL AT

CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL
CAPITAL

LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)
LETTER (Upper-case)

LEFT SQUARE BRACKET
REVERSE SLANT (Reverse solidus)
RIGHT SQUARE BRACKET
CIRCUMFLEX ACCENT
UNDERLINE

GRAVE ACCENT

SMALL LETTER (Lower-case) a
SMALL LETTER (Lower-case) b

N XEZE<cH®WIXIOW"WOZIrMRuuHIDQ=REHEDOQ®m D>

- 154 -

99, 6/3 c SMALL LETTER (Lower-case) c
100. 6/4 d SMALL LETTER (Lower-case) d
101. 6/5 e SMALL LETTER (Lower-case) e
102. 6/6 f SMALL LETTER (Lower-case) f
103. 6/7 g SMALL LETTER (Lower-case) g
104. 6/8 h SMALL LETTER (Lower-case) h
105. 6/9 i SMALL LETTER (Lower-case) i
106. 6/10 j SMALL LETTER (Lower-case) j
107. 6/11 k SMALL LETTER (Lower-case) k
108. 6/12 1 SMALL LETTER (Lower-case) 1
109. 6/13 m SMALL LETTER (Lower-case) m
110. 6/14 n SMALL LETTER (Lower-case) n
111, 6/15 o SMALL LETTER (Lower-case) o
112. 7/0 P SMALL LETTER (Lower-case) p
113. 7/1 q SMALL LETTER (Lower-case) q
114. 7/2 i SMALL LETTER (Lower-case) r
115. 7/3 s SMALL LETTER (Lower-case) s
116. 74 t SMALL LETTER (Lower-case) t
117. 7/5 u SMALL LETTER (Lower-case) u
118. 7/6 v SMALL LETTER (Lower-case) v
119. 7/17 W SMALL LETTER (Lower-case) w
120. 7/8 X SMALL LETTER (Lower-case) X
121. 7/9 y SMALL LETTER (Lower-case) y
122. 7/10 Z SMALL LETTER (Lower-case) z
123. 7/11 { LEFT CURLY BRACKET (Left brace)
124, 7/12 | VERTICAL LINE

125. 7/13 } RIGHT CURLY BRACKET (Right brace)
126. 7/14 - TILDE

127. 7/15 DEL DELETE

Characters in position 0/0 to 1/15, 4/0, 5/11, 5/12, 5/13, 6/0 and 7/11 to 7/15 are '"other-
characters'" according to the definition in 4.1. Additional other-characters may occur in Cl
and/or Gl set (see ECMA-35). The number of other-characters is implementation-dependent.

- 185 =

TABLE 2

Exception Codes

The following table specifies the values of the EXTYPE function corresponding to the exceptions
specified in this Standard. Nonfatal exceptions are designated by an exclamation-mark (!). The
numbers in parentheses following each exception refer to the sections in which that exception is
specified.

Overflow (1000)

1001 Overflow in evaluating numeric-constant (5.1, 15.1)
1002 Overflow in evaluating numeric-expression (5.3)
1003 Overflow in evaluating numeric-supplied-function (5.4)
1004 Overflow in evaluating VAL (6.4)
1005 Overflow in evaluating numeric-array-expression (7.2)
1006 Overflow in numeric datum for (MAT) READ (10.1, 10.5)
! 1007 Overflow in numeric datum for (MAT) INPUT from terminal (10.2, 10.5)
1008 Overflow in numeric data for file input (11.4)
1009 Overflow during evaluation of DET or DOT (7.2)
1010 Too many digits declared for fixed decimal (15.1, 15.2) (BASIC-2 only)
1011 Overflow in fixed decimal assignment (15.1, 15.2) (BASIC-2 only)
1051 Overflow in evaluating string-expression (6.3)
1052 Overflow in evaluating string-array-expression (7.3)
1053 Overflow in string datum for (MAT) READ (10.1, 10.5)
! 1054 Overflow in string datum for (MAT) (LINE) INPUT (10.2, 10.5)
1105 Overflow in string datum for file input (11.4)
1106 Overflow in string assignment (6.5, 9.1, 7.3)

Underflow errors (1500)

The following exceptions are recommended in the Remarks Sections, and are not mandatory.

! 1501 Numeric constant underflow (5.1)

! 1502 Numeric expression underflow (5.3)

! 1503 Function value underflow (5.4)

! 1504 VAL underflow (6.4)

! 1505 Array expression underflow (7.2)

! 1506 Numeric DATA underflow (10.1)

! 1507 Numeric input underflow (10.2, 10.5)
1508 File numeric input underflow (11.4)

Subscript errors (2000)

2001 Subscript out of bounds (5.2, 6.2)

Mathematical error (3000)

3001 Division by zero (5.3)

3002 Negative number raised to nonintegral power (5.3)

3003 Zero raised to negative power (5.3)

3004 Logarithm of zero or negative number (5.4)

3005 Square root of negative number (5.4)

3006 Zero divisor specified for MOD or REMAINDER (5.4)

3007 Argument of ACOS or ASIN not in range -1 <= x <= 1 (5.4)

3008 Attempt to evaluate ANGLE(0,0) (5.4)

3009 Attempt to invert a singular matrix, or loss of all significance in such attempt (7.2)

- 156 -

Uninitialized errors (3100
The following exceptions are recommended in the Remarks Sections, and are not mandated.

! 3101 Uninitialized numeric-variable (5.2)
! 3102 Uninitialized string-variable (6.2)

Parameter error (4000)

4001 Argument of VAL not a numeric-constant (6.4)

4002 Argument of CHR$ out of range (6.4)

4003 Argument of ORD not a valid character or mnemonic (6.4)

4004 Index of SIZE out of range (7.1)

4005 Index in TAB less than one (10.3)

4006 Margin setting less than current zonewidth (10.3, 11.3)

4007 Index of ZONEWIDTH out of range (10.3, 11.3)

4008 Index of LBOUND out of range (7.1)

4009 Index of UBOUND out of range (7.1)

4010 Second argument of REPEAT$ < 0 (6.4)

4101 Value of the string-expression in a set-statement (13.1)

4301 Parameter type or count mismatch between chain-statement and corresponding program-name-
line (9.3)

4302 Mismatched dimensions between chain array parameter and corresponding formal-array (9.3)

4303 Numeric parameters passed in chain having different ARITHMETIC options (9.3)

Storage exhausted (5000)
5001 Size of redimensioned array too large (7.2, 7.3, 10.5, 11.4)

Matrix errors (6000)

6001 Mismatched sizes in numeric-array-expression (7.2)

6002 Argument of DET not a square matrix (7.2)

6003 Argument of INV not a square matrix (7.2)

6004 Arguments to IDN do not specify square matrix (7.2)

6005 First index greater than second in redim, or index less than lower bound (7.2, 7.3, 10.5,
11.4)

6101 Mismatched sizes in string-array-expression (7.3)

File use errors (7000)

7001 Channel number not in range 0 <= ¢ <= max (11.1)
! 7002 Channel zero in OPEN, CLOSE, ERASE, or with record-setter (11.1, 11.2)
7003 Nonzero channel in OPEN already active (11.1)
7004 TInactive channel in file statement other than OPEN or ASK (11.1, 11.2, 11.3, 11.4, 11.5)

7050 Keyed file OPEN with wrong collate sequence (11.1) (BASIC-2 only)

7051 LENGTH not greater than zero on OPEN (11.1)

7052 A device is opened as RELATIVE or KEYED (11.1) (BASIC-2 only)

7100 Unrecognizable file attribute in OPEN (11.1)

71xx Implementation-defined failures to provide access toe inaccordance with file attribute
(11.1)

7202

7203

7204
7205
7206
7207
7301
7302
7303
7305
7308
7311
7312
7313
7314

7345

7316

7317

7318

7321

7322

7401
7402

- 157 =

The record-setter RECORD is used on a file opened with a file-organization other than
RELATIVE (11.2) (BASIC-2 only)

The record-setter KEY is used on a file opened with a file-organization other than KEYED
(11.2) (BASIC-2 only)

Record-setter SAME following DELETE, OPEN, or exception (11.2)

Record-setter used on device without that capability (11.2)

The index of a record-setter evaluates to an integer less than one (11.2) BASIC-2 only)
A record-setter specifies an exact-search for the null string (11.2) (BASIC-2 only)
Attempt to ERASE file not opened as OUTIN (11.1)

Output not possible to INPUT file (11.3)

Input not possible from OUTPUT file (11.4)

Attempt to input nonexistent record (11.4)

Attempt to write existing record (11.3)

Attempt to erase a device without erase capability (11.1)

Zonewidth or margin set for non-display file (11.3)

Zonewidth or margin set for INPUT file (11.3)

A write-statement or array-write-statement attempts to access a KEYED file, but does not
specify an exact-search in its record-setter (11.3) (BASIC-2 only)

A template-identifier is used on a file opened as DISPLAY or INTERNAL (11.3) (BASIC-2
only)

A write-statement or array-write-statement does not have a template-identifier when
attempting to access a file opened as NATIVE (11.3) (BASIC-2 only)

(MAT) PRINT to INTERNAL file (11.3)

(MAT) (LINE) INPUT from INTERNAL file (11.4)

SKIP REST on stream file (11.4)

A data modification statement attempts to access a file opened as INPUT or as OUTPUT
(11.5) (BASIC-2 only)

Attempt to trace to inactive channel (12.2)

Attempt to trace to non-display-format or INPUT file (12.2)

Input-output errors (8000

8001
! 8002
! 8003
8011
8012
8013
8101
! 8102
! 8103
8105
8120
8201
8202
! 8203
! 8204
8251

8252

8253

8254

8255

(MAT) READ beyond end of data (10.1, 10.5)

Too few data in input-reply (10.2, 10.5)

Too many data in input-reply (10.2, 10.5)

End-of-file encountered on input (11.4)

Too few data in record (11.4)

Too many data in record (11.4)

Nonnumeric datum for (MAT) READ or INPUT of number from DISPLAY record (10.1, 10.5, 11.4)
Syntactically incorrect input-reply from terminal (10.2, 10.5)

Nonnumeric datum for (MAT) INPUT of number (10.2, 10.5)

Syntactically incorrect input reply from file (11.4)

Type mismatch on INTERNAL input (11.4)

Invalid format-string (10.4, 10.5)

No format-item in format-string for output list (10.4, 10.5)

Format-item too short for output string (10.4)

Exrad overflow (10.4)

The string-expression of a template-identifier is not a syntactically correct template-
element-list (11.3, 11.4, 11.5) (BASIC-2 only)

An expression or array-element does not agree in type (numeric or string) with its
associated TEMPLATE field-specifier (11.3, 11.4, 11.5) (BASIC-2 only)

A template-element with a variable-field-count does not coincide with the first element
of an array (11.3, 11.4, 11.5) (BASIC-2 only)

There are not enough field-specifiers in a template-statement for all the expressions or
array-elements (11.3, 11.4, 11.5) (BASIC-2 only)

A numeric value has significant digits to the left of the available digit places in the
field of a template (11.3, 11.5) (BASIC-2 only)

- 158 -

8256 A string value is longer than the length of its field in the template (11.3, 11.5)
(BASIC-2 only)

8301 Record length exceeded on output to file (11.3, 11.5)

8302 Input from a record longer than RECSIZE (11.4)

8401 Timeout on (MAT) (LINE) INPUT (10.2, 10.5)

8402 Illegal numeric value specified for time-expression (10.2, 10.5)

Device errors (9000)

9xxx Implementation-defined device failures
Control errors (10000

10001 Index out of range, no ELSE in on-goto- or on-gosub (8.2)
10002 Return without corresponding gosub or on-gosub (8.2)
10004 No case-block selected and no CASE ELSE (8.4)
10005 Attempt to chain to unavailable program (9.3)

! 10007 Break statement executed when debugging active (12.2)

Graphical errors (11000)

! 11051 Set-statement boundaries with zero width or height (13.1)
! 11052 Viewport boundary not in range (13.1)
! 11053 A boundary of the device window is not in the range [0, 1] (13.1)
! 11054 A boundary of the device viewport is not in the display space (13.1)
! 11056 Set-statement point style out of range (13.2)
! 11062 Set-statement line style out of range (13.2)
! 11085 Set statement color index out of range (13.2, 13.3)
11100 Graphic-output with LINES and fewer than two points, or with AREA and fewer than three
points (13.3)

When an exception occurs in a program-unit and is not handled by an exception-handler in that
program-unit, the exception which results at the line which invoked the program-unit shall be
identified by the value 100000 plus the value specified above for the exception.

