
Standard ECMA-149
4th Edition - December 1997

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

Portable Common Tool
Environment (PCTE) -
Abstract Specification

.

Standard ECMA-149
4th Edition - December 1997

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

IW ECMA-149.DOC 22-02-99 16,17

Portable Common Tool
Environment (PCTE) -
Abstract Specification

.

Brief History

(1) PCTE, Portable Common Tool Environment, is an interface standard. The interface is designed to
support program portability by providing machine-independent access to a set of facilities. These
facilities, which are described in this standard, are designed particularly to provide an
infrastructure for programs which may be part of environments supporting systems engineering
projects. Such programs, which are used as aids to systems development, are often referred to as
tools.

(2) PCTE has its origin in the European Strategic Programme for Research and Development in
Information Technology (ESPRIT) project 32, called "A Basis for a Portable Common Tool
Environment". That project produced a specification for a tool interface, an initial
implementation, and some tools on that implementation. The interface specifications were
produced in the C Language. A number of versions of the specifications were produced,
culminating in the fourth edition known as "PCTE Version 1.4". That was in two volumes;
volume 2 covered the user interface and volume 1 covered everything else. Subsequently, the
Commission of the European Communities (CEC) commissioned Ada versions of the two
volumes of the PCTE specification.

(3) The CEC established the PCTE Interface Management Board (PIMB) in 1986 to maintain PCTE
and promote its use. Through its subsidiary PCTE Interface Control Group (PICG) PIMB
conducted a widespread public review, and published a revision known as PCTE 1.5.

(4) PIMB established an ad hoc task group to consider the form of the standard; this group reported in
June 1988, strongly recommending that the standard should comprise an abstract (language-
independent) specification and separate dependent bindings to whatever languages were chosen.

(5) In 1986 several nations of the Independent European Programme Group, under Technical Area 13
(IEPG TA-13), embarked on a collaborative programme to enhance PCTE to make it equally
suitable for military as for civil use. This project was called PCTE+; the result of the definition
phase was an enhanced specification called PCTE+ issue 3, published in October 1988. This
consisted of both Ada and C versions of volume 1, volume 2 being the same as PCTE 1.5 volume
2. PCTE+ issue 3 was the basis for the assessment phase, which ended in December 1992. The
ECMA PCTE standardization process has benefited greatly from close liaison with the PCTE+
programme; in particular through the availability of PCTE+ documents.

(6) Upon request from the PIMB, ECMA undertook to continue the development of PCTE to bring it
into a form suitable for publication as an ECMA Standard. ECMA/TC33 was formed in February
1988 with this objective. Initially it was intended to base ECMA PCTE on PCTE 1.4, but this was
soon changed to PCTE+ issue 3. The report of the PIMB task group on the form of the standard
was accepted by TC33, and a task group (Task Group for ECMA PCTE, TGEP) was formed in
November 1988, charged with producing the Abstract Specification and bindings for Ada and C.

(7) In 1989 attempts were made to standardize the user interface of tools on the basis of PCTE 1.4,
volume 2. However it soon became apparent that it would be better for PCTE tools to use
emerging general-purpose user interface standards, and the issue of a specific PCTE user interface
was considered out of scope.

(8) Following acceptance of the first edition as an ECMA Standard in December 1990 (and of the
bindings in 1991), review by international experts led to the production of second editions of all
three standards. The second editions were accepted by the General Assembly of June 1993, and
were submitted as a draft standard (in 3 parts) to ISO/IEC JTC1 for fast-track processing to
international standardization.

(9) During the fast-track processing, which was successfully completed in September 1994,
comments from National Bodies resulted in a number of changes to the draft standard. Some
further editorial changes were requested by JTC1 ITTF. All these were incorporated in the
published international standard, ISO/IEC 13719, with which the third editions of the ECMA
standards were aligned.

(10) This fourth edition incorporates the resolutions of all comments received too late for consideration
during the fast-track processing, or after, and the contents of Standards ECMA-227 (Extensions
for Support of Fine-Grain Objects) and ECMA-255 (Object Orientation Extensions). It is aligned
with the second edition of ISO/IEC 13719-1.

Adopted as 4th Edition of Standard ECMA-149 by the General Assembly of December 1997.

- i -

Contents

1 Scope 1

2 Conformance 1

2.1 Conformance of binding 1

2.2 Conformance of implementation 1

2.3 Conformance of DDL texts and processors 3

3 Normative references 3

4 Definitions 4

4.1 Technical terms 4

4.2 Other terms 4

5 Formal notations 5

6 Overview of PCTE 5

6.1 PCTE structural architecture 5

6.2 Object management system 5

6.3 Object base 6

6.4 Schema management 6

6.5 Self-representation and predefined SDSs 7

6.6 Object contents 7

6.7 Process execution 7

6.8 Monitoring 7

6.9 Communication between processes 8

6.10 Notification 8

6.11 Concurrency and integrity control 8

6.12 Distribution 9

6.13 Replication 9

6.14 Security 9

6.15 Accounting 10

6.16 Implementation limits 10

- ii -

6.17 Support of fine-grain objects 10

6.18 Support of object-orientation 11

7 Outline of the Standard 11

8 Foundation 12

8.1 The state 12

8.2 The object base 13
8.2.1 Objects 13
8.2.2 Attributes 14
8.2.3 Links 15

8.3 Types 16
8.3.1 Object types 16
8.3.2 Attribute types 17
8.3.3 Link types 18
8.3.4 Enumeral types 22

8.4 Types in SDS 22
8.4.1 Object types in SDS 24
8.4.2 Attribute types in SDS 24
8.4.3 Link types in SDS 24
8.4.4 Enumeral types in SDS 25

8.5 Types in working schema 25
8.5.1 Object types in working schema 26
8.5.2 Attribute types in working schema 26
8.5.3 Link types in working schema 27
8.5.4 Enumeral types in working schema 27

8.6 Types in global schema 27

8.7 Operations 28
8.7.1 Calling process 28
8.7.2 Direct and indirect effects 28
8.7.3 Errors 30
8.7.4 Operation serializability 31

9 Object management 32

9.1 Object management concepts 32
9.1.1 The basic type "object" 32
9.1.2 The common root 36
9.1.3 Datatypes for object management 36

9.2 Link operations 36

9.3 Object operations 45

9.4 Version operations 59

- iii -

10 Schema management 66

10.1 Schema management concepts 66
10.1.1 Schema definition sets and the SDS directory 66
10.1.2 Types 67
10.1.3 Object types 69
10.1.4 Attribute types 69
10.1.5 Link types 71
10.1.6 Enumeral types 72
10.1.7 Datatypes for schema management 72

10.2 SDS update operations 73

10.3 SDS usage operations 101

10.4 Working schema operations 108

11 Volumes, devices, and archives 113

11.1 Volume, device, and archiving concepts 113
11.1.1 Volumes 113
11.1.2 Administration volumes 114
11.1.3 Devices 114
11.1.4 Archives 115

11.2 Volume, device, and archive operations 116

12 Files, pipes, and devices 124

12.1 File, pipe, and device concepts 124

12.2 File, pipe, and device operations 127

13 Process execution 135

13.1 Process execution concepts 135
13.1.1 Static contexts 135
13.1.2 Foreign execution images 136
13.1.3 Execution classes 136
13.1.4 Processes 137
13.1.5 Initial processes 144
13.1.6 Profiling and monitoring concepts 144

13.2 Process execution operations 145

13.3 Security operations 159

13.4 Profiling operations 164

13.5 Monitoring operations 165

14 Message queues 167

14.1 Message queue concepts 167

- iv -

14.2 Message queue operations 170

15 Notification 176

15.1 Notification concepts 176
15.1.1 Access events and notifiers 176
15.1.2 Notification messages 177
15.1.3 Time of sending notification messages 178
15.1.4 Range of concerned message queues 178

15.2 Notification operations 178

16 Concurrency and integrity control 180

16.1 Concurrency and integrity control concepts 180
16.1.1 Activities 180
16.1.2 Resources and locks 182
16.1.3 Lock modes 185
16.1.4 Inheritance of locks 187
16.1.5 Establishment and promotion of locks 187
16.1.6 Implied locks 189
16.1.7 Conditions for establishment or promotion of a lock 189
16.1.8 Releasing locks 190
16.1.9 Permanence of updates 191
16.1.10 Tables for locks 192

16.2 Concurrency and integrity control operations 194

17 Replication 200

17.1 Replication concepts 200
17.1.1 Replica sets 200
17.1.2 Replicated objects 201
17.1.3 Selection of an appropriate replica 202
17.1.4 Administration replica set 203

17.2 Replication operations 203

18 Network connection 210

18.1 Network connection concepts 210
18.1.1 Execution sites 210
18.1.2 Workstations 210
18.1.3 Foreign systems 213
18.1.4 Network partitions 214
18.1.5 Accessibility 214
18.1.6 Workstation closedown 216

18.2 Network connection operations 217

18.3 Foreign system operations 222

- v -

18.4 Time operations 223

19 Discretionary security 225

19.1 Discretionary security concepts 225
19.1.1 Security groups 225
19.1.2 Access control lists 229
19.1.3 Discretionary access modes 231
19.1.4 Access control lists on object creation 234

19.2 Operations for discretionary access control operation 234

19.3 Discretionary security administration operations 238

20 Mandatory security 243

20.1 Mandatory security concepts 243
20.1.1 Mandatory classes 243
20.1.2 The mandatory class structure 245
20.1.3 Labels and the concept of dominance 246
20.1.4 Mandatory rules for information flow 247
20.1.5 Multi-level security labels 251
20.1.6 Floating security levels 254
20.1.7 Implementation restrictions 256
20.1.8 Built-in policy aspects 256

20.2 Operations for mandatory security operation 258

20.3 Mandatory security administration operations 263

20.4 Mandatory security operations for processes 268

21 Auditing 270

21.1 Auditing concepts 270
21.1.1 Audit files 270
21.1.2 Audit selection criteria 272

21.2 Auditing operations 273

22 Accounting 277

22.1 Accounting concepts 277
22.1.1 Consumers and accountable resources 277
22.1.2 Accounting logs and accounting records 279

22.2 Accounting administration operations 282

22.3 Consumer identity operations 287

23 Common binding features 288

23.1 Mapping of types 288

- vi -

23.1.1 Mapping of predefined PCTE datatypes 288
23.1.2 Mapping of designators and nominators 290
23.1.3 Mapping of other values 298

23.2 Object reference operations 299

23.3 Link reference operations 301

23.4 Type reference operations 305

24 Implementation limits 307

24.1 Bounds on installation-wide limits 307

24.2 Bounds on workstation-dependent limits 309

24.3 Limit operations 309
24.3.1 Datatypes for limit operations 309

Annex A - VDM Specification Language for the Abstract Specification 311

Annex B - The Data Definition Language (DDL) 317

Annex C - Specification of Errors 327

Annex D - Auditable Events 349

Annex E - The Predefined Schema Definition Sets 357

Annex F - The fine-grain objects module 375

Annex G - The object-orientation module 389

Index of Operations 413

Index of Error Conditions 419

Index of Technical Terms 427

1 Scope

(1) This ECMA Standard specifies PCTE in abstract, programming-language-independent, terms. It
specifies the interface supported by any conforming implementation as a set of abstract operation
specifications, together with the types of their parameters and results. It is supported by a number
of standard bindings, i.e. representations of the interface in standard programming languages.

(2) The scope of this ECMA Standard is restricted to a single PCTE installation. It does not specify
the means of communication between PCTE installations, nor between a PCTE installation and
another system.

(3) A number of features are not completely defined in this ECMA Standard, some freedom being
allowed to the implementor. Some of these are implementation limits, for which constraints are
defined (see clause 24). The other implementation-dependent and implementation-defined
features are specified in the appropriate places in this Standard.

(4) PCTE is an interface to a set of facilities that forms the basis for constructing environments
supporting systems engineering projects. These facilities are designed particularly to provide an
infrastructure for programs which may be part of such environments. Such programs, which are
used as aids to systems development, are often referred to as tools.

(5) This ECMA Standard also includes (in annex B) a language standard for the PCTE Data
Description Language (DDL), suitable for writing PCTE schema definition sets.

2 Conformance

2.1 Conformance of binding

(1) A binding conforms to this ECMA Standard if and only if:

(2) - it consists of a set of operational interfaces and datatypes, with a mapping from the operations
and datatypes of this ECMA Standard;

(3) - each operation of this ECMA Standard is mapped to one or more sequences of one or more
operations of the binding (distinct operations need not be mapped to distinct sets of sequences
of binding operations);

(4) - each datatype of this ECMA Standard is mapped to one or more datatypes of the binding;

(5) - each named error of this ECMA Standard is mapped to one or more error values (status
values, exceptions, or the like) of the binding;

(6) - the conditions of clause 23 on common binding features are satisfied;

(7) - the conditions for conformance of an implementation to the binding are defined, are
achievable, and are not in conflict with the conditions in 2.2 below.

2.2 Conformance of implementation

(1) The functionality of PCTE is divided into the following modules:

(2) - The core module consists of the datatypes and operations defined in clauses 8 to 19 (except
13.1.6, 13.4, and 13.5) and 23.

- 2 -

(3) - The mandatory access control module consists of the datatypes and operations defined in
clause 20.

(4) - The auditing module consists of the datatypes and operations defined in clause 21.

(5) - The accounting module consists of the datatypes and operations defined in clause 22.

(6) - The profiling module consists of the datatypes defined in 13.1.6 and the operations defined in
13.4.

(7) - The monitoring module consists of the datatype Address defined in 13.1.6 and operations
defined in 13.5.

(8) - The fine-grain objects module consists of the following extensions defined in annex F:

(9) . extensions to the semantics of operations to cater for fine-grain objects;

(10) . new operations;

(11) . new error conditions;

(12) . additions to the predefined SDS system.

(13) - The object-orientation module consists of the following extensions defined in annex G:

(14) . additions to the predefined SDSs metasds and system;

(15) . an extension to the semantics of the operation SDS_REMOVE_TYPE to cater for the new
classes of type;

(16) . new operations;

(17) . new error conditions.

(18) An implementation of PCTE conforms to this ECMA Standard if and only if it implements the
core module.

(19) An implementation of PCTE conforms to this ECMA Standard with mandatory access control
level 1 or 2 if it implements the core module and in addition:

(20) - for level 1: the mandatory access control module except the floating security levels features
defined in 20.1.6;

(21) - for level 2: the mandatory access control module.

(22) An implementation of PCTE conforms to this ECMA Standard with auditing if and only if it
implements the core module and in addition the auditing module.

(23) An implementation of PCTE conforms to this ECMA Standard with accounting if and only if it
implements the core module and in addition the accounting module.

(24) An implementation of PCTE conforms to this ECMA Standard with profiling if and only if it
implements the core module and in addition the profiling module.

(25) An implementation of PCTE conforms to this ECMA Standard with monitoring if and only if it
implements the core module and in addition the monitoring module.

(26) An implementation of PCTE conforms to this ECMA Standard with fine-grain objects if and only
if it implements the core module and in addition, implements the fine-grain objects module.

(27) An implementation of PCTE conforms to this ECMA Standard with object-orientation if and
only if it implements the core module and in addition the object-orientation module.

- 3 -

(28) By 'an implementation implements a module' is meant that, for the clauses of the module:

(29) - the implementation conforms to a binding of this ECMA Standard which itself conforms to
this ECMA Standard and which is itself an ECMA Standard;

(30) - if an operation of this ECMA Standard is mapped to a set of sequences of operations in the
binding:

. case 1: operation_A; operation_B; ... operation_F;

. case 2: operation_G; operation_H; ...operation_M;

. etc.

then in each case the sequence of invocations of the operations of the implementation must
have the effect of the original operation of this ECMA Standard;

(31) - the relevant limits on quantities specified in clause 24 are no more restrictive than the values
specified there;

(32) - the implementations of the implementation-defined features in this ECMA Standard are all
defined.

(33) An implementation of PCTE does not conform to this ECMA Standard if it implements any of
the following, whether or not the PCTE entity mentioned is in a module which the
implementation implements:

(34) - an operation with same name as a PCTE operation but with different effect;

(35) - an SDS with the same name as a PCTE predefined SDS but with different contents;

(36) - an error condition with the same name as a PCTE error condition but with different meaning.

2.3 Conformance of DDL texts and processors

(1) A DDL definition conforms to this ECMA Standard if it conforms to the syntax and obeys the
constraints of the DDL definition in annex B.

(2) A DDL processor conforms to this ECMA Standard if it accepts any conforming DDL definition
and processes it in conformance with the meaning of DDL as defined in annex B.

3 Normative references

(1) The following standards contain provisions which, through reference in this text, constitute
provisions of this ECMA Standard. At the time of publication, the editions indicated were valid.
All standards are subject to revision, and parties to agreements based on this ECMA Standard are
encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

(2) ISO/IEC 2022 Information Technology - Character code structure and extension techniques
(1994)

(3) ISO 8601 Data elements and interchange formats - Information interchange -
Representation of dates and times (1988)

(4) ISO 8859-1 Information processing — 8-bit single-byte coded graphic charactersets -
Part 1 : Latin alphabet No. 1 (1987)

- 4 -

(5) ISO/IEC 10646-1 Information Technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane (1993)

(6) ISO/IEC 11404 Information technology - Programming languages, their environments and
system software interfaces - Language-independent datatypes (1996)

(7) ISO/IEC 13303-1 Information technology - Programming languages, their environments and
system software interfaces - Vienna Development Method/Specification
language - Part 1 : Basic Language (1995)

(8) ISO/IEC 14977 Information technology - Programming languages, their environments and
system software interfaces - Extended BNF (1996)

4 Definitions

4.1 Technical terms

(1) All technical terms used in this ECMA Standard, other than a few in widespread use, are defined
in the text, usually in a formal notation. All identifiers defined in VDM-SL or in DDL (see
clause 5) are technical terms; apart from those, a defined technical term is printed in italics at the
point of its definition, and only there. For the use of technical terms defined in VDM-SL and
DDL see clause A.3 and clause B.9 respectively. All defined technical terms are listed in an
index, with references to their definitions.

4.2 Other terms

(1) For the purposes of this ECMA Standard, the following definitions apply.

4.2.1 implementation-defined: Possibly differing between PCTE implementations, but defined
for any particular PCTE implementation.

4.2.2 implementation-dependent: Possibly differing between PCTE implementations and not
necessarily defined for any particular PCTE implementation.

4.2.3 binding-defined: Possibly differing between language bindings, but defined for any
particular language binding.

4.2.4 datatype: The type of a parameter or result of an operation defined in this ECMA
Standard, or used to define such a type. Where, as in clause 23, it is necessary to distinguish
these types from datatypes defined elsewhere, the term PCTE datatype is used.

4.2.5 operation: a name plus a signature that is used in the context of an invocation to trigger
the execution of a specific method.

4.2.6 interface: a set of operations; interfaces are a convenient way to group operations so that
they can be referred to together, e.g. to define other interfaces by inheritance.

4.2.7 method: the set of actions triggered by an operation.

- 5 -

5 Formal notations

(1) Four formal notations are used in this ECMA Standard.

(2) For datatypes and for operation signatures, a small subset of the Vienna Development Method
Specification Language or VDM-SL is used; it is defined in annex A. This subset of VDM-SL is
also used to define some types used for operation parameters and results.

(3) The Data Definition Language or DDL is used to define types; it is defined in annex B. Where a
concept is defined in both VDM-SL and DDL, the same identifier is used.

(4) To define the error conditions detected by operations, a parameterized notation is used; it is
defined in annex C.

(5) The BSI syntactic notation (BS 6154 : 1981) is used to define the syntax of VDM-SL and DDL,
and in a few other places where the syntax of strings is defined.

6 Overview of PCTE

(1) PCTE is designed to support program portability by providing machine-independent access to a set
of facilities. These facilities, which are described in this ECMA Standard, are designed
particularly to provide an infrastructure for programs to support systems engineering projects.

(2) The PCTE architecture is described in two dimensions: the structural architecture and the
functional architecture. The structural architecture is described in 6.1, and shows how a PCTE
installation is built of a system of communicating workstations and how the software providing the
PCTE interfaces is structured. The functional architecture is described in 6.2 onwards, and gives
an outline of the functional components of PCTE and the facilities they provide.

6.1 PCTE structural architecture

(1) The preferred structural architecture for a PCTE installation is a set of workstations and
associated resources communicating over a network, though other architectures are possible.
There is no hierarchy or ordering of workstations within a PCTE installation. If a workstation is
part of a PCTE installation then the PCTE installation appears to the workstation's user as a
conceptually single machine, although each workstation can act as an autonomous unit. Such a
user has access to the total resources of a PCTE installation, subject to the necessary access
controls.

(2) The PCTE database (called the object base) is partitioned into volumes. Volumes are
dynamically allocated to (mounted on) particular workstations, and, once mounted, are globally
available in that PCTE installation.

(3) The program writer does not need to be aware of the distribution architecture, but the PCTE
interfaces do provide all the facilities needed to configure a PCTE installation and control its
distribution. The PCTE interfaces appear to the tool writer as available within a PCTE
installation irrespective of the tool's physical location within a PCTE installation and independent
of any particular network topology.

6.2 Object management system

(1) An aspect of PCTE that is of major importance to the process of constructing and integrating
portable tools is the provision of the object base and a set of functions to manipulate the various

- 6 -

objects in the object base. The object base is the repository of the data used by the tools of a
PCTE installation, and the Object Management System or OMS of PCTE provides the functions
used to access the object base.

(2) In a general sense, the users and programs of the PCTE installation have the ability to manage
entities that are known to, and can be designated in, a particular PCTE installation. These may be
files in the traditional sense, or peripherals, interprocess message queues or pipes, or the
description of processes themselves or of the static context of a process. Tools supporting user
applications establish classes of objects defined by the user: these can represent information items
such as project milestones, tasks, and change requests.

6.3 Object base

(1) The basic OMS model is derived from the Entity Relationship data model and defines objects and
links as being the basic items of a PCTE object base.

(2) Objects are entities (in the Entity Relationship sense) which can be designated, and can optionally
have:

(3) - Contents: a storage of data representing the traditional file concept;

(4) - Attributes: primitive values representing specific properties of an object which can be named
individually;

(5) - Links: representations of associations between objects. Links may have attributes, which may
be used to describe properties of the associations or as keys to distinguish between links of the
same type from the same object.

(6) Designation of links is the basis for the designation of objects: the principal means for accessing
objects in most OMS operations is to navigate the object base by traversing a sequence of links.

6.4 Schema management

(1) Entities used by the user and those used by the system that are represented by objects in the
object base can be treated in a uniform manner, and facilities to control their structure, to store
and to designate these objects, are provided by PCTE.

(2) The object base of each PCTE installation is governed by a typing mechanism. All entities in the
object base are typed and the data must conform to the corresponding type rules. Type rules are
defined for objects, for links, and for attributes.

(3) PCTE is designed to allow, but not to require, distributed and devolved management of the object
base. To this end the definition of the typing rules which govern an object, a link, or an attribute
in the object base may be split up among a number of schema definition sets (or SDSs). Some
properties of an object, a link, or an attribute must be the same in every SDS which contributes to
the definition of the typing rules for that object, link, or attribute: these are properties of the type.
Other properties may differ for different SDSs: these are properties of the type in SDS.

(4) Each SDS provides a consistent and self-contained view of the data in the object base. A process,
at any one time, views the data in the object base through a working schema. A working schema
is obtained as a composition of SDSs in an ordered list. The effect of such a composition is to
provide a union of all the types contained in the listed SDSs. A uniform naming algorithm,
dependent on the ordering of the SDSs, is applied to all the contained types.

- 7 -

(5) The object base of a PCTE installation has a notional global schema, composed of all the SDSs.
The global schema is not directly represented in the object base, and the concept is used mainly to
state certain consistency constraints on the object base as a whole.

(6) Child types of object types can be defined with the effect of implicit inheritance of all properties
of their parent types. Additionally, child types can have properties of their own.

6.5 Self-representation and predefined SDSs

(1) Many of the entities in a PCTE installation are represented by objects in the object base. The
types of these objects are defined in predefined SDSs, which are available in any conforming
implementation; for example processes are represented by objects of type "process" which is
defined in the predefined SDS 'system'. This property of PCTE is called self-representation. In
general, in this ECMA Standard, the name of an entity is used also to refer to the object that
represents it.

(2) In some cases an object of a type representing some kind of entity requires initializing, or must be
created by a particular operation, before it can be used in operations to represent an entity of that
kind. Such an object which has been initialized or correctly created is referred to as a known
entity of that kind (i.e. known to the PCTE installation); any other object of that type is referred
to as an unknown entity. For example an object of type "process" created by
PROCESS_CREATE is a known process, while one created by OBJECT_CREATE is an
unknown process.

6.6 Object contents

(1) A set of operations is provided to access the contents of some types of objects (files, pipes, and
devices). These operations provide conventional input-output facilities on files and pipes and
control of input and output on devices. These contents are not interpreted by PCTE.

(2) Other types of objects (accounting logs and audit files) have contents with structure that is
defined by PCTE and for access to which special operations are provided.

6.7 Process execution

(1) PCTE is an interface to support programs. When a program is run, this is either the execution of
the program itself, or the execution of an interpreter which interprets the program. An execution
of a program is a process. Processes are represented by objects in the object base, so the
hierarchy of processes, the environment in which a process runs, the parameters it has been
passed, and the various stages of the program execution can be controlled, manipulated and
examined.

(2) These facilities can be used also to control processes running on foreign systems. A foreign
system can be a foreign development system, a target system running a real-time operating
system, or even a PCTE workstation in another PCTE installation.

6.8 Monitoring

(1) PCTE provides three sets of features to support debugging and monitoring of processes.

(2) - To measure the amount of time spent in selected parts of the code.

- 8 -

(3) - To observe, and modify, the execution of a child process.

(4) - To measure the processor usage of the calling process.

6.9 Communication between processes

(1) PCTE provides a number of different mechanisms for communicating between processes. The
principal ones supplied are:

(2) - the objects, links and attributes in the database;

(3) - message queues;

(4) - pipes.

(5) Message queues and pipes are essentially special forms of object. Thus both pipes and message
queues are special cases of the general use of the object base for interprocess communication.

(6) Pipes and message queues also provide communication between PCTE processes and foreign
processes running on foreign systems (if the foreign systems allow it).

6.10 Notification

(1) In PCTE there is a mechanism that allows the designation of objects so that certain types of
access result in a message being posted in a message queue which can be accessed by the process
requesting the notification.

(2) The notification mechanism allows a process to specify events, corresponding to operations on
objects, of which it wants to be notified.

6.11 Concurrency and integrity control

(1) The object base is subject to concurrent access by users, and is liable to underlying system
failure.

(2) PCTE provides locking facilities to control the strength of object base concurrency and
consistency, ranging from unprotected behaviour, through protected behaviour, to protected
atomic and serializable transaction activities. PCTE ensures object base consistency and object
base integrity for atomic and serializable transactions.

(3) Each user carrying out a transaction on the object base sees some grouping of operations as an
atomic operation which transforms the object base from one consistent state to another. If
transactions are run one at a time then each transaction sees the consistent state left by its
predecessor. When transactions are run concurrently PCTE ensures that the effect on the object
base is as though they were run serially. With a few exceptions, such as messages sent to or
received from a message queue, the effect of a sequence of operations performed within a
transaction is atomic: either all the operations are performed or none are performed.

(4) Another important aspect of activities arises in composition of programs. A single program
carrying out an atomic transaction on the object base can be regarded as performing a single
function. More powerful functions can be built up by an outer program invoking a set of other,
inner, programs, each of which carries out its own specific function. PCTE provides nested
activities to allow each inner activity to behave in an atomic way, and at the same time to allow
the whole function to be atomic. Thus the outer program can start a transaction, which may be

- 9 -

either committed or aborted, and finally the whole outer transaction is committed or aborted.
Each such inner program could itself invoke further nested programs, and so on.

6.12 Distribution

(1) PCTE is based on a community of workstations of possibly differing types connected together by
a network. The community is normally seen by the user as a single environment, grouping
together the facilities, services and resources of all the different workstations, though in some
circumstances a PCTE installation may be temporarily divided into separated partitions, each of
which supports useful work.

(2) Objects, including processes, are distributed throughout a PCTE installation. A user is able to
disregard both the location of objects on volumes in the network and that of the workstation
concerned in executing processes. Alternatively a user may choose to exercise control over the
location of objects on volumes and the location of processes. On creation of an object a volume
can be specified to indicate its location. Every process executes on a particular workstation and a
user can specify which workstation by either static or dynamic means: the static context of a
program has an execution class identifying the range of workstations upon which the static
context may be executed; the workstation on which a process executes can be specified on
invocation.

6.13 Replication

(1) As it is possible that one or more workstations of a PCTE installation become temporarily
unavailable, certain installation-wide objects must still be accessible. Replication facilities are
available whereby a copy of an object's contents, attributes and links are made to each
workstation. Installation-wide objects are predefined as replicated and other objects can be
added. This feature is intended for non-volatile, rarely varying, widely consulted objects.

6.14 Security

(1) A PCTE installation has to support many users and many projects. Different users are expected
to have different roles within projects and to be authorized to access different objects. The user
accesses objects using programs (themselves modelled as static contexts within the object base).

(2) The purpose of security is to prevent the unauthorized disclosure, amendment or deletion of
information. Security facilities are provided to support the definition of the different
authorizations of users and programs.

(3) Security in PCTE is provided by discretionary and mandatory access controls. Access controls as
defined in the security clauses form one aspect of the correct operation of the installation with
regard to the integrity of the information held and the correctness of its use. In this regard, the
facilities described in the security clauses complement the data modelling facilities of the OMS
and schema management, and the transaction and concurrency control facilities.

(4) Each OMS object is associated with access control lists which define which types of access to the
object are permitted for designated users or programs. Access control lists are expressed in terms
of discretionary access rights which are explicitly granted or denied to designated individual
users, user groups or program groups. Access rights on a particular object are combined in order
to determine a process's permission to perform each particular operation on the object.

- 10 -

(5) Mandatory access controls cover both mandatory confidentiality and mandatory integrity, with
distinct controls. Mandatory access controls are additional to discretionary access controls.

(6) Mandatory confidentiality controls prevent the disclosure of information to unauthorized users.
They prevent the flow of information to the unauthorized user directly, by controlling read access
(simple confidentiality), and indirectly, by controlling the flow of information between objects
(confidentiality confinement).

(7) Mandatory integrity controls prevent unauthorized sources from contributing to the information
in an object. They prevent the flow of information from the unauthorized user directly, by
controlling write access (simple integrity), and indirectly, by controlling the flow of information
between objects (integrity confinement).

6.15 Accounting

(1) The accounting facilities of PCTE allow the automatic recording of the consumption of selected
installation resources by users, groups of users, or groups of programs.

(2) Authorized users may designate selected objects like programs, files, pipes, message queues,
devices, workstations, and SDSs as being accountable resources. Access to an accountable
resource by a process implies the automatic logging of usage information into the associated
accounting log on completion of the operation.

6.16 Implementation limits

(1) PCTE permits the user to examine the implementation-defined limits for the PCTE installation in
which a program executes.

(2) Minimal values are defined for limits, so that a program respecting those values is portable to any
PCTE installation.

6.17 Support of fine-grain objects

(1) The notion of support of fine-grain objects is mostly concerned with improved performance time
for creating and accessing PCTE objects. Object granularity is not dependent on type. It is
described in terms of the amount of processing that has to be done to access an object.

(2) To enhance performance, the concept of cluster is introduced. A cluster is an object that
represents the set of fine-grain objects that share the same values for certain PCTE properties and
with some specific restrictions:

(3) - Usage restrictions on concurrency allow them to be cached in the main memory of processes.

(4) - Time attributes of all fine-grain objects residing in a cluster are shared.

(5) - Notification is not applicable to fine-grain objects.

(6) - Security properties are also shared and only checked once at the level of the cluster.

(7) - Auditing has limitations which decreases the controls to be made on fine-grain objects.

(8) - Fine-grain objects are not accountable resources.

(9) - Fine-grain objects have the same replicated state as their cluster.

- 11 -

6.18 Support of object-orientation

(1) One of the prominent characteristics of PCTE is its ability to define any user data model and to
use a self-referential approach to describe its metadata. The object-orientation facilities follow a
similar approach and describe everything as an extension of the metabase or of the object base.

(2) The data model supporting the object-orientation facilities can be partitioned into three parts: the
interface part, the module part, and the method mapping part.

(3) The interface part of this data model is described as an extension of the metasds SDS, while the
other two parts are extensions of the system SDS. The reason is that the instances of the interface
part are additional information contained in a user SDS, while the instances of the two other parts
are user data stored in the object base, as executable programs or loadable modules.

7 Outline of the Standard

(1) Clause 6 gives an informal, non-normative explanation of the concepts of PCTE. Clause 7 gives
an overview of the document and of the structure of the definition.

(2) The partly formal, normative definition of PCTE is in clauses 8 to 24 and annexes A to C. It is in
two main parts. The first main part is the foundation (clause 8) which defines the concept Object
and its parts, for example Attribute and Link, and the concepts of the associated typing
mechanism, for example Type and Type in SDS. This uses a subset of VDM-SL; see annex A.

(3) The second main part of the definition is the interface definition (clauses 9-22). This defines the
other concepts of PCTE, for example Process and Workstation, as specializations of the concept
Object (clauses 11-22). This definition is in terms of the typing structure associated with these
specializations, that is in terms of the typing concepts of the foundation. A language for the
definition of types and types in SDS, called Data Definition Language or DDL, is defined in annex
B.

(4) The concept Object is itself further specialized, i.e. details not necessary for the foundation are
added, in clause 9. (The name Object is used in both the foundation and the interface definition
because it is the same concept although only a few of its details are defined in the foundation.)

(5) Thus the foundation is a relatively simple general model that is specialized in later clauses to
provide the PCTE interface definition.

(6) Instances of the PCTE concepts are called entities and they are referred to by the names of the
underlying concepts, for example instances of Object are called objects. All the entities existing at
a time are called the state of the PCTE installation. PCTE is defined in terms of the permissible
values of the state and the permissible operations on the state. The foundation defines part of the
state, namely that part concerned with entities of the foundation concepts; the interface definition
defines the rest of the state and all the operations.

(7) The concepts of the typing mechanism cannot be treated as specializations of the concept Object
because the definition of PCTE would then be circular. They can however be represented by
specializations of Object so that tools can determine the current state of the typing mechanism
using the operations provided for determining the current state of objects. Operations for
manipulating the state of the typing mechanism also manipulate the representing objects
automatically and equivalently. The representations and operations of the typing mechanism are
defined in clause 10.

(8) The interface is defined by operations grouped according to function. For each group some
concepts are defined first in DDL and possibly VDM-SL, as described above. There follow the

- 12 -

operation definitions; a VDM-SL definition of the signature, an informal English description of the
normal action of the operation, and a list of the possible error conditions (using an abbreviated
notation defined in annex C).

(9) Other ECMA Standards define application programming interfaces to PCTE in terms of specific
programming languages by defining the mapping of datatypes, operations, and error conditions of
the abstract specification to datatypes, operations, and error conditions respectively of the
programming language (see 3.1). Such mapping specifications are called bindings. Clause 23
defines a number of features to which all bindings must conform.

(10) Clause 24 defines the limits on the sizes and numbers of various entities which a conforming
PCTE implementation must respect. These are given as minima which an implementation must
meet or exceed.

(11) Annexes A to C define various notations used in the Abstract Specification. Annex A defines the
subset of VDM-SL used for type definitions and operation signatures; annex B defines DDL; and
annex C defines the notation for operation error conditions.

(12) Annex D contains a list of auditable events classified by event type.

(13) Annex E is provided for information; it collects the DDL definitions of the types in the predefined
schema definition sets.

(14) Annex F is normative and contains the definition of the fine-grain objects module.

(15) Annex G is normative and contains the definition of the object-orientation module.

(16) Clauses 8 to 24 contain commentary (headed NOTE or NOTES) which is not normative and is
intended as a help to the reader in understanding the definition.

8 Foundation

8.1 The state

(1) state PCTE_Installation of
SYSTEM_TIME : Time
OBJECT_BASE : map Object_designator to Object
PROCESSES : set of Process
MESSAGE_QUEUES : set of Message_queue
CONTENTS_HANDLES : map Contents_handle to Current_position
CURRENT_POSITIONS : map Current_position to Natural
WORKSTATIONS : set of Workstation

end

(2) Name = Text

(3) Name_sequence = seq of Name

(4) Working_schema ::
VISIBLE_TYPES : set of Type_in_working_schema
SDS_NAMES : Name_sequence

(5) Process ::
PROCESS_OBJECT : Object_designator
WORKING_SCHEMA : Working_schema
OPEN_CONTENTS : set of Open_contents

(6) Message_queue ::
QUEUE_OBJECT : Object_designator
MESSAGES : seq of Message

- 13 -

(7) Workstation ::
WORKSTATION_OBJECT : Object_designator
AUDIT_CRITERIA : set of Selection_criterion

(8) Instances of the PCTE concepts are called entities; they are referred to by the names of the
underlying concepts. The state comprises the entities of a PCTE installation that endure from one
operation call to another. The effect of an operation call is to modify the state, or to return values
derived from the state (and any parameters), or both.

(9) The system time is the date and time of day at any instant, as given by some system clock. For
the format of the time see 23.1.1.5. The current time for an operation is a value of the system
time at some moment between the start and end of the operation.

(10) The object base is a set of objects identified by object designators (see 8.2.1).

(11) A working schema is associated with a process (see clause 13) and consists of a set of types in
working schema, derived from a sequence of SDSs. The types in working schema in the working
schema of the calling process are called visible types. For the creation of a working schema for a
process see 13.2.12.

(12) The initial value of the state consists of the following objects:

(13) - at least one workstation, at least one device managed by that workstation, at least one volume
mounted on that device, and at least one process running on that workstation (see 18.1.2,
11.1.3, 11.1.1, and 13.1.5);

(14) - the administration replica set, the common root, and the administrative objects (see 17.1.4 and
9.1.2);

(15) - at least one user (see 19.1.1);

(16) - at least the schema definition sets system, metasds, discretionary_security,
mandatory_security (if implemented), and accounting (if implemented) (see 10.1);

(17) - the predefined user group ALL_USERS, and the predefined program groups PCTE_AUDIT,
PCTE_REPLICATION, PCTE_EXECUTION, PCTE_SECURITY, PCTE_HISTORY,
PCTE_CONFIGURATION, and PCTE_SCHEMA_UPDATE (see 19.1.1).

(18) NOTE - It is intended that the system time should be as near as possible the same throughout a PCTE installation.

8.2 The object base

8.2.1 Objects

(1) Object ::
OBJECT_TYPE : Object_type_nominator
ATTRIBUTES : set of Attribute
LINKS : set of Link
DIRECT_COMPONENTS : set of Object
PREFERRED_LINK_TYPE : [Link_type_nominator]
PREFERRED_LINK_KEY : [Text]
CONTENTS : [Contents]

(2) Object_designator :: Token

(3) Object_designators = set of Object_designator

(4) Contents = Structured_contents | Unstructured_contents

(5) Structured_contents = Accounting_log | Audit_file

- 14 -

(6) Unstructured_contents = File | Pipe | Device

(7) Object_scope = ATOMIC | COMPOSITE

(8) The object type constrains the properties of the object (see 8.3.1).

(9) No two attributes of an object have the same attribute type. There is a basic set of attributes
which all objects have; it is defined in 9.1.1.

(10) The preferred link type and preferred link key, if present, are used as defaults in the
identification of a link of the object (see 8.2.3). The preferred link key has the syntax of a key
(see 23.1.2.7).

(11) Every direct component of an object is the destination of a composition link of the object, and
vice versa.

(12) An outer object of an object A is an object of which A is a component.

(13) The atomic object associated with an object comprises the links, attributes, preferred link type,
preferred link key, and contents of the object. The atoms of an object are the atomic objects
associated with the object and all its components.

(14) A component of an object is a direct component of the object or of a component of the object.
An object which is a component of each of two distinct objects, neither of which is a component
of the other, is called a shared component of those two objects.

(15) An internal link of an object is a link of the object or of one of its components for which the
destination is either a component of the object or the object itself. An external link of an object
is a direct or indirect outgoing link of the object which is not an internal link of the object. An
object is called the origin of each of its links.

(16) An object is specified by an object designator, or by a specialization of object designator defined
as follows: if "X" is an object type (that is, it is a descendant of "system-object", see 9.1.1) then
'X_designator' (with capital initial) stands for 'Object_designator' with the condition that the
value must designate an object of type "X" or a descendant of "X". For the mapping of object
designators to the language bindings, see 23.1.2.2.

(17) An object scope is used to indicate whether the effect of an operation applies to an object
(COMPOSITE) or to the atomic object of the object (ATOMIC).

NOTES

(18) 1 An object can be a component of itself. Similarly two objects can be components of each other; in that case there
are two distinct objects with the same atoms.

(19) 2 General operations are provided for handling unstructured contents (see clause 12) as a sequence of octets, the
meaning of which is not further defined in this ECMA Standard. Specific operations are provided for handling
structured contents, which has a defined meaning in each case (see clauses 21 and 22).

(20) 3 When an object is created, so are all its attributes in the global schema. When a new attribute type is applied to
the object's type in an SDS, effectively all objects of that type and its descendants gain a new attribute with its
initial value. If the application of an attribute type to that object type is removed from all SDSs, the attribute
remains on each object of that type until deleted by OBJECT_DELETE_ATTRIBUTE.

8.2.2 Attributes

(1) Attribute ::
ATTRIBUTE_TYPE : Attribute_type_nominator
ATTRIBUTE_VALUE : Attribute_value

(2) Attribute_value = Integer | Natural | Boolean | Time | Float | String

- 15 -

(3) Attribute_designator :: Token

(4) Attribute_designators = set of Attribute_designator

(5) Attribute_selection = Attribute_type_nominators | VISIBLE_ATTRIBUTE_TYPES

(6) Attribute_assignments = map Attribute_designator to Attribute_value

(7) String = seq of Octet

(8) The value of an enumeration attribute is represented by its position within the enumeration value
type (see 8.3.2).

(9) An attribute is specified as follows:

(10) - for an attribute of an object: an object designator which specifies the object, and an attribute
designator which specifies the attribute relative to the object;

(11) - for an attribute of a link: an object designator which specifies the origin of the link, a link
designator which specifies the link relative to the object (see 8.2.3), and an attribute
designator which specifies the attribute relative to the link.

NOTES

(12) 1 Each attribute in the object base is a key or non-key attribute of a link in the object base or a direct attribute of an
object in the object base.

(13) 2 An implementation may impose constraints on the values of attributes (see clause 24). An attribute may take any
value of its value type within those constraints; for example, a string attribute may take any string value up to the
maximum allowed length, whatever its present value may be.

(14) 3 For the types Integer, Natural, Boolean, Time, Float, and String see 23.1.1.

8.2.3 Links

(1) Link ::
LINK_TYPE : Link_type_nominator
DESTINATION : [Object_designator]
KEY_ATTRIBUTES : seq of Attribute
NON_KEY_ATTRIBUTES : set of Attribute
REVERSE : [Link_designator]

(2) Link_designator :: Token

(3) Actual_key = seq1 of (Text | Natural)

(4) Link_designators = set of Link_designator

(5) Link_selection = Link_type_nominators | VISIBLE_LINK_TYPES | ALL_LINK_TYPES

(6) Link_descriptor = Object_designator * Link_designator

(7) Link_descriptors = set of Link_descriptor

(8) Link_set_descriptor = Object_designator * Link_designators

(9) Link_set_descriptors = set of Link_set_descriptor

(10) Link_scope = INTERNAL_LINKS | EXTERNAL_LINKS | ALL_LINKS

(11) The key attributes and the non-key attributes are together called the attributes of the link. No
two attributes of a link have the same attribute type.

(12) Two distinct links of the same type from the same object must have different key attributes (i.e.
the two sequences of key attribute values must be different).

(13) The reverse link of the reverse link of a link is that link.

- 16 -

(14) A link is said to be from its origin and to its destination.

(15) A series of links from object A to object B is a sequence of 1 or more links L1, L2, ..., Ln such
that A is the origin of L1, B is the destination of Ln, and otherwise the destination of each link is
the origin of the next in sequence.

(16) A link is specified by an object designator which specifies the origin of the link and a link
designator which specifies the link relative to the object. For the mapping of link designators to
the language bindings, see 23.1.2.4.

NOTES

(17) 1 Each link in the object base is a link of exactly one object in the object base; i.e. each link has exactly one origin.

(18) 2 When a link is created, so are all its attributes in the global schema. When a new attribute type is applied to the
link's type in an SDS, effectively all links of that type gain a new attribute with its initial value. If the application of
an attribute type to that link type is removed from all SDSs, the attribute remains on each link of that type until
deleted by LINK_DELETE_ATTRIBUTE.

8.3 Types

(1) Type = Object_type | Attribute_type | Link_type | Enumeral_type

(2) Type_nominator = Object_type_nominator | Attribute_type_nominator | Link_type_nominator |
Enumeral_type_nominator

(3) Object_type_nominator :: Token

(4) Attribute_type_nominator :: Token

(5) Link_type_nominator :: Token

(6) Enumeral_type_nominator :: Token

(7) Type_nominators = set of Type_nominator

(8) Object_type_nominators = set of Object_type_nominator

(9) Attribute_type_nominators = set of Attribute_type_nominator

(10) Link_type_nominators = set of Link_type_nominator

(11) Type_kind = OBJECT_TYPE | ATTRIBUTE_TYPE | LINK_TYPE | ENUMERAL_TYPE

(12) A type is a template defining common basic properties of a set of instances. The instances of a
type are those whose type nominator identifies that type.

(13) A type is specified by a type nominator, which may be specialized to an object type nominator,
an attribute type nominator, a link type nominator, or an enumeral type nominator. A type
nominator may be further specialized as follows: if "X" is an object type, attribute type, link type,
or enumeral type then 'X_type_nominator' stands for 'Object_type_nominator' etc. with the
condition that the value must designate type "X" or a descendant of "X". For the mapping of type
nominators to language bindings see 23.1.2.5 and 23.1.2.

8.3.1 Object types

(1) Object_type ::
TYPE_NOMINATOR : Object_type_nominator
CONTENTS_TYPE : [Contents_type]
PARENT_TYPES : Object_type_nominators
CHILD_TYPES : Object_type_nominators
represented by object_type

- 17 -

(2) Contents_type = FILE_TYPE | PIPE_TYPE | DEVICE_TYPE | AUDIT_FILE_TYPE |
ACCOUNTING_LOG_TYPE

(3) The contents type, if present, specifies the type of contents of instances of the object type. If no
contents type is supplied, instances of the object type have no contents.

(4) The parent types define inheritance rules governing the properties of object types in working
schema (see 8.5.1). The parent types of an object type, their parent types, and so on, excluding
the object type itself, are called the ancestor types of the object type.

(5) The child types are the object types which have this object type as parent type. The child types
of an object type, their child types, and so on, excluding the object type itself, are called the
descendant types of the object type.

(6) The parent/child relation between object types forms a directed acyclic graph, with the object
type "object" (see 9.1.1) as the root.

8.3.2 Attribute types

(1) Attribute_type ::
TYPE_NOMINATOR : Attribute_type_nominator
VALUE_TYPE_IDENTIFIER : Value_type_identifier
INITIAL_VALUE : [Attribute_value]
DUPLICATION : Duplication
represented by attribute_type

(2) Value_type_identifier = INTEGER | NATURAL | BOOLEAN | TIME | FLOAT | STRING |
Enumeration_value_type_identifier

(3) Enumeration_value_type_identifier = seq1 of Enumeral_type_nominator

(4) Duplication = DUPLICATED | NON_DUPLICATED

(5) The value type identifier identifies the value type of the instances of the attribute type, i.e. the
datatype of their possible attribute values (see table 1). See 23.1.1 for the mapping of values of
integers, naturals, Booleans, times, floats, and strings. An enumeration value type identifier is a
non-empty sequence of enumeral types.

(6) The initial value, which is a value of the value type, is the initial value of any attribute of this
attribute type after creation and before any value has been assigned to it. If no initial value is
supplied, the default initial value for the value type is used (see table 1).

(7) If the duplication is DUPLICATED, then every instance of the attribute type is a duplicable
attribute, i.e. the value of the attribute is copied whenever an object or link with the attribute is
copied; if it is NON_DUPLICATED then every instance is a nonduplicable attribute, i.e. the
value of the copy of the attribute reverts to the initial value.

- 18 -

Table 1 - Value types

Value type identifier Value type Default initial value

INTEGER Integer 0

NATURAL Natural 0

BOOLEAN Boolean false

TIME Time 1980-01-01T00:00:00Z

FLOAT Float 0.0

STRING String "" (empty string)

Enumeration value type
identifier

Enumeral type 1st enumeral type of the enumeration
value type identifier

8.3.3 Link types

(1) Link_type ::
TYPE_NOMINATOR : Link_type_nominator
CATEGORY : Category
LOWER_BOUND, UPPER_BOUND : [Natural]
EXCLUSIVENESS : Exclusiveness
STABILITY : Stability
DUPLICATION : Duplication
KEY_ATTRIBUTE_TYPES : Key_types
REVERSE_LINK_TYPE : [Link_type_nominator]
represented by link_type

(2) Key_types = seq of Attribute_type_nominators

(3) Category = COMPOSITION | EXISTENCE | REFERENCE | DESIGNATION | IMPLICIT

(4) Categories = set of Category

(5) Exclusiveness = SHARABLE | EXCLUSIVE

(6) Stability = ATOMIC_STABLE | COMPOSITE_STABLE | NON_STABLE

(7) All instances of a link type have the category, exclusiveness, stability, and duplication of the
link type.

(8) The lower bound of a link type defines the number below which the number of links of that link
type from any instance of an object type with that link type cannot be reduced. If absent, the
lower bound is taken as 0. The lower bound is only checked when an attempt is made to delete a
link, so that on creation of an object the number of links of a type may be less than the lower
bound for that type.

(9) The upper bound of a link type is an optional natural defining the maximal number of links of
that link type from any instance of an object type with that link type. If present, it must be
greater than 0 and not less than the lower bound. If absent, there is no upper bound.

(10) A link type is said to be of cardinality one if its upper bound is 1. A link type of cardinality one
has an empty sequence of key attribute types.

(11) A link type is said to be of cardinality many if it is not of cardinality one. A link type of
cardinality many has a non-empty sequence of key attribute types.

- 19 -

(12) The sequence of key attribute types defines the attribute types of the sequence of key attributes
of an instance of the link type. It does not contain any repeated attribute type nominators. A
key attribute has value type Natural or String.

(13) The optional reverse link type is the link type which reverses the link type, i.e. whenever a link
of this link type exists from object A to object B, a link of the reverse type exists from object B
to object A, and vice versa. The reverse link type is not allowed if the category is
DESIGNATION, and must be present otherwise.

(14) The term complementary is used of pairs of links, each having the other's origin as its
destination, which are not reverses of each other.

(15) All link types of category IMPLICIT and cardinality many have lower bound 0, no upper bound,
and a single key attribute of the predefined attribute type "system_key". The values of
"system_key" attributes are implementation-dependent: each such key value is different from
the value of every other "system_key" attribute of a link of the same link type from the same
object.

(16) All link types of category EXISTENCE and cardinality many have lower bound 0.

(17) The category identifies certain properties of instances of the link type, as follows:

(18) - relevance to the origin. For a link with this property:

(19) . The link may be created and deleted explicitly.

(20) . APPEND_LINKS discretionary access right to the origin is required in order to create the
link, and WRITE_LINKS discretionary access right to the origin is required in order to
delete the link.

(21) . The link cannot be created or deleted if its origin is a stable object.

(22) . The creation and deletion of the link assign the current system time to the last
modification time of the origin.

(23) . The link may have non-key attributes.

(24) For a link without the relevance to the origin property:

(25) . The link may only be created and deleted implicitly, i.e. as the reverse of a link with the
relevance to the origin property.

(26) . APPEND_IMPLICIT discretionary access right to the origin is required in order to create
the link, and WRITE_IMPLICIT discretionary access right to the origin is required in
order to delete the link.

(27) . The link can be created or deleted even if its origin is a stable object.

(28) . The creation and deletion of the link have no effect on the last modification time of the
origin.

(29) . The link may not have non-key attributes.

(30) - referential integrity. For a link with this property:

(31) . If the link exists then so does its destination, i.e. the existence of the link prevents the
deletion of its destination.

(32) . The link always has a reverse link with the referential integrity property.

- 20 -

(33) - existence property. For a link with this property:

(34) . An object can be created as destination of the link.

(35) . The deletion of the link can imply the deletion of its destination.

(36) - composition property. For a link with this property:

(37) . The destination of the link is a component of its origin.

(38) The categories are defined in terms of these properties as follows:

(39) - COMPOSITION: relevance to the origin, referential integrity, existence property,
composition property. Links with this category are called composition links.

(40) - EXISTENCE: relevance to the origin, referential integrity, existence property. Links with
this category are called existence links.

(41) - REFERENCE: relevance to the origin, referential integrity. Links with this category are
called reference links.

(42) - IMPLICIT: referential integrity. Links with this category are called implicit links.

(43) - DESIGNATION: relevance to the origin. Links with this category are called designation
links.

(44) If the stability of a link type is ATOMIC_STABLE, each instance of the link type is an
atomically stabilizing link, i.e. the destination of the link (excluding its components other than
itself) cannot be modified or deleted.

(45) If the stability of a link type is COMPOSITE_STABLE, each instance of the link type is a
compositely stabilizing link, i.e. the destination of the link (including its components) cannot be
modified or deleted.

(46) If the stability of a link type is NON_STABLE, each instance of the link type is a nonstabilizing
link, i.e. the existence of the link does not prevent the modification or deletion of its destination
or its components.

(47) Modification of an object is defined in 9.1.1. A stable object is the destination of an atomically
or compositely stabilizing link, or a component of the destination of a compositely stabilizing
link.

(48) Exclusiveness applies only to composition link types. If it is EXCLUSIVE, each instance of the
link type is an exclusive composition link, i.e. no other composition link can share the same
destination. If it is SHARABLE, each instance of the link type is a sharable composition link,
i.e. other composition links can share the same destination.

(49) If duplication is DUPLICATED, each instance is a duplicable link, i.e. the link is copied
whenever its origin is copied; if it is NON_DUPLICATED, each instance is a nonduplicable
link, i.e. a copy of the object has no copy of the link. An implicit link cannot be duplicable.

(50) A component of an object is a duplicable component if it is the destination of at least one
duplicable internal composition link whose origin is either the object or a duplicable component
of the object.

(51) A link type of category IMPLICIT or DESIGNATION must be nonstabilizing.

(52) The following relations hold between properties of a link type and of its reverse link type:

(53) - if one link type has category IMPLICIT, then the other does not;

- 21 -

(54) - if one link type has the existence property (i.e. has category EXISTENCE or
COMPOSITION) then the other does not;

(55) - if one link type has stability ATOMIC_STABLE or COMPOSITE_STABLE then the other
has category IMPLICIT.

(56) A link type of category DESIGNATION cannot have a reverse link type.

(57) Links of the following types are termed usage designation links, because they are not checked
by the normal security rules: "running_process", "in_working_schema_of" ,
"consumer_process", "user_identity_of", "adopted_user_group_of", "reserved_by",
"locked_by", "lock", "opened_by", "mounted_on", and "listened_to". Usage designation links
have the following properties:

(58) - creation or deletion implies only a bitwise write access on the origin object from a
mandatory security point of view (see 20.1.8.2);

(59) - creation or deletion requires one unspecified discretionary access permission on the origin
object;

(60) - creation or deletion is possible for an object on a read-only volume;

(61) - creation or deletion is possible for a copy object as origin;

(62) - creation or deletion does not require the establishment of locks on the links;

(63) - they are not copied by REPLICATED_OBJECT_DUPLICATE;

(64) - they can be implicitly deleted by network failure and workstation closedown;

(65) - creation or deletion does not change the last modification time of the origin object.

(66) Links of the following types are termed service designation links, because they indicate that the
destination provides a service to the origin (usually a process): "executed_on",
"sds_in_working_schema", "consumer_identity", "user_identity", "adopted_user_group",
"reserved_message_queue", "open_object", "process_waiting_for", "referenced_object",
"adoptable_user_group", "mounted_volume", "is_listener", "notifier", and
"executed_static_context". Service designation links have the following properties:

(67) - creation or deletion does not require the establishment of locks on the links;

(68) - they are implicitly deleted by workstation failure;

(69) - for navigation along these links to replicated objects, replication redirection applies to the
state of the object base at the time the link was created rather than when it is navigated
through.

NOTES

(70) 1 The properties of links of various categories are summarized in table 2.

- 22 -

Table 2 - Properties of link categories

Property Composition
links

Existence
links

Reference
links

Implicit links Designation
links

relevance to origin yes yes yes no yes

referential integrity yes yes yes yes no

existence yes yes no no no

composition yes no no no no

atomic stability optional optional optional no no

composite stability optional optional optional no no

exclusiveness optional no no no no

duplication optional optional optional no optional

has a reverse link yes yes yes yes no

(71) 2 The reason why the lower bound of an existence link is 0 is that if there existed an existence link type L with a
lower bound of 2, for example, and an object X had two outgoing links of type L, it would be impossible to delete
either link directly using LINK_DELETE. Indirect deletion of these links by deletion of object X would also be
impossible because X would have outgoing existence links. This means that the destinations of these links could
never be deleted. This would be an undesirable situation. The same problem does not exist with composition links
because a composite object can be deleted in a single operation, OBJECT-DELETE.

8.3.4 Enumeral types

(1) Enumeral_type ::
TYPE_NOMINATOR : Enumeral_type_nominator
represented by enumeral_type

(2) An enumeral type is used as a possible value of an enumeration attribute. It has no instances.

8.4 Types in SDS

(1) Type_in_sds = Object_type_in_sds | Attribute_type_in_sds | Link_type_in_sds |
Enumeral_type_in_sds

(2) Type_in_sds_common_part ::
ASSOCIATED_TYPE : Type_nominator
LOCAL_SDS : Object_designator
LOCAL_NAME : [Name]

(3) Type_nominator_in_sds = Object_type_nominator_in_sds | Attribute_type_nominator_in_sds |
Link_type_nominator_in_sds | Enumeral_type_nominator_in_sds

(4) Object_type_nominator_in_sds :: Token

(5) Attribute_type_nominator_in_sds :: Token

(6) Link_type_nominator_in_sds :: Token

(7) Enumeral_type_nominator_in_sds :: Token

(8) Type_nominators_in_sds = set of Type_nominator_in_sds

(9) Object_type_nominators_in_sds = set of Object_type_nominator_in_sds

(10) Attribute_type_nominators_in_sds = set of Attribute_type_nominator_in_sds

- 23 -

(11) Link_type_nominators_in_sds = set of Link_type_nominator_in_sds

(12) Enumeral_type_nominators_in_sds = set of Enumeral_type_nominator_in_sds

(13) Definition_mode_value = CREATE_MODE | DELETE_MODE | READ_MODE | WRITE_MODE |
NAVIGATE_MODE

(14) Definition_mode_values = set of Definition_mode_value

(15) Definition_modes ::
USAGE_MODE : Definition_mode_values
EXPORT_MODE : Definition_mode_values
MAXIMUM_USAGE_MODE : Definition_mode_values

(16) A type in SDS (plural 'types in SDS') is a template defining a set of properties which apply to all
instances of its type, in addition to the basic properties of that type. A type in SDS is associated
with one type; a type is associated with one or more types in SDS.

(17) A schema definition set (or SDS) is an object of type "sds" (see 10.1.1), and is specified by an
object designator. A type in SDS belongs to, or is in, a particular SDS, called its local SDS.

(18) The local name identifies the type in SDS, and hence the associated type, uniquely within the
local SDS. The complete name of a type in SDS is the name of the SDS, followed by a hyphen
'-', followed by the local name of the type in SDS.

(19) The definition modes specify restrictions on the usage of the type in SDS. The usage mode
specifies the permitted kinds of access to instances of the type in SDS by a process which has
adopted its local SDS in its working schema. The export mode specifies the maximum usage
mode of the copy of the type in SDS which is created when the type in SDS is exported to
another SDS; it is a subset of the usage mode. The maximum usage mode specifies which
definition mode values can be included in the usage mode and export mode; it is set on creation
of the type in SDS and cannot be changed. The definition modes of a link and of its reverse must
be the same. Enumeral types in SDS do not have definition modes.

(20) The accesses controlled by definition modes are as follows.

(21) - READ_MODE controls reading from attributes by the operations OBJECT_GET_
ATTRIBUTE, OBJECT_GET_SEVERAL_ATTRIBUTES, LINK_GET_ATTRIBUTE, and
LINK_GET_SEVERAL_ATTRIBUTES.

(22) - WRITE_MODE controls writing to attributes by the operations OBJECT_SET_
ATTRIBUTE, OBJECT_SET_SEVERAL_ATTRIBUTES, LINK_SET_ATTRIBUTE,
LINK_SET_SEVERAL_ATTRIBUTES, OBJECT_RESET_ATTRIBUTE, and LINK_
RESET_ATTRIBUTE.

(23) - CREATE_MODE controls creation of objects and links by the operations
OBJECT_CREATE, OBJECT_COPY, OBJECT_CONVERT, VERSION_REVISE,
VERSION_SNAPSHOT, DEVICE_CREATE, and PROCESS_CREATE; and creation of
links by the operations LINK_CREATE and LINK_REPLACE.

(24) - DELETE_MODE controls deletion of objects and links by the operation OBJECT_DELETE
and deletion of links by the operations LINK_DELETE and LINK_REPLACE.

(25) - NAVIGATE_MODE controls the use of link references in pathnames in the evaluation of
object references (see 23.1.2.2).

(26) Types in SDS are specialized to object types in SDS, attribute types in SDS, link types in SDS,
and enumeral types in SDS; the associated types are object types, attribute types, link types, and
enumeral types respectively.

- 24 -

(27) A type in SDS is specified by a type nominator in SDS, which may be specialized to an object
type nominator in SDS, an attribute type nominator in SDS, a link type nominator in SDS, or an
enumeral type nominator in SDS. A type nominator in SDS may be further specialized as
follows: if "X" is an object type, attribute type, link type, or enumeral type then
'X_type_nominator_in_sds' stands for 'Object_type_nominator_in_sds' etc. with the condition
that the value must designate a type in SDS associated with type "X" or a descendant of "X". For
the mapping of type nominators in SDS to language bindings see 23.1.2.5.

(28) NOTE - The properties of a type and of an associated type in SDS can be specified by means of the Data Definition
Language (see annex B).

8.4.1 Object types in SDS

(1) Object_type_in_sds :: Type_in_sds_common_part &&
DIRECT_ATTRIBUTE_TYPES_IN_SDS : Attribute_type_nominators_in_sds
DIRECT_OUTGOING_LINK_TYPES_IN_SDS : Link_type_nominators_in_sds
DIRECT_COMPONENT_TYPES_IN_SDS : Object_type_nominators_in_sds
DEFINITION_MODES : Definition_modes
represented by object_type_in_sds

(2) The only allowed definition mode value for an object type in SDS is CREATE_MODE.

(3) The direct attribute types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the visible attribute types of object types in working schema; see
8.5.1.

(4) The direct outgoing link types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the visible link types of object types in working schema; see
8.5.1. The object type in SDS is called the origin object type in SDS of each of the direct
outgoing link types in SDS.

(5) The direct component types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the direct component types of object types in working schema;
see 8.5.1.

8.4.2 Attribute types in SDS

(1) Attribute_type_in_sds :: Type_in_sds_common_part &&
DEFINITION_MODES : Definition_modes
represented by attribute_type_in_sds

(2) The only allowed definition mode values for an attribute type in SDS are READ_MODE and
WRITE_MODE.

8.4.3 Link types in SDS

(1) Link_type_in_sds :: Type_in_sds_common_part &&
DESTINATION_OBJECT_TYPES_IN_SDS : Object_type_nominators_in_sds
NON_KEY_ATTRIBUTE_TYPES_IN_SDS : Attribute_type_nominators_in_sds
DEFINITION_MODES : Definition_modes
represented by link_type_in_sds

(2) The only allowed definition mode values for a link type in SDS are CREATE_MODE,
DELETE_MODE, and NAVIGATE_MODE.

- 25 -

(3) The destination object types in SDS must be in the same SDS as the link type in SDS. They
participate in the definition of the destination object types of link types in working schema; see
8.5.3.

(4) The non-key attribute types in SDS must be in the same SDS as the link type in SDS. They
participate in the definition of the visible attribute types of link types in working schema; see
8.5.3.

8.4.4 Enumeral types in SDS

(1) Enumeral_type_in_sds :: Type_in_sds_common_part &&
IMAGE : Text
represented by enumeral_type_in_sds

(2) An enumeral type in SDS associates with the enumeral type a string called its image.

8.5 Types in working schema

(1) Type_in_working_schema = Object_type_in_working_schema |
Attribute_type_in_working_schema | Link_type_in_working_schema |
Enumeral_type_in_working_schema

(2) Type_in_working_schema_common_part ::
ASSOCIATED_TYPE : Type_nominator
CONSTITUENT_TYPES_IN_SDS : seq of (Composite_name * Type_nominator_in_sds)

(3) Composite_name ::
SDS_NAME : Name
LOCAL_NAME : [Name]

(4) A type in working schema is a template defining common properties for a set of instances of its
type. The properties of a type in working schema are derived from the properties of one or more
types in SDS (see 8.5.1 to 8.5.4). Types in working schema occur in working schemas, see 8.1.
For the construction of working schemas, see 13.2.12.

(5) The constituent types in SDS of a type in working schema must all have the same associated
type, which is the type associated with the type in working schema.

(6) A type in working schema has several composite names, one for each constituent type in SDS.
For each composite name, the SDS name is the name of the local SDS of the corresponding type
in SDS, and the local name, if any, is the local name of the type in SDS in its local SDS.

(7) Let C1 and C2 be composite names, and T1 and T2 be type nominators in SDS. Then for any
two constituent types in SDS (C1, T1), (C2, T2) of a type in working schema, if the SDS name of
C1 precedes the SDS name of C2 in the SDS names of the working schema containing the type in
working schema, then (C1, T1) precedes (C2, T2).

(8) Types in working schema are specialized to object types in working schema, attribute types in
working schema, link types in working schema, and enumeral types in working schema; their
associated types are object types, attribute types, link types, and enumeral types respectively.

(9) The value of a type in SDS cannot be changed while it is part of a type in working schema.

(10) A type in working schema is specified by a type nominator, see 8.3.

- 26 -

8.5.1 Object types in working schema

(1) Object_type_in_working_schema :: Type_in_working_schema_common_part &&
CHILD_TYPES : Object_type_nominators
PARENT_TYPES : Object_type_nominators
APPLIED_ATTRIBUTE_TYPES : Attribute_type_nominators
APPLIED_LINK_TYPES : Link_type_nominators
VISIBLE_ATTRIBUTE_TYPES : Attribute_type_nominators
VISIBLE_LINK_TYPES : Link_type_nominators
DIRECT_COMPONENT_TYPES : Object_type_nominators
USAGE_MODES : Definition_mode_values

(2) The set of constituent types in SDS of the child types is the union of the sets of child types of
the constituent types in SDS of the type in working schema.

(3) The set of constituent types in SDS of the parent types is the union of the sets of parent types of
constituent types in SDS of the type in working schema.

(4) The applied attribute types are the attribute types in working schema which have a constituent
type in SDS of a direct attribute type in SDS of one of the constituent types in SDS of the object
type in working schema.

(5) The applied link types are the link types in working schema which have a constituent type in
SDS of a direct outgoing link type in SDS of one of the constituent types in SDS of the object
type in working schema.

(6) The direct component types are the object types in working schema which have a constituent
type in SDS of a direct component type in SDS of one of the constituent types in SDS of the
object type in working schema.

(7) The set of visible attribute types is the union of the set of applied attribute types and the sets of
the visible attribute types of all the parent types.

(8) The set of visible link types is the union of the set of applied link types and the sets of the
visible link types of all the parent types.

(9) The constituent types in SDS must be object types in SDS.

(10) If the type of an object is not visible, the object is considered as an instance of any of its object
type's ancestor types which is visible.

(11) The set of usage modes is the union of the sets of definition modes of all constituent types in
SDS of the object type in working schema.

8.5.2 Attribute types in working schema

(1) Attribute_type_in_working_schema :: Type_in_working_schema_common_part &&
USAGE_MODES : set of Definition_mode_values

(2) The constituent types in SDS must be attribute types in SDS.

(3) The set of usage modes is the union of the sets of definition modes of all constituent types in
SDS of the attribute type in working schema.

- 27 -

8.5.3 Link types in working schema

(1) Link_type_in_working_schema :: Type_in_working_schema_common_part &&
DESTINATION_OBJECT_TYPES : Object_type_nominators
VISIBLE_DESTINATION_OBJECT_TYPES : Object_type_nominators
KEY_ATTRIBUTE_TYPES : Key_types
APPLIED_ATTRIBUTE_TYPES : Attribute_type_nominators
REVERSE : [Link_type_nominator]
USAGE_MODES : Definition_mode_values

(2) The set of constituent types in SDS of the applied attribute types is the union of the sets of non-
key attribute types of the constituent types in SDS of the link type in working schema.

(3) The set of constituent types in SDS of the destination object types is the union of the sets of
destination object types of the constituent types in SDS of the link type in working schema.

(4) The constituent types in SDS must be link types in SDS.

(5) The set of visible destination object types is the union of the set of destination object types and
the set of visible descendants of the visible destination object types.

(6) The sequence of key attribute types is the same as the sequence of key attribute types of the
associated type.

(7) The set of usage modes is the union of the sets of definition modes of all constituent types in
SDS of the link type in working schema.

8.5.4 Enumeral types in working schema

(1) Enumeral_type_in_working_schema :: Type_in_working_schema_common_part &&
IMAGE : Text

(2) The image of an enumeral type in working schema T1 is the image of the first of its types in
SDS which has an image, unless another enumeral type in working schema T2 belonging to the
same enumeration attribute type in working schema as T1 but with a lower position already has
the same image, in which case T1 has no image.

(3) The constituent types in SDS must be enumeral types in SDS.

8.6 Types in global schema

(1) The global schema is the working schema constituted by all the SDSs of a PCTE installation; the
order is irrelevant as it affects only the type names, which are of no concern here. A type in
global schema is a type in working schema in the global schema; it follows that each type is
associated with one type in global schema. The global schema is a notional working schema used
to state the following consistency rules applying to the whole object base; it is not necessarily the
working schema of any process.

(2) An object must be compatible with its associated object type in global schema, i.e.:

(3) - The link types in global schema of the links of the object must be among the visible link types
in global schema of the object type in global schema.

(4) - The attribute types in global schema of the attributes of the object must be among the visible
attribute types in global schema of the object type in global schema.

(5) - The object types in global schema of the direct components of the object must be among the
direct component object types in global schema of the object type in global schema.

- 28 -

(6) - The preferred link type of the object, if present, must be one of the applied link types of the
object type in global schema.

(7) - The preferred link key of the object, if present, must have the same value types (String or
Natural), in the same order, as the key attribute types of the preferred link type of the object.

(8) A link must be compatible with its associated link type in global schema, i.e.:

(9) - The object type in global schema of the destination of the link must be among the visible
destination types of the link type in global schema.

(10) - The key attributes of the link, if any, must have the same value types (String or Natural) in the
same order as the key attribute types of the link type in global schema.

(11) - The non-key attributes of the link must be among the applied attribute types of the link type in
global schema.

(12) - The link type in global schema of the reverse link, if any, must be the reverse of the link type
in global schema.

8.7 Operations

8.7.1 Calling process

(1) The operations defined in clauses 9 to 22 take effect when they are executed by a process (see
13.1.4). The process is known as the calling process of the operation. The effects on the state
of the PCTE installation are global, i.e. can be observed by other processes. Results returned by
operations which are designators are local to the calling process.

8.7.2 Direct and indirect effects

(1) The effects of an operation on the state of the PCTE installation comprise direct effects and
indirect effects. Direct effects are described in the relevant operation descriptions (including the
error descriptions). Indirect effects are described elsewhere in clauses 9 to 22. The operations
of clause 23 do not affect the state.

(2) Indirect effects occur by means of events. Events are of several classes, described below. An
operation may raise an event. Depending on the state of the PCTE installation, the raising of an
event may result either in the effect of another operation being different to what it would
otherwise be, or in some other change of state.

(3) An operation has a finite non-zero duration, and an event that is raised during the operation may
have an effect on that operation.

(4) In general, the raising of an event is not explicitly described in the operation that raises the
event, but instead in the part of the interface definition that may be affected by the event. It
must nevertheless be understood that the description of an operation may need to be implicitly
extended by the description of the raising of events. The processing of an event takes place
asynchronously.

(5) There are several different classes of event, as described below.

(6) - Access event. This is described in clause 15. Access events are raised by operations which
perform certain kinds of access to objects. If an appropriate notifier has been established,
then the raising of the event causes an appropriate message to be sent.

- 29 -

(7) - Lock release event. A lock release event occurs when a lock is released (see 16.1.8). If
some other operation is waiting to acquire a lock on the same resource, then that operation
may proceed. If there is more than one such operation then which operation acquires the
lock is implementation-dependent. There is no further description of this event in this
ECMA Standard.

(8) - Process timeout event. This event is raised when the duration of an operation has exceeded
the process timeout value for that process. When this event is raised, the error condition
OPERATION_HAS_TIMED_OUT holds for that operation, and the operation terminates
with that error. This event is described in 13.1.4.

(9) - Process alarm event. This event is raised when the time left until alarm has expired. When
this event is raised, a message of message type WAKE is sent to the process and the process
is resumed. This event and its effect are described in 13.1.4 and 13.2.6.

(10) - Interrupt operation event. This is described in 13.2.4. This event is raised by
PROCESS_INTERRUPT_OPERATION or by PROCESS_TERMINATE. If the interrupted
process is executing an operation or waiting for an event when this error is raised, then the
error condition OPERATION_IS_INTERRUPTED holds for that operation and it terminates
with that error.

(11) - Audit event. These events are described in clause 21. Audit events are raised by operations
which carry out object access, and for exploiting audit records, copying audit records,
carrying out certain security operations, and at explicit user request (see 21.2.5). If the event
type is selected and auditing is enabled (or the event type is always audited) then an audit
record is written as described in 21.1.1.

(12) - Accounting event. Accounting events are divided into start events and end events. These are
raised as a result of certain operations, and if the resource is accountable and accounting is
enabled then an accounting record is written (see 22.1.2).

(13) - Message queue event. These events are described in 14.1. They are raised by the
appearance in a message queue of a message, which may be caused by
MESSAGE_SEND_WAIT, MESSAGE_SEND_NO_WAIT, or QUEUE_RESTORE. If
there is a handler for the event then that handler is executed.

(14) - Resource availability event. These events do not occur as a result of operations, but may
occur at any moment. They model changes in the availability of hardware resources. The
effect of a resource availability event on the directly affected objects is implementation-
dependent. The set of directly affected objects for an event is implementation-defined. The
effect on access from other objects is defined as follows for the various resource availability
events.

(15) . Volume failure: an accessible volume becomes inaccessible. Attempted access to objects
on the volume (including replicas in the case of an administration volume) fails with the
error OBJECT_IS_INACCESSIBLE. Attempts to commit transactions which have
started and which involve objects on the volume also fail.

(16) . Device failure: an accessible device becomes inaccessible. Attempted access to the file
contents of the device fails. Volume failure is raised for any volume mounted on the
device.

(17) . Network failure: an accessible workstation becomes inaccessible. There is no distinction
between a workstation failing and a network failing so that communication with the
workstation is lost. The inaccessible workstation ceases to be in its current network

- 30 -

partition. Associated devices and volumes become inaccessible with consequences as
above.

(18) . Network repair: a workstation joins a network partition. This has no immediate effect,
but the workstation becomes accessible when the other conditions are met.

(19) - Process termination event. This event is raised when a process is terminated by
PROCESS_TERMINATE, explicitly or implicitly or by normal or abnormal process
termination. If a PROCESS_WAIT_FOR_CHILD or PROCESS_WAIT_FOR_ANY_
CHILD operation of the parent process is waiting for that process or any sibling process to
terminate, then it may proceed. If more than one such operation exists (for different threads)
then all may proceed.

(20) - Data available event. This event is raised when data is written to a device contents, pipe
contents, or message queue. If an operation is waiting on a CONTENTS_READ on a pipe
or device which is not non-blocking, and data is written to that pipe or device, then that
operation may proceed. If an operation is waiting on a MESSAGE_RECEIVE_WAIT on a
message queue, and a message is received of a type included in the set of types specified by
that MESSAGE_RECEIVE_WAIT, then the operation may proceed. If more than one
operation is waiting on that event, which operation receives the data and ceases to wait is
implementation-dependent. AUDIT_FILE_READ and ACCOUNTING_LOG_READ do
not wait for data to be available.

(21) - Data space available event. This event is raised when space becomes available in a device
contents, pipe contents, or message queue. If an operation is waiting on a
CONTENTS_WRITE on a pipe or device which is not non-blocking, and data is removed
from that pipe or device, then that operation may proceed if sufficient space has been made
available. If an operation is waiting on a MESSAGE_SEND_WAIT on a message queue and
a message is removed from the queue then the operation may proceed if sufficient space has
been made available. If an operation is waiting to write to the audit file or accounting log and
the audit file or accounting log becomes available, then the operation proceeds. If more than
one operation is waiting on that event for a contents or message queue, which operation
writes or sends the data and ceases to wait is implementation-dependent.

(22) - Security attribute change. This event is raised by OBJECT_SET_CONFIDENTIALITY_
LABEL, OBJECT_SET_INTEGRITY_LABEL, or OBJECT_SET_ACL_ENTRY, or
changes to labels as a result of floating. If a CONTENTS_READ, CONTENTS_WRITE,
MESSAGE_RECEIVE_WAIT or MESSAGE_SEND_WAIT operation is waiting and a
security attribute changes such that the process no longer has permission to access the
contents or message queue object in the required mode, then the operation ceases to wait and
terminates in an appropriate mandatory or discretionary access mode error (see C.4).

8.7.3 Errors

(1) Execution of an operation may terminate after carrying out the normal behaviour as described in
the main subclause, or may terminate in an error.

(2) The list of errors in the subclause Errors of each abstract operation definition defines the set of
error conditions which apply to that operation. Other error conditions, which apply to several
operations, are defined in clause 23. The error conditions OPERATION_HAS_TIMED_OUT
and OPERATION_IS_INTERRUPTED (see 8.7.2) and SECURITY_POLICY_WOULD_BE_
VIOLATED (see 20.1.8) apply to all operations. If an operation terminates in an error then the

- 31 -

associated error condition holds. If any error condition holds then the operation terminates; if
none of the error conditions hold, the normal behaviour occurs.

(3) Error conditions are distinguished for the purpose of helping tool writers. Language bindings
may add further error conditions. An implementation may not add further error conditions,
except as specified in this ECMA Standard.

(4) No precedences are defined in this ECMA Standard between error conditions which hold
simultaneously. Implementations which aim for high security must define such a precedence so
as to address the problem of covert channels.

(5) Error conditions arising from type mismatches between actual and formal parameters of
operations are not explicitly defined in the abstract operation definitions. Language bindings
may need to make these error conditions explicit, depending on the strength of type-checking
provided by the language. This does not apply to the following cases:

(6) - a check by an operation that an object belongs to a particular subset of instances of a type,
e.g. that a security group is not a subgroup, or that an attribute is not applied to a specified
object;

(7) - a check by an operation where a specialization of Object_designator is specified and an
object reference is supplied (see 23.1.2.2).

(8) If an operation terminates with an error condition, then the operation may have acquired some
locks. The locks acquired are implementation-dependent, but in no case may a lock be acquired
on a resource (object or link) which is stronger than the lock that would be acquired on that
resource if the normal behaviour had occurred. Their duration is determined in the same way as
for other locks. No other state changes occur, except that possibly auditing and accounting
records are created.

(9) Calls to operations which are part of optional modules which are not implemented by an
implementation return with no error and no effect.

8.7.4 Operation serializability

(1) In general, operations are serializable with all other concurrent operations. An operation may be
considered to be composed of one or more atomic actions which change the state of the PCTE
installation. That a set of operations is serializable means that for each operation a single point
in time can be determined, lying between the actual time the operation is called and the time of
the return from the operation, where all the actions of the operation can be deemed to take place
and without any different effect on the state of the PCTE installation to that which actually
occurs. This point of time is called the nominal serialization point. The following specific
exceptions to serializability apply.

(2) - If an operation enters a waiting state then the actions before the operation waits constitute
one operation for purposes of serialization and the actions after leaving the waiting state until
entering a further waiting state or the end of the operation constitute another operation.

(3) - The values of the "last_access_time", "last_modification_time", "last_change_time",
"last_composite_access_time", "last_composite_modification_time", and "last_composite_
change_time" attributes are updated within an operation to a point of time between the start
and end of the operation and not necessarily to any nominal serialization point. The time
values set on different objects by a single operation are not necessarily the same.

- 32 -

(4) - If PROCESS_INTERRUPT_OPERATION is used on a process between the start of an
operation and the nominal serialization point then the operation is interrupted; if it is used
after the nominal serialization point then it has no effect.

(5) - Serializability does not apply to PROCESS_SUSPEND for the calling process; nor to
WORKSTATION_CHANGE_CONNECTION with the parameter force set to true and any
affected concurrent operations.

(6) - PROCESS_TERMINATE interrupts other ongoing operations (if any) in the same way as
PROCESS_INTERRUPT_OPERATION.

NOTES

(7) 1 Serializability is often enforced by locking. However, this is not true for two or more operations running on
behalf of the same activity or on behalf of competing unprotected activities. As an example of operation
serializability, consider two concurrent invocations of OBJECT_MOVE on the same object, moving it to two
different volumes. The result should be that the entire object resides on one or the other volume, rather than some
components residing on each volume according to the order in which they were moved.

(8) 2 Evaluation of parameters which are references counts as part of operation execution for serialization.

9 Object management

9.1 Object management concepts

9.1.1 The basic type "object"

(1) sds system:

(2) volume_identifier: (read) non_duplicated natural ;

(3) locked_link_name: (read) string ;

(4) lock_identifier: (read) string ;

(5) exact_identifier: (read) non_duplicated string ;

(6) number: natural ;

(7) name: string ;

(8) system_key: (read) natural ;

- 33 -

(9) object: with
attribute

exact_identifier;
volume_identifier;
replicated_state: (read) non_duplicated enumeration (NORMAL, MASTER, COPY) :=

NORMAL;
last_access_time: (read) non_duplicated time ;
last_modification_time: (read) non_duplicated time ;
last_change_time: (read) non_duplicated time ;
last_composite_access_time: (read) non_duplicated time ;
last_composite_modif_time: (read) non_duplicated time ;
last_composite_change_time: (read) non_duplicated time ;
num_incoming_links: (read) non_duplicated natural ;
num_incoming_composition_links: (read) non_duplicated natural ;
num_incoming_existence_links: (read) non_duplicated natural ;
num_incoming_reference_links: (read) non_duplicated natural ;
num_incoming_stabilizing_links: (read) non_duplicated natural ;
num_outgoing_composition_links: (read) non_duplicated natural ;
num_outgoing_existence_links: (read) non_duplicated natural ;

link
predecessor: (navigate) non_duplicated composite stable existence link

(predecessor_number: natural) to object reverse successor;
successor: (navigate) implicit link (system_key) to object reverse predecessor;
opened_by: (navigate) non_duplicated designation link (number) to process;
locked_by: (navigate) non_duplicated designation link (lock_identifier) to activity
with attribute

locked_link_name;
end locked_by;

end object;

(10) end system;

(11) "Object" is the common ancestor type of all objects in the object base.

(12) The exact identifier uniquely identifies the object in the object bases of all PCTE installations.
It is composed of a prefix and a suffix separated by ':' (colon). The prefix is the same for all
objects created within a PCTE installation. The suffix uniquely identifies the object within the
object base of a particular PCTE installation. The exact identifier of an object that has been
deleted is never reassigned to an object created later.

(13) The volume identifier identifies the volume on which the object resides, or, for a copy object, on
which it is a replica. It uniquely identifies a volume within a PCTE installation.

(14) The replicated state indicates whether the object is normal, a master or a copy (see 17.1). It is
MASTER for the master of a replicated object, COPY for a copy of a replicated object, and
NORMAL for a non-replicated object. This attribute can be changed only by the operations
which manage replicated objects.

(15) The last access time is the date and time of day of the last read access to the contents of the
object. It is set to the system time when the object is created and by the following operations
(unless the object is on a read-only volume or is a component of an object on a read-only
volume):

(16) - QUEUE_RESTORE (queue, file) for file;

(17) - CONTENTS_READ;

(18) - AUDIT_FILE_READ;

- 34 -

(19) - ACCOUNTING_RECORD_READ;

(20) - CONTENTS_COPY_TO_FOREIGN_SYSTEM (file, foreign_system, foreign_parameters,
foreign_name) for file.

(21) The last modification time is the date and time of day of the last modification to the object. It is
set to the system time when the object is created and by the following operations:

(22) - LINK_CREATE and LINK_REPLACE for the origin of the created link when the created
link is not implicit;

(23) - LINK_DELETE and LINK_REPLACE for the origin of the deleted link when the deleted
link is not implicit;

(24) - any operation which results in the creation or deletion of a link which is not implicit, except
for usage designation links and "object_on_volume" links;

(25) - OBJECT_CONVERT;

(26) - OBJECT_SET_ATTRIBUTE and OBJECT_SET_SEVERAL_ATTRIBUTES;

(27) - LINK_SET_ATTRIBUTE and LINK_SET_SEVERAL_ATTRIBUTES, for the origins of
the links;

(28) - OBJECT_SET_PREFERENCE;

(29) - QUEUE_SAVE (queue, file) for file;

(30) - CONTENTS_WRITE and CONTENTS_TRUNCATE;

(31) - CONTENTS_COPY_FROM_FOREIGN_SYSTEM (file, foreign_system,
foreign_parameters, foreign_name) for file;

(32) - any operation resulting in the creation of an audit record for the audit file;

(33) - any operation resulting in the creation of an accounting record for the accounting log;

(34) The last change time is the date and time of day of the last change to the object. It is set by any
operation which sets the last modification time, and the following operations:

(35) - creation of an implicit link;

(36) - deletion of an implicit link;

(37) - OBJECT_MOVE for an object which has been moved to another volume;

(38) - operations which change the discretionary access control lists of an object;

(39) - operations which change the mandatory labels of an object;

(40) - operations which change the mandatory label ranges of multi-level secure devices (see
20.1.5);

(41) - PROCESS_SET_CONFIDENTIALITY_LABEL (process, label) for process;

(42) - PROCESS_SET_INTEGRITY_LABEL (process, label) for process.

(43) The last composite access time is the date and time of day of the last read access to the contents
of the object or of any component of the object (but is not updated if the object or component is
on a read-only volume).

(44) The last composite modif[ication] time is the date and time of day of the last modification to the
object or to any component of the object.

- 35 -

(45) The last composite change time is the date and time of day of the last change made to the object
or to any component of the object.

(46) An operation which updates the last modification time of an object is said to atomically modify
the object. An operation which updates the last composite modification time of an object is said
to compositely modify the object.

(47) The num (number of) incoming links is the number of non-designation links to the object (and is
also the number of non-designation links of the object since every non-designation link has a
reverse link).

(48) The num (number of) incoming composition links is the number of composition links to the
object.

(49) The num (number of) incoming existence links is the number of existence links to the object.

(50) The num (number of) incoming reference links is the number of reference links to the object.

(51) The num (number of) incoming stabilizing links is the number of atomically stabilizing links to
the object plus the number of compositely stabilizing links to the object and to its outer objects.

(52) The num (number of) outgoing composition links is the number of composition links of the
object.

(53) The num (number of) outgoing existence links is the number of existence links of the object.

(54) The destinations of the "predecessor" links are the immediate predecessor versions of the object;
the destinations of the "successor" links are the immediate successor versions of the object.
These are used in version control operations; see 9.4. The directed graph of versions created by
these links must be acyclic.

(55) The destination of the "opened_by" link is the process that opened the object; see 12.1.

(56) The destination of the "locked_by" link is the activity that has locked the object or a link of the
object; see 16.1.2.

(57) There are also attributes defined in the security SDS representing the security properties of the
object (see 19.1.2 and 20.1.1); and attributes defined in the accounting SDS representing the
accounting properties of the object (see 22.1.1).

(58) The attribute types "number", "name" and "system_key" are predefined. "number" and "name"
are used for numeric and string keys, respectively; names are non-empty. "system_key" is the
attribute type of system-assigned keys of implicit links (see 8.3.3).

NOTES

(59) 1 The prefix of the object exact identifier is intended to be unique among all PCTE installations, past, present, and
future; but the administration of prefix assignment is outside the scope of this ECMA Standard.

(60) 2 The last composite access, modification, and change time may be calculated when required as the most recent of
the last access, modification, and change time respectively of the object and its components.

- 36 -

9.1.2 The common root

(1) sds system:

(2) common_root: child type of object with
link

archives: (navigate) existence link to archive_directory reverse archives_of;
execution_sites: (navigate) existence link to execution_site_directory reverse

execution_sites_of;
ground: (protected) existence link to common_root;
replica_sets: (navigate) existence link to replica_set_directory reverse replica_sets_of;
volumes: (navigate) existence link to volume_directory reverse volumes_of;

end common_root;

(3) end system;

(4) The common root has an existence link to each of the administrative objects of the PCTE
installation: the SDS directory (see 10.1.1), the volume directory (see 11.1.1), the archive
directory (see 11.1.4), the replica set directory (see 17.1.1), the execution site directory, (see
18.1.1), the security group directory (see 19.1.1), the mandatory directory (see 20.1.1), and the
accounting directory (see 22.1.1).

(5) The "ground" link is to allow deletion of other existence links to the common root (see 9.2.2).

(6) The common root and the administrative objects are predefined replicated objects (see 17.1.4).

9.1.3 Datatypes for object management

(1) Type_ancestry = EQUAL_TYPE | ANCESTOR_TYPE | DESCENDANT_TYPE |
UNRELATED_TYPE

(2) Version_relation = ANCESTOR_VSN | DESCENDANT_VSN | SAME_VSN | RELATED_VSN |
UNRELATED_VSN

(3) These datatypes are used as parameter and result types of operations in 9.3 and 9.4.

9.2 Link operations

9.2.1 LINK_CREATE

(1) LINK_CREATE (
origin : Object_designator,
new_link : Link_designator,
dest : Object_designator,
reverse_key : [Actual_key]

)

(2) LINK_CREATE creates a new link link of origin as follows:

(3) - the link type is as specified by the link designator new_link;

(4) - the destination is the object dest;

(5) - the key attributes are as specified by the link designator new_link;

(6) - the non-key attributes are set to their initial values;

(7) - the category, exclusiveness, stability, and duplication are set according to the link type.

(8) If the type of link has a reverse link type, LINK_CREATE also creates the reverse link
reverse_link of link and adds it to the links of dest:

- 37 -

(9) - the link type of reverse_link is the reverse of the link type of link;

(10) - the destination of reverse_link is origin;

(11) - the category, exclusiveness, stability, and duplication of reverse_link are set according to the
link type.

(12) - the non-key attributes of reverse_link are set to their initial values;

(13) - if the type of reverse_link is of cardinality many and of category IMPLICIT then the key
attribute of reverse_link is set to a new system-generated key.

(14) If the type of reverse_link is of category COMPOSITION, REFERENCE or EXISTENCE, two
cases arise:

(15) - if dest has a preferred link type which is the link type of the reverse link, then the key
attributes of reverse_link are derived from reverse_key and from the preferred link key of
dest, if any, as defined in 23.1.2.7;

(16) - if dest has no preferred link type or if the preferred link type of dest is not the link type of the
reverse link, then the key of the reverse link is set to reverse_key.

(17) If new_link is a composition link, then any security group that has OWNER granted or denied to
origin has OWNER or CONTROL_DISCRETIONARY granted or denied respectively to dest;
similarly if reverse_link is a composition link, then any security group that has OWNER granted
or denied to dest has OWNER or CONTROL_DISCRETIONARY granted or denied
respectively to origin. This requires the process to have OWNER rights on dest or origin
respectively. See 19.1.2 for details.

(18) Write locks of the default mode are obtained on the new links. A read lock of the default mode
is obtained on origin if the interpretation of new_link implies the evaluation of any '+' or '++'
key attribute values (see 23.1.2.7). A read lock of the default mode is obtained on dest if the
interpretation of reverse_key implies the evaluation of any '+' or '++' key attribute values.

(19) A write lock of the default mode is obtained on dest and each of its components if the OWNER
discretionary access right is granted or denied for one or more groups to origin, and different
OWNER discretionary access rights exist for one or more of those same groups to dest.

Errors

(20) ACCESS_ERRORS (origin, ATOMIC, MODIFY, APPEND_LINKS)
(21) If reverse_link is implicit:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, APPEND_IMPLICIT)
(22) If reverse_link is not implicit:

ACCESS_ERRORS (dest, ATOMIC, MODIFY, APPEND_LINKS)
(23) If new_link is atomically stabilizing:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, STABILIZE)
(24) If new_link is compositely stabilizing:

ACCESS_ERRORS (dest, COMPOSITE, CHANGE, STABILIZE)
(25) CATEGORY_IS_BAD (origin, new_link, (COMPOSITION, EXISTENCE , REFERENCE,

DESIGNATION))
(26) COMPONENT_ADDITION_ERRORS (dest, new_link)
(27) COMPONENT_ADDITION_ERRORS (origin, reverse_link)
(28) DESTINATION_OBJECT_TYPE_IS_INVALID (origin, new_link, dest)

- 38 -

(29) LINK_EXISTS (origin, new_link)
(30) If link is atomically or compositely stabilizing:

OBJECT_CANNOT_BE_STABILIZED (dest)
(31) If link is compositely stabilizing:

OBJECT_CANNOT_BE_STABILIZED (component of dest)
(32) REVERSE_KEY_IS_BAD (origin, new_link, dest, reverse_key)
(33) REVERSE_KEY_IS_NOT_SUPPLIED (origin, new_link, dest)
(34) REVERSE_KEY_IS_SUPPLIED (reverse_key)
(35) REVERSE_LINK_EXISTS (origin, new_link, dest, reverse_key)
(36) UPPER_BOUND_WOULD_BE_VIOLATED (dest, reverse_link)
(37) UPPER_BOUND_WOULD_BE_VIOLATED (origin, new_link)
(38) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, new_link,

CREATE_MODE)

9.2.2 LINK_DELETE

(1) LINK_DELETE (
origin : Object_designator,
link : Link_designator

)

(2) LINK_DELETE deletes the link specified by origin and link.

(3) Let dest be the destination of link, and reverse_link be the reverse link of link (if any).
LINK_DELETE deletes link from the links of origin and deletes reverse_link (if any) from the
links of dest.

(4) dest is deleted from the object base if link is the last composition or existence link to dest.

(5) origin is deleted from the object base if reverse_link is the last composition or existence link to
origin.

(6) For each deleted object the "object_on_volume" link from the volume on which the deleted
object was residing to the deleted object is also deleted.

(7) If either deleted object is opened by one or more processes (see 12.1), the deletion of its contents
is postponed until all processes have closed the contents. An operation using a contents handle
to access its contents is not affected by the deletion until the contents handle is closed.

(8) Write locks of the default mode are obtained on the deleted objects (if any) and on the deleted
links except the "object_on_volume" link. A read lock of the default mode is obtained on origin
if the interpretation of link implies the evaluation of any '+' or '++' key attribute values (see
23.1.2.7).

Errors

(9) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(10) If link is atomically stabilizing:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, STABILIZE)
(11) If link is compositely stabilizing:

ACCESS_ERRORS (dest, COMPOSITE, CHANGE, STABILIZE)
(12) If reverse_link is implicit:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, WRITE_IMPLICIT)

- 39 -

(13) If reverse_link is not implicit:
ACCESS_ERRORS (dest, ATOMIC, MODIFY, WRITE_LINKS)

(14) If link is the last composition or existence link to dest:
ACCESS_ERRORS (dest, ATOMIC, MODIFY, DELETE)

(15) If reverse_link is the last composition or existence link to origin:
ACCESS_ERRORS (origin, ATOMIC, MODIFY, DELETE)

(16) For each origin X of an implicit link to a deleted object:
ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)

(17) For each compositely stabilizing link L of a deleted object:
ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)

(18) CATEGORY_IS_BAD (origin, link, (COMPOSITION, EXISTENCE, REFERENCE,
DESIGNATION))

(19) If link is not a designation link:
DESTINATION_OBJECT_TYPE_IS_INVALID (origin, link, dest)

(20) LOWER_BOUND_WOULD_BE_VIOLATED (origin, link)
(21) LOWER_BOUND_WOULD_BE_VIOLATED (dest, reverse_link)
(22) If reverse_link is the last existence or composition link to origin:

OBJECT_HAS_LINKS_PREVENTING_DELETION (origin)
(23) If link is the last existence or composition link to dest:

OBJECT_HAS_LINKS_PREVENTING_DELETION (dest)
(24) If link is the last composition or existence link to dest:

OBJECT_IS_IN_USE_FOR_DELETE (dest)
(25) If reverse_link is the last composition or existence link to origin:

OBJECT_IS_IN_USE_FOR_DELETE (origin)
(26) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,

DELETE_MODE)

9.2.3 LINK_DELETE_ATTRIBUTE

(1) LINK_DELETE_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator

)

(2) LINK_DELETE_ATTRIBUTE deletes the non-key attribute attribute of the link link of the
object origin, if the "attribute_type" object representing the attribute type of attribute is no
longer in the object base.

(3) A write lock of the default mode is obtained on link. A read lock of the default mode is obtained
on origin if the interpretation of link implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(5) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(6) REFERENCED_OBJECT_IS_NOT_MUTABLE (key of link)

(7) NOTE - It is the responsibility of the user to ensure that the attribute type is no longer in the object base.

- 40 -

9.2.4 LINK_GET_ATTRIBUTE

(1) LINK_GET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator

)
result : Attribute_value

(2) LINK_GET_ATTRIBUTE returns the value of the non-key attribute attribute of the link link of
the object origin.

(3) A read lock of the default mode is obtained on link. A read lock of the default mode is obtained
on origin if the interpretation of link implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)
(5) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (origin, link, attribute,

READ_MODE)

9.2.5 LINK_GET_DESTINATION_VOLUME

(1) LINK_GET_DESTINATION_VOLUME (
origin : Object_designator,
link : Link_designator

)
destination : Volume_info

(2) LINK_GET_DESTINATION_VOLUME returns the volume identifier volume_identifier and
the volume accessibility mounted of the volume on which the destination dest of the link link of
the object origin resides. The returned value of mounted is as follows:

(3) - ACCESSIBLE if the volume on which dest resides is mounted and is accessible in the
network partition that contains the calling procedure's workstation. In this case,
volume_identifier is the volume identifier of the volume on which dest resides.

(4) - INACCESSIBLE if the PCTE implementation is able to determine on which volume the
object resides, and that volume is not accessible (either because the volume is not mounted
or because the volume is mounted in a network partition which does not contain the calling
process's workstation). In this case, volume_identifier is the volume identifier of the volume
on which the object resides.

(5) - UNKNOWN if the PCTE implementation is unable to determine on which volume the object
resides. In this case, volume_identifier is the volume identifier of a volume which is not
currently accessible.

(6) The situations in which UNKNOWN is returned rather than INACCESSIBLE, and vice versa,
are implementation-defined, as is the general meaning of the volume identifier returned for
UNKNOWN. In any particular situation, the choice is implementation-dependent.

(7) Read locks of the default mode are obtained on link, and on origin if the interpretation of link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

(8) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)

- 41 -

(9) LINK_DESTINATION_DOES_NOT_EXIST (link)
(10) OBJECT_IS_ARCHIVED (destination of link)
(11) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,

NAVIGATE_MODE)

(12) NOTE - Some implementations may be able to guarantee that only ACCESSIBLE or INACCESSIBLE is returned.
For implementations that return UNKNOWN, the volume identifier returned should be that of the volume which
should be made accessible prior to repeating the call. The destination object may reside on this volume, or it may
contain implementation-dependent details of the volume on which the object resides, or of a further volume to be
made accessible. Although the operation may require access to other volumes, no error condition is raised as a
result.

9.2.6 LINK_GET_KEY

(1) LINK_GET_KEY (
origin : Object_designator,
link : Link_designator

)
key : [Actual_key]

(2) LINK_GET_KEY returns in key the complete sequence of key attribute values (if any) of the
link link of the object origin.

(3) Read locks of default mode are obtained on link, and on origin if the interpretation of link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)
(5) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,

NAVIGATE_MODE)

9.2.7 LINK_GET_REVERSE

(1) LINK_GET_REVERSE (
origin : Object_designator,
link : Link_designator

)
reverse_link : [Link_designator],
dest : Object_designator

(2) LINK_GET_REVERSE returns in reverse_link the reverse link (if there is one) of the link link
of the object origin, and in dest the destination of link. If link has no reverse link, no value is
returned in reverse_link.

(3) Read locks of the default mode are obtained on link, and on origin if the interpretation of link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS (destination of link, ATOMIC, READ, READ_LINKS)
(6) LINK_DESTINATION_DOES_NOT_EXIST (link)
(7) LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA
(8) REFERENCE_CANNOT_BE_ALLOCATED

- 42 -

(9) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,
NAVIGATE_MODE)

9.2.8 LINK_GET_SEVERAL_ATTRIBUTES

(1) LINK_GET_SEVERAL_ATTRIBUTES (
origin : Object_designator,
link : Link_designator,
attributes : Attribute_selection

)
values : Attribute_assignments

(2) LINK_GET_SEVERAL_ATTRIBUTES returns in values a set of attribute assignments of the
link link of the object origin.

(3) The returned set of attributes is determined by attributes:

(4) - a set of attribute designators: the set of non-key attributes, as for LINK_GET_ATTRIBUTE
(origin, link, A) for each attribute A of attributes;

(5) - VISIBLE_ATTRIBUTE_TYPES: all non-key attributes of link visible in the working
schema of the calling process and with usage mode including READ_MODE.

(6) Read locks of the default mode are obtained on link, and on origin if the interpretation of link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

(7) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)
(8) If attributes is not VISIBLE_ATTRIBUTE_TYPES:

USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (origin,
link, each element of attributes, READ_MODE)

9.2.9 LINK_REPLACE

(1) LINK_REPLACE (
origin : Object_designator,
link : Link_designator,
new_origin : Object_designator,
new_link : Link_designator,
new_reverse_key : [Actual_key]

)

(2) LINK_REPLACE replaces the composition or existence link link of the object origin by a new
composition or existence link as specified by new_link from new_origin, with the same
destination dest.

(3) The new link from new_origin to dest is created and link is deleted in the same way as the
following sequence of operations, ignoring any temporary violation of link bounds or
composition exclusivity on dest:

(4) LINK_CREATE (new_origin, new_link, dest, new_reverse_key);

(5) LINK_DELETE (origin, link)

(6) Write locks of the default mode are obtained on the links to be deleted and on the new links. A
read lock of the default mode is obtained on new_origin if the interpretation of link or new_link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7). A read lock of the

- 43 -

default mode is obtained on dest if the interpretation of new_reverse_key implies the evaluation
of any '+' or '++' key attribute values.

(7) A write lock of the default mode is obtained on dest and each of its components if the OWNER
discretionary access right is granted or denied for one or more groups to new_origin, and
different OWNER discretionary access rights exist for one or more of those same groups to dest.

Errors

(2) ACCESS_ERRORS (new_origin, ATOMIC, MODIFY, APPEND_LINKS)
(3) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(4) If the reverse link of new_link is implicit:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, APPEND_IMPLICIT)
(5) If the reverse link of new_link is not implicit:

ACCESS_ERRORS (dest, ATOMIC, MODIFY, APPEND_LINKS)
(6) If the reverse link of link is implicit:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, WRITE_IMPLICIT)
(7) If the reverse link of link is not implicit:

ACCESS_ERRORS (dest, ATOMIC, MODIFY, WRITE_LINKS)
(8) If new_link is atomically stabilizing and link is not, or vice versa:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, STABILIZE)
(9) If new_link is compositely stabilizing and link is not, or vice versa:

ACCESS_ERRORS (dest, COMPOSITE, CHANGE, STABILIZE)
(10) CATEGORY_IS_BAD (new_origin, new_link, (COMPOSITION, EXISTENCE))
(11) CATEGORY_IS_BAD (origin, link, (COMPOSITION, EXISTENCE))
(12) COMPONENT_ADDITION_ERRORS (dest, new_link)
(13) DESTINATION_OBJECT_TYPE_IS_INVALID (new_origin, new_link, dest.)
(14) DESTINATION_OBJECT_TYPE_IS_INVALID (origin, link, dest)
(15) If new_link is of category COMPOSITION, and new_origin has OWNER granted or denied:

LINK_EXISTS (new_origin, new_link)
(16) LINK_EXISTS (dest, new_reverse_key)
(17) LOWER_BOUND_WOULD_BE_VIOLATED (origin, link)
(18) OBJECT_CANNOT_BE_STABILIZED (dest)
(19) REVERSE_KEY_IS_BAD (new_origin, new_link, new_reverse_key)
(20) REVERSE_KEY_IS_NOT_SUPPLIED (new_origin, new_link, dest)
(21) UPPER_BOUND_WOULD_BE_VIOLATED (dest, reverse link of new_link)
(22) UPPER_BOUND_WOULD_BE_VIOLATED (new_origin, new_link)
(23) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,

DELETE_MODE)
(24) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (new_origin, new_link,

CREATE_MODE)

- 44 -

9.2.10 LINK_RESET_ATTRIBUTE

(1) LINK_RESET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator

)

(2) LINK_RESET_ATTRIBUTE resets the non-key attribute attribute of the link link of the object
origin to its initial value.

(3) A write lock of the default mode is obtained on link. A read lock of the default mode is obtained
on origin if the interpretation of link implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(5) KEY_UPDATE_IS_FORBIDDEN (attribute)
(6) REFERENCED_OBJECT_IS_NOT_MUTABLE (key of link)
(7) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (origin, link, attribute,

WRITE_MODE)

9.2.11 LINK_SET_ATTRIBUTE

(1) LINK_SET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator,
value : Attribute_value

)

(2) LINK_SET_ATTRIBUTE assigns the value value to the non-key attribute attribute of the link
link of the object origin.

(3) A write lock of the default mode is obtained on link. A read lock of the default mode is obtained
on origin if the interpretation of link implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(5) ENUMERATION_VALUE_IS_OUT_OF_RANGE (value, values of attribute)
(6) KEY_UPDATE_IS_FORBIDDEN (origin, link, attribute)
(7) If link is a "referenced_object" link:

REFERENCED_OBJECT_IS_NOT_MUTABLE (key of link)
(8) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (origin, link, attribute,

WRITE_MODE)
(9) VALUE_LIMIT_ERRORS (value)
(10) The following implementation-dependent error may be raised:

VALUE_TYPE_IS_INVALID (value, origin, link, attribute)

- 45 -

9.2.12 LINK_SET_SEVERAL_ATTRIBUTES

(1) LINK_SET_SEVERAL_ATTRIBUTES (
origin : Object_designator,
link : Link_designator,
attributes : Attribute_assignments

)

(2) For each element A in the domain of attributes, LINK_SET_SEVERAL_ATTRIBUTES sets
the value of the attribute A of the link link of the object origin to the value attributes (A), in the
same way as:

(3) LINK_SET_ATTRIBUTE (origin, link, A, attributes (A))

(4) A write lock of the default mode is obtained on link. A read lock of the default mode is obtained
on origin if the interpretation of link implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

(5) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(6) For each element A in the domain of attributes:

ENUMERATION_VALUE_IS_OUT_OF_RANGE (attribute(A), values of A)
KEY_UPDATE_IS_FORBIDDEN (origin, link, A)
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (origin,
link, A, WRITE_MODE)
VALUE_LIMIT_ERRORS (attributes (A))

(7) The following implementation-dependent error may be raised for each element A in the domain
of attributes:

VALUE_TYPE_IS_INVALID (attributes (A), origin, link, A)

9.3 Object operations

9.3.1 OBJECT_CHECK_TYPE

(1) OBJECT_CHECK_TYPE(
object : Object_designator,
type2 : Object_type_nominator

)
relation : Type_ancestry

(2) OBJECT_CHECK_TYPE compares the object type type1 of the object object against the object
type type2, and returns in relation a value defined as follows:

(3) - EQUAL_TYPE if type1 is the same as type2;

(4) - ANCESTOR_TYPE if type1 is an ancestor of type2;

(5) - DESCENDANT_TYPE if type1 is a descendant type of type2 in the working schema of the
calling process;

(6) - UNRELATED_TYPE in all other cases.

(7) The visibility of the type of object does not affect the result of the operation.

(8) A read lock of the default mode is obtained on object.

- 46 -

Errors

(9) ACCESS_ERRORS (object, ATOMIC, READ)
(10) OBJECT_TYPE_IS_UNKNOWN (type2)
(11) VOLUME_IS_INACCESSIBLE (object, ATOMIC)

9.3.2 OBJECT_CONVERT

(1) OBJECT_CONVERT(
object : Object_designator,
type : Object_type_nominator

)

(2) OBJECT_CONVERT changes the object type of the object object to the descendant object type
type.

(3) The operation has no effect if the current type of object is already type.

(4) A write lock of the default mode is obtained on object.

Errors

(5) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_OBJECT)
(6) OBJECT_IS_NOT_CONVERTIBLE (object)
(7) OBJECT_IS_STABLE (object)
(8) OBJECT_TYPE_IS_INVALID (type)
(9) OBJECT_TYPE_IS_UNKNOWN (type)
(10) TYPE_IS_NOT_DESCENDANT (object type of object, type)
(11) If object is not of type type:

USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED (current type of object,
type)

9.3.3 OBJECT_COPY

(1) OBJECT_COPY (
object : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

(2) OBJECT_COPY creates an object new_object as a copy of object. More precisely:

(3) - If object is a file, an accounting log, or an audit file, then the contents of new_object is the
same as the contents of object; if object is a pipe then the contents of new_object is empty.

(4) - For each duplicable attribute X of object, there is an attribute of new_object which is a copy
of X.

(5) - For each duplicable direct component X of object, there is a direct component of new_object
which is a copy of X.

- 47 -

(6) - For each duplicable internal link A of object whose destination is a duplicable component,
there is an internal link B of new_object such that the destination of B is the copy of the
destination of A and all other properties of B are the same as for A.

(7) - For each duplicable external link A of object, there is a corresponding external link of
new_object which is a copy of A.

(8) - For each non-duplicable attribute of object, there exists a corresponding attribute of
new_object whose value is either set to the initial value of the attribute type or, for the
following predefined attributes: the exact identifier, volume identifier, replicated state,
contents type, last access time, last modification time, last change time, last composite
access time, last composite modification time, last composite change time, number of
incoming links, number of incoming composition links, number of incoming existence links,
number of incoming reference links, number of incoming stabilizing links, number of
outgoing composition links, number of outgoing existence links, atomic ACL, composite
ACL, confidentiality label, and integrity label, is set to a value corresponding to the newly
created object. In particular, since the attribute "replicated_state" is not copied, the copy of a
replicated object is not replicated.

(9) - For each non-duplicable non-key attribute of a copied link, there exists a corresponding non-
key attribute of the copied link whose value is set to the initial value of the attribute type.

(10) A copy of an attribute A is an attribute which has the same attribute type, attribute value, and
attribute properties as A.

(11) A copy of a link A is a link which has the same link type, key attributes, duplicable non-key
attributes, link properties, and destination as A.

(12) A copy of a component X of an object A is a component Y of a copy B of A such that Y is a
copy of X as an object, and the composition link from B to Y is a copy of the composition link
from X to A

(13) OBJECT_COPY creates a link link of the object new_origin, as specified by new_link, and with
new_object as destination, and its reverse link reverse_link with origin new_object and key
derived from reverse_key as described in 23.1.2.7.

(14) access_mask is used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite ACL of new_object and its
components. See 19.1.4 for more details.

(15) If new_link is a composition link, then any security group that has OWNER granted or denied to
new_origin has OWNER granted or denied respectively to dest; similarly if reverse_link is a
composition link, then any security group that has OWNER granted or denied to dest has
OWNER granted or denied respectively to new_origin.

(16) If new_link is a composition link, then any security group that has OWNER granted or denied to
origin has OWNER granted or denied respectively to dest; similarly if reverse_link is a
composition link, then any security group that has OWNER granted or denied to dest has
OWNER granted or denied respectively to origin.

(17) new_object has the same integrity and confidentiality label as object and each component of
new_object has the same integrity and confidentiality labels as the corresponding component of
object.

(18) If on_same_volume_as is supplied, new_object resides on the same volume as the object
on_same_volume_as. Otherwise, new_object resides on the same volume as object and each
component of new_object resides on the same volume as its corresponding component in object.

- 48 -

(19) An "object_on_volume" link is created from the volume on which new_object resides to
new_object, and similarly for all its components. Each created link is keyed by the exact
identifier of its destination object.

(20) Read locks of the default mode are obtained on object and on all its components; write locks of
the default mode are obtained on the new objects and links except the new "object_on_volume"
links. A read lock of the default mode is obtained on new_object if the interpretation of the link
new_link implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

(21) If object is an accounting log, its contents is preserved.

Errors

(22) ACCESS_ERRORS (new_origin, ATOMIC, MODIFY, APPEND_LINKS)
(23) ACCESS_ERRORS (object, COMPOSITE, READ, READ_LINKS)
(24) ACCESS_ERRORS (object, COMPOSITE, READ, READ_ATTRIBUTES)
(25) ACCESS_ERRORS (object, COMPOSITE, READ, READ_CONTENTS)
(26) ACCESS_ERRORS (on_same_volume_as, ATOMIC, SYSTEM_ACCESS)
(27) If new_link is compositely stabilizing:

ACCESS_ERRORS (new_object, COMPOSITE, CHANGE, STABILIZE)
(28) If reverse_link is compositely stabilizing:

ACCESS_ERRORS (new_origin, COMPOSITE, CHANGE, STABILIZE)
(29) For each destination X of a duplicable external link L of a duplicated component:
(30) ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)
(31) If L is atomically stabilizing:

ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)
(32) If L is compositely stabilizing:

ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)
(33) CATEGORY_IS_BAD (new_origin, new_link, (COMPOSITION, EXISTENCE))
(34) If object is a component of itself, and new_link is a composition link:

COMPONENT_ADDITION_ERRORS (new_object, new_link)
(35) CONTROL_WOULD_NOT_BE_GRANTED (new_object)
(36) DESTINATION_OBJECT_TYPE_IS_INVALID (new_origin, new_link, new_object)
(37) EXTERNAL_LINK_IS_BAD (object, COMPOSITE)
(38) EXTERNAL_LINK_IS_NOT_DUPLICABLE (object)
(39) LABEL_IS_OUTSIDE_RANGE (new_object, volume on which on_same_volume_as resides)
(40) LINK_EXISTS (new_origin, new_link)
(41) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(new_object)
(42) If object is not a component of itself, new_link is a composition link, and new_origin has

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_object)

(43) REFERENCE_CANNOT_BE_ALLOCATED
(44) REVERSE_KEY_IS_BAD (new_origin, new_link, new_object, reverse_key)
(45) REVERSE_KEY_IS_NOT_SUPPLIED (new_origin, new_link, new_object)
(46) REVERSE_KEY_IS_SUPPLIED (reverse_key)

- 49 -

(47) REVERSE_LINK_EXISTS (new_origin, new_link, new_object, reverse_key)
(48) TYPE_OF_OBJECT_IS_INVALID (object, COMPOSITE)
(49) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (new_origin, new_link,

CREATE)
(50) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", type of object)
(51) VOLUME_IS_FULL (volume on which on_same_volume_as resides)

(52) NOTE - Key values of reverse links (which must be implicit of cardinality many) are system-generated, because
they must be different from key values of other links of the same types from the same origins.

9.3.4 OBJECT_CREATE

(1) OBJECT_CREATE (
type : Object_type_nominator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

(2) OBJECT_CREATE creates an object new_object as follows:

(3) - the object type of new_object is type;

(4) - the contents of new_object is empty;

(5) - the value of each attribute of new_object is the initial value of its attribute type, except for
some predefined attributes, set as defined below.

(6) A composition or existence link, as specified by new_link, is created from new_origin to
new_object, together with its reverse link reverse_link, with key reverse_key.

(7) access_mask is used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite ACL of new_object. See 19.1.4
for more details.

(8) If new_link is a composition link, then any security group that has OWNER granted or denied to
new_origin has OWNER granted or denied respectively to new_object; similarly if reverse_link
is a composition link, then any security group that has OWNER granted or denied to new_object
has OWNER granted or denied respectively to new_origin.

(9) The confidentiality label of new_object is set to the current confidentiality context of the calling
process and the integrity label of new_object is set to the current integrity context of the calling
process.

(10) If on_same_volume_as is supplied, new_object resides on the same volume as the object
on_same_volume_as. Otherwise, new_object resides on the same volume as new_origin.

(11) An "object_on_volume" link is created from the volume on which new_object resides to
new_object. Each created link is keyed by the exact identifier of its destination object.

(12) Write locks of the default mode are obtained on new_object and on new_link. A read lock of the
default mode is obtained on new_origin if the interpretation of new_link implies the evaluation
of any '+' or '++' key attribute values (see 23.1.2.7).

- 50 -

Errors

(13) ACCESS_ERRORS (new_origin, ATOMIC, MODIFY, APPEND_LINKS)
(14) If new_link is atomically stabilizing:

ACCESS_ERRORS (new_object, ATOMIC, CHANGE, STABILIZE)
(15) If new_link is compositely stabilizing:

ACCESS_ERRORS (new_object, COMPOSITE, CHANGE, STABILIZE)
(16) If reverse_link is compositely stabilizing:

ACCESS_ERRORS (new_origin, COMPOSITE, CHANGE, STABILIZE)
(17) ACCESS_ERRORS (on_same_volume_as, ATOMIC, SYSTEM_ACCESS)
(18) CATEGORY_IS_BAD (new_origin, new_link, (COMPOSITION, EXISTENCE)
(19) CONTROL_WOULD_NOT_BE_GRANTED (new_object)
(20) DESTINATION_OBJECT_TYPE_IS_INVALID (new_origin, new_link, new_object)
(21) LABEL_IS_OUTSIDE_RANGE (new_object, volume on which on_same_volume_as resides)
(22) LINK_EXISTS (new_origin, new_link)
(23) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(new_object)
(24) OBJECT_TYPE_IS_INVALID (type)
(25) OBJECT_TYPE_IS_UNKNOWN (type)
(26) If new_link is a composition link and new_origin has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_object)
(27) If reverse_link is a composition link and new_object has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_object)
(28) REFERENCE_CANNOT_BE_ALLOCATED
(29) REVERSE_KEY_IS_NOT_SUPPLIED (new_origin, new_link, new_object)
(30) REVERSE_KEY_IS_BAD (new_origin, new_link, new_object, reverse_key)
(31) REVERSE_KEY_IS_SUPPLIED (reverse_key)
(32) UPPER_BOUND_WOULD_BE_VIOLATED (new_origin, new_link)
(33) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (new_origin, new_link,

CREATE_MODE)
(34) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", type)

9.3.5 OBJECT_DELETE

(1) OBJECT_DELETE (
origin : Object_designator,
link : Link_designator

)

(2) OBJECT_DELETE deletes the composition or existence link link of the object origin, its
reverse link reverse_link, and possibly its destination dest. More precisely:

(3) - the link link of the object origin is deleted; the reverse link reverse_link of link is deleted;

(4) - if link is the last existence or composition link to dest, then dest is deleted.

(5) To delete an object X entails the deletion of all components of X except components Y for
which there is an incoming external link with the existence property to Y or to an enclosing

- 51 -

object of Y, and the deletion of all links from and to those deleted objects (except designation
links to them).

(6) Non-implicit links of components which are not deleted are not affected.

(7) If origin or any of its components is opened by one or more processes (see 12.1), the deletion of
its contents is postponed until all processes have closed the contents: i.e. the object is no longer
accessible but an operation using a contents handle to access its contents is not affected by the
deletion until the contents handle is closed.

(8) For each deleted object, if any, the "object_on_volume" link from the volume on which the
deleted object resided to the deleted object is also deleted.

(9) Write locks of the default kind are obtained on the deleted objects, if any, and on the deleted
links except the deleted "object_on_volume" links; and a read lock of the default mode is
obtained on origin if the interpretation of link implies the evaluation of any '+' or '++' key
attribute values (see 23.1.2.7).

Errors

(10) If the conditions hold for the deletion of dest:
ACCESS_ERRORS (dest and its deleted components, ATOMIC, MODIFY, DELETE)

(11) ACCESS_ERRORS (origin, ATOMIC, MODIFY, WRITE_LINKS)
(12) If reverse_link is not implicit:

ACCESS_ERRORS (dest, ATOMIC, MODIFY, WRITE_LINKS)
(13) If reverse_link is implicit:

ACCESS_ERRORS (dest, ATOMIC, CHANGE, WRITE_IMPLICIT)
(14) For each origin X of an implicit incoming external link to a deleted object:

ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)
(15) For each atomically stabilizing external link L of a deleted object:

ACCESS_ERRORS (destination of L, ATOMIC, CHANGE, STABILIZE)
(16) For each compositely stabilizing external link L of a deleted object:

ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)
(17) CATEGORY_IS_BAD (origin, link, (EXISTENCE, COMPOSITION))
(18) DESTINATION_OBJECT_TYPE_IS_INVALID (origin, link, dest)
(19) LOWER_BOUND_WOULD_BE_VIOLATED (origin, link)
(20) OBJECT_HAS_EXTERNAL_LINKS_PREVENTING_DELETION (dest)
(21) OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETION (dest)
(22) OBJECT_IS_IN_USE_FOR_DELETE (dest)
(23) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin, link,

DELETE_MODE)

(24) NOTE - OBJECT_DELETE works exactly like LINK_DELETE if dest has no direct components.

9.3.6 OBJECT_DELETE_ATTRIBUTE

(1) OBJECT_DELETE_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

)

- 52 -

(2) OBJECT_DELETE_ATTRIBUTE removes the attribute attribute from the attributes of the
object object, if the "attribute_type" object representing the attribute type of attribute is no
longer in the object base.

(3) A write lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(5) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

(6) NOTE - It is the responsibility of the user to ensure that the attribute type is no longer in the object base.

9.3.7 OBJECT_GET_ATTRIBUTE

(1) OBJECT_GET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

)
value : Attribute_value

(2) OBJECT_GET_ATTRIBUTE returns the value value of the attribute attribute of the object
object.

(3) A read lock of the default mode is obtained on object. If attribute is a predefined composite
time, a read lock of the default mode is also obtained on all components of object.

Errors

(4) ACCESS_ERRORS (object, ATOMIC, READ, READ_ATTRIBUTES)
(5) If attribute is the last composite access time, last composite modification time, or last composite

change time:
ACCESS_ERRORS (object, COMPOSITE, READ, READ_ATTRIBUTES)

(6) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, attribute,
READ_MODE)

9.3.8 OBJECT_GET_PREFERENCE

(1) OBJECT_GET_PREFERENCE (
object : Object_designator

)
key : [Text],
type : [Link_type_nominator]

(2) OBJECT_GET_PREFERENCE returns the preferred link key key and preferred link type type,
if any, of the object object.

(3) A read lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (object, ATOMIC, READ, READ_ATTRIBUTES)

- 53 -

9.3.9 OBJECT_GET_SEVERAL_ATTRIBUTES

(1) OBJECT_GET_SEVERAL_ATTRIBUTES (
object : Object_designator,
attributes : Attribute_selection

)
values : Attribute_assignments

(2) OBJECT_GET_SEVERAL_ATTRIBUTES returns a set of attribute assignments values of the
object object.

(3) The returned set of attributes is determined by attributes:

(4) - a set of attribute designators: the set of attributes, as for OBJECT_GET_ATTRIBUTE
(object, A) for each attribute A of attributes;

(5) - VISIBLE_ATTRIBUTE_TYPES: all attributes of object visible in the working schema of
the calling process and with usage mode including READ_MODE.

(6) A read lock of the default mode is obtained on object. If any of the attributes is a predefined
composite time, a read lock of the default mode is also obtained on all components of object.

Errors

(7) ACCESS_ERRORS (object, ATOMIC, READ, READ_ATTRIBUTES)
(8) If attributes contains one or more of last composite access time, last composite modification

time, or last composite change time, or if attributes is VISIBLE_ATTRIBUTE_TYPES and one
or more of those attributes are visible in the working schema of the calling process with usage
mode READ_MODE:

ACCESS_ERRORS (object, COMPOSITE, READ, READ_ATTRIBUTES)
(9) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, an element of

attributes, READ_MODE)

9.3.10 OBJECT_GET_TYPE

(1) OBJECT_GET_TYPE (
object : Object_designator

)
type : Object_type_nominator

(2) OBJECT_GET_TYPE returns the type type of the object object; i.e. the actual type of object,
whether or not it is visible.

(3) A read lock of the default mode is obtained on object.

Errors

(4) CONFIDENTIALITY_WOULD_BE_VIOLATED (object)
(5) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object)
(6) OBJECT_IS_ARCHIVED (object)
(7) VOLUME_IS_INACCESSIBLE (object, ATOMIC)

- 54 -

9.3.11 OBJECT_IS_COMPONENT

(1) OBJECT_IS_COMPONENT (
object1 : Object_designator,
object2 : Object_designator

)
value : Boolean

(2) OBJECT_IS_COMPONENT tests if object1 is a component of object2.

(3) If object1 is a component of object2, value is true, otherwise it is false.

(4) Read locks of the default mode are obtained on object1 and on object2, and on accessed
components of object2.

Errors

(5) ACCESS_ERRORS (object2, COMPONENTS, READ, READ_LINKS)

9.3.12 OBJECT_LIST_LINKS

(1) OBJECT_LIST_LINKS (
origin : Object_designator,
extent : Link_scope,
scope : Object_scope,
categories : [Categories],
visibility : Link_selection

)
links : Link_set_descriptors

(2) OBJECT_LIST_LINKS returns in links a set of links of the object origin and possibly of its
components determined by extent, scope, categories, and visibility.

(3) extent affects the returned set of links as follows:

(4) - INTERNAL_LINKS: only internal links are returned.

(5) - EXTERNAL_LINKS: only external links are returned.

(6) - ALL_LINKS: both internal and external links are returned.

(7) In the lists of links returned, designation links to deleted objects appear only when extent is
ALL_LINKS or EXTERNAL_LINKS.

(8) scope affects the returned set of links as follows:

(9) - ATOMIC: only links of origin are returned.

(10) - COMPOSITE: links of origin and of all components of origin are returned.

(11) categories may be omitted if visibility is a set of link type nominators, and is ignored in that case
if supplied. In other cases only link types with category in the set categories are returned.

(12) visibility restricts the returned set of links as follows:

(13) - VISIBLE_LINK_TYPES: only links with link type which is visible in the calling process's
working schema are returned;

(14) - ALL_LINK_TYPES: all links are returned;

(15) - a set of link type nominators: only links with link type identified by an element of the set are
returned.

- 55 -

(16) A read lock of the default mode is obtained on origin, and if scope is COMPOSITE read locks
of the default mode are obtained on all its components.

Errors

(17) ACCESS_ERRORS (origin, scope, READ, READ_LINKS)
(18) LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA
(19) REFERENCE_CANNOT_BE_ALLOCATED

NOTES

(20) 1 When scope is ATOMIC or origin has no components, the object designator in each returned link designates the
object origin. In other cases, the designated objects may include the object origin and its components.

(21) 2 Each object designator returned in a link set descriptor of links can be used with each link designator of that link
set descriptor to retrieve information about the volume on which the object resides, by means of
LINK_GET_DESTINATION_VOLUME.

(22) 3 If scope is COMPOSITE, links of origin and of all components of origin are returned. It is possible that the
origins of some of the returned links are not accessible from origin through paths of visible links.

(23) 4 OBJECT_LIST_LINKS does not prevent a process from seeing data structures which are inconsistent with the
visibility restrictions of its working schema.

9.3.13 OBJECT_LIST_VOLUMES

(1) OBJECT_LIST_VOLUMES(
object : Object_designator

)
volumes : Volume_infos

(2) OBJECT_LIST_VOLUMES returns the set of volume identifiers of volumes holding
components of object (except for any components to which there are composition links from
components on unmounted volumes), with an indication of the mounted state of each volume.

(3) A read lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (object, COMPOSITE, READ, READ_LINKS)
(5) OBJECT_IS_ARCHIVED (component of object)
(6) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (component of object, direct

outgoing composition link of that component, NAVIGATE_MODE)

(7) NOTE - The note of 9.2.5 applies for each component of object.

9.3.14 OBJECT_MOVE

(1) OBJECT_MOVE (
object : Object_designator,
on_same_volume_as : Object_designator,
scope : Object_scope

)

(2) OBJECT_MOVE moves object to the volume volume on which on_same_volume_as resides.

(3) If scope is ATOMIC:

(4) - If object already resides on volume, it is not affected.

- 56 -

(5) - Otherwise, object is moved to volume.

(6) If scope is COMPOSITE:

(7) - Each of object and the components of object which already reside on volume are not
affected.

(8) - All other of object and the components of object are moved to volume, and the space
previously occupied by those components is freed.

(9) The effect of moving an object A to a volume V is as follows.

(10) - The attributes and links of A are unchanged, except for the predefined attributes
"volume_identifier" which is set to the volume identifier of V, and "last_change_time" and
"last_composite_change_time", which are set to the current system time.

(11) - For object (if moved) and each moved component, the "object_on_volume" link to it from
the volume on which the component was previously residing is deleted, and a new
"object_on_volume" link is created to it from volume. The created link is keyed by the exact
identifier of its destination object.

(12) A write lock of the default mode is obtained on each moved object. An implementation may set
a write lock of the default mode on each link to a moved object (except the "object_on_volume"
links) if the link is modified by the operation.

Errors

(13) If scope is ATOMIC:
ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_OBJECT)

(14) If scope is COMPOSITE:
ACCESS_ERRORS (object, COMPOSITE, READ, READ_LINKS)
ACCESS_ERRORS (object and its moved components, ATOMIC, CHANGE,
CONTROL_OBJECT)

(15) ACCESS_ERRORS (on_same_volume_as, ATOMIC, SYSTEM_ACCESS)
(16) If object or some of its components are moved:

OBJECT_IS_IN_USE_FOR_MOVE (object)
OBJECT_IS_INACCESSIBLY_ARCHIVED (object, scope)
OBJECT_IS_LOCKED (object, scope)
OBJECT_IS_NOT_MOVABLE (object, scope)
OBJECT_IS_REPLICATED (object, scope)
TYPE_OF_OBJECT_IS_INVALID (object, scope)
VOLUME_IS_FULL (volume of on_same_volume_as)

(17) The following implementation-dependent errors may be raised for any object X with a link to
object:

OBJECT_IS_INACCESSIBLY_ARCHIVED (X)
VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

9.3.15 OBJECT_RESET_ATTRIBUTE

(1) OBJECT_RESET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

)

- 57 -

(2) OBJECT_RESET_ATTRIBUTE resets the attribute attribute of the object object to its initial
value.

(3) A write lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(5) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, attribute,

WRITE_MODE)

9.3.16 OBJECT_SET_ATTRIBUTE

(1) OBJECT_SET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator,
value : Attribute_value

)

(2) OBJECT_SET_ATTRIBUTE assigns the value value to the attribute attribute of the object
object.

(3) A write lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(5) ENUMERATION_VALUE_IS_OUT_OF_RANGE (value, values of attribute)
(6) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, attribute,

WRITE_MODE)
(7) VALUE_LIMIT_ERRORS (value)
(8) The following implementation-dependent error may be raised:

VALUE_TYPE_IS_INVALID (value, object, attribute)

9.3.17 OBJECT_SET_PREFERENCE

(1) OBJECT_SET_PREFERENCE (
object : Object_designator,
type : [Link_type_nominator],
key : [Text]

)

(2) OBJECT_SET_PREFERENCE sets the preferred link type of the object object to the link type
type (if supplied), and preferred link key of object to key (if supplied).

(3) If both type and key are supplied, the preferred link type of object is set to type and the preferred
link key of object is set to key.

(4) If type is supplied and key is not, the preferred link type of object is set to type and the preferred
link key of object is unset.

(5) If type is not supplied and key is supplied, then the preferred link type of object must already be
set (else the error condition PREFERRED_LINK_TYPE_IS_UNSET is raised); the preferred
link key is set to key.

(6) If key and type are not supplied, the preferred link type and preferred link key of object are
unset.

- 58 -

(7) A write lock of the default mode is obtained on object.

Errors

(8) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(9) CARDINALITY_IS_INVALID (type)
(10) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_SIZE)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
(12) LINK_TYPE_IS_UNKNOWN (type)
(13) PREFERRED_LINK_KEY_IS_BAD (key, type or preferred link type of object if type is not

supplied)
(14) If type is not supplied and key is supplied:

PREFERRED_LINK_TYPE_IS_UNSET (object)

9.3.18 OBJECT_SET_SEVERAL_ATTRIBUTES

(1) OBJECT_SET_SEVERAL_ATTRIBUTES (
object : Object_designator,
attributes : Attribute_assignments

)

(2) For each element A of the domain of attributes, OBJECT_SET_SEVERAL_ATTRIBUTES sets
the value of the attribute A of object to attributes (A) in the same way as:

(3) OBJECT_SET_ATTRIBUTE (object, A, attributes (A)).

(4) A write lock of the default mode is obtained on object.

Errors

(5) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(6) For each element A of the domain of attributes

ENUMERATION_VALUE_IS_OUT_OF_RANGE (attributes(A), values of A)
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, A,
WRITE_MODE)
VALUE_LIMIT_ERRORS (attributes (A))

(7) The following implementation-dependent error may be raised for each element A of the domain
of attributes:

VALUE_TYPE_IS_INVALID (attributes (A), object, A)

9.3.19 OBJECT_SET_TIME_ATTRIBUTES

(1) OBJECT_SET_TIME_ATTRIBUTES(
object : Object_designator,
last_access : [Time],
last_modification : [Time],
scope : Object_scope

)

(2) OBJECT_SET_TIME_ATTRIBUTES sets the time attributes of the object object as follows.

(3) If scope is ATOMIC:

(4) - the last access time of object is set to last_access if supplied, otherwise to the current system
time;

- 59 -

(5) - the last modification time of object is set to last_modification if supplied, otherwise to the
current system time;

(6) If scope is COMPOSITE:

(7) - the last composite access time of object, and the last access time of each component of
object, are set to last_access if supplied, otherwise to the current system time;

(8) - the last composite modification time of object, and the last modification time of each
component of object, are set to last_modification if supplied, otherwise to the current system
time;

(9) A write lock of the default mode is obtained on object.

Errors

(10) ACCESS_ERRORS (object, scope, MODIFY, WRITE_ATTRIBUTES)
(11) If last_access or last_modification is supplied:

PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)
(12) LIMIT_WOULD_BE_EXCEEDED (MAX_TIME_ATTRIBUTE, MIN_TIME_ATTRIBUTE)

9.3.20 VOLUME_LIST_OBJECTS

(1) VOLUME_LIST_OBJECTS (
volume : Volume_designator,
types : Object_type_nominators

)
objects : Object_designators

(2) VOLUME_LIST_OBJECTS returns in objects a set of object designators determined by types.