= 159 =

APPENDICES

- 160 -

APPENDIX 1

ORGANIZATION OF THE STANDARD

This Standard is organized into a number of sections, each of which covers a group of related
features of BASIC. Each section is divided further to treat particular features of BASIC. The
final subdivisions of each section are used as follows.

Subsection 1

General Description
This subsection briefly describes the features of BASIC to be treated.

Subsection 2

Syntax

The exact syntax of features of the language is describes in a modified context-free
grammar or Backus-Naur Form. The details of this method of syntax specification are
described in 3.1.

In order to keep the syntax reasonably simple the syntax specification will allow some
constructions which, strictly speaking,are not legal according to this Standard; e.g., it
will allow the generation of the statement

LET X = A(+1) + A(1,2)

in which the array A occurs with differing numbers of subscripts. Rather than ruling such
constructions out by a more complicated formal syntax, this Standard instead rules them out
by placing restrictions on that syntax.

The primary goal of the syntax is to define the notion of a program and its constituent
parts. In addition the syntax defines several other items which are not needed for the
definition of a program. These include the input-prompt, which is output to request input,
the input-reply and line-input-reply, which are strings supplied in response to a request
for input.

Subsection 3

Examples

A short list of valid examples that can be generated by the productions in Subsection 2 is
given. The numbering of the examples corresponds to the numbering of the productions, and
will not be consecutive if examples are not given for all rules.

Subsection 4
Semantics

The semantic rules in this Standard assign a meaning to the constructions generated
according to the syntax.

- 161 -

Subsection 5

Exceptions

This subsection contains a list of those exception conditions which a standard-conforming
implementation must recognize. Exception numbers (values of the EXTYPE function) are also
given.

Subsection 6
Remarks

This subsection contains remarks which point out certain features of this Standard as well
as remarks which make recommendations concerning the implementation of a BASIC language
processor in an operating environment.

- 162 -

APPENDIX 2

SCOPE_RULES

The scope of an entity is that part of the program where its name is recognized as referring to
that object (as opposed to not being recognized at all, or recognized as referring to some other
object). In general, an entity is known by only one name, and so the scope of recognition of its
name is also the scope in which the object itself can be accessed. In the special case of parame-
ter passing by reference, the same object is known by two different names, and so the object it-
self may be accessed outside the scope of its name.

In all cases, the indicated scope is the scope of the name of the object in question.

Object Scope
1. non-parameter variable program-unit
2. non-parameter array program-unit
3. program-unit parameter program-unit (%)
4. inter-proc-def-parameter internal-proc-def (%)
5. inter-proc-def program-unit
6. program-unit program
7. DATA program-unit
8. channel-number (non-zero) program-unit
9. channel zero program

10. IMAGE, TEMPLATE program-unit (BASIC-2 only for TEMPLATE)

11. GOSUB stack smaller of program-unit, internal-proc-def, when-lock
(BASIC-2 only), or exception-handler (BASIC-2
only)

12. OPTIONs program-unit

13. filenames program

14. RND sequence program

15. [deleted]
16. [deleted]

17. Graphic and PRINT program
set-object

18. line-number program-unit

19. DEBUG and TRACE state program-unit

Note

Even though the name is known only to the program-unit or internal-proc-def, when a parameter is
passed by reference, the object denoted is common to both the invoked and invoking unit.

= 163 -

APPENDIX 3

IMPLEMENTATION-DEFINED FEATURES

A number of the features defined in this Standard have been left for definition by the imple-
menter. However, this will not affect portability, provided that the limits recommended in the
various sections are respected.

The way these features are implemented shall be defined in the user or system manual of the spe-
cific implementation.

The following is a list of implementation-defined features.
Subsection 2.3

- interpretation of syntactically illegal constructs
- format of error messages

Subsection 2.4

- format of exception messages
- hardware dependent exceptions
- order of exception detection in a line

Subsection 3.2
- certain semantic rules for native data
Subsection 4.1

- other-character
- coding for the native collating sequence

Subsection 4.2

- end-of-line

- maximum physical line length

- effect of parameter list in program-name-line of program not initiated by a chain-statement
- relationship of program-designator and program-name

- effect of non-standard programs

Subsection 4.4
- restrictions on identifiers for procedures compiled independently from the main program
Subsection 5.1
- precision and range of numeric-constants
Subsection 5.2
- initial value of numeric variables
Subsection 5.3

- order of evaluation of numeric-expressions

- 164 -

Subsection 5.4

accuracy of evaluation of numeric functions
value of MAXNUM and EPS

pseudo-random number sequence

availability of calendar and clock

time zone for DATE and TIME

Subsection 5.6

precision and range of numeric values

precision and range of floating decimal arithmetic
precision and range of native arithmetic

accuracy of evaluation of numeric expressions

Subsection 6.2

maximum length of undeclared string-variables
initial value of string-variables

Subsection 6.4

values of CHR$ for the native character set
values of ORD for the native character set
availability of calendar and clock

time-zone for DATE$ and TIME$

effect of UCASE$ and LCASE$ for other-characters

Subsection 6.6

collating sequence under OPTION COLLATE NATIVE
maximum length of declared string-variables without length-max

Subsection 7.1

maximum lengths of strings in string-arrays with length-max
Subsection 7.2

value of the inverse of a singular matrix
Subsection 9.1

maximum length of string parameters without length-max
value of a defined function when no value has been specified
initial values of local variables in external functions

Subsection 9.2

maximum length of string parameters without length-max
effect of redimensioning an array parameter when an element of that array is also a parameter
initial values of variables which are not formal parameters to a procedure

Subsection 9.3

interpretation of the program-designator in a chain-statement
interpretation of upper-case-letters and lower-case-letters in a program-designator
initial values of variables in a chained-to program

Subsection 10.2

input-prompt
means of requesting input in batch mode
values (minimum and maximum) and resolution of timeout-expression and time-inquiry

= 165 =

Subsection 10.3

effect of invoking a function which causes printing while printing
significance width for printing numeric representations

exrad width for printing numeric representations

effect of nonprinting characters on columnar position

default margin

default zonewidth

treatment of trailing space at end of print line

use of upper-case or lower-case "E'" in exrad

Subsection 10.5
treatment of re-supply of input to a re-dimensioned array
Section 11

effect of some file operations on devices
effect of certain combinations of file organization and type

Subsection 11.1

maximum channel number

whether a file name with different case letters (lower or upper) denotes the same file or dif-
ferent files

effect of attempting to open an already oper. file

number of channels which can be active simultaneously

attempting to open a file with attributes different from those under which it was created
attempting to reopen a file under a different ARITHMETIC option

two program-units attempting to open a file under different attributes or options

means of insuring preservation of file contents between runs

effect of certain combinations of file organization and type

length of records in INTERNAL and NATIVE (for BASIC-2 only) files

maximum length of records when not specified or available

value of DATUM for a SEQUENTIAL (BASIC-1) or non-STREAM (BASIC-2 only) file

value of ask-attribute NAME for channel zero

meaning of exception codes 7101-7199

maximum length of keys for KEYED file (BASIC-2 only)

Subsection 11.2
method of signifying that data is not available for input on a non-file device channel
Subsection 11.3

means of indicating end-of-record

default margin and zonewidth

maximum margin and zonewidth supported

accuracy of printed numeric values produced by PRINT for DISPLAY files

Subsection 11.4

number of significant digits for values received from a numeric field in a NATIVE (for BASIC-2
only) file

effect of input-control-items on files and nonterminal devices

precision of numeric contents received from display files

precision of numeric-values that can be retrieved without loss of precision from a NATIVE file
(BASIC-2 only)

retrieving a record from a NATIVE file having contents which are incompatible with the TEMPLATE
(BASIC-2 only)

use of fatal or nonfatal exception procedure on illegal input-reply

- 166 -

Subsection 11.5 (BASIC-2 only)

effect of data modification statements on files that are not RELATIVE or KEYED
use of SKIP in incompatible template for REWRITE

Subsection 12.1 (BASIC-2 only)

value of EXTYPE for locally defined exceptions
format of EXTEXT$ values

Subsection 12.2

actions allowed by debugging system
form of trace reports

Subsection 13.1

manner of selecting a particular graphic display device
effect of "inverted" windows

Subsection 13.2

number of line styles available for graphics
effect of line styles other than 1

number of point styles available for graphics
effect of point styles other than 3

the number of color values available

the color associated with each color value

Subsection 13.3
character size, style, and orientation for graphic labels
Subsection 15.1 (BASIC-2 only)

the maximum precision available for fixed decimal arithmetic

the precision of fixed decimal expression and function evaluation

the accuracy of fixed decimal expression and function evaluation

definition of "significant digits"

the accessibility of an INTERNAL format file to programs having different ARITHMETIC options
the accessibility of a NATIVE format file to programs having different ARITHMETIC options

Table 1

The number of additional other-characters.

Tt should be noted that implementation-defined features may cause the same program to produce
different results on different implementations, for these and possibly other reasons :

The logical flow of a program may be affected by the algorithm used for the pseudo-random num-
ber sequence.

The logical flow of a program may be affected by the value of machine infinitesimal and/or the
value of MAXNUM and/or the precision for numeric values.

The initial value of variables may affect the logical flow of a program which contains logical
errors.

The order of evaluation of numeric-expressions may affect the logical flow of a program.

- 167 -

APPENDIX 4

INDEX OF SYNTACTIC OBJECTS

This Appendix indexes all occurences of terminal symbols and metanames in the syntax. Each refer-
ence has the form cc. s-pp, where cc. s indicates the section and subsection in which the
metaname occurs and pp indicates the number of the production. An asterisk following a reference
indicates that the metaname is defined in that production. Symbols and metanames used only in
BASIC-2 are shown in bold.

Example: 4.1-07 refers to Section 4.1, Subsection 4.1.2 (the Syntax subsection), production
rule 7.

0 4,1-07 1+1=09
1 4.,1-07 7.1-09
2 4.,1-07

3 4,1-07

L 4.1-07

5 4,1-07

6 4,1-07

7 4,1-07

8 4,1-07

9 4.1-07

A 4,1-09

ABS 5.4-01

ACCESS 11.1-08 11..1-22
ACOS 5.4-01

AND 8.1-03

ANGLE 5.4-01 5.6-03
AREA 13.2-04 13.3-05
ARITHMETIC 5.6-03 15.1-01
ASIN 5.4-01

ASK 10.3-08 11.1-18 13.1-04
AT 13:3=12

ATN 5.4.01

B 4.,1-09

BASE 7.1-09

BEGIN 11.2-05

BREAK 12.2-02

C 4.1-09

CALL 9.2-14

CASE 8.4-13 8.4-16 8.4-21
CAUSE 12.1-13

CEIL 5.4-01

CHAIN 9.3-01

CHR 6.4-01

CLEAR 13.2-02

CLIP 13.1-01 13.1-06
CLOSE 11.1-16

COLLATE 6.6-01 11.1-29 11.1-31
COLOR 13.2=03 13.2-07

CON 7.2-06

CONTINUE

COSH
CoT
CSC

D

DATA
DATE
DATUM
DEBUG
DECIMAL
DECLARE
DEF
DEG

" DEGREES
DELETE
DET
DEVICE
DIM
DISPLAY
DO

DOT

E
ELAPSED
ELSE
ELSEIF
END

EPS
ERASABLE
ERASE
EXCEPTION
EXIT
EXLINE
EXP
EXTERNAL
EXTEXT
EXTYPE

F
FILETYPE
FIXED
FOR

FP
FUNCTION

GOSUB
GOTO
GRAPH

- 168 -

12.1-11
5.4-01
5.4-01
5.4-01
5.4.01

4.1-09
10.1-06
5.4-01
11.1-22
12.2-01
5.6-03
5.6-04
9.1-05
5.4-01
5.6-03
11.5-06
7.2-10
13.1-01
7.1-01
11.4-14
8.3-04
7.2-10

4.1-09
10.2-07
8.2-03
8.4-07
4.2-18
11.2-05
5.4-01
11.1-22
11.1-17
12.1-03
8.3-07
12.1-18
5.4-01
9.1=15
12.1-19
12.1-18

4.1-09
11:0=22
5.6-03
8.3-12
5.4-01
9.1~-12
9.1-22

4.1-09
8.2-02
8.2-04
8.2-02
13.3-04

4.1-09

6.4-01

9.1-07

13.1-06

8.3-07

5.1-08

8.2-06

8.4-10
12.1-07

12.1-09
8.3-18

9s =22

15.1-01
8.3-18

9.1-13
15.2-05

8.2-03
8.2-06
8.2-03

9.1-20

11.3-N22

8.4-01

8.4-22
12.1-17

12.1-13
9.1-18

9.2-13

9.1~15
15.2-06

8.2-04

15.2-07

8.4-09

9.1-13

9.2-11

9.2=19

9.1-18

8.2-06

8.4-21

9.2-10

12.1-12

15.2-06

9.1-21

HANDLER

IDN
IF
IMAGE
IN
INPUT

INT
INTERNAL
INV

IP

Is

KEY
KEYED

LBOUND
LCASE

LENGTH
LET
LINE
LINES
LOG
LOG10
LOG2
LOOP
LTRIM

MARGIN

MAX
MAXLEN
MAXNUM
MAXSIZE
MIN
MISSING
MOD

N
NAME
NATIVE
NEXT

- 169 -

12.1-12

4.1-09
7.2-06
8.4-01
10.4-05
12.1-03
10.2-01
11.4-01
5.4-01
11.1-14
7.2-09
5.4-01
8.4-19

4.1-09

4.1-09
11.1-31
11.1-24

4.1-09
T-1-12
6.4-01
6.4-02
11.1~15
5.5-02
10.2-08
13:3=05
5.4-01
5.4-01
5.4-01
8.3-09
6.4-01

4.1-09
10.3.07
7.2-02
10.5-09
11.4-04
5.4-01
6.4-03
5.4-01
74112
5.4-01
10.1-03
5.4-01

4.1-09
11.1-01
5.6-03
8.3-20

12.1-16

8.4-04

10.2-08
11.4-02

11.2-10

6.5-02
10.5-06

10.3-10

7.3-02
11.3-02
11.4-08
13.2-07

11.1-22
6.6-01

12.1-17

8.4-10

10.5-04
11.4-03

9.1-16
11.4-03

11122
10.5-01
11.3-07
11.5-03

11.1-29

10.1-03 11.2-07

10.5-06 11.1-08
11.4-04

9.1-17
11.4-04 13.2-05

11.3-05
10.5-04 10.5-06
11.4-02

11.1-N26

= 170 =

NOT 8.1-04

NUL 7.3-05

NUMERIC 5.6-06 11.3-N21 15.1-03
0 4.1-09

OF 11.3-N18 11.3-N19

OFF 12.2-01 12.2-03

ON 8.2-03 8.2-06 12.2-01 12.2-03
OPEN 11.1-01

OPTION 5.6-01

OR 8.1-02

ORD 6.4-02

ORGANIZATION 11.1-09 11.1-22

OUTIN 11.1-08

OUTPUT 11.1-08

P 4.1-09

PI 5.4-01

POINT 13.2-05

POINTER 11.1-22 11.2-03

POINTS 13.3-05

POS 6.4-02

PRINT 10.3-01 10.4-01 10.5-09 11.3-01 11.3-02
PROGRAM 4.2-02

PROMPT 10.2-04

Q 4.1-09

R 4.1-09

RAD 5.4-01

RADIANS 5.6-03

RANDOMIZE 5.4-02

READ 10.1-01 10.5.01 11.4-07 11.4-08
RECORD 11.1-31 11.2-10

RECSIZE 11.1-15 11.1-22

RECTYPE 11.1-12 11.1-22

RELATIVE 11.1-24

REM 4.3-01

REMAINDER 5.4-01

REPEAT 6.4-01

REST 11.1-17 11.4-01 11.4-07
RESTORE 10.1-05

RETRY 12.1-11

RETURN 8.2-05

REWRITE 11.5-02 11.5-03

RND 5.4-01

ROUND 5.4-01

RTRIM 6.4-01

S 4.1-09

SAME 11.2-05

SEC 5.4-01

SELECT 8.4-13 8.4-22
SEQUENTTAL 11.1-11

SET 10.3-06

SETTER 11.1-22

SGN
SIN
SINH
SIZE
SKIP
SQR
STANDARD
STATUS
STEP
STOP
STR
STREAM
STRING
STYLE
SUB

TAB

TAN
TANH
TEMPLATE

TIME
TIMEOUT
TO

TRACE

TRUNCATE

UBOUND
UCASE
UNTIL
USE
USING

\

VAL
VARTABLE
VIEWPORT

W
WHEN
WHILE
WINDOW
WITH
WRITE

= 171. =

5.4-01

5.4-01

5.4-01

d «1=12 13.1-06
11.3-N18 11.4-01 11.4-07
5.4-01

6.6-01 11.1-29
13.1-05

8.3-12

4.2-13

6.4-01
13 111

6.6-03 11.3-N26
13.2-03 13.2-07

8.2-04 8.2-06 9.2-04 9.2-10 9.2-11
9.2-18 9:2=19

4.1-09
10.3-04

5.4-01

5.4-01
11.3-N15
13.2-04 13.3-11

8.4-01 8.4-04 8.4-07 10.1-03 11.2-07
11.2-07

5.4-01 6.4-01
10.2.05

7.1-06 7.2-08 8.2-02 8.2-03 8.3-12
8.4-19 12.2-03
12.2-03

7.2-09

5.4-01

4.1-09

7.1-12

6.4-01

8.3-05

12.1-05 12.1-09

6.4-01 10.4-02 10.5-09 11.3-04 13.3-11

4.1-09
6.4-02
11.1-15
13.1-01 13.1-06

4.1-09

12.1-03 12.1-07 12.1-09
8.3-05

13.1-01 13.1-06

9.3-01 11.3-N13

11.3-06 11.3-07

4.1-09

4.1-09

Z
ZER
ZONEWIDTH

a
access-mode
actual-array
ampersand
apostrophe
array-assignment
array-declaration
array-input-statement
array-line-input-statement
“array-list
array-name

array-output-list
array-print-list
array-print-statement
array-read-statement
array-rewrite-statement
array-write-statement
ask-attribute-name
ask-io-item
ask-io-list

ask-item
ask-item-list
ask-object
ask-statement
asterisk

block

bound-argument
boundaries
boundary
boundary-variables
bounds
bounds-range
break-statement

c
call-statement
case-block
case-else-block
case-else-line
case-item
case-line
case-list
case-statement
cause-statement

- 172 -

4.1-09
7.2-06
10.3-07

4.1-10
11.1-07
5.3-09
4.1-03
4.1-03
4.2-12
7.1-02
4.2-12
4.2-12
11.3-07
5.2-10%
10.5-05
10.5-09
10.5-09
4.2-12
4.2-12
11.5-01
4.2-12
11.1-20
10.3-09
10.3-08
11.1-19
11.1-18
13.1-04
4.2-12
4.1-03
10.4-13

4.1-10
4.2-05
8.4-06
9.1-02
7112
13.1-01
13.1-02
13.1-06
7.1-04
7.1-05
4.2-12

4.1-10
4.2-12
8.4-11
8.4-11
4.2-22
8.4-17
4,2-22
8.4-16
8.4-15
4.2-12

10.3-10

11.1-08%
5.3-10%
L.2-24

10.4-08
7.2-01%
7.1-03%

10.5-04%

10.5-06%

11.3-11%
5.3-10

10.5-10

10.5-11%

10.5-10%

10.5-09%

10.5-01%

11.5-03%

11.3-07%

11.1-21%

10.3-10%

10.3-09%

11.1-20%

11.1-19%

13.1-06%

10.3-08%
5.3-11

11.3-N21

4,2-07%
8.4-08
9.2-02
7.1-14%
13.1-02%
13.1-03%
13.1-07%
7.1-05%
7.1-06%
12.2-02

L 2-14%
L=14%
4=20%
14-20

L4-18%
-1k

L=17%
8.4-16%
12.1-13%

0 0 00 0 0 0 O

11.1-22

7:1713
6.3-06

7.3-01%

11.4-02%
11.4-04%
11.5-03
6.2-08%
10.5-11
11.3-02
11.3-02
11.3-02%
11.4-08%

11.1-30%

13.2-07%
11.1-18%
6.6-04
11.3-N26

8.3-06
8.4-14
12.1-04

7.1-08

8.4-21%

8.4-15%

11.3-05

7.1-14

9...1-11
11.3-11

13.1-04%
7.2-04
15.1-02

8.3-17
8.4-20
12.1-06

9.2-16

10.5-03

7.2-05

8.4-05

chain-statement
channel-expression

channel-number
channel-setter
character
circumflex-accent
clear-statement
close-statement
collate-sequence
colon

comma

comparison
concatenation

conditional-statement

conjunction
constant
control-transfer
control-variable
coordinate-pair
core-attribute-name
core-file-attribute
core-file-org-value
core-record-setter

core-record-type-value

d

data-list
data-statement
datum
debug-statement

declarative-statement

declare-statement
def-statement
def-type

= 173 =

4.2-12
9.2-16
11.3-01
11.4-01
11.4-07
11.5-06
9.2-07
11.1-01
4,1-01%
4,1-03
13.2-01
4.2-12
11.1-28
4.1-03
10.4-05
11.1-02
11.3-07
11.4-03
11.5-02
4.1-03
5.6-06
7.1-05
8.2-03
9.1~-11
9.2-20
10.2-10
10.4-12
11..1.~05
11.3-08
11.4-01
11.5-04
13.1-07
15.1-03
8.1-05
6.3-02
4.2-10
8.1-02
5.1-01%
8.2-01%
8.3-12
13.3-06
11.1~-21
11.1-06
11.1-10
11.2-03
11.1-13

4.1-10
10.1-06
k.2-11
10.1-07
4.2-12
4.2-10
4.2-11
9.1-03
9.1-19

9.
11.
11.
11.
11.
12.