(3) An object designator is returned in objects for each object which resides on volume, whose type
in working schema is an element of types.

(4) A read lock of the default mode is obtained on volume.

Errors

(5) ACCESS_ERRORS (volume, ATOMIC, READ, READ_LINKS)
(6) REFERENCE_CANNOT_BE_ALLOCATED

9.4 Version operations

9.4.1 VERSION_ADD_PREDECESSOR

(1) VERSION_ADD_PREDECESSOR (
version : Object_designator,
new_predecessor : Object_designator

)

(2) VERSION_ADD_PREDECESSOR adds new_predecessor as a predecessor of version in a
graph of versions, by creating a "predecessor" link with key the next available natural value
from version to new_predecessor.

(3) Write locks of the default mode are obtained on the new links.

- 60 -

Errors

(4) ACCESS_ERRORS (new_predecessor, ATOMIC, CHANGE, STABILIZE)
(5) ACCESS_ERRORS (version, ATOMIC, MODIFY, APPEND_LINKS)
(6) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
(7) OBJECT_CANNOT_BE_STABILIZED (component of version)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)
(9) VERSION_GRAPH_IS_INVALID (version, new_predecessor)

9.4.2 VERSION_IS_CHANGED

(1) VERSION_IS_CHANGED (
version : Object_designator,
predecessor : Natural

)
changed : Boolean

(2) VERSION_IS_CHANGED tests whether version has been changed since being created as a new
version of its predecessor predecessor by comparing the values of the last composite
modification time for version and predecessor. If it has been changed, i.e. the last composite
modification times are different, then changed is true, otherwise it is false.

(3) Read locks of the default mode are obtained on version, on all components of version, and on
predecessor.

Errors

(4) ACCESS_ERRORS (predecessor, COMPONENTS, READ, (READ_LINKS,
READ_ATTRIBUTES, READ_CONTENTS))

(5) ACCESS_ERRORS (version, COMPONENTS, READ, (READ_LINKS,
READ_ATTRIBUTES, READ_CONTENTS))

(6) ACCESS_ERRORS (version, COMPOSITE, CHANGE)
(7) LINK_DOES_NOT_EXIST (version, "predecessor" link with key predecessor)

9.4.3 VERSION_REMOVE

(1) VERSION_REMOVE (
version : Object_designator

)

(2) VERSION_REMOVE removes version from its graph of versions.

(3) For X as version and each component of version:

(4) - If X has external successors and predecessors then a "predecessor" link is created from each
successor of X to each predecessor of X, and all the "predecessor" links to and from X are
deleted.

(5) - If X has only external successors: then all the "predecessor" links to X are deleted.

(6) - If X has only external predecessors then all the "predecessor" links from X are deleted.

(7) Write locks of the default mode are obtained on the deleted links and on the created links.

- 61 -

Errors

(8) ACCESS_ERRORS (version, COMPOSITE, MODIFY, (WRITE_LINKS,
WRITE_IMPLICIT))

(9) For each component X of version which has more than one successor:
ACCESS_ERRORS (predecessor of X, COMPOSITE, CHANGE, STABILIZE)

(10) ACCESS_ERRORS (predecessor of version, ATOMIC, CHANGE, (WRITE_IMPLICIT,
APPEND_IMPLICIT))

(11) ACCESS_ERRORS (successor of version, ATOMIC, CHANGE, (WRITE_LINKS,
APPEND_LINKS))

(12) ACCESS_ERRORS (version and its deleted components, ATOMIC, MODIFY, DELETE)
(13) OBJECT_HAS_EXTERNAL_LINKS_PREVENTING_DELETION (version)
(14) OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETION (version)
(15) OBJECT_IS_IN_USE_FOR_DELETE (version)
(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)
(17) VERSION_IS_REQUIRED (version, COMPOSITE)

9.4.4 VERSION_REMOVE_PREDECESSOR

(1) VERSION_REMOVE_PREDECESSOR (
version : Object_designator,
predecessor : Object_designator

)

(2) VERSION_REMOVE_PREDECESSOR removes the object predecessor as a predecessor of
version in the graph of versions, by deleting the "predecessor" link from version to predecessor
and its reverse "successor" link.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (predecessor, ATOMIC, CHANGE, STABILIZE)
(5) If predecessor is to be deleted:

ACCESS_ERRORS (predecessor and its deleted components, ATOMIC, MODIFY,
DELETE)

(6) ACCESS_ERRORS (predecessor, COMPOSITE, CHANGE)
(7) ACCESS_ERRORS (version, ATOMIC, MODIFY, WRITE_LINKS)
(8) If there is no "predecessor" link between version and predecessor:

LINK_DOES_NOT_EXIST (version, "predecessor" link)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)

- 62 -

9.4.5 VERSION_REVISE

(1) VERSION_REVISE (
version : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_version : Object_designator

(2) VERSION_REVISE creates a new updatable version (a revision) of version. That is:

(3) - A copy new_version of version is created in the same way as

OBJECT_COPY (version, new_origin, new_link, nil , on_same_volume_as, access_mask)

where reverse_key is not supplied.

(4) - "predecessor" links with key 1 (one) are created from new_version and each of its
components to version and each of its corresponding components. As a consequence,
new_version and each of its components becomes a new successor of version and each of its
corresponding components (i.e. a reverse "successor" link with a system-generated key is
created).

(5) Since the "predecessor" links are compositely stabilizing, version and its components are made
stable.

(6) access_mask is used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite ACL of new_version. new_version
and its components have the same integrity and confidentiality labels as the objects they have
been copied from.

(7) If on_same_volume_as is supplied, the new_version resides on the same volume as
on_same_volume_as. Otherwise, new_version resides on the same volume as version and each
component of new_version resides on the same volume as the corresponding component of
version.

(8) If a replicated component is revised, its revision is not replicated.

(9) Read locks of the default mode are obtained on all components of version and write locks of the
default mode are obtained on the new links and components of new_version.

(10) A read lock of the default mode is obtained on new_origin if the interpretation of new_link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

(11) If version is an accounting log, its contents is preserved.

Errors

(12) ACCESS_ERRORS (new_origin, ATOMIC, MODIFY, APPEND_LINKS)
(13) ACCESS_ERRORS (version, COMPOSITE, CHANGE, APPEND_IMPLICIT)
(14) ACCESS_ERRORS (version, COMPOSITE, READ, (READ_LINKS, READ_ATTRIBUTES,

READ_CONTENTS))
(15) ACCESS_ERRORS (version, COMPOSITE, CHANGE, STABILIZE)
(16) If the reverse of new_link is compositely stabilizing:

ACCESS_ERRORS (new_origin, COMPOSITE, CHANGE, STABILIZE)
(17) ACCESS_ERRORS (on_same_volume_as, ATOMIC, SYSTEM_ACCESS)

- 63 -

(18) For each destination X of a duplicable external link L of a duplicated component:
(19) ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)
(20) If L is atomically stabilizing:

ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)
(21) If L is compositely stabilizing:

ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)
(22) CATEGORY_IS_BAD (new_origin, new_link, (COMPOSITION, EXISTENCE))
(23) CATEGORY_IS_BAD (destination of new_link, reverse of new_link, IMPLICIT)
(24) If version is a component of itself, and new_link is a composition link:

COMPONENT_ADDITION_ERRORS (new_version, new_link)
(25) CONTROL_WOULD_NOT_BE_GRANTED (new_version)
(26) EXTERNAL_LINK_IS_BAD (version, COMPOSITE)
(27) LINK_EXISTS (new_origin, new_link)
(28) OBJECT_CANNOT_BE_STABILIZED (component of version)
(29) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(new_object)
(30) If version is not a component of itself, new_link is a composition link and new_origin has

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_version)

(31) REFERENCE_CANNOT_BE_ALLOCATED
(32) TYPE_OF_OBJECT_IS_INVALID (version, COMPOSITE)
(33) UPPER_BOUND_WOULD_BE_VIOLATED (new_origin, new_link)
(34) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", type of version)
(35) VALUE_LIMIT_ERRORS (reverse_key)
(36) VOLUME_IS_FULL (volume on which on_same_volume_as resides)

9.4.6 VERSION_SNAPSHOT

(1) VERSION_SNAPSHOT (
version : Object_designator,
new_link_and_origin : [Link_descriptor],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_version : Object_designator

(2) VERSION_SNAPSHOT creates a new stable version (a snapshot) of version. That is, if
new_origin and new_link are the object designator and link designator respectively of
new_link_and_origin:

(3) - A copy new_version of version is created in the same way as

OBJECT_COPY (version, new_origin, new_link, nil , on_same_volume_as, access_mask).

where reverse_link is not supplied; except that if new_link_and_origin is not supplied, then
no new link of new_origin is created

(4) - The set of predecessors of each component of new_version is the set of predecessors of its
corresponding component of version. Then a "predecessor" link with key 1 (one) is created

- 64 -

in such a way that each component of new_version becomes the first predecessor of its
corresponding component of version.

(5) All the granted write and append discretionary access rights are suppressed (i.e. set to
UNDEFINED) for all the components of new_version.

(6) The components of version are still updatable. access_mask is used in conjunction with the
default atomic ACL and default object owner of the calling process to specify the atomic ACL
and the composite ACL of the created objects.

(7) The components of new_version are stabilized.

(8) The created objects have the same integrity and confidentiality labels as the objects they have
been copied from.

(9) If on_same_volume_as is supplied, the new_version resides on the same volume as
on_same_volume_as. Otherwise, new_version resides on the same volume as version and each
component of new_version resides on the same volume as the corresponding component of
version.

(10) If a component of version is replicated, its snapshot is not replicated.

(11) The predecessor links are created even if their origins are stable.

(12) Read locks of the default mode are obtained on all components of version to be copied and write
locks of the default mode are obtained on the new links and components of new_version. A
read lock of the default mode is obtained on new_origin if the interpretation of new_link implies
the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

(13) If version is an accounting log, its contents is preserved.

Errors

(14) ACCESS_ERRORS (new_origin, ATOMIC, MODIFY, APPEND_LINKS)
(15) ACCESS_ERRORS (version, COMPOSITE, MODIFY, APPEND_LINKS)
(16) If version or any component of version already has a predecessor:

ACCESS_ERRORS (version, COMPOSITE, MODIFY, WRITE_LINKS)
(17) ACCESS_ERRORS (version, COMPOSITE, READ, (READ_LINKS, READ_ATTRIBUTES,

READ_CONTENTS))
(18) ACCESS_ERRORS (new_version, COMPOSITE, CHANGE, STABILIZE)
(19) If version has a predecessor, than for each predecessor X of each component of version:

ACCESS_ERRORS (X, ATOMIC, CHANGE, (APPEND_IMPLICIT,
WRITE_IMPLICIT))

(20) If new_link is provided and its reverse is compositely stabilizing:
ACCESS_ERRORS (new_origin, COMPOSITE, CHANGE, STABILIZE)

(21) ACCESS_ERRORS (on_same_volume_as, ATOMIC, SYSTEM_ACCESS)
(22) For each destination X of a duplicable external link L of a duplicated component:
(23) ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)
(24) If L is atomically stabilizing:

ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)
(25) If L is compositely stabilizing:

ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)

- 65 -

(26) CATEGORY_IS_BAD (new_origin, new_link, (COMPOSITION, EXISTENCE,
REFERENCE, DESIGNATION))

(27) If new_link has a reverse link:
CATEGORY_IS_BAD (destination of new_link, reverse of new_link, IMPLICIT)

(28) If version is a component of itself, and new_link is a composition link:
COMPONENT_ADDITION_ERRORS (new_version, new_link)

(29) CONTROL_WOULD_NOT_BE_GRANTED (new_version)
(30) EXTERNAL_LINK_IS_BAD (version, COMPOSITE)
(31) REFERENCE_CANNOT_BE_ALLOCATED
(32) LINK_EXISTS (new_origin, new_link)
(33) OBJECT_CANNOT_BE_STABILIZED (component of version)
(34) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(new_object)
(35) If version is not a component of itself, new_link is a composition link and new_origin has

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_version)

(36) TYPE_OF_OBJECT_IS_INVALID (version, COMPOSITE)
(37) UPPER_BOUND_WOULD_BE_VIOLATED (new_origin, new_link)
(38) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", type of version)
(39) VALUE_LIMIT_ERRORS (reverse_key)
(40) VOLUME_IS_FULL (volume on which on_same_volume_as resides)

9.4.7 VERSION_TEST_ANCESTRY

(1) VERSION_TEST_ANCESTRY (
version1 : Object_designator,
version2 : Object_designator

)
ancestry : Version_relation

(2) VERSION_TEST_ANCESTRY tests the ancestry of the objects version1 and version2 in their
graphs of versions. That is, it returns in ancestry:

(3) - ANCESTOR_VSN if there exists a series of "predecessor" links from version2 to version1;

(4) - DESCENDANT_VSN if there exists a series of "predecessor" links from version1 to
version2;

(5) - SAME_VSN if version1 is the same object as version2;

(6) - RELATED_VSN if there exist an object X which is neither version1 nor version2, a series of
"predecessor" links from version1 to X, and a series of "predecessor" links from version2 to
X;

(7) - UNRELATED_VSN otherwise.

(8) Read locks of the default mode are obtained on version1 and on version2 and on all the origins
and destinations of the links in the series of links.

Errors

(9) ACCESS_ERRORS (version1, ATOMIC, READ, READ_LINKS)

- 66 -

(10) ACCESS_ERRORS (element of version graph of version1, ATOMIC, READ, READ_LINKS)
(11) ACCESS_ERRORS (version2, ATOMIC, READ, READ_LINKS)
(12) ACCESS_ERRORS (element of version graph of version2, ATOMIC, READ, READ_LINKS)

9.4.8 VERSION_TEST_DESCENT

(1) VERSION_TEST_DESCENT (
version1 : Object_designator,
version2 : Object_designator

)
descent : Version_relation

(2) VERSION_TEST_DESCENT tests the descent of the objects version1 and version2 in their
graphs of versions. That is, it returns:

(3) - ANCESTOR_VSN if there exists a series of "successor" links from version1 to version2;

(4) - DESCENDANT_VSN if there exists a series of "successor" links from version2 to version1;

(5) - SAME_VSN if version1 is the same object as version2;

(6) - RELATED_VSN if there exist an object X which is neither version1 nor version2, a series of
"successor" links from version1 to X, and a series of "successor" links from version2 to X.

(7) - UNRELATED_VSN otherwise.

(8) Read locks of the default mode are obtained on version1 and on version2 and on the all the
origins and destinations of the links in the series of links.

Errors

(9) ACCESS_ERRORS (version1, ATOMIC, READ, READ_LINKS)
(10) ACCESS_ERRORS (element of version graph of version1, ATOMIC, READ, READ_LINKS)
(11) ACCESS_ERRORS (version2, ATOMIC, READ, READ_LINKS)
(12) ACCESS_ERRORS (element of version graph of version2, ATOMIC, READ, READ_LINKS)

10 Schema management

10.1 Schema management concepts

10.1.1 Schema definition sets and the SDS directory

(1) sds metasds:

(2) import object type system-object, system-process, system-common_root;

(3) import attribute type system-number, system-system_key;

(4) type_identifier: (read) string ;

(5) sds_directory: child type of object with
link

known_sds: (navigate) non_duplicated existence link (sds_name: string) to sds;
schemas_of: (navigate) implicit link to common_root reverse schemas;

end sds_directory;

- 67 -

(6) sds: child type of object with
link

named_definition: (navigate) reference link (local_name: string) to type_in_sds
reverse named_in_sds;

in_working_schema_of: (navigate) non_duplicated designation link (number) to
process;

component
definition: (navigate) exclusive composition link (type_identifier) to type_in_sds

reverse in_sds;
end sds;

(7) extend object type common_root with
link

schemas: (navigate) existence link to sds_directory reverse schemas_of;
end common_root;

(8) end metasds;

(9) The SDS directory is an administrative object (see 9.1.2).

(10) The "sds" components of the SDS directory represent the known SDSs of the PCTE installation
(see 8.4):

(11) - The "sds_name" key of the "known_sds" link from the SDS directory represents the SDS
name of the SDS.

(12) - The definition components of an SDS represent the types in SDS of the SDS (see 8.3). The
key of the "named_definition" link is the local name of the type in SDS. The destinations of
the "named_definition" links are a subset of the SDS object components. The destinations of
the "in_working_schema" links are the known processes which are neither ready nor
terminated and have included the SDS in their working schemas.

(13) The destinations of the "in_working_schema" links are the known non-terminated processes
which have included the SDS in their working schemas (see 8.5). An SDS and its types in SDS
cannot be modified by using the operations defined in 10.2 while the SDS is included in the
working schema of such a process.

(14) NOTE - The predefined SDSs 'system', 'metasds', 'discretionary_security', 'mandatory_security', 'auditing', and
'accounting' are protected against modification, and so they cannot be extended directly. However, the predefined
types can be imported into other SDSs and then extended, thus achieving the same effect. See 20.1.8.1.

10.1.2 Types

(1) sds metasds:

(2) type: (protected) child type of object with
attribute

type_identifier;
link

has_type_in_sds: (navigate) implicit link (system_key) to type_in_sds reverse of_type;
end type;

- 68 -

(3) type_in_sds: (protected) child type of object with
attribute

annotation: string ;
creation_or_importation_time: (read) time ;

link
in_sds: (navigate) implicit link to sds reverse definition;
of_type: (navigate) existence link to type reverse has_type_in_sds;
named_in_sds: (navigate) implicit link to sds reverse named_definition;

end type_in_sds;

(4) usage_mode: (read) natural ;

(5) export_mode: (read) natural ;

(6) maximum_usage_mode: (read) natural ;

(7) end metasds;

(8) A "type" object represents a type (see 8.3):

(9) - The "type_identifier" attribute represents the type identifier.

(10) - The destinations of the "has_type_in_sds" links represent types in SDS associated with this
type.

(11) Further attribute types and link types are particular to the object types "object_type" (see
10.1.3), "attribute_type" (see 10.1.4), "link_type" (see 10.1.5), and "enumeral_type" (see
10.1.6).

(12) A "type_in_sds" object represents a type in SDS (see 8.4):

(13) - The destination of the "in_sds" link represents the SDS to which the type in SDS belongs.

(14) - The destination of the "named_in_sds" link represents the SDS in which the type in SDS has
a local name. It is the same as the destination of the "in_sds" link.

(15) - The destination of the "of_type" link represents the type associated with the type in SDS.

(16) - The usage mode, export mode, and maximum usage mode represent the definition modes of
the type in SDS. A set of definition mode values is represented as the sum of the powers of
2 representing its elements as follows:

. CREATE : 1

. DELETE : 2

. READ : 4

. WRITE : 8

. NAVIGATE : 16

(17) - The annotation is the complete name of the type when it is created, but may be changed by
the user.

(18) - The creation or importation time is the system time when the type in SDS was created or
imported into the SDS.

(19) Further attribute types and link types are particular to the object types "object_type_in_sds" (see
10.1.3), "attribute_type_in_sds" (see 10.1.4), "link_type_in_sds" (see 10.1.5), and
"enumeration_type_in_sds" (see 10.1.6).

- 69 -

10.1.3 Object types

(1) sds metasds:

(2) object_type: (protected) child type of type with
attribute

contents_type: (read) enumeration (FILE_TYPE, PIPE_TYPE, DEVICE_TYPE,
AUDIT_FILE_TYPE, ACCOUNTING_LOG_TYPE, NO_CONTENTS_TYPE) :=
NO_CONTENTS_TYPE;

link
parent_type: (navigate) reference link (number) to object_type reverse child_type;
child_type: (navigate) implicit link (system_key) to object_type reverse parent_type;

end object_type;

(3) object_type_in_sds: (protected) child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
in_attribute_set: (navigate) reference link (number) to attribute_type_in_sds reverse

is_attribute_of;
in_link_set: (navigate) reference link (number) to link_type_in_sds reverse is_link_of;
is_destination_of: (navigate) reference link (number) to link_type_in_sds reverse

in_destination_set;
end object_type_in_sds;

(4) end metasds;

(5) An "object_type" object represents an object type (see 8.3.1):

(6) - The destinations of the "parent_type" links represent the parent types of the object type.

(7) - The destinations of the "child_type" links represent the child types of the object type.

(8) An "object_type_in_sds" object represents an object type in SDS (see 8.4.1):

(9) - The destinations of the "in_attribute_set" links represent the direct attribute types in SDS of
the object type in SDS.

(10) - The destinations of the "in_link_set" links represent the direct outgoing link types in SDS of
the object type in SDS. The component object types of the object type in SDS are
represented by the destinations of the "in_destination_set" links of the destinations of the
"in_link_set" links with category COMPOSITION.

(11) - The destinations of the "is_destination_of" links represent the link types in SDS of which
this object type is a destination object type.

10.1.4 Attribute types

(1) sds metasds:

(2) duplication: (read) enumeration (DUPLICATED, NON_DUPLICATED):= DUPLICATED;

(3) key_attribute_of: (navigate) implicit link (system_key) to link_type reverse key_attribute;

(4) attribute_type: (protected) child type of type with
attribute

duplication;
end attribute_type;

- 70 -

(5) string_attribute_type: (protected) child type of attribute_type with
attribute

string_initial_value: (read) string ;
link

key_attribute_of;
end string_attribute_type;

(6) integer_attribute_type: (protected) child type of attribute_type with
attribute

integer_initial_value: (read) integer ;
end integer_attribute_type;

(7) natural_attribute_type: (protected) child type of attribute_type with
attribute

natural_initial_value: (read) natural ;
link

key_attribute_of;
end natural_attribute_type;

(8) float_attribute_type: (protected) child type of attribute_type with
attribute

float_initial_value: (read) float ;
end float_attribute_type;

(9) boolean_attribute_type: (protected) child type of attribute_type with
attribute

boolean_initial_value: (read) boolean ;
end boolean_attribute_type;

(10) time_attribute_type: (protected) child type of attribute_type with
attribute

time_initial_value: (read) time ;
end time_attribute_type;

(11) enumeration_attribute_type: (protected) child type of attribute_type with
attribute

initial_value_position: (read) natural ;
component

enumeral: (navigate) composition link [1 ..] (position: natural) to enumeral_type
reverse enumeral_of;

end enumeration_attribute_type;

(12) attribute_type_in_sds: (protected) child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
is_attribute_of: (navigate) reference link (number) to object_type_in_sds,

link_type_in_sds reverse in_attribute_set;
end attribute_type_in_sds;

(13) end metasds;

(14) "Attribute_type" objects represent attribute types (see 8.3.2). They are divided into child types
according to value type.

(15) - The initial value attribute represents the initial value of the attribute type. For string, integer,
natural, float, boolean, and time attribute types, it is an actual value of the value type. For an
enumeration attribute type, it is a non-negative integer defining the position of the initial
value within the enumeration type.

- 71 -

(16) - For a natural or a string attribute type, the destinations of the "key_attribute_of" links
represent the link types for which this attribute type is a key attribute type.

(17) - For an enumeration attribute type, the destinations of the "enumeral" links represent the
enumeral types of the value type. The "position" key attribute represents the ordering of the
enumeral types: it must take successive values 0, 1, 2, 3,

(18) An "attribute_type_in_sds" object represents an attribute type in SDS (see 8.4.2):

(19) - The destinations of the "in_attribute_set" links represent the object types in SDS and link
types in SDS for which the attribute type is a direct attribute type.

10.1.5 Link types

(1) sds metasds:

(2) link_type : (protected) child type of type with
attribute

category: (read) enumeration (COMPOSITION, EXISTENCE, REFERENCE, IMPLICIT,
DESIGNATION) := COMPOSITION;

lower_bound: (read) natural := 0;
upper_bound: (read) natural := MAX_NATURAL_ATTRIBUTE;
stability: (read) enumeration (ATOMIC_STABLE, COMPOSITE_STABLE, NON_STABLE)

:= NON_STABLE;
exclusiveness: (read) enumeration (SHARABLE, EXCLUSIVE) := SHARABLE;
duplication;

link
reverse: (navigate) reference link to link_type;
key_attribute: (navigate) reference link (key_number: natural) to string_attribute_type,

natural_attribute_type reverse key_attribute_of;
end link_type;

(3) link_type_in_sds: child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
in_attribute_set;
is_link_of: (navigate) reference link (number) to object_type_in_sds reverse

in_link_set;
in_destination_set: (navigate) reference link (number) to object_type_in_sds reverse

is_destination_of;
end link_type_in_sds;

(4) end metasds;

(5) A "link_type" object represents a link type (see 8.3.3):

(6) - The "category" attribute represents the category of the link type.

(7) - The "lower_bound" and "upper_bound" attributes represent the lower bound and upper
bound, respectively, of the link type. For MAX_NATURAL_ATTRIBUTE see 24.1.

(8) - The "stability" attribute represents the stability of the link type.

(9) - The "exclusiveness" attribute represents the exclusiveness of the link type.

(10) - The "duplication" attribute represents the duplication property of the link type.

(11) - The destination of the "reverse" link represents the reverse link type of the link type.

- 72 -

(12) - The destinations of the "key_attribute" links represent the key attribute types of the link type.

(13) A "link_type_in_sds" object represents a link type in SDS (see 8.4.3):

(14) - The destinations of the "in_attribute_set" links represent the non-key attribute types of the
link type in SDS.

(15) - The destinations of the "is_link_of" links represent the origin object types in SDS of the link
type in SDS.

(16) - The destinations of the "in_destination_set" links represent the destination object types in
SDS of the link type in SDS.

10.1.6 Enumeral types

(1) sds metasds:

(2) enumeral_type: (protected) child type of type with
link

enumeral_of: (navigate) implicit link (system_key) to enumeration_attribute_type
reverse enumeral;

end enumeral_type;

(3) enumeral_type_in_sds: (protected) child type of type_in_sds with
attribute

image: (read) string ;
end enumeral_type_in_sds;

(4) end metasds;

(5) An "enumeral_type" object represents an enumeral type (see 8.3.4).

(6) The destinations of the "enumeral_of" links represent the attribute types of which the enumeral
type is a possible value.

(7) An "enumeral_type_in_sds" object represents an enumeral type in SDS (see 8.4.4); the "image"
attribute represents the image of the enumeral type in SDS.

10.1.7 Datatypes for schema management

(1) Enumeration_values = seq1 of Enumeral_type_nominator_in_sds

(2) Key_types_in_sds = seq of Attribute_type_nominator_in_sds

(3) Attribute_scan_kind = OBJECT | OBJECT_ALL | LINK_KEY | LINK_NON_KEY

(4) Link_scan_kind = ORIGIN | ORIGIN_ALL | DESTINATION | DESTINATION_ALL | KEY |
NON_KEY

(5) Object_scan_kind = CHILD | DESCENDANT | PARENT | ANCESTOR | ATTRIBUTE |
ATTRIBUTE_ALL | LINK_ORIGIN | LINK_ORIGIN_ALL | LINK_DESTINATION |
LINK_DESTINATION_ALL

(6) These datatypes are used as parameter and result types of operations defined in 10.2, 10.3, and
10.4.

- 73 -

10.2 SDS update operations

10.2.1 SDS_ADD_DESTINATION

(1) SDS_ADD_DESTINATION (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object_type : Object_type_nominator_in_sds

)

(2) SDS_ADD_DESTINATION extends the set of destination object types of the link type in SDS
link_type_in_sds associated with the link type link_type in the SDS sds to include the object
type in SDS object_type_in_sds associated with the object type object_type in sds.

(3) If link_type has a reverse link type reverse, then reverse is applied to object_type.

(4) An "in_destination_set" link from link_type_in_sds to object_type_in_sds and its reverse
"is_destination_of" link are created.

(5) If link_type has a reverse link type reverse then an "in_link_set" link from object_type_in_sds to
the "link_type_in_sds" object reverse_link_type_in_sds associated with reverse in sds, and its
reverse "is_link_of" link, are created.

(6) Write locks of the default mode are obtained on the created links.

Errors

(7) ACCESS_ERRORS (object_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(8) ACCESS_ERRORS (link_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(9) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(10) ACCESS_ERRORS (reverse_link_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) OBJECT_TYPE_IS_ALREADY_IN_DESTINATION_SET (link_type, object_type)
(12) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(13) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(14) SDS_IS_PREDEFINED (sds)
(15) SDS_IS_UNKNOWN (sds)
(16) TYPE_IS_UNKNOWN_IN_SDS (sds, link_type)
(17) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

10.2.2 SDS_APPLY_ATTRIBUTE_TYPE

(1) SDS_APPLY_ATTRIBUTE_TYPE (
sds : Sds_designator,
attribute_type : Attribute_type_nominator_in_sds,
type : Object_type_nominator_in_sds | Link_type_nominator_in_sds

)

(2) SDS_APPLY_ATTRIBUTE_TYPE extends the object type or link type type by the application
of the attribute type attribute_type in the SDS sds.

(3) An "in_attribute_set" link and its reverse "is_attribute_of" link are created between the type in
SDS type_in_sds associated with type in sds and the attribute type in SDS attribute_type_in_sds
associated with attribute_type in sds.

(4) Write locks of the default mode are obtained on the created links.

- 74 -

Errors

(5) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (attribute_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(8) KEY_ATTRIBUTE_TYPE_APPLY_IS_FORBIDDEN (attribute_type)
(9) LINK_TYPE_CATEGORY_IS_BAD (link_type, (COMPOSITION, EXISTENCE,

REFERENCE, DESIGNATION))
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(11) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(12) SDS_IS_PREDEFINED (sds)
(13) SDS_IS_UNKNOWN (sds)
(14) TYPE_CANNOT_BE_APPLIED_TO_LINK_TYPE (type, attribute_type)
(15) TYPE_IS_ALREADY_APPLIED (sds, attribute_type, type)
(16) TYPE_IS_UNKNOWN_IN_SDS (sds, attribute_type)
(17) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.2.3 SDS_APPLY_LINK_TYPE

(1) SDS_APPLY_LINK_TYPE (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object_type : Object_type_nominator_in_sds

)

(2) SDS_APPLY_LINK_TYPE extends the object type object_type in the SDS sds by the
application of the link type link_type. If link_type has a reverse link type reverse then the
destination set of reverse is extended to include the object type object_type.

(3) An "in_link_set" link from the object type in SDS object_type_in_sds associated with
object_type in sds to the link type in SDS link_type_in_sds associated with link_type in sds, and
its reverse "is_link_of" link, are created. If link_type has a reverse link type reverse, an
"in_destination_set" link from the link type in SDS associated with reverse in sds to
object_type_in_sds, and its reverse "is_destination_of" link, are created.

(4) Write locks of the default mode are obtained on the created links.

Errors

(5) ACCESS_ERRORS (link_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (object_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(8) ACCESS_ERRORS (reverse of link_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(10) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(11) SDS_IS_PREDEFINED (sds)
(12) SDS_IS_UNKNOWN (sds)
(13) TYPE_IS_ALREADY_APPLIED (sds, link_type, object_type)
(14) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

- 75 -

(15) TYPE_IS_UNKNOWN_IN_SDS (sds, link_type)

10.2.4 SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE

(1) SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [Boolean],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE creates a new boolean attribute type
new_type, and its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The
boolean initial value of new_type is set to initial_value if supplied, and otherwise to false.

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_PREDEFINED (sds)
(16) SDS_IS_UNKNOWN (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)

- 76 -

10.2.5 SDS_CREATE_DESIGNATION_LINK_TYPE

(1) SDS_CREATE_DESIGNATION_LINK_TYPE (
sds : Sds_designator,
local_name : [Name],
lower_bound : [Natural],
upper_bound : [Natural],
duplication : Duplication,
key_types : Key_types_in_sds

)
new_type : Link_type_nominator_in_sds

(2) SDS_CREATE_DESIGNATION_LINK_TYPE creates a new designation link type new_type
and its associated link type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation.

(6) The three definition mode attributes of new_type_in_sds are set to 19, representing
CREATE_MODE, DELETE_MODE, and NAVIGATE_MODE, and its creation or importation
time is set to the system time. If local_name is supplied, the annotation of new_type_in_sds is
set to the complete name of the created type; otherwise it is set to the empty string.

(7) The lower bound, upper bound (if provided), and duplication of new_type are set from the
parameters of the same names. If new_type is of cardinality many, for each attribute type of
key_types, a "key_attribute" link is created from new_type to that attribute type. The keys of
these links correspond to the order of the key attribute types in key_types starting at 0 and
incremented by 1. The category of new_type is set to DESIGNATION.

(8) The sets of origin object types in SDS and destination object types in SDS of new_type are
initially empty.

(9) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(10) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(11) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(12) ACCESS_ERRORS (element of key_types, ATOMIC, CHANGE, APPEND_IMPLICIT)
(13) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(14) KEY_TYPE_IS_BAD (element of key_types)
(15) KEY_TYPES_ARE_MULTIPLE (key_types)
(16) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

- 77 -

(17) LINK_TYPE_PROPERTIES_ARE_INCONSISTENT (DESIGNATION, lower_bound,
upper_bound, SHARABLE, NON_STABLE, duplication)

(18) LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT (DESIGNATION,
lower_bound, upper_bound, SHARABLE, NON_STABLE, duplication, key_types)

(19) If sds has OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(20) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(21) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(22) SDS_IS_PREDEFINED (sds)
(23) SDS_IS_UNKNOWN (sds)
(24) TYPE_IS_UNKNOWN_IN_SDS (sds, element of key_types)
(25) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(26) TYPE_NAME_IS_INVALID (local_name)

10.2.6 SDS_CREATE_ENUMERAL_TYPE

(1) SDS_CREATE_ENUMERAL_TYPE (
sds : Sds_designator,
local_name : [Name]

)
new_type : Enumeral_type_nominator_in_sds

(2) SDS_CREATE_ENUMERAL_TYPE creates a new enumeral type new_type and its associated
enumeral type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation.

(6) The creation or importation time of new_type_in_sds is set to the system time. If local_name is
supplied, the annotation of new_type_in_sds is set to the complete name of the created type;
otherwise it is set to the empty string. The image of new_type_in_sds is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)

- 78 -

(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_PREDEFINED (sds)
(16) SDS_IS_UNKNOWN (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)

10.2.7 SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE

(1) SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
values : Enumeration_values,
duplication : Duplication,
initial_value : [Natural]

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE creates a new enumeration attribute
type new_type, and its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) "enumeral" links are created from new_type to the enumeral types specified in values. The
"position" key attributes of the links are set according to the sequential order of the type
nominators in value, starting at 0 and incremented by 1 for each enumeral type. The reverse
"enumeral_of" links are also created.

(5) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(6) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The initial
value position of new_type is set to initial_value if supplied, and otherwise to 0.

(7) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(8) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(9) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

- 79 -

(10) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

(11) A write lock of the default mode is obtained on any enumeral type specified in values if the
OWNER discretionary access right is granted for a group to new_type (the default object owner
group), and a different OWNER discretionary access right exists for the same group to that
enumeral type.

Errors

(12) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(13) ACCESS_ERRORS (element of values, ATOMIC, CHANGE, APPEND_IMPLICIT)
(14) For each enumeral type in SDS E associated with an element of values:

ACCESS_ERRORS (E, ATOMIC, READ, READ_ATTRIBUTES)
(15) COMPONENT_ADDITION_ERRORS (enumeral type, "enumeral" link)
(16) ENUMERAL_TYPES_ARE_MULTIPLE (values)
(17) ENUMERATION_ATTRIBUTE_WOULD_HAVE_NO_ENUMERAL_TYPES (values)
(18) ENUMERATION_VALUE_IS_OUT_OF_RANGE (initial_value, values)
(19) IMAGE_IS_DUPLICATED (values, sds)
(20) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(21) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(22) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(23) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(24) SDS_IS_PREDEFINED (sds)
(25) SDS_IS_UNKNOWN (sds)
(26) TYPE_IS_UNKNOWN_IN_SDS(sds, element of values)
(27) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(28) TYPE_NAME_IS_INVALID (local_name)

10.2.8 SDS_CREATE_FLOAT_ATTRIBUTE_TYPE

(1) SDS_CREATE_FLOAT_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [Float],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_FLOAT_ATTRIBUTE_TYPE creates a new float attribute type new_type, and
its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

- 80 -

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The float
initial value of new_type is set to initial_value if supplied, and otherwise to 0.0 (zero).

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_PREDEFINED (sds)
(16) SDS_IS_UNKNOWN (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)
(19) VALUE_LIMIT_ERRORS (initial_value)

10.2.9 SDS_CREATE_INTEGER_ATTRIBUTE_TYPE

(1) SDS_CREATE_INTEGER_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [Integer],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_INTEGER_ATTRIBUTE_TYPE creates a new integer attribute type new_type,
and its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

- 81 -

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The
integer initial value of new_type is set to initial_value if supplied, and otherwise to 0 (zero).

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_UNKNOWN (sds)
(16) SDS_IS_PREDEFINED (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)
(19) VALUE_LIMIT_ERRORS (initial_value)

10.2.10 SDS_CREATE_NATURAL_ATTRIBUTE_TYPE

(1) SDS_CREATE_NATURAL_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [Natural],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_NATURAL_ATTRIBUTE_TYPE creates a new natural attribute type
new_type, and its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

- 82 -

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The
natural initial value of new_type is set to initial_value if supplied, and otherwise to 0 (zero).

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_PREDEFINED (sds)
(16) SDS_IS_UNKNOWN (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)
(19) VALUE_LIMIT_ERRORS (initial_value)

10.2.11 SDS_CREATE_OBJECT_TYPE

(1) SDS_CREATE_OBJECT_TYPE (
sds : Sds_designator,
local_name : [Name],
parents : Object_type_nominators_in_sds

)
new_type : Object_type_nominator_in_sds

(2) SDS_CREATE_OBJECT_TYPE creates a new object type new_type and its associated object
type in SDS new_type_in_sds in the SDS sds.

(3) The contents type of new_type is determined as follows. If one or more of the object types in
parents has a contents type (if more than one, they must all have the same contents type) then
new_type has that contents type; otherwise new_type has no contents type.

(4) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation.

- 83 -

(5) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(6) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link. "parent_type" links are
created from new_type to each of parents, together with their reverse "child_type" links.

(7) The three definition mode attributes of new_type_in_sds are set to 1, representing
CREATE_MODE, and its creation or importation time is set to the system time. If local_name
is supplied, the annotation of new_type_in_sds is set to the complete name of the created type;
otherwise it is set to the empty string.

(8) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(9) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(10) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(11) ACCESS_ERRORS (element of parents, ATOMIC, CHANGE, APPEND_IMPLICIT)
(12) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(13) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(14) OBJECT_TYPE_WOULD_HAVE_NO_PARENT_TYPE (parents)
(15) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(16) PARENT_BASIC_TYPES_ARE_MULTIPLE (parents)
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(18) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(19) SDS_IS_PREDEFINED (sds)
(20) SDS_IS_UNKNOWN (sds)

(21) TYPE_IS_UNKNOWN_IN_SDS (sds, element of parents)
(22) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(23) TYPE_NAME_IS_INVALID (local_name)

- 84 -

10.2.12 SDS_CREATE_RELATIONSHIP_TYPE

(1) SDS_CREATE_RELATIONSHIP_TYPE (
sds : Sds_designator,
forward_local_name : [Name],
forward_category : Category,
forward_lower_bound : Natural,
forward_upper_bound : [Natural],
forward_exclusiveness : Exclusiveness,
forward_stability : Stability,
forward_duplication : Duplication,
forward_key_types : [Key_types_in_sds],
reverse_local_name : [Name],
reverse_category : Category,
reverse_lower_bound : Natural,
reverse_upper_bound : [Natural],
reverse_exclusiveness : Exclusiveness,
reverse_stability : Stability,
reverse_duplication : Duplication,
reverse_key_types : [Key_types_in_sds]

)
new_forward_type : Link_type_nominator_in_sds,
new_reverse_type : Link_type_nominator_in_sds

(2) SDS_CREATE_RELATIONSHIP_TYPE creates two new non-designation link types
new_forward_type and new_reverse_type, and their associated types in SDS
new_forward_type_in_sds and new_reverse_type_in_sds in the SDS sds. The new link types
are the reverse of each other.

(3) The operation creates "definition" links from sds to new_forward_type_in_sds and
new_reverse_type_in_sds, and their reverse "type_in_sds" links; the keys of the "definition"
links are the system-assigned type identifiers of new_forward_type and new_reverse_type. The
operation also creates "of_type" links from new_forward_type_in_sds to new_forward_type and
from new_reverse_type_in_sds to new_reverse_type, and their reverse "has_type_in_sds" links.

(4) If forward_local_name is supplied, a "named_definition" link is created from sds to
new_forward_type_in_sds with forward_local_name as key. If reverse_local_name is supplied,
a "named_definition" link is created from sds to new_reverse_type_in_sds with
reverse_local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifiers of new_forward_type and new_reverse_type are set to implementation-
dependent values which identify the types within the PCTE installation.

(6) Two "reverse" links are created between new_forward_type and new_reverse_type, one in each
direction.

(7) The three definition mode attributes of new_forward_type_in_sds and new_reverse_type_in_sds
are set to 19, representing CREATE_MODE, DELETE_MODE, and NAVIGATE_MODE, and
their creation or importation times are set to the system time. If forward_local_name is
supplied, the annotation of new_forward_type_in_sds is set to the complete name of the created
type; otherwise it is set to the empty string. If reverse_local_name is supplied, the annotation of
new_reverse_type_in_sds is set to the complete name of the created type; otherwise it is set to
the empty string.

(8) The category, lower and upper bounds, exclusiveness, stability, and duplication of
new_forward_type are set from forward_category, forward_lower_bound, forward_upper_
bound, forward_exclusiveness, forward_stability, and forward_duplication, respectively; the

- 85 -

category, lower and upper bounds, exclusiveness, stability, and duplication of new_reverse_type
are set from reverse_category, reverse_lower_bound, reverse_upper_bound,
reverse_exclusiveness, reverse_stability, and reverse_duplication, respectively. Furthermore, if
for either link type the cardinality is MANY, for each attribute type of forward_key_types or
reverse_key_types, a "key_attribute" link is created from new_forward_type or
new_reverse_type respectively to that attribute type. The keys of these links correspond to the
order of the key attribute types in forward_key_types or reverse_key_types starting at 0 and
incremented by 1.

(9) The new objects reside on the same volume as sds. Their access control lists are built using the
default access control list of the calling process, and their confidentiality labels and integrity
labels are set to be equal to the current confidentiality context and integrity context,
respectively, of the calling process.

(10) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(11) Write locks of the default mode are obtained on the created objects and links (except the new
"object_on_volume" links).

Errors

(12) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(13) ACCESS_ERRORS (element of forward_key_types, ATOMIC, CHANGE,

APPEND_IMPLICIT)
(14) ACCESS_ERRORS (element of reverse_key_types, ATOMIC, CHANGE,

APPEND_IMPLICIT)
(15) KEY_TYPE_IS_BAD (element of forward_key_types)
(16) KEY_TYPE_IS_BAD (element of reverse_key_types)
(17) KEY_TYPES_ARE_MULTIPLE (forward_key_types)
(18) KEY_TYPES_ARE_MULTIPLE (reverse_key_types)
(19) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(20) LINK_TYPE_CATEGORY_IS_BAD (forward_link_type, (COMPOSITION, EXISTENCE,

REFERENCE, IMPLICIT))
(21) LINK_TYPE_CATEGORY_IS_BAD (reverse_link_type, (COMPOSITION, EXISTENCE,

REFERENCE, IMPLICIT))
(22) LINK_TYPE_PROPERTIES_ARE_INCONSISTENT (forward_category,

forward_lower_bound, forward_upper_bound, forward_exclusiveness, forward_stability,
forward_duplication)

(23) LINK_TYPE_PROPERTIES_ARE_INCONSISTENT (reverse_category,
reverse_lower_bound, reverse_upper_bound, reverse_exclusiveness, reverse_stability,
reverse_duplication)

(24) LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT
(forward_category, forward_lower_bound, forward_upper_bound, forward_exclusiveness,
forward_stability, forward_duplication, forward_key_types)

(25) LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT (reverse_category,
reverse_lower_bound, reverse_upper_bound, reverse_exclusiveness, reverse_stability,
reverse_duplication, reverse_key_types)

- 86 -

(26) If sds has OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type in sds of
forward_link_type)
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type in sds of
reverse_link_type)

(27) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(28) RELATIONSHIP_TYPE_PROPERTIES_ARE_INCONSISTENT (forward_category,

forward_lower_bound, forward_upper_bound, forward_exclusiveness, forward_stability,
forward_duplication, reverse_category, reverse_lower_bound, reverse_upper_bound,
reverse_exclusiveness, reverse_stability, reverse_duplication)

(29) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(30) SDS_IS_PREDEFINED (sds)
(31) SDS_IS_UNKNOWN (sds)
(32) TYPE_IS_UNKNOWN_IN_SDS (sds, element of forward_key_types)
(33) TYPE_IS_UNKNOWN_IN_SDS (sds, element of reverse_key_types)
(34) TYPE_NAME_IN_SDS_IS_DUPLICATE (forward_local_name)
(35) TYPE_NAME_IN_SDS_IS_DUPLICATE (reverse_local_name)
(36) TYPE_NAME_IS_INVALID (forward_local_name)
(37) TYPE_NAME_IS_INVALID (reverse_local_name)

10.2.13 SDS_CREATE_STRING_ATTRIBUTE_TYPE

(1) SDS_CREATE_STRING_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [String],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_STRING_ATTRIBUTE_TYPE creates a new string attribute type new_type,
and its associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The string
initial value of new_type is set to initial_value if supplied, and otherwise to the empty string.

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality

- 87 -

labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(12) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(14) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(15) SDS_IS_PREDEFINED (sds)
(16) SDS_IS_UNKNOWN (sds)
(17) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(18) TYPE_NAME_IS_INVALID (local_name)
(19) VALUE_LIMIT_ERRORS initial_value)

10.2.14 SDS_CREATE_TIME_ATTRIBUTE_TYPE

(1) SDS_CREATE_TIME_ATTRIBUTE_TYPE (
sds : Sds_designator,
local_name : [Name],
initial_value : [Time],
duplication : Duplication

)
new_type : Attribute_type_nominator_in_sds

(2) SDS_CREATE_TIME_ATTRIBUTE_TYPE creates a new time attribute type new_type, and its
associated attribute type in SDS new_type_in_sds in the SDS sds.

(3) The operation creates a "definition" link from sds to new_type_in_sds; the key of the link is the
system-assigned type identifier of new_type. The operation also creates an "of_type" link from
new_type_in_sds to new_type.

(4) If local_name is supplied, a "named_definition" link is created from sds to new_type_in_sds
with local_name as key, together with its reverse "named_in_sds" link.

(5) The type identifier of new_type is set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication of new_type is set to duplication. The time
initial value of new_type is set to initial_value if supplied, and otherwise to 1980-01-
01T00:00:00Z.

(6) The three definition mode attributes of new_type_in_sds are set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. If local_name is supplied, the annotation of new_type_in_sds is set to the complete name
of the created type; otherwise it is set to the empty string.

- 88 -

(7) The new objects reside on the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(10) ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(11) ATTRIBUTE_VALUE_LIMIT_WOULD_BE_EXCEEDED (initial_value)
(12) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(13) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sds)

(14) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(15) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(16) SDS_IS_PREDEFINED (sds)
(17) SDS_IS_UNKNOWN (sds)
(18) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(19) TYPE_NAME_IS_INVALID (local_name)
(20) VALUE_LIMIT_ERRORS (initial_value)

10.2.15 SDS_GET_NAME

(1) SDS_GET_NAME (
sds : Sds_designator

)
name : Name

(2) SDS_GET_NAME returns the name of the SDS sds.

(3) The returned name name is the key of the "known_sds" link from the SDS directory to sds.

(4) A read lock of the default mode is obtained on that link.

Errors

(5) ACCESS_ERRORS (the SDS directory, ATOMIC, READ, READ_LINKS)
(6) SDS_IS_PREDEFINED (sds)
(7) SDS_IS_UNKNOWN (sds)

- 89 -

10.2.16 SDS_IMPORT_ATTRIBUTE_TYPE

(1) SDS_IMPORT_ATTRIBUTE_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Attribute_type_nominator_in_sds,
local_name : [Name]

)

(2) SDS_IMPORT_ATTRIBUTE_TYPE imports the attribute type type from the SDS from_sds to
the SDS to_sds, along with the associated enumeral types if type is an enumeration attribute
type.

(3) If type is an enumeration attribute type, all its enumeral types are implicitly imported, if not
already in to_sds. The implicitly imported enumeral types have the same images as in from_sds,
but do not have local names in to_sds.

(4) The operation creates an attribute type in SDS type_in_sds in to_sds associated with type. If
type is an enumeration attribute type, it also creates an enumeral type in SDS in sds associated
with each enumeral type of type (unless one already exists). For each of the created types in
SDS a "definition" link is created from to_sds whose key is the type identifier of the associated
type.

(5) An "of_type" link from each new type in SDS to its associated type and its reverse
"has_type_in_sds" link are created.

(6) If local_name is supplied, or if type has a local name in from_sds, a "named_definition" link
from to_sds to type_in_sds and its reverse "named_in_sds" link are created. The key of the
"named_definition" link is local_name if supplied, otherwise the local name of type in from_sds.

(7) Each of the three definition mode attributes of type_in_sds is set to the export mode of the
corresponding type in SDS in from_sds.

(8) The creation or importation time of each new type in SDS is set to the system time.

(9) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS in from_sds.

(10) The new types in SDS reside on the same volume as to_sds. Their access control lists are built
using the default atomic ACL and default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(11) An "object_on_volume" link is created to each new type in SDS from the volume on which it
resides. The key of the link is the exact identifier of the new type in SDS.

(12) Read locks of the default mode are obtained on the types in SDS in from_sds. Write locks of the
default mode are obtained on the new types in SDS and links (except the new
"object_on_volume" links).

Errors

(13) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(14) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(15) ACCESS_ERRORS (the type in SDS associated with type in from_sds, ATOMIC, READ,

EXPLOIT_SCHEMA)

- 90 -

(16) ACCESS_ERRORS (the type in SDS associated with type in from_sds, ATOMIC, READ,
READ_ATTRIBUTES)

(17) ACCESS_ERRORS (the "type" object associated with type, ATOMIC, CHANGE,
APPEND_IMPLICIT)

(18) If type is an enumeration attribute type, for each enumeral type in SDS S associated with type in
from_sds:

ACCESS_ERRORS (S, ATOMIC, READ, EXPLOIT_SCHEMA)
(19) If type is an enumeration attribute type, for each enumeral type E associated with type not

already present in to_sds:
ACCESS_ERRORS (E, ATOMIC, CHANGE, APPEND_IMPLICIT)

(20) If type is an enumeration attribute type:
IMAGE_IS_DUPLICATED (enumeral types of type, to_sds)

(21) If to_sds has OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)

(22) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(23) SDS_IS_IN_A_WORKING_SCHEMA (to_sds)
(24) SDS_IS_PREDEFINED (sds)
(25) SDS_IS_UNKNOWN (to_sds)
(26) SDS_IS_UNKNOWN (from_sds)
(27) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(28) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(29) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
(30) TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)
(31) TYPE_NAME_IS_INVALID (local_name)

10.2.17 SDS_IMPORT_ENUMERAL_TYPE

(1) SDS_IMPORT_ENUMERAL_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Enumeral_type_nominator_in_sds,
local_name : [Name]

)

(2) SDS_IMPORT_ENUMERAL_TYPE imports the enumeral type type from the SDS from_sds to
the SDS to_sds.

(3) The operation creates an enumeral type in SDS type_in_sds in to_sds associated with type. A
"definition" link is created from to_sds to type_in_sds whose key is the type identifier of type,
together with its reverse "in_sds" link.

(4) An "of_type" link is created from type_in_sds to type, together with its reverse
"has_type_in_sds" link.

(5) If local_name is supplied, or if type has a local name in from_sds, a "named_definition" link is
created from to_sds to type_in_sds, together with its reverse "named_in_sds" link. The key of
the "named_definition" link is local_name if supplied, otherwise the local name of type in
from_sds.

- 91 -

(6) The creation or importation time of type_in_sds is set to the system time.

(7) The annotation of type_in_sds is the same as the annotation of the corresponding type in SDS in
from_sds.

(8) type_in_sds resides on the same volume as to_sds. Its access control lists are built using the
default atomic ACL and the default object owner of the calling process, and its confidentiality
label and integrity label is set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(9) An "object_on_volume" link is created to type_in_sds from the volume on which it resides. The
key of the link is the exact identifier of type_in_sds.

(10) Read locks of the default mode are obtained on the type in SDS in from_sds. Write locks of the
default mode are obtained on type_in_sds and the created links (except the new
"object_on_volume" link).

Errors

(11) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(12) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(13) ACCESS_ERRORS (the type in SDS associated with type in from_sds, ATOMIC, READ,

EXPLOIT_SCHEMA)
(14) ACCESS_ERRORS (the type in SDS associated with type in from_sds, ATOMIC, READ,

READ_ATTRIBUTES)
(15) ACCESS_ERRORS (the "type" object associated with type, ATOMIC, CHANGE,

APPEND_IMPLICIT)
(16) If to_sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(18) SDS_IS_IN_A_WORKING_SCHEMA (to_sds)
(19) SDS_IS_PREDEFINED (to_sds)
(20) SDS_IS_UNKNOWN (to_sds)
(21) SDS_IS_UNKNOWN (from_sds)
(22) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(23) TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)
(24) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(25) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
 (26) TYPE_NAME_IS_INVALID (local_name)

10.2.18 SDS_IMPORT_LINK_TYPE

(1) SDS_IMPORT_LINK_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Link_type_nominator_in_sds,
local_name : [Name]

)

- 92 -

(2) SDS_IMPORT_LINK_TYPE imports the link type type from the SDS from_sds to the SDS
to_sds.

(3) All the key attribute types of type, and its reverse link type with all its key attributes, are
implicitly imported, if not already in to_sds. The imported link types have the same key
attributes as in from_sds. The link and the key attribute types implicitly imported do not have
local names assigned to them within to_sds.

(4) The importation of a type (either explicitly or implicitly) results in the creation of a type in SDS
in to_sds associated with the imported type, with a "definition" link from from_sds whose key is
the type identifier of the imported type. An "of_type" link from the new type in SDS to the
imported type and its reverse "has_type_in_sds" link are created.

(5) If local_name is supplied or if type has a name in from_sds, a "named_definition" link is created
from to_sds to the new link type in SDS associated with type, together with its reverse
"named_in_sds" link. The key of the "named_definition" link is local_name if supplied,
otherwise it is the local name of type in the SDS from_sds.

(6) Each of the three definition mode attributes of each new type in SDS is set to the export mode of
the corresponding type in SDS in from_sds.

(7) The creation or importation time of each new type in SDS is set to the system time.

(8) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS in from_sds.

(9) The new types in SDS reside on the same volume as to_sds. Their access control lists are built
using the default atomic ACL and default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(10) An "object_on_volume" link is created to each new type in SDS from the volume on which it
resides. The key of the link is the exact identifier of the new type in SDS.

(11) Read locks of the default mode are obtained on the types in SDS in from_sds. Write locks of the
default mode are obtained on the new types in SDS and links (except the new
"object_on_volume" links).

Errors

(12) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(13) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(14) ACCESS_ERRORS (type in SDS associated with type in from_sds, ATOMIC, READ,

EXPLOIT_SCHEMA)
(15) ACCESS_ERRORS (the type in SDS associated with type in from_sds, ATOMIC, READ,

READ_ATTRIBUTES)
(16) For each attribute type in SDS A associated with a key attribute type of type:

ACCESS_ERRORS (A, ATOMIC, READ, EXPLOIT_SCHEMA)
(17) ACCESS_ERRORS (the "type" object associated with type, ATOMIC, CHANGE,

APPEND_IMPLICIT)
(18) For each key attribute type K of type not already present in to_sds:

ACCESS_ERRORS (K, ATOMIC, CHANGE, APPEND_IMPLICIT)
(19) If type has a reverse link type R not already present in to_sds:
(20) ACCESS_ERRORS (R, ATOMIC, CHANGE, APPEND_IMPLICIT)

- 93 -

(21) For each key attribute type K1 of R not already present in to_sds:
ACCESS_ERRORS (K1, ATOMIC, CHANGE, APPEND_IMPLICIT)

(22) If to_sds has OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)

(23) If to_sds has OWNER granted or denied and link_type has a reverse link type:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (reverse of
type_in_sds)

(24) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(25) SDS_IS_IN_A_WORKING_SCHEMA (to_sds)
(26) SDS_IS_PREDEFINED (to_sds)
(27) SDS_IS_UNKNOWN (to_sds)
(28) SDS_IS_UNKNOWN (from_sds)
(29) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(30) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(31) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
(32) TYPE_NAME_IS_INVALID (local_name)
(33) TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)

10.2.19 SDS_IMPORT_OBJECT_TYPE

(1) SDS_IMPORT_OBJECT_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Object_type_nominator_in_sds,
local_name : [Name]

)

(2) SDS_IMPORT_OBJECT_TYPE imports the object type type from the SDS from_sds to the
SDS to_sds.

(3) The importation of an object type implies the implicit importation of all its ancestor types if not
already in to_sds. The attribute and link types applied to the explicitly or implicitly imported
types are not imported, nor is the notion of their application. The object types implicitly
imported do not have a local name assigned to them within to_sds

(4) The importation of an object type (either explicit or implicit) results in the creation of an object
type in SDS in to_sds with a "definition" link from to_sds whose key is the type identifier of the
imported type. An "of_type" link from the new object type in SDS to the imported type and its
reverse "has_type_in_sds" link are created.

(5) If local_name is supplied or if the imported type has a name in the originating SDS, a
"named_definition" link is created from to_sds to the new object type in SDS associated with
link_type, together with its reverse "named_in_sds" link. The key of the "named_definition"
link is local_name if supplied, otherwise it is the local name of type in from_sds.

(6) Each of the three definition mode attributes of each new type in SDS is set to the export mode of
the corresponding type in SDS in from_sds.

(7) The creation or importation time of each new type in SDS is set to the system time.

- 94 -

(8) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS in from_sds.

(9) The new types in SDS reside on the same volume as to_sds. Their access control lists are built
using the default atomic ACL and default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(10) An "object_on_volume" link is created to each new type in SDS from the volume on which it
resides. The key of the link is the exact identifier of the new type in SDS.

(11) Read locks of the default mode are obtained on the types in SDS in from_sds. Write locks of the
default mode are obtained on the new types in SDS and links (except the new
"object_on_volume" links).

Errors

(12) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(13) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(14) ACCESS_ERRORS (the type in SDS associated with /type/ in /from_sds/, ATOMIC, READ,

READ_ATTRIBUTES)
(15) For each object type in SDS S associated with the ancestor types of type:

ACCESS_ERRORS (S, ATOMIC, READ, EXPLOIT_SCHEMA)
(16) ACCESS_ERRORS (object type in SDS associated with type in from_sds, ATOMIC, READ,

EXPLOIT_SCHEMA)
(17) ACCESS_ERRORS (the "type" object associated with type, ATOMIC, CHANGE,

APPEND_IMPLICIT)
(18) For each ancestor object type A of type not already present in to_sds:

ACCESS_ERRORS(A, ATOMIC, CHANGE, APPEND_IMPLICIT)
(19) If to_sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)
(20) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(21) SDS_IS_IN_A_WORKING_SCHEMA (to_sds)
(22) SDS_IS_PREDEFINED (to_sds)
(23) SDS_IS_UNKNOWN (to_sds)
(24) SDS_IS_UNKNOWN (from_sds)
(25) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(26) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(27) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
(28) TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)
(29) TYPE_NAME_IS_INVALID (local_name)

- 95 -

10.2.20 SDS_INITIALIZE

(1) SDS_INITIALIZE (
sds : Sds_designator,
name : Name

)

(2) SDS_INITIALIZE establishes the SDS sds as a known SDS by creating a "known_sds" link
with key name from the master of the SDS directory to sds.

(3) A read lock of the default mode is obtained on sds and a write lock of the default mode is
obtained on the created link.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, CHANGE, APPEND_IMPLICIT)
(5) ACCESS_ERRORS (master of the SDS directory, ATOMIC, MODIFY, APPEND_LINKS)
(6) If sds has successors or predecessors:

ACCESS_ERRORS (successor or predecessor of sds, ATOMIC, SYSTEM_ACCESS)
(7) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(9) SDS_IS_KNOWN (sds)

(10) SDS_IS_NOT_EMPTY_NOR_VERSION (sds)
(11) SDS_IS_PREDEFINED (sds)
(12) SDS_NAME_IS_DUPLICATE (name)
(13) SDS_NAME_IS_INVALID (name)

10.2.21 SDS_REMOVE

(1) SDS_REMOVE (
sds : Sds_designator

)

(2) SDS_REMOVE removes the SDS sds from the set of known SDSs.

(3) The "known_sds" link to sds from the SDS directory is deleted. If that link is the last
composition or existence link to sds, then the "sds" object sds is deleted. In that case, the
"object_on_volume" link from the volume on which sds was residing to sds is also deleted.

(4) A read lock of the default mode is obtained on sds if it is not deleted; a write lock otherwise.
Write locks of the default mode are obtained on the deleted links except the deleted
"object_on_volume" link.

Errors

(5) ACCESS_ERRORS (the SDS directory, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS (sds, ATOMIC, CHANGE, WRITE_IMPLICIT)
(7) If the conditions hold for deletion of the "sds" object sds:

ACCESS_ERRORS (sds, COMPOSITE, MODIFY, DELETE)
(8) If sds has predecessors or successors:

ACCESS_ERRORS (predecessor or successor of sds, ATOMIC, SYSTEM_ACCESS)
(9) OBJECT_HAS_LINKS_PREVENTING_DELETION (sds)
(10) OBJECT_IS_IN_USE_FOR_DELETE (sds)

- 96 -

(11) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(12) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(13) SDS_IS_NOT_EMPTY_NOR_VERSION (sds)
(14) SDS_IS_PREDEFINED (sds)
(15) SDS_IS_UNKNOWN (sds)

10.2.22 SDS_REMOVE_DESTINATION

(1) SDS_REMOVE_DESTINATION(
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object_type : Object_type_nominator_in_sds

)

(2) SDS_REMOVE_DESTINATION removes the object type in SDS object_type_in_sds
associated with object_type in the SDS sds from the destination object types of the link type in
SDS link_type_in_sds associated with link_type in sds.

(3) As a result, the "in_destination_set" link from link_type_in_sds to object_type_in_sds and its
reverse "is_destination_of" link are deleted.

(4) If link_type has a reverse link type reverse, then reverse is unapplied (see
SDS_UNAPPLY_LINK_TYPE) and the "in_link_set" link existing between object_type_in_sds
and the "link_type_in_sds" object reverse_link_type_in_sds associated with reverse in sds is
deleted.

(5) Write locks of the default mode are obtained on the deleted links.

Errors

(6) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(7) ACCESS_ERRORS (object_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(8) ACCESS_ERRORS (link_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(9) ACCESS_ERRORS (reverse_link_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(10) OBJECT_TYPE_IS_NOT_IN_DESTINATION_SET (link_type, object_type)
(11) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(12) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(13) SDS_IS_PREDEFINED (sds)
(14) SDS_IS_UNKNOWN (sds)
(15) TYPE_IS_UNKNOWN_IN_SDS (sds, link_type)
(16) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

10.2.23 SDS_REMOVE_TYPE

(1) SDS_REMOVE_TYPE (
sds : Sds_designator,
type : Type_nominator_in_sds

)

(2) SDS_REMOVE_TYPE removes from the SDS sds the type in SDS type_in_sds associated with
type in sds.

- 97 -

(3) When a link type is removed from an SDS, the type in SDS reverse_link_type_in_sds associated
with the reverse type reverse_type of type (if any) is also removed from that SDS.

(4) If type_in_sds is the last type in SDS associated with type in any SDS, then type is also
removed. If reverse_link_type_in_sds exists and is the last type in SDS associated with
reverse_type in any SDS, then reverse_type is also removed. The type identifier of a removed
type is never reassigned.

(5) A type can be removed while there are instances of the type in the object base. Instances of the
removed type are not directly affected by this operation: objects, attributes and links retain the
type properties of the type. The description of the type is however lost; the implications are:

(6) - no instances of a removed type can be created;

(7) - attributes of a removed type are inaccessible. They can however still be consulted or reset to
their initial value using the system-generated type identifier of the deleted type (see
23.1.2.5);

(8) - links of a removed type can still be navigated through or deleted using the type identifier of
the deleted type;

(9) - objects of a removed type can still be accessed as instances of visible ancestor types of the
removed type.

(10) The removal of a type in SDS consists of the deletion of the "definition" link and
"named_definition" link (if any) between the SDS and the type in SDS. The deletion of the
"definition" link may result in the deletion of the type in SDS.

(11) The deletion of a type in SDS also entails the deletion of the "of_type" link from the type in
SDS. In the case where this link is the last "of_type" link to the type (i.e. if the last occurrence
of the type in SDS is to be deleted) the type is also removed.

(12) In turn, the removal of a type entails the loss of all the typing information held on its associated
type object (such as the "parent_type", "key_attribute", "reverse" or "enumeral" links starting
from that object) and may imply the deletion of the type itself (if the "of_type" link to be deleted
is the last existence link to it and if there are no composition links to it).

(13) For each deleted object, the "object_on_volume" link from the volume on which the deleted
object was residing to the deleted object is also deleted. A write lock of the default mode is
obtained on sds and on the deleted objects and links (except the deleted "object_on_volume"
links).

Errors

(14) ACCESS_ERRORS (sds, ATOMIC, MODIFY, WRITE_LINKS)
(15) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, (WRITE_LINKS,

WRITE_IMPLICIT))
(16) If the deletion of a type or type in SDS is implied:

ACCESS_ERRORS (destination object of a link from the type or type in SDS to be deleted
which has an implicit reverse link, ATOMIC, CHANGE, WRITE_IMPLICIT)

(17) If conditions hold for the deletion of type_in_sds:
ACCESS_ERRORS (type_in_sds, COMPOSITE, MODIFY, DELETE)

(18) ACCESS_ERRORS ("type" object associated with type, ATOMIC, CHANGE,
WRITE_IMPLICIT)

(19) ACCESS_ERRORS (type_in_sds, COMPOSITE, MODIFY, DELETE)

- 98 -

(20) If the conditions for the deletion of the "type" object T associated with type are satisfied:
(21) ACCESS_ERRORS (T, COMPOSITE, MODIFY, DELETE)
(22) If T is an object type, for each parent type P of T:

ACCESS_ERRORS (P, ATOMIC, CHANGE, WRITE_IMPLICIT)
(23) If T is a link type, for each each key attribute type K of T:

ACCESS_ERRORS (K, ATOMIC, CHANGE, WRITE_IMPLICIT)
(24) If T is a link type with a reverse link type R:
(25) ACCESS_ERRORS (R, COMPOSITE, MODIFY, DELETE)
(26) For each each key attribute type K1 of R:

ACCESS_ERRORS (K1, ATOMIC, CHANGE, WRITE_IMPLICIT)
(27) If T is an enumeration attribute type, for each associated enumeral type E:

ACCESS_ERRORS (E, ATOMIC, CHANGE, WRITE_IMPLICIT)
(28) If the deletion of a type or type in SDS is implied:

OBJECT_HAS_LINKS_PREVENTING_DELETION (type or type in SDS to be deleted)
(29) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(30) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(31) SDS_IS_PREDEFINED (sds)
(32) SDS_IS_UNKNOWN (sds)
(33) TYPE_HAS_DEPENDENCIES (sds, type)
(34) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.2.24 SDS_SET_ENUMERAL_TYPE_IMAGE

(1) SDS_SET_ENUMERAL_TYPE_IMAGE (
sds : Sds_designator,
type : Enumeral_type_nominator_in_sds,
image : [Text]

)

(2) SDS_SET_ENUMERAL_TYPE_IMAGE sets the image of the enumeral type in SDS
type_in_sds associated with the enumeral type type in the SDS sds to the text value image, if
supplied; if image is not supplied, the image of type_in_sds is set to the empty text value.