9.
11.

L,

5.
13.
11.
11.1-29%

6.
10.
11.
11.3-N15
) I R

3-01%
1-02
3-02
4-02
4-08
2-03
2-08%
1-02%
3-02
3-04
2-02%
1-16%

2-06
4-08
3-01

L4-0k

11.5-03

5.
6.
7.
8.
9.
10.
10.
10.
11.
11.
11.
11.
13.

o 0 F 00 ®

10.
10.
10.
12,
L2-11%
.6-04%
. 1-04%
.1-20%

O O U =

2-06
5-03
1-14
2-06
1-23
1-02
3=05
5-02
1-19
3-10
4-05
5-07
3-07

.1-06%
.3-06%
L2-14%
.1-03%
.1-01%

.3-13%
13s
11.
11.
11.
11.
11.

3-07%
1-22%
1-07%
1-11%
2-04

1-14%

1-07%
1-06%
1-08%
2-01%

11.1-03%
11.

3-06

11-4-03
11.5-02

11.
10.
10.

10.
10.
11.
1L,
11.
13.

11.

10.

11.3-N14*

O ® N oY

1-18
2-11
4-15

1-01
5-01
3-02
4-01
4-07
3-03
3-08

.6-03
.2-07

4-17

.2-06
10.
10.
10.
11.
11.
11.
13.
13.

1-07
3-09
5-07
2-02
3=11
4-07
1-02
3=11

.3-03

.4-18

«3=20
135

3-12

2-05%

2-10

11.1-16
11.3-07
11.4-04
11.5-03

11.2-01

10.2-02
10.5-09
11.3-06
11.4-02
11.4-08
13.3-11
5.5-03
7.1-02
7.2-10
9.1-09
9.2-15
10.2-02
10.4-04
10.5-11
11.3-03
11.3-N16
11.4-09
13.1-06
13.3-12

7.3-05

8.4-19

11.3-04

11.1-17

11.3-05

10.4-02

5.6-02

10.1-08

11.4-06

defined-function
delete-control
delete-control-item
delete-statement
detached-handler
digit

digit-place
dimension-1list
dimension-statement
disjunction
do-body

do-line

do-1loop
do-statement
dollar-sign

double-quote

e
e-format-item
else-block
else-line
elseif-block
elseif-then-line
end-function-line
end-handler-line
end-if-line
end-line
end-of-line

end-select-line
end-statement
end-sub-1line
end-sub-statement
end-when-1line
enhanced-attribute-name
enhanced-file-attribute
enhanced-file-org-value
enhanced-record-setter

enhanced-record-type-value

equality-relation
equals-sign

erase-statement
exact-search
exception-handler
exception-type
exclamation-mark
exit-condition
exit-do-statement
exit-for-statement
exit-function-statement
exit-handler-statement

- 174 -

9.1-23

11
11
11

.5-06
.5-07
.5-01

L.2-06

L.

10
10

0 0 F 0 0 F N

1-06
.4-08

A4-12
.1-01
w2=dd:

1-01

.3-02
«2~22
»3=01
+3=03
L.

1-03

12.1-19

L

L
10
8
A
8
A
L
L
L
L
A
10
A
A
A
9
L
11
11
11
11
11
8
IA
8
9
10
IR
11
12
12
I
8
IA
1
L
A

.1-02

.1-10
.4-09
.4-03
a2-22
.4-03
<2722
+2522
-2-22

«2~22

.2=-04
«2-15

.4-05

2522
.2=17
o222
+2=09
.2-22
.1-30
-1-27
-.1-23
.2-08
.1-N25
.1-07
.1-03

.1-08
«1-05
.4-08

212
.2-10
.1-02
-1-13
.1-03
.3-04
.2-12
.2=12
s2512
.2-12

9.1-24%
11.5-07%
11.5-08%
11.5-06%
12.1-15%

4,1-07%

10.4-13%
7.1-02%
7.1-01%
8.1-02%
8.3-06%
8.3-02
8.3-02%
8.3-04%
L4 . L4-04

L. 1-0L%

10.4-15%
8.4-08%
8.4-08
8.4-06%
8.4-06
9.1-02

12.1-15
8.4-03
L,2-17%
L,2-16%

8.4-11
L,2-18%
9.2-02
9.2-10%
12.1-02
11.1-31%
11.1-28%
11.1-24%
11.2-09
11.1-N26%
8.1-08%
5+5=02
8.1-10
9.1-07
11.2-11
11.1-17%
11.2-11%
12.1-06%
12.1-14%
4,3-04
8.3-05%
8.3-07%
8.3-18%
9.1-18%
12.1-12%

15.2-08

4.2-09

8.3-03%

6.4-01

8.4-09%

8.4-07%
9.1-13%
12.1-17%
8.4-10%
L.,2-22
4,2-21

8.04-22%

9.2-09%

12.1-07%

11.2-10%

6.5-02
8:1=11
9:1=16
15.2-07

12.1-15

10.4-08

8.3-09
10.1-04
10.1-04

4.4-03

7.3-05

9.1-14

10.2-10

9:2=12

12.1-08

7.2-02
8.3-12
9.:1=14

5.1-06

10.4-11

10.2-11

7.3-02

exit-sub-statement
expression

expression-list

exrad
external-function-def
external-function-line
external-function-type
external-sub-def
external-sub-1line
external-sub-type

£

f-format-item

factor

field-specifier
file-attribute
file-attribute-list
file-name
file-organization
file-organization-value
fixed-declaration
fixed-defined-function
fixed-field-count
fixed-formal-array
fixed-point-size
fixed-point-type

floating-characters
for-body

for-line

for-loop
for-statement
formal-array
format-item
format-string
formatted-print-1list
fraction
fraction-size
function-arg-list
function-argument
function-def
function-list
function-parameter
function-parm-list

g
geometric-object

geometric-statement
gosub-statement
goto-statement
graphic-output-statement
graphic-text-statement
graphic-verb

= 175 =

4.2-12
5.3-01%
10.3-03
11.3-06
5.1-04
4.2-20
4.2-22
9.1-19
4.2-20
L4.2-22
9.2=17

4.1-10
10.4-09
5.3-03
11.3-N17
11.1-05
11.1-01
11.1-01
11.1-07
11.1-09
15.1-03
15.2-05
11.3-N17
15.2-03
11.3-N22
15.1-01
15.2-04
10.4-09
8.3-10
4.2-22
8.3-01
8.3-11
9.1-10
10.4.06
10.4.05
10.4-01
5:1=05
11.3-N23
5.3-06
5.3-08
9.1-01%
9.1-20
9.1-09
4.2-02
9:1-15

4.1-10
13.3-03
13.3-02

L.2-12

4.2-12
13:3=01
13.3-02
13.3-03

9.
5.
L4-04

10

11.
5.
9.
9.
9.
9.
9.
9

10.
5.
11.3-N20%
11.
11.
1l.
11.
1l
15.1-04%
15.
11.3-N18%
15.2-04%

2-11%
3-09

3-10%
1-08%
1-01
1-14
1-22%
2-01
2=12
2-19%

L-104%
3-04%

1-06%
1-05%
1-04%
1-09%
1-10%

2-06

6.3-01% 8.4-13
11.3-10
11.5-02 13.3-11

9.1-14%
9.1-15% 15.2-06%

9.2-12%
9.2-13%

10.4-15

11.1-27%

12.1-23%

15.2-07 15.2-08

11.3-N23% 15.1-02
15.1-02% 15.1-03 15.1-04
15.2-09

10.
8.
8.
8.
8.
9.

10.

10.

10.
5.

11.3-N25%
5.
5.

9.
9.
9.
.2-05

15

13
13

13

4-11%
3-17%
3-10

3-10%
3-12%
1-11%
4,-09%
4.06%
14,-02%
1-07%

3-08%
3-09%

1-21
1-10%
1-05

.3-05%
.3-03%
.2-01

.2-01

13.
.3-11%
13.

3-02%

3-0L4%

8.3-11%

9..2~07 15.2-04

6.3-04 9.3-01

9.1-22 9.1-23%
15.2-01%

9.1-07 9.1-09%
15.2-06 15.2-07

8.2-0L%
8.2-02%

13.3-11

9.2-16

15.2-09%

15.2-03

9.1-12

greater-than-sign

h
handler-1line
handler-name

handler-return-statement

i

i-format-item
identifier
identifier-character
if-block

if-clause
if-statement
if-then-1line

image

image-line
imperative-statement

implementation-defined
increment
index

inexact-search
initial-point
initial-value
input-control
input-control-item
input-modifier
input-modifier-list
input-prompt
input-reply
input-statement
integer

integer-size
internal-def-1line
internal-function-def
internal-function-1line
internal-function-type
internal-proc-def
internal-sub-def
internal-sub-line
internal-sub-type
io-recovery
io-recovery-action

J
justifier

L,

- 176 -

1-03

11.2-12

L.
L.
12.
L.

L

11

8
11
12

7

1-10
2-22
1-09
2-12

«1=10
10.
L4-01%
4-02
.2-07
.4-01
.2=-14
«2-22
.4-02
.2-07
.2-10
.5-01%
L.
8.
5.

4-09

=11
3-12
2-07

.2-03
.1-03
1-14
11.
13

8.
11.
11.
10.
10.
10.
10.

L.

5.

2-10
3~11
3-12
4-01
4-05
2-02
2-01
2-09%
2-10%
2-12
1-05

.1-07

11.3-N25

11.
L.
L.
L.
9.
L.
L.
L.
9.
8.

10.

L.
10.

3-N23
2-22
2-06
2-22
1-19
2-05
2-06
2-22
2-17
2-01
1-03

1-10
4-09

8.1-07

12.1-15
12.1-10%
12.1-11%

10.4-12%

.4-03%
4-03%
4-02%
.2-01
.4-03
10.4-03%
.2-22
4.2-12%
13.2-01%
4.2-16
8.3-16%
5.2-08%
8.2-06
11.1-15
13.2-03
11.2-12%
13.3-12%
8.3-14%
11.4-02
11.4-06%
10.2-03%
10.2-02%

0 0w 0 ®© &

b -

10.2-02%
5.1-06%
9.2-08

11.3-N27

11.3-N24%

9.1-02
9.1-01
9.1-02
9.1-21%
4.2-06%
9.2-01
9.2-02
9.2-18%
11.2-02
10.1-04%

10.4-10%

8.1-09

12.1-16%
12.1-16

10.4-14

L . 4-0L4

8.4-01%

8.4-04%
10.5-09
10.4-05%

8.2-03
13.3-01%
10.2-09

6.2-06
10.3-04
11.2-10

11.4-03

10.2-08

11.4-01%
5.1=07
11.3-N18

9.1-03%
9.1-02%
9.1-12%

9.2-02%

9.2-03%

11.2-06%
11.2-07

8.1-10

10.4-15

4.4-05

11.3-04

8.2-06

7.1-14
10.3-07
11.3-05

11.4-04

10.5-04

5.1-08
11.3-N24

15.2-05%

10.4-10

13:3~11

8.4-02

7.2-08

11.4-05%

10.5-06

6.6-04

k

1
left-parenthesis

length-max

less-than-sign
let-statement
letter

limit

line
line-continuation
line-continuation
line-input-reply
line-input-statement
line-number

literal-item
literal-string
loop

loop-line
loop-statement
lower-case-letter

m
main-program
maxsize-argument
minus-sign
missing-recovery

multiplier

n
next-line
next-statement
non-quote-character
not-equals
not-greater

not-less
not-missing-recovery

- 177 =

4.1-10

4.1-10
4.1-03
6.3-03
7.1-14
8.1-05
9.2-15
11.3-N17
6.6-03
9.1-12
4.1-03
4.2-12
4.1-06
4.4-05
8.3-12
4,2-22%
L,2.20%
L,2-24%
10.2-11%
4.2-12
4.2-02
8.2-02
8.3-03
8.4-02
8.4-10
8.4-22
9.1-15
10.1-04
11.3-N13
12.1-09
15.2-06
10.4-07
10.4-06
4.2-07
4.2-22
8.3-08
4.1-08

4.1-10
4.2-01
7.1-12
4.1-06
10.1-01
11.4-10
5.3-03

4.1-10
4.2-22
8.3-19
4.1-01
8.1-08
8.1-07
8.1-07
11.2-06

5.
.4-03
.2-07
«1=09
.3-04

6
7
9
10

6.

9

10

10.
4.
.2-03
.3-08
8.
8.
9.
9.
10.

8
8

2-06

6-0L%

«1~15
8.
5
L.
.4-08
8.

1-07
5-01%
1-08%

3-15%

2-08%
2-08

L=-04
L=12
1=03
2-03
1-05

12.1-03
12.1-16

10.
10.
8.
8.
8.
4.

4,
7.
5.
10.
.5-05
5

11

0 0 00 & 00 ™

4-08%
4-07%
3-01%
3-06

3-09%
1-10%

2-04%
1-13%
1-03

1-03%

3-11%

«3=17

.3-20%
.1-02

.1-09%
L1-11%
.1-10%
11.

2-07%

5.3-05
7.1-05
7.2-09
9.1-11
10.4-08

6.6-06

8.1-09
6.5-01%
4.4-02

11.4-03%
4,2-09%
8.2-04
8.3-11
8.4-07
8.4-15
9+ 1=12
9.2-09
10.4-03
12.1-05
12.1-17

8.3-08%

4.2-23
10.4-11

10.5-01
11.5-08

8.3-19%

4.1-03%

11.2-12
11.3-04

5.3-08
7.1-13
7.2-10
9.2-06
10.5-05

7.1-10

8.1-11

4.4-03

4.2-17
8.2-06
8.3-19
8.4-09
8.4-21
9:1=13
9:2=13
10.4-05
12.1-07
15.2-05

11.2-06

11.3-09

6.2-06

9.1-07

10.4-10

L4.4-04

4.2-21

11.4-06

null-statement
number-sign
numeric-array

numeric-array-assignment
numeric-array-declaration
numeric-array-element
numeric-array-expression
numeric-array-function-ref
numeric-array-operator
numeric-array-value
numeric-constant
numeric-declaration
numeric-def-statement
numeric-defined-function

numeric-expression

numeric-field-size
numeric-fixed-parameter
numeric-function
numeric-function-let-statement
numeric-function-ref
numeric-identifier
numeric-let-statement
numeric-rep
numeric-specifier
numeric-supplied-function
numeric-time-expression
numeric-type
numeric-variable

numeric-variable-1list

o
on-gosub-statement
on-goto-statement
open-statement
option

option-list
option-statement
other-character
output-list

p

percent-sign

period
plain-string-character
plus-sign

point-list
pointer-control
pointer-items

primary

- 178 -

4.2-11
4,1-03
5.2-04
4 :2=03
7.2-01
7.1-03
5.2-02
7.2-02
7.2-03
7.2-03
7.2503
5.1-01
5.6-06
9.1-04
5.3-07
9.1-16
5.2-08
8.1-06
9.1-05
13.3-07
11.3-N21
15.2-01
5.3-06
4.2-12
5.3-05
4.4.01
5.5~01
5.1-02
11.3-N20
5.3-07
10.2-05
5.6-05
5.2-01
10.3-10
13.2-07
5:5=02

4.1-10
L.2-14
4.2-14
4.2-12
5.6-02
5.6-01
4,2-11
4,1-11%
10.4-02

4.1-10
4.,1-03
4.1-06
4.1-05
4.1-06
13.3-03
11.2-02
11.2-01
5.3-04

4.2-21
9.2-08
5.2-05%
7.2-09
7.2-02%
7.1-04%
5.2-04%
7.2-03%
7.2-09%
7.2-004%
7.2-06%
5.1-02%
5.6-07%
9.1-05%
9.1-05
9.1-24
5.3-01
8.3-14
9.1-16
15.2-07

11.3-N22%

15.2-02
5.3-07%
9.1-16%
5.3-06%
L, 4-02%
5.5-02%
5.1-04%

11.3-N21%*

5.4-01%
10.2-06%

5.6-06%

5.2-02%
13.1-05

5.5-03%

8.2=01
8.2-01
11.1-01%
5.6-03%
5.6-02%
5.6-01%

10.4-04%

10.4-13
5.1-05
L,1-06%
5.:1-03

13.3-06%

11.2-03%

11.2-02%
5.3-05%

4,3-03%
10.4-13

5.2-10

7.2-10

7.1-11

7.1-11%
15.2-07*%
9.1-06%
15.2-09
5.3-02%
8.3-15
10.2-06

15.2-03%

6.4-03%

5.2-03

5.3-05

6.4-02%

15.1-03

5.3-05
13.1-06

8.2-06%
8.2-03%

6.6-01%

11.3-01

5.1-07
10.1-09
10.4-11
11.2-08%

7.2-05

10.4-14
7.1-04

15.1-04

9.: 1=12

5+3-05
8.3-16
13.1-03

7.1-12%
5.2-05

12.1-18%

5.5-03
13.1-07

7.1-09%

10.4-14

11.1-03
7.2-02

9.1-15

5.5-02

7.2-10%

9.:1=06

10.2-07

15.1.-01%

11.3-N23

primitive-1
primitive-2
print-control
print-control-item
print-item
print-list
print-separator
print-statement
procedure
procedure-argument
procedure-argument-list
procedure-parameter
procedure-parm-list
procedure-part
program
program-designator
program-name
program-name-line
program-unit
prompt-specifier
protection-block

q
question-mark

quotation-mark
quoted-string
quoted-string-character

r
randomize-statement
range

read-control
read-control-item
read-statement
record-setter

record-size
record-type
record-type-value
redim

redim-array
redim-array-1list
redim-bounds
redim-string-array
redim-string-array-list
relation
relational-expression

relational-primary
relational-term
remark-line
remark-statement
remark-string
restore-statement
return-statement
rewrite-control

13.
13.
11.
11.
10.
10.
10.
L.
L,
9.
9.
9.
9.
4.
L,
9.
4.
L.
L.
10.
L.

L,
4,
L.
6.
L.

L.
L.
8.
11.
11.
L,
11.

- 179 -

2-03
2-03
3-01
3-03
3.02
3-01
3-02
2=12
2=19
2-15
2-14
2-06
2-04
2-01
2-01%
3-01
2-02
2=0%
2-23%
2-03
2-07

1-10
1-03
1-01
1-02
1-02%

1-10
2-12
4-18
4-07
4-09
2-12
2-004%

11.5-08

11.
11.
11.
7.
10.
10.
7.
10.
10.
.1-06
.1-01%
4-07
.1-04
.1-03
«2=19
.2-11
L.
L.
L.
11.

E O o © ®

1-07
1-07
1-12
2-06
5-02
5.01
2-07
5-07
5-06

3-01
2-12
2=12
5-02

13.2-04
13.2-04%
11.3-02
11.3-04%
10.3-03%
10.3-02%
10.3-05%
10.3-01%
4,2-20%
9.2-16%
9.2-15%
9.2-07%
9.2-06%
4,2-19%

9.3-02%
4,2-03%
4,2-02%

10.2-04%
12.1-01%

10.4-08
4.1-04
6.1-03%
6.1-03

5.4-02%

8.4-19%
11.4-08
11.4-10%
10.1-01%
11.2-09*%

11.1-15%
11.1-12%
11.1-13%
7.2-07%
10.5-03%
10.5-02%
7.2-08%
10.5-08%
10.5-07%
8.1-07%
8.1-05

8.1-05%
8.1-04%
4,2-21%
4.2-21
4,3-02%
10.1-05%
8.2-05%
11.5-03

13.2-05% 13.2-07
13.2-07
11.3-03%

11.3-01
10.5-10
10.4-01% 11.3-01%
4.2-23

15.2-02%

L4.2-22

11.4-06

10.5-05 11.3-N19
6.1=03

11.4-09%
11.4-N11*

11.4-07

11.3-09 11.4-10

11.1-N25%
7.3-05 10.5-03

10.5-04 11.4-02

11.4-04

8.4-19
8.3-05 8.4-01

L.2-22 8.4-11
4,3-01%
4.3-04

11.5-04%

11.5-05

10.5-08

11.4-08

8.4-04

rewrite-control-item
rewrite-statement
right-parenthesis

routine-identifier

s
scalar-multiplier
select-block
select-line
select-statement
semicolon

set-object

set-statement
sign

signed-integer
significand
simple-numeric-variable

simple-string-declaration
simple-string-variable
simple-variable

slant

space

statement

statement-1line
status-clause
stop-statement
string-array

string-array-assignment
string-array-declaration
string-array-element
string-array-expression
string-array-primary
string-array-value
string-constant
string-declaration
string-def-statement
string-defined-function

string-expression

string-field-size
string-function
string-function-let-statement

- 180 -

11.5-04

11.5-01
4,1-03
6.3-03
7.1-14
8.1-05
9.2-15

11.3-N17
4.2-03

4.1-10
7.2-03
4.2-07
4.2-22
8.4-12
4.1-03
13.3-06
10.3-06
13.2-03%
4.2-12
5.1-02
7.2-04
7.1-06
5.1-04
5.2-02
15.1-04
6.6-05
6.2-02
5.2-09%
4.1-03
4.1-05
4,2-08
4.2-07
13.1-04
4.2-12
6.2-04
7.3-02
7.3-01
7.1-03
6.2-02
7.3-02
7.3-03
7.3-03
6.1-01
6.6-03
9.1-04
6.3-05
9.1-17
6.3-01
9.1-07
10.4-03
11.1-12
11.3-N13
11.3-N26
6.3-04
4.2-12

11.5-05% 11.5-N9%

11.5-02%
5.

6
7

0 00 o

10

10.

10.
.1-03%

7.
5.
5.

15

&R oo o

=

2-06

.4-03
.2-07

9.
10.

1-09
3-04

.4-01

.2-05%
J4=11%
LA4-11
LL4=13%
.3-05

3-07%

3-06%

1-07%

1-05%
2-03%

.2-03
6.
.2-03%
.2-07%
+3=11

.2-24

.2-10%
.2-08%
13.
.2-13%
6.

6-06%

1-05%

2-05%

7.3-04

OO VWY VOO NNNO NN

[
[y -

.3-02%
.1-08%
. 2-04%
.3-03%
.3-04%
.3-05%
.1-02%
.6-05%
.1-07%
.1-07

.1-24
.3-02%
.1-17

.1-04

+1-115

13.
11.3-N27%
6.
9.