(3) A write lock of the default mode is obtained on type_in_sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(5) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(6) IMAGE_IS_ALREADY_ASSOCIATED (image, sds, type)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(8) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(9) SDS_IS_PREDEFINED (sds)
(10) SDS_IS_UNKNOWN (sds)
(11) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

- 99 -

10.2.25 SDS_SET_TYPE_MODES

(1) SDS_SET_TYPE_MODES (
sds : Sds_designator,
type : Object_type_nominator_in_sds | Attribute_type_nominator_in_sds |

Link_type_nominator_in_sds,
usage_mode : [Definition_mode_values],
export_mode : [Definition_mode_values]

)

(2) SDS_SET_TYPE_MODES sets the usage mode and export mode of the type in SDS
type_in_sds associated with the type type in the SDS sds to the values of usage_mode and
export_mode respectively, if supplied; if, for either parameter, no value is supplied, then the
corresponding value is left unchanged.

(3) If type is a link type with a reverse link type reverse, the usage mode and export mode of the
link type in sds reverse_type_in_sds associated with reverse in sds are set (or not) in the same
way.

(4) Write locks of the default mode are obtained on the modified "type_in_sds" objects.

Errors

(5) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(6) ACCESS_ERRORS (type_in_sds, COMPOSITE, MODIFY, WRITE_ATTRIBUTES)
(7) If type has a reverse link type in SDS reverse_type_in_sds:

ACCESS_ERRORS (reverse_type_in_sds, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(8) DEFINITION_MODE_VALUE_WOULD_BE_INVALID (export_mode, type)
(9) DEFINITION_MODE_VALUE_WOULD_BE_INVALID (usage_mode, type)
(10) MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED (type, usage_mode)
(11) MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED (type, export_mode)
(12) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(13) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(14) SDS_IS_PREDEFINED (sds)
(15) SDS_IS_UNKNOWN (sds)

(16) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.2.26 SDS_SET_TYPE_NAME

(1) SDS_SET_TYPE_NAME (
sds : Sds_designator,
type : Type_nominator_in_sds,
local_name : [Name]

)

(2) SDS_SET_TYPE_NAME sets the local name of the type in SDS type_in_sds associated with
the type type in the SDS sds to local_name, if supplied, and otherwise deletes the local name of
type_in_sds (if any).

(3) If local_name is supplied, a "named_definition" link is created from sds to type_in_sds.
local_name is used as the key of the new link.

(4) If type_in_sds already had a local name, the corresponding "named_definition" link is deleted.

- 100 -

(5) Write locks of the default mode are obtained on the deleted links (if any) and write locks of the
default mode are obtained on the created links (if any).

Errors

(6) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(7) If type_in_sds already has a local name:

ACCESS_ERRORS (sds, ATOMIC, MODIFY, WRITE_LINKS)
(8) If local_name is supplied:

ACCESS_ERRORS (sds, ATOMIC, MODIFY, APPEND_LINKS)
(9) If type_in_sds already has a local name:

ACCESS_ERRORS (type_in_sds, ATOMIC, CHANGE, WRITE_IMPLICIT)
(10) If local_name is supplied:

ACCESS_ERRORS (type_in_sds, ATOMIC, CHANGE, APPEND_IMPLICIT)
(11) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(12) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(13) SDS_IS_PREDEFINED (sds)
(14) SDS_IS_UNKNOWN (sds)
(15) TYPE_IS_UNKNOWN_IN_SDS (sds, type)
(16) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(17) TYPE_NAME_IS_INVALID (local_name)

10.2.27 SDS_UNAPPLY_ATTRIBUTE_TYPE

(1) SDS_UNAPPLY_ATTRIBUTE_TYPE (
sds : Sds_designator,
attribute_type : Attribute_type_nominator_in_sds,
type : Object_type_nominator_in_sds | Link_type_nominator_in_sds

)

(2) SDS_UNAPPLY_ATTRIBUTE_TYPE removes the application of the attribute type in SDS
attribute_type_in_sds associated with the attribute type attribute_type in the SDS sds from the
type in SDS type_in_sds associated with the object or link type type in sds.

(3) The "in_attribute_set" link between type_in_sds and attribute_type_in_sds and its reverse
"is_attribute_of" link are deleted.

(4) Write locks of the default mode are obtained on the deleted links.

Errors

(5) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(6) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(7) ACCESS_ERRORS (attribute_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(9) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(10) SDS_IS_PREDEFINED (sds)
(11) SDS_IS_UNKNOWN (sds)
(12) TYPE_IS_NOT_APPLIED (sds, attribute_type, type)

- 101 -

(13) TYPE_IS_UNKNOWN_IN_SDS (sds, attribute_type)
(14) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.2.28 SDS_UNAPPLY_LINK_TYPE

(1) SDS_UNAPPLY_LINK_TYPE (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object_type : Object_type_nominator_in_sds

)

(2) SDS_UNAPPLY_LINK_TYPE removes the application of the link type in SDS
link_type_in_sds associated with the link type link_type in the SDS sds from the object type in
SDS object_type_in_sds associated with the object type object_type in sds.

(3) The "in_link_set" link between object_type_in_sds and link_type_in_sds and its reverse
"is_link_of" link are deleted.

(4) If link_type has a reverse link type reverse, then object_type is removed from the destination
object types of reverse (see SDS_REMOVE_DESTINATION) and the "in_destination_set"
link between the link type in SDS reverse_link_type_in_sds associated with reverse in sds and
object_type_in_sds is deleted.

(5) Write locks of the default mode are obtained on the deleted links.

Errors

(6) ACCESS_ERRORS (object_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(7) ACCESS_ERRORS (link_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(8) ACCESS_ERRORS (reverse_link_type_in_sds, ATOMIC, MODIFY, WRITE_LINKS)
(9) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(11) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(12) SDS_IS_PREDEFINED (sds)
(13) SDS_IS_UNKNOWN (sds)
(14) TYPE_IS_NOT_APPLIED (sds, link_type, object_type)
(15) TYPE_IS_UNKNOWN_IN_SDS (sds, link_type)
(16) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

10.3 SDS usage operations

10.3.1 SDS_GET_ATTRIBUTE_TYPE_PROPERTIES

(1) SDS_GET_ATTRIBUTE_TYPE_PROPERTIES (
sds : Sds_designator,
type : Attribute_type_nominator_in_sds

)
duplication : Duplication,
value_type : Value_type,
initial_value : Attribute_value

(2) SDS_GET_ATTRIBUTE_TYPE_PROPERTIES returns the duplication, value type identifier,
and initial value of the attribute type in SDS identified by type in the SDS sds.

- 102 -

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.2 SDS_GET_ENUMERAL_TYPE_IMAGE

(1) SDS_GET_ENUMERAL_TYPE_IMAGE (
sds : Sds_designator,
type : Enumeral_type_nominator_in_sds

)
image : Text

(2) SDS_GET_ENUMERAL_TYPE_IMAGE returns the image image of the enumeral type in SDS
identified by type in the SDS sds.

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.3 SDS_GET_ENUMERAL_TYPE_POSITION

(1) SDS_GET_ENUMERAL_TYPE_POSITION (
sds : Sds_designator,
type1 : Enumeral_type_nominator_in_sds,
type2 : Attribute_type_nominator_in_sds

)
position : Natural

(2) SDS_GET_ENUMERAL_TYPE_POSITION returns the position position of the enumeral type
in SDS identified by type1 in the SDS sds, in the value type of the attribute type in SDS
identified by type2 in sds, i.e. the key of the "enumeral" link from the "type" object associated
with type2 to the "type" object associated with type1.

(3) Read locks of the default mode are obtained on the "type" and "type_in_sds" objects associated
with type1 and type2 in sds and on the "enumeral" link.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type1 and type2,

ATOMIC, READ, READ_ATTRIBUTES)

- 103 -

(6) ENUMERAL_TYPE_IS_NOT_IN_ATTRIBUTE_VALUE_TYPE (type1, type2)
(7) SDS_IS_UNKNOWN (sds)
(8) TYPE_IS_UNKNOWN_IN_SDS (sds, type1)
(9) TYPE_IS_UNKNOWN_IN_SDS (sds, type2)

10.3.4 SDS_GET_LINK_TYPE_PROPERTIES

(1) SDS_GET_LINK_TYPE_PROPERTIES (
sds : Sds_designator,
type : Link_type_nominator_in_sds

)
category : Category,
lower_bound : Natural,
upper_bound : Natural,
exclusiveness : Exclusiveness,
stability : Stability,
duplication : Duplication,
key_types : Key_types,
reverse : [Link_type_nominator_in_sds]

(2) SDS_GET_LINK_TYPE_PROPERTIES returns the category, lower and upper bounds,
exclusiveness, stability, duplication, key attribute types, and reverse link type (if any) of the link
type in SDS identified by type in the SDS sds.

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.5 SDS_GET_OBJECT_TYPE_PROPERTIES

(1) SDS_GET_OBJECT_TYPE_PROPERTIES (
sds : Sds_designator,
type : Object_type_nominator_in_sds

)
contents_type : [Contents_type],
parents : Object_type_nominators_in_sds,
children : Object_type_nominators_in_sds

(2) SDS_GET_OBJECT_TYPE_PROPERTIES returns the contents type, parents, and children of
the object type in SDS identified by type in the SDS sds.

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)

- 104 -

(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,
(READ_ATTRIBUTES, READ_LINKS))

(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.6 SDS_GET_TYPE_KIND

(1) SDS_GET_TYPE_KIND (
sds : Sds_designator,
type : Type_nominator_in_sds

)
type_kind : Type_kind

(2) SDS_GET_TYPE_KIND returns the kind of the type in SDS identified by type in the SDS sds.

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.7 SDS_GET_TYPE_MODES

(1) SDS_GET_TYPE_MODES (
sds : Sds_designator,
type : Object_type_nominator_in_sds | Attribute_type_nominator_in_sds |

Link_type_nominator_in_sds
)

usage_mode : Definition_mode_values,
export_mode : Definition_mode_values,
max_usage_mode : Definition_mode_values

(2) SDS_GET_TYPE_MODES returns in usage_mode, export_mode, and max_usage_mode the
usage mode, export mode, and maximum usage mode, respectively, of the type in SDS
identified by type in the SDS sds.

(3) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(4) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(5) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(6) SDS_IS_UNKNOWN (sds)
(7) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

- 105 -

10.3.8 SDS_GET_TYPE_NAME

(1) SDS_GET_TYPE_NAME (
sds : Sds_designator,
type : Type_nominator_in_sds

)
name : [Name]

(2) SDS_GET_TYPE_NAME returns the full type name name of the type in SDS identified by type
in the SDS sds.

(3) If no name is associated with type in sds no value is returned.

(4) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type in sds.

Errors

(5) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(6) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(7) SDS_IS_UNKNOWN (sds)
(8) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.9 SDS_SCAN_ATTRIBUTE_TYPE

(1) SDS_SCAN_ATTRIBUTE_TYPE (
sds : Sds_designator,
type : Attribute_type_nominator_in_sds,
scanning_kind : Attribute_scan_kind

)
types : Object_type_nominators_in_sds | Link_type_nominators_in_sds

(2) SDS_SCAN_ATTRIBUTE_TYPE returns a set of types types determined by type, sds and
scanning_kind.

(3) The returned set of types is determined as follows. It is limited to types associated with types in
SDS in the SDS sds and by scanning_kind as follows.

(4) - OBJECT: object types to which type has been applied by means of
SDS_APPLY_ATTRIBUTE_TYPE.

(5) - OBJECT_ALL: object types of which type is an attribute type, i.e. the union of the object
types defined by OBJECT and all their descendants.

(6) - LINK_KEY: link types of which the type is a key attribute type.

(7) - LINK_NON_KEY: link types of which the type is a non-key attribute type.

(8) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

(9) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(10) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_ATTRIBUTES)
(11) SDS_IS_UNKNOWN (sds)

- 106 -

(12) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

10.3.10 SDS_SCAN_ENUMERAL_TYPE

(1) SDS_SCAN_ENUMERAL_TYPE (
sds : Sds_designator,
type : Enumeral_type_nominator_in_sds

)
types : Attribute_type_nominators_in_sds

(2) SDS_SCAN_ENUMERAL_TYPE returns a set of enumeration attribute types, determined by
sds and the enumeral type type.

(3) The returned set of types is limited to types with an associated type in SDS type_in_sds in the
SDS sds and to enumeration attribute types with value type containing type.

(4) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

(5) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(6) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_LINKS)
(7) SDS_IS_UNKNOWN (sds)
(8) TYPE_IS_UNKNOWN_IN_SDS (sds, type)
(9) The following implementation-defined error may be raised:

ACCESS_ERRORS ("type" and "type_in_sds" objects associated with types, ATOMIC,
READ, READ_LINKS)

10.3.11 SDS_SCAN_LINK_TYPE

(1) SDS_SCAN_LINK_TYPE (
sds : Sds_designator,
type : Link_type_nominator_in_sds,
scanning_kind : Link_scan_kind

)
types : Object_type_nominators_in_sds | Attribute_type_nominators_in_sds

(2) SDS_SCAN_LINK_TYPE returns a set of attribute or object types types determined by sds,
type, and scanning_kind.

(3) The returned set of types is determined as follows. It is limited to types with an associated type
in SDS type_in_sds in the SDS sds and by scanning_kind as follows.

(4) - ORIGIN: object types which have been defined as origin types of type by
SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the reverse link type.

(5) - ORIGIN_ALL: object types which are valid origins of type, i.e. the object types as specified
by scanning_kind = ORIGIN, plus all their descendants.

(6) - DESTINATION: object types which have been defined as destination types of type by
SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the reverse link type.

(7) - DESTINATION_ALL: object types which are valid destinations of type, i.e. the object types
as specified by scanning_kind = DESTINATION plus all their descendants.

- 107 -

(8) - KEY: key attribute types of type.

(9) - NON_KEY: non-key attribute types of type, i.e. attribute types which have been applied to
type by SDS_APPLY_ATTRIBUTE_TYPE.

(10) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

(11) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(12) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_LINKS)
(13) SDS_IS_UNKNOWN (sds)
(14) TYPE_IS_UNKNOWN_IN_SDS (sds, type)
(15) The following implementation-defined error may be raised:

ACCESS_ERRORS ("type" and "type_in_sds" objects associated with types, ATOMIC,
READ, READ_LINKS)

10.3.12 SDS_SCAN_OBJECT_TYPE

(1) SDS_SCAN_OBJECT_TYPE (
sds : Sds_designator,
type : Object_type_nominator_in_sds,
scanning_kind : Object_scan_kind

)
types : Object_type_nominators_in_sds | Attribute_type_nominators_in_sds |

Link_type_nominators_in_sds

(2) SDS_SCAN_OBJECT_TYPE returns a set of types types determined by object_type, sds and
scanning_kind.

(3) The returned set of types is determined as follows. It is limited to types with associated types in
SDS type_in_sds in the SDS sds and by scanning_kind as follows.

(4) - CHILD: object types which are children of object_type.

(5) - DESCENDANT: object types which are descendants of object_type.

(6) - PARENT: object types which are parents of object_type.

(7) - ANCESTOR: object types which are ancestors of object_type.

(8) - ATTRIBUTE: attribute types which have been applied to object_type by
SDS_APPLY_ATTRIBUTE_TYPE.

(9) - ATTRIBUTE_ALL: attribute types of object_type, i.e. attribute types which have been
applied to object_type or to the ancestors of object_type.

(10) - LINK_ORIGIN: link types which have been applied to object_type (object_type becoming
its origin type) by SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the
reverse link type.

(11) - LINK_ORIGIN_ALL: link types which have object_type as an origin type, i.e. link types
which have been applied to object_type or to its ancestors.

- 108 -

(12) - LINK_DESTINATION: link types whose destination set has been extended to include
object_type by SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the
reverse link type.

(13) - LINK_DESTINATION_ALL: link types which have object_type as a destination type, i.e.
link types which have been added to the destination set of object_type or to its ancestors.

(14) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

(15) ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
(16) ACCESS_ERRORS ("type" and "type_in_sds" objects associated with type, ATOMIC, READ,

READ_LINKS)
(17) SDS_IS_UNKNOWN (sds)
(18) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

10.3.13 SDS_SCAN_TYPES

(1) SDS_SCAN_TYPES (
sds : Sds_designator,
kind : [Type_kind]

)
types : Type_nominators_in_sds

(2) SDS_SCAN_TYPES returns all the types with associated types in SDS in the SDS sds, of the
kinds given by kind.

(3) If kind is not supplied, all such types are returned; otherwise all such object types, attribute
types, link types, or enumeral types are returned according as kind is OBJECT_TYPE,
ATTRIBUTE_TYPE, LINK_TYPE, or ENUMERAL_TYPE respectively.

(4) Read locks of the default mode are obtained on sds and on the "type" and "type_in_sds" objects
associated with type.

Errors

(5) ACCESS_ERRORS (sds, COMPOSITE, READ, READ_LINKS)
(6) SDS_IS_UNKNOWN (sds)

10.4 Working schema operations

10.4.1 WS_GET_ATTRIBUTE_TYPE_PROPERTIES

(1) WS_GET_ATTRIBUTE_TYPE_PROPERTIES (
type : Attribute_type_nominator

)
duplication : Duplication,
value_type : Value_type,
initial_value : Attribute_value

(2) WS_GET_ATTRIBUTE_TYPE_PROPERTIES returns the duplication, value type identifier,
and initial value of the attribute type in working schema associated with the type type in the
current working schema.

- 109 -

Errors

(3) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.2 WS_GET_ENUMERAL_TYPE_IMAGE

(1) WS_GET_ENUMERAL_TYPE_IMAGE (
type : Enumeral_type_nominator

)
image : Text

(2) WS_GET_ENUMERAL_TYPE_IMAGE returns the image image of the type in working
schema associated with the enumeral type type in the current working schema.

Errors

(3) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.3 WS_GET_ENUMERAL_TYPE_POSITION

(1) WS_GET_ENUMERAL_TYPE_POSITION (
type1 : Enumeral_type_nominator,
type2 : Attribute_type_nominator

)
position : Natural

(2) WS_GET_ENUMERAL_TYPE_POSITION returns the position position of the enumeral type
in working schema associated with type1 in the value type of the attribute type in working
schema associated with type2, i.e. the key of the "enumeral" link from type2 to type1.

Errors

(3) ENUMERAL_TYPE_IS_NOT_IN_ATTRIBUTE_VALUE_TYPE (type1, type2)
(4) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type1)
(5) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type2)

10.4.4 WS_GET_LINK_TYPE_PROPERTIES

(1) WS_GET_LINK_TYPE_PROPERTIES (
type : Link_type_nominator

)
category : Category,
lower_bound : Natural,
upper_bound : Natural,
exclusiveness : Exclusiveness,
stability : Stability,
duplication : Duplication,
key_types : Key_types,
reverse : [Link_type_nominator]

(2) WS_GET_LINK_TYPE_PROPERTIES returns the category, lower and upper bounds,
exclusiveness, stability, duplication, key types, and reverse link type (if any) of the link type in
working schema associated with the type type.

Errors

(3) ACCESS_ERRORS (type, ATOMIC, READ, READ_ATTRIBUTES)

- 110 -

(4) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.5 WS_GET_OBJECT_TYPE_PROPERTIES

(1) WS_GET_OBJECT_TYPE_PROPERTIES (
type : Object_type_nominator

)
contents_type : [Contents_type],
parents : Object_type_nominators,
children : Object_type_nominators

(2) WS_GET_OBJECT_TYPE_PROPERTIES returns the contents type, parents, and children of
the object type in working schema associated with the type type.

Errors

(3) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.6 WS_GET_TYPE_KIND

(1) WS_GET_TYPE_KIND (
type : Type_nominator
)
type_kind : Type_kind

(2) WS_GET_TYPE_KIND returns the kind of the type in working schema associated with the type
type in the current working schema.

Errors

(3) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.7 WS_GET_TYPE_MODES

(1) WS_GET_TYPE_MODES (
type : Type_nominator

)
usage_mode : Definition_mode_values

(2) WS_GET_TYPE_MODES returns the usage mode of the type in working schema associated
with the type type in the current working schema.

Errors

(3) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.8 WS_GET_TYPE_NAME

(1) WS_GET_TYPE_NAME (
type : Type_nominator

)
name : [Name]

(2) WS_GET_TYPE_NAME returns the first non-null composite name name of the type in working
schema, considering the sequence of SDSs in the working schema, associated with the type type
in the current working schema.

(3) If no name is associated with type in the current working schema, no value is returned.

- 111 -

Errors

(4) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.9 WS_SCAN_ATTRIBUTE_TYPE

(1) WS_SCAN_ATTRIBUTE_TYPE (
type : Attribute_type_nominator,
scanning_kind : Attribute_scan_kind

)
types : Object_type_nominators | Link_type_nominators

(2) WS_SCAN_ATTRIBUTE_TYPE returns a set of types types determined by type and
scanning_kind.

(3) The returned set of types is determined as follows. It is limited to types associated with types in
working schema in the working schema of the calling process, and by scanning_kind as follows.

(4) - OBJECT: object types to which type has been applied by means of
SDS_APPLY_ATTRIBUTE_TYPE.

(5) - OBJECT_ALL: object types of which type is an attribute type, i.e. the union of the object
types defined by OBJECT and all their descendants.

(6) - LINK_KEY: link types of which the type is a key attribute type.

(7) - LINK_NON_KEY: link types of which the type is a non-key attribute type.

Errors

(8) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.10 WS_SCAN_ENUMERAL_TYPE

(1) WS_SCAN_ENUMERAL_TYPE (
type : Enumeral_type_nominator

)
types : Attribute_type_nominators

(2) WS_SCAN_ENUMERAL_TYPE returns a set of enumeration attribute types, determined by
the enumeral type type.

(3) The returned set of types is limited to types with an associated type in working schema in the
working schema of the calling process, and to enumeration attribute types with value type
containing type.

Errors

(4) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.11 WS_SCAN_LINK_TYPE

(1) WS_SCAN_LINK_TYPE (
type : Link_type_nominator,
scanning_kind : Link_scan_kind

)
types : Object_type_nominators | Attribute_type_nominators

(2) WS_SCAN_LINK_TYPE returns a set of attribute or object types types determined by type and
scanning_kind.

- 112 -

(3) The returned set of types is determined as follows. It is limited to types with an associated type
in working schema in the working schema of the calling process, and by scanning_kind as
follows.

(4) - ORIGIN: object types which have been defined as origin types of type by
SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the reverse link type.

(5) - ORIGIN_ALL: object types which are valid origins of type, i.e. the object types as specified
by scanning_kind = ORIGIN plus all their descendants.

(6) - DESTINATION: object types which have been defined as destination types of type by
SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the reverse link type.

(7) - DESTINATION_ALL: object types which are valid destinations of type, i.e. the object types
as specified by scanning_kind = DESTINATION plus all their descendants.

(8) - KEY: key attribute types of type.

(9) - NON_KEY: non-key attributes of type, i.e. attribute types which have been applied to type
by SDS_APPLY_ATTRIBUTE_TYPE.

Errors

(10) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (type)

10.4.12 WS_SCAN_OBJECT_TYPE

(1) WS_SCAN_OBJECT_TYPE (
object_type : Object_type_nominator,
scanning_kind : Object_scan_kind

)
types : Object_type_nominators | Attribute_type_nominators |

Link_type_nominators

(2) WS_SCAN_OBJECT_TYPE returns a set of types types determined by object_type and
scanning_kind.

(3) The returned set of types is determined as follows. It is limited to types with associated types in
working schema in the working schema of the calling process, and by scanning_kind as follows.

(4) - CHILD: object types which are children of object_type.

(5) - DESCENDANT: object types which are descendants of object_type.

(6) - PARENT: object types which are parents of object_type.

(7) - ANCESTOR: object types which are ancestors of object_type.

(8) - ATTRIBUTE: attribute types which have been applied to object_type by
SDS_APPLY_ATTRIBUTE_TYPE.

(9) - ATTRIBUTE_ALL: attribute types of object_type, i.e. attribute types which have been
applied to object_type or to the ancestors of object_type.

(10) - LINK_ORIGIN: link types which have been applied to object_type (object_type becoming
its origin type) by SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the
reverse link type.

(11) - LINK_ORIGIN_ALL: link types which have object_type as an origin type, i.e. link types
which have been applied to object_type or to its ancestors.

- 113 -

(12) - LINK_DESTINATION: link types which have had object_type added to their destination
object types by SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the
reverse link type.

(13) - LINK_DESTINATION_ALL: link types which have had object_type or to its ancestors
added to their destination object types.

Errors

(14) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA (object_type)

10.4.13 WS_SCAN_TYPES

(1) WS_SCAN_TYPES (
kind : [Type_kind]

)
types : Type_nominators

(2) WS_SCAN_TYPES returns all the types of the type kind given by kind with associated types in
working schema in the current working schema.

(3) If kind is not supplied, all such types are returned; otherwise all such object types, attribute
types, link types, or enumeral types are returned according as kind is OBJECT_TYPE,
ATTRIBUTE_TYPE, LINK_TYPE, or ENUMERAL_TYPE respectively.

Errors

(4) None.

11 Volumes, devices, and archives

11.1 Volume, device, and archiving concepts

11.1.1 Volumes

(1) Volume_identifier = Natural

(2) Volume_accessibility = ACCESSIBLE | INACCESSIBLE | UNKNOWN

(3) Volume_info = Volume_identifier * Volume_accessibility

(4) Volume_infos = set of Volume_info

(5) Volume_status ::
TOTAL_BLOCKS : Natural
FREE_BLOCKS : Natural
BLOCK_SIZE : Natural
NUM_OBJECTS : Natural
VOLUME_IDENTIFIER : Volume_identifier

(6) sds system:

(7) volume_directory: child type of object with
link

known_volume: (navigate) non_duplicated existence link (volume_identifier) to
volume;

volumes_of: implicit link to common_root reverse volumes;
end volume_directory;

- 114 -

(8) volume: child type of object with
attribute

volume_characteristics: (read) string ;
link

object_on_volume: (navigate) non_duplicated designation link (exact_identifier) to
object;

mounted_on: (navigate) non_duplicated designation link to
device_supporting_volume with

attribute
read_only: (read) boolean ;

end mounted_on;
end volume;

(9) end system;

(10) The volume directory is an administrative object (see 9.1.2); it represents the set of known
volumes, each with a unique volume identifier which is assigned to the volume on creation and
uniquely identifies the volume within the PCTE installation.

(11) The destinations of the "object_on_volume" links from a volume are called the objects residing
on that volume. The value of the "exact_identifier" attribute is the exact identifier of the object
(see 9.1.1). The volume is mounted if there is a "mounted_on" link; the destination of the link is
the device that the volume is mounted on (see 11.1.3). The "read_only" attribute indicates that
the volume may not be written to (except for usage designation links, see 8.3.3). A known
volume resides on itself; it is the only known volume residing on a volume and it is the first
object created on that volume.

(12) The "volume_characteristics" attribute is an implementation-defined string specifying
implementation-dependent characteristics of the volume.

11.1.2 Administration volumes

(1) sds system:

(2) administration_volume: (protected) child type of volume with
link

administration_volume_of: non_duplicated designation link (number) to workstation;
end administration_volume;

(3) end system;

(4) Each administration volume is either the master volume or a copy volume of the administration
replica set. See 17.1.4.

(5) Each administration volume is associated with one or more workstations (the destinations of the
"administration_volume_of" links), and is mounted on a device controlled by one of them.

(6) There is exactly one master administration volume in a PCTE installation. It is the master
volume of the administration replica set (see 17.1.4), and has volume identifier 0. The master
administration volume is part of the initial value of the state (see 8.1).

11.1.3 Devices

(1) Device_identifier = Natural

- 115 -

(2) sds system:

(3) device_supporting_volume: child type of device with
link

mounted_volume: (navigate) non_duplicated designation link to volume;
end device_supporting_volume;

(4) end system;

(5) A device supporting volume is a device (see 12.1) that may have an associated volume, the
destination of the "mounted_volume" link, called the volume mounted on the device.

(6) A device supporting volume resides on the administration volume of the workstation controlling
it.

11.1.4 Archives

(1) Archive_selection = Object_designators | ALL

(2) Archive_status = PARTIAL | COMPLETE

(3) sds system:

(4) archive_directory: child type of object with
link

saved_archive: (navigate) non_duplicated existence link (archive_identifier: natural)
to archive;

archives_of: implicit link to common_root reverse archives;
end archive_directory;

(5) archive: child type of object with
attribute

archiving_time: (read) time ;
link

archived_object: (navigate) non_duplicated designation link (exact_identifier) to
object;

end archive;

(6) end system;

(7) The archive directory is an administrative object (see 9.1.2); it represents the set of known
archives (the destinations of the "saved_archive" links), each with a unique archive identifier
which is assigned to the archive on creation and uniquely identifies the archive within the PCTE
installation.

(8) An archive consists of a set of objects (the destinations of the "archived_object" links), called
the objects archived on the archive.

(9) The archiving time of an archive is the system time at which objects are saved in the archive.
An archive may only be used once to save objects in it.

- 116 -

11.2 Volume, device, and archive operations

11.2.1 ARCHIVE_CREATE

(1) ARCHIVE_CREATE (
archive_identifier : Natural,
on_same_volume_as : Object_designator,
access_mask : Atomic_access_rights,

)
new_archive : Archive_designator

(2) ARCHIVE_CREATE creates a new archive new_archive residing on the same volume as the
object on_same_volume_as.

(3) A new "known_archive" link with key archive_identifier is created from the archive directory to
new_archive.

(4) An "object_on_volume" link is created from the volume on which on_same_volume_as resides
to new_archive. The key of the link is the exact identifier of new_archive. access_mask is used
in conjunction with the default atomic ACL and default object owner of the calling process to
define the atomic ACL and the composite ACL which are to be associated with the created
object (see 19.1.4).

(5) The labels of new_archive are set to the mandatory context of the calling process.

(6) Write locks of the default kind are obtained on new_archive and the new "known_archive" link.

Errors

(7) ACCESS_ERRORS (the archive directory, ATOMIC, MODIFY, APPEND_LINKS)
(8) ARCHIVE_EXISTS (archive_identifier)
(9) CONTROL_WOULD_NOT_BE_GRANTED (new_archive)
(10) LABEL_IS_OUTSIDE_RANGE (new_archive, volume on which on_same_volume_as resides)
(11) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(12) REFERENCE_CANNOT_BE_ALLOCATED
(13) VOLUME_IS_FULL (volume on which on_same_volume_as resides)

11.2.2 ARCHIVE_REMOVE

(1) ARCHIVE_REMOVE (
archive : Archive_designator

)

(2) ARCHIVE_REMOVE removes the archive archive from the archive directory by deleting the
"known_archive" link to archive from the archive directory.

(3) Write locks of the default kind are obtained on archive and the deleted "known_archive" link.

Errors

(4) ACCESS_ERRORS (archive, ATOMIC, CHANGE, WRITE_IMPLICIT)
(5) ACCESS_ERRORS (archive, ATOMIC, MODIFY, DELETE)
(6) ACCESS_ERRORS (archive, ATOMIC, MODIFY, WRITE_LINKS)
(7) ACCESS_ERRORS (the archive directory, ATOMIC, MODIFY, WRITE_LINKS)
(8) ARCHIVE_HAS_ARCHIVED_OBJECTS (archive)

- 117 -

(9) ARCHIVE_IS_UNKNOWN (archive)
(10) OBJECT_IS_IN_USE_FOR_DELETE (archive)
(11) OBJECT_IS_INACCESSIBLE (archive, ATOMIC)
(12) If the conditions hold for deletion of the "archive" object archive:

PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

11.2.3 ARCHIVE_RESTORE

(1) ARCHIVE_RESTORE (
device : Device_designator,
archive : Archive_designator,
scope : Archive_selection,
on_same_volume_as : Object_designator

)
restoring_status : Archive_status

(2) ARCHIVE_RESTORE restores a set of objects objects specified by scope to the volume volume
on which on_same_volume_as resides from the archive archive.

(3) If scope is a set of object designators, the specified set of objects to be restored (called the
'specified set' in this clause) is the intersection of the set of objects archived on archive and the
set of objects in scope.

(4) If scope is ALL, the specified set is the set of all the objects archived on archive.

(5) The objects to be restored are taken from the contents of device.

(6) The objects and their components are moved to volume, in an undefined order; as many objects
and their components as possible are restored from device, and reside on volume.

(7) If not all the objects of the specified set can be restored by this operation, as many as possible
are restored and restoring_status is set to PARTIAL. If all the objects of the specified set are
restored, restoring_status is set to COMPLETE. If no objects of the specified set can be
restored, the error condition VOLUME_IS_FULL is raised.

(8) The "archived_object" links from archive to the restored objects are deleted.

(9) For each of the objects which are restored to volume, an "object_on_volume" link with key the
exact identifier of the object is created.

(10) If any of the objects specified to be restored has not been archived or is already restored on
volume, then it is not affected.

(11) Write locks of the default mode are obtained on archive and on the moved objects and links. A
read lock of the default mode is obtained on device.

Errors

(12) ACCESS_ERRORS (device, ATOMIC, READ, READ_CONTENTS)
(13) ACCESS_ERRORS (an element of scope, COMPOSITE, CHANGE, CONTROL_OBJECT)
(14) ARCHIVE_IS_INVALID_ON_DEVICE (device, archive)
(15) LABEL_IS_OUTSIDE_RANGE (an element of the specified set or a component of such an

element, volume)
(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(17) PROCESS_IS_IN_TRANSACTION

- 118 -

(18) VOLUME_IS_FULL (volume)
(19) VOLUME_IS_INACCESSIBLE (volume)
(20) VOLUME_IS_READ_ONLY (scope, COMPOSITE)
(21) The following implementation-dependent errors may be raised for any object X with a link to an

object of objects:
OBJECT_IS_INACCESSIBLY_ARCHIVED (X)
VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

11.2.4 ARCHIVE_SAVE

(1) ARCHIVE_SAVE (
device : Device_designator,
archive : Archive_designator,
objects : Object_designators

)
archiving_status : Archive_status

(2) ARCHIVE_SAVE moves a set of objects to the contents of device.

(3) The archive archive is updated as follows:

(4) - the archiving time is set to the current system time;

(5) - "archived_object" links are created from archive to the archived objects and to each of their
components. The keys of the created links are the suffixes of the exact identifier of the
destination objects.

(6) For each archived object, the "object_on_volume" link from the volume on which the object
resides to the object is deleted.

(7) If device has insufficient space to hold all the objects of objects and their components, the
operation archives as many objects as possible and archiving_status is set to PARTIAL. If
device has insufficient space to hold any objects of objects with their components, the error
condition DEVICE_SPACE_IS_FULL occurs. Otherwise archiving_status is set to
COMPLETE.

(8) The operation has no effect on objects or components which are already archived, either on the
same archive or on another one.

(9) Read locks of the default mode are obtained on the objects to be archived. Write locks of the
default mode are obtained on archive and on device.

Errors

(10) ACCESS_ERRORS (device, ATOMIC, MODIFY, WRITE_CONTENTS)
(11) ACCESS_ERRORS (archive, ATOMIC, MODIFY, APPEND_LINKS)
(12) ACCESS_ERRORS (elements of objects and their components that are to be archived,

ATOMIC, CHANGE, CONTROL_OBJECT)
(13) ARCHIVE_HAS_ARCHIVED_OBJECTS (archive)
(14) DEVICE_SPACE_IS_FULL (device)
(15) LABEL_IS_OUTSIDE_RANGE (an element or a component of an element of objects, device)
(16) OBJECT_ARCHIVING_IS_INVALID (objects)
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

- 119 -

(18) PROCESS_IS_IN_TRANSACTION
(19) The following implementation-dependent errors may be raised for any object X with a link to an

object of objects:
OBJECT_IS_INACCESSIBLY_ARCHIVED (X)
VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

(20) NOTE - It is intended that the space previously occupied by the archived objects be freed.

11.2.5 DEVICE_CREATE

(1) DEVICE_CREATE (
station : Workstation_designator,
device_type : Device_type_nominator,
access_mask : Atomic_access_rights,
device_identifier : Natural,
device_characteristics : String

)
new_device : Device_designator

(2) DEVICE_CREATE creates a device new_device of type device_type with a "controlled_device"
link to it from station. The value of device_identifier is the key of the created link. The
"device_of" reverse link created from the new object to station designates the workstation which
controls the device. The "device_characteristics" attribute of new_device is set to
device_characteristics.

(3) device_identifier is a value which uniquely identifies the new device within the devices
controlled by station. Its value is assigned to the "device_identifier" attribute of new_device.

(4) new_device resides on the same volume as station (i.e. the local administration volume of
station) and cannot be moved to another volume.

(5) access_mask is used in conjunction with the default atomic ACL and default object owner of the
calling process to define both the atomic ACL and the composite ACL which are to be
associated with the created object (see 19.1.4).

(6) An "object_on_volume" link is created from the administration volume of station to
new_device. The created link is keyed by the exact identifier of new_device.

(7) The security labels of new_device and the labels defining its security ranges are set to the
mandatory context of the calling process.

(8) Write locks (of the default kind) are obtained on new_device and on the new links (except the
new "object_on_volume" link).

Errors

(9) ACCESS_ERRORS (station, ATOMIC, MODIFY, APPEND_LINKS)
(10) CONTROL_WOULD_NOT_BE_GRANTED (new_device)
(11) DEVICE_CHARACTERISTICS_ARE_INVALID (device-characteristics)
(12) DEVICE_EXISTS (device_identifier)
(13) LABEL_IS_OUTSIDE_RANGE (new_device, station)
(14) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
(15) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

- 120 -

(17) REFERENCE_CANNOT_BE_ALLOCATED
(18) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", device_type)
(19) WORKSTATION_IS_UNKNOWN (station)

11.2.6 DEVICE_REMOVE

(1) DEVICE_REMOVE (
device : Device_designator

)

(2) DEVICE_REMOVE removes the device object device from the set of devices of a workstation.
As a result, the device object device does not represent a physical device and its associated
device identifier can be reused.

(3) The "controlled_device" link from the workstation to device is deleted. If it is the only existence
link to device and there are no composition links to device, device is also deleted. In that case,
the "object_on_volume" link from the volume on which device was residing to device is also
deleted.

(4) A write lock (of the default kind) is obtained on device if it is deleted and on the deleted links
(except the "object_on_volume" link).

Errors

(5) ACCESS_ERRORS (device, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS (station, ATOMIC, MODIFY, WRITE_LINKS)
(7) If conditions hold for the deletion of device:
(8) ACCESS_ERRORS (device, COMPOSITE, MODIFY, DELETE)
(9) For each origin X of an implicit link to device:

ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)
(10) For each atomically stabilizing link L of device:

ACCESS_ERRORS (destination of L, ATOMIC, CHANGE, STABILIZE)
(11) For each compositely stabilizing link L of device:

ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)
(12) DEVICE_IS_IN_USE (device)
(13) DEVICE_IS_UNKNOWN (device)
(14) If conditions hold for the deletion of device:

OBJECT_HAS_LINKS_PREVENTING_DELETION (device)
OBJECT_IS_IN_USE_FOR_DELETE (device)

(15) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

(16) NOTE - This operation prevents further use of the device.

11.2.7 LINK_GET_DESTINATION_ARCHIVE

(1) LINK_GET_DESTINATION_ARCHIVE (
origin : Object_designator,
link : Link_designator

)
archive_identifier : Archive_identifier

- 121 -

(2) LINK_GET_DESTINATION_ARCHIVE returns the archive identifier of the destination object
of the direct outgoing link link of the object origin.

(3) A read lock of default mode is obtained on link.

Errors

(4) ACCESS_ERRORS (origin, ATOMIC, READ, READ_LINKS)
(5) OBJECT_IS_NOT_ARCHIVED (destination object of link)

11.2.8 VOLUME_CREATE

(1) VOLUME_CREATE (
device : Device_supporting_volume_designator,
volume_identifier : Natural,
access_mask : Atomic_access_rights,
volume_characteristics : String

)
new_volume : Volume_designator

(2) VOLUME_CREATE creates a new volume new_volume and mounts it on the device device.
new_volume resides on itself.

(3) A new "known_volume" link with key volume_identifier is created from the master of the
volume directory to new_volume.

(4) A "mounted_on" link with "read_only" attribute set to false and its reverse are created between
new_volume and device.

(5) An "object_on_volume" link is created from new_volume to itself. The key of the link is the
exact identifier of new_volume. access_mask is used in conjunction with the default atomic
ACL and default object owner of the calling process to define the atomic ACL and the
composite ACL which are to be associated with the created object (see 19.1.4).

(6) The labels of the volume and the labels defining its security ranges are set to the mandatory
context of the calling process. Each security range of the created volume must lie within the
corresponding security range of device (see 20.1.5).

(7) The "volume_characteristics" attribute of new_volume is set to volume_characteristics.

(8) Write locks of the default mode are obtained on new_volume and the new links (except the new
"object_on_volume" link).

Errors

(9) ACCESS_ERRORS (device, ATOMIC, MODIFY, EXPLOIT_DEVICE)
(10) ACCESS_ERRORS (the directory of volumes, ATOMIC, MODIFY, APPEND_LINKS)
(11) CONTROL_WOULD_NOT_BE_GRANTED (new_version)
(12) DEVICE_IS_BUSY (device, volume_identifier)
(13) DEVICE_IS_UNKNOWN (device)
(14) LABEL_IS_OUTSIDE_RANGE (new_volume, device)
(15) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
(16) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(18) PROCESS_IS_IN_TRANSACTION

- 122 -

(19) REFERENCE_CANNOT_BE_ALLOCATED
(20) VOLUME_EXISTS (volume_identifier)

(21) NOTE - The new volume may need to be initialized by a system tool before this operation is called.

11.2.9 VOLUME_DELETE

(1) VOLUME_DELETE (
volume : Volume_designator

)

(2) VOLUME_DELETE unmounts the volume volume, and deletes the "known_volume" link to
volume from the master of the volume directory and the "mounted_volume" link from the device
on which volume is mounted.

(3) volume must be the only object residing on volume, and there must be only the following three
links from volume:

(4) - the reverse link of the "known_volume" link to volume from the volume directory;

(5) - the "object_on_volume" link from volume to itself;

(6) - the "mounted_on" link from volume.

(7) Write locks (of the default kind) are obtained on volume and the deleted links (except the
"object_on_volume" link); however the locks on volume and on the links from volume do not
prevent the unmounting of the volume.

Errors

(8) ACCESS_ERRORS (device, ATOMIC, MODIFY, EXPLOIT_DEVICE)
(9) ACCESS_ERRORS (the volume directory, ATOMIC, MODIFY, WRITE_LINKS)
(10) ACCESS_ERRORS (volume, ATOMIC, MODIFY, WRITE_LINKS)
(11) ACCESS_ERRORS (volume, ATOMIC, CHANGE, WRITE_IMPLICIT)
(12) If the conditions hold for deletion of the "volume" object volume:

ACCESS_ERRORS (volume, ATOMIC, MODIFY, DELETE)
(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(14) PROCESS_IS_IN_TRANSACTION
(15) VOLUME_HAS_OTHER_LINKS (volume)
(16) VOLUME_HAS_OTHER_OBJECTS (volume)
(17) VOLUME_IS_INACCESSIBLE (volume)
(18) VOLUME_IS_UNKNOWN (volume)

11.2.10 VOLUME_GET_STATUS

(1) VOLUME_GET_STATUS (
volume : Volume_designator

)
status : Volume_status

(2) VOLUME_GET_STATUS returns information about the mounted volume volume, as follows.

(3) - TOTAL_BLOCKS is the total number of blocks of data available on volume.

(4) - FREE_BLOCKS is the number of blocks of data which are free on volume.

- 123 -

(5) - BLOCK_SIZE is the size of a block of data on volume, in octets.

(6) - NUM_OBJECTS is the number of objects currently residing on volume.

(7) - VOLUME_IDENTIFIER is the volume identifier of volume.

(8) A read lock of the default mode is obtained on volume.

Errors

(9) ACCESS_ERRORS (volume, ATOMIC, READ, READ_ATTRIBUTES)
(10) VOLUME_IS_INACCESSIBLE (volume)
(11) VOLUME_IS_UNKNOWN (volume)

11.2.11 VOLUME_MOUNT

(1) VOLUME_MOUNT (
device : Device_supporting_volume_designator,
volume_identifier : Volume_identifier,
read_only : Boolean

)

(2) VOLUME_MOUNT causes the volume volume identified by volume_identifier to be mounted
on the device device.

(3) The operation creates a "mounted_on" link from volume to device, with "read_only" attribute set
to read_only, and its reverse "mounted_volume" link.

(4) A lock of external and internal mode READ_SEMIPROTECTED is established on device.

(5) Write locks (of the default kind) are obtained on the created links.

Errors

(6) ACCESS_ERRORS (device, ATOMIC, MODIFY, EXPLOIT_DEVICE)
(7) ACCESS_ERRORS (volume, ATOMIC, READ, NAVIGATE)
(8) DEVICE_IS_BUSY (device)
(9) DEVICE_IS_UNKNOWN (device)
(10) LIMIT_WOULD_BE_EXCEEDED (MAX_MOUNTED_VOLUMES)
(11) PROCESS_IS_IN_TRANSACTION
(12) RANGE_IS_OUTSIDE_RANGE (volume associated with volume, device)
(13) VOLUME_CANNOT_BE_MOUNTED_ON_DEVICE (volume, device)
(14) VOLUME_IS_ALREADY_MOUNTED (volume)
(15) VOLUME_IS_UNKNOWN (volume)

(16) NOTE - When appropriate, the operation causes the physical mounting of the corresponding physical volume on
the corresponding physical device. If read_only is true then the physical volume is mounted for reading only.

11.2.12 VOLUME_UNMOUNT

(1) VOLUME_UNMOUNT (
volume : Volume_designator

)

(2) VOLUME_UNMOUNT causes the volume volume to be unmounted.

- 124 -

(3) The "mounted_on" link from volume to the device device on which volume is mounted is
deleted.

(4) Write locks (of the default kind) are obtained on the volume and on the deleted link; however
the locks on the volume and on the link from that object do not prevent the unmounting of the
volume.

Errors

(5) ACCESS_ERRORS (device, ATOMIC, MODIFY, EXPLOIT_DEVICE)
(6) ACCESS_ERRORS (volume, ATOMIC, READ, NAVIGATE)
(7) PROCESS_IS_IN_TRANSACTION
(8) VOLUME_HAS_OBJECTS_IN_USE (volume)
(9) VOLUME_IS_ADMINISTRATION_VOLUME (volume)
(10) VOLUME_IS_INACCESSIBLE (volume)
(11) VOLUME_IS_UNKNOWN (volume)

12 Files, pipes, and devices

12.1 File, pipe, and device concepts

(1) Open_contents ::
OPEN_OBJECT_KEY : Natural
CURRENT_POSITION: Current_position

(2) Current_position :: Token

(3) Contents_handle :: Token

(4) Position_handle :: Token

(5) Contents_access_mode = READ_WRITE | READ_ONLY | WRITE_ONLY | APPEND_ONLY

(6) Seek_position = FROM_BEGINNING | FROM_CURRENT | FROM_END

(7) Set_position = AT_BEGINNING | AT_POSITION | AT_END

(8) File = seq o f Octet
represented by file

(9) Pipe = seq o f Octet
represented by pipe

(10) Device = seq o f Octet
represented by device

(11) Control_data = seq o f Octet

(12) Positioning_style = SEQUENTIAL | DIRECT | SEEK

(13) sds system:

(14) positioning: (read) enumeration (SEQUENTIAL, DIRECT, SEEK) := SEQUENTIAL;

(15) file: child type of object with
contents file ;
attribute

contents_size: (read) natural ;
positioning;

end file;

- 125 -

(16) pipe: child type of object with
contents pipe ;
end pipe;

(17) device: child type of object with
contents device ;
attribute

device_characteristics: (read) string ;
positioning;

link
device_of: (navigate) reference link to workstation reverse controlled_device;

end device;

(18) end system;

(19) The contents of a file, pipe, or device may be accessed by a process as a sequence of octets if it is
opened by the process. The file, pipe, or device is then called an open object.

(20) The opening of a file, pipe, or device by a process is represented by an "open_object" link from
the process to the file, pipe, or device, and an "opened_by" link from the file, pipe or device to
the process.

(21) The "open_object_key" key attribute of the "open_object" link uniquely identifies the open object
among the other objects opened by the process.

(22) The opening of an object's contents and the operation
CONTENTS_GET_HANDLE_FROM_KEY result in the creation of a contents handle, which is
an implementation-dependent reference to the open contents of an object. A separate open
contents value exists for each process that opens a particular contents. The open contents consists
of the following:

(23) - An open object key which is the key of an "open_object" link to the open object.

(24) - A current position which specifies one octet of the sequence within the logical sequence of
octets. The position of the first octet is called FIRST, and of the last octet is called LAST. A
current position can be shared by several open contents.

(25) The "device_characteristics" attribute of a device is a string with an implementation-defined
syntax specifying implementation-dependent characteristics of the device.

(26) The "positioning" attribute of files and devices can be set only by
CONTENTS_SET_PROPERTIES. It is defined as follows:

(27) - SEQUENTIAL indicates that the current position can be changed only by writing or reading
octets in a sequential way.

(28) - DIRECT indicates that the current position can be changed either as by SEQUENTIAL or by
means of a previously saved position, represented by an implementation-dependent position
handle.

(29) - SEEK indicates that the current position can be changed either as by DIRECT or by an offset
from another position.

(30) The contents of a pipe is always accessed sequentially.

(31) The contents size of a file is 0 if the file is empty and otherwise LAST - FIRST + 1.

(32) The "open_object" link has an "opening_mode" attribute which defines how the current position
is updated by the contents operations. Let CP be the current position, and CP+n the position of

- 126 -

the nth octet after the current position. An operation is allowed for any opening mode unless
otherwise stated below.

(33) In READ_WRITE opening mode:

(34) - opening the contents by CONTENTS_OPEN sets CP to FIRST;

(35) - successfully reading N octets by CONTENTS_READ returns the octets at positions CP,
CP+1, ... CP+N-1, and changes CP to CP+N;

(36) - successfully writing N octets by CONTENTS_WRITE replaces or adds octets at positions
CP, CP+1, ... CP+N-1, and changes CP to CP+N; and if LAST < CP+N, changes LAST to
CP+N.

(37) In READ_ONLY opening mode:

(38) - opening the contents with CONTENTS_OPEN sets CP to FIRST;

(39) - successfully reading N octets by CONTENTS_READ returns the octets at positions CP,
CP+1, ... CP+N-1, and changes CP to CP+N. For pipes and read-once devices, e.g.
keyboards, the sequence of octets is changed to identify as FIRST the new current position.
Which devices are read-once is implementation-defined.

(40) - CONTENTS_WRITE and CONTENTS_TRUNCATE are not allowed.

(41) In WRITE_ONLY opening mode:

(42) - opening the contents by CONTENTS_OPEN sets CP to FIRST;

(43) - CONTENTS_READ is not allowed;

(44) - successfully writing N octets by CONTENTS_WRITE replaces or adds octets at positions
CP, CP+1, ... CP+N-1, and changes CP to CP+N; and if LAST < CP+N, changes LAST to
CP+N.

(45) In APPEND_ONLY opening mode:

(46) - opening the contents by CONTENTS_OPEN sets CP to LAST+1;

(47) - CONTENTS_READ is not allowed;

(48) - successfully writing N octets by CONTENTS_WRITE sets CP to LAST+1, adds octets at
positions LAST+1, LAST+2, ..., LAST+N, and changes LAST to LAST+N;

(49) - CONTENTS_SET_POSITION, CONTENTS_SEEK, and CONTENTS_TRUNCATE are not
allowed.

(50) In READ_ONLY, WRITE_ONLY and READ_WRITE opening modes:

(51) - if positioning is DIRECT or SEEK, positioning with CONTENTS_SET_POSITION sets CP
to a position identified by a position handle;

(52) - if positioning is SEEK, positioning with CONTENTS_SEEK sets CP to a position identified
by an offset from another position.

(53) Pipes can be opened only in READ_ONLY or APPEND_ONLY mode.

(54) The "open_object" link has an "inheritable" attribute; if it is true, then a link of the same type,
key, non-key system attributes, and destination object is created from any process created by the
process origin of the link.

(55) The "open_object" link has a "non_blocking_io" attribute which defines the behaviour of the
operations CONTENTS_READ and CONTENTS_WRITE. This property is always true for a

- 127 -

file, but is true for a pipe or a device only if it supports non-blocking input-output, i.e. a read or
write operation does not wait until all data can be read or written, but reads or writes as much as
it can. If it is true, then the destination pipe or device is said to be non-blocking (for the opening
process).

(56) If an "open_object" link is inheritable, the associated contents handle is duplicated in the child
process. As a consequence, the parent and child process share the current position.

(57) The effect of changing the current position by the operations CONTENTS_READ,
CONTENTS_WRITE, CONTENTS_TRUNCATE, CONTENTS_SEEK, and
CONTENTS_SET_POSITION is visible to all processes sharing that current position.

NOTES

(58) 1 The "open_object" links keyed by 0, 1, and 2 are called standard input, standard output, and standard error
respectively. Conventionally, standard input is used by the process for the reading of commands or input data,
standard output is used for the output of data, and standard error is used for the output of error diagnostics.

(59) 2 After creating a process, an "opened_object" link is created for each "open_object" link which has the inheritable
property set to true. The designated object is however not open until the process is started: the starting of the process
creates a link of type "open_by" from the designated object to the process.

(60) 3 In APPEND_ONLY opening mode, the current position is always LAST + 1. Several processes can append to the
same file, pipe, or device and therefore concurrently modify the LAST position subject to locking rules.

(61) 4 On pipes and some kinds of devices (e.g. keyboards), the reading of a sequence of octets deletes the octets: the
sequence of octets read is no longer readable and the new current position identifies as FIRST the next unread octet
in the sequence. Several processes can concurrently read the same pipe or device in this way.

(62) 5 There are various situations allowing one or more contents handles to be associated with the same object in such a
way that the CONTENTS_READ, CONTENTS_WRITE and CONTENTS_TRUNCATE operations performed on
the two contents handles may interfere:

(63) - two contents handles opened within the context of the same activity, either within the same process or within
different processes;

(64) - contents handles obtained from objects locked within concurrent activities but with compatible locks.

(65) 6 An application needing to manage such interferences without using separate activities and appropriate locks must
use its own synchronization mechanisms.

(66) 7 The contents of pipes and devices are not affected by transaction rollback.

12.2 File, pipe, and device operations

12.2.1 CONTENTS_CLOSE

(1) CONTENTS_CLOSE (
contents : Contents_handle

)

(2) CONTENTS_CLOSE deletes the contents handle contents, releasing any associated resources.

(3) The "open_object" link keyed by the open object key of contents and its complementary
"opened_by" link (see 12.2.6) are deleted.

Errors

(4) CONTENTS_IS_NOT_OPEN (contents)

- 128 -

12.2.2 CONTENTS_GET_HANDLE_FROM_KEY

(1) CONTENTS_GET_HANDLE_FROM_KEY (
open_object_key : Natural

)
contents : Contents_handle

(2) CONTENTS_GET_HANDLE_FROM_KEY returns in contents the contents handle of the
calling process represented by the "open_object" link link with key open_object_key.

Errors

(3) LINK_DOES_NOT_EXIST (calling process, link)

12.2.3 CONTENTS_GET_KEY_FROM_HANDLE

(1) CONTENTS_GET_KEY_FROM_HANDLE (
contents : Contents_handle

)
open_object_key : Natural

(2) CONTENTS_GET_KEY_FROM_HANDLE returns in open_object_key the "open_object_key"
key attribute of the "open_object" link associated with the contents handle contents.

Errors

(3) CONTENTS_IS_NOT_OPEN (contents)

12.2.4 CONTENTS_GET_POSITION

(1) CONTENTS_GET_POSITION (
contents : Contents_handle

)
position : Position_handle

(2) CONTENTS_GET_POSITION returns in position a position handle representing the current
position of contents.

Errors

(3) CONTENTS_IS_NOT_OPEN (contents)
(4) If contents is a pipe, or if contents is a file or a device with positioning SEQUENTIAL:

CONTENTS_OPERATION_IS_INVALID (contents)

12.2.5 CONTENTS_HANDLE_DUPLICATE

(1) CONTENTS_HANDLE_DUPLICATE (
contents : Contents_handle,
new_key : [Natural],
inheritable : Boolean

)
new_contents : Contents_handle

(2) CONTENTS_HANDLE_DUPLICATE creates a new open contents for the calling process and
the object associated with contents, and returns a contents handle identifying it in new_contents.
A new "open_object" link from the calling process to the object identified by contents, and a
complementary "opened_by" link, are created.

- 129 -

(3) The "inheritable" attribute of the new "open_contents" link is set to inheritable. The key of the
new "open_object" link is set to is set to new_key, if provided, and otherwise to an unused
implementation-defined value. The "opening_mode" and "non_blocking_io" attributes of the
new "open_object" link are set to the same values as for the "open_object" link from the calling
process associated with contents.

(4) The new open contents shares the current position of contents.

Errors

(5) CONTENTS_IS_NOT_OPEN (contents)
(6) LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS)
(7) LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS_PER_PROCESS)
(8) OPEN_KEY_IS_INVALID (new_key)

12.2.6 CONTENTS_OPEN

(1) CONTENTS_OPEN (
object : File_designator | Pipe_designator | Device_designator,
opening_mode : Contents_access_mode,
non_blocking_io : Boolean,
inheritable : Boolean

)
contents : Contents_handle

(2) CONTENTS_OPEN opens the contents of object in the opening mode opening_mode and
returns a contents handle for it in contents.

(3) An "open_object" link is created from the calling process to object with opening mode set to
opening_mode, non-blocking io set to non_blocking_io, and inheritable set to inheritable

(4) An "opened_by" link is created with an implementation-dependent key from object to the
calling process, complementary to the created "open_object" link.

(5) If opening_mode is READ_ONLY, a read lock of the default mode is obtained on object.

(6) If opening_mode is WRITE_ONLY, READ_WRITE or APPEND_ONLY, a write lock of the
default mode is obtained on object.

(7) After this operation, the object is operated on by the current activity and the lock established is
not released before the contents is closed (see 16.1.8).

Errors

(8) If opening_mode is READ_ONLY or READ_WRITE:
ACCESS_ERRORS (object, ATOMIC, READ, READ_CONTENTS)

(9) If opening_mode is WRITE_ONLY or READ_WRITE:
ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_CONTENTS)

(10) If opening_mode is APPEND_ONLY
ACCESS_ERRORS (object, ATOMIC, MODIFY, APPEND_CONTENTS)

(11) LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS)
(12) LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS_PER_PROCESS)
(13) NON_BLOCKING_IO_IS_INVALID (object, non_blocking_io)
(14) OPENING_MODE_IS_INVALID (object, opening_mode)

- 130 -

(15) STATIC_CONTEXT_IS_IN_USE (object)

12.2.7 CONTENTS_READ

(1) CONTENTS_READ (
contents : Contents_handle,
size : Natural

)
data : Unstructured_contents

(2) CONTENTS_READ reads a sequence of size octets from contents at the current position and
returns it in data, if available. If there are less than size octets but at least one octet from the
current position to LAST inclusive, the operation returns in data that sequence of octets.

(3) The current position is set to the position after the last read octet.

(4) If contents is a pipe or a read-once device, the position after the last read octet is identified as
FIRST after the operation.

(5) If there are no octets available for reading:

(6) - if contents is a non-blocking pipe or device, the operation fails.

(7) - if contents is a blocking device or a blocking pipe for which a contents handle is open in
APPEND_ONLY mode, then the operation waits until some octets are available for reading.
If, in the case of a pipe, the last contents handle open in APPEND_ONLY mode is closed
while the operation is waiting, an empty sequence of octets is returned.

(8) - if contents is a file, data is set to the empty sequence.

Errors

(9) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(10) CONTENTS_IS_NOT_OPEN (contents)
(11) CONTENTS_OPERATION_IS_INVALID (contents)
(12) DATA_ARE_NOT_AVAILABLE (contents)
(13) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by contents,

ATOMIC)
(14) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(15) PIPE_HAS_NO_WRITERS (contents)
(16) VOLUME_IS_INACCESSIBLE (volume on which object determined by contents resides,

ATOMIC)

12.2.8 CONTENTS_SEEK

(1) CONTENTS_SEEK (
contents : Contents_handle,
offset : Integer,
whence : Seek_position

)
new_position : Natural

(2) CONTENTS_SEEK sets the current position of contents to a position determined by offset and
whence, and returns the new current position as an offset from FIRST.

- 131 -

(3) If contents is a file or device which has the SEEK "positioning" property, the current position is
set to a position defined as follows:

(4) - if whence is FROM_BEGINNING, the new position is FIRST + offset;

(5) - if whence is FROM_CURRENT, the new position is the current position + offset;

(6) - if whence is FROM_END, the new position is LAST + offset + 1.

(7) The resulting position cannot be smaller than FIRST.

(8) The resulting position RP can be greater than LAST. In this case, if subsequent writing occurs,
LAST and the "contents_size" attribute of the file are set to RP + number of written octets. The
octets which are between the previous LAST position and RP are returned as octets with the
value 0 by subsequent calls of CONTENTS_READ. However, the file remains unchanged if no
CONTENTS_WRITE occurs at the new RP position.

(9) If contents is a file or a device, the new value of the current position, offset from the beginning
of the file, is returned in new_position.

Errors

(10) CONTENTS_IS_NOT_OPEN (contents)
(11) CONTENTS_OPERATION_IS_INVALID (contents)
(12) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(13) POSITION_IS_INVALID (resulting position)

12.2.9 CONTENTS_SET_POSITION

(1) CONTENTS_SET_POSITION (
contents : Contents_handle,
position_handle : Position_handle,
set_mode : Set_position

)

(2) CONTENTS_SET_POSITION sets the current position of contents to a position determined by
set_mode and position_handle.

(3) If set_mode is AT_BEGINNING or AT_END, the current position of contents is set to FIRST
or LAST + 1 respectively.

(4) If set_mode is AT_POSITION, the current position of contents is set to the position represented
by position_handle which must have been previously obtained by a call of
CONTENTS_GET_POSITION on contents.

Errors

(5) CONTENTS_IS_NOT_OPEN (contents)
(6) CONTENTS_OPERATION_IS_INVALID (contents)
(7) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)

(8) POSITION_HANDLE_IS_INVALID (position_handle, contents)

- 132 -

12.2.10 CONTENTS_SET_PROPERTIES

(1) CONTENTS_SET_PROPERTIES (
contents : Contents_handle,
positioning : Positioning_style

)

(2) CONTENTS_SET_PROPERTIES sets the positioning of the open file or device determined by
contents to positioning.

(3) If contents determines a file, its positioning can be changed only if the file is empty.

Errors

(4) If contents determines a file:
CONTENTS_IS_NOT_EMPTY (contents)

(5) CONTENTS_IS_NOT_OPEN (contents)
(6) If contents determines a pipe, or a file or device open in mode READ_ONLY:

CONTENTS_OPERATION_IS_INVALID (contents)
(7) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(8) POSITIONING_IS_INVALID (contents, positioning)
(9) NOTE – The change of properties is made on behalf of the activity in which the contents was opened.

12.2.11 CONTENTS_TRUNCATE

(1) CONTENTS_TRUNCATE (
contents : Contents_handle

)

(2) CONTENTS_TRUNCATE truncates contents from the current position to the end.

(3) The "contents_size" attribute of contents is set to indicate the new size.

(4) LAST is reset to one less than the current position, which is unchanged, except when the current
position is FIRST, in which case LAST is undefined and the file is empty.

(5) This operation applies only to files.

Errors

(6) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents, ATOMIC)

(7) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(8) CONTENTS_IS_NOT_FILE_CONTENTS (contents)
(9) CONTENTS_IS_NOT_OPEN (contents)
(10) CONTENTS_OPERATION_IS_INVALID (contents)
(11) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by contents,

ATOMIC)
(12) INTEGRITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(13) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(14) VOLUME_IS_FULL (volume containing object determined by contents)

(15) VOLUME_IS_INACCESSIBLE (volume containing object determined by contents, ATOMIC)
(16) NOTE - CONTENTS_TRUNCATE can affect the size of a file while other operations are accessing it.

- 133 -

12.2.12 CONTENTS_WRITE

(1) CONTENTS_WRITE (
contents : Contents_handle,
data : Unstructured_contents

)
actual_size : Natural

(2) CONTENTS_WRITE writes some or all of a sequence of octets data to contents at the current
position, and returns the number of octets actually written.

(3) If contents is a file with opening mode READ_WRITE, WRITE_ONLY, or APPEND_ONLY
and if writing to the file would not cause its size to exceed the MAX_FILE_SIZE, the sequence
of octets data is written from the current position, and the current position is changed to the
position following the last written octet. The contents size of contents is set to indicate the new
size.

(4) If contents is a pipe with opening mode APPEND_ONLY and if writing to the pipe would not
cause its size to exceed MAX_PIPE_SIZE, the sequence of octets data is written from the
position LAST + 1, and the current position is changed to the position following the last written
octet.

(5) If contents is a device with opening mode READ_WRITE, WRITE_ONLY, or
APPEND_ONLY and if writing to the device would not cause its size to exceed any device-
dependent maximum size limit, the sequence of octets data is written from the current position,
and the current position is changed to the position following the last written octet.

(6) If the available space does not allow the whole of data to be written to contents:

(7) - if contents is a file and at least one octet can be written, as many octets as possible are
written;

(8) - if contents is a file and no octet can be written (e.g. MAX_FILE_SIZE has been reached),
the operation fails;

(9) - if contents is a non-blocking pipe, as many octets from data as there is room for are written;
if no octets can be written (i.e. MAX_PIPE_SIZE has been reached) the operation fails.

(10) - if contents is a pipe which is not non-blocking, the operation waits, but on normal
completion (i.e. after space has been made available in the pipe and no interrupt occurred)
the operation has written all the octets;

(11) - if contents is a device which is not non-blocking, the operation waits until octets can be
written;

(12) - if contents is a non-blocking device, as many octets as there are room for are written; if no
octet can be written, the operation fails.

(13) In all cases, the octets of data are written in order starting with the first element, and the actual
number of octets written to contents is returned in actual_size.

(14) If a concurrent CONTENTS_TRUNCATE operation is performed on the object contents after
contents is opened, data is nevertheless written at the specified current position (i.e. there is no
interference implying that the current position is reset) as if prior to the write a
CONTENTS_SEEK operation had been performed with the current position as argument.

- 134 -

Errors

(15) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents, ATOMIC)

(16) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(17) CONTENTS_IS_NOT_OPEN (contents)
(18) CONTENTS_OPERATION_IS_INVALID (contents)
(19) DEVICE_LIMIT_WOULD_BE_EXCEEDED (data, contents)
(20) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by contents,

ATOMIC)
(21) INTEGRITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(22) LIMIT_WOULD_BE_EXCEEDED ((MAX_FILE_SIZE, MAX_PIPE_SIZE))
(23) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(24) If contents is a file:

PROCESS_FILE_SIZE_LIMIT_WOULD_BE_EXCEEDED (data, contents)(

(25) VOLUME_IS_FULL (volume containing object determined by contents)
(26) VOLUME_IS_INACCESSIBLE (volume containing object determined by contents)

12.2.13 DEVICE_GET_CONTROL

(1) DEVICE_GET_CONTROL (
contents : Contents_handle,
operation : Natural

)
control_data : Control_data

(2) DEVICE_GET_CONTROL returns control information from the device contents contents in
control_data, according to operation. The meanings of operation and control_data are
implementation-defined and may be device-dependent.