1-01

3-05%
1-17%

5.3-05 5.3-08
1.1-05 7.1-13
7.2-09 7.2-10
9.1-11 9.2-06

10.4-08 10.5-05

L.4-05% 9,2-05

7.2-06

8.4-12%

10.4-04 10.4-08

11.2-01% 11.3-05%

5.1-08 5.3-02

5.2-09 5.6-07

6.2-07 6.4-03
9.1-10 9.2-07
10.4-08
10.4-08
4.2-22

6.2-08 6.4-03
10.5-08

7.1-10

6.3-03
7.1-10%

9.1-08% 9.1-12

6.3-03 6.5-02
9.3-02 10.2-04
11.1-08 11.,1-09
11.1-29 11.2-10
13.3-11

6.2-06

12.1-10

10.5-11

13.1-01%

7.1-07

8.3-13

6.6-06

7.1-08

9.1-15

8.1-06

string-function-ref
string-identifier
string-let-statement
string-primary
string-specifier
string-supplied-function
string-type
string-variable
string-variable-list
sub-list
sub-statement
subprogram-def
subprogram-name
subscript
subscript-part
substring-qualifier

t
tab-call
tail

tail-comment
template-element
template-element-1list
template-identifier
template-statement
term

then-block
time-enquiry
timeout-expression
trace-statement
type-declaration

u

underline

unit-block
unquoted-string
unquoted-string-character
upper-case-letter
use-line

v

variable
variable-field-count
variable-length-vector
variable-list

- 181 -

6.3-03 6.3-04%
4.4-01 L, 4-0n%
6.5-01 6.5-02%
6.3-02 6.3-03%
11.3-N20 11.3-N26*
6.3-05 6.4-01%
6.6-02 6.6-03%
6.2-01 6.2-02%
6.5-02 6.5-03%
9.2-18 9.2-19
9.2-03 9.2-04%
9.2-01%
9.2-04 9.2-05%
5.2-06 5.2-07%
5.2-04 5.2-06%
6.2-02 6.2-06%
4.1-10
10.3-03 10.3-04%
4.2-02 4.2-08
8.3-03 8.3-08
8.4-0L4 8.4-07
8.4-12 8.4-15
9.1-03 9.:1-12
9.2-03 9.2-09
12.1-05 12.1-07
12.1-17 15.2-05
4.2-15 4.3-03
11.3-N16 11.3-N17%
11.3-N15 11.3-N16¥*
11.3-N12 11.3-N13%
11.3-N1& 11.3-N15%
5.3-02 5.3-03%
8.4-03 8.4-05%
10.2-03 10.2-07%
10.2-03 10.2-05%
4.2-12 12.2-03%
5.6-04 5.6-05%
4.1-10
4.1-03 4.4-03
4,2-04 4,2-05%
10.1-08 10.1-09%
4.1-03 4,1-05%
4.1-08 4,1-09%
4.2-22 12.1-02
4.1-10
5.2-01% 6.2-01%
11.3-N17 11.3-N19%
10.5-04 10.5-05%
10.1-01 10.1-02%

6.2-03

7.3-03

12.1-19%

6.3-03
10.2-08

9.2-20%

9.2-13

9.2-14

6.2-04
71.3-02

4.2-15%
8.3-11
8.4-09
8.4-21
9.1-13
9.2-13
12.1-09
15.2-06
4, 3-0l%

11.3-N17
11.4-N11

11.4-06
11.4-06

6.6-02%

10.4-08

9.1-14

10.1-09

12.1-05%

10.1-02

11.4-02
10.2-01

6.2-05

7.3-05

6.5-03
11.4-03

9.2-20

7.3-04

4.2-17
8.3-19
8.4-10
8.4-22
9.1-15
12.1-03
12.1-16

11.5-N9

9.1-19%

9.2-12

11.1-20

11.4-01

9.1-08

13.1-06

4.2-24

9.2-17%

11.4-07

W

when-block
when-1line
when-use-block
when-use-name-block
when-use-name-1line
write-control
write-control-item
write-statement

- 182 -

4.1-10
12.1-02
4.2-22
12.1-01
12.1-01
L.2-22
11.3-06
11.3-08
4.2-12

4.1-10

4.1-10

4.1-10

12.1-04%
12.1-02
12.1-02%
12.1-08%
12.1-08
11.3-07
11.3-09%
11.3-06%

12.1-08
12.1-03%

12.1-09%
11.3-08%
11.3-N12%*

- 183 -

APPENDIX 5

COMBINED LIST OF PRODUCTION RULES

access-mode
actual-array
array-assignment
array-declaration
array-input-statement

array-line-input-statement

array-list
array-name
array-output-list
array-print-list

array-print-statement

array-read-statement

array-rewrite-statement
array-write-statement
ask-attribute-name
ask-io-item
ask-io-list

ask-item

ask-item-1list
ask-object

ask-statement
block
bound-argument

boundaries
boundary

ACCESS (INPUT / OUTPUT / OUTIN / string-expression)
array-name

numeric-array-assignment / string-array-assignment
numeric-array-declaration / string-array-declaration
MAT INPUT input-modifier-list? (redim-array-list /
variable-length-vector) / MAT INPUT
channel-expression input-control colon
(redim-array-list / variable-length-vector)

MAT LINE INPUT input-modifier-list?
redim-string-array-list / MAT LINE INPUT
channel-expression input-control colon
redim-string-array-list

array-name (comma array-name)¥

numeric-array / string-array

array-name (comma array-name)* semicolon?
array-name (print-separator array-name)¥
print-separator?

MAT PRINT (array-print-list / (USING image colon
array-output-list) / MAT PRINT

channel-expression print-control colon
(array-print-list / array-output-list)

MAT READ (missing-recovery colon)? redim-array-list
/ MAT READ channel-expression read-control

colon redim-array-list

MAT REWRITE channel-expression rewrite-control colon
array-list

MAT WRITE channel-expression write-control colon
array-list

core-attribute-name / enhanced-attribute-name
(MARGIN / ZONEWIDTH) numeric-variable

ask-io-item (comma ask-io-item)%*

ask-attribute-name variable variable¥®

ask-item (comma ask-item)¥

WINDOW boundary-variables / VIEWPORT
boundary-variables / DEVICE WINDOW
boundary-variables / DEVICE VIEWPORT
boundary-variables / CLIP string variable /

DEVICE SIZE numeric-variable comma
numeric-variable comma string-variable /
primitive-1 STYLE numeric-variable /

primitive-2 COLOR numeric-variable / MAX COLOR
numeric-variable

ASK ask-io-list / ASK channel-setter ask-item-list /
ASK ask-object status-clause?

statement-1ine / loop / if-block / select-block /
image-line

left-parenthesis actual-array (comma index)?
right-parenthesis

boundary comma boundary comma boundary comma boundary
numeric-expression

boundary-variables

bounds

bounds-range
break-statement
call-statement
case-block
case-else-block
case-else-line
case-item
case-line
case-list
case-statement
cause-statement
chain-statement
channel-expression
channel-number
channel-setter
character
clear-statement
close-statement
collate-sequence
comparison

concatenation

conditional-statement

conjunction
constant
control-transfer

control-variable
coordinate-pair
core-attribute-name

core-file-attribute

core-file-org-value
core-record-setter

core-record-type-value

data-list
data-statement
datum
debug-statement

declarative-statement

declare-statement
def-statement
def-type
defined-function

delete-control

- 184 -

numeric-variable comma numeric-variable comma
numeric-variable comma numeric-variable
left-parenthesis bounds-range (comma bounds-range)
right-parenthesis

signed-integer TO signed-integer / signed-integer
BREAK

CALL subprogram-name procedure-argument-list?
case-line block¥*

case-else-line block¥

line-number CASE ELSE tail

constant / range

line-number case-statement tail

case-item (comma case-item)%

CASE case-list

CAUSE EXCEPTION exception-type

CHAIN programm-designator (WITH function-arg-list)?
number-sign index

number-sign integer

channel-expression colon

quotation-mark / non-quote-character

CLEAR

CLOSE channel-expression

COLLATE (STANDARD / NATIVE / string-expression)
numeric-expression relation numeric-expression /
string-expression relation string-expression
ampersand

if-statement / on-gosub-statement / on-goto-statement
relational-term (AND relational-term)¥*
numeric-constant / string-constant
gosub-statement / goto-statement / if-statement /
io-recovery / on-gosub-statement
/on-goto-statement

simple-numeric-variable

numeric-expression comma numeric-expression
ACCESS / DATUM / ERASABLE / FILETYPE / MARGIN / NAME
/ ORGANIZATION / POINTER / RECSIZE / RECTYPE /
SETTER / ZONEWIDTH

access-mode / file-organization / record-type /
record-size

SEQUENTIAL / STREAM

BEGIN / END / NEXT / SAME

DISPLAY / INTERNAL

datum (comma datum)*

DATA data-list

constant / unquoted-string

DEBUG (ON / OFF)

data-statement / declare-statement /
dimension-statement / null-statement /
option-statement / remark-statement /
template-statement

DECLARE type-declaration

numeric-def-statement / string-def-statement

DEF function-list

numeric-defined-function / string-defined-function /
fixed-defined-function

(comma delete-control-item)%

delete-control-item
delete-statement
detached-handler
digit

digit-place
dimension-list
dimension-statement
disjunction
do-body

do-1line

do-1loop
do-statement
double-quote
e-format-item

else-block

else-line

elseif-block
elseif-then-1line
end-function-line
end-handler-1line
end-if-line

end-line

end-of-line
end-select-1line
end-statement
end-sub-line
end-sub-statement
end-when-1line
enhanced-attribute-name
enhanced-file-attribute
enhanced-file-org-value
enhanced-record-setter

enhanced-record-type-value

equality-relation
erase-statement
exception-handler
exception-type
exit-condition
exit-do-statement
exit-for-statement
exit-function-statement
exit-handler-statement
exit-sub-statement
expression
expression-list

exrad
external-function-def
external-function-1line

- 185 -

missing-recovery / record-setter

DELETE channel-expression delete-control
handler-line exception-handler end-handler-line
0/1/2/3/4/5/6/7/8/9

asterisk / number-sign / percent-sign
array-declaration (comma array-declaration)
DIM dimension-list

conjunction (OR conjunction)

block® loop-1line

line-number do-statement tail

do-line do-body

DO exit-condition?

quotation-mark quotation-mark

(i-format-item / f-format-item) circumflex-accent

circumflex-accent circumflex-accent
circumflex-accent®

else-line block:

line-number ELSE tail
elseif-then-line block®

line-number ELSEIF relational-expression THEN tail

line-number END FUNCTION tail
line-number END HANDLER tail
line-number END IF tail
line-number end-statement tail
(implementation-defined)
line-number END SELECT tail

END
line-number end-sub-statement tail
END SUB

line-number END WHEN tail
RECORD / KEY / COLLATE
collate-sequence
RELATIVE / KEYED

RECORD index / KEY (exact-search / inexact-search)

string-expression

NATIVE

equals-sign / not-equals

ERASE REST? channel-expression

block¥*

index

(WHILE / UNTIL) relational-expression
EXIT DO

EXIT FOR

EXIT FUNCTION

EXIT HANDLER

EXIT SUB

numeric-expression / string-expression
expression (comma expression)

E sign? integer

external-function-line unit-block® end-function-line

line-number EXTERNAL FUNCTION
(numeric-defined-function /
(string-defined-function length-max?))
function-parm-1list? tail / line-number
EXTERNAL FUNCTION fixed-defined-function
function-parm-list? tail

external-function-type
external-sub-def
external-sub-line
external-sub-type
f-format-item

factor
field-specifier
file-attribute
file-attribute-list
file-name
file-organization

file-organization-value
fixed-declaration

fixed-defined-function
fixed-field-count
fixed-formal-array
fixed-point-size

fixed-point-type
floating-characters

for-body
for-line
for-loop
for-statement

formal-array
format-item

format-string
formatted-print-list
fraction
fraction-size
function-arg-list

function-argument
function-def
function-list
function-parameter

function-parm-list

geometric-object
geometric-statement
gosub-statement
goto-statement
graphic-output-statement
graphic-text-statement

graphic-verb
handler-1line
handler-name

I

1)

n

n

1

0]

]

n

1}

n

1)

i

1]

n

- 186 -

EXTERNAL FUNCTION function-list
external-sub-line unit-block® end-sub-line
line-number EXTERNAL sub-statement tail
EXTERNAL SUB sub-list

period number-sign number-sign® / i-format-item
period number-sign®

primary (circumflex-accent primary)%*
numeric-specifier / string-specifier
core-file-attribute

(comma file-attribute)*

string-expression

ORGANIZATION (file-organization-value /
string-expression)

core-file-org-value / enhanced-file-org-value
simple-numeric-variable fixed-point-type? /
numeric-array-declaration fixed-point-type?
numeric-defined-function

SKIP? (integer OF)?

formal-array fixed-point-type

integer-size period? / integer-size? period
fraction-size

asterisk fixed-point-size

(plus-sign®* / minus-sign¥®) dollar-sign? /
dollar-sign®* (plus-sign / minus-sign)?

block* next-line

line-number for-statement tail

for-line for-body

FOR control-variable equals-sign initial-value TO
limit (STEP increment)?

array-name left-parenthesis comma®* right-parenthesis
(justifier? floating-characters (i-format-item /
f-format-item / e-format-item)) / justifier
literal-string (format-item literal-string)%
USING image (colon output-list)?

period integer ‘

integer

left-parenthesis function-argument (comma
function-argument)® right-parenthesis
expression / actual-array

internal-function-def / external-function-def
defined-function (comma defined-function)®
simple-variable / formal-array /
numeric-fixed-parameter

left-parenthesis function-parameter (comma
function-parameter)* right-parenthesis
= POINTS / LINES / AREA

graphics-verb geometric-object colon point-list
(GOSUB / GO SUB) line-number

(GOTO / GO TO) line-number

geometric-statement / graphic-text-statement
graphic-verb TEXT initial-point (comma USING image
colon expression-list / colon
string-expression)

GRAPH

line-number HANDLER handler-name tail
routine-identifier

handler-return-statement
i-format-item

identifier

identifier-character
if-block

if-clause
if-statement

if-then-line

image

image-line
imperative-statement

increment

index
initial-number
initial-point
initial-value
input-control
input-control-item

input-modifier
input-modifier-list
input-prompt
input-reply
input-statement

integer
integer-size
internal-def-1line

- 187 -

RETRY / CONTINUE

digit-place digit-place® (comma digit-place
digit-place¥)®*

numeric-identifier / string-identifier /
routine-identifier

letter / digit / underline

if-then-1line then-block elseif-block® else-block?
end-if-line

imperative-statement / line-number

IF relational-expression THEN if-clause (ELSE
if-clause)?

line-number IF relational-expression THEN tail
line-number / string-expression

line-number IMAGE colon format-string end-of-line
array-assignment / array-input-statement /
array-line-input-statement /
array-print-statement / array-read-statement /
array-write-statement / ask-statement /
break-statement / call-statement /
cause-statement / chain-statement /
close-statement / debug-statement /
erase-statement / exit-do-statement /
exit-for-statement / exit-function-statement /
exit-sub-statement / gosub-statement /
goto-statement / input-statement /
let-statement / line-input-statement /
numeric-function-let-statement /
open-statement / print-statement /
randomize-statement / read-statement /
restore-statement / return-statement /
set-statement / stop-statement /
string-function-let-statement /
trace-statement / write-statement /
rewrite-statement / array-rewrite-statement /
delete-statement / clear-statement /
graphic-output-statement

numeric-expression

numeric-expression

line-number

comma AT coordinate-pair

numeric-expression

(comma input-control-item)®

core-record-setter / missing-recovery /
prompt-specifier / timeout-expression /
time-inquiry

prompt-specifier / timeout-expression / time-inquiry

input-modifier (comma input-modifier)* colon
[implementation-defined]

data-list comma? end-of-1line

INPUT input-modifier-1list? variable-list / INPUT
channel-expression input-control colon
variable-list (comma SKIP REST)?

digit digit*

integer

line-number def-statement tail

- 188 -

internal-def-line / internal-function-line blocks
end-function-line

line-number FUNCTION (numeric-defined-function /
(string-defined-function length-max?))
function-parm-1ist? tail / line-number

FUNCTION. fixed-defined-function
function-parm-1list? tail

FUNCTION function-list

internal-function-def / internal-sub-def /
detached-handler

internal-sub-line block® end-sub-1line

line-number sub-statement tail

SUB sub-list

INPUT / OUTPUT / OUTIN

missing-recovery / not-missing-recovery
exit-do-statement / exit-for-statement / line-number
justifier greater-than-sign / less-than-sign

length-max asterisk integer

let-statement = numeric-let-statement / string-let-statement

internal-function-def

internal-function-line

internal-function-type
internal-proc-def

n

internal-sub-def
internal-sub-line
internal-sub-type
io-qualifier
io-recovery
‘io-recovery-action

n

n

letter = upper-case-letter / lower-case-letter
limit = numeric-expression
line = case-line / case-else-line / do-line / else-line /

elseif-then-line / end-function-line /
end-handler-line / end-if-line / end-line /
end-select-line / end-sub-line / end-when-line

| external-function-line / external-sub-line /
for-line / handler-line / internal-def-line /
internal-function-line / internal-sub-line /
if-then-line / image-line / loop-line /

next-line / program-name-line / remark-line /
select-line / statement-line / use-line /
when-use-name-1line

ampersand space® tail ampersand

character® end-of-line

LINE INPUT input-modifier-1list? string-variable-list
/ LINE INPUT channel-expression input-control
colon string-variable-list

digit digit®

letter /digit / apostrophe / colon / equals-sign /
exclamation-mark / left-parenthesis /
question-mark / right-parenthesis / semicolon
/slant / space / underline

literal-item®

do-loop / for-loop

line-number loop-statement tail

LOOP exit-condition?
a/b/c/d/e/f/g/nh/ilj/k/1/m]/
n/o/plalxr/s/t/ul/v/]w/l/x]/
y/z

unit-block®* end-line

line-continuation
line-input-reply
line-input-statement

n

1

line-number
literal-item

n

literal-string
loop

loop-line
1ooﬁ-statement
lower-case-letter

n

main-program
maxsize-argument left-parenthesis actual-array right-parenthesis
missing-recovery IF MISSING THEN io-recovery-action

multiplier = asterisk / slant

next-line

line-number next-statement tail
NEXT control-variable

next-statement

non-quote-character

not-equals
not-greater
not-less

not-missing-recovery
numeric-array
numeric-array-assignment

numeric-array-declaration
numeric-array-element
numeric-array-expression

numeric-array-function-ref

numeric-array-operator
numeric-array-value
numeric-constant
numeric-declaration
numeric-def-statement

numeric-defined-function
numeric-expression
numeric-field-size
numeric-fixed parameter

numeric-function

numeric-function-let-statement=

numeric-function-ref

numeric-identifier
numeric-let-statement

numeric-rep
numeric-specifier

- 189 -

ampersand / apostrophe / asterisk / circumflex-accent
/ colon / comma / dollar-sign / equals-sign /
exclamation-mark / greater-than-sign /
left-parenthesis / less-than-sign /

number-sign / percent-sign / question-mark /
right-parenthesis / semicolon / slant /
underline / unquoted-string-character
less-than-sign greater-than-sign / greater-than-sign
less-than-sign

less-than-sign equals-sign / equals-sign
less-than-sign

greater-than-sign equals-sign / equals-sign
greater-than-sign

IF THERE THEN io-recovery-action
numeric-identifier

MAT numeric-array equals-sign
numeric-array-expression

numeric-array bounds

numeric-array subscript-part

(numeric-array numeric-array-operator)? numeric-array
/ scalar-multiplier numeric-array /
numeric-array-value /
numeric-array-function-ref

(TRN / INV) left-parenthesis numeric-array
right-parenthesis

sign / asterisk

scalar-multiplier? (CON / IDN / ZER) redim?
sign? numeric-rep

simple-numeric-variable / numeric-array-declaration
DEF numeric-defined-function function-parm-list?
equals-sign numeric-expression / DEF
fixed-defined-function function-parm-1list?
equals-sign numeric-expression
numeric-identifier

sign? term (sign term)¥

fixed-point-size / E

simple-numeric-variable fixed-point-type /
fixed-formal-array

numeric-defined-function / numeric-supplied-function
LET numeric-defined-function equals-sign
numeric-expression

numeric-function function-arg-list? / MAXLEN
left-parenthesis (simple-string-variable /
string-array) right-parenthesis / MAXSIZE
maxsize-argument / SIZE bound-argument /

LBOUND bound-argument / UBOUND bound-argument

/ DET (left-parenthesis numeric-array
right-parenthesis) / DOT left-parenthesis
numeric-array comma numeric-array
right-parenthesis

letter identifier-character®

LET numeric-variable-list equals-sign
numeric-expression

significand exrad?

NUMERIC asterisk numeric-field-size

numeric-supplied-function

numeric-time-expression
numeric-type

numeric-variable
numeric-variable-list
on-gosub-statement

on-goto-statement
open-statement

option

option-1list
option-statement
other-character
output-list
plain-string-character
point-list
pointer-items

primary

primitive-1
primitive-2
print-control
print-control-item

print-item
print-list
print-separator
print-statement

procedure
procedure-argument
procedure-argument-1list

procedure-parameter
procedure-parm-list
procedure-part

program
program-designator

- 190 -

ABS / ACOS / ANGLE / ASIN / ATN / CEIL / COS / COSH /

COT / CSC / DATE / DEG / EPS / EXP / FP /
MAXNUM / INT / IP / LOG / LOG10 / LOG2 / MAX /
MIN / MOD / PI / RAD / REMAINDER / RND / ROUND
/ SEC / SGN / SIN / SINH / SQR / TAN / TANH /
TIME / TRUNCATE / LEN / ORD / POS / VAL /
EXLINE / EXTYPE

numeric-expression

NUMERIC numeric-declaration (comma
numeric-declaration)®* / NUMERIC
fixed-point-type? fixed-declaration (comma
fixed-declaration)®

simple-numeric-variable / numeric-array-element
numeric-variable (comma numeric-variable)¥

ON index (GOSUB / GO SUB) line-number (comma
line-number)®* ELSE imperative-statement)?

ON index (GOTO / GO TO) line-number (comma
line-number)* (ELSE imperative-statement)?