Errors

(3) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(4) CONTENTS_IS_NOT_OPEN (contents)

(5) DEVICE_CONTROL_OPERATION_IS_INVALID (contents, operation)
(6) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by contents,

ATOMIC)
(7) OBJECT_IS_INACCESSIBLE (volume containing object determined by contents, ATOMIC)
(8) VOLUME_IS_INACCESSIBLE (volume on which object determined by contents resides,

ATOMIC)

12.2.14 DEVICE_SET_CONTROL

(1) DEVICE_SET_CONTROL (
contents : Contents_handle,
operation : Natural,
control_data : Control_data

)

(2) DEVICE_SET_CONTROL performs a control operation on the device contents contents,
according to operation. The parameters for the operation are specified in control_data. The

- 135 -

meanings of operation and control_data are implementation-defined and may be device-
dependent.

Errors

(3) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents, ATOMIC)

(4) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(5) CONTENTS_IS_NOT_OPEN (contents)
(6) DEVICE_CONTROL_OPERATION_IS_INVALID (contents, operation)
(7) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by contents,

ATOMIC)
(8) INTEGRITY_WOULD_BE_VIOLATED (object determined by contents, ATOMIC)
(9) OBJECT_IS_INACCESSIBLE (object determined by contents, ATOMIC)
(10) VOLUME_IS_FULL (volume containing object determined by contents)
(11) VOLUME_IS_INACCESSIBLE (volume containing object determined by contents, ATOMIC)

13 Process execution

13.1 Process execution concepts

13.1.1 Static contexts

(1) sds system:

(2) static_context: child type of file with
attribute

max_inheritable_open_objects: natural := 3;
interpretable: boolean := false ;

link
interpreter: reference link to static_context;
restricted_execution_class: reference link to execution_class;

end static_context;

(3) end system;

(4) The max (maximum number of) inheritable open objects is the maximum number of open
objects that a process running the static context may inherit from the process which created it.

(5) A static context is interpretable if "interpretable" is true; otherwise it is executable.

(6) The interpreter of an interpretable static context is the destination of the "interpreter" link, if
there is one; it must not itself be interpretable.

(7) A static context is foreign if it has a restricted execution class and that execution class (see
13.1.3) has a usable execution site which is a foreign system; otherwise it is native.

(8) The execution class of an executable static context is the set of execution sites in which the
static context may run. If the static context has a "restricted_execution_class" link then its
execution class contains just the destination object of that link; otherwise it contains all the
execution sites in the PCTE installation. The execution class of an interpretable static context is
the intersection of that set and the execution class of the actual interpreter of the static context.

- 136 -

NOTES

(9) 1 A static context (short for static context of a program) is an executable or interpretable program in a static form
that can be run by a process, either directly by loading and executing it (executable) or indirectly by running
another static context as an interpreter (interpretable). It may be run either by a PCTE implementation or by a
foreign system.

(10) 2 The default of 3 for maximum inheritable open objects allows inheritance of standard input, output and error
channels as supported by some operating systems. The number of open objects is limited to
MAX_OPEN_OBJECTS_PER_PROCESS (see clause 24) so this is the maximum effective value for maximum
inheritable open objects.

(11) 3 The format of the contents of an executable static context is implementation-defined by the PCTE
implementation (for workstations in the execution class) or the foreign system implementation (for foreign systems
in the execution class) of the execution site.

(12) 4 If an interpretable static context has no interpreter, a static context is selected to interpret it as described in
PROCESS_START.

(13) 5 A static context has other properties defined in the security SDS (see 19.1.1).

(14) 6 The fact that the interpreter of an interpretable static context is not interpretable is checked by
PROCESS_START and PROCESS_CREATE_AND_START, but not by LINK_CREATE,
OBJECT_SET_ATTRIBUTE, OBJECT_SET_SEVERAL_ATTRIBUTES, OBJECT_RESET_ATTRIBUTE, or
OBJECT_DELETE_ATTRIBUTE.

13.1.2 Foreign execution images

(1) sds system:

(2) foreign_execution_image: child type of object with
attribute

foreign_name: string ;
link

on_foreign_system: reference link to foreign_system;
end foreign_execution_image;

(3) end system;

(4) The syntax and semantics of the foreign name are implementation-defined.

(5) The "on_foreign_system" link defines a foreign system which may execute the foreign
execution image.

NOTES

(6) 1 A foreign execution image differs from a static context for use on a foreign system in that it is only a
representation of the image to be executed. The execution image itself is of undefined format and is not
represented in the object base.

(7) 2 The foreign name is intended to provide enough information to determine the foreign system object, e.g. a file,
which contains an execution image.

13.1.3 Execution classes

(1) sds system:

(2) execution_site_identifier: natural ;

(3) execution_class: child type of object with
link

usable_execution_site: reference link (execution_site_identifier) to execution_site;
end execution_class;

(4) end system;

- 137 -

(5) An execution class specifies a set of execution sites (workstations or foreign systems) on which
any static context with that execution class may be executed. Execution sites are defined in
18.1.

NOTES

(6) 1 If a static context has no restricted execution class, the choice of execution site may be specified when the static
context is run; otherwise it is implementation-defined.

(7) 2 If an execution class has no usable execution site, a static context with that execution class as a restricted
execution class is unable to run. Thus it is possible to (temporarily) prevent a static context from running.

(8) 3 The addition and removal of execution sites to and from an execution class is performed using operations of
clause 9. An execution site is a usable execution site of an execution class if and only if there is a
"usable_execution_site" link between the site and the class. The value of the key of such a link is unimportant.

(9) 4 While it is recommended that tools keep the "execution_site_identifier" key consistent with the execution site
identifier of the usable execution site in the execution site directory, a PCTE implementation is not required to
enforce this consistency, nor even to ensure that the key is any execution site identifier in the execution site
directory.

(10) 5 The definition of an execution class allows both workstations and foreign systems to be of the same execution
class. In practice, such a mixed class is unlikely to be useful.

13.1.4 Processes

(1) Initial_status = RUNNING | SUSPENDED | STOPPED

(2) sds system:

(3) inheritable: boolean := true ;

(4) referenced_object: (navigate) designation link (reference_name: string) to object with
attribute

inheritable;
end referenced_object;

(5) open_object: (navigate) designation link (open_object_key: natural) to file, pipe, device with
attribute

opening_mode: (read) enumeration (READ_WRITE, READ_ONLY, WRITE_ONLY,
APPEND_ONLY) := READ_ONLY;

non_blocking_io: (read) boolean ;
inheritable;

end open_object;

(6) is_listener: (navigate) non_duplicated designation link (number) to
message_queue with attribute
message_types: (read) string ;

end is_listener;

(7) process_waiting_for: (navigate) designation link (number) to object with
attribute

waiting_type: (read) enumeration (WAITING_FOR_LOCK, WAITING_FOR_TERMINATION,
WAITING_FOR_WRITE, WAITING_FOR_READ) := WAITING_FOR_LOCK;

locked_link_name;
end process_waiting_for;

- 138 -

(8) process: child type of object with
attribute

process_status: (read) non_duplicated enumeration (UNKNOWN, READY, RUNNING,
STOPPED, SUSPENDED, TERMINATED) := UNKNOWN;

process_creation_time: (read) time ;
process_start_time: (read) time ;
process_termination_time: (read) time ;
process_user_defined_result: string ;
process_termination_status: (read) integer ;
process_priority: (read) natural ;
process_file_size_limit: (read) natural ;
process_string_arguments: (read) string ;
process_environment: (read) string ;
process_time_out: (read) natural ;
acknowledged_termination: (read) boolean ;
deletion_upon_termination: (read) boolean := true ;
time_left_until_alarm: (read) non_duplicated natural ;
character_encoding: (read) non_duplicated natural ;

link
process_object_argument: designation link (number) to object;
executed_on: (navigate) designation link to execution_site;
referenced_object;
open_object;
reserved_message_queue: (navigate) designation link (number) to message_queue;
is_listener;
default_interpreter: designation link to static_context;
actual_interpreter: (navigate) designation link to static_context;
process_waiting_for;
parent_process: (navigate , delete) implicit link to process reverse child_process;
started_in_activity: (navigate) reference link to activity reverse process_started_in;

component
child_process: (navigate , delete) composition link (number) to process reverse

parent_process;
started_activity: (navigate) composition link (number) to activity reverse started_by;

end process;

(9) end system;

(10) sds metasds:

(11) import object type system-process;

(12) extend object type process with
link

sds_in_working_schema: (navigate) designation link (number) to sds;
end process;

(13) end metasds;

(14) A process is a means of running a static context or foreign execution image. Creation of a
process refers to the action of PROCESS_CREATE. A process runs the static context
(executable or interpretable) or foreign execution image specified when the process is created.
A process executes the static context or foreign execution image specified when the process is
created unless an interpretable static context is specified, in which case it executes another static
context which is executable.

(15) A process executes by the execution of one or more threads. Within a process, threads may
execute in parallel (proceed independently), or execution may switch between threads, or both,
according to rules not defined in this ECMA Standard. A thread is suspended (i.e. its execution

- 139 -

does not progress) when it is executing an operation which is waiting for the occurrence of an
event (see 8.7.2). A binding must define the mapping of threads and of their suspension to the
binding language. A binding may impose limitations on threads by the definition of the rules
for their interaction; in particular, a binding may specify that, except for the activation or waking
of a handler (see 14.1), a process always executes by the execution of one and only one thread.
The activation of a handler normally involves execution of a separate thread, although there may
be special binding-defined rules governing this execution.

(16) Whether other threads of a process (if any) can continue to execute while one thread is
suspended, and whether such threads can issue from operation calls, are instances of binding-
defined rules governing the execution of threads.

(17) The process status is the status of the process with respect to execution. State transitions occur
as the result of operations in 13.2 or of events outside tool control, e.g. a thread reaching a
breakpoint. The process status may have the following values:

(18) - READY: ready to execute.

(19) - RUNNING: executing: one or more threads of the process are running or suspended.

(20) - STOPPED: stopped from execution: all threads of the process are stopped; this is for use in
process monitoring, see 13.5.

(21) - SUSPENDED: suspended from execution: all threads of the process are suspended; this
results from PROCESS_SUSPEND.

(22) - TERMINATED: prevented from further execution.

(23) The status value STOPPED is required only by the monitoring module (see 13.5).

(24) In addition the process status has an initial value UNKNOWN which it is given if the process is
created by operations in clause 9. Such a process is prevented from executing.

(25) If one thread of a process is stopped, then all are, and similarly with suspension.

(26) The terms ready, running, stopped, suspended, terminated and unknown apply to a process
whose process status is READY, RUNNING, STOPPED, SUSPENDED, TERMINATED or
UNKNOWN, respectively. The terms 'running' and 'stopped' are also applied to a thread of a
process. A process starts when its status changes from READY.

(27) A breakpoint is an implementation-defined marker defining a point in a process such that when
execution reaches that point while the process is running, the process status is changed to
STOPPED.

(28) If a handler is executed on behalf of a suspended listening process, the status of the listening
process is changed to RUNNING (see 14.1).

(29) The precise time of a change of process status as recorded in the process creation, start or
termination time is implementation-dependent except that it is between the start and end of any
operation that causes the change of process status.

(30) The process creation time is the time when the process was created.

(31) The process start time is the time when the process started to run a static context or foreign
execution image. Its value is the default value of time attributes if the process is ready.

(32) The process termination time is the time when the process terminated. Its value is the default
value of time attributes unless the process is terminated.

(33) The semantics of the process user defined result are not defined in this ECMA Standard.

- 140 -

(34) The process termination status specifies the conditions under which the process terminated. Its
value is the default value of integer attributes unless the process is terminated. The process
termination status has two sets of named values, whose actual values are implementation-
defined. Other values may be set using PROCESS_SET_TERMINATION_STATUS or
PROCESS_TERMINATE but are not defined in this Standard. The sets of named values are:

(35) - Success:

(36) . EXIT_SUCCESS: The process has terminated normally, i.e. not as in the failure cases.
The process termination status has this value if a process terminates other than by
PROCESS_TERMINATE (explicitly or implicitly called), and the process termination
status has not been changed by PROCESS_SET_TERMINATION_STATUS.

(37) - Failure:

(38) . EXIT_ERROR: The process has been terminated abnormally by itself (using
PROCESS_TERMINATE).

(39) . FORCED_TERMINATION: The process has been terminated abnormally by another
process (using PROCESS_TERMINATE).

(40) . SYSTEM_FAILURE: The process has been terminated abnormally by the PCTE
implementation.

(41) . ACTIVITY_ABORTED: The process has been terminated abnormally as a result of the
destination of its "started_in_activity" link being aborted by ACTIVITY_ABORT.

(42) The process priority defines the priority of running the process relative to that of other
processes. The range of values is from 0 to the implementation-defined limit
MAX_PRIORITY_VALUE. Their effect is implementation-defined except that a greater
integer value indicates a greater priority.

(43) The process file size limit defines the maximum contents size of each file to which the process
writes.

(44) The value of the process string arguments is a string of the following syntax, which defines it as
a sequence of zero or more substrings. Each substring is an argument preceded by the length of
the argument in hexadecimal notation. The semantics of the sequence of arguments is not
defined in this ECMA Standard.

(45) arguments = {substring};

(46) substring= length, argument;

(47) length = hex digit, hex digit, hex digit, hex digit;

(48) hex digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F';

(49) argument = (*any sequence of graphic characters*);

(50) The semantics of process environment is not defined in this ECMA Standard. The value has the
same syntax as the process string arguments.

(51) The process time out limits the duration of each indivisible operation, i.e. each operation whose
execution does not cause it to wait, and also of each operation whose execution causes the
creation of a "process_waiting_for" link from the calling process. If the value is 0, the limit is
infinite, otherwise the limit is the value in seconds. An operation whose duration exceeds the
limit terminates with the error OPERATION_HAS_TIMED_OUT.

(52) If the value is greater than 0, the time left until alarm defines the maximum duration in seconds
that a process will be suspended when it next suspends or, while the process is suspended, the

- 141 -

maximum duration until it is resumed. If the process is resumed before the alarm goes off, the
value of time left until alarm indicates the unexpired duration. Otherwise when the time expires
the process receives an implementation-defined alarm message of message type WAKE
(provided it has reserved a message queue and is handling wakeup messages) and is resumed. If
there is more than one reserved message queue that has a handler enabled to handle WAKE
messages, the system chooses in an implementation-defined way which message queue receives
the WAKE message.

(53) The acknowledged termination is true when the process has terminated and the parent process
has continued running after waiting for termination.

(54) If deletion upon termination is true and the deletion conditions are satisfied, the process is
deleted automatically when it terminates, after acknowledged termination of this process has
been set true by the parent process.

(55) The character encoding defines the single- or multi-octet character set in terms of which
pathnames, keys, and type names are interpreted. The default value of 0 refers to ISO 8859-1;
the interpretation of other values is implementation-defined. An unrecognised value is defaulted
to 0.

(56) The "sds_in_working_schema" links specify by their key values a sequence of SDSs which
determines the working schema of the process (see 8.1). The "sds_in_working_
schema" links are created when a process is created and may be changed by
PROCESS_SET_WORKING_SCHEMA.

(57) The semantics of the process object arguments is not defined in this ECMA Standard.

(58) The destination of the "executed_on" link is called the execution site of the process.

(59) Referenced objects are used in the construction of object designators through their reference
names (see clause 23). Referenced objects are created and deleted by PROCESS_SET_
REFERENCED_OBJECT and PROCESS_UNSET_REFERENCED_OBJECT respectively.
Reference name values are restricted to the values of key string value defined in 23.1.2.7.

(60) The following reference names are reserved and refer to the given referenced objects:

(61) - 'self': This process. This referenced object always exists, cannot be changed and has
inheritability false.

(62) - 'static_context': The static context run by the process. This referenced object always exists,
cannot be changed and has inheritability false.

(63) - 'common_root': The common root (see 9.1.2). This referenced object always exists, cannot
be changed and has inheritability true.

(64) - 'home_object': The meaning of the 'home_object' referenced object is not defined in this
ECMA Standard.

(65) - 'current_object': The meaning of the 'current_object' referenced object is not defined in this
ECMA Standard. Conventions for using it are given in 23.1.2.2.

(66) The referenced objects with reference names "static_context", "common_root", "home_object",
and "current_object" are known as the static context of the process, common root, home object,
and current object respectively.

(67) If inheritability is true the referenced object is to be made a referenced object of each child
process created by this process (and inheritability is to be set true for it). The inheritability of a
referenced object may be changed by operations in clause 9. An inherited "referenced_object"

- 142 -

link may be deleted by the child process but this does not affect the referenced objects of the
creating process.

(68) An open object is an object opened for access to its contents (see clause 12). If inheritable is set
true, the open object is to be inherited as opened (and the corresponding current position is to be
shared) by each child process created by this process in the manner specified by the attributes of
the "open_object" link (and inheritable is to be set true for the child's open object). The
inheritable attribute of an open object may be changed by operations in clause 9. An inherited
open object may be closed by the child process but this does not affect the open objects of the
creating process. The semantics of the other attributes of an open object are defined by the
operations in clause 12.

(69) For open objects with keys 0, 1 and 2 see 12.1.

(70) The default interpreter, if it exists, is a static context which will interpret the static context run
by a process if it is interpretable and has no interpreter. The value of the default interpreter may
be changed by operations in clause 9.

(71) The actual interpreter is the static context that interprets an interpretable static context.

(72) For reserved message queue and "is_listener" see 14.1.

(73) The destination of the "process_waiting_for" link is a resource that a thread of the process is
waiting for; for further attributes see 16.1.2. A link of this type exists for each operation that is
waiting. The waiting type values are:

(74) - WAITING_FOR_LOCK: waiting to establish a lock on a resource which already has an
incompatible lock.

(75) - WAITING_FOR_TERMINATION: waiting for a child process to terminate.

(76) - WAITING_FOR_WRITE: waiting to write to a full message queue, a full pipe, a device, an
audit file or an accounting log.

(77) - WAITING_FOR_READ: waiting to read from a message queue containing no message of
the specified type, an empty pipe, or a device.

(78) The started in activity is the activity which was the current activity of the parent process at the
time the process was created. Activities are defined in clause 16.

(79) A process is either the initial process of a workstation (see 18.1.2) or a child process of one other
process.

(80) The parent process is the process which created this process or another process nominated by the
creating process to be the parent.

(81) For the started activities, see clause 16.

NOTES

(82) 1 The process user defined result is provided for tool-defined use, especially for a child process to pass back
results to its parent on termination.

(83) 2 The process priority is intended to be mapped to the process priority of an underlying operating system (if there
is one). The number of possible values should be a power of 2.

(84) 3 The process string arguments is intended for passing parameters in the form of strings to a child process running
a tool written in a language which specifies a mechanism for passing parameters to the tool. The specification of
the length in hexadecimal notation enables the maximum length of an argument to be stored in 2 octets.

(85) 4 The process environment is provided as a mechanism for modifying aspects of the environment in which a child
process is to run.

- 143 -

(86) 5 If the acknowledged termination of a process is true, then the process has terminated but could not be deleted,
e.g. because deletion upon termination is false, or because there was a reference link to the process.

(87) 6 The "process_object_argument" link is intended for designating an object to a process, e.g. a print spooler, while
it is running. The process may use key values to distinguish the different objects so designated if it does not delete
the link to each process object argument after it has been processed.

(88) 7 A process can only be moved (thus changing its volume number) while the process status is READY or
TERMINATED. It is recommended that a ready process is only moved to a volume that is controlled by the
execution site which is to execute the process or, if the execution site is a discless workstation, to one that can be
accessed efficiently.

(89) 8 The child processes of a process are components of that process, but this does not mean that operations on a
process apply also to its child processes; e.g. terminating a process does not of itself terminate its child processes.

(90) 9 Many of the links of process that have no reverse link have a corresponding link which is effectively a reverse
link except that only the link from the process exists before a process is started.

(91) 10 Operations specific to processes, i.e. those with names starting with "PROCESS_", do not establish any locks
on the process, its links or its attributes (and thus these changes are not reversed if the transaction is aborted).

(92) 11 Operations specific to processes do not require discretionary access control on the calling process, its links or
its attributes.

(93) 12 A process has other properties defined in the security and accounting SDSs.

(94) 13 The implicit creation and deletion of a usage designation link is allowed by operations defined in clause 13
even if the origin object of the link resides on a read-only volume or is a copy object.

(95) 14 Table 3 shows the available transitions of process status.

Table 3 - Available transitions of process status

To

From Ready Running Suspended Stopped Terminated

(nonexistent) CR CS X X X

Ready N ST ST ST X

Running X N SU BP TE

Suspended X RE,H N X TE

Stopped X CO X N TE

Terminated X X X X N

Key

BP breakpoint
CO PROCESS_CONTINUE
CR PROCESS_CREATE
CS PROCESS_CREATE_AND_START
RE PROCESS_RESUME
ST PROCESS_START
SU PROCESS_SUSPEND
TE PROCESS_TERMINATE
H execution of a message handler (see 14.1)
N null transition
X impossible transition

(96) 15 It is intended that a PCTE implementation maintain its integrity against operation calls from concurrent threads.
In addition, the implementation may provide some degree of concurrency within operations, but that is not

- 144 -

mandatory. Thus operations called in concurrent threads may block immediately until an operation called earlier
has terminated. Such implementation dependence is likely to apply to all language bindings supported by the
implementation in addition to binding dependences that result from the level of support for threads by the binding
language.

(97) 16 When a new process is created, it inherits the value of the character set of the calling process. Thus an
implementation can set the character set of the initial process to the preferred value; as all processes are derived
from the initial process, they would then work by default with this character set, and no further action would be
necessary to select the character set, unless another character set is required for some tools.

13.1.5 Initial processes

(1) Each workstation in a PCTE installation has an initial process; this is a process that is created by
implementation-dependent means such that, when it starts to run a tool, it is indistinguishable
from a process that has been created by PROCESS_CREATE and modified by other PCTE
operations, except that the initial process has no parent process. When the first static context
runs in the initial process, the initial process has the following particular values for attributes
and links:

(2) - the volume on which the process resides is the administration volume of the execution site of
the initial process;

(3) - the execution site of the process is the workstation for which the process is the initial
process;

(4) - the static context of the process is the static context being run by the initial process;

(5) - the destination of the "actual_interpreter" link is the static context being executed by the
initial process, if any;

(6) - the destination of the "started_in_activity" is the outermost activity of the execution site (see
16.1.1);

(7) - the static context of the initial process is a member of the predefined program group
PCTE_SECURITY or of a program group which has PCTE_SECURITY as one of its
program supergroups.

NOTE - The initial process of a workstation is intended to start one or more processes, each of which runs a static
context, typically a login or user authentication tool (which may be a portable tool), to perform various tasks when
a human user starts or ends a session at the workstation. It has no consumer identity. The tasks to be performed at
the start of the session may include, for example:

(8) - authenticating the human user and setting the discretionary and mandatory context appropriate to that user by
calling PROCESS_SET_USER_AND_USER_GROUP_IDENTITY; this must be done before any processing
on behalf of the user to assure the security of the PCTE installation;

(9) - initializing a general purpose environment for the running of tools by the user;

(10) - tailoring the environment to the user, for example by setting the referenced object "home_object".

13.1.6 Profiling and monitoring concepts

(1) Profile_handle :: Token

(2) Buffer = seq of Natural

(3) Address :: Token

(4) Process_data = seq of Octet

(5) These types are used in profiling and monitoring operations; see 13.4 and 13.5.

- 145 -

13.2 Process execution operations

13.2.1 PROCESS_CREATE

(1) PROCESS_CREATE (
static_context : Static_context_designator | Foreign_execution_image_designator,
process_type : Process_type_nominator,
parent : [Process_designator],
site : [Execution_site_designator],
implicit_deletion : Boolean,
access_mask : Atomic_access_rights

)
new_process : Process_designator

(2) If no value is supplied for parent, parent designates the calling process.

(3) PROCESS_CREATE creates a process that is able to run a static context. The new process
becomes a child process of parent (either the calling process or an ancestor of the calling
process).

(4) The new process new_process is of type process_type with attributes and links as defined below.

(5) - Attributes and links of type "object" defined in SDS 'system' as by OBJECT_CREATE,
except that "volume_identifier" is set to "volume_identifier" of parent, if parent and the new
process have the same execution site, otherwise to "volume_identifier" of the new process's
execution site.

(6) - Attributes and links of type "process" defined in SDS 'system':

(7) . "process_status" is set to READY;

(8) . "process_creation_time" is set to the current time (a value of system time between the
start and end of the operation);

(9) . "process_priority" is set to "process_priority" of the calling process;

(10) . "process_file_size_limit" is set to "process_file_size_limit" of the calling process;

(11) . "deletion_upon_termination" is set to implicit_deletion;

(12) . the character encoding is set to the character encoding of the calling process;

(13) . "sds_in_working_schema" links are created, each with the same destination and key as
each of the "sds_in_working_schema" links of the calling process;

(14) . an "executed_on" link is created to site, or if site is absent:

(15) . if static_context is executable, to an implementation-dependent member of the
execution class of static_context;

(16) . if static_context is interpretable, to an implementation-dependent member of the
intersection of the execution classes of static_context and its interpreter;

(17) . if static_context is a foreign execution image, to the destination of the
"on_foreign_system" link from static_context;

(18) . for each "referenced_object" link of the calling process with inheritability true (except
for the referenced objects "self" and "static_context") a "referenced_object" link is
created with the same destination and key; in addition, "referenced_object" links with
reference names "self" and "static_context" are created with destinations the new process
and static_context, respectively, and inheritability false;

- 146 -

(19) . for each "open_object" link of the calling process with inheritable true an "open_object"
link is created with the same destination and key, and with the same opening mode and
non-blocking io, in ascending order of key value, up to a limit of
"max_inheritable_open_objects" of static_context;

(20) . if the calling process has a default interpreter, a "default_interpreter" link is created to the
default interpreter of the calling process;

(21) . a "parent_process" link to parent and its reverse "child_process" link are created;

(22) . a "started_in_activity" link to the current activity of parent and its reverse
"process_started_in" link are created.

(23) - Attributes and links of type "object" defined in SDS 'discretionary_security' as by
OBJECT_CREATE with access_mask, except:

(24) . "atomic_acl" has two additional groups added, if not already present, and in any case
these two groups are granted all access rights. These groups are:

(25) . the user of the new process;

(26) . the predefined security group PCTE_EXECUTION;

(27) . "confidentiality_label" is set to "confidentiality_label" of the calling process;

(28) . "integrity_label" is set to "integrity_label" of the calling process.

(29) - Attributes and links of type "process" defined in SDSs 'discretionary_security' and
'mandatory_security':

(30) . "default_atomic_acl" is set to "default_atomic_acl" of the calling process;

(31) . "default_object_owner" is set to "default_object_owner" of the calling process;

(32) . "floating_confidentiality_level" is set to "floating_confidentiality_level" of the calling
process;

(33) . "floating_integrity_level" is set to "floating_integrity_level" of the calling process;

(34) . a "user_identity" link is created to the user of the calling process;

(35) . an "adopted_user_group" link is created to the adopted user group of the calling process;

(36) . "adoptable_user_group" links are created, each with the same destination and key as each
of those "adoptable_user_group" links of the calling process with "adoptable_for_child"
true.

(37) - Attributes and links of type "process" defined in SDS 'accounting':

(38) . a "consumer_identity" link is created to the consumer identity of the calling process, if
any.

(39) PROCESS_CREATE returns a designator of the new process as new_process.

(40) If the workstation controlling the device on which is mounted the volume on which
new_process resides becomes inaccessible before new_process is started, the
"sds_in_working_schema", "executed_on", "opened_objects", "user_identity",
"adopted_user_group", "adoptable_user_group", "referenced_object", and "consumer_identity"
designation links from new_process are deleted, the status of new_process is set to
TERMINATED and the exit status of new_process is set to SYSTEM_FAILURE.

- 147 -

Errors

(41) ACCESS_ERRORS (static_context, ATOMIC, MODIFY, EXECUTE)
(42) If static_context is interpretable:

ACCESS_ERRORS (interpreter of static_context, ATOMIC, READ, EXECUTE)
(43) ACCESS_ERRORS (parent, ATOMIC, READ, APPEND_LINKS)
(44) ACCESS_ERRORS (the current activity of parent, ATOMIC, MODIFY, APPEND_IMPLICIT)
(45) EXECUTION_CLASS_HAS_NO_USABLE_EXECUTION_SITES (execution class of

static_context)
(46) EXECUTION_SITE_IS_INACCESSIBLE (site)
(47) EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS (site, static_context)
(48) EXECUTION_SITE_IS_UNKNOWN (site)
(49) If static_context is a foreign execution image:

FOREIGN_EXECUTION_IMAGE_HAS_NO_SITE (static_context)
(50) LABEL_IS_OUTSIDE_RANGE (new_process, the volume on which new_process would

reside)
(51) LABEL_IS_OUTSIDE_RANGE (new_process, the would-be execution site of new_process)
(52) LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES)
(53) LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES_PER_USER)
(54) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(55) If parent has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new_process)
(56) PROCESS_LACKS_REQUIRED_STATUS (parent, (READY, RUNNING, STOPPED,

SUSPENDED))
(57) If parent is not the calling process:

PROCESS_IS_NOT_ANCESTOR (parent)
(58) PROCESS_IS_UNKNOWN (parent)
(59) REFERENCE_CANNOT_BE_ALLOCATED
(60) STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY (static_context)
(61) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", process_type)
(62) If process is the calling process:

VOLUME_IS_FULL (calling process)

(63) NOTE - It is implementation-dependent which underlying resources (e.g. memory) required for process execution
are allocated by PROCESS_CREATE and which are allocated by PROCESS_START.

13.2.2 PROCESS_CREATE_AND_START

(1) PROCESS_CREATE_AND_START (
static_context : Static_context_designator | Foreign_execution_image_designator,
arguments : String,
environment : String,
site : [Execution_site_designator],
implicit_deletion : Boolean,
access_mask : Atomic_access_rights

)
new_process : Process_designator

- 148 -

(2) PROCESS_CREATE_AND_START creates and runs a process asynchronously in one single
operation.

(3) The overall effect is as for the following sequence of operations.

(4) new_process := PROCESS_CREATE (static_context, "process", nil , site,
implicit_deletion, access_mask);

(5) PROCESS_START (new_process, arguments, environment, site, RUNNING);

(6) PROCESS_CREATE_AND_START is an atomic operation for the calling process.

Errors

(7) ACCESS_ERRORS (static_context, ATOMIC, MODIFY, EXECUTE)
(8) For each SDS sds which is the destination of an "in_working_schema_of" link from

new_process:
ACCESS_ERRORS (sds, ATOMIC, SYSTEM_ACCESS)
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_process, sds, ATOMIC, EXPLOIT_SCHEMA)

(9) For each open object object which is the destination of an "open_object" link from the calling
process:

ACCESS_ERRORS (object, ATOMIC, SYSTEM_ACCESS)
If the link's opening mode attribute is READ_ONLY or READ_WRITE,

DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_process, object, ATOMIC, READ, READ_CONTENTS)

If the link's opening mode attribute is WRITE_ONLY or READ_WRITE,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_process , object, ATOMIC, READ, WRITE_CONTENTS)

If the link's opening mode attribute is APPEND_ONLY,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_process , object, ATOMIC, READ, APPEND_CONTENTS)

(10) For the activity activity which is the destination of the "started_in_activity" link from the calling
process:

ACCESS_ERRORS (activity, ATOMIC, SYSTEM_ACCESS)
ACTIVITY_STATUS_IS_INVALID (activity, ACTIVE)

(11) For the user user which is the destination of the "user_identity" link from the calling process:
ACCESS_ERRORS (user, ATOMIC, SYSTEM_ACCESS)

(12) For the user group group which is the destination of the "adopted_user_group" link from the
calling process:

ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)
(13) For the consumer group group which is the destination of the "consumer_identity" link from the

calling process:
ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)

(14) If static_context has an interpreter:
ACCESS_ERRORS (interpreter of static_context, ATOMIC, MODIFY, EXECUTE)

(15) CONTROL_WOULD_NOT_BE_GRANTED (new_process)
(16) EXECUTION_CLASS_HAS_NO_USABLE_EXECUTION_SITES (execution class of

static_context)
(17) EXECUTION_SITE_IS_INACCESSIBLE (site)

- 149 -

(18) EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS (site, static_context)
(19) EXECUTION_SITE_IS_UNKNOWN (site)
(20) If static_context is a foreign execution image:

FOREIGN_EXECUTION_IMAGE_HAS_NO_SITE (static_context)
(21) FOREIGN_SYSTEM_IS_INVALID (site, new_process, HAS_EXECUTIVE_SYSTEM)
(22) INTERPRETER_IS_INTERPRETABLE (interpreter of static_context)
(23) INTERPRETER_IS_NOT_AVAILABLE (static_context)
(24) LABEL_IS_OUTSIDE_RANGE (new_process, the volume on which new_process would

reside)
(25) LABEL_IS_OUTSIDE_RANGE (new_process, the would-be execution site of new_process)
(26) LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES_PER_USER)
(27) REFERENCE_CANNOT_BE_ALLOCATED
(28) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(29) STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTED (static_context, site)
(30) STATIC_CONTEXT_IS_BEING_WRITTEN (static_context)
(31) STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY (static_context)
(32) If process is the calling process:

VOLUME_IS_FULL (calling process)

13.2.3 PROCESS_GET_WORKING_SCHEMA

(1) PROCESS_GET_WORKING_SCHEMA(
process : [Process_designator]

)
sds_sequence : Name_sequence

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_GET_WORKING_SCHEMA returns in sds_sequence the sequence of SDS names
of the SDSs forming the working schema of the process process.

(4) If process is not the calling process a read lock of the default mode is established on process.

Errors

(5) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, READ, READ_LINKS)

(6) PROCESS_LACKS_REQUIRED_STATUS (process, (READY, RUNNING, SUSPENDED,
STOPPED))

(7) PROCESS_IS_UNKNOWN (process)

13.2.4 PROCESS_INTERRUPT_OPERATION

(1) PROCESS_INTERRUPT_OPERATION (
process : Process_designator

)

(2) PROCESS_INTERRUPT_OPERATION interrupts a process.

- 150 -

(3) There is no effect if process is not executing a PCTE operation; otherwise the interruption of all
operations currently being executed by process is requested, with the following effect on
process.

(4) After a period of time, each such interrupted operation of process, whether suspended or not, is
terminated with the error OPERATION_IS_INTERRUPTED. For any waiting operation the
corresponding "process_waiting_for" link is deleted.

(5) The time between the start of this operation and the end of the interruption of the operations of
process is implementation-dependent.

Errors

(6) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_EXECUTION)
(8) PROCESS_LACKS_REQUIRED_STATUS (process, RUNNING)
(9) The following implementation-dependent error may be raised:

PROCESS_IS_THE_CALLER (process)
(10) PROCESS_IS_UNKNOWN (process)

(11) NOTE - This operation is intended to provide the means for a tool to control other tools, e.g. to cause an operation
of a deadlocked tool to be abandoned, or to interrupt a tool which is not itself controlling the duration of
operations.

13.2.5 PROCESS_RESUME

(1) PROCESS_RESUME (
process : Process_designator

)

(2) PROCESS_RESUME resumes the suspended process process, by changing its status to
RUNNING.

Errors

(3) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(4) If the execution site of process is a foreign system:

FOREIGN_SYSTEM_IS_INVALID (execution site of process, process,
SUPPORTS_IPC_AND_CONTROL)

(5) PROCESS_LACKS_REQUIRED_STATUS (process, SUSPENDED)
(6) PROCESS_IS_THE_CALLER (process)
(7) PROCESS_IS_UNKNOWN (process)

13.2.6 PROCESS_SET_ALARM

(1) PROCESS_SET_ALARM (
duration : Natural

)

(2) PROCESS_SET_ALARM changes the time left until alarm of the calling process to duration.

Errors

(3) None.

- 151 -

13.2.7 PROCESS_SET_FILE_SIZE_LIMIT

(1) PROCESS_SET_FILE_SIZE_LIMIT (
process : [Process_designator],
fslimit : Natural

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_FILE_SIZE_LIMIT changes the process file size limit of process to fslimit.

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

(5) If fslimit is greater than the current value of the process file size limit of process:
PRIVILEGE_IS_NOT_GRANTED (PCTE_EXECUTION)

(6) PROCESS_IS_UNKNOWN (process)

13.2.8 PROCESS_SET_OPERATION_TIME_OUT

(1) PROCESS_SET_OPERATION_TIME_OUT (
duration : Natural

)

(2) PROCESS_SET_OPERATION_TIME_OUT sets the process time-out of the calling process to
duration.

Errors

(3) None.

13.2.9 PROCESS_SET_PRIORITY

(1) PROCESS_SET_PRIORITY (
process : [Process_designator],
priority : Natural

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_PRIORITY sets the process priority of process to MAX_PRIORITY_VALUE
if priority is greater than MAX_PRIORITY_VALUE, and to priority otherwise.

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

(5) If priority is greater than the current value of the process priority of process:
PRIVILEGE_IS_NOT_GRANTED (PCTE_EXECUTION)

(6) PROCESS_IS_UNKNOWN (process)

- 152 -

13.2.10 PROCESS_SET_REFERENCED_OBJECT

(1) PROCESS_SET_REFERENCED_OBJECT (
process : [Process_designator],
reference_name : Actual_key,
object : Object_designator

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_REFERENCED_OBJECT sets a referenced object of process to object.

(4) If a "referenced_object" link from process with the key reference_name already exists, its
destination is changed to object. Otherwise, a "referenced_object" link from process to object
with the key reference_name is created.

Errors

(5) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, APPEND_LINKS)

(6) If process is not the calling process and there is a referenced object reference_name:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_LINKS)

(7) If process is not the calling process:
PROCESS_LACKS_REQUIRED_STATUS (process, READY)

(8) PROCESS_IS_UNKNOWN (process)
(9) REFERENCE_NAME_IS_INVALID (reference_name)
(10) REFERENCED_OBJECT_IS_NOT_MUTABLE (reference_name)
(11) If process is the calling process:

VOLUME_IS_FULL (calling process)

13.2.11 PROCESS_SET_TERMINATION_STATUS

(1) PROCESS_SET_TERMINATION_STATUS (
termination_status : Integer

)

(2) PROCESS_SET_TERMINATION_STATUS provides a value termination_status to be stored
in the process termination status of the calling process when it terminates, provided it is not
terminated by PROCESS_TERMINATE with a termination status parameter.

Errors

(3) VOLUME_IS_FULL (calling process)

13.2.12 PROCESS_SET_WORKING_SCHEMA

(1) PROCESS_SET_WORKING_SCHEMA (
process : [Process_designator],
sds_sequence : Name_sequence

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_WORKING_SCHEMA sets the working schema of a process according to the
sequence of SDSs identified by the SDS names in sds_sequence, replacing the current working
schema, if there is one.

- 153 -

(4) If process is the calling process:

(5) - the previous "sds_in_working_schema" links of process and the "in_working_schema_
of" links from each previous SDS in working schema to process are deleted;

(6) - for each SDS sds identified by sds_sequence(I), an "sds_in_working_schema" link with key
I (starting from I = 1) from process to sds and an "in_working_schema_of" link from sds to
process are created.

(7) If process is not the calling process (and process is ready):

(8) - the previous "sds_in_working_schema" links of process are deleted;

(9) - for each SDS sds identified sds_sequence(I), an "sds_in_working_schema" link with key I
(starting from I = 1) from process to sds is created.

(10) A new working schema is created as follows:

(11) - The sequence of SDS names is set to sds_sequence.

(12) - The set of types in working schema is constituted as follows:

(13) . a type in working schema is created for each type associated with a type in SDS in an
SDS of sds_sequence;

(14) . the types in SDS of each created type in working schema are set to the types in SDS with
the same associated type, and the composite names of those types in SDS;

(15) . the usage mode of each created type in working schema is set to the union of the usage
modes of all its types in SDS;

(16) . the other properties of the created types in working schema are determined from their
types in SDS (see 8.5).

Errors

(17) If process is not the calling process and an "sds_in_working_schema" link exists:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_LINKS)

(18) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, APPEND_LINKS)

(19) ACCESS_ERRORS (SDS with name in sds_sequence, ATOMIC, SYSTEM_ACCESS)
(20) If process is the calling process:

DISCRETIONARY_ACCESS_IS_NOT_GRANTED (SDS with name in
sds_sequence, ATOMIC, EXPLOIT_SCHEMA)

(21) If process is not the calling process:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process, SDS
with name in sds_sequence, ATOMIC, EXPLOIT_SCHEMA)

(22) LIMIT_WOULD_BE_EXCEEDED (MAX_SDS_IN_WORKING_SCHEMA)
(23) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(24) PROCESS_IS_UNKNOWN (process)
(25) If process is the calling process:

SDS_IS_UNDER_MODIFICATION (SDS with name in sds_sequence)
(26) SDS_IS_UNKNOWN (SDS with name in sds_sequence)
(27) SDS_WOULD_APPEAR_TWICE_IN_WORKING_SCHEMA (sds_sequence)

- 154 -

(28) If process is the calling process:
VOLUME_IS_FULL (calling process)

NOTES

(29) 1 A process need not have the predefined SDSs in its working schema in order to call operations except operations
defined in clause 9 operating on objects or links with types and types in SDS defined in the predefined SDSs.

(30) 2 Setting the working schema is independent of activities. In order to maintain the integrity of working schemas,
operations which affect the typing information contained in SDSs included in a working schema are explicitly
prohibited and a working schema which contains an SDS with uncommitted modifications of the typing
information may not be created.

13.2.13 PROCESS_START

(1) PROCESS_START (
process : Process_designator,
arguments : String,
environment : String,
site : [Execution_site_designator],
initial_status : Initial_status

)

(2) PROCESS_START starts the execution of the static context or foreign execution image
static_context of a process that has already been created.

(3) If site is supplied the "executed_on" link of process is replaced (if different) by one with
destination site; otherwise site is the destination of that link

(4) The process status of process is changed to initial_status, provided process is ready.

(5) A link is created to process from each destination of the following links:

(6) - "in_working_schema_of" from each destination of "sds_in_working_schema";

(7) - "running_process" from the destination of "executed_on";

(8) - "opened_by" from each destination of "open_object";

(9) - "process_started_in" from the destination of "started_in_activity";

(10) - "user_identity_of" from the destination of "user_identity";

(11) - "adopted_user_group_of" from the destination of "adopted_user_group";

(12) - "consumer_process" from the destination of "consumer_identity", if any.

(13) These links are created even if any origin object is on a read-only volume or is a replicated copy.

(14) For each "open_object" link of process, the contents of the destination are opened and the
current position in the object contents is shared with the process that created process.
Furthermore, if the parent process of process is not the calling process, then:

(15) - a lock is acquired by the activity of the parent process on the opened object;

(16) - if the calling process has closed the object contents, then the current position of the opened
object is determined in the same way as by CONTENTS_OPEN, in the opening mode of the
"open_object" link.

(17) If static_context is interpretable, an "actual_interpreter" link is created to the interpreter of the
interpretable static context, if it has one, else to the default interpreter of process if it has one,
else to the default interpreter of the home object of process, provided there is a home object and
it has a default interpreter.

- 155 -

(18) The "process_string_arguments" and "process_environment" attributes of process are set to
arguments and environment respectively.

Errors

(19) ACCESS_ERRORS (static_context, ATOMIC, READ, EXECUTE)
(20) ACCESS_ERRORS (any interpreter, ATOMIC, READ, EXECUTE)
(21) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(22) For each SDS sds which is the destination of an "in_working_schema_of" link from process:

ACCESS_ERRORS (sds, ATOMIC, SYSTEM_ACCESS)
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process,
sds, ATOMIC, EXPLOIT_SCHEMA)
SDS_IS_UNDER_MODIFICATION (sds)
SDS_IS_UNKNOWN (sds)

(23) For the execution site site which is the destination of an "executed_on" link from process:
ACCESS_ERRORS (site, ATOMIC, SYSTEM_ACCESS)

(24) For each open object object which is the destination of an "open_object" link from process:
(25) ACCESS_ERRORS (object, ATOMIC, SYSTEM_ACCESS)
(26) If the link's opening mode attribute is READ_ONLY or READ_WRITE,

DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process,
object, ATOMIC, READ, READ_CONTENTS)

(27) If the link's opening mode attribute is WRITE_ONLY or READ_WRITE,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process,
object, ATOMIC, READ, WRITE_CONTENTS)

(28) If the link's opening mode attribute is APPEND_ONLY,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process,
object, ATOMIC, READ, APPEND_CONTENTS)

(29) For the activity activity which is the destination of the "started_in_activity" link from process:
ACCESS_ERRORS (activity, ATOMIC, SYSTEM_ACCESS)
ACTIVITY_STATUS_IS_INVALID (activity, ACTIVE)

(30) For the user user which is the destination of the "user_identity" link from process:
ACCESS_ERRORS (user, ATOMIC, SYSTEM_ACCESS)

(31) For the user group group which is the destination of the "adopted_user_group" link from
process:

ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)
(32) For the consumer group group which is the destination of the "consumer_identity" link from

process:
ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)

(33) ACCESS_ERRORS (parent process of process, ATOMIC, SYSTEM_ACCESS)
(34) EXECUTION_SITE_IS_INACCESSIBLE (site)
(35) EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS (site, static_context)
(36) EXECUTION_SITE_IS_UNKNOWN (site)
(37) If site is a foreign system:

FOREIGN_SYSTEM_IS_INVALID (site, process, (HAS_EXECUTIVE_SYSTEM,
SUPPORTS_EXECUTIVE_CONTROL, SUPPORTS_MONITOR))

(38) INTERPRETER_IS_INTERPRETABLE (interpreter of static_context)

- 156 -

(39) INTERPRETER_IS_NOT_AVAILABLE (static_context)
(40) LABEL_IS_OUTSIDE_RANGE (process, site)
(41) LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES)
(42) PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(43) PROCESS_IS_UNKNOWN (process)
(44) STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTED (static_context, site)
(45) STATIC_CONTEXT_IS_BEING_WRITTEN (static_context)
(46) STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY (static_context)

13.2.14 PROCESS_SUSPEND

(1) PROCESS_SUSPEND (
process : [Process_designator],
alarm : [Natural]

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SUSPEND suspends a running process.

(4) PROCESS_SUSPEND changes the status of process to SUSPENDED, provided it already has
the value RUNNING; and if alarm is supplied and process is the calling process sets the value
of time left until alarm to alarm.

(5) If time left until alarm is non-zero, it defines a maximum duration in seconds for the suspension
of the process. If this duration expires, the process receives an implementation-dependent alarm
message of message type WAKE (provided it has reserved a message queue and is the listened-
to process for the message queue) and is resumed.

Errors

(6) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

(7) If the execution site of process is a foreign system:
FOREIGN_SYSTEM_IS_INVALID (execution site of process, process,
SUPPORTS_IPC_AND_CONTROL)

(8) PROCESS_LACKS_REQUIRED_STATUS (process, RUNNING)
(9) If alarm is supplied:

PROCESS_IS_NOT_THE_CALLER (process)
(10) PROCESS_IS_UNKNOWN (process)

13.2.15 PROCESS_TERMINATE

(1) PROCESS_TERMINATE (
process : [Process_designator],
termination_status : [Integer]

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_TERMINATE terminates a process. In certain conditions this results in the
(composite) deletion of the process or its parent.

- 157 -

(4) Any ongoing operations invoked from process are interrupted in the same way as by
PROCESS_INTERRUPT_OPERATION.

(5) PROCESS_TERMINATE changes the links and attributes of process as follows:

(6) - "process_status" is set to TERMINATED;

(7) - "process_termination_time" is set to the current time;

(8) - "process_termination_status" is set to termination_status, if supplied, otherwise to
EXIT_ERROR if process is the calling process or FORCED_TERMINATION if not.

(9) Destinations of "open_object" links from process are closed.

(10) The following links from process and their reverse links are deleted:

(11) - "sds_in_working_schema" links and their reverse "in_working_schema_of" links;

(12) - "executed_on" links and their reverse "running_process" links;

(13) - "opened_object" links and their reverse "opened_by" links;

(14) - "reserved_message_queue" links and their reverse "reserved_by" links;

(15) - "user_identity" links and their reverse "user_identity_of" links;

(16) - "adopted_user_group" links and their reverse "adopted_user_group_of" links;

(17) - "consumer_identity" links and their reverse "consumer_process" links.

(18) The "adoptable_user_group" links from process are deleted.

(19) If the parent of process is waiting for termination of process then the parent of process
discontinues waiting and "acknowledged_termination" of process is set to true.

(20) If "deletion_upon_termination" and "acknowledged_termination" of process are both true, all
component processes of process are ready or terminated, and the conditions for the object
deletion of process hold (see 9.3.5), then process is deleted.

(21) If the parent of process is terminated, "deletion_upon_termination" and
"acknowledged_termination" of the parent of process are both true, all component processes of
the parent of process are ready or terminated, and the conditions for the object deletion of the
parent of process hold (see 9.3.5), then the parent of process is deleted.

(22) If deletion of a "process" object is not possible, then the "child_process" link remains.

(23) If an activity is initiated by a process and no corresponding ACTIVITY_ABORT or
ACTIVITY_END call is made before termination of the process, then an ACTIVITY_END call
is implied if the termination status of the terminating process is EXIT_SUCCESS and an
ACTIVITY_ABORT call is implied otherwise.

(24) When a process is started, and "deletion_upon_termination" is true, then the activity in which
the process starts acquires a default delete lock on the process. If "delete_upon_termination" is
false when the process starts and is set true while the process is running then the delete lock is
acquired at that point.

Errors

(25) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, (WRITE_ATTRIBUTES,
WRITE_LINKS))

- 158 -

(26) PROCESS_LACKS_REQUIRED_STATUS (process, (READY, RUNNING, STOPPED,
SUSPENDED))

(27) PROCESS_IS_INITIAL_PROCESS (process)
(28) PROCESS_IS_UNKNOWN (process)

13.2.16 PROCESS_UNSET_REFERENCED_OBJECT

(1) PROCESS_UNSET_REFERENCED_OBJECT (
process : [Process_designator],
reference_name : Actual_key

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_UNSET_REFERENCED_OBJECT unsets a referenced object of process.

(4) If there is no "referenced_object" link from process with key reference_name, the operation has
no effect. Otherwise, the "referenced_object" link from process with key reference_name is
deleted.

Errors

(5) If process is not the calling process and there is a "referenced_object" link from process with
key reference_name:

ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_LINKS)
(6) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(7) PROCESS_IS_UNKNOWN (process)
(8) REFERENCE_NAME_IS_INVALID (reference_name)
(9) REFERENCED_OBJECT_IS_NOT_MUTABLE (reference_name)

13.2.17 PROCESS_WAIT_FOR_ANY_CHILD

(1) PROCESS_WAIT_FOR_ANY_CHILD (
)

termination_status : Integer,
child : Natural

(2) PROCESS_WAIT_FOR_ANY_CHILD sets the calling thread of the calling process waiting
until any of its child processes has terminated.

(3) If any child of the calling process has process status TERMINATED and acknowledged
termination false, the acknowledged termination of the terminated child process is set to true
and that child process is deleted if it has deletion upon termination true and the deletion
conditions (see 13.2.15) are satisfied. If more than one child process fulfils the condition, one is
selected in an implementation-defined manner to fill the role of terminated child process.

(4) If no child of the calling process has process status TERMINATED, the operation waits and a
"process_waiting_for" link is created to the calling process with waiting type
WAITING_FOR_TERMINATION. The operation continues when the process status of any
child process changes to TERMINATED.

(5) The process termination status of the terminated child is returned in termination_status, unless
the confidentiality label of the calling process does not dominate that of the terminated child
process or the integrity label of the calling process is not dominated by that of the terminated

- 159 -

child process, in which cases termination_status is set to UNAVAILABLE (a binding-defined
value different from the named values of the "process_termination_status" attribute). The key of
the "child_process" link from the calling process to the terminated child is returned in child.

Errors

(6) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (the terminated child process, ATOMIC,
WRITE_ATTRIBUTES)

(7) PROCESS_HAS_NO_UNTERMINATED_CHILD

13.2.18 PROCESS_WAIT_FOR_CHILD

(1) PROCESS_WAIT_FOR_CHILD (
child : Process_designator

)
termination_status : Integer

(2) PROCESS_WAIT_FOR_CHILD sets the calling thread of the calling process waiting until the
nominated child process has terminated.

(3) If child has process status TERMINATED and acknowledged termination false, the
acknowledged termination of child is set to true and child is deleted if it has deletion upon
termination true and the deletion conditions (see 13.2.15) are satisfied.

(4) Otherwise, the operation waits and a "process_waiting_for" link is created to child with waiting
type WAITING_FOR_TERMINATION. The operation continues when the process status of
child changes to TERMINATED.

(5) PROCESS_WAIT_FOR_CHILD returns the process termination status of child in
termination_status, unless the confidentiality label of the calling process does not dominate that
of child or the integrity label of the calling process is not dominated by that of child, in which
cases termination_status is set to UNAVAILABLE (a binding-defined value different from the
named values of the "process_termination_status" attribute).

Errors

(6) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (child, ATOMIC,
WRITE_ATTRIBUTES)

(7) PROCESS_IS_NOT_TERMINABLE_CHILD (child)
(8) PROCESS_IS_UNKNOWN (child)
(9) PROCESS_TERMINATION_IS_ALREADY_ACKNOWLEDGED (child)

13.3 Security operations

13.3.1 PROCESS_ADOPT_USER_GROUP

(1) PROCESS_ADOPT_USER_GROUP (
process : [Process_designator],
user_group : User_group_designator

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_ADOPT_USER_GROUP changes the adopted user group of process to user_group.

(4) Let G be user_group, P be process, and G' be the previous adopted user group.

- 160 -

(5) If process is the calling process:

(6) - The following links are deleted:

(7) . "adopted_user_group" from P to G';

(8) . "adopted_user_group_of" from G' to P;

(9) . "adoptable_user_group" from P to G.

(10) - The following links are created, setting the key values to the next available natural in each
case:

(11) . "adopted_user_group" from P to G;

(12) . "adopted_user_group_of" from G to P;

(13) . "adoptable_user_group" from P to G'.

(14) - The effective security groups of the process are changed to consist of:

(15) . The user user of process (no change);

(16) . user_group;

(17) . all the supergroups of user_group;

(18) . all the program groups to which the static contexts run or executed by the calling process
belong (no change);

(19) . all the supergroups to which these program groups belong (no change).

(20) If process is not the calling process (and is ready):

(21) - The following links are deleted:

(22) . "adopted_user_group" from P to G';

(23) . "adoptable_user_group" from P to G.

(24) - The following links are created, setting the key values to the next available natural in each
case:

(25) . "adopted_user_group" from P to G;

(26) . "adoptable_user_group" from P to G'.

(27) If P is the calling process, there is a "consumer_identity" link from P to a consumer group object
C, and if the new effective security groups are such that EVALUATE_PROCESS (P, C,
EXPLOIT_CONSUMER_IDENTITY) is false (see 19.1.2), then the "consumer_identity" link
from P to C and the "consumer_process" link from C to P are deleted.

(28) The working schema of process is reset to empty by deleting all "sds_in_working_schema" links
from process and their reverse "in_working_schema_of" links.

Errors

(29) Access errors are determined on the basis of the discretionary context in force before the change
in the effective security groups which this operation produces.

(30) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, APPEND_LINKS)

(31) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_LINKS)

- 161 -

(32) OBJECT_IS_INACCESSIBLE (user_group, ATOMIC)
(33) OBJECT_IS_INACCESSIBLE (G', ATOMIC)
(34) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(35) PROCESS_IS_UNKNOWN (process)
(36) SECURITY_GROUP_IS_NOT_ADOPTABLE (user_group)
(37) SECURITY_GROUP_IS_UNKNOWN (user_group)
(38) USER_IS_NOT_MEMBER (user, user_group)
(39) If process is the calling process:

VOLUME_IS_FULL (calling process)

NOTES

(40) 1 This operation changes the user group which is currently adopted by the designated process, and therefore
changes the role in which the user is acting.

(41) 2 Users may be removed from user groups at any time. It is therefore necessary to check that the current user is
still a member of the designated user group before adopting it. It is insufficient to rely on the
"adoptable_user_group" links.

13.3.2 PROCESS_GET_DEFAULT_ACL

(1) PROCESS_GET_DEFAULT_ACL (
)

acl : Acl

(2) PROCESS_GET_DEFAULT_ACL returns the default atomic ACL of the calling process as acl.

Errors

(3) None.

13.3.3 PROCESS_GET_DEFAULT_OWNER

(1) PROCESS_GET_DEFAULT_OWNER (
)

group : Group_identifier

(2) PROCESS_GET_DEFAULT_OWNER returns the group identifier of the default object owner
of the calling process as group.

Errors

(3) None.

13.3.4 PROCESS_SET_ADOPTABLE_FOR_CHILD

(1) PROCESS_SET_ADOPTABLE_FOR_CHILD (
process : [Process_designator],
user_group : User_group_designator,
adoptability : Boolean

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_ADOPTABLE_FOR_CHILD changes the "adoptable_for_child" attribute of
the "adoptable_user_group" link from process to user_group to adoptability.

- 162 -

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_LINKS)

(5) If process is not the calling process:
PROCESS_LACKS_REQUIRED_STATUS (process, READY)

(6) PROCESS_IS_UNKNOWN (process)
(7) SECURITY_GROUP_IS_UNKNOWN (user_group)
(8) SECURITY_GROUP_IS_NOT_ADOPTABLE (user_group, process)

13.3.5 PROCESS_SET_DEFAULT_ACL_ENTRY

(1) PROCESS_SET_DEFAULT_ACL_ENTRY (
process : [Process_designator],
group : Group_identifier,
modes : Atomic_access_rights

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_DEFAULT_ACL_ENTRY changes the default atomic ACL of the process
process.

(4) The ACL entry for group in the "default_atomic_acl" attribute of process is set to modes.

Errors

(5) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

(6) DEFAULT_ACL_WOULD_BE_INVALID (process, group, modes)
(7) DEFAULT_ACL_WOULD_BE_INCONSISTENT_WITH_DEFAULT_OBJECT_OWNER

(process, group)
(8) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(9) PROCESS_IS_UNKNOWN (process)
(10) SECURITY_GROUP_IS_UNKNOWN (group)

13.3.6 PROCESS_SET_DEFAULT_OWNER

(1) PROCESS_SET_DEFAULT_OWNER (
process : [Process_designator],
group : Group_identifier

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_DEFAULT_OWNER changes the default object owner of process to the
security group identifier group.

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

- 163 -

(5) DEFAULT_ACL_WOULD_BE_INCONSISTENT_WITH_DEFAULT_OBJECT_OWNER
(process, group)

(6) PROCESS_IS_UNKNOWN (process)
(7) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(8) SECURITY_GROUP_IS_UNKNOWN (group)

13.3.7 PROCESS_SET_USER

(1) PROCESS_SET_USER (
user : User_designator,
user_group : User_group_designator

)

(2) PROCESS_SET_USER sets the user of the calling process to user and changes the adopted user
group of the calling process to user_group.

(3) Let P be the calling process, U be the previous user of the process, G be the previous adopted
user group, U' be user, and G' be user_group.

(4) The following links are deleted:

(5) - "user_identity" from P to U;

(6) - "user_identity_of" from U to P;

(7) - "adopted_user_group" from P to G;

(8) - "adopted_user_group_of" from G to P;

(9) - "adoptable_user_group" from P to the set of user groups currently so linked, excluding G.

(10) The following links are created, setting the key values to the next available integer in each case:

(11) - "user_identity" from P to U';

(12) - "user_identity_of" from U' to P;

(13) - "adopted_user_group" from P to G';

(14) - "adopted_user_group_of" from G' to P;

(15) - "adoptable_user_group" from P to each user group of which U' is a member, excluding G'.

(16) The effective security groups of the process are changed to consist of:

(17) - user;

(18) - user_group;

(19) - all the supergroups of user_group;

(20) - all the program groups to which the static contexts run or executed by the calling process
belong, unchanged;

(21) - all the supergroups to which these program groups belong (no change).

(22) Let W be the execution site of P and V be the volume on which P resides, and let P' be P as
updated by the operation. The confidentiality label of P is set to the confidentiality label C
which is the conjunction of confidentiality low label of W and the confidentiality low label of V,
providing that the following are all true (see 20.1.3, 20.1.4):

- 164 -

(23) LABEL_DOMINATES (confidentiality clearance of user, C)

(24) CONFIDENTIALITY_LABEL_WITHIN_RANGE (P', W)

(25) CONFIDENTIALITY_LABEL_WITHIN_RANGE (P', V)

(26) The integrity context of P is set to the integrity label I which is the disjunction of the user's
integrity clearance, the integrity high label of W, and the integrity high label of V, providing that
the following are all true:

(27) LABEL_DOMINATES (I, integrity clearance of user)

(28) INTEGRITY_LABEL_WITHIN_RANGE (P', W)

(29) INTEGRITY_LABEL_WITHIN_RANGE (P', V)

(30) If there is a link of type "consumer_identity" from P to a consumer group C, and if the new
effective security groups are such that

EVALUATE_PROCESS (P, C, EXPLOIT_CONSUMER_IDENTITY)

is false, then the "consumer_identity" link from P to C and the "consumer_process" link from C
to P are deleted.

(31) The working schema of the calling process is reset to its initial value (empty) by deleting all
"sds_in_working_schema" links from the calling process and their reverse
"in_working_schema_of" links.

Errors

(32) Error conditions are determined on the basis of the discretionary context in force before the
change in the effective security groups which this operation produces.

(33) ACCESS_ERRORS (user, ATOMIC, SYSTEM_ACCESS)
(34) ACCESS_ERRORS (user_group, ATOMIC, SYSTEM_ACCESS)
(35) OBJECT_IS_INACCESSIBLE (U, ATOMIC)
(36) OBJECT_IS_INACCESSIBLE (G, ATOMIC)
(37) PRIVILEGE_IS_NOT_GRANTED (PCTE_SECURITY)
(38) PROCESS_LABELS_WOULD_BE_INCOMPATIBLE (user)
(39) SECURITY_GROUP_IS_UNKNOWN (user)
(40) SECURITY_GROUP_IS_UNKNOWN (user_group)
(41) USER_IS_NOT_MEMBER (user, user_group)

(42) NOTE - This operation establishes the user on behalf of which the current process will run, and the role in which
the user will act. It is intended to be used by the user authentication tool.

13.4 Profiling operations

13.4.1 PROCESS_PROFILING_OFF

(1) PROCESS_PROFILING_OFF (
handle : Profile_handle

)
buffer : Buffer

(2) PROCESS_PROFILING_OFF terminates the profiling of the calling process initiated with the
profile handle handle, and returns the results in buffer.

- 165 -

Errors

(3) PROFILING_IS_NOT_SWITCHED_ON (handle)

13.4.2 PROCESS_PROFILING_ON

(1) PROCESS_PROFILING_ON (
start : Address,
end : Address,
count : Natural

)
handle : Profile_handle

(2) PROCESS_PROFILING_ON initiates profiling of the calling process. Profiling is an
implementation-defined action. It continues until the operation PROCESS_PROFILING_
OFF is called with the returned profile handle handle or the calling process terminates.

(3) If profiling is already initiated for the calling process, it is reinitiated with a new profiling buffer
identified by the returned profile handle.

Errors

(4) MEMORY_REGION_IS_NOT_IN_PROFILING_SPACE (start, end)

(5) NOTE - Profiling is implementation-defined but is intended to provide in each element of a profiling buffer
identified by handle a count of the number of times the process was executing at, or accessing, a memory address
associated with that element. start and end specify a region of the process memory to be profiled: the mapping to
elements of the buffer is implementation-defined. Other calls of PROCESS_PROFILING_ON can request
profiling into other buffers.

13.5 Monitoring operations

13.5.1 PROCESS_ADD_BREAKPOINT

(1) PROCESS_ADD_BREAKPOINT (
process : Process_designator,
breakpoint : Address

)

(2) PROCESS_ADD_BREAKPOINT adds a breakpoint for process. The effect is implementation-
defined.

Errors

(3) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_CONTENTS)
(4) MEMORY_ADDRESS_IS_OUT_OF_PROCESS (breakpoint, process)
(5) PROCESS_LACKS_REQUIRED_STATUS (process, STOPPED)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_IS_UNKNOWN (process)

(8) NOTE - The format of a breakpoint is implementation-defined but it is intended to define an instruction or data
address, access to which will cause the accessing thread of process to stop.

- 166 -

13.5.2 PROCESS_CONTINUE

(1) PROCESS_CONTINUE (
process : Process_designator

)

(2) PROCESS_CONTINUE continues any stopped threads of a process.

(3) The status of process is set to RUNNING.

Errors

(4) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_CONTENTS)
(5) PROCESS_LACKS_REQUIRED_STATUS (process, STOPPED)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_IS_UNKNOWN (process)

13.5.3 PROCESS_PEEK

(1) PROCESS_PEEK (
process : Process_designator,
address : Address

)
value : Process_data

(2) PROCESS_PEEK returns as value the contents at address of process.

Errors

(3) ACCESS_ERRORS (process, ATOMIC, READ, READ_CONTENTS)
(4) MEMORY_ADDRESS_IS_OUT_OF_PROCESS (address, process)
(5) PROCESS_LACKS_REQUIRED_STATUS (process, STOPPED)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_IS_UNKNOWN (process)

13.5.4 PROCESS_POKE

(1) PROCESS_POKE (
process : Process_designator,
address : Address,
value : Process_data

)

(2) PROCESS_POKE modifies process at address to value.

Errors

(3) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_CONTENTS)
(4) MEMORY_ADDRESS_IS_OUT_OF_PROCESS (address, process)
(5) PROCESS_LACKS_REQUIRED_STATUS (process, STOPPED)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_IS_UNKNOWN (process)

- 167 -

13.5.5 PROCESS_REMOVE_BREAKPOINT

(1) PROCESS_REMOVE_BREAKPOINT (
process : Process_designator,
breakpoint : Address

)

(2) PROCESS_REMOVE_BREAKPOINT removes a breakpoint breakpoint of process process.

Errors

(3) ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_CONTENTS)
(4) BREAKPOINT_IS_NOT_DEFINED (breakpoint)
(5) PROCESS_LACKS_REQUIRED_STATUS (process, STOPPED)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_IS_UNKNOWN (process)

13.5.6 PROCESS_WAIT_FOR_BREAKPOINT

(1) PROCESS_WAIT_FOR_BREAKPOINT (
process : Process_designator

)
breakpoint : Address

(2) PROCESS_WAIT_FOR_BREAKPOINT sets the calling thread of the calling process waiting
until the process process is stopped or terminated.

(3) If process has process status TERMINATED, the error condition
PROCESS_LACKS_REQUIRED_STATUS occurs.

(4) Otherwise, a "process_waiting_for" link is created to process with waiting type
WAITING_FOR_TERMINATION. The operation waits until process reaches a breakpoint, in
which case the breakpoint is returned in breakpoint, or the process status of process changes to
TERMINATED, in which case the error condition PROCESS_IS_TERMINATED occurs.

Errors

(5) ACCESS_ERRORS (process, ATOMIC, MODIFY, READ_CONTENTS)
(6) PROCESS_IS_NOT_CHILD (process)
(7) PROCESS_LACKS_REQUIRED_STATUS (process, (READY, RUNNING, STOPPED,

SUSPENDED))
(8) PROCESS_IS_UNKNOWN (process)

14 Message queues

14.1 Message queue concepts

(1) Message ::
DATA : seq of Octet
MESSAGE_TYPE : Message_type

(2) Received_message ::
MESSAGE : Message
POSITION : Natural

- 168 -

(3) Message_type = Standard_message_type | Notification_message_type
| Implementation_defined_message_type | Undefined_message_type

(4) Message_types = set of Message_type | ALL_MESSAGE_TYPES

(5) Standard_message_type = interrupt | quit | finish | suspend | end | abort |
deadlock | wake

(6) Implementation_defined_message_type :: Token

(7) Undefined_message_type :: Token

(8) Handler :: Token

(9) sds system:

(10) message_queue: child type of object with
attribute

reader_waiting: (read) non_duplicated boolean ;
writer_waiting: (read) non_duplicated boolean ;
space_used: (read) non_duplicated natural ;
total_space: (read) natural ;
message_count: (read) non_duplicated natural ;
last_send_time: (read) non_duplicated time ;
last_receive_time: (read) non_duplicated time ;

link
reserved_by: (navigate) non_duplicated designation link to process;
listened_to: (navigate) non_duplicated designation link to process;
notifier: (navigate) non_duplicated designation link (notifier_key: natural) to

object with
attribute

modification_event: (read) boolean ;
change_event: (read) boolean ;
delete_event: (read) boolean ;
move_event: (read) boolean ;

end notifier;
end message_queue;

(11) end system;

(12) Messages and message queues allow processes to communicate. A message queue has an
associated sequence of messages. A message contains data, and has a message type. The space
occupied by a message is implementation-defined. For notification message types see 15.1.2.

(13) Implementation_defined_message_type and Undefined_message_type are implementation-
defined types disjoint from each other and from Standard_message_type and
Notification_message_type. The meanings of implementation-defined message types are
implementation-defined. For the intended meanings of standard message types see Note 3 below.

(14) The value ALL_MESSAGE_TYPES denotes the set of all message types, including
implementation-defined and undefined message types.

(15) Each message in a message queue is assigned a position number which it retains while it is in the
queue. The position numbers are positive naturals, monotonically increasing with time of arrival
in the queue but otherwise implementation-dependent.

(16) Reader waiting is true if and only if one or more processes are waiting to receive a message.

(17) Writer waiting is true if and only if one or more processes are waiting to send a message.

(18) The space used is the space currently required by the message queue to hold its messages, in
octets.

- 169 -

(19) The total space is the maximum possible size of the space used. This may vary between message
queues and is initialized to an implementation-defined value which must not be less than four
times MAX_MESSAGE_SIZE (see clause 24). An implementation may place an upper limit on
the total space of a message queue; this must not be less than
MAX_MESSAGE_QUEUE_SPACE (see clause 24).

(20) The message count is the number of messages in the message queue.

(21) The last send time and last receive time record the system time on the last occasion that a
message was sent to the queue and received from the queue, respectively. Initially they are equal
to the default initial value for time attributes. If the last sent message was sent through
MESSAGE_SEND_WAIT, the last send time is the system time when the message actually
entered the queue (at the end of the waiting period). If the last received message was received
through MESSAGE_RECEIVE_WAIT, last receive time is the system time when the message
was actually received from the queue (at the end of the waiting period).

(22) The destination of the "reserved_by" link, if any, is called the reserving process of the message
queue; it is also said to have reserved the message queue. The reserving process is the only
process which can receive or peek messages from the message queue, and it must have adequate
read access permission to the message queue. If there is no reserving process then any process
can receive or peek messages, subject to access permission.

(23) The destination of the "listened_to" link, if any, is the reserving process (which must exist), and
indicates that the reserving process has an associated procedure which is executed on the raising
of a message queue event by the appearance of a message of one of a specified set of message
types in the message queue. Such a procedure is called a handler. In this case the reserving
process is called the listening process of the message queue. The "listened_to" link is reversed
by an "is_listener" link, with an attribute which defines the message types of messages for which
the handler is executed. The handler is invoked with a single argument, which denotes the
affected message queue in a binding-defined manner. The types of a handler and of its argument
are binding-defined.

(24) Notifiers are described in 15.1.

NOTES

(25) 1 An implicit modification of predefined attributes of a message queue does not require a write lock on the message
queue.

(26) 2 The intended meanings of the standard message types are as follows.

(27) - INTERRUPT: user interruption;

(28) - QUIT: user wants to quit;

(29) - FINISH: the receiving process should terminate;

(30) - SUSPEND: the receiving process should suspend itself;

(31) - END: the current activity of the receiving process should be normally terminated;

(32) - ABORT: the current activity of the receiving process should be abnormally terminated;

(33) - DEADLOCK: deadlock has been detected;

(34) - WAKE: the receiving process's time left until alarm has expired (see 13.1.4).

(35) 3 A process can send messages to itself. A message queue can have several concurrent readers if there is no
reserving process. A message queue can have several concurrent writers. If more than one process is eligible to
receive a message, it is not defined which of the eligible processes receives it.

(36) 4 The associated sequences of messages of message queues are not affected by transaction rollback.

- 170 -

(37) 5 The handler is executed and the listening process status is changed to RUNNING, even if the listening process is
suspended — see 14.1.

14.2 Message queue operations

14.2.1 MESSAGE_DELETE

(1) MESSAGE_DELETE (
queue : Message_queue_designator,
position : Natural

)

(2) MESSAGE_DELETE removes the message with message number position from the message
queue queue. The space used of queue is decremented by the space used by the removed
message, and the message count of queue is decremented by 1.

(3) A read lock of the default mode is obtained on queue.

(4) A read lock of the default mode is obtained on queue.

Errors

(5) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_CONTENTS)
(6) MESSAGE_POSITION_IS_NOT_VALID (position, queue)
(7) MESSAGE_QUEUE_IS_RESERVED (queue)

14.2.2 MESSAGE_PEEK

(1) MESSAGE_PEEK (
queue : Message_queue_designator,
types : Message_types,
position : [Natural]

)
message : [Received_message]

(2) MESSAGE_PEEK reads a message from the message queue queue without removing it from
queue. types specifies the set of acceptable message types. position specifies a position in
queue; if it is 0 or not supplied, the position is the beginning of queue; otherwise it is the
position immediately before the message with position number position.

(3) If queue contains no messages of an acceptable message type after the specified position, then
no message is returned. Otherwise a copy of the next message of an acceptable message type
after the specified position is returned. In either case queue is unchanged.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, READ, READ_CONTENTS)
(5) MESSAGE_POSITION_IS_NOT_VALID (position, queue)
(6) MESSAGE_QUEUE_IS_RESERVED (queue)

- 171 -

14.2.3 MESSAGE_RECEIVE_NO_WAIT

(1) MESSAGE_RECEIVE_NO_WAIT (
queue : Message_queue_designator,
types : Message_types,
position : [Natural]

)
message : [Received_message]

(2) MESSAGE_RECEIVE_NO_WAIT reads and removes a message from the message queue
queue, but does not wait if there is no message of an acceptable message type in queue. types
specifies the set of acceptable message types. position specifies a position in queue; if it is 0 or
not supplied, the position is the beginning of the queue; otherwise it is the position immediately
before the message with position number position.

(3) If the queue contains no messages of an acceptable message type after the specified position,
then no message is returned. Otherwise the first message of an acceptable type after the
specified position is returned, and that message is removed from queue. The last receive time of
queue is set to the system time, the space used of queue is decremented by the space used of the
removed message, and the message count of queue is decremented by 1.

(4) A read lock of the default mode is obtained on queue.

Errors

(5) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_CONTENTS)
(6) MESSAGE_POSITION_IS_NOT_VALID (position, queue)
(7) MESSAGE_QUEUE_IS_RESERVED (queue)
(8) MESSAGE_TYPES_NOT_FOUND_IN_QUEUE (queue, types, position)

14.2.4 MESSAGE_RECEIVE_WAIT

(1) MESSAGE_RECEIVE_WAIT (
queue : Message_queue_designator,
types : Message_types,
position : [Natural]

)
message : Received_message

(2) MESSAGE_RECEIVE_WAIT reads and removes a message from the message queue queue,
waiting if necessary for a message of an acceptable message type to arrive. types specifies the
set of acceptable message types. position specifies a position in the message queue queue; if it
is 0 or not supplied, the position is the beginning of the queue; otherwise it is the position
immediately before the message with position number position.

(3) If the message queue queue contains one or more messages of an acceptable message type after
the specified position, the first such message is returned, and that message is removed from the
queue. The last receive time of queue is set to the system time, the space used of queue is
decremented by the space used of the removed message, and the message count of queue is
decremented by 1.

(4) If queue contains no messages of any acceptable message type after the specified position, then
the operation waits and reader waiting for queue is set to true, until one of the following
happens.

- 172 -

(5) - A message of an acceptable type is placed on the queue. If the calling process is the
listening process for queue and the message type of the message is one of the specified set of
message types for the associated handler, then the handler is executed; otherwise the
operation proceeds as described above.

(6) - A reserved message queue of the calling process receives a message of message type
WAKE. The error condition MESSAGE_QUEUE_HAS_BEEN_WOKEN then holds.

(7) - The message queue is removed from the object base. The error condition
MESSAGE_QUEUE_HAS_BEEN_DELETED then holds.

(8) - The caller is denied mandatory read access, mandatory write access, or
WRITE_CONTENTS discretionary access to queue. The error condition
CONFIDENTIALITY_WOULD_BE_
VIOLATED or INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED then holds in
the first case, CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED or
INTEGRITY_WOULD_BE_VIOLATED in the second case, and DISCRETIONARY_
ACCESS_IS_NOT_GRANTED in the third case (all under ACCESS_ERRORS).

(9) - The message queue becomes reserved by another process. The error condition
MESSAGE_QUEUE_IS_RESERVED then holds.

(10) A read lock of the default mode is obtained on queue.

Errors

(11) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_CONTENTS)
(12) MESSAGE_POSITION_IS_NOT_VALID (position, queue)
(13) MESSAGE_QUEUE_IS_RESERVED (queue)
(14) MESSAGE_QUEUE_HAS_BEEN_DELETED (queue)
(15) MESSAGE_QUEUE_HAS_BEEN_WOKEN (queue)

14.2.5 MESSAGE_SEND_NO_WAIT

(1) MESSAGE_SEND_NO_WAIT (
queue : Message_queue_designator,
message : Message

)

(2) MESSAGE_SEND_NO_WAIT appends the message message to the message queue queue.

(3) The last send time of queue is set to the system time. The space used of queue is incremented
by the space used by message. The message count of queue is incremented by 1.

(4) A read lock of the default mode is obtained on queue.

Errors

(5) ACCESS_ERRORS (queue, ATOMIC, MODIFY, APPEND_CONTENTS)
(6) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_SIZE)
(7) MESSAGE_QUEUE_WOULD_BE_TOO_BIG (queue)

- 173 -

14.2.6 MESSAGE_SEND_WAIT

(1) MESSAGE_SEND_WAIT (
queue : Message_queue_designator,
message : Message

)

(2) MESSAGE_SEND_WAIT appends the message message to the message queue queue, waiting
if necessary until queue has enough space for it.

(3) If the space used of the message queue queue would not exceed the total space of queue, the
message message is appended to queue. The last send time of queue is set to the system time
when the message is sent (at the end of the waiting period, if any). The space used of queue is
incremented by the space used by message. The message count of queue is incremented by 1.

(4) If the space used of queue would exceed the total space of queue, then writer waiting of queue is
set to true and the operation waits until one of the following occurs.

(5) - The space used of queue would no longer exceed the total space of queue. The operation
then proceeds as described above.

(6) - The calling process receives a message. of message type WAKE. The error condition
MESSAGE_QUEUE_HAS_BEEN_WOKEN then holds.

(7) - The message queue is removed from the object base. The error condition
MESSAGE_QUEUE_HAS_BEEN_DELETED then holds.

(8) - The caller is denied mandatory read access, mandatory write access, or
APPEND_CONTENTS discretionary access. The error condition CONFIDENTIALITY_
WOULD_BE_VIOLATED or INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED
then holds in the first case, CONFIDENTIALITY_CONFINEMENT_WOULD_BE_
VIOLATED or INTEGRITY_WOULD_BE_VIOLATED in the second case, and
DISCRETIONARY_ACCESS_IS_NOT_GRANTED in the third case (all under
ACCESS_ERRORS).

(9) A read lock of the default mode is obtained on queue.

Errors

(10) ACCESS_ERRORS (queue, ATOMIC, MODIFY, APPEND_CONTENTS)
(11) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_SIZE)
(12) MESSAGE_QUEUE_HAS_BEEN_DELETED (queue)
(13) MESSAGE_QUEUE_HAS_BEEN_WOKEN (queue)

14.2.7 QUEUE_EMPTY

(1) QUEUE_EMPTY (
queue : Message_queue_designator

)

(2) QUEUE_EMPTY empties the message queue queue, i.e. removes all messages from it.

(3) A read lock of the default mode is obtained on queue.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_CONTENTS)
(5) MESSAGE_QUEUE_IS_RESERVED (queue)

- 174 -

14.2.8 QUEUE_HANDLER_DISABLE

(1) QUEUE_HANDLER_DISABLE (
queue : Message_queue_designator

)

(2) QUEUE_HANDLER_DISABLE makes the calling process no longer the listening process for
the message queue queue. queue must be reserved by the calling process.

(3) The "is_listener" link from the calling process to queue and its reverse are deleted.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_LINKS)
(5) MESSAGE_QUEUE_HAS_NO_HANDLER (queue)
(6) MESSAGE_QUEUE_IS_NOT_RESERVED (queue)

14.2.9 QUEUE_HANDLER_ENABLE

(1) QUEUE_HANDLER_ENABLE (
queue : Message_queue_designator,
types : Message_types,
handler : Handler

)

(2) QUEUE_HANDLER_ENABLE makes the calling process the listening process for the message
queue queue, with associated message types specified by types, and handler handler.

(3) An "is_listener" link is created from the calling process to queue, with "message_types" attribute
set to a value representing types.

(4) The previous handler, if any, for queue is disabled as by a prior call of
QUEUE_HANDLER_DISABLE.

Errors

(5) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_LINKS)
(6) MESSAGE_QUEUE_IS_NOT_RESERVED (queue)

14.2.10 QUEUE_RESERVE

(1) QUEUE_RESERVE (
queue : Message_queue_designator

)

(2) QUEUE_RESERVE reserves the message queue queue for the calling process. If queue is
already reserved for the calling process, QUEUE_RESERVE has no effect.

(3) A "reserved_message_queue" link reversed by a "reserved_by" link is created from the calling
process to queue.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, MODIFY, APPEND_LINKS)
(5) MESSAGE_QUEUE_IS_RESERVED (queue)

- 175 -

14.2.11 QUEUE_RESTORE

(1) QUEUE_RESTORE (
queue : Message_queue_designator,
file : File_designator

)

(2) QUEUE_RESTORE reconstructs the message queue queue from the contents of the object
designated by file.

(3) The last access time of file is set to the system time.

(4) A write lock of the default mode is obtained on queue and a read lock of the default mode is
obtained on file.

Errors

(5) ACCESS_ERRORS (file, ATOMIC, READ, READ_CONTENTS)
(6) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_CONTENTS)
(7) CONTENTS_FORMAT_IS_INVALID (file)
(8) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_QUEUE_SPACE)
(9) MESSAGE_QUEUE_IS_BUSY (queue)
(10) MESSAGE_QUEUE_IS_RESERVED (queue)
(11) MESSAGE_QUEUE_WOULD_BE_TOO_BIG (queue)

14.2.12 QUEUE_SAVE

(1) QUEUE_SAVE (
queue : Message_queue_designator,
file : File_designator

)

(2) QUEUE_SAVE copies all the messages from the message queue queue to the contents of the
file file. The existing contents of file is overwritten. The format of the contents of file is
implementation-defined.

(3) The message queue queue is unaffected, except that any "notifier" links from queue are deleted.

(4) The last change time and last modification time of file are set to the system time of the call.

(5) A write lock of the default mode is obtained on file and a read lock on queue.

Errors

(6) ACCESS_ERRORS (file, ATOMIC, MODIFY, WRITE_CONTENTS)
(7) ACCESS_ERRORS (queue, ATOMIC, READ, READ_CONTENTS)
(8) MESSAGE_QUEUE_IS_RESERVED (queue)

14.2.13 QUEUE_SET_TOTAL_SPACE

(1) QUEUE_SET_TOTAL_SPACE (
queue : Message_queue_designator,
total_space : Natural

)

(2) QUEUE_SET_TOTAL_SPACE sets the total space of the message queue queue to the value of
total_space.

- 176 -

(3) A write lock of the default mode is obtained on queue.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, CHANGE, CONTROL_OBJECT)
(5) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_QUEUE_SPACE)
(6) MESSAGE_QUEUE_IS_RESERVED (queue)
(7) MESSAGE_QUEUE_TOTAL_SPACE_WOULD_BE_TOO_SMALL (queue, total_space)

14.2.14 QUEUE_UNRESERVE

(1) QUEUE_UNRESERVE (
queue : Message_queue_designator

)

(2) QUEUE_UNRESERVE unreserves the message queue queue for the calling process. If queue is
not reserved for the calling process, QUEUE_UNRESERVE has no effect.

(3) The "reserved_message_queue" and "reserved_by" links between the calling process and queue
are deleted. If the calling process has an "is_listener" link to queue then that link and its reverse
"listened_to" link are deleted.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_LINKS)

(5) NOTE - The termination of a process implies the unreserving of all the process's reserved message queues.

15 Notification

15.1 Notification concepts

15.1.1 Access events and notifiers

(1) Access_event = MODIFICATION_EVENT | CHANGE_EVENT | DELETE_EVENT | MOVE_EVENT

(2) Access_events = set of Access_event

(3) A notifier is a "notifier" link from a message queue to an object with key attribute "notifier_key"
and the attributes "modification_event", "change_event", "delete_event", and "move_event",
referred to as monitored access attributes. See 14.1 for the DDL definition of notifiers.

(4) A monitored object is a destination object of a notifier. The values of the monitored access
attributes of the notifier define the events on which the monitored object is monitored:

(5) - Modification event is true. Modification events: an operation implicitly sets the last
modification time of the object.

(6) - Change event is true. Change events: an operation implicitly sets the last change time but
not the last modification time of the object. If the operation only sets the volume identifier
of the object, the CHANGE_EVENT event is not raised.

(7) - Delete event is true. Delete events: an operation results in the deletion of the object.

(8) - Move event is true. Move events: an operation results in a change to the volume identifier
of the object, including archiving the object and restoring it from archive.

- 177 -

(9) The notification mechanism sends notification messages to message queues when a specified
access is carried out on a monitored object. The specified access event is said to be raised by
the operation that accessed the object. The notification mechanism is said to be triggered by the
raised event.

(10) If there is a notifier from a message queue to any object then that message queue has a reserving
process.

NOTES

(11) 1 The monitored access attributes of the notifier define the access events for which the destination of the notifier is
to be monitored. Their initial value is false. For each attribute, if the value of the attribute is true, then the object
is being monitored for that event.

(12) 2 Each value of the notifier key identifies a specific notifier in the context of the associated message queue. As
implied by the DDL specification, the notifier key is unique in the context of the associated message queue.

(13) 3 In order to carry out notification mechanism operations, a process must reserve the message queue which is to be
used as recipient of the notification messages, and in order to be notified, the message queue must remain reserved
by the process.

(14) 4 If a process unreserves a message queue then any notifiers from the message queue are deleted.

(15) 5 A process can reserve several different message queues for notification purposes. For each of these message
queues, it can create several notifiers (one for each object under monitoring). An object can be monitored using
several message queues by one process or by several processes.

(16) 6 There are additional possibilities for the deletion and moving of objects other than by the OBJECT_DELETE
and OBJECT_MOVE operations.

15.1.2 Notification messages

(1) Notification_message_type = MODIFICATION_MSG | CHANGE_MSG | DELETE_MSG |
MOVE_MSG | NOT_ACCESSIBLE_MSG | LOST_MSG

(2) A notification message is a message (see 14.1) sent by the notification mechanism to one or
more message queues each time an object under monitoring is accessed in a way which has been
specified to be monitored. The type of such a message specifies the access event that has been
carried out on the monitored object or the information that the monitored object is no longer
accessible or that modification messages have been lost. The possible values of the type of a
notification message are defined as follows:

(3) - MODIFICATION_MSG: Notifies that a modification access event has been raised (except
CONTENTS_WRITE or CONTENTS_TRUNCATE).

(4) - CHANGE_MSG: Notifies that a change access event has been raised.

(5) - DELETE_MSG: Notifies that a delete access event has been raised.

(6) - MOVE_MSG: Notifies that a move access event has been raised.

(7) - NOT_ACCESSIBLE_MSG: A message of this type is sent to a message queue each time a
monitored object becomes no longer accessible from the workstation on which that message
queue resides.

(8) - LOST_MSG: When a message queue is full and there is not sufficient space on the queue to
store a notification message, the notification messages to be sent by the notification
mechanism are lost. In this case, when the message queue empties sufficiently to give space
for a notification message, a message is sent to the message queue by the notification
mechanism saying that some messages have been lost.

- 178 -

(9) The data of the message includes in an implementation-defined way the notifier key that
associates the message queue and the monitored object.

(10) At most four notification messages are sent to a message queue, one for each type of access
carried out on the object during the period it was explicitly locked. The order of these four
messages is implementation-defined.

(11) When a monitored object is archived, a message of type MOVE_MSG and a message of type
NOT_ACCESSIBLE_MSG are both sent; when a monitored object is restored from archive, a
message of type MOVE_MSG is sent.

15.1.3 Time of sending notification messages

(1) The end of an operation and the releasing of a lock define the points in time at which the
notification messages are sent to processes as defined in 15.1.4.

(2) At the appropriate point in time, the switched on access events are raised, triggering the
notification mechanism which sends the notification messages to the message queues associated
by notifiers with the object that has had been modified, changed, deleted, or moved.

(3) A message of message type NOT_ACCESSIBLE_MSG is sent by the notification mechanism
when WORKSTATION_REDUCE_CONNECTION or WORKSTATION_DISCONNECT is
called or when a network partition is detected, such that the monitored object becomes
inaccessible in the specified manner.

15.1.4 Range of concerned message queues

(1) For an operation modifying, changing, deleting, or moving an object, a notification message is
sent to all the message queues associated with that object by a notifier when the update becomes
available to the process reserving the message queue.

(2) If the message queue security labels are such that writing to the queue by the process accessing
the object would give rise to a mandatory security violation, then no notification message is
sent.

(3) On transaction rollback, notification messages are sent notifying rollback and no messages are
sent to non-enclosed activities.

15.2 Notification operations

15.2.1 NOTIFICATION_MESSAGE_GET_KEY

(1) NOTIFICATION_MESSAGE_GET_KEY(
message : Message,

)
notifier_key : Natural

(2) NOTIFICATION_MESSAGE_GET_KEY returns a notifier key notifier_key derived from the
data of the notification message message.

(3) notifier_key is the notifier key of the notifier whose monitored object underwent the access
event which triggered the sending of message.

Errors

(4) MESSAGE_IS_NOT_A_NOTIFICATION_MESSAGE (message)

- 179 -

(5) NOTE - The notifier identified by notifier_key may no longer exist.

15.2.2 NOTIFY_CREATE

(1) NOTIFY_CREATE (
notifier_key : Natural,
queue : Message_queue_designator,
object : Object_designator

)

(2) NOTIFY_CREATE creates a notifier from the message queue queue to the object object.

(3) The notifier key of the notifier is set to notifier_key. The monitored access attributes of the
notifier are all set to false.

Errors

(4) ACCESS_ERRORS (queue, ATOMIC, MODIFY, APPEND_LINKS)
(5) CONFIDENTIALITY_WOULD_BE_VIOLATED (object, ATOMIC)
(6) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object, ATOMIC)
(7) MESSAGE_QUEUE_IS_NOT_RESERVED (queue)
(8) NOTIFIER_KEY_EXISTS (notifier_key)
(9) OBJECT_IS_INACCESSIBLE (object, ATOMIC)
(10) OBJECT_IS_ARCHIVED (object)

NOTES

(11) 1 The creation of a notifier from a message queue to an object means that a notification message will be sent to the
message queue whenever the object is accessed with some specified access events.

(12) 2 Initially, on creation, the monitored access attributes are set to false, so no events are specified. The monitored
access events may be changed by NOTIFY_SWITCH_EVENTS.

(13) 3 As implied by the DDL specification, the notifier_key value must be unique in the context of the message queue
and must be greater than or equal to zero; apart from these constraints, it may be freely chosen by the user.

15.2.3 NOTIFY_DELETE

(1) NOTIFY_DELETE (
notifier_key : Natural,
queue : Message_queue_designator

)

(2) NOTIFY_DELETE deletes the notifier with notifier key notifier_key from the message queue
queue.

Errors

(3) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_LINKS)
(4) MESSAGE_QUEUE_IS_NOT_RESERVED (queue)
(5) NOTIFIER_KEY_DOES_NOT_EXIST (notifier_key)

(6) NOTE - The object which was monitored by notifier may continue to be monitored by other notifiers into other
message queues. Other objects may continue to be monitored by other notifiers associated with queue.

- 180 -

15.2.4 NOTIFY_SWITCH_EVENTS

(1) NOTIFY_SWITCH_EVENTS (
notifier_key : Natural,
queue : Message_queue_designator,
access_events : Access_events

)

(2) NOTIFY_SWITCH_EVENTS sets each of the monitored access attributes of the notifier with
notifier key notifier_key from the message queue queue to true if the corresponding access
event is in access_events, and to false otherwise.

Errors

(3) ACCESS_ERRORS (queue, ATOMIC, MODIFY, WRITE_LINKS)
(4) MESSAGE_QUEUE_IS_NOT_RESERVED (queue)
(5) NOTIFIER_KEY_DOES_NOT_EXIST (notifier_key)

(6) NOTE - Switching on an access event of a notifier (setting the attribute value to true) means that the associated
object is then under monitoring for that access event. Switching off an access event (setting the attribute value to
false) means that the associated object is no longer under monitoring for that access event.

16 Concurrency and integrity control

16.1 Concurrency and integrity control concepts

16.1.1 Activities

(1) Activity_class = UNPROTECTED | PROTECTED | TRANSACTION

(2) sds system:

(3) activity_class: (read) enumeration (UNPROTECTED, PROTECTED, TRANSACTION) :=
UNPROTECTED;

(4) activity_status: (read) non_duplicated enumeration (UNKNOWN, ACTIVE, COMMITTING,
ABORTING, COMMITTED, ABORTED) := UNKNOWN;

(5) activity: child type of object with
attribute

activity_class;
activity_status;
activity_start_time: (read) time ;
activity_termination_start_time: (read) time ;
activity_termination_end_time: (read) time ;

link
started_by: (navigate) reference link to process reverse started_activity;
nested_in: (navigate) reference link to activity reverse nested_activity;
nested_activity: (navigate) implicit link (system_key) to activity reverse nested_in;
process_started_in: (navigate) implicit link (system_key) to process reverse

started_in_activity;
end activity;

(6) end system;

(7) An activity is the framework in which a set of related operations takes place. Each operation is
always carried out on behalf of just one activity. An activity is started at the time it is created
and remains in existence until the deactivation of the process which started it.

- 181 -

(8) The activity class of an activity describes the degree of protection which the activity requires; it
affects the default level of concurrency control applicable to operations carried out on behalf of
the activity. There are three activity classes:

(9) - UNPROTECTED. An unprotected activity, used when it is not necessary to protect data
from concurrent activities.

(10) - PROTECTED. A protected activity, used when data to be accessed needs protection from
concurrent activities.

(11) - TRANSACTION. A transaction activity (or transaction), used when the activity has a
significant effect on the object base and its integrity needs to be protected.

(12) The activity status records the current state of the activity. The possible states of an activity are:

(13) - UNKNOWN. The "activity" object has been created by an operation defined in clause 9.

(14) - ACTIVE. The activity is started and its termination is not yet initiated.

(15) - COMMITTING. The activity's normal termination is initiated but not completed.

(16) - ABORTING. The activity's abnormal termination is initiated but not completed.

(17) - COMMITTED. The activity is normally terminated.

(18) - ABORTED. The activity is abnormally terminated.

(19) The activity start time records the time when the activity was started.

(20) The activity termination start time records the time when the termination of the activity was
started.

(21) The activity termination end time records the time when the termination of the activity was
completed.

(22) The "started_by" process is the process that started the activity.

(23) The "nested_in" activity, called the enclosing activity of the activity, is the activity within which
the activity was started. The nested activities of an activity are the activities for which the
activity is the enclosing activity.

(24) The "process_started_in" processes are the processes which were created while the activity was
the current activity.

(25) Within each process there is only one current activity. When a process is initiated, its current
activity is the current activity of its parent process. When an activity is started in a process it
becomes the current activity of the process; the current activity is then the activity of the process
with the highest key in the "started_activity" link from the process and which is still active.
When an activity is terminated in a process its immediate enclosing activity becomes the current
activity of the process.

(26) Each workstation in a PCTE installation has an outermost activity. The outermost activity of a
workstation is an unprotected activity that is created by implementation-dependent means such
that it is indistinguishable from an activity created by ACTIVITY_START except that it has no
"started_by" or "nested_in" link. It has a "process_started_in" link to the initial process.

(27) Updates by an activity to a resource are available if, when the updated resource is read by
another activity not enclosed by the updating activity, data derived from the updated state of the
resource is obtained. Data derived from the updated state of the resource is obtained when read
by the updating activity and by nested activities without necessarily being generally available.

- 182 -

NOTES

(28) 1 Activities can be internal to one process or can extend over several descendant processes. A process is free to
start an activity, but a process is only allowed to terminate activities that it has started.

(29) 2 Operations performed by a process, other than those on an open contents, are carried out on behalf of the current
activity of the process at the time the operation is called.

(30) 3 A nested transaction may be terminated without implying the termination of its enclosing transaction. When a
transaction is normally terminated then all the read locks it has acquired are released and all the write locks of
default mode it has acquired or inherited from its nested transactions are inherited by its enclosing transaction.
When a transaction is abnormally terminated then the changes made by it and all its nested transactions are unmade
(unless explicitly excluded from rollback) and all the locks it has acquired, including the write locks it has inherited
from its nested transactions, are released. This effect is transitive so that, in the case of successive normal
terminations of transactions nested one in another, nested transaction write locks are not released, and the changes
not committed, until the outermost transaction is normally terminated.

(31) 4 Protected or unprotected activities may also be nested within transactions. In this case, modifications made
within the nested activities are considered also to be changes made within their closest enclosing transaction.
Accordingly, when locks are acquired by nested protected or unprotected activities, locks are implicitly acquired at
the same time by their closest enclosing transaction (see 16.1.6)

(32) 5 In the same way when a lock whose mode is not the default write mode is acquired by a nested transaction, a
lock is implicitly acquired at the same time by the closest enclosing transaction.

(33) 6 A process running on behalf of a transaction can explicitly exclude from rollback changes made to certain
resources by explicitly locking such resources in unprotected or protected modes (i.e. not in default write modes)
(see 16.1.5). However creating or deleting of objects and links cannot be excluded from rollback.

(34) 7 The outermost activity of a workstation is implicitly set up by the system. It is intended to provide a valid
activity framework for the initial process of the workstation. Each workstation has its own outermost activity, i.e.
the outermost activity of a workstation cannot be the outermost activity of another workstation. An initial process
is initiated in the context of that activity. It is intended that the initial process should then start an activity suitable
for its own requirements.

(35) 8 Transactions do not protect the local data of a process, hence, for example, changes to contents handles, object
references, and other local variables made within the scope of a transaction are not reversed if the transaction is
aborted.

16.1.2 Resources and locks

(1) Lock_internal_mode = READ_UNPROTECTED | READ_SEMIPROTECTED |
WRITE_UNPROTECTED | WRITE_SEMIPROTECTED | DELETE_UNPROTECTED |
DELETE_SEMIPROTECTED | READ_PROTECTED | DELETE_PROTECTED |
WRITE_PROTECTED

(2) Lock_set_mode = Lock_internal_mode | WRITE_TRANSACTIONED |
DELETE_TRANSACTIONED | READ_DEFAULT | WRITE_DEFAULT | DELETE_DEFAULT

(3) sds system:

(4) lock_mode: READ_UNPROTECTED, READ_SEMIPROTECTED, WRITE_UNPROTECTED,
WRITE_SEMIPROTECTED, DELETE_UNPROTECTED, DELETE_SEMIPROTECTED,
READ_PROTECTED, DELETE_PROTECTED, WRITE_PROTECTED,
WRITE_TRANSACTIONED, DELETE_TRANSACTIONED;

(5) lock_external_mode: (read) enumeration (lock_mode) := READ_UNPROTECTED;

(6) lock_internal_mode: (read) enumeration (lock_external_mode range
READ_UNPROTECTED .. WRITE_PROTECTED) := READ_UNPROTECTED;

- 183 -

(7) extend object type activity with
link

lock: (navigate) non_duplicated designation link (lock_identifier) to object with attribute
locked_link_name;
lock_external_mode;
lock_internal_mode;
lock_explicitness: (read) enumeration (EXPLICIT, IMPLICIT) := IMPLICIT;
lock_duration: (read) enumeration (SHORT, LONG) := SHORT;

end lock;
end activity;

(8) extend link type process_waiting_for with
attribute

lock_external_mode;
lock_internal_mode;

end process_waiting_for;

(9) end system;

(10) A resource is either an object resource or a link resource.

(11) An object resource is an object restricted to the following:

(12) - its contents,

(13) - its type,

(14) - its preferred link type and preferred link key,

(15) - its attributes, except the predefined attributes "last_access_time", "last_change_time",
"last_modification_time", "last_composite_access_time", "last_composite_change_time",
"last_composite_modification_time", "num_incoming_links", "num_incoming_
composition_links", "num_incoming_existence_links", "num_incoming_reference_links",
"num_incoming_stabilizing_links", "num_outgoing_composition_links", and
"num_outgoing_existence_links",

(16) - its incoming "object_on_volume" link.

(17) A link resource is a link, identified by its link name and restricted to the following:

(18) - its link type,

(19) - its sequence of key attributes,

(20) - its set of non-key attributes,

(21) - the object designator of its destination.

(22) The fact that a resource is locked is represented by a "locked_by" link from the object resource
or the origin of a link resource to the activity which holds the lock. The locked link name of the
link specifies whether the resource is an object resource or a link resource:

(23) - if the locked resource is a link resource, the "locked_link_name" attribute is set to the link
name in canonical form (see 23.1.2.4).

(24) - if the locked resource is an object resource, the "locked_link_name" attribute is set to the
empty string.

(25) A lock is represented by a "lock" link from an activity to a resource; the activity is said to hold
the lock on the resource. The link is created at the time the lock is established and remains until
the lock is released or inherited. Locks ensure the consistency of object base data access
operations by controlling the synchronization of concurrent operations on the same resources.

- 184 -

(26) A lock is characterized by a unique lock identifier, the value of which is implementation-
dependent.

(27) The concerned domain of a resource is the set of resources which can be affected by
modifications of that resource:

(28) - if the resource is an object, the concerned domain is the object resource and the set of links
(link resources) originating from the object.

(29) - if the resource is a link, the concerned domain is the link resource and the object (object
resource) from which the link starts.

(30) A resource is said to be operated on by an activity when:

(31) - either the resource is an object whose contents are currently open (see clause 12), by
CONTENTS_OPEN or PROCESS_START on behalf of that activity, in which case the
resource is operated on while the contents is open;

(32) - or the resource (i.e. object or link) is the subject of operations other than operations on
"lock" and "locked_by" links and on the contents of objects, in which case the resource is
operated on for the duration of the operation.

(33) An activity can lock a resource just once; i.e. two locks originating from the same activity
cannot have the same locked resource and the same destination.

(34) A lock has the following attributes:

(35) - A lock external mode, which controls synchronization of resource accesses between an
activity and all other activities which are not nested (either directly or transitively) to it.

(36) - A lock internal mode, which controls synchronization of resource accesses between an
activity and all activities which are nested (either directly or transitively) to it.

(37) The lock internal mode is equal to or weaker than the lock external mode (see below). See
below for a definition of lock modes.

(38) - A lock explicitness, which records how the lock was established:

(39) . EXPLICIT. An explicit lock, i.e. it was established explicitly by one of locking
operations.

(40) . IMPLICIT. An implicit lock, i.e. it was established implicitly as the resource was
implicitly acquired.

(41) - A lock duration, which records the duration of the lock:

(42) . LONG. A long lock, i.e. one which, once established, holds until the termination of the
activity.

(43) . SHORT. A short lock, i.e. one which can be released before the termination of the
activity.

(44) A long lock can be held only by a transaction.

(45) A short lock can be held only by a protected or an unprotected activity.
(46) NOTE – The incoming "object_on_volume" links of an object resource are created or deleted by operations which create,

move, or delete objects. When these operations are performed in a transaction which is then rolled back, the creation or
deletion of these links is also rolled back.

- 185 -

16.1.3 Lock modes

(1) The meanings of the lock mode values are as follows. The abbreviations shown are used in the
tables at the end of this clause.

(2) - READ_UNPROTECTED (RUN). The activity holding the lock can read the resource.
Other activities can concurrently read or write to the same resource or delete it.

(3) - READ_SEMIPROTECTED (RSP) (for object resources only). The activity holding the lock
can read the resource. Other activities can concurrently read from the same resource. Other
activities can concurrently read or write to the same resource with
WRITE_UNPROTECTED, WRITE_SEMIPROTECTED, WRITE_PROTECTED or
WRITE_TRANSACTIONED locks but cannot delete it.

(4) - WRITE_UNPROTECTED (WUN). The activity holding the lock can read or write to the
resource.

(5) If the resource is an object, other activities can concurrently read or write to the same
resource or delete it with DELETE_UNPROTECTED or DELETE_SEMIPROTECTED
locks, other activities can concurrently read or write to the same resource with
WRITE_UNPROTECTED or WRITE_SEMIPROTECTED locks and other activities can
concurrently read the resource with READ_UNPROTECTED or
READ_SEMIPROTECTED locks.

(6) If the resource is a link, other activities can concurrently read or write to the same resource
or delete it with WRITE_UNPROTECTED locks and other activities can concurrently read
the resource with READ_UNPROTECTED locks.

(7) Updates to the resource are available if an enclosing activity does not hold a WTR or DTR
lock on the resource.

(8) - WRITE_SEMIPROTECTED (WSP) (for object resources only). The activity holding the
lock can read or write to the resource. Other activities can concurrently read or write to the
same resource with WRITE_UNPROTECTED or WRITE_SEMIPROTECTED locks but
cannot delete it and other activities can concurrently read the resource with
READ_UNPROTECTED or READ_SEMIPROTECTED locks. Updates to the resource are
available if an enclosing activity does not hold a WTR or DTR lock on the resource.

(9) - DELETE_UNPROTECTED (DUN) (for object resources only). The activity holding the
lock can read or write to the resource or delete it. Other activities can concurrently read or
write to the same resource or delete it with DELETE_UNPROTECTED locks, other
activities can concurrently read or write to the same resource with
WRITE_UNPROTECTED and other activities can concurrently read the resource with
READ_UNPROTECTED locks. Updates to the resource are available if an enclosing
activity does not hold a WTR or DTR lock on the resource.

(10) - DELETE_SEMIPROTECTED (DSP) (for object resources only). The activity holding the
lock can read or write to the resource or delete it. Other activities can concurrently read or
write to the same resource with WRITE_UNPROTECTED locks but cannot delete it and
other activities can concurrently read the resource with READ_UNPROTECTED locks.
Updates to the resource are available if an enclosing activity does not hold a WTR or DTR
lock on the resource.

(11) - READ_PROTECTED (RPR). The activity holding the lock can read the resource. Other
activities can concurrently read the same resource with READ_UNPROTECTED,

- 186 -

READ_SEMIPROTECTED or READ_PROTECTED locks. No other activities can
concurrently write to the same resource.

(12) - WRITE_PROTECTED (WPR). The activity holding the lock can read or write to the
resource. Other activities can concurrently read the same resource with
READ_UNPROTECTED or READ_SEMIPROTECTED locks. No other activities can
concurrently write to the same resource. Updates to the resource are available if an
enclosing activity does not hold a WTR or DTR lock on the resource.

(13) - DELETE_PROTECTED (DPR) (for object resources only). The activity holding the lock
can read or write to the resource or delete it. Other activities can concurrently read the same
resource with READ_UNPROTECTED locks. No other activities can concurrently write to
the same resource. Updates to the resource are available if an enclosing activity does not
hold a WTR or DTR lock on the resource.

(14) - WRITE_TRANSACTIONED (WTR). Transaction holding the lock can read or write to the
resource. Other activities can concurrently read the same resource with
READ_UNPROTECTED or READ_SEMIPROTECTED locks. No other activities can
concurrently write to the same resource.

(15) - DELETE_TRANSACTIONED (DTR) (for object resources only). Transaction holding the
lock can read or write to the resource or delete it. Other activities can concurrently read the
same resource with READ_UNPROTECTED locks. No other activities can concurrently
write to the same resource.

(16) It is implementation-defined whether or not updates to a resource are available if the updates are
performed while an activity holds a WTR or DTR lock on the resource.

(17) Locks of the following modes, whether internal or external, can be held only on an object
resource: READ_SEMIPROTECTED, WRITE_SEMIPROTECTED, DELETE_
SEMIPROTECTED, DELETE_PROTECTED, DELETE_TRANSACTIONED.

(18) The modes of a lock on a given resource must be compatible with the modes of locks held by
other activities on resources in the concerned domain of that resource. Its external mode must
be compatible with the external mode of all locks held on the resources in the concerned domain
by other activities which are not enclosing, nor nested to the issuing activity, and with the
internal mode of all locks already established by the enclosing activities on the resources in the
concerned domain. Its internal mode must be compatible with the external modes of all locks
already established by the nested activities on the resources in the concerned domain

(19) The lock modes are grouped into two categories:

(20) - Read lock modes: READ_UNPROTECTED, READ_SEMIPROTECTED,
READ_PROTECTED

(21) - Write lock modes: WRITE_PROTECTED, WRITE_TRANSACTIONED,
WRITE_UNPROTECTED, WRITE_SEMIPROTECTED, DELETE_PROTECTED,
DELETE_UNPROTECTED, DELETE_SEMIPROTECTED,
DELETE_TRANSACTIONED

(22) There are three relations defined between lock modes: relative strength, relative weakness, and
compatibility. The relative strength relation between lock modes is defined by table 4. The
relative weakness relation is the inverse of the relative strength relation (i.e. L1 is weaker than
L2 if and only if L2 is stronger than L1). The compatibility relation is defined by table 5.

- 187 -

(23) Updates to an accounting log or an audit file, the "message_count", "last_send_time" and
"last_receive_time" attributes of a message queue, and the "last_access_time" attribute of an
object, are never made on behalf of the current activity.

(24) If the current activity is a transaction, it may be terminated in one of two ways:

(25) - For updates performed on behalf of the current activity while transaction locks were
established, the operation ACTIVITY_END, which commits the transaction, results in those
updates becoming permanent, providing the transaction locks are not inherited (see 16.1.4).

(26) - The operation ACTIVITY_ABORT, which aborts the transaction, causes the updates
performed on behalf of the current activity while transaction locks were established to be
undone, apart from updates applied to contents of "pipe", "message_queue", and "device"
objects.

16.1.4 Inheritance of locks

(1) Inheritance of locks occurs only between transactions nested one in the other. A transaction
inherits write locks of default modes (i.e. locks of modes WTR or DTR) from its (immediate)
nested transactions each time such a nested transaction terminates normally (i.e. when it
commits).

(2) When a transaction T1 terminates, the lock it holds on a resource X is inherited by the nearest
enclosing transaction T of T1. If T already holds a lock on X, the lock is promoted according to
the rules of implicit promotion (see 16.1.5).

(3) NOTE - Updates to a resource are committed or cancelled when there cease to be any WTR or DTR locks on that
resource. When an enclosing transaction inherits WTR and DTR locks, it also inherits the updates. Normally,
when there is no further enclosing transaction, updates are committed when the current transaction activity ends. If
however the enclosing transaction T1 holds a non-transaction lock on a resource updated under enclosed
transaction T, then when T ends the transaction lock is not inherited and neither are the updates which are
committed. An exception to this is when a transaction T2 enclosing T1 exists and has a WTR or DTR lock on the
resource; in this case the updates are inherited by T2 when T ends and are not committed at that point.

16.1.5 Establishment and promotion of locks

(1) A lock is requested on a resource on behalf of an activity if an attempt is made to create a lock
on that resource on behalf of that activity.

(2) A lock is established on a resource when a lock is requested on the resource on behalf of an
activity and no lock has yet been acquired by the activity.

(3) A lock is explicitly established by means of operation LOCK_SET_OBJECT. A lock is
implicitly established if the resource is implicitly acquired by some operation (other than
LOCK_SET_OBJECT) operating on the resource and carried out on behalf of the activity.
Locks of mode RSP, WSP, and DSP can only be established explicitly.

(4) The modes of a lock, once established, can evolve either implicitly, according to the way the
resource is operated on, or explicitly by means of the lock set operations.

(5) The following enumerates, for each activity class, the implicit lock modes which are requested
depending on the access performed on the acquired resource. Locks on link resources are
always implicit and therefore always adopt default modes.

- 188 -

(6) - Default external modes:

(7) . for unprotected activities the external mode is RUN when reading a resource, WUN
when creating or updating a resource or deleting a link resource, and DUN when deleting
an object resource;

(8) . for protected activities the external mode is RPR when reading a resource, WPR when
creating or updating a resource or deleting a link resource, and DPR when deleting an
object resource;

(9) . for transaction activities the external mode is RPR when reading a resource, WTR when
updating a resource or creating or deleting a link resource, and DTR when creating or
deleting an object resource.

(10) - Default internal modes: for every activity class, internal modes are WUN for resources being
created or updated and link resources being deleted, DUN for object resources being deleted,
and RUN in all other cases.

(11) The lock mode actually acquired depends on whether the lock is established or promoted. If it is
established then the lock mode acquired is the default lock mode. If a promotion occurs, see
below. Tables 8 and 9 summarize the default external modes.

(12) When a lock is requested on a resource on behalf of an activity and a lock has already been
acquired by the activity, then the lock may be promoted. To promote a mode of a lock is to
transform it to a stronger mode which is compatible (as for the establishment of a new lock)
with other locks on resources in the concerned domain. See table 6 and 16.1.7.

(13) Implicit promotion of either or both the internal and the external modes of a lock occurs when an
operation performing a write access (e.g. OBJECT_SET_ATTRIBUTE or CONTENTS_OPEN
with an opening mode allowing write access) is applied to a resource already acquired by the
activity with a lock whose modes allow only read access to that resource, or when an operation
deleting an object (e.g. LINK_DELETE or OBJECT_DELETE) is applied to an object resource
already acquired by the activity with a lock whose modes do not allow deletion of that object
resource.

(14) Explicit promotion of either the internal or the external lock mode occurs when the lock set
operations are applied to a resource already locked (either explicitly or implicitly) by the activity
on behalf of which the lock set operation is carried out. The new mode must obey the
promotion rules for lock modes (see below).

(15) Any explicit attempt to promote an explicit or an implicit external or internal mode M1, or
implicit attempt to promote an implicit external or internal mode M1, to a mode M2 which has
no relation of relative strength with M1 is converted into an attempt to promote M1 to the
weakest mode which is stronger than both M1 and M2 (e.g. an attempt to promote a RPR mode
to a WUN mode is implicitly converted into an attempt to promote the mode to WPR). Table 6
defines the implicit promotion of lock modes when the prior lock is explicit; table 7 defines the
promotion of lock modes for the other cases.

(16) In the operation definitions, the phrase 'a mode lock of the default mode is obtained on object'
where object is an object and mode is 'read' or 'write', is used to mean that an attempt is made to
establish an implicit lock on the object resource object of a mode given by table 8, depending on
the class of the current activity and the default lock mode of 'read' or 'write', and if 'write',
whether object is being created, updated or deleted.

(17) Similarly, the phrase 'a mode lock of the default mode is obtained on link' where link is a link
and mode is 'read' or 'write', is used to mean that an attempt is made to establish an implicit lock

- 189 -

on the link resource link of a mode given by table 9, depending on the class of the current
activity and the default lock mode of 'read' or 'write', and if 'write', whether link is being created,
updated or deleted. If link is a 'lock' or 'locked_by' link then no lock is established on it.

(18) If no lock currently exists on the resource (object or link) for that activity, an attempt is made to
establish the lock, otherwise implicit promotion is attempted.

16.1.6 Implied locks

(1) Locks can be established or promoted on a resource as a result of establishing or promoting
another lock.

(2) When locks are acquired by nested activities, this implies that implicit locks are acquired at the
same time by their closest enclosing transaction:

(3) - The establishing of (or promotion to) a WUN, WSP, WPR external mode lock for an activity
also implies an implicit establishment (or implicit promotion) of a lock of external mode
WTR on the resource on behalf of the closest enclosing transaction.

(4) - The establishing of (or promotion to) a DUN, DSP, DPR external mode lock for an activity
also implies an implicit establishment (or implicit promotion) of a lock of external mode
DTR on the resource on behalf of the closest enclosing transaction.

(5) - The establishing of (or promotion to) a RUN, RSP, RPR, WTR, or DTR external mode lock
for an activity also implies an implicit establishment (or implicit promotion) of a lock of
external mode RPR on the resource on behalf of the closest enclosing transaction.

(6) Establishing or promoting a lock on a link also implies the implicit establishment (or promotion)
of a read lock of the default mode on the origin of that link for the current activity, if the link
type of the link has an upper bound or a non-zero lower bound and the link is being deleted or
created.

(7) The establishing of (or promotion to) a write lock on the last composition or existence link
leading to an object for the purpose of its deletion also implies the implicit establishment (or
implicit promotion) of a write lock allowing deletion on this object for the current activity (i.e. a
DUN, DSP, DPR, or DTR lock according to the class of the activity and the promotion rules).
The establishing of (or promotion to) a write lock on a composition or existence link for the
purpose of deletion of the link results in the implicit establishment (or implicit promotion) of a
read lock on the destination of the link.

(8) In all these cases the internal lock mode of the implied lock is RUN.

16.1.7 Conditions for establishment or promotion of a lock

(1) The following conditions must be satisfied to establish or promote a lock on a given resource:

(2) - Access rights: the current activity of a process can explicitly or implicitly establish a lock on
a resource if and only if the process has at least one discretionary access right to the resource
if it is an object resource, or to its origin if it is a link resource.

(3) - Lock mode compatibility: an activity can establish (or promote) a lock on a resource if

(4) . its external mode is compatible with the external mode of all locks held on the resources
in the concerned domain by other activities which are not enclosing, nor nested to the
issuing activity;

- 190 -

(5) . its external mode is compatible with the internal mode of all locks already established by
the enclosing activities on the resources in the concerned domain;

(6) . its internal mode is compatible with the external modes of all locks already established
by the nested activities on the resources in the concerned domain;

(7) . The implied lock (if any) must also be compatible with existing locks as defined above.

(8) If the conditions do not hold, either the issuing operation waits, waiting for the resource to
become available, or the request returns an error without delay.

(9) When an operation waits as a result of attempting to lock a resource in a mode which is
incompatible with the existing locks on that resource held by other discrete activities, the
operation is said to be waiting on the resource. When an operation is waiting on a resource, a
"process_waiting_for" link is created from the process of the waiting operation to the resource.
The "waiting_type" attribute of that link is set to WAITING_FOR_LOCK, the required external
and internal modes of the lock set in the "lock_external_mode" and "lock_internal_mode"
attributes respectively of the link, and the "locked_link_name" attribute is set to the link name,
in canonical form, of the resource on which the lock is to be established if the resource is a link,
and to the empty string otherwise. The link is removed when the operation which is waiting on
the resource is interrupted, or the resource is acquired.

(10) If a lock is held on an object resource by an activity, then any attempt to establish a lock on any
of its links by that activity has no effect unless the lock mode resulting from the request is
stronger than or has no relation of relative strength to the external mode of the lock on the
object.

(11) If a lock is held on a link resource by an activity, then when a lock is established on its origin by
that activity the lock on the link is discarded, unless the external lock mode on the link is
stronger than or has no relation of relative strength to the external mode of the lock on the
origin.

16.1.8 Releasing locks

(1) A distinction is made between discarding a lock (to get rid of it) and releasing a lock.
Releasing a lock implies discarding the lock for the current activity, and if the lock has a WTR
or a DTR mode then the closest enclosing transaction inherits the modifications to the resource.
If there is no such transaction then modifications are committed (i.e. modifications can no longer
be discarded).

(2) In any case, this results in the deletion of the "lock" link and of the "locked_by" link associated
with the released lock. In the case that the lock is inherited by the closest enclosing transaction,
if the resource was not already locked on behalf of that transaction, new "lock" and "locked_by"
links are created between this activity and the locked resource, in order to represent the inherited
lock.

(3) Long locks are released at the end of the activity. In the case of short locks two cases can apply:

(4) - The lock was explicitly established: it is released either at the end of the activity or at the
explicit unlock of the resource, whichever occurs first.

(5) - The lock was implicitly established: it is released as soon as the locked resource is no longer
being operated on behalf of the activity holding the lock (for example when the last open
contents handle to the object contents is closed by CONTENTS_CLOSE).

- 191 -

(6) When a lock on a resource is discarded, if one or more operations are waiting on the resource
then an attempt is made to establish or promote a lock on that resource in the modes given by
the attributes "lock_external_mode" and "lock_internal_mode" of a "process_waiting_for" link
to that resource on behalf of the current activity of the process which is the origin of that link. If
a lock can be established or promoted on behalf of one of those activities, then the
corresponding "process_waiting_for" link is deleted. If a lock can be established or promoted on
behalf of more than one such activity, it is not defined on behalf of which activity it is
established or promoted. The resource on which the lock is established or promoted is the
destination of the "process_waiting_for" link if the "locked_link_name" attribute of that link is
empty, otherwise it is the link with that attribute as link name.

NOTES

(7) 1 The description of each of the operations defines the resources, if any, which are operated on by the operation.

(8) 2 Nested parallel activities should be achieved by using parallel processes.

(9) 3 The internal mode of a lock held by an activity affects only the activity and its nested activities.

16.1.9 Permanence of updates

(1) When an update, whether made while a lock is established or not, is made permanent, the
resulting change to objects in the object base is such that if a volume failure, device failure, or
network failure event occurs so as to render one or more of those objects inaccessible, the
objects retain their updated state. Conversely, if an update is not made permanent and such a
failure event occurs then the objects revert to a state which existed before the update. An update
to a link is considered to be an update to its origin.

(2) If an update is made to an object or link while only non-transaction locks are established on that
object or link then the update is made permanent at the latest when the activity in which the
update occurred is terminated.

(3) Updates made to objects or links, while WTR or DTR locks are established on those objects or
links, are made permanent atomically when no transaction locks remain after a transaction end.

(4) Updates made which do not require a lock to be established on the object or link, for example
some operations defined in clause 13 and updates to audit files and accounting logs, are made
permanent at an implementation-defined time.

- 192 -

16.1.10 Tables for locks

Table 4 - Relative strength of lock modes

mode2
mode1 RUN RSP WUN WSP RPR WPR WTR DUN DSP DPR DTR
RUN = < < < < < < < < < <

RSP > = - < < < < - < < <

WUN > - = < - < < < < < <

WSP > > > = - < < - < < <

RPR > > - - = < < - - < <

WPR > > > > > = < - - < <

WTR > > > > > > = - - - <

DUN > - > - - - - = < < <

DSP > > > > - - - > = < <

DPR > > > > > > - > > = <

DTR > > > > > > > > > > =

Key
< mode1 is weaker than mode2
> mode1 is stronger than mode2
= mode1 and mode2 are the same
- there is no relation of relative strength between mode1 and mode2

Table 5 - Compatibility of lock modes

mode2
mode1 RUN RSP WUN WSP RPR WPR WTR DUN DSP DPR DTR
RUN yes yes yes yes yes yes yes yes yes yes yes

RSP yes yes yes yes yes yes yes no no no no

WUN yes yes yes yes no no no yes yes no no

WSP yes yes yes yes no no no no no no no

RPR yes yes no no yes no no no no no no

WPR yes yes no no no no no no no no no

WTR yes yes no no no no no no no no no

DUN yes no yes no no no no no no no no

DSP yes no yes no no no no no no no no

DPR yes no no no no no no no no no no

DTR yes no no no no no no no no no no

Key
yes mode1 and mode2 are compatible
no mode1 and mode2 are not compatible

- 193 -

Table 6 - Implicit promotion of explicit lock of mode mode1 to mode2

mode2
mode1 RUN WUN RPR WPR WTR DUN DPR DTR
RUN no WUN no WUN WUN DUN DUN DTR

RSP no WSP no WSP WSP DSP DSP DTR

WUN no no no no no DUN DUN DTR

WSP no no no no no DSP DSP DTR

RPR no WPR no WPR WPR DPR DPR DTR

WPR no no no no no DPR DPR DPT

WTR - - - - no - - DTR

DUN no no no no no no no DTR

DSP no no no no no no no DTR

DPR no no no no no no no DTR

DTR - - - - no - - DTR

Key
no there is no promotion
- the case does not apply

Table 7 - Promotion of mode1 to mode2: other cases

mode2
mode1 RUN RSP WUN WSP RPR WPR WTR DUN DSP DPR DTR
RUN no RSP WUN WSP RPR WPR WTR DUN DSP DPR DTR

RSP no no WSP WSP RPR WPR WTR DSP DSP DPR DTR

WUN no WSP no WSP WPR WPR WTR DUN DSP DPR DTR

WSP no no no no WPR WPR WTR DSP DSP DPR DTR

RPR no no WPR WPR no WPR WTR DPR DPR DPR DTR

WPR no no no no no no WTR DPR DPR DPR DTR

WTR no no no no no no no DTR DTR DTR DTR

DUN no DSP no DSP DPR DPR DTR no DSP DPR DTR

DSP no no no no DPR DPR DTR no no DPR DTR

DPR no no no no no no DTR no no no DTR

DTR no no no no no no no no no no no

- 194 -

Table 8 - Default External Lock Modes for Object Resources

Default lock mode

Activity class Read Write

Update Object creation Object deletion

UNPROTECTED RUN WUN WUN DUN

PROTECTED RPR WPR WPR DPR

TRANSACTION RPR WTR DTR DTR

Table 9 - Default External Lock Modes for Link Resources

Default lock mode

Activity class Read Write

Update Link creation Link deletion

UNPROTECTED RUN WUN WUN WUN

PROTECTED RPR WPR WPR WPR

TRANSACTION RPR WTR WTR WTR

16.2 Concurrency and integrity control operations

16.2.1 ACTIVITY_ABORT

(1) ACTIVITY_ABORT (
)

(2) ACTIVITY_ABORT terminates the current activity of the calling process and discards
uncommitted updates. The following actions are performed in order:

(3) - The activity status and activity start termination time of the current activity of the calling
process are set to ABORTING and the system current time respectively.

(4) This implies abnormal termination of any process P which was initiated in the context of the
current activity and the execution of which has been started but not yet terminated (i.e a
process in one of the states RUNNING, SUSPENDED, and STOPPED), in the same way as
by calling PROCESS_TERMINATE (P, ACTIVITY_ABORTED).

(5) ACTIVITY_ABORT waits until all those processes have terminated (i.e. have the state
TERMINATED). If while in this phase ACTIVITY_ABORT is interrupted, either because
the time-out period for the calling process has expired, or because another process has called
PROCESS_INTERRUPT_OPERATION for the calling process, then the current activity
and the associated resources are not affected. In particular, the activity status and activity
start termination time of the activity are reset to their previous values.

- 195 -

(6) - If the current activity is a transaction, all updates made on behalf of the activity to the
resources acquired with WRITE_TRANSACTIONED or DELETE_TRANSACTIONED
external mode lock since the establishing of the locks or the promotion of their external
mode to WRITE_TRANSACTIONED (or DELETE_TRANSACTIONED for the locks
which were directly established or promoted to this mode) are discarded.

(7) - All the locks held by the activity are discarded. This results in the deletion of the "lock" and
"locked_by" links associated with those locks.

(8) - The activity status and activity start termination time of the activity are set to ABORTED
and the current system time respectively. The activity remains in existence until the calling
process is deleted.

(9) As a result of these actions, the activity on whose behalf the aborted activity was initiated
becomes the calling process's current activity.

Errors

(10) ACTIVITY_WAS_NOT_STARTED_BY_CALLING_PROCESS
(11) ACTIVITY_IS_OPERATING_ON_A_RESOURCE

16.2.2 ACTIVITY_END

(1) ACTIVITY_END (
)

(2) ACTIVITY_END terminates the current activity of the calling process normally. The effect of
this operation is immediately to commit all outstanding updates in the context of the enclosing
activities and to release all locks still held by the activity. The following actions are performed
in order:

(3) - The activity status and activity start termination time of the current activity of the calling
process are set to COMMITTING and the current system time respectively.

(4) The operation then waits until all the processes which were initiated on behalf of the activity
and the execution of which has been started but not yet terminated (i.e. processes which are
running, suspended, or stopped) have terminated.

(5) If, while in this phase, the operation is interrupted, either because the time-out period defined
for the calling process has expired or because another process has called
PROCESS_INTERRUPT_OPERATION for the calling process, then the current activity
and the associated resources are not affected. In particular, the activity status and activity
start termination time of the activity are reset to their previous values.

(6) - The locks still held by the activity are released. For locks established with external mode
WRITE_TRANSACTIONED or DELETE_TRANSACTIONED, all the updates made to the
locked resource on behalf of the activity since the establishment of the lock are committed in
the context of the enclosing transactions. This means the WRITE_TRANSACTIONED and
DELETE_TRANSACTIONED locks are inherited by the closest enclosing transaction if
any, otherwise the modification are committed (i.e. modification can no longer be discarded)
and those locks are discarded (see 16.1.4 and 16.1.8). In any case, this results in the deletion
of the "lock" and "locked_by" links associated with those locks.

(7) - The activity status and activity start termination time of the activity are set to COMMITTED
and the current system time respectively.

- 196 -

(8) The activity object remains in existence until the calling process is deleted. The activity on
whose behalf the terminated activity was initiated becomes the calling process's current activity.

Errors

(9) ACTIVITY_WAS_NOT_STARTED_BY_CALLING_PROCESS
(10) ACTIVITY_IS_OPERATING_ON_A_RESOURCE
(11) TRANSACTION_CANNOT_BE_COMMITTED

16.2.3 ACTIVITY_START

(1) ACTIVITY_START (
activity_class : Activity_class

)

(2) ACTIVITY_START creates a new activity of activity class activity_class, nested within the
current activity of the calling process.

(3) The activity is created on the same volume as the calling process, with a "started_activity" link
to it from the calling process. The activity has the same mandatory labels and the same atomic
and composite ACLs as the calling process.

(4) A "nested_in" link and a "nested_activity" link are created between the new activity and the
current activity of the calling process.

(5) The activity class and activity start time of the new activity are set to activity_class and the
current system time respectively.

(6) The new activity then becomes the current activity for the calling process.

Errors

(7) LIMIT_WOULD_BE_EXCEEDED (MAX_ACTIVITIES)
(8) LIMIT_WOULD_BE_EXCEEDED (MAX_ACTIVITIES_PER_PROCESS)
(9) If the calling process has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new activity)
(10) VOLUME_IS_FULL (volume on which the calling process resides)

(11) NOTE - The class of an activity influences system behaviour with respect to lock durations and the default external
mode of implicit locks.

16.2.4 LOCK_RESET_INTERNAL_MODE

(1) LOCK_RESET_INTERNAL_MODE (
object : Object_designator

)

(2) LOCK_RESET_INTERNAL_MODE resets to READ_UNPROTECTED the internal mode of
the lock associated with the object resource object.

(3) As result, the internal lock mode of the associated "lock" link is set to the value
READ_UNPROTECTED.

Errors

(4) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, ATOMIC)
(5) LOCK_IS_NOT_EXPLICIT (object)

- 197 -

(6) OBJECT_IS_NOT_LOCKED (object)
(7) OBJECT_IS_OPERATED_ON (object, ATOMIC)

16.2.5 LOCK_SET_INTERNAL_MODE

(1) LOCK_SET_INTERNAL_MODE (
object : Object_designator,
lock_mode : Lock_internal_mode,
wait_flag : Boolean

)

(2) LOCK_SET_INTERNAL_MODE promotes the internal mode of the lock on the object resource
designated by object.

(3) If the required lock internal mode is weaker than the existing one, no action is performed.

(4) If lock_mode is not stronger than the internal mode of the lock currently held by the activity on
object, then, whenever possible, the operation results in an explicit promotion of the internal
mode of that lock to the weakest mode which is stronger than both the current internal mode and
lock_mode. E.g. if the current internal mode is READ_PROTECTED and lock_mode is
WRITE_UNPROTECTED then, if the operation succeeds, it results in the promotion of the
internal mode of the existing lock to WRITE_PROTECTED.

(5) Let new_lock_mode be the actual value of this lock internal mode: either the specified value
lock_mode or the value derived from it by the above promotion rule; then
LOCK_SET_INTERNAL_MODE sets the internal lock mode of the associated "lock" link to
new_lock_mode.

(6) In case of conflict between the required internal mode and other concurrent acquisitions of the
resources in the concerned domain of the object resource object (see 16.1.7), the behaviour of
the operation depends on the value of wait_flag:

(7) - true : the operation waits on the resource until it acquires the resource or until the operation
is interrupted or until the process is terminated, whichever comes first;

(8) - false: the operation does not wait on the resource and the operation fails with the error
condition LOCK_INTERNAL_MODE_CANNOT_BE_CHANGED and has no effect.

Errors

(9) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, ATOMIC)
(10) LOCK_INTERNAL_MODE_CANNOT_BE_CHANGED (object, lock_mode)
(11) LOCK_IS_NOT_EXPLICIT (object)
(12) LOCK_MODE_IS_TOO_STRONG (lock_mode, object)
(13) OBJECT_IS_NOT_LOCKED (object)

16.2.6 LOCK_SET_OBJECT

(1) LOCK_SET_OBJECT (
object : Object_designator,
lock_mode : Lock_set_mode,
wait_flag : Boolean,
scope : Object_scope

)

- 198 -

(2) LOCK_SET_OBJECT either establishes a new lock on the object resource object, if object is
not yet assigned to the current activity, or promotes an existing lock on object otherwise. If
scope is COMPOSITE, LOCK_SET_OBJECT also does the same for the object resource of
each component of the object object.

(3) If lock_mode is READ_DEFAULT, WRITE_DEFAULT or DELETE_DEFAULT, the external
mode of the lock is chosen according to the class of the current activity as shown in table 10.

Table 10 - Interpretation of default lock modes

Activity class READ_DEFAULT WRITE_DEFAULT DELETE_DEFAULT

UNPROTECTED RUN WUN DUN

PROTECTED RPR WPR DPR

TRANSACTION RPR WTR DTR

(4) The locks are established or promoted as follows, where resource is the object resource object,
and each of the object resources of the components of object if scope is COMPOSITE.

(5) If the current activity of the calling process has a lock on resource then the lock's external mode
is promoted to lock_mode. If this is weaker than the lock's current external mode, the operation
is successful but no action is performed.

(6) The internal mode of a new lock is set to READ_UNPROTECTED. If lock_mode is not
stronger than the lock's current external mode, then the operation results in an explicit
promotion of the external mode of the lock according to the rule of explicit promotion of an
external mode defined in 16.1.5.

(7) Let new_lock_mode be the actual value of this lock mode: either the specified value lock_mode
or the value derived from it as defined by the above rule of explicit promoting an external mode.

(8) If the current activity is enclosed in a transaction, LOCK_SET_OBJECT also results in an
attempt to implicitly establish or to implicitly promote a lock on the object resource resource on
behalf of the closest enclosing transaction. The external mode implied_lock_mode of this
implied lock is derived from lock_mode as defined in 16.1.6, and its internal mode
implied_internal_lock_mode is READ_UNPROTECTED.

(9) If new locks are to be established, for each of these locks, LOCK_SET_OBJECT creates a
"lock" and a "locked_by" link (each reversing the other) between the activity on behalf of which
the lock is established (i.e. the current activity of the calling process or its closest enclosing
transaction) and the locked object. The links remain in existence until the corresponding locks
are released or inherited. The keys of the "lock" and "locked_by" links are implementation-
dependent.