OPEN channel-setter NAME file-name
file-attribute-list

ARITHMETIC (DECIMAL / NATIVE) / ANGLE (DEGREES /
RADIANS) / COLLATE (NATIVE / STANDARD) / BASE
(0 / 1) / ARITHMETIC FIXED fixed-point-type
option (comma option)*

OPTION option-list

[implementation-defined]

expression (comma expression)® semicolon?

digit / letter / period / plus-sign / minus-sign
coordinate-pair (semicolon coordinate-pair)#*
(pointer-control / io-recovery / pointer-control
comma io-recovery)

numeric-rep / numeric-variable / numeric-function-ref

/ left-parenthesis numeric-expression
right-parenthesis

POINT / LINE

primitive-1 / TEXT / AREA

(comma print-control-item)®
core-record-setter / enhanced-record-setter /
not-missing-recovery / USING image
expression / tab-call

(print-item? print-separator)® print-item?
comma / semicolon

PRINT print-list / PRINT formatted-print-list / PRINT

channel-expression print-control (colon
(print-list / output-list))?
external-function-def / external-sub-def
expression / actual-array / channel-expression
left-parenthesis procedure-argument (comma
procedure-argument)® right-parenthesis
simple-variable / formal-array / channel-number /
numeric-fixed-parameter

left-parenthesis procedure-parameter (comma
procedure-parameter)*

remark-line®* procedure

program-name-1line? main-program procedure-part¥®
string-expression

program-line

program-name
program-name-line

program-unit
prompt-specifier
protection-block
quoted-string

quoted-string-character
randomize-statement
range

read-control
read-control-item

read-statement

record-setter
record-size

record-type
record-type-value
redim

redim-array
redim-array-list
redim-bounds
redim-numeric-array
redim-string-array
redim-string-array-list
relation

relational-expression
relational-primary

relational-term
remark-line

remark-statement
remark-string
restore-statement
return-statement
rewrite-control
rewrite-control-item

rewrite-statement
routine-identifier
scalar-multiplier

select-block

select-line
select-statement

= 191 -

line-number (character / line-continuation)%*
end-of-line

routine-identifier

line-number PROGRAM program-name function-parm-1list?
tail

main-program / procedure

PROMPT string-expression

when-use-block / when-use-name-block
quotation-mark quoted-string-character¥
quotation-mark

double-quote / non-quote-character

RANDOMIZE

(constant TO / IS relation) constant

(comma read-control-item)*

record-setter / missing-recovery /
template-identifier

READ (missing-recovery colon)? variable-list / READ
channel-expression read-control colon
variable-1list (comma SKIP REST)?
core-record-setter / enhanced-record-setter
RECSIZE (VARIABLE / string-expression) (LENGTH
index)?

RECTYPE (record-type-value / string-expression)
core-record-type-value / enhanced-record-value
left-parenthesis redim-bounds (comma redim-bounds)®
right-parenthesis

array-name redim?

redim-array (comma redim-array)®

(index TO0)? index

numeric-array redim?

string-array redim?

redim-string-array (comma redim-string-array)¥*
equality-relation / greater-than-sign /
less-than-sign / not-greater / not-less
disjunction

comparison / left-parenthesis relational-expression
right-parenthesis

NOT? relational-primary

line-number (null-statement / remark-statement)
end-of-line

REM remark-string

character®

RESTORE line-number

RETURN

(comma rewrite-control-item)¥*

missing-recovery / record-setter /
template-identifier

REWRITE channel-expression rewrite-control colon
expression list

letter identifier-character®

primary asterisk

select-line remark-line* case-block case-block¥
case-else-block? end-select-line

line-number select-statement tail

SELECT CASE expression

set-object

set-statement

sign

signed-integer
significand
simple-numeric-variable
simple-string-declaration
simple-string-variable
simple-variable
statement

statement-1line
status-clause
stop-statement
string-array
string-array-assignment

string-array-declaration
string-array-element
string-array-expression

string-array-primary
string-array-value
string-constant
string-declaration

string-def-statement

string-defined-function
string-expression
string-field-size
string-function

string-function-let-statement

string-function-ref
string-identifier
string-let-statement

string-primary

string-specifier
string-supplied-function

- 192 -

(MARGIN / ZONEWIDTH) index / channel-setter
pointer-items / channel-setter (MARGIN /
ZONEWIDTH) index / WINDOW boundaries /
VIEWPORT boundaries / DEVICE WINDOW boundaries
/ DEVICE VIEWPORT boundaries / CLIP
string-expression / primitive-1 STYLE index /
primitive-2 COLOR index

SET set-object

plus-sign / minus-sign

sign? integer

integer period? / integer? fraction
numeric-identifier

simple-string-variable length-max?
string-identifier

simple-numeric-variable / simple-string-variable
declarative-statement / imperative-statement /
conditional-statement

line-number statement tail

STATUS numeric-variable

STOP

string-identifier

MAT string-array substring-qualifier? equals-sign
string-array-expression

string-array bounds

string-array subscript-part
string-array-primary (concatenation
string-array-primary)? / string-primary
concatenation string-array-primary /
string-array-primary concatenation
string-primary / string-array-value
string-array substring-qualifier?
(string-primary concatenation)?

quoted-string

simple-string-declaration / string-array-declaration
length-max?

DEF string-defined-function length-max?
function-parm-1ist? equals-sign
string-expression

string-identifier

string-primary (concatenation string-primary)®
integer

string-defined-function / string-supplied-function
LET string-defined-function equals-sign
string-expression

string-function function-arg-1list?

letter identifier-character® dollar-sign

LET string-variable-list equals-sign
string-expression

string-constant / string-variable /
string-function-ref / left-parenthesis
string-expression right-parenthesis

STRING asterisk string-field-size

(CHR / DATE / LCASE / LTRIM / REPEAT / RTRIM / STR /
TIME / UCASE / USING) dollar-sign / EXTEXT
dollar-sign

string-type
string-variable

string-variable-1list
sub-list
sub-statement
subprogram-def
subprogram-name
subscript
subscript-part

substring-qualifier
tab-call

tail
template-element

template-element-list
template-identifier
template-statement
term

then-block
time-expression
time-inquiry
timeout-expression
trace-statement
type-declaration

unit-block
unquoted-string

unquoted-string-character

upper-case-letter

use-line

variable
variable-field-count
variable-length-vector

variable-list
when-block
when-1line
when-use-block

when-use-name-block
when-use-name-line
write-control
write-control-item

write-statement

I

- 193 -

STRING length-max? string-declaration (comma
string-declaration)®

(simple-string-variable / string-array-element)
substring-qualifier?

string-variable (comma string-variable)®
subprogram-name (comma subprogram-name)%

SUB subprogram-name procedure-parm-list?
internal-sub-def / external-sub-def
routine-identifier

index

left-parenthesis subscript (comma subscript)¥*
right-parenthesis

left-parenthesis index colon index right-parenthesis

TAB left-parenthesis index right-parenthesis
tail-comment? end-of-line

fixed-field-count (field-specifier / left-parenthesis

template-element-list right-parenthesis) /
variable-field-count field-specifier
template-element (comma template-element)¥
WITH (line-number / string-expression)

TEMPLATE colon template-element-list

factor (multiplier factor)¥

block¥*

numeric-time-expression / string-time-expression
ELAPSED numeric-variable

TIMEOUT numeric-time-expression

TRACE ON (TO channel-expression)?

numeric-type / string-type / def-type /
internal-function-type /
external-function-type / internal-sub-type /
external-sub-type

internal-proc-def / block
plain-string-character / plain-string-character
unquoted-string-character¥
plain-string-character

space / plain-string-character

A/B/C/D/E/F/G/H/TI/JI/K/L/M/

N/OoO/P/Q/R/S/T/U/V/W/X]/

Y/ Z

line-number USE tail

numeric-variable / string-variable

question-mark OF

array-name left-parenthesis question-mark
right-parenthesis

variable (comma variable)*

block¥

line-number WHEN EXCEPTION IN tail

when-line when-block use-line exception-handler
end-when-1line

when-use-name-1line when-block end-when-line

line-number WHEN EXCEPTION USE handler-name tail
(comma write-control-item)%

record-setter / not-missing-recovery /
template-identifier

WRITE channel-expression write-control colon
expression-list

- 194 -

APPENDIX 6

DIFFERENCES BETWEEN MINIMAL BASIC AND ECMA BASIC

The differences between Minimal BASIC and ECMA BASIC (either BASIC-1 or BASIC-2) may be
classified as either syntactic incompatibilities or semantic (run-time) differences.
Syntactic Differences

With the following exception, this Standard forms an upward compatible syntactic extension
of Standard ECMA-55, Minimal BASIC.

% All arrays in a standard conforming program must be dimensioned before use.

%

%

b

Programs written in Minimal BASIC may therefore produce errors when run on an implemen-
tation that conforms to this Standard. Such programs may be modified to run correctly as
follows:

- identify all arrays which are implicitly dimensioned;

- insert a dimension-statement covering each such array with upper bound equal to 10.
Each such dimension-statement must follow an option-base-statement, if any, and pre-
cede any reference to the arrays contained in the dimension-statement.

For example, if a vector A is used in a Minimal BASIC program but is not dimensioned there,
inserting

DIM A(10)

will cause the program to run correctly with respect to the vector A. Since array-names in
Minimal BASIC are limited to single letters, there can be no more than 26 such changes
needed.

Semantic Differences

In addition, this Standard differs from Minimal BASIC in several other ways that may be
classified as "run-time". As a result, a Minimal BASIC program run under a BASIC implemen-
tation might produce slightly different results.

The default lower bound for arrays is 1, not O as in Minimal Basic. Programs in Minimal
Basic can be made to run correctly if the following statement is introduced prior to any
DIM statement.

OPTION BASE O

This Standard specifies that arithmetic be carried out using a floating-point decimal rep-
resentation, with at least ten decimal digits of precision, whereas Minimal BASIC is more
permissive in allowing arithmetic to be carried out using other representations (e.g.,
floating-point binary), with at least six decimal digits of precision (see 5.6). The only
effect should be that the program gives more precise results, which should not cause prob-
lems for the user. An option is provided which permits NATIVE arithmetic, which might be
defined as in Minimal BASIC for a given implementation.

The default maximum length for strings must be at least 132, not 18 as in Minimal BASIC.
The only difference is that a program might not get a string-overflow exception which it
would have gotten in Minimal BASIC. The old behavior can be restored by declaring the maxi-
mum length of the strings to be the old maximum.

- 195 -

% Tt is not necessary to prevalidate an entire input-reply before assignment of values to
variables takes place, whereas this was required in Minimal BASIC. Thus, an input-reply of
"2,4,x" in response to INPUT I, A(I), J could change the value of A(2), whereas this is not

allowed in Minimal BASIC.

% Certain exceptions - overflow, division by zero, and raising to a negative power - are fa-
tal exceptions in ECMA BASIC and nonfatal in Minimal BASIC. However, since the Minimal
BASIC Standard specifies that nonfatal exceptions can be treated as fatal under certain
circumstances, a Minimal BASIC program should not rely on these exceptions being nonfatal.

- 196 ~

APPENDIX 7

LANGUAGE ELFMENTS UNDER CONSIDERATION FOR FUTURE REMOVAIL,

The gosub-statement, on-gosub-statement, and the return-statement are under consideration
for future removal. It is recommended that as users write new programs, or maintain exist-
ing programs, they refrain from using these statements, in order to improve compatibility
with future versions of this Standard.

The GOSUB facility is being considered for removal because it encourages poor programming
practice by allowing the construction of subroutines with several entry points. Further-
more, these ''subroutines'" are not delineated by any distinctive syntax; any line of a pro-
gram may be the beginning of such a subroutine. Users are encouraged to avail themselves of
the subprogram facilities (see 9.2) described in this Standard when they need subroutines.

Furthermore, the GOSUB facility interacts in a complex way with other aspects of the lan-
guage (e.g., internal-proc-defs, exception-handlers), thus making it more difficult to un-
derstand source code, to implement conforming language processors, and to describe the lan-
guage correctly. Thus, programmers, implementors, teachers, and writers are all impeded in
their work with BASIC.