(10) In this case LOCK_SET_OBJECT initializes the attributes of the new links as follows:

(11) - Attributes of "lock" link of the current activity:

(12) . lock duration is set to LONG if the current activity is a transaction, otherwise it is set to
SHORT;

(13) . lock explicitness is set to EXPLICIT;

- 199 -

(14) . lock internal mode and lock external mode are set to READ_UNPROTECTED and to
new_lock_mode respectively.

(15) - Attributes of "lock" link of the enclosing transaction:

(16) . lock duration is set to LONG;

(17) . lock explicitness is set to IMPLICIT;

(18) . lock internal mode and lock external mode are set to implied_internal_lock_mode and to
implied_lock_mode respectively.

(19) The locked resource of each of these links is not set and has its initial value which is the empty
string.

(20) If the locks are promoted then only the external lock mode and internal lock mode of the
existing locks are modified; they are set as described above.

(21) In case of conflict between the locks required on object or on any of its components (if scope is
COMPOSITE) and other concurrent acquisitions of the resources in the corresponding
concerned domain, the behaviour of the operation depends on the value of wait_flag:

(22) - true: no lock is established or promoted by the operation, and the operation waits on the
resource until the resource becomes available, until the operation is interrupted, or until the
process is terminated, whichever comes first;

(23) - false: no lock is established or promoted by the operation, the operation does not wait on the
resource, and the operation fails with the LOCK_COULD_NOT_BE_ESTABLISHED error
condition.

(24) If scope is COMPOSITE, then none of the locks that the operation is trying to establish or
promote are established or promoted until all of them can be established or promoted.

Errors

(25) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, scope)
(26) LOCK_COULD_NOT_BE_ESTABLISHED (object, scope)
(27) LOCK_MODE_IS_NOT_ALLOWED (lock_mode)
(28) If scope is ATOMIC:

OBJECT_IS_ARCHIVED (object)
(29) If scope is COMPOSITE:

OBJECT_IS_ARCHIVED (object or a component of object)
(30) OBJECT_IS_INACCESSIBLE (object, scope)

16.2.7 LOCK_UNSET_OBJECT

(1) LOCK_UNSET_OBJECT (
object : Object_designator,
scope : Object_scope

)

(2) LOCK_UNSET_OBJECT releases the lock established by the current activity of the calling
process on the object resource object. If scope is COMPOSITE, LOCK_UNSET_OBJECT also
does the same thing for the object resource of each component of object.

(3) This results in the deletion of the "lock" and "locked_by" links associated with the released lock
or locks.

- 200 -

Errors

(4) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, scope)
(5) LOCK_IS_NOT_EXPLICIT (object)
(6) If scope is ATOMIC:

OBJECT_IS_ARCHIVED (object)
(7) If scope is COMPOSITE:

OBJECT_IS_ARCHIVED (object or a component of object)
(8) OBJECT_IS_INACCESSIBLE (object, scope)
(9) OBJECT_IS_OPERATED_ON (object, scope)
(10) UNLOCKING_IN_TRANSACTION_IS_FORBIDDEN

17 Replication

17.1 Replication concepts

17.1.1 Replica sets

(1) Replica_set_identifier = Natural

(2) sds system:

(3) replica_set_identifier: natural ;

(4) replica_set_directory: child type of object with
link

known_replica_set: (navigate) non_duplicated existence link (replica_set_identifier)
to replica_set reverse known_replica_set_of;

replica_sets_of: implicit link to common_root reverse replica_sets;
end replica_set_directory;

(5) replica_set: child type of object with
link

master_volume: (navigate) reference link to administration_volume reverse
master_volume_of;

copy_volume: (navigate) reference link (volume_identifier) to administration_volume
reverse copy_volume_of;

known_replica_set_of: implicit link to replica_set_directory reverse known_replica_set;
end replica_set;

(6) extend object type administration_volume with
link

master_volume_of: (navigate) reference link (replica_set_identifier) to replica_set
reverse master_volume;

copy_volume_of: (navigate) reference link (replica_set_identifier) to replica_set reverse
copy_volume;

end administration_volume;

(7) end system;

(8) The replica set directory represents the set of known replica sets. Each replica set has a unique
replica set identifier which is assigned to the replica set on creation and uniquely identifies the
replica set within the PCTE installation.

(9) The replica set directory is the destination of a "replica_sets" link from the common root. Each
known replica set is the destination of a "known_replica_set" link from the replica set directory
whose key is the replica set identifier of that replica set.

- 201 -

(10) A replica set has exactly one master volume which is chosen when the replica set is created. It
also has a set of copy volumes. Master and copy volumes are administration volumes. The key
of a "copy_volume" link is the volume identifier of its destination volume. The keys of
"master_volume" and "copy_volume" links are the replica set identifiers of their destination
replica sets.

(11) A copy volume of a replicated set cannot also be the master volume for that same set.

17.1.2 Replicated objects

(1) sds system:

(2) extend object type replica_set with
link

includes_object: (navigate) reference link (exact_identifier) to object reverse
replicated_as_part_of;

end replica_set;

(3) extend object type administration_volume with
link

replica: (navigate) reference link (exact_identifier) to object reverse replica_on;
end administration_volume;

(4) extend object type object with
link

replicated_as_part_of: (navigate) implicit link to replica_set reverse includes_object;
replica_on: implicit link to administration_volume reverse replica;

end object;

(5) end system;

(6) Objects are classified as normal, master or copy, according to the value of the replicated state
(see 9.1.1):

(7) - A master object has replicated state MASTER; it belongs to exactly one replica set, and it
resides on the master volume of that replica set.

(8) - A copy object has replicated state COPY; it belongs to exactly one replica set, and is a
replica on a copy volume of that replica set, but does not reside on any volume (i.e. there is
no "object_on_volume" link to it; see 11.1.1).

(9) - A normal object has replicated state NORMAL; it belongs to no replica set, and can reside
on any volume.

(10) For each master object there may be a corresponding copy object (with the same exact
identifier) on each of its replica set's copy volumes; for each copy object there is a
corresponding master object on its replica set's master volume. Such a set of corresponding
master and copy objects is called a replicated object.

(11) Operations which modify a copy object are forbidden, and master objects can be modified only
by processes for which PCTE_REPLICATION is an effective security group.

(12) The destinations of the "includes_object" links leaving a replica set are called the objects
replicated as part of that replica set. The key of an "includes_object" link is the exact identifier
of its destination object.

(13) If a link is created to a replicated object then the link is created to the master object.

(14) A replica set is replicated as part of itself.

- 202 -

(15) The following objects cannot be replicated: processes, activities, pipes, devices, execution sites,
volumes, message queues, audit files, and accounting logs.

NOTES

(16) 1 There is intended to be a copy of each object of a replicated set on each of the copy volumes of the replicated
set.

(17) 2 The master and all copies of a replicated object are intended to be kept identical, except for the volume
identifier, last access time, replicated state, composite last access time, composite last change time, composite last
modification time and "replica_on" and usage designation links. It is expected that system tools automatically
propagate modifications and enforce convergence among the various copies in a PCTE installation. Instantaneous
updating of all copies of a replicated object as the master evolves is not expected, so that the replication mechanism
has to manage temporary inconsistencies among the various copies of the replicated objects, supporting suitable
procedures for the propagation of updates.

17.1.3 Selection of an appropriate replica

(1) sds system:

(2) extend object type workstation with
link

replica_set_chosen_volume: (navigate) designation link (replica_set_identifier) to
administration_volume;

end workstation;

(3) end system;

(4) At each moment for each workstation W and replica set S, there is a unique volume V called the
chosen volume of W for accessing S. This is defined as follows:

(5) - it is an explicitly chosen volume. This explicit choice is modelled as a
"replica_set_chosen_volume" link from W to V with the replica set identifier of S as its key.

(6) - it is an implicitly chosen volume. This implicit choice is made when there is no
"replica_set_chosen_volume" link from W with the replica set identifier of S as its key.

(7) If a link destination resides on an administration volume this is considered to be a potential link
to a replicated object.

(8) If a link identifies an object O that is replicated as part of a replica set S then replication
redirection may occur. Replication redirection means that the object reached or navigated
through as the destination of a link (including "replica" links) is the copy object of O on the
chosen volume for accessing S of the execution site of the calling process (see 17.1.3) if such a
copy object exists, and the master object of O otherwise. There is an exception for service
designation links in that replication redirection applies to the state of the object base at the time
the link was created rather than when it is navigated through.

(9) When an object is referenced using an internal object reference or a contents handle the
designated object is always the one that was reached at the time the corresponding pathname
evaluation was performed, regardless of whether a new local copy has been created or deleted
since that evaluation.

(10) An object replicated as part of a replica set S can only be updated by processes having
PCTE_REPLICATION privilege and running on a workstation whose chosen volume for
accessing S is the master volume of S. If a link having referential integrity is created to a
replicated object then the calling process must have PCTE_REPLICATION privilege.

- 203 -

NOTES

(11) 1 Since "replica_set_chosen_volume links" are designation links they may be replaced when the volumes that they
designate become unavailable, thus allowing an alternative volume containing that replica set to be chosen.

(12) 2 A PCTE implementation may automatically decide which of the master or copy volumes of a replica set should
be implicitly chosen for each workstation. This can be used to allow the PCTE implementation to minimize
network load and to recover from machine or network failure.

(13) 3 A navigation to or from a replicated object should not fail because the master object is not accessible as long as
the chosen volume of the workstation of the process on whose behalf the navigation is being performed contains a
copy of that object.

(14) 4 Access to a direct component of an object is made as if the corresponding composition link is navigated.

17.1.4 Administration replica set

(1) There is exactly one administration replica set. It has replica set identifier 0. Its master volume
is the master administration volume (see 11.1.2). Each administration volume other than the
master administration volume is a copy volume of the administration replica set.

(2) The administration replica set includes the predefined replicated objects, representing certain
system entities; each predefined replicated object has a master on the master administration
volume and a copy on each other administration volume; a predefined replicated object may not
have its replicated state changed. The predefined replicated objects are:

(3) - the common root;

(4) - the administrative objects.

(5) NOTE - Copies of predefined replicated objects cannot be deleted.

17.2 Replication operations

17.2.1 REPLICA_SET_ADD_COPY_VOLUME

(1) REPLICA_SET_ADD_COPY_VOLUME (
replica_set : Replica_set_designator,
copy_volume : Administration_volume_designator

)

(2) REPLICA_SET_ADD_COPY_VOLUME adds copy_volume to the set of copy volumes for the
replica set replica_set.

(3) A "copy_volume" link with key equal to the volume identifier of copy_volume is created from
replica_set to copy_volume. The key of its reverse link is the replica set identifier of
replica_set.

(4) A copy of replica_set is created in copy_volume. A "replica" link with key equal to the exact
identifier of replica_set is created from copy_volume to this copy object.

(5) A read lock of the default mode is set of the master of replica_set. Write locks of the default
modes are set on the created "copy_volume", "copy_volume_of", "replica" and "replica_on"
links and the created copy of replica_set.

Errors

(6) ACCESS_ERRORS (copy_volume, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (master of replica_set, ATOMIC, MODIFY, APPEND_LINKS)

- 204 -

(8) ACCESS_ERRORS (master of replica_set, ATOMIC, READ, READ_ATTRIBUTES)
(9) ACCESS_ERRORS (master of replica_set, ATOMIC, READ, READ_LINKS)
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(11) REPLICA_SET_IS_NOT_KNOWN (replica_set)
(12) VOLUME_IS_ALREADY_COPY_VOLUME_OF_REPLICA_SET (replica_set,

copy_volume)
(13) VOLUME_IS_MASTER_VOLUME_OF_REPLICA_SET (replica_set, copy_volume)

17.2.2 REPLICA_SET_CREATE

(1) REPLICA_SET_CREATE (
master_volume : Administration_volume_designator,
identifier : Natural

)
replica_set : Replica_set_designator

(2) REPLICA_SET_CREATE creates replica set replica_set with master volume master_volume.
The newly created object resides on master_volume, and is replicated as part of itself.

(3) A "known_replica_set" link is created from the replica set directory to replica_set with key
identifier, together with its reverse link. identifier becomes the replica set identifier of the
replica set.

(4) A "master_volume" link is created from replica_set to master_volume. The key of its reverse
link is assigned the value identifier.

(5) An "includes_object" link is created from replica_set to replica_set with key equal to the exact
identifier of replica_set. Its reverse link is also created.

(6) Write locks of the default modes are obtained on replica_set and the created
"known_replica_set", "known_replica_set_of", "master_volume", "master_volume_of",
"includes_object" and "replicated_as_part_of" links.

Errors

(7) ACCESS_ERRORS (replica set directory, ATOMIC, MODIFY, APPEND_LINKS)
(8) ACCESS_ERRORS (master_volume, ATOMIC, MODIFY, APPEND_LINKS)
(9) LINK_EXISTS (replica set directory, "known_replica_set" link from replica set directory with

key identifier.)
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)

17.2.3 REPLICA_SET_REMOVE

(1) REPLICA_SET_REMOVE (
replica_set : Replica_set_designator

)

(2) REPLICA_SET_REMOVE removes replica set replica_set from the replicated set directory.

(3) The "master_volume" link from replica_set to its master volume is deleted, together with its
reverse link.

(4) The "includes_object" link from replica_set to replica_set is deleted, together with its reverse
link.

- 205 -

(5) The "known_replica_set" link from the replica set directory to replica_set is deleted, together
with its reverse link. If this link is the last existence link leading to replica_set, replica_set is
deleted.

(6) Write locks of the default modes are set on replica_set and the deleted "known_replica_set",
"known_replica_set_of", "master_volume", "master_volume_of", "includes_object" and
"replicated_as_part_of" links.

Errors

(7) ACCESS_ERRORS (replica set directory, ATOMIC, MODIFY, WRITE_LINKS)
(8) ACCESS_ERRORS (replica_set, ATOMIC, MODIFY, WRITE_LINKS)
(9) ACCESS_ERRORS (replica_set, ATOMIC, CHANGE, WRITE_IMPLICIT)
(10) ACCESS_ERRORS (master volume of replica_set, ATOMIC, MODIFY, WRITE_LINKS)
(11) OBJECT_HAS_LINKS_PREVENTING_DELETION (replica_set)
(12) OBJECT_IS_IN_USE_FOR_DELETE (replica_set)
(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(14) REPLICA_SET_HAS_COPY_VOLUMES (replica_set)
(15) REPLICA_SET_IS_NOT_EMPTY (replica_set)
(16) REPLICA_SET_IS_NOT_KNOWN (replica_set)

17.2.4 REPLICA_SET_REMOVE_COPY_VOLUME

(1) REPLICA_SET_REMOVE_COPY_VOLUME (
replica_set : Replica_set_designator,
copy_volume : Administration_volume_designator

)

(2) REPLICA_SET_REMOVE_COPY_VOLUME removes copy_volume from the set of copy
volumes of the replica set replica set. The copy of replica_set on copy_volume is deleted.

(3) The "copy_volume" link with key equal to the volume identifier of copy_volume and its reverse
link are deleted.

(4) The link of type "replica" from copy_volume to the copy of replica_set on copy_volume is
deleted, as is its reverse link.

(5) Write locks of the default modes are set on the deleted "copy_volume", "copy_volume_of",
"replica" and "replica_on" links and the deleted copy of replica_set.

Errors

(6) ACCESS_ERRORS (master of replica_set, ATOMIC, MODIFY, WRITE_LINKS)
(7) ACCESS_ERRORS (deleted copy of replica_set, ATOMIC, MODIFY)
(8) ACCESS_ERRORS (copy_volume, ATOMIC, MODIFY, WRITE_LINKS)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(10) REPLICA_SET_COPY_IS_NOT_EMPTY (replica_set, copy_volume)
(11) REPLICA_SET_IS_NOT_KNOWN (replica_set)
(12) VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SET (replica_set, copy_volume)

- 206 -

17.2.5 REPLICATED_OBJECT_CREATE

(1) REPLICATED_OBJECT_CREATE (
replica_set : Replica_set_designator,
object : Object_designator

)

(2) REPLICATED_OBJECT_CREATE converts the normal object object to a master object
belonging to replica set replica_set. The replicated state of object is set to MASTER.

(3) A "replica" link is created from the master volume of replica_set to object with key equal to the
exact identifier of object. Its reverse link is also created to the master volume.

(4) An "includes_object" link is created from replica_set to object with key equal to the exact
identifier of object. Its reverse link is also created.

(5) A write lock of the default mode is obtained on object and a write lock of the default mode is
obtained on the created "replica" link.

Errors

(6) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_OBJECT)
(7) ACCESS_ERRORS (object, ATOMIC, CHANGE, APPEND_IMPLICIT)
(8) ACCESS_ERRORS (replica_set, ATOMIC, MODIFY, APPEND_LINKS)
(9) ACCESS_ERRORS (master volume of replica_set, ATOMIC, MODIFY, APPEND_LINKS)
(10) OBJECT_IS_NOT_ON_MASTER_VOLUME_OF_REPLICA_SET (replica_set, object)
(11) OBJECT_IS_REPLICATED (object)
(12) OBJECT_IS_NOT_REPLICABLE (object)
(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(14) REPLICA_SET_IS_NOT_KNOWN (replica_set)
(15) The following implementation-dependent errors may be raised for any object X with a link to

object:
VOLUME_IS_NOT_MOUNTED (X, ATOMIC)
VOLUME_IS_READ_ONLY (X, ATOMIC)

17.2.6 REPLICATED_OBJECT_DELETE_REPLICA

(1) REPLICATED_OBJECT_DELETE_REPLICA (
object : Object_designator,
copy_volume : Administration_volume_designator

)

(2) REPLICATED_OBJECT_DELETE_REPLICA deletes the copy object object from the volume
copy_volume. The "replica" link leading to object and its reverse "replica_on" link are deleted.

(3) If the copy object has contents and this is currently opened by one or more processes, the
deletion of the contents is postponed until all processes have closed the contents; i.e. the object
is no longer accessible for example using internal object references or for replication redirection,
but an operation using a contents handle to access its contents is not affected by the deletion
until the contents handle is closed.

(4) Write locks of the default mode are obtained on object and on the deleted replica link.

- 207 -

Errors

(5) ACCESS_ERRORS (copy_volume, ATOMIC, MODIFY, WRITE_LINKS)
(6) OBJECT_IS_NOT_REPLICATED_ON_VOLUME (object, copy_volume)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(8) OBJECT_IS_PREDEFINED_REPLICATED (object)
(9) OBJECT_IS_A_REPLICA_SET (object)
(10) STATIC_CONTEXT_IS_IN_USE (object)
(11) The following implementation-dependent error may be raised:

ACCESS_ERRORS (master of object, ATOMIC, CHANGE)

17.2.7 REPLICATED_OBJECT_DUPLICATE

(1) REPLICATED_OBJECT_DUPLICATE (
object : Object_designator,
volume : Administration_volume_designator,
copy_volume : Administration_volume_designator

)

(2) If volume and copy_volume are the same, then REPLICATED_OBJECT_DUPLICATE has no
effect.

(3) If volume and copy_volume are not the same, and a copy of object does not already exist in
copy_volume, a copy is created and a "replica" link, keyed by the exact identifier of object, is
created from copy_volume to the new copy, together with its reverse "replica_on" link.

(4) If volume and copy_volume are not the same, and a copy of object already exists in
copy_volume, the copy in copy_volume is updated as defined below.

(5) On completion, the atomic object of the copy in copy_volume is identical to the atomic object of
object except for the following:

(6) - The volume identifier of the copy object is set to the volume identifier of copy_volume.

(7) - The last access time of the copy object is set to the value of the system clock at the time of
call.

(8) - The destination of its "replica_on" link is copy_volume.

(9) - The replicated state of the copy object is set to COPY.

(10) - Usage designation links are not copied to the copy in copy_volume.

(11) - If object has contents and there is a copy of object in copy_volume, the effect is that of
CONTENTS_TRUNCATE followed by CONTENTS_WRITE with the contents of object.

(12) A write lock of the default mode is obtained on the copy object, and a read lock of the default
mode is obtained in object. Write locks of the default mode are obtained on the "replica" link
and its reverse "replica_on" link, if created.

Errors

(13) ACCESS_ERRORS (copy of object on volume, ATOMIC, READ)
(14) If a new "replica" link is created:

ACCESS_ERRORS (copy_volume, ATOMIC, MODIFY, APPEND_LINKS)
(15) OBJECT_IS_NOT_REPLICATED_ON_VOLUME (object, volume)

- 208 -

(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(17) REPLICATED_COPY_IS_IN_USE (object)
(18) STATIC_CONTEXT_IS_IN_USE (object)
(19) VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SET (volume, replica

set of object)
(20) VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SET (copy_volume, replica set of

object)
(21) VOLUME_IS_MASTER_VOLUME_OF_REPLICA_SET (copy_volume, replica set of object)
(22) The following implementation-dependent error may be raised:

ACCESS_ERRORS (master of object, ATOMIC, CHANGE)

NOTES

(23) 1 REPLICATED_OBJECT_DUPLICATE causes a copy of the atomic object of object to exist as the atomic
object of the copy object in the volume copy_volume. The copy object has the same components as object, but the
components are not copied.

(24) 2 Updates to copy objects by this operation are subject to transaction rollback.

17.2.8 REPLICATED_OBJECT_REMOVE

(1) REPLICATED_OBJECT_REMOVE (
object : Object_designator

)

(2) REPLICATED_OBJECT_REMOVE removes the master object object from the replica set to
which it belongs by changing it into a normal object residing on the master volume of this
replica set. The replicated state of object is set to NORMAL, and the "replica" and
"includes_object" links leading to the object are deleted, together with their reverse "replica_on"
and "replicated_as_part_of" links.

(3) Write locks of the default mode are obtained on the deleted "replica", "replica_on",
"includes_object" and "replicated_as_part_of" links, and on object.

Errors

(4) ACCESS_ERRORS (master volume of object, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_OBJECT)
(6) ACCESS_ERRORS (object, ATOMIC, CHANGE, WRITE_IMPLICIT)
(7) ACCESS_ERRORS (replica set containing object, ATOMIC, MODIFY, WRITE_LINKS)
(8) OBJECT_HAS_COPIES (object)
(9) OBJECT_IS_A_REPLICA_SET (object)
(10) OBJECT_IS_NOT_MASTER_REPLICATED_OBJECT (object)
(11) OBJECT_IS_PREDEFINED_REPLICATED (object)
(12) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(13) The following implementation-dependent errors may be raised for any object X with a link to

object:
VOLUME_IS_NOT_MOUNTED (X, ATOMIC)
VOLUME_IS_READ_ONLY (X, ATOMIC)

- 209 -

17.2.9 WORKSTATION_SELECT_REPLICA_SET_VOLUME

(1) WORKSTATION_SELECT_REPLICA_SET_VOLUME (
station : Workstation_designator,
replica_set : Replica_set_designator,
volume : Administration_volume_designator

)

(2) WORKSTATION_SELECT_REPLICA_SET_VOLUME selects volume as the chosen volume
for accesses to replica set by station.

(3) If station has a "replica_set_chosen_volume" link whose key is the replica set identifier of
replica_set, that link is first deleted.

(4) A "replica_set_chosen_volume" link with a key equal to the replica set identifier of replica_set
is then created from station and leading to volume.

(5) A write lock of the default mode is created on the "replica_set_chosen_volume" link.

Errors

(6) If station already has a chosen volume for accesses to replica_set:
ACCESS_ERRORS (station, ATOMIC, MODIFY, WRITE_LINKS)

(7) ACCESS_ERRORS (station, ATOMIC, MODIFY, APPEND_LINKS)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(9) REPLICA_SET_IS_NOT_KNOWN (replica_set)
(10) VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SET (replica_set,

volume)

17.2.10 WORKSTATION_UNSELECT_REPLICA_SET_VOLUME

(1) WORKSTATION_UNSELECT_REPLICA_SET_VOLUME (
station : Workstation_designator,
replica_set : Replica_set_designator

)

(2) WORKSTATION_UNSELECT_REPLICA_SET_VOLUME deletes the
"replica_set_chosen_volume" link from station whose key is the replica set identifier of
replica_set.

(3) A write lock of the default mode is created on the deleted "replica_set_chosen_volume" link.

Errors

(4) ACCESS_ERRORS (station, ATOMIC, MODIFY, WRITE_LINKS)
(5) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(6) REPLICA_SET_IS_NOT_KNOWN (replica_set)
(7) WORKSTATION_HAS_NO_CHOICE_OF_VOLUME_FOR_REPLICA_SET (station,

replica_set)

- 210 -

18 Network connection

18.1 Network connection concepts

18.1.1 Execution sites

(1) sds system:

(2) execution_site_directory: child type of object with
link

known_execution_site: non_duplicated existence link (execution_site_identifier) to
execution_site;

execution_sites_of: implicit link to common_root reverse execution_sites;
end execution_site_directory;

(3) execution_site: child type of object with
link

running_process: (navigate) non_duplicated designation link (number) to process;
end execution_site;

(4) end system;

(5) The execution site identifier is assigned to the execution site on creation and uniquely identifies
the execution site within the PCTE installation during its existence.

(6) The destinations of the "running_process" links, if any, are the processes running on the
workstation (see 13.1.4).

(7) The execution site directory is an administrative object (see 9.1.2).

(8) NOTE - An execution site is either a workstation (see 18.1.2) or a foreign system (see 18.1.3).

18.1.2 Workstations

(1) Work_status = set of Work_status_item

(2) Work_status_item = ACTIVITY_REMOTE_LOCKS | ACTIVITY_LOCAL_LOCKS |
TRANSACTION_REMOTE_LOCKS | TRANSACTION_LOCAL_LOCKS |
QUEUE_REMOTE | QUEUE_LOCAL | RECEIVE_REMOTE | RECEIVE_LOCAL |
CHILD_REMOTE | CHILD_LOCAL

(3) Requested_connection_status = LOCAL | CLIENT | CONNECTED

(4) Connection_status = Requested_connection_status | AVAILABLE

(5) Workstation_status = Connection_status * Work_status

(6) New_administration_volume ::
FOREIGN_DEVICE : String
ADMINISTRATION_VOLUME : Volume_identifier
VOLUME_CHARACTERISTICS : String
DEVICE : Device_identifier
DEVICE_CHARACTERISTICS : String

- 211 -

(7) sds system:

(8) workstation: child type of execution_site with
attribute

connection_status: (read) non_duplicated enumeration (LOCAL, CLIENT,
AVAILABLE, CONNECTED) := LOCAL;

PCTE_implementation_name: (read) non_duplicated string ;
PCTE_implementation_release: (read) non_duplicated string ;
PCTE_implementation_version: (read) non_duplicated string ;
node_name: (read) non_duplicated string ;
machine_name: (read) non_duplicated string ;

link
controlled_device: (navigate) non_duplicated existence link (device_identifier:

natural) to device reverse device_of;
associated_administration_volume: (navigate) non_duplicated designation link to

administration_volume;
initial_process: non_duplicated existence link (number) to process;
outermost_activity: (navigate) non_duplicated existence link (number) to activity;

end workstation;

(9) end system;

(10) The work status consists of a number of independent work status items as follows (where local
means residing on a volume mounted on a device controlled by this workstation, and remote
means residing on a volume mounted on a device controlled by some other workstation):

(11) - ACTIVITY_REMOTE_LOCKS: at least one non-transaction activity started on the
workstation holds locks on remote objects,

(12) - ACTIVITY_LOCAL_LOCKS: at least one non-transaction activity started on another
workstation has locks on local objects,

(13) - TRANSACTION_REMOTE_LOCKS: at least one transaction started on the workstation
holds locks on remote objects,

(14) - TRANSACTION_LOCAL_LOCKS: at least one transaction started on another workstation
has locks on local objects,

(15) - QUEUE_REMOTE: at least one process on the workstation has a remote reserved message
queue,

(16) - QUEUE_LOCAL: at least one process on a remote workstation has a message queue
reserved on the workstation,

(17) - RECEIVE_REMOTE: at least one process on the workstation is waiting for the reception of
a message from a remote message queue,

(18) - RECEIVE_LOCAL: at least one process on another workstation is waiting for the reception
of a message from a local message queue,

(19) - CHILD_REMOTE: at least one process on the workstation has one or more unterminated
remote child processes,

(20) - CHILD_LOCAL: at least one process on another workstation has one or more unterminated
local child processes.

(21) New administration volumes are used in WORKSTATION_CREATE. The meaning of
FOREIGN_DEVICE is implementation-defined. It is a string used to designate a new physical
resource (i.e. not yet represented by a device object).

- 212 -

(22) A workstation A is a client of a workstation B if at least one of the following is true:

(23) - a process running on A has started a child process on B which is not yet terminated;

(24) - a process running on A is accessing (i.e. reading from, writing to, or navigating through) an
object residing on a volume mounted on a device controlled by B;

(25) - there is a service designation link to an object residing on a volume mounted on a device
controlled by B from a process running on A;

(26) - a process running on A has reserved a message queue whose associated message queue
object resides on a volume mounted on a device managed by B.

(27) Conversely, a workstation A is a server of a workstation B if B is a client of A.

(28) The connection status denotes the status of the workstation with respect to other workstations of
the PCTE installation. The values have the following meanings (for the definitions of client and
server see below).

(29) - LOCAL The workstation cannot be a client or a server for another workstation. It does not
respond to a call of WORKSTATION_CONNECT from another workstation.

(30) - AVAILABLE The same as LOCAL except that the workstation responds to a connection
request from another workstation.

(31) - CLIENT The workstation can be a client but not a server of another workstation. It does not
respond to a connection request from another workstation.

(32) - CONNECTED The workstation can be a client or a server of another workstation.

(33) The implementation name is the name of the particular implementation of PCTE running on the
workstation; it is implementation-defined.

(34) The implementation release identifies of the release of the PCTE implementation running on the
workstation; it is implementation-defined.

(35) The implementation version identifies of the version of the PCTE implementation running on
the workstation; it is implementation-defined.

(36) The node name provides the mechanism to communicate to the network, e.g. the local area
network address; it is implementation-defined.

(37) The machine name is the name of the particular machine type of the workstation; it is
implementation-defined.

(38) The controlled devices are also called the devices controlled by the workstation. Each of the
devices is identified by a device identifier which is unique within the set of devices controlled
by the workstation.

(39) For the administration volume, see 11.1.2. A workstation object resides on the administration
volume of the workstation.

(40) For the initial process of the workstation, see 13.1.5.

(41) For the outermost activity of the workstation, see 16.1.1.

(42) For the associated accounting log, see 22.1.2.

(43) A workstation is busy if it has connection status CONNECTED and is a server of another
workstation, or has connection status CLIENT and is a client of another workstation.

- 213 -

(44) Within an operation, the local workstation is the workstation on which the calling process is
executed.

NOTES

(45) 1 The normal situation in a PCTE installation is one of the following, though abnormal situations may occur:

(46) - all workstations with connection status LOCAL;

(47) - one workstation with connection status AVAILABLE, all other workstations with connection status LOCAL;

(48) - two or more workstations with connection status CONNECTED or CLIENT, all other workstations with
connection status LOCAL;

(49) - all workstations with connection status CONNECTED or CLIENT.

(50) 2 In some implementations a workstation may have more than one "initial_process" or "outermost_activity" link.
Only the destinations with the highest key are the initial process and outermost activity of the workstation,
respectively. Destinations with other keys are remnants from previous sessions which allow an implementation-
dependent tool to perform actions following workstation or system failure.

(51) 3 A workstation may access an administration volume shared with another workstation even if its connection
status is LOCAL.

18.1.3 Foreign systems

(1) sds system:

(2) foreign_system: child type of execution_site with
attribute

system_class: enumeration (FOREIGN_DEVICE, BARE_MACHINE,
HAS_EXECUTIVE_SYSTEM, SUPPORTS_IPC_AND_CONTROL,
SUPPORTS_MONITOR) := BARE_MACHINE;

end foreign_system;

(3) end system;

(4) The system class indicates the level of interaction which is supported between PCTE processes
and foreign processes started on the foreign system, as follows.

(5) - FOREIGN_DEVICE The foreign system can be used only as the foreign system for
operations defined in 18.3.

(6) - BARE_MACHINE The foreign system is a bare machine executing no code other than the
software under development. The only permitted operation by a PCTE process is
PROCESS_CREATE. Any further communication is prevented by the absence of any
communication agent on the foreign system

(7) - HAS_EXECUTIVE_SYSTEM The foreign system is a foreign executive system which
accepts the creation, starting, and termination of processes on it, and can signal the end of
their execution to the creating host process.

(8) - SUPPORTS_IPC_AND_CONTROL As for HAS_EXECUTIVE_SYSTEM and can also
support at least the message queue mechanisms represented by the operations (see clause 14)
MESSAGE_RECEIVE_NO_WAIT, MESSAGE_RECEIVE_WAIT,
MESSAGE_SEND_NO_WAIT, and MESSAGE_SEND_WAIT, and the process control
mechanisms such as process suspension and resumption.

(9) - SUPPORTS_MONITOR As for SUPPORTS_IPC_AND_CONTROL and can also support
the monitoring operations of 13.5.

(10) NOTE - On a foreign system of system class, BARE_MACHINE, PROCESS_CREATE is intended to download
the process but not to start its execution.

- 214 -

18.1.4 Network partitions

(1) The execution sites of a PCTE installation may be connected together to share resources.

(2) At any time, a set of workstations of a PCTE installation, each of which is running PCTE, and
which are connected together, is called a network partition. The connection status of each
workstation in the network partition controls the use which one workstation may make of
resources controlled by another (see below).

(3) An implementation may impose restrictions on the sets of workstations which can form a
network partition. In particular, an implementation may or may not allow any single isolated
workstation to be a network partition, and an implementation may or may not allow more than
one network partition to exist at the same time (in this case the sets of workstations in the
network partitions are disjoint since the connectedness relation is transitive).

(4) The specification of the abstract operations must always be understood to be in the context of
the calling process's network partition; for example, "an object is not accessible" must always be
understood to mean that the object is not accessible within the calling process's network
partition; the object may be accessible in some other network partition.

(5) A network partition may rejoin other partitions by implementation-defined means so that
workstations in the partition are now accessible to workstations in other partitions. Although
the time at which the network failure is detected may be variable, the network failure must be
detected in all partitions before the network partitions can be rejoined.

18.1.5 Accessibility

(1) In order for an operation to operate on an entity, that entity must be accessible.

(2) The rules for accessibility are as follows; except as given by these rules, no entity in a PCTE
installation is accessible:

(3) - the local workstation is accessible;

(4) - if the local workstation has connection status CLIENT or CONNECTED, all workstations in
the same network partition which have connection status CONNECTED are accessible;

(5) - processes executing on accessible workstations are accessible;

(6) - devices controlled by accessible workstations are accessible;

(7) - volumes mounted on accessible devices are accessible;

(8) - objects residing on accessible volumes, or which are replicas on accessible administration
volumes, and their direct attributes, direct outgoing links, contents, and associated sequences
of messages are accessible;

(9) - the atomic object associated with an accessible object is accessible;

(10) - locks on resources residing on accessible volumes are accessible;

(11) - the accessibility of a foreign system is implementation-defined;

(12) - a process on an accessible foreign system is accessible;

(13) - the accessibility of a file residing on a foreign system is implementation-defined.

(14) A PCTE implementation may arrange that an operation succeeds even though some entity which
is used is not accessible according to the above rules. Otherwise an error is raised to indicate

- 215 -

that the entity is not accessible, and the above rules indicate what must be done by the user to
make the entity accessible.

(15) An object is defined as unreachable if operations fail to access it because it is not accessible.

(16) When a workstation A ceases to be a client of a workstation B the following actions occur:

(17) - All child processes running on B started by unreachable processes running on A are
terminated in the same way as by calling PROCESS_TERMINATE (child process,
FORCED_TERMINATION).

(18) - All objects residing on volumes mounted on devices controlled by B and with contents
opened by unreachable processes running on A are closed.

(19) - All locks on objects or links residing on volumes mounted on devices controlled by B, or on
deleted objects which resided on such volumes, and held by unreachable activities started by
processes running on A, are treated as for activity abortion. If such a lock had external mode
WTR or DTR then any changes are rolled back.

(20) - Operations being executed by processes running on A accessing unreachable objects residing
on volumes mounted on devices controlled by B may fail with the error condition
OPERATION_IS_INTERRUPTED.

(21) - All message queues residing on volumes mounted on devices controlled by B and reserved
for unreachable processes running on A are unreserved, handlers on those message queues
are disabled, and notifiers on those message queues are deleted.

(22) - Usage designation links from objects residing on volumes mounted on devices controlled by
B to unreachable processes running on A are deleted.

(23) When a station A ceases to be a server of a station B the following actions occur:

(24) - All unreachable objects residing on volumes mounted on devices controlled by A and with
contents opened by processes running on B are closed. Any subsequent reads and writes to
the contents fail.

(25) - All locks on unreachable objects or links residing on volumes mounted on devices controlled
by A held by activities started by processes running on B are released. These activities are
not aborted immediately in their own workstations. However, any attempt to end a
transaction activity which held such locks with external mode RPR, WTR or DTR results in
the error TRANSACTION_CANNOT_BE_COMMITTED.

(26) - Operations being executed by processes running on B accessing unreachable objects which
are residing on volumes mounted on devices controlled by A may fail with the error
condition OPERATION_IS_INTERRUPTED.

(27) - All unreachable message queues residing on volumes mounted on devices controlled by A
and reserved for processes running on other workstations are unreserved.

(28) - All "process_waiting_for" links from processes running on B to unreachable objects residing
on volumes mounted on devices controlled by A are deleted, and the corresponding waiting
operations in the processes fail with the error condition OBJECT_IS_INACCESSIBLE.

(29) - Service designation links from processes running on B to unreachable objects residing on
volumes mounted on devices controlled by A are deleted.

(30) - For each "notifier" link whose origin message queue resides on a volume mounted on a
device controlled by B and whose destination resides on a volume mounted on a device
controlled by A, a NOT_ACCESSIBLE_MSG message is sent to its origin message queue.

- 216 -

(31) If a network failure is detected by a workstation A then an inaccessible workstation B normally
ceases to be a client of A and also ceases to be a server of A, and A ceases to be a client or
server of B. However if B fails to detect the network failure (e.g. because it was only transient
and connection at the communications protocol level has been restored) then any subsequent
attempt by B to act as a server or client of A results in A responding so as to cause B to cease to
be a server or client of A.

18.1.6 Workstation closedown

(1) An orderly closedown of a workstation occurs only when all the descendant processes of the
initial process associated with the workstation and any other processes executing on the
workstation, with the exception of the initial process, are terminated. The outermost activity is
terminated.

(2) If a workstation is improperly terminated or fails, this is termed abnormal closedown. On
abnormal closedown of a workstation, the following actions are taken:

(3) - Each process P executing on the workstation at the time of workstation failure is terminated
as by PROCESS_TERMINATE (P, SYSTEM_FAILURE). In particular, all activities
started by the processes are aborted.

(4) - The outermost activity of the workstation is terminated abnormally.

(5) - Contents of an implementation-dependent set of pipes managed by the workstation are lost.
The messages and the values of the "reader_waiting", "writer_waiting", "space_used",
"message_count", "last_send_time", and "last_receive_time" attributes of an
implementation-dependent set of message queues managed by the workstation are lost.

(6) - All locks on resources, residing on volumes mounted on devices controlled by the failed
workstation, and held by activities started by processes executing on other workstations, are
released as if the activities were abnormally terminated, and any updates performed under
WTR or DTR locks are rolled back.

(7) - All objects residing on volumes mounted on devices controlled by the failed workstation
with contents opened by processes running on other workstations are closed.

(8) - All message queues residing on volumes mounted on devices controlled by the failed
workstation and reserved for processes running on other workstations are unreserved,
handlers on those message queues are disabled, and notifiers on those message queues are
deleted.

(9) - Usage designation links from objects residing on volumes mounted on devices controlled by
the failed workstation to processes running on other workstations are deleted.

(10) - Updates to objects residing on volumes mounted on devices controlled by the failed
workstation which had not been made permanent at the actual time of workstation failure are
lost.

(11) - Updates to files not under WTR or DTR locks, and to audit files and accounting logs
residing on volumes mounted on devices controlled by the failed workstation are lost to an
implementation-defined degree.

(12) - The workstation connection status is set to LOCAL.

(13) The terminated outermost activity and the terminated initial process remain.

- 217 -

(14) Whether a workstation closes down in an abnormal or orderly manner, the contents of pipes,
messages in message queues, and audit criteria are lost.

(15) When a workstation is restarted after abnormal or orderly closedown, a new outermost activity
and a new initial process are created, and the previous, terminated, outermost activity and initial
process are not reused.

NOTES

(16) 1 The actions described above at workstation abnormal closedown are performed by the implementation at some
point between the failure and restarting the workstation.

(17) 2 As a consequence of terminating all the processes on abnormal closedown, any active activities are aborted.

(18) 3 After abnormal closedown the previous initial process may have components, i.e. be a tree of process objects.

(19) 4 The previously running initial process and the previously active outermost activity must be deleted explicitly.
This means that it is possible that there are several "initial_process" and several "outermost_activity" links
emanating from a workstation. However, only one "initial_process" link leads to a running initial process and only
one "outermost_activity" link leads to an active outermost activity.

(20) 5 Implementations aiming for high security may wish to take special measures to ensure that workstation failure
does not result in any loss of data written to the audit file.

18.2 Network connection operations

18.2.1 WORKSTATION_CONNECT

(1) WORKSTATION_CONNECT (
status : Requested_connection_status

)

(2) WORKSTATION_CONNECT has no effect if the connection status of the local workstation is
already the requested status status. Otherwise it connects the local workstation to the PCTE
installation, and sets its connection status as follows:

(3) - If status is CONNECTED and there is no other workstation in the PCTE installation
available for connection, the connection status is set to AVAILABLE.

(4) - If status is CLIENT and there is no other workstation in the PCTE installation available for
connection, the connection status is unchanged.

(5) - If status is CONNECTED or CLIENT and there is another workstation in the PCTE
installation available for connection, the connection status is set to status. The connection
status of all available workstations are automatically changed to CONNECTED.

(6) There may be installation-defined procedures to be carried out before and after calling this
operation; such procedures are outside the scope of this ECMA Standard.

Errors

(7) ACCESS_ERRORS (the local workstation, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
(8) CONNECTION_IS_DENIED
(9) LAN_ERROR_EXISTS
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(11) STATUS_IS_BAD (status)

- 218 -

18.2.2 WORKSTATION_CREATE

(1) WORKSTATION_CREATE (
execution_site_identifier : Natural,
administration_volume : Volume_designator | New_administration_volume,
access_mask : Atomic_access_rights,
node_name : Text,
machine_name : Text

)

(2) WORKSTATION_CREATE creates a new workstation in the PCTE installation, as follows.

(3) If administration_volume is a volume designator:

(4) - a "workstation" object new_station is created on administration_volume as destination of a
new "known_execution_site" link from the execution site directory keyed by
execution_site_identifier;

(5) - an "object_on_volume" link is created from existing_administration_volume to new_station,
keyed by the exact identifier of new_station.

(6) If administration_volume is a new administration volume with foreign device foreign_device,
administration volume new_administration_volume, volume characteristics
volume_characteristics, device new_device, and device characteristics device_characteristics:

(7) - foreign_device is interpreted in an implementation-defined way to specify a device
containing a physical volume that has been prepared in an implementation-defined way to
become a new administration volume.

(8) - an "administration_volume" object is created on the specified physical volume, with volume
characteristics volume_characteristics, as destination of a new "known_volume" link from
the volume directory, keyed by new_administration_volume;

(9) - a "workstation" object new_station is created on the new volume, as destination of a new
"known_execution_site" link from the execution site directory keyed by
execution_site_identifier;

(10) - a "device_supporting_volume" object is created on the new volume, with device
characteristics device_characteristics, as destination of a new "controlled_device" link from
new_station, keyed by new_device;

(11) - "object_on_volume" links are created from the new administration volume to itself, to
new_station, and to the new "device_supporting_volume" object, keyed by the exact
identifiers of their destinations;

(12) - the labels of the created device and of the created volume are set to the mandatory context
of the calling process;

(13) - a "mounted_volume" link is created from the new device to the new administration volume;

(14) - a "copy_volume" link with key volume_identifier is created to the newly created
administration volume object, and is reversed by a "copy_volume_of" link with key '0'
leading to the administration replica set. Copies of the master objects of the administration
replica set, the common root, the "system" schema, and the administrative objects are created
in the newly created administration volume.

- 219 -

(15) In both cases:

(16) - access_mask is used in conjunction with the default atomic ACL and default owner of the
calling process to define the atomic ACL and the composite ACL which are to be associated
with the created objects (see 19.1.4);

(17) - the labels of the created workstation are set to the mandatory context of the calling process;

(18) - an "associated_administration_volume" link is created from new_station to
existing_administration_volume or new_administration_volume;

(19) - an initial process is created for the workstation;

(20) - the attributes of the new workstation are set as follows:

(21) . the connection status is set to LOCAL;

(22) . the PCTE implementation name, PCTE implementation release, and PCTE
implementation version are the same as for the local workstation;

(23) . the node name and machine name are set from the parameters node_name and
machine_name.

(24) If the auditing module is supported, there is at least one audit file for the new workstation (see
21.1.1), but auditing is initially disabled.

(25) Write locks are obtained on the execution site directory, the volume directory, the created
workstation and (if they are created) the new administration volume and device.

Errors

(26) ACCESS_ERRORS (volume directory, ATOMIC, CHANGE, APPEND_LINKS)
(27) ACCESS_ERRORS (execution site directory, ATOMIC, CHANGE, APPEND_LINKS)
(28) If administration_volume is a volume designator:

ACCESS_ERRORS (administration_volume, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (existing device, ATOMIC, CHANGE, APPEND_IMPLICIT)
ACCESS_ERRORS (administration replica set, ATOMIC, MODIFY, APPEND_LINKS)
VOLUME_IS_UNKNOWN (administration_volume)

(29) CONTROL_WOULD_NOT_BE_GRANTED (new_station)
(30) If administration_volume is a new administration volume:

FOREIGN_DEVICE_IS_INVALID (foreign_device)
VOLUME_EXISTS (new_administration_volume)
VOLUME_IDENTIFIER_IS_INVALID (new_administration_volume)

(31) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(32) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(33) PROCESS_IS_IN_TRANSACTION
(34) WORKSTATION_EXISTS (execution_site_identifier)
(35) WORKSTATION_IDENTIFIER_IS_INVALID (execution_site_identifier)

NOTES

(36) 1 The new physical administration volume may need to be initialized by a system tool before this operation is
invoked.

(37) 2 For bootstrapping reasons, this operation cannot apply to the first workstation of a PCTE installation.

(38) 3 The new workstation is created but is not yet initialized. It is an implementation-defined procedure which is
responsible for starting the initial process of the new created workstation.

- 220 -

(39) 4 The ability to provide an existing administration volume is intended to cater for discless workstations and other
cases of shared administration volumes.

18.2.3 WORKSTATION_DELETE

(1) WORKSTATION_DELETE (
station : Workstation_designator

)

(2) WORKSTATION_DELETE deletes a workstation from the PCTE installation.

(3) If the administration volume of station is mounted on a device which is controlled by another
workstation (which implies that they share the same administration volume), the effect of the
workstation deletion is the same as:

OBJECT_DELETE (execution site directory, execution_site_link)

where execution_site_link is the "known_execution_site" link from the execution site directory
to station.

(4) If the administration volume of station is mounted on a device which is controlled by station,
the workstation deletion is only possible if and only if:

(5) - no other workstation has the same administration volume, i.e. there is only one
"associated_administration_volume" link to the administration volume;

(6) - the only objects residing on or which are replicas on the administration volume are:

(7) . station;

(8) . copies of the administration replica set;

(9) . the administration volume;

(10) . the "device_supporting_volume" object which is the destination of a "controlled_device"
link from station and the origin of the "mounted_volume" link to the administration
volume;

(11) . terminated processes and activities;

(12) - there are no reference, composition, or existence links from an object residing on another
volume to the objects residing on the administration volume, except the "known_volume"
link from the volume directory to the administration volume, the "known_execution_site"
link from the execution site directory to station, and "audit" links from station.

(13) The objects residing on and which are replicas on the administration volume are deleted, the
space previously occupied by the volume is freed, the "copy_volume" link from the
administration replica set to the administration volume, and the "known_volume" link to the
administration volume and the "known_execution_site" link to station are deleted. The
administration volume is unmounted.

(14) Write locks are obtained on the deleted workstation, the deleted administration volume, the
deleted device supporting the administration volume, the administration replica set, and the
deleted links. These locks do not prevent the dismounting and deletion of the administration
volume.

Errors

(15) ACCESS_ERRORS (execution site directory, ATOMIC, MODIFY, WRITE_LINKS)
(16) ACCESS_ERRORS (volume directory, ATOMIC, MODIFY, WRITE_LINKS)

- 221 -

(17) ACCESS_ERRORS (station, ATOMIC, CHANGE, WRITE_IMPLICIT)
(18) ACCESS_ERRORS (station, ATOMIC, MODIFY, WRITE_CONTENTS)
(19) If the conditions hold for deletion of the "workstation" object station:

ACCESS_ERRORS (station, COMPOSITE, MODIFY, DELETE)
(20) OBJECT_IS_IN_USE_FOR_DELETE (station)
(21) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(22) PROCESS_IS_IN_TRANSACTION
(23) VOLUME_HAS_OTHER_LINKS (administration_volume)
(24) VOLUME_HAS_OTHER_OBJECTS (administration_volume)
(25) VOLUME_HAS_OBJECTS_IN_USE (administration volume of station)
(26) WORKSTATION_IS_CONNECTED (station)
(27) WORKSTATION_IS_UNKNOWN (station)

(28) NOTE - Additional implementation-defined restrictions may be defined for this operation.

18.2.4 WORKSTATION_DISCONNECT

(1) WORKSTATION_DISCONNECT (
)

(2) WORKSTATION_DISCONNECT changes the connection status of the local workstation to
LOCAL, unless the connection status is already LOCAL, in which case it has no effect.

Errors

(3) ACCESS_ERRORS (local workstation, ATOMIC, WRITE)
(4) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(5) WORKSTATION_IS_BUSY (local workstation)

18.2.5 WORKSTATION_GET_STATUS

(1) WORKSTATION_GET_STATUS (
station : [Workstation_designator]

)
status : Workstation_status

(2) WORKSTATION_GET_STATUS returns the current connection status and work status of
station in status. If station is not supplied, the local workstation is assumed.

Errors

(3) ACCESS_ERRORS (station, ATOMIC, READ)
(4) WORKSTATION_IS_UNKNOWN (station)

18.2.6 WORKSTATION_REDUCE_CONNECTION

(1) WORKSTATION_REDUCE_CONNECTION (
station : [Workstation_designator],
status : Requested_connection_status,
force : Boolean

)

- 222 -

(2) WORKSTATION_REDUCE_CONNECTION reduces the connection status of the workstation
station to the connection status status. If station is not supplied, the local workstation is
assumed.

(3) If the required change of status is a disconnection, i.e. the current status of station is
CONNECTED and the required status is CLIENT or LOCAL, or the current status is CLIENT
and the required status is LOCAL, then force has the following effect.

(4) - true: The operation is performed whether station is busy or not. If the connection status
change is from CLIENT to LOCAL, the station ceases to be a client. If the connection status
change is from CONNECTED to CLIENT, the station ceases to be a server. If the
connection status change is from CONNECTED to LOCAL, the station ceases to be a client
or a server.

(5) - false: The workstation station must not be busy (see 18.1.2).

(6) In other cases force has no effect.

Errors

(7) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_OBJECT)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(9) WORKSTATION_IS_BUSY (station)
(10) WORKSTATION_IS_NOT_CONNECTED (station)
(11) WORKSTATION_IS_UNKNOWN (station)

18.3 Foreign system operations

18.3.1 CONTENTS_COPY_FROM_FOREIGN_SYSTEM

(1) CONTENTS_COPY_FROM_FOREIGN_SYSTEM (
file : File_designator,
foreign_system : Foreign_system_designator,
foreign_name : String,
foreign_parameters : [String]

)

(2) CONTENTS_COPY_FROM_FOREIGN_SYSTEM copies the file identified by foreign_name,
residing on the foreign system foreign_system, into the file contents of the object file,
overwriting any previous contents.

(3) The syntax and interpretation of foreign_name and foreign_parameters, whether
foreign_parameters is required, and the interpretation of the process's mandatory and
discretionary context and the permissions required on foreign_name, are all implementation-
defined and may depend on foreign_system.

(4) A write lock of the default mode is obtained on file. A read lock of the default mode is obtained
on foreign_system.

Errors

(5) ACCESS_ERRORS (file, ATOMIC, MODIFY, WRITE_CONTENTS)
(6) ACCESS_ERRORS (foreign_system, ATOMIC, READ, NAVIGATE)
(7) FOREIGN_OBJECT_IS_INACCESSIBLE (foreign_system, foreign_name)
(8) FOREIGN_SYSTEM_IS_INACCESSIBLE (foreign_system)

- 223 -

(9) FOREIGN_SYSTEM_IS_UNKNOWN (foreign_system)
(10) STATIC_CONTEXT_IS_IN_USE (file)

18.3.2 CONTENTS_COPY_TO_FOREIGN_SYSTEM

(1) CONTENTS_COPY_TO_FOREIGN_SYSTEM (
file : File_designator,
foreign_system : Foreign_system_designator,
foreign_name : String,
foreign_parameters : [String]

)

(2) CONTENTS_COPY_TO_FOREIGN_SYSTEM copies the file contents of the object object into
a file identified by foreign_name on the foreign system foreign_system.

(3) The syntax and interpretation of foreign_name and foreign_parameters, whether
foreign_parameters is required, and the interpretation of the process's mandatory and
discretionary context and the permissions required on foreign_name, are all implementation-
defined and may depend on foreign_system.

(4) A read lock of the default mode is obtained on file. A read lock of the default mode is obtained
on foreign_system.

Errors

(5) ACCESS_ERRORS (file, ATOMIC, READ, READ_CONTENTS)
(6) ACCESS_ERRORS (foreign_system, ATOMIC, READ, NAVIGATE)
(7) FOREIGN_OBJECT_IS_INACCESSIBLE (foreign_system, foreign_name)
(8) FOREIGN_EXECUTION_IMAGE_IS_BEING_EXECUTED (foreign_system, foreign_name)
(9) FOREIGN_SYSTEM_IS_INACCESSIBLE (foreign_system)
(10) FOREIGN_SYSTEM_IS_UNKNOWN (foreign_system)
(11) LABEL_IS_OUTSIDE_RANGE (file, foreign_system)

(12) NOTE - It is implementation-defined whether the contents of object overwrites or is appended to the contents of
the foreign file; this may depend on the properties of foreign_system and on foreign_parameters.

18.4 Time operations

18.4.1 TIME_GET

(1) TIME_GET (
)

time : Time

(2) TIME_GET returns as time the current value of the system time.

Errors

(3) None.

18.4.2 TIME_SET

(1) TIME_SET (
time : Time

)

- 224 -

(2) TIME_SET sets the value of system time to time.

Errors

(3) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
(4) The following implementation-defined error may be raised:

TIME_CANNOT_BE_CHANGED

- 225 -

19 Discretionary security

19.1 Discretionary security concepts

19.1.1 Security groups

(1) Group_identifier = Natural

(2) sds discretionary_security:

(3) import object type system-object, system-static_context, system-process, system-common_root;

(4) import attribute type system-name, system-number;

(5) security_group_directory: child type of object with
link

known_security_group: (navigate) existence link (group_identifier: natural) to
security_group;

security_groups_of: implicit link to common_root reverse security_groups;
end security_group_directory;

(6) security_group: child type of object;

(7) user: child type of security_group with
link

user_identity_of: (navigate) non_duplicated designation link (number) to process;
user_member_of: (navigate) reference link (number) to user_group reverse has_users;

end user;

(8) user_group: child type of security_group with
link

has_users: (navigate) reference link (number) to user reverse user_member_of;
user_subgroup_of: (navigate) reference link (number) to user_group reverse

has_user_subgroups;
has_user_subgroups: (navigate) reference link (number) to user_group reverse

user_subgroup_of;
adopted_user_group_of: (navigate) non_duplicated designation link (number) to

process;
end user_group;

(9) program_group: child type of security_group with
link

has_programs: (navigate) reference link (number) to static_context reverse
program_member_of;

program_subgroup_of: (navigate) reference link (number) to program_group reverse
has_program_subgroups;

has_program_subgroups: (navigate) reference link (number) to program_group reverse
program_subgroup_of;

end program_group;

(10) extend object type static_context with
link

program_member_of: (navigate) implicit link (system_key) to program_group reverse
has_programs;

end static_context;

- 226 -

(11) extend object type process with
link

user_identity: (navigate) designation link to user;
adopted_user_group: (navigate) designation link to user_group;
adoptable_user_group: (navigate) designation link (number) to user_group with
attribute

adoptable_for_child: (read) boolean := true ;
end adoptable_user_group;

end process;

(12) extend object type common_root with
link

security_groups: (navigate) existence link to security_group_directory reverse
security_groups_of;

end common_root;

(13) end discretionary_security;

(14) The security group directory is an administrative object (see 9.1.2).

(15) A user is a member of a user group if there is a "has_users" link from the user group to the user.

(16) A static context is a member of a program group if there is a "has_programs" link from the
program group to the static context.

(17) A user group A is a user subgroup of a user group B if there is a "has_user_subgroups" link
from the user group B to the user group A. User group B is a direct user supergroup of user
group A.

(18) An indirect user supergroup of a user group is a direct user supergroup of a direct or indirect
user supergroup of the user group. A user supergroup of a user group is a direct user
supergroup or an indirect user supergroup of that user group.

(19) The set of user groups with the user-subgroup/user-supergroup relation forms an acyclic graph
with the predefined user group ALL_USERS as root.

(20) A program group consists of a set of static contexts. A program group A is a program subgroup
of a program group B if there is a "has_program_subgroups" link from the program group B to
the program group A. Program group B is a direct program supergroup of program group A.

(21) An indirect program supergroup of a program group is a direct program supergroup of a direct
or indirect program supergroup of the program group. A program supergroup of a program
group is a direct program supergroup or an indirect program supergroup of that program group.

(22) Where there is no risk of ambiguity, a user subgroup or a program subgroup is called simply a
subgroup, and a user supergroup or a program supergroup is called simply a supergroup.

(23) Discretionary groups are security groups used for the purposes of discretionary access control.
Each process has the following effective security groups:

(24) - One user, the destination of the "user_identity" link from the process, called the user of the
process.

(25) - One user group, the adopted user group of the process, of which the user is a member, and
all user supergroups of that user group (including the group ALL_USERS). The adopted
user group is the destination of the "adopted_user_group" link from the process.

(26) - All program groups of which a non-interpretable static context run by a process (see 13.1.1)
is a member, and all their supergroups; and for an interpretable static context, the program
groups of which the interpreter is a member, and all their supergroups.

- 227 -

(27) Each process also has an associated set of user groups called its adoptable user groups which are
the destination of "adoptable_user_group" links from the process; these are the set of user
groups out of which the process may make effective one user group in place of the currently
adopted user group. Adoptable user groups must have the user as a member.

(28) When a process creates a child process, its adoptable user groups are inherited except when the
"adoptable_for_child" attribute of the "adoptable_user_group" link from the parent process is
false.

(29) No object type is a descendant type of more than one of the object types "user", "user_group",
and "program_group".

(30) The predefined user group ALL_USERS always exists, as do the predefined program groups
PCTE_SECURITY, PCTE_AUDIT, PCTE_EXECUTION, PCTE_REPLICATION,
PCTE_CONFIGURATION, PCTE_HISTORY, and PCTE_SCHEMA_UPDATE, which are
objects in the initial state of the object base linked to the security group directory with
predefined values of their group identifiers. Their security group identifiers are as follows:

- ALL_USERS 1

- PCTE_SECURITY 2

- PCTE_AUDIT 3

- PCTE_EXECUTION 4

- PCTE_REPLICATION 5

- PCTE_CONFIGURATION 6

- PCTE_HISTORY 7

- PCTE_SCHEMA_UPDATE 8

(31) Zero is not used as a security group identifier; it is used to denote absence of a security group.

(32) A user must be a member of a user group in order for a process to act on its behalf.

NOTES

(33) 1 Discretionary access to objects is controlled on the basis of the effective security groups of the accessing
process. Security groups are of three types: users, user groups and program groups. Each process has one group
which represents the user on behalf of whom the process is running. A user may play several different roles while
using the PCTE-based environment, and these roles are represented by the user groups to which the user belongs.
The role the user is playing at any one time is given by the user group which is currently adopted plus its
supergroups recursively. It is an important security requirement that a user adopts at most one role before
operations are carried out on its behalf. The subgroup structure is intended to reflect the organization of the project
into working groups or teams and team membership.

(34) 2 Rights may also be granted to a program, which the user also obtains when the program executes on the user's
behalf provided that the user has the right to execute the program. Program groups may be used to deny as well as
to grant access to specific data objects. In this way program groups may be used to model data abstraction and
implement information hiding. They also provide a less specific way of restricting access. A process may only act
on behalf of a single user and user group at any one time and which must be authenticated. Giving a right to a
program means that the right is given to any user who has the right to execute the program when the program is
executed on behalf of that user. Program groups also provide a means of expanding the number of effective
security groups without violating the constraint of there being only one user role effective at any one time.

(35) 3 A user which is a member of a user group need not be a member of a sub- or supergroup of that group.

(36) 4 The security group structure is intended to be used by tools, such as "login" tools, built on top of PCTE.

(37) 5 The predefined user group ALL_USERS is effective for all processes, as it is the root of the directed acyclic
graph of user groups. Access rights which are effective for all users can be given to this user group.

- 228 -

(38) 6 A process may have no effective program group.

(39) 7 The predefined program groups have the following meanings:

(40) - PCTE_AUDIT This program group is required by the following operations for the audit mechanism:

. AUDIT_SWITCH_ON_SELECTION;

. AUDIT_SWITCH_OFF_SELECTION;

. AUDIT_ADD_CRITERION;

. AUDIT_REMOVE_CRITERION;

. AUDIT_GET_CRITERIA;

. AUDIT_SELECTION_CLEAR;

. AUDITING_STATUS;

. AUDIT_FILE_COPY_AND_RESET.

(41) - PCTE_CONFIGURATION This program group is required when type identifiers are used to denote invisible
types in type references (see 23.1.2.5), and by the following operations which define devices or volumes or
which manage workstations or archives:

. ARCHIVE_RESTORE;

. ARCHIVE_SAVE;

. DEVICE_CREATE;

. DEVICE_REMOVE;

. VOLUME_CREATE;

. VOLUME_DELETE;

. WORKSTATION_REDUCE_CONNECTION;

. WORKSTATION_CREATE;

. WORKSTATION_CREATE;

. WORKSTATION_CONNECT;

. WORKSTATION_DELETE;

(42) - PCTE_EXECUTION This program group may be required by the following operations for execution
mechanisms such as setting the file size limit for a process or changing the priority of a process:

. PROCESS_SET_FILE_SIZE_LIMIT;

. PROCESS_INTERRUPT_OPERATION;

. PROCESS_SET_PRIORITY;

. TIME_SET.

(43) - PCTE_HISTORY. This program group is required by the following operations to explicitly set the last access
time or last modification time of an object, or to manipulate the version graph:

. OBJECT_SET_TIME_ATTRIBUTES;

. VERSION_ADD_PREDECESSOR;

. VERSION_REMOVE;

. VERSION_REMOVE_PREDECESSOR.

(44) - PCTE_REPLICATION This program group is required by the operations of the replication clause and all the
operations which modify the object base when they apply to masters of replicated objects. These are a very
large subset of all PCTE operations (see C.3). They are not listed here.

(45) - PCTE_SECURITY This program group is required to use the operations which are critical to either the
consistency of the security group structure or to security (or both). These are the three operations:

- 229 -

. GROUP_REMOVE;

. GROUP_RESTORE;

. PROCESS_SET_USER.

(46) - PCTE_SCHEMA_UPDATE. This program group is required by operations which update an SDS, i.e. those
defined in 10.2.

19.1.2 Access control lists

(1) Discretionary_access_mode = APPEND_CONTENTS | APPEND_IMPLICIT | APPEND_LINKS |
CONTROL_DISCRETIONARY | CONTROL_MANDATORY | CONTROL_OBJECT |
DELETE | EXECUTE | EXPLOIT_CONSUMER_IDENTITY | EXPLOIT_DEVICE |
EXPLOIT_SCHEMA | NAVIGATE | OWNER | READ_ATTRIBUTES | READ_CONTENTS |
READ_LINKS | STABILIZE | WRITE_ATTRIBUTES | WRITE_CONTENTS |
WRITE_IMPLICIT | WRITE_LINKS

(2) Discretionary_access_mode_value = GRANTED | UNDEFINED | DENIED | PARTIALLY_DENIED

(3) Discretionary_access_modes = set of Discretionary_access_mode

(4) Access_rights = map Discretionary_access_mode to Discretionary_access_mode_value

(5) Acl = map Group_identifier to Access_rights

(6) Atomic_discretionary_access_mode_value = GRANTED | UNDEFINED | DENIED

(7) Atomic_access_rights = map Discretionary_access_mode to
Atomic_discretionary_access_mode_value

(8) sds discretionary_security:

(9) import object type system-object, system-process;

(10) extend object type object with
attribute

atomic_acl: (protected) non_duplicated string ;
composite_acl: (protected) non_duplicated string ;

end object;

(11) extend object type process with
attribute

default_atomic_acl: (protected) string ;
default_object_owner: (protected) natural ;

end process;

(12) end discretionary_security;

(13) Each object has two associated access control lists (or ACLs): an atomic ACL and a composite
ACL. They are represented by two string attributes, "atomic_acl" and "composite_acl"
respectively. The scope of an ACL is the set of atomic objects to which it governs access: the
scope of the atomic ACL of an object is the atomic object associated with the object; the scope
of the composite ACL is the atoms of the object.

(14) Each ACL is a set of ACL entries. Each ACL entry gives the discretionary access mode value
of each discretionary access mode for one security group.

(15) In an atomic ACL, the possible discretionary mode values are GRANTED, DENIED, and
UNDEFINED. In an composite ACL they are GRANTED, DENIED, UNDEFINED, and
PARTIALLY_DENIED.

- 230 -

(16) Access right evaluation for a group is defined by the function

EVALUATE_GROUP (
g : Security_group_designator;
o : Object_designator;
s : Object_scope;
m : Discretionary_access_mode

)
v : Discretionary_access_mode_value

where v is the discretionary access mode value of m in the ACL entry for g in the atomic ACL
(if s is ATOMIC) or the composite ACL (if s is COMPOSITE) for o. The group g is said to
have the discretionary access mode m atomically granted, denied, or undefined to the object o, if
s is ATOMIC and v is GRANTED, DENIED, or UNDEFINED respectively; and compositely
granted, denied, undefined, or partially denied if s is COMPOSITE and v is GRANTED,
DENIED, UNDEFINED, or PARTIALLY_DENIED respectively. v is called the atomic or
composite m value for g to o. If v is GRANTED, g is said to have the atomic or composite m
discretionary access right to o.

(17) For every object o there is at least one security group g for which EVALUATE_GROUP (g, o,
ATOMIC, CONTROL_DISCRETIONARY) = GRANTED and at least once security group g'
for which EVALUATE_GROUP(g', o, ATOMIC, CONTROL_MANDATORY) = GRANTED.

(18) For every object o there is at least one security group which has the atomic
CONTROL_DISCRETIONARY right to o, and at least once security group which has the
atomic CONTROL_MANDATORY right to o.

(19) The following constraints apply to the composite ACL for an object o and the atomic ACLs of o
and its components, for any security group g and for any discretionary access mode m except
OWNER and CONTROL_DISCRETIONARY:

(20) EVALUATE_GROUP (g, o, COMPOSITE, m) = GRANTED if and only if
EVALUATE_GROUP (g, o, ATOMIC, m) = GRANTED and EVALUATE_GROUP (g, c,
ATOMIC, m) = GRANTED for every component c of o.

(21) EVALUATE_GROUP (g, o, COMPOSITE, m) = DENIED if and only if EVALUATE_GROUP
(g, o, ATOMIC, m) = DENIED and EVALUATE_GROUP (g, c, ATOMIC, m) = DENIED for
every component c of o.

(22) EVALUATE_GROUP (g, o, COMPOSITE, m) = PARTIALLY_DENIED if an only if
EVALUATE_GROUP (g, o, ATOMIC, m) = DENIED or EVALUATE_GROUP (g, c,
ATOMIC, m) = DENIED for some component c of o, and EVALUATE_GROUP (g, o,
ATOMIC, m) ≠ DENIED or EVALUATE_GROUP (g, c, ATOMIC, m) ≠ DENIED for some
component c of o.

(23) EVALUATE_GROUP (g, o, COMPOSITE, m) = UNDEFINED in all other cases.

(24) The following constraints apply to the composite ACL of an object o and the atomic ACLs of o
and its components, for any security group g and for the discretionary access modes OWNER
and CONTROL_DISCRETIONARY.

(25) - If EVALUATE_GROUP (g, o, COMPOSITE, OWNER) = GRANTED then
EVALUATE_GROUP (g, c, COMPOSITE, OWNER) = GRANTED for every component c
of o, EVALUATE_GROUP (g, o, ATOMIC, CONTROL_DISCRETIONARY) =
GRANTED, and EVALUATE_GROUP (g, c, ATOMIC, CONTROL_DISCRETIONARY)
= GRANTED for every component c of o.

- 231 -

(26) - If EVALUATE_GROUP (g, o, COMPOSITE, OWNER) = DENIED then
EVALUATE_GROUP (g, c, COMPOSITE, OWNER) = DENIED for every component c of
o, EVALUATE_GROUP (g, o, ATOMIC, CONTROL_DISCRETIONARY) = DENIED
and EVALUATE_GROUP (g, c, ATOMIC, CONTROL_DISCRETIONARY) = DENIED
for every component c of o.

(27) Access right evaluation for a process is defined by the function

EVALUATE_PROCESS (
p : Process_designator;
o : Object_designator;
s : Object_scope;
m : Discretionary_access_mode

)
a : Boolean

(28) The returned value a is defined from the ACLs of o in the following way:
EVALUATE_PROCESS (p, o, s, m) = true if and only if there is at least one effective group g
of p for which EVALUATE_GROUP (g, o, s, m) = GRANTED, and for every other effective
group g' of p EVALUATE_GROUP (g', o, s, m) = GRANTED or EVALUATE_GROUP (g', o,
s, m) = UNDEFINED. If a = true, p is said to have the atomic or composite m discretionary
access right to o, according as s is ATOMIC or COMPOSITE respectively.

(29) The default atomic ACL and default object owner are used to determine the atomic ACLs and
composite ACLs of objects created by the process (see 19.1.4).

NOTES

(30) 1 A composite ACL is computable from the atomic ACLs of the object and its components, except for the
discretionary access mode OWNER.

(31) 2 The implementation-defined mapping of access control lists to the string attribute values may economize on
space by omitting discretionary access modes with value UNDEFINED, and omitting ACL entries with all values
UNDEFINED.

(32) 3 If OWNER is set to UNDEFINED for an object o and a group g, the OWNER values for g to the components of
o, and the CONTROL_DISCRETIONARY values for g to o and its components, are unchanged.

19.1.3 Discretionary access modes

(1) The following list describes the meanings of the discretionary access modes, generally in terms
of the classes of operations for which they are needed atomically or compositely on an object o,
i.e. for which a necessary precondition is that the calling process has the atomic or composite
access right m, respectively, to o. The exact definitions are given by the occurrences of
DISCRETIONARY_ACCESS_IS_NOT_GRANTED in the operation descriptions; see 19.2.

(2) - APPEND_CONTENTS. Needed atomically to append to the contents of an object or to send
a message to a message queue.

(3) - APPEND_IMPLICIT. Needed atomically to create new implicit links of an object.

(4) - APPEND_LINKS. Needed atomically to create new links, other than implicit links, from an
object. (This right is not sufficient to write the non-key attributes of such a link.)

(5) - CONTROL_DISCRETIONARY. Needed atomically on an object to change its atomic ACL
(except CONTROL_MANDATORY). CONTROL_DISCRETIONARY occurs only in
atomic ACLs.

- 232 -

(6) - CONTROL_MANDATORY. Needed atomically on an object to change its
"confidentiality_label" and "integrity_label" attributes and to change the
CONTROL_MANDATORY rights of other groups on that object.

(7) - CONTROL_OBJECT. Needed atomically on an object to convert it to a descendant type, to
move it to another volume, to create or delete "predecessor" and "successor" links to and
from the object, and to convert a normal object to a master object or vice versa,. Needed on
a message queue to change the number of storage units allowed by the message queue.

(8) - DELETE. Needed compositely on an object to delete the object (i.e. to delete the last
composition or existence link to the object). DELETE has no effect in an atomic ACL.

(9) - EXECUTE. Needed atomically on a static context to execute the associated program.
EXECUTE has no effect on objects of other types.

(10) - EXPLOIT_CONSUMER_IDENTITY. Needed atomically on a consumer group to use it as
a consumer identity. EXPLOIT_CONSUMER_IDENTITY has no effect on objects of other
types.

(11) - EXPLOIT_DEVICE. Needed atomically on a device supporting volume to mount a volume
on the device or to unmount a volume from the device. EXPLOIT_DEVICE has no effect
on objects of other types.

(12) - EXPLOIT_SCHEMA. Needed atomically on an SDS, a type in SDS, or a type to use it in a
working schema or to consult the typing information contained in it. EXPLOIT_SCHEMA
has no effect on objects of other types.

(13) - NAVIGATE. Needed atomically on an object to use a link reference of a link of the object
in a pathname (see 23.1.2.2); needed atomically on a foreign system to access a file on that
foreign system.

(14) - OWNER. OWNER occurs only in composite ACLs. It is needed to modify the composite
ACL of an object, except for implicit modification by modification of the atomic ACL of the
object or of a component of the object. This modification right includes the OWNER right
for any security group on that object, except that CONTROL_DISCRETIONARY rights
may apply (see below) if there is no owner of the object. Unlike other discretionary access
modes in composite ACLs, modification of OWNER values is not automatic and must be
done explicitly using OBJECT_SET_ACL_ENTRY.

(15) An object must always have an atomic ACL such that it is possible that a process could exist
with a set of effective groups such that the process has the CONTROL_DISCRETIONARY
discretionary access right to that object and that another or the same process could exist with
a set of effective groups such that the process has the CONTROL_MANDATORY
discretionary access right to that object.

(16) An owner of an object is a security group with OWNER right to the object. There may be
more than one owner of an object.

(17) For changing OWNER discretionary access values the following rules hold:

(18) . An owner may modify the OWNER discretionary access value to an object for itself, and
for another security group except when the other group is also an owner of the object.

(19) . An owner of an object may modify the OWNER discretionary access value for any group
to any component of the object.

- 233 -

(20) . The OWNER discretionary access value for a group to an object may not be modified if
that object is a component of an object to which that group has OWNER granted or
denied.

(21) . If no owner for an object exists, then the OWNER discretionary access value may be
modified if OWNER is granted for a group to all components of the object (excluding the
object, if it is a component of itself) and CONTROL_DISCRETIONARY is granted for
the group to the object and to all its components.

(22) . The constraints defined in 19.1.2 must be maintained.

(23) OWNER when used in connection with discretionary security does not have a meaning in
the accounting sense.

(24) - READ_ATTRIBUTES. Needed atomically to read the attribute values of an object and to
evaluate a link of an object if the evaluation uses the preferred link type and preferred link
key of the object (see 23.1.2.5) For some predefined attributes, e.g. "atomic_acl", the
READ_ATTRIBUTES right is not needed, if the attribute is retrieved by an operation
especially defined to retrieve that attribute.

(25) The READ_ATTRIBUTES right is not needed to read the attribute values of the links of an
object.

(26) - READ_CONTENTS. Needed atomically to read the contents of an object, to save a
message queue or a process address space, to save a message queue, or to peek a message in
a message queue.

(27) - READ_LINKS. Needed atomically to read the attributes of the links of an object, or to scan
sets of links of an object.

(28) - STABILIZE. Needed to change the stability of an object, i.e. to create or delete a stabilizing
link to it or a compositely stabilizing link to it or to an object of which it is a component.

(29) - WRITE_ATTRIBUTES. Needed atomically to change the attribute values of an object. It
does not control changing the attribute values of the links of an object, nor the time attributes
of an object.

(30) - WRITE_CONTENTS. Needed atomically to write to or update the contents of an object or a
process address space, to set or remove a breakpoint in a process, to restore a message queue,
or to receive or delete a message from a message queue. An object's contents may not be
deleted although it may be emptied.

(31) - WRITE_IMPLICIT. Needed atomically to delete implicit links of an object. For this
category of link, there are no attributes to change.

(32) - WRITE_LINKS. Needed atomically to delete links, other than implicit links, of an object
and to change values of link attributes.

(33) Where EXPLOIT_SCHEMA, EXPLOIT_DEVICE, EXPLOIT_CONSUMER_IDENTITY,
CONTROL_OBJECT, CONTROL_DISCRETIONARY, CONTROL_MANDATORY or
OWNER discretionary access rights to an object are required of the calling process by an
operation which changes the links or attributes of that object, discretionary access rights which
would be appropriate for such changes (e.g. APPEND_LINKS, WRITE_ATTRIBUTES) are not
also required to that object.

- 234 -

NOTES

(34) 1 OWNER consistency rules demand that an owner may not modify the OWNER discretionary access right to an
object for another security group not only when the other security group is an owner of the object, but also when
the other security group is the owner of an object of which the object is a component.

(35) 2 The rules for conferring the OWNER discretionary access right on an object for which no owner exists also
cover the case where no owner exists for an object of which the object is a component, since if such an owner
existed, an owner would exist for the object under consideration.

(36) 3 The OWNER right on an object for a security group can never be PARTIALLY_DENIED. This is achieved by
ensuring that when a composition link is created (e.g. by OBJECT_CREATE, SDS_CREATE_OBJECT_TYPE, or
LINK_RESTORE) any OWNER rights of the newly enclosing object are propagated to the new component, and
that when the OWNER right is set on an object (by OBJECT_SET_ACL_ENTRY) the new value is consistent with
rights on enclosing objects.

19.1.4 Access control lists on object creation

(1) When an object is created, its atomic ACL is determined from the default atomic ACL of the
creating process as follows. For each ACL entry in the default atomic ACL, with access rights
M, an ACL entry in the atomic ACL is created for the same group with access rights M', where
the mapping M' is determined for each discretionary access mode m by the corresponding
discretionary mode values of M and the access mask A:

(2) - M'(m) = GRANTED if M(m) = GRANTED or A(m) = GRANTED, and neither M(m) =
DENIED nor A(m) = DENIED.

(3) - M'(m) = DENIED if M(m) = DENIED or A(m) = DENIED.

(4) - M'(m) = UNDEFINED if M(m) = UNDEFINED and A(m) = UNDEFINED.

(5) The access mask A is a parameter to the operation used to create the object (e.g.
OBJECT_CREATE).

(6) The default object owner of the creating process defines the group identifier of a security group.
The composite ACL of the created object is derived from the atomic ACLs of the object subject
to the constraints given in 19.1.2 for all discretionary access modes except OWNER and
CONTROL_DISCRETIONARY. An entry in the composite ACL relates to the default object
owner of the creating process, if one exists, and has the OWNER discretionary access mode
granted. It is an error if the ACL entry in the created atomic ACL for the default object owner
group does not have CONTROL_DISCRETIONARY granted.

(7) When an operation creates an object, any further accesses to that object during that same
operation call are not subject to discretionary or mandatory access checks.

19.2 Operations for discretionary access control operation

19.2.1 GROUP_GET_IDENTIFIER

(1) GROUP_GET_IDENTIFIER (
group : Security_group_designator

)
identifier : Group_identifier

(2) GROUP_GET_IDENTIFIER returns in identifier the key of the "known_security_group" link
from the security group directory to the security group group.

- 235 -

Errors

(3) ACCESS_ERRORS (security group determined by group, ATOMIC, READ, READ_LINKS)
(4) GROUP_IDENTIFIER_IS_INVALID (group)

19.2.2 OBJECT_CHECK_PERMISSION

(1) OBJECT_CHECK_PERMISSION (
object : Object_designator,
modes : Discretionary_access_modes,
scope : Object_scope

)
accessible : Boolean

(2) OBJECT_CHECK_PERMISSION tests if the calling process has the discretionary and
mandatory permission to access the object object according to the set of access modes given in
modes and the scope scope. For the discretionary permissions, the operation evaluates
EVALUATE_PROCESS (calling process, object, scope, mode) (see 19.1.2) for each
discretionary access mode mode in modes. For the mandatory permissions read and write access
is interpreted according to the discretionary access modes:

(3) - Read access is tested if modes contains NAVIGATE, READ_ATTRIBUTES,
READ_LINKS, READ_CONTENTS, EXECUTE, EXPLOIT_DEVICE,
EXPLOIT_SCHEMA or EXPLOIT_CONSUMER_IDENTITY.

(4) - Write access is tested if modes contains APPEND_CONTENTS, APPEND_LINKS,
APPEND_IMPLICIT, WRITE_ATTRIBUTES, WRITE_CONTENTS, WRITE_LINKS,
WRITE_IMPLICIT, DELETE, CONTROL_DISCRETIONARY, CONTROL_
MANDATORY, CONTROL_OBJECT or OWNER.

(5) Testing for mandatory read access permission means checking for confidentiality violation and
integrity confinement violation (see 20.1). Testing for mandatory write access permission
means checking for confidentiality confinement violation and integrity violation. These checks
are defined in terms of label domination between the mandatory labels of object and the
mandatory context of the process.

(6) A read lock of the default mode is obtained on object.

(7) The return value accessible is:

(8) - false if for at least one of the discretionary access modes given in modes
EVALUATE_PROCESS (calling process, object, scope, mode) = false.

(9) - false if read access is implied by modes and either LABEL_DOMINATES
(confidentiality_context (process), confidentiality_label (object)) = false or
LABEL_DOMINATES (integrity_label (object), integrity_context (process) = false (see
20.1.3).

(10) - false if write access is implied by modes and either LABEL_DOMINATES
(confidentiality_label (object), confidentiality_context(process) = false or
LABEL_DOMINATES (integrity_context(process), integrity_label (object)) = false

- 236 -

(11) - true otherwise. In this case, for all of the discretionary access modes given in modes
EVALUATE_PROCESS (calling process, object, scope, mode) = true; and:

(12) . if read access is implied by modes then LABEL_DOMINATES (confidentiality_context
(process), confidentiality_label (object)) = true and LABEL_DOMINATES
(integrity_label (object), integrity_context (process)) = true;

(13) . if write access is implied by modes then LABEL_DOMINATES (confidentiality_label
(object), confidentiality_context(process)) = true and LABEL_DOMINATES
(integrity_context (process), integrity_label (object)) = true.

(14) For the maps confidentiality_label, confidentiality_context, integrity_label, and
integrity_context see 20.1.4.

Errors

(15) ACCESS_MODE_IS_INCOMPATIBLE (scope, modes)
(16) CONFIDENTIALITY_WOULD_BE_VIOLATED (granule, scope)
(17) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (granule, scope)
(18) OBJECT_IS_ARCHIVED (granule)
(19) OBJECT_IS_INACCESSIBLE (granule, scope)

(20) NOTE - READ_ATTRIBUTES access right is not necessary to perform this operation. If it were, the operation
would lose much of its usefulness, since access checks do not require any access permissions to read mandatory
labels or ACLs.

19.2.3 OBJECT_GET_ACL

(1) OBJECT_GET_ACL (
object : Object_designator,
scope : Object_scope

)
acl : Acl

(2) OBJECT_GET_ACL returns the atomic or composite ACL of the object object, according as
scope is ATOMIC or COMPOSITE.

(3) A read lock of the default mode is obtained on object.

Errors

(4) ACCESS_ERRORS (granule, scope, READ, READ_ATTRIBUTES)

(5) NOTE - It is expected that implementations calculate the composite ACL of an object (except for the OWNER
modes) from the atomic ACLs of the object and its components.

19.2.4 OBJECT_SET_ACL_ENTRY

(1) OBJECT_SET_ACL_ENTRY (
object : Object_designator,
group : Group_identifier,
modes : Atomic_access_rights,
scope : Object_scope

)

(2) OBJECT_SET_ACL_ENTRY sets an ACL entry in the atomic or composite ACL of the object
object for the security group group. If the settings of the ACL entry are already as required,

- 237 -

except for setting a composite ACL entry to UNDEFINED, then this operation has no effect. In
the case where for scope = COMPOSITE, and some mode m, modes(m) is UNDEFINED and
EVALUATE_GROUP (group, object, COMPOSITE, m) is previously UNDEFINED, then there
is an effect if for one or more components c of object, EVALUATE_GROUP (group, c,
ATOMIC, m) is not already set UNDEFINED. EVALUATE_GROUP (group, c, ATOMIC, m)
of such components is changed to UNDEFINED.

(3) If scope is ATOMIC, then OBJECT_SET_ACL_ENTRY sets the ACL entry for group in the
atomic ACL of object to modes, for all discretionary access modes specified in modes.
OWNER must not appear in modes.

(4) If scope is COMPOSITE, then for object and all its components, OBJECT_SET_ACL_ENTRY
sets the ACL entries for group in the composite ACLs and also in the atomic ACLs for all
discretionary access modes specified in modes, except CONTROL_DISCRETIONARY and
OWNER, to modes. CONTROL_DISCRETIONARY must not appear in modes. OWNER is
treated as follows:

(5) - the OWNER discretionary access mode value for group in the composite ACL of object and
the CONTROL_DISCRETIONARY discretionary access mode value for group in the
atomic ACL of object are set to modes (OWNER) provided that any outer object of object
has OWNER undefined for group.

(6) - If modes (OWNER) = UNDEFINED, then in the components of object the discretionary
access mode values for OWNER in the composite ACL and the discretionary access mode
values for CONTROL_DISCRETIONARY in the atomic ACL of group are not changed.

(7) - If modes (OWNER) = GRANTED or DENIED, then in the components of object group is
set to have OWNER granted or denied respectively in the composite ACL, and
CONTROL_DISCRETIONARY granted or denied respectively in the atomic ACL;
provided that any outer object of object has OWNER undefined for group.

(8) - If no owner for object exists, then the operation can modify OWNER, and OWNER only, if
CONTROL_DISCRETIONARY is granted for group in the atomic ACL of object, and for
all components of object, OWNER is granted for group in the composite ACL.

(9) Whether scope is ATOMIC or COMPOSITE, the composite ACLs of all outer objects of object,
and of object itself if scope is ATOMIC, are updated, so that all constraints defined for
composite ACLs, and the atomic and composite ACLs of their components (see 19.1.2) are
maintained. OWNER modes of outer objects of object are not updated; if this would be
necessary to maintain the constraints then an error is raised.

(10) If scope is COMPOSITE, then write locks of the default mode are obtained on object and on all
its components.

Errors

(11) If scope is ATOMIC:
ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_DISCRETIONARY)

(12) If scope is COMPOSITE:
(13) If there is no owner for object, and only OWNER is to be modified:

ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_DISCRETIONARY)
ACCESS_ERRORS (component of object, COMPOSITE, CHANGE, OWNER)

(14) If there is an owner for object, or there is no owner for object and modes other than
OWNER are required to be modified:

ACCESS_ERRORS (object, COMPOSITE, CHANGE, OWNER)

- 238 -

(15) If the CONTROL_MANDATORY access right is changed:
ACCESS_ERRORS (object, scope, CHANGE, CONTROL_MANDATORY)

(16) If scope is COMPOSITE and modes (CONTROL_MANDATORY) = UNDEFINED but no
change to the composite ACL is required, then for each atom A of object where
CONTROL_MANDATORY is to be changed from GRANTED:

ACCESS_ERRORS (A, ATOMIC, CHANGE, CONTROL_MANDATORY)
(17) ACCESS_MODE_IS_NOT_ALLOWED (modes, scope)
(18) CONTROL_WOULD_NOT_BE_GRANTED (object)
(19) GROUP_IDENTIFIER_IS_INVALID (group)
(20) If scope is COMPOSITE:

OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNER (object, group)
(21) OBJECT_OWNER_CONSTRAINT_WOULD_BE_VIOLATED (object)
(22) The following implementation-dependent error may be raised:

OBJECT_IS_INACCESSIBLE (outer object of object, ATOMIC)

NOTES

(23) 1 If an implementation calculates the composite ACL when retrieving it, it may be so designed that it requires the
outer objects to be accessible.

(24) 2 CONTROL_DISCRETIONARY rather than READ_ATTRIBUTES or WRITE_ATTRIBUTES discretionary
access right is required to perform this operation. It would be superfluous to require both.

(25) 3 If object is an SDS which may be in use in a working schema, then any change to its composite ACL only has
effect when the SDS is next included in a working schema by PROCESS_SET_WORKING_SCHEMA,
PROCESS_CREATE_AND_START, or PROCESS_START.

19.3 Discretionary security administration operations

19.3.1 GROUP_INITIALIZE

(1) GROUP_INITIALIZE (
group : User_designator | User_group_designator | Program_group_designator

)
identifier : Group_identifier

(2) GROUP_INITIALIZE adds the security group group to the security group directory. A
"known_security_group" link is created from the master of the security group directory to
group. The key of this link is set to a system-generated unique value, which is guaranteed never
to be re-used as a security group key and is returned as identifier.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (group, ATOMIC, CHANGE, APPEND_IMPLICIT)
(6) SECURITY_GROUP_IS_KNOWN (group)

NOTES

(7) 1 The group identifier, which is the same as the key to the "known_security_group" link to the object, may be
determined using the GROUP_GET_IDENTIFIER operation.

(8) 2 This operation does not change any copies of the security group directory.

- 239 -

19.3.2 GROUP_REMOVE

(1) GROUP_REMOVE (
group : User_designator | User_group_designator | Program_group_designator

)

(2) GROUP_REMOVE removes the security group group from the set of known groups. The
"known_security_group" link from the security group directory is deleted. If there are no
remaining existence or composition links to group, then group is also deleted. In this case, the
"object_on_volume" link to group is deleted.

(3) The master of the security group directory is always updated by this operation.

(4) Write locks of the default mode are obtained on the deleted links and object.

Errors

(5) ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS(group, ATOMIC, MODIFY, WRITE_IMPLICIT)
(7) If the conditions hold for deletion of the "security_group" object group:

ACCESS_ERRORS (group, COMPOSITE, MODIFY, DELETE)
(8) GROUP_IDENTIFIER_IS_INVALID (group)

(9) OBJECT_HAS_LINKS_PREVENTING_DELETION (group)
(10) OBJECT_IS_IN_USE_FOR_DELETE (group)
(11) PRIVILEGE_IS_NOT_GRANTED (PCTE_SECURITY)
(12) SECURITY_GROUP_IS_IN_USE (group)
(13) SECURITY_GROUP_IS_PREDEFINED (group)
(14) SECURITY_GROUP_IS_REQUIRED_BY_OTHER_GROUPS (group)
(15) NOTE - This operation does not change any copies of the security group directory.

19.3.3 GROUP_RESTORE

(1) GROUP_RESTORE (
group : User_designator | User_group_designator | Program_group_designator
identifier : Group_identifier

)

(2) GROUP_RESTORE adds the security group group to the security group directory. A
"known_security_group" link is created from the master of the security group directory to
group. The group identifier identifier is used as the key for this link. This identifier must be a
used group identifier, originally generated when initializing a security group which has since
been deleted.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (group, ATOMIC, CHANGE, APPEND_IMPLICIT)
(6) GROUP_IDENTIFIER_IS_IN_USE (identifier)
(7) GROUP_IDENTIFIER_IS_INVALID (identifier)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_SECURITY)

- 240 -

(9) SECURITY_GROUP_IS_KNOWN (group)

(10) NOTE - This operation does not change any copies of the security group directory.

19.3.4 PROGRAM_GROUP_ADD_MEMBER

(1) PROGRAM_GROUP_ADD_MEMBER (
group : Program_group_designator,
program : Static_context_designator

)

(2) PROGRAM_GROUP_ADD_MEMBER adds the program program to the program group
group. A "program_member_of" link is created from program to group, together with a
"has_programs" reverse link. The keys of the created links are implementation-dependent.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC,APPEND_LINKS)
(5) ACCESS_ERRORS (program, ATOMIC, MODIFY, APPEND_IMPLICIT)
(6) SECURITY_GROUP_IS_UNKNOWN (group)
(7) STATIC_CONTEXT_IS_ALREADY_MEMBER (program, group)

(8) NOTE - Processes which are current executions of program do not receive group as an addition to their set of
effective security groups.

19.3.5 PROGRAM_GROUP_ADD_SUBGROUP

(1) PROGRAM_GROUP_ADD_SUBGROUP (
group : Program_group_designator,
subgroup : Program_group_designator

)

(2) PROGRAM_GROUP_ADD_SUBGROUP adds the program group subgroup to the program
group group. A "program_subgroup_of" link is created from subgroup to group, together with a
"has_program_subgroups" reverse link. The keys of the created links are implementation-
dependent (see 23.1.2.5).

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (subgroup, ATOMIC, MODIFY, APPEND_LINKS)
(6) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
(7) SECURITY_GROUP_ALREADY_HAS_THIS_SUBGROUP (subgroup, group)
(8) SECURITY_GROUP_IS_IN_USE (subgroup)
(9) SECURITY_GROUP_IS_UNKNOWN (group)
(10) SECURITY_GROUP_IS_UNKNOWN (subgroup)
(11) SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPH (subgroup, group)

- 241 -

19.3.6 PROGRAM_GROUP_REMOVE_MEMBER

(1) PROGRAM_GROUP_REMOVE_MEMBER (
group : Program_group_designator,
program : Static_context_designator

)

(2) PROGRAM_GROUP_REMOVE_MEMBER removes the static context program from the
group group. The "program_member_of" link from program to group and its "has_programs"
reverse link are deleted.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (program, ATOMIC, MODIFY, WRITE_IMPLICIT)
(6) SECURITY_GROUP_IS_UNKNOWN (group)
(7) STATIC_CONTEXT_IS_IN_USE (program)
(8) STATIC_CONTEXT_IS_NOT_MEMBER (program, group)

19.3.7 PROGRAM_GROUP_REMOVE_SUBGROUP

(1) PROGRAM_GROUP_REMOVE_SUBGROUP (
group : Program_group_designator,
subgroup : Program_group_designator

)

(2) PROGRAM_GROUP_REMOVE_SUBGROUP removes the program group subgroup from the
program group group. The "program_subgroup_of" link from subgroup to group and its
"has_program_subgroups" reverse link are deleted.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (subgroup, ATOMIC, MODIFY, WRITE_LINKS)
(6) PROGRAM_GROUP_IS_NOT_EMPTY (subgroup)
(7) SECURITY_GROUP_IS_IN_USE (subgroup)
(8) SECURITY_GROUP_IS_NOT_A_SUBGROUP (subgroup, group)
(9) SECURITY_GROUP_IS_UNKNOWN (group)
(10) SECURITY_GROUP_IS_UNKNOWN (subgroup)

19.3.8 USER_GROUP_ADD_MEMBER

(1) USER_GROUP_ADD_MEMBER (
group : User_group_designator,
user : User_designator

)

(2) USER_GROUP_ADD_MEMBER adds the user user to the user group group. A
"user_member_of" link from user to group and a "has_users" reverse link are created. The keys
of the created links are implementation-dependent.

- 242 -

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (user, ATOMIC, MODIFY, APPEND_LINKS)
(6) SECURITY_GROUP_IS_UNKNOWN (group)
(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_GROUP_LACKS_ALL_USERS_AS_SUPERGROUP (group)
(9) USER_IS_ALREADY_MEMBER (user, group)

(10) NOTE - This operation does not cause group to become an adoptable group of a process running on behalf of user.

19.3.9 USER_GROUP_ADD_SUBGROUP

(1) USER_GROUP_ADD_SUBGROUP (
group : User_group_designator,
subgroup : User_group_designator

)

(2) USER_GROUP_ADD_SUBGROUP adds the user group subgroup to the user group group. A
"user_subgroup_of" link from subgroup to group and a "has_user_subgroups" reverse link are
created. The keys of the created links are implementation-dependent.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (subgroup, ATOMIC, MODIFY, APPEND_LINKS)
(6) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
(7) SECURITY_GROUP_ALREADY_HAS_THIS_SUBGROUP (subgroup, group)
(8) SECURITY_GROUP_IS_IN_USE (subgroup)
(9) SECURITY_GROUP_IS_UNKNOWN (group)
(10) SECURITY_GROUP_IS_UNKNOWN (subgroup)
(11) SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPH (subgroup, group)

19.3.10 USER_GROUP_REMOVE_MEMBER

(1) USER_GROUP_REMOVE_MEMBER (
group : User_group_designator,
user : User_designator

)

(2) USER_GROUP_REMOVE_MEMBER removes the user user from the group group. The
"user_member_of" link from user to group and its "has_users" reverse link are deleted.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (user, ATOMIC, MODIFY, WRITE_LINKS)
(6) SECURITY_GROUP_IS_UNKNOWN (group)

- 243 -

(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_GROUP_IS_IN_USE (user, group)
(9) USER_IS_NOT_MEMBER (user, group)

(10) NOTE - The "adoptable_user_group" link from a process executed on behalf of user to group is not deleted (see
PROCESS_ADOPT_USER_GROUP).

19.3.11 USER_GROUP_REMOVE_SUBGROUP

(1) USER_GROUP_REMOVE_SUBGROUP (
group : User_group_designator,
subgroup : User_group_designator

)

(2) USER_GROUP_REMOVE_SUBGROUP removes the user group subgroup from the user
group group. The "user_subgroup_of" link from subgroup to group and its
"has_user_subgroups" reverse link are deleted.

(3) subgroup must not be the effective group for a running process.

(4) Write locks of the default mode are obtained on the deleted links.

Errors

(5) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS (subgroup, ATOMIC, MODIFY, WRITE_LINKS)
(7) SECURITY_GROUP_IS_IN_USE (subgroup)
(8) SECURITY_GROUP_IS_NOT_A_SUBGROUP (subgroup, group)
(9) SECURITY_GROUP_IS_UNKNOWN (group)
(10) SECURITY_GROUP_IS_UNKNOWN (subgroup)
(11) USER_GROUP_WOULD_NOT_HAVE_ALL_USERS_AS_SUPERGROUP (subgroup)

20 Mandatory security

20.1 Mandatory security concepts

20.1.1 Mandatory classes

(1) sds mandatory_security:

(2) import object type system-object, system-volume, system-device, system-common_root;

(3) import attribute type system-name, system-number;

(4) import object type discretionary_security-security_group, discretionary_security-user;

(5) import attribute type discretionary_security-group_identifier;

(6) extend object type security_group with
link

may_downgrade: (navigate) reference link (name) to confidentiality_class reverse
downgradable_by;

may_upgrade: (navigate) reference link (name) to integrity_class reverse
upgradable_by;

end security_group;

- 244 -

(7) extend object type user with
link

cleared_for: (navigate) reference link (name) to mandatory_class reverse
having_clearance;

end user;

(8) mandatory_directory: child type of object with
link

known_mandatory_class: (navigate) existence link (name) to mandatory_class;
mandatory_classes_of: implicit link to common_root reverse mandatory_classes;

end mandatory_directory;

(9) mandatory_class: child type of object with
link

having_clearance: (navigate) reference link (group_identifier) to user reverse
cleared_for;

end mandatory_class;

(10) confidentiality_class: child type of mandatory_class with
link

dominates_in_confidentiality: (navigate) reference link to confidentiality_class reverse
confidentiality_dominator;

confidentiality_dominator: (navigate) reference link to confidentiality_class reverse
dominates_in_confidentiality;

downgradable_by: (navigate) reference link (group_identifier) to security_group
reverse may_downgrade;

end confidentiality_class;

(11) integrity_class: child type of mandatory_class with
link

dominates_in_integrity: (navigate) reference link to integrity_class reverse
integrity_dominator;

integrity_dominator: (navigate) reference link to integrity_class reverse
dominates_in_integrity;

upgradable_by: (navigate) reference link (group_identifier) to security_group reverse
may_upgrade;

end integrity_class;

(12) extend object type object with
attribute

confidentiality_label: (read) string ;
integrity_label: (read) string ;

end object;

(13) extend object type common_root with
link

mandatory_classes: (navigate) existence link to mandatory_directory reverse
mandatory_classes_of;

end common_root;

(14) end mandatory_security;

(15) The "mandatory_class" object type represents the mandatory classes defined for the PCTE
installation. The name of a class, the class name, is the key attribute of the
"known_mandatory_class" link from the mandatory directory to the mandatory class object.
The destinations of the "having_clearance" links represent users which are cleared to this
mandatory class. The concept of user clearance is elaborated in 20.1.4.

- 245 -

(16) The "confidentiality_class" object type represents the subset of mandatory classes which are
confidentiality classes:

(17) - the destination of the "dominates_in_confidentiality" link represents the confidentiality class
which this confidentiality class dominates;

(18) - the destination of the "confidentiality_dominator" link represents the confidentiality class
which dominates this confidentiality class;

(19) - the destinations of the "downgradable_by" links represent the security groups which have
authority to downgrade from that confidentiality class (see 20.1.4).

(20) The "integrity_class" object type represents the subset of mandatory classes which are integrity
classes:

(21) - the destination of the "dominates_in_integrity" link represents the integrity class which this
integrity class dominates;

(22) - the destination of the "integrity_dominator" link represents the integrity class which
dominates this integrity class;

(23) - the destinations of the "upgradable_by" links represent the security groups which have
authority to upgrade from that integrity class.

(24) The mandatory directory is an administrative object (see 9.1.2).

20.1.2 The mandatory class structure

(1) Confidentiality_tower = seq1 of Confidentiality_class_designator

(2) Integrity_tower = seq1 of Integrity_class_designator

(3) Each mandatory class participates in exactly one of the confidentiality towers and integrity
towers which define the dominance relationships between these classes. No class may appear
more than once in a tower.

(4) The "dominates_in_confidentiality" and "confidentiality_dominator" links of a mandatory class
represent the sequence of confidentiality classes in a confidentiality tower. The destination of a
"dominates_in_confidentiality" link is the member of the sequence which immediately precedes
the origin of the link. The destination of "confidentiality_dominator" is the member of the
sequence which is the immediate successor of the origin of the link.

(5) The "dominates_in_integrity" and "integrity_dominator" links represent the sequence of
integrity classes in an integrity tower. The destination of a "dominates_in_integrity" link is the
member of the sequence which immediately precedes the origin of the link. The destination of
"integrity_dominator" is the member of the sequence which is the immediate successor of the
origin of the link.

(6) The predicates CLASS_DOMINATES and CLASS_STRICTLY_DOMINATES are defined in
terms of the relative positions of the mandatory classes within a confidentiality tower or an
integrity tower. A class left_class dominates a class right_class if CLASS_DOMINATES
(left_class, right_class) = true. A class left_class strictly dominates a class right_class if
CLASS_STRICTLY_DOMINATES (left_class, right_class) = true.

(7) CLASS_DOMINATES (
left_class : Mandatory_class_designator,
right_class : Mandatory_class_designator

)
result : Boolean

- 246 -

(8) The result is false if left_class and right_class do not occur in the same confidentiality tower or
integrity tower.

(9) If left_class and right_class occur in a confidentiality tower or an integrity tower T, and
left_class = T(I) and right_class = T(J), then the result is true if I ≥ J, otherwise false.

(10) CLASS_STRICTLY_DOMINATES (
left_class : Mandatory_class_designator,
right_class : Mandatory_class_designator

)
result : Boolean

(11) The result is false if left_class and right_class do not occur in the same confidentiality tower or
integrity tower.

(12) If left_class and right_class occur in a confidentiality tower or an integrity tower T, and
left_class = T(I) and right_class = T(J), then the result is true if I > J, otherwise false.

20.1.3 Labels and the concept of dominance

(1) Security_label = [Mandatory_class_designator] | Conjunction | Disjunction

(2) Conjunction :: UNITS: set of Security_label

(3) Disjunction :: UNITS: set of Security_label

(4) A security label is either a confidentiality label or an integrity label; the structure is the same in
either case.

(5) A class name is a confidentiality or integrity class name. Confidentiality class names may occur
only in confidentiality labels. Integrity class names may occur only in integrity labels.
Conjunctions and disjunctions must contain at least 2 units. A security label of the first kind in
which the optional unit is not supplied is called a null label.

(6) The concept of mandatory security permissions depends on the concept of a label dominating
another.

(7) The predicates LABEL_DOMINATES and LABEL_STRICTLY_DOMINATES are defined in
terms of the possible forms of the labels and the domination relationships between the
mandatory classes. A label left_label dominates a label right_label if LABEL_DOMINATES
(left_label, right_label) = true. A label left_label strictly dominates a label right_label if
LABEL_STRICTLY_DOMINATES (left_label, right_label) = true.

(8) LABEL_DOMINATES (
left_label : Security_label,
right_label : Security_label

)
dominates : Boolean

(9) If right_label is null then dominates = true.

(10) If left_label is null and right_label is not null then dominates = false.

(11) If left_label and right_label are both mandatory class designators then dominates =
CLASS_DOMINATES (left_label, right_label).

(12) If left_label is a mandatory class designator and right_label is a disjunction of mandatory class
designators r1, r2, ... then dominates = true if CLASS_DOMINATES (left_label, rj) is true for
some rj, and false otherwise.

- 247 -

(13) If left_label is a conjunction of mandatory class designators l1, l2, ... and right_label is a
mandatory class designator then dominates = true if CLASS_DOMINATES (li, right_label) is
true for some li, and false otherwise.

(14) If left_label is a conjunction of mandatory class designators l1, l2, ... and right_label is a
disjunction of mandatory class designators r1, r2, ... then dominates = true if
CLASS_DOMINATES(li, rj) is true for some li and rj, and false otherwise.

(15) If right_label is a disjunction of security labels r1, r2, ... and some rk is a disjunction of security
labels r1', r2', ... then dominates = LABEL_DOMINATES (left_label, r') where r' is the
disjunction of all the rj' and all the ri except rk.

(16) If left_label is a conjunction of security labels l1, l2, ... and some lk is a conjunction of security
labels l1', l2', ... then dominates = LABEL_DOMINATES (l ', right_label) where l ' is the
conjunction of all the lj' and all the li except lk.

(17) If right_label is a conjunction of security labels r1, r2, ... then dominates = true if
LABEL_DOMINATES (left_label, rj) is true for all rj, and false otherwise.

(18) If left_label is a disjunction of security labels l1, l2, ... then dominates = true if
LABEL_DOMINATES (li, right_label) is true for all li, and false otherwise.

(19) If right_label is a disjunction of security labels r1, r2, ... and some rk is a conjunction of security
labels r1', r2', ... then dominates = true if LABEL_DOMINATES (left_label, r') is true for all
rj', where r' is right_label with rk replaced by rj', and false otherwise.

(20) If left_label is a conjunction of security labels l1, l2, ... and some lk is a disjunction of security
labels l1', l2', ... then dominates = true if LABEL_DOMINATES (l ', right_label) is true for all
li' where l ' is left_label with lk replaced by li', and false otherwise.

(21) LABEL_STRICTLY_DOMINATES (
left_label : Security_label,
right_label : Security_label

)
dominates : Boolean

(22) The definition of this predicate is the same as for LABEL_DOMINATES except that:

(23) - If left_label and right_label are both null, then dominates is false.

(24) - CLASS_DOMINATES is replaced by CLASS_STRICTLY_DOMINATES.

(25) - LABEL_DOMINATES is replaced by LABEL_STRICTLY_DOMINATES.

NOTES

(26) 1 It is possible for label A to dominate label B and B to dominate A, and for label C not to dominate label D while
D does not dominate C.

(27) 2 For the mapping of security labels to language bindings see 23.1.3.1.

20.1.4 Mandatory rules for information flow

(1) A user's confidentiality clearance is a security label derived from the confidentiality classes to
which that user is cleared by forming a conjunction of the confidentiality class names.

- 248 -

(2) A user's integrity clearance is a security label derived from the integrity classes to which that
user is cleared by forming a conjunction of the integrity class names.

(3) A process has a mandatory context associated with it which is used to control the flow of
information to and from the process. This mandatory context consists of a confidentiality
component called a confidentiality context and an integrity component called an integrity
context .

(4) The confidentiality context and integrity context are represented by the "confidentiality_label"
and "integrity_label" attributes respectively of the process as inherited from the parent type
"object" (see 20.1.1).

(5) A process may change its confidentiality context during execution so that the new
confidentiality context dominates the previous value.

(6) A process may change its integrity context during execution so that the new integrity context is
dominated by the previous value.

(7) A process may only change its confidentiality context so that the result is dominated by the
user's confidentiality clearance.

(8) When a confidentiality context is changed, it must remain within the confidentiality label range
of the workstation on which the process is executing. When an integrity context is changed, it
must remain within the integrity label range of the workstation on which the process is
executing (see 20.1.5).

(9) An object has a confidentiality label and an integrity label which control the flow of information
into and out of its associated atomic object. The following rules apply to a process' mandatory
context or an object's mandatory labels after any change due to the floating of labels (see
20.1.6).

(10) For the purposes of these rules read and write are defined as follows in terms of information
flow. If information flows from an object to a process, the process reads from the object. If
information flows from a process to an object, even if it is only erasure, the process writes to the
object. Reading and writing refer to any property of an object (attributes, links, link attributes,
contents) which can contain (or embody) information. Deletion of an object is therefore
considered writing to the object, although deletion of an object is only achieved by deleting a
link.

(11) - The simple confidentiality rule: A process P may only read from the atomic object
associated with an object A if LABEL_DOMINATES (confidentiality context of P,
confidentiality label of A).

(12) - The confidentiality confinement rule: A process P may only write to the atomic object
associated with an object A if LABEL_DOMINATES (confidentiality label of A,
confidentiality context of P).

(13) - The simple integrity rule: A process P may only write to the atomic object associated with
an object A if LABEL_DOMINATES (integrity context of P, integrity label of A).

(14) - The integrity confinement rule: A process P may only read from the atomic object
associated with an object A if LABEL_DOMINATES (integrity label of A, integrity context
of P).

(15) - The communication rule: A process P may transmit information to another process Q (by
PROCESS_PEEK or PROCESS_POKE) if LABEL_DOMINATES (confidentiality context

- 249 -

of Q, confidentiality context of P) and LABEL_DOMINATES (integrity context of P,
integrity context of Q).

(16) A process may change the confidentiality and integrity labels of an object if and only if it has
the atomic CONTROL_MANDATORY right to that object. Under this condition, a
confidentiality label may be changed to a value which dominates the previous value and an
integrity label may be changed to a value which is dominated by the previous value.

(17) When a confidentiality label of an object is changed, it must remain within the confidentiality
label range of the volume on which the object is residing. When an integrity label of an object is
changed, it must remain within the integrity label range of the volume on which the object is
residing (see 20.1.5). This is true even with the downgrade or upgrade privileges, described
below, effective.

(18) If an effective security group of the calling process has additional downgrade or upgrade
privileges, these object mandatory labels may be changed so that the new value of the
confidentiality label does not dominate the previous value and the new value of the integrity
label is not dominated by the previous value, according to the rules defined below:

(19) A process is defined to be acting with downgrade authority from a confidentiality class C if the
process has an effective security group which has downgrade authority from C, i.e. there is a
"downgradable_by" link from C to the security group. This is represented by the predicate
DOWNGRADE_AUTHORITY:

(20) DOWNGRADE_AUTHORITY (
process : Process_designator,
class : Confidentiality_class_designator

)
authority : Boolean

(21) A process is defined to be acting with upgrade authority to an integrity class C if the process
has an effective group which has upgrade authority to C, i.e. there is an "upgradable_by" link
from C to the security group. This is represented by the predicate UPGRADE_AUTHORITY:

(22) UPGRADE_AUTHORITY (
process : Process_designator,
class : Integrity_class_designator

)
authority : Boolean

(23) A process is permitted to change a confidentiality label from right_label to left_label providing
that right_label is dominated in confidentiality by left_label relative to the process. This
concept is defined by the following predicates for classes and labels:

(24) RELATIVE_CLASS_DOMINATES_IN_CONFIDENTIALITY (
process : Process_designator,
left_class : Mandatory_class_designator,
right_class : Mandatory_class_designator

)
dominates : Boolean

(25) This is the same as CLASS_DOMINATES except that if DOWNGRADE_AUTHORITY
(process, right_class) is true, dominates is always true.

- 250 -

(26) RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY (
process : Process_designator,
left_label : Security_label,
right_label : Security_label

)
 dominates : Boolean

(27) This is the same as LABEL_DOMINATES except that:

(28) - The rule beginning 'If left_label is null' (i.e. the second rule) is replaced by the rule: If
left_label is null and right_label is a class name C, then dominates =
DOWNGRADE_AUTHORITY (process, C).

(29) - RELATIVE_CLASS_DOMINATES_IN_CONFIDENTIALITY replaces CLASS_
DOMINATES.

(30) - RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY replaces LABEL_
DOMINATES.

(31) A process is permitted to change an integrity label from left_label to right_label providing that
left_label dominates right_label in integrity relative to the process. This concept is defined by
the following predicates for classes and labels:

(32) RELATIVE_CLASS_DOMINATES_IN_INTEGRITY (
process : Process_designator,
left_class : Mandatory_class_designator,
right_class : Mandatory_class_designator

)
dominates : Boolean

(33) This is the same as CLASS_DOMINATES except that if UPGRADE_AUTHORITY (process,
right_class) is true, dominates is always true.

(34) RELATIVE_LABEL_DOMINATES_IN_INTEGRITY (
process : Process_designator,
left_label : Security_label,
right_label : Security_label

)
dominates : Boolean

(35) This is the same as LABEL_DOMINATES except that:

(36) - The rule beginning 'If left_label is null' (i.e. the second rule) is replaced by the rule: If
left_label is null and right_label is a class name C, then dominates =
UPGRADE_AUTHORITY (process, C).

(37) - RELATIVE_CLASS_DOMINATES_IN_INTEGRITY replaces CLASS_DOMINATES.

(38) - RELATIVE_LABEL_DOMINATES_IN_INTEGRITY replaces LABEL_DOMINATES.

(39) The confidentiality context of a process is always dominated by the user's confidentiality
clearance, and the integrity clearance of a process is always dominated by the user's integrity
clearance.

NOTES

(40) 1 Read and write for mandatory access control are defined in the operations in terms of information flow. If
information flows from an object to the process (i.e. access errors may occur with permission READ), it is a read.
If information flows from the process to an object (i.e. access errors may occur with permission CHANGE or
MODIFY), even if it is only erasure, it is a write. Reading and writing refer to any property of an object (attributes,
links, link attributes, contents) which can contain (or embody) information. Deletion of an object is therefore
considered a write, although for PCTE, deletion of an object is only achieved by deleting a link.

- 251 -

(41) 2 A restriction on a process's integrity context with reference to the user's integrity clearance is unnecessary
because a change is always a downgrade.

(42) 3 The restrictions to changes to a process's confidentiality context or integrity context above apply to the
operations PROCESS_SET_CONFIDENTIALITY_LABEL and PROCESS_SET_INTEGRITY_LABEL, and to
the floating security labels facility (see 20.1.6) when objects, whose labels would normally prevent access, are read
by the process.

(43) 4 The restrictions to changes to an object's confidentiality or integrity labels above apply to the operations
OBJECT_SET_CONFIDENTIALITY_LABEL and OBJECT_SET_INTEGRITY_LABEL, and to the floating
security labels facility when objects, whose labels would normally prevent access, are written to by a process.

(44) 5 The predicates RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY and RELATIVE_LABEL_
DOMINATES_IN_INTEGRITY are used in operations OBJECT_SET_CONFIDENTIALITY_LABEL and
OBJECT_SET_INTEGRITY_LABEL to define some of these checks.

(45) 6 In specifying which accesses are read and which write for mandatory access control, the intention is that the
rules should be as follows.

(46) - Each object, its attributes, its contents, its outgoing links (except system-managed designation links
representing the use of the object by a process and those representing locks) and their attributes, and its
preferred link type and key may be treated as a separate security object.

(47) - Every access to one of those security objects that depends on data from it may be treated as a read, except that
the audit selection criteria are accessible, for the purposes of determining whether the event is auditable,
without a mandatory read check, and reading security labels for mandatory access checks does not count as a
read.

(48) - Every access to one of those security objects that writes data to it is treated as a write, with the following
exceptions:

(49) . the last_access_time attribute shall be updatable without mandatory write checks;

(50) . records shall be written to the audit file and accounting log without write mandatory checks;

(51) . updates arising as a result of process failure or abnormal closedown of a workstation shall be possible
without mandatory checks.

20.1.5 Multi-level security labels

(1) Multi_level_device_designator = Volume_designator | Device_designator |
Execution_site_designator

(2) sds mandatory_security:

(3) import object type system-volume, system-device, system-execution_site;

(4) extend object type volume with
attribute

confidentiality_high_label: (read) non_duplicated string ;
confidentiality_low_label: (read) non_duplicated string ;
integrity_high_label: (read) non_duplicated string ;
integrity_low_label: (read) non_duplicated string ;

end volume;

(5) extend object type device with
attribute

confidentiality_high_label;
confidentiality_low_label;
integrity_high_label;
integrity_low_label;
contents_confidentiality_label: (read) non_duplicated string ;
contents_integrity_label: (read) non_duplicated string ;

end device;

- 252 -

(6) extend object type execution_site with
attribute

confidentiality_high_label;
confidentiality_low_label;
integrity_high_label;
integrity_low_label;

end execution_site;

(7) end mandatory_security;

(8) Multi-level secure devices are volumes, devices, and execution sites; they allow data with a
fixed range of mandatory labels for confidentiality and for integrity to be stored on them. The
fixed ranges of labels required for a multi-level secure device are expressed as two labels, a high
label and a low label. In each range the high label must dominate the low label.

(9) A MAXIMUM_LABEL high end of range means that there is no ceiling on the labels of objects
contained within the device.

(10) For it to be permissible for an object A to be stored on a multi-level secure device M,
CONFIDENTIALITY_LABEL_WITHIN_RANGE (A, M) and INTEGRITY_LABEL_
WITHIN_RANGE (A, M) must be true, where:

(11) CONFIDENTIALITY_LABEL_WITHIN_RANGE (
object : Object_designator,
device : Multi_level_device_designator

)
inside_range : Boolean

(12) inside_range is true if the confidentiality low label of device does not strictly dominate the
confidentiality label of object, and the confidentiality high label of device either is
MAXIMUM_LABEL or dominates the confidentiality label of object; and is otherwise false.

(13) INTEGRITY_LABEL_WITHIN_RANGE (
object : Object_designator,
device : Multi_level_device_designator

)
inside_range : Boolean

(14) inside_range is true if the integrity low label of device does not strictly dominate the integrity
label of object, and the integrity high label of device either is MAXIMUM_LABEL or
dominates the integrity label of object; and is otherwise false.

(15) Similar checks are made when multi-level secure devices are put on other multi-level secure
devices. For it to be permissible for a multi-level secure device A to reside on another multi-
level secure device B, CONFIDENTIALITY_RANGE_WITHIN_RANGE(A, B) must be true,
where:

(16) CONFIDENTIALITY_RANGE_WITHIN_RANGE (
inner_device : Multi_level_device_designator,
outer_device : Multi_level_device_designator

)
inside_range : Boolean

(17) inside_range is true if the confidentiality low label of outer_device does not strictly dominate
the confidentiality low label of inner_device , and the confidentiality high label of outer_device
either is MAXIMUM_LABEL or dominates the confidentiality high label of inner_device; and
is otherwise false.

- 253 -

(18) INTEGRITY_RANGE_WITHIN_RANGE (
inner_device : Multi_level_device_designator,
outer_device : Multi_level_device_designator

)
inside_range : Boolean

(19) inside_range is true if the integrity low label of outer_device does not strictly dominate the
integrity low label of inner_device , and the integrity high label of outer_device either is
MAXIMUM_LABEL or dominates the integrity high label of inner_device; and is otherwise
false.

(20) The confidentiality or integrity label of an object A lies within the confidentiality or integrity
range of a multi-level secure device B if CONFIDENTIALITY_LABEL_WITHIN_RANGE
(A, B) or INTEGRITY_LABEL_WITHIN_RANGE (A, B) respectively is true.

(21) The confidentiality or integrity range of a multi-level secure device A lies within the
confidentiality or integrity range of a multi-level secure device B if CONFIDENTIALITY_
RANGE_WITHIN_RANGE (A, B) or INTEGRITY_RANGE_WITHIN_RANGE (A, B)
respectively is true.

(22) In addition to its mandatory labels, a device object is associated with two other labels (one
confidentiality label and one integrity label), termed labels of contents, which govern access to
its contents through the device contents operations (see clause 12).

(23) The labels of contents are evaluated in accordance with the characteristics of the physical device
each time the contents of the device is accessed. If the device is open for reading or writing, the
label associated with the contents of the physical device is implementation-defined. If the label
cannot be identified then the confidentiality label C of the contents is set to the confidentiality
context of the accessing process, and the integrity label I of the contents is set to the integrity
context of the accessing process. If device_contents is defined as a pseudo-object representing
the contents which have the labels of contents, the process is denied access to the contents if any
of the following are false:

(24) - CONFIDENTIALITY_LABEL_WITHIN_RANGE (device_contents, device)

(25) - INTEGRITY_LABEL_WITHIN_RANGE (device_contents, device)

(26) - LABEL_DOMINATES (confidentiality context of process, C)

(27) - LABEL_DOMINATES (I, integrity context of process)

NOTES

(28) 1 Checks are made that the constraints are obeyed on an object stored on a multi-level secure device whenever:

(29) - objects have their labels changed;

(30) - processes have their mandatory context changed;

(31) - objects are put on to multi-level secure devices:

(32) . objects are created on a volume;

(33) . objects are moved to a volume;

(34) . processes are started or called on a workstation;

(35) - copying files to foreign system.

(36) 2 The checks made that the constraints are obeyed when multi-level secure devices are put on other multi-level
secure devices apply in the following situations:

(37) - volumes are created on devices;

- 254 -

(38) - volumes are mounted on devices;

(39) - devices are created on workstations;

(40) - security ranges on multi-level devices are changed (see 20.2.9 and 20.2.10).

20.1.6 Floating security levels

(1) Floating_level = NO_FLOAT | FLOAT_IN | FLOAT_OUT | FLOAT_IN_OUT

(2) sds mandatory_security:

(3) import object type system-process;

(4) floating_level: NO_FLOAT, FLOAT_IN, FLOAT_OUT, FLOAT_IN_OUT;

(5) extend object type process with
attribute

floating_confidentiality_level: (read) non_duplicated enumeration (floating_level) :=
NO_FLOAT;

floating_integrity_level: (read) non_duplicated enumeration (floating_level) :=
NO_FLOAT;

end process;

(6) end mandatory_security;

(7) The floating security levels mechanism enables a process to select either or both of the two
facilities:

(8) - The mandatory context of a process may float up (confidentiality) or down (integrity) when
information is read from an object.

(9) - The mandatory labels of an object may float up (confidentiality) or down (integrity) when
information is written to its associated atomic object.

(10) This is specified using the "floating_confidentiality_level" and "floating_integrity_level"
attributes of the executing process, which have four possible values:

(11) - NO_FLOAT: switches off the floating mechanism;

(12) - FLOAT_IN: enables the process's mandatory context to float;

(13) - FLOAT_OUT: enables the object's mandatory labels to float;

(14) - FLOAT_IN_OUT: enables both to float.

(15) If the floating of the mandatory context of a process P is enabled (FLOAT_IN and
FLOAT_IN_OUT), then when information is read from the atomic object associated with an
object A:

(16) - if LABEL_DOMINATES (confidentiality context of P, confidentiality label of A) is false
then the new confidentiality context is given by FLOAT_UPGRADE (confidentiality
context of P, confidentiality label of A);

(17) - if LABEL_DOMINATES (integrity label of A, integrity context of P) is false, then the new
integrity context is given by FLOAT_DOWNGRADE (integrity context of P, integrity label
of A).

- 255 -

(18) If the floating of an object's mandatory labels is enabled (FLOAT_OUT and FLOAT_IN_OUT),
then when the atomic object associated with an object A is written to:

(19) - if LABEL_DOMINATES (confidentiality label of A, confidentiality context of the calling
process) is false then the new confidentiality label is given by FLOAT_UPGRADE
(confidentiality label of A, confidentiality context of the calling process);

(20) - if LABEL_DOMINATES (integrity context of the calling process, integrity label of A) is
false then the new integrity label is given by FLOAT_DOWNGRADE (integrity label of A,
integrity context of the calling process).

(21) FLOAT_UPGRADE and FLOAT_DOWNGRADE are defined as follows:

(22) FLOAT_UPGRADE (
upgradable_label : Security_label,
higher_label : Security_label

)
upgraded_label : Security_label

(23) upgraded_label is the conjunction of upgradable_label and higher_label unless
upgradable_label is null in which case upgraded_label is higher_label.

(24) FLOAT_DOWNGRADE (
downgradable_label : Security_label,
lower_label : Security_label

)
downgraded_label : Security_label

(25) downgraded_label is the disjunction of downgradable_label and lower_label unless lower_label
is null in which case downgraded_label is also null.

(26) The floating of mandatory labels requires the process to have the CONTROL_MANDATORY
right to the object.

(27) The confidentiality context of a process process is subject to the constraints:

(28) - It must be dominated by the user confidentiality clearance.

(29) - It must lie within the confidentiality range of the workstation i.e.
CONFIDENTIALITY_LABEL_WITHIN_RANGE (process, station) must be true.

(30) The confidentiality label of an object A must lie within the confidentiality range of the volume
V in which it resides, i.e. CONFIDENTIALITY_LABEL_WITHIN_RANGE (A, V) must be
true.

(31) The integrity context must continue to lie within the integrity range of the workstation on which
the process is running i.e. INTEGRITY_LABEL_WITHIN_RANGE (process, station) must be
true.

(32) The integrity label of an object A must lie within the integrity range of the volume V in which it
resides, i.e. INTEGRITY_LABEL_WITHIN_RANGE (A, V) must be true.

NOTES

(33) 1 If any of the above conditions results in the process's mandatory context or the object's mandatory label not
being changed, then reading and writing of the object are forbidden, as defined in 20.1.4.

(34) 2 CONTROL_MANDATORY right is required for label changes to be effected either explicitly using
OBJECT_SET_CONFIDENTIALITY_LABEL and OBJECT_SET_INTEGRITY_LABEL or implicitly using
floating security labels.

(35) 3 In order to determine whether these constraints have been violated, access must be made to the objects involved
i.e. the user, the station and the volume. These accesses are not also subject to mandatory access control, which

- 256 -

could lead to the further floating of the mandatory context of the current process. These accesses constitute
additional bitwise read accesses which are intrinsic covert channels to PCTE (see 20.1.8.2) and are permitted.

(36) 4 An object of type "process" (or a descendant type) cannot have its mandatory labels changed by output floating,
regardless of the process status. An operation which tries to write to such an object and would cause floating fails
with the relevant confinement violation error.

20.1.7 Implementation restrictions

(1) A trusted implementation of PCTE may have implementation-defined restrictions on various
aspects of the security model. In particular there may be implementation-defined restrictions of
the following kinds:

(2) - restrictions on the number of confidentiality classes (0 or more);

(3) - restrictions on the number of integrity classes (0 or more);

(4) - restrictions on the form of the confidentiality labels, e.g. may not allow a disjunction;

(5) - restrictions on the form of the integrity labels, e.g. may not allow a conjunction;

(6) - restrictions on creation of links between levels (e.g. may not allow any links to cross
differently labelled objects for designated information classes).

(7) In some implementations there may be predefined classes. These predefined classes may be
protected using particular implementation-defined techniques.

20.1.8 Built-in policy aspects

(1) Some aspects of the security policy of any PCTE environment are enforced by the PCTE
interfaces. Any attempt to violate the built-in policy aspect raises the error condition
SECURITY_POLICY_WOULD_BE_VIOLATED.

20.1.8.1 Protection of predefined SDSs

(1) The predefined SDSs "system", "discretionary_security", "mandatory_security", "metasds" and
"accounting" have to be protected against any modification.

(2) Thus, for all these SDSs, the atomic and composite ACLs contain an entry corresponding to the
predefined security group ALL_USERS - which is automatically set in the discretionary
context of all processes - with WRITE_ATTRIBUTES, WRITE_LINKS, APPEND_LINKS
and DELETE access DENIED. The other access rights are set to UNDEFINED.

(3) NOTE – Any attempt by clause 10 operations to change a predefined SDS is forbidden.

20.1.8.2 Covert channels

(1) A covert channel is a communication channel that allows a process to transfer information in a
manner which violates the system's security policy. The mandatory and discretionary security
conditions defined in previous clauses are enforced throughout PCTE. An appropriate error
condition is raised whenever a given operation would result in a violation of such rules and of
the other aspects of the built-in policy.

(2) Two kinds of access are identified for the purposes of mandatory security:

(3) - data access: accesses of this kind are implied when data items are explicitly transferred
between a process and an object.

- 257 -

(4) - bitwise access: accesses of this kind are implied when the status of an object (or of a
process) is modified or queried as a side effect of an operation. The term "status" is used
here as opposed to the data values held in the object and which can be manipulated via the
data accesses defined above.

(5) A bitwise read access is:

(6) - an integrity covert channel where the process strictly dominates the object in integrity;

(7) - a confidentiality covert channel where the object strictly dominates the process in
confidentiality.

(8) A bitwise write access is:

(9) - a confidentiality covert channel where the process strictly dominates the object in
confidentiality;

(10) - an integrity covert channel where the object strictly dominates the process in integrity.

(11) Both kinds of access imply transfer of information between processes and objects (or other
processes). However, in the built-in policy, control of information flow is dealt with
differently for the two kinds of access:

(12) - all "data accesses" must conform to the mandatory security rules as defined earlier in this
major clause;

(13) - a certain number of "bitwise accesses" are allowed which would otherwise violate the
security rules. These are classified as intrinsic covert channels. PCTE implementations can
restrict information flow through covert channels. The events leading to intrinsic covert
channels are all those associated with bitwise write accesses.

(14) The following operations imply bitwise read access:

(15) - LOCK_SET_OBJECT, LOCK_UNSET_OBJECT, LOCK_SET_INTERNAL_MODE,
LOCK_RESET_INTERNAL_MODE;

(16) - any access to an object which implies a check on access rights.

(17) The following operations imply bitwise write access:

(18) - LOCK_SET_OBJECT, LOCK_UNSET_OBJECT, LOCK_SET_INTERNAL_MODE,
LOCK_RESET_INTERNAL_MODE;

(19) - ACTIVITY_START, ACTIVITY_ABORT, ACTIVITY_END;

(20) - MESSAGE_RECEIVE_NO_WAIT, MESSAGE_RECEIVE_WAIT, MESSAGE_
PEEK if the message queue is full;

(21) - LINK_CREATE (creation of an implicit link);

(22) - any write to the audit file;

(23) - any write to the accounting log;

(24) - any implicit creation or deletion of a usage designation link;

(25) - any operation which creates or deletes an object (creation or deletion of an
"object_on_volume" link);

(26) - OBJECT_MOVE, on the destinations of external non-designation links of the object (if
moved) and each moved component.

- 258 -

20.2 Operations for mandatory security operation

20.2.1 DEVICE_SET_CONFIDENTIALITY_RANGE

(1) DEVICE_SET_CONFIDENTIALITY_RANGE (
device : Device_designator,
high_label : Security_label,
low_label : Security_label

)

(2) DEVICE_SET_CONFIDENTIALITY_RANGE sets the confidentiality range high label and
confidentiality range low label of device to high_label and low_label respectively, subject to the
following conditions, where device' is device with the confidentiality range so changed, station
is the workstation controlling device, simply_enlarged is CONFIDENTIALITY_RANGE_
WITHIN_RANGE (device, device'), and simply_reduced is CONFIDENTIALITY_RANGE_
WITHIN_RANGE (device', device):

(3) - If simply_enlarged or not simply_reduced, then CONFIDENTIALITY_RANGE_
WITHIN_RANGE (device', station) must be true.

(4) - If simply_reduced or not simply_enlarged, and there is a volume volume mounted on device,
then CONFIDENTIALITY_RANGE_WITHIN_RANGE (volume, device') must be true.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on device.

Errors

(7) ACCESS_ERRORS (device, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) DEVICE_IS_UNKNOWN (device)
(9) CONFIDENTIALITY_LABEL_IS_INVALID (high_label)
(10) CONFIDENTIALITY_LABEL_IS_INVALID (low_label)
(11) LABEL_RANGE_IS_BAD (high_label, low_label)
(12) PROCESS_IS_IN_TRANSACTION
(13) RANGE_IS_OUTSIDE_RANGE (object, station)
(14) If there is a volume volume mounted on the device:

RANGE_IS_OUTSIDE_RANGE (volume, object)

(15) NOTE - It is possible that the range is being enlarged and reduced at the same time, e.g. if both high_label and
low_label are upgrades, in which case all relevant constraints must be applied.

20.2.2 DEVICE_SET_INTEGRITY_RANGE

(1) DEVICE_SET_INTEGRITY_RANGE (
device : Device_designator,
high_label : Security_label,
low_label : Security_label

)

(2) DEVICE_SET_INTEGRITY_RANGE sets the integrity range high label and integrity range
low label of device to high_label and low_label respectively, subject to the following
conditions, where device' is device with the integrity range so changed, station is the
workstation controlling device, simply_enlarged is INTEGRITY_RANGE_WITHIN_RANGE

- 259 -

(device, device') and simply_reduced is INTEGRITY_RANGE_WITHIN_RANGE (device',
device):

(3) - If simply_enlarged or not simply_reduced, then INTEGRITY_RANGE_WITHIN_RANGE
(device', station) must be true.

(4) - If simply_reduced or not simply_enlarged, and there is a volume volume mounted on device,
then INTEGRITY_RANGE_WITHIN_RANGE (volume, device') must be true.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on device.

Errors

(7) ACCESS_ERRORS (device, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) DEVICE_IS_UNKNOWN (device)
(9) INTEGRITY_LABEL_IS_INVALID (high_label)
(10) INTEGRITY_LABEL_IS_INVALID (low_label)
(11) LABEL_RANGE_IS_BAD (high_label, low_label)
(12) PROCESS_IS_IN_TRANSACTION
(13) RANGE_IS_OUTSIDE_RANGE (object, station)
(14) If there is a volume volume mounted on the device:

RANGE_IS_OUTSIDE_RANGE (volume, object)

(15) NOTE - It is possible that the range is being enlarged and reduced at the same time, e.g. if both high_label and
low_label are upgrades, in which case all relevant constraints must be applied.

20.2.3 EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE

(1) EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE (
execution_site : Execution_site_designator,
high_label : Security_label,
low_label : Security_label

)

(2) EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE sets the confidentiality range high
label and confidentiality range low label of execution_site to high_label and low_label
respectively, subject to the following conditions, where execution_site' is execution_site with the
confidentiality range so changed.

(3) If CONFIDENTIALITY_RANGE_WITHIN_RANGE (execution_site', execution_site) or not
CONFIDENTIALITY_RANGE_WITHIN_RANGE (execution_site, execution_site'):

(4) - for each device D controlled by execution_site,
CONFIDENTIALITY_RANGE_WITHIN_RANGE (D, execution_site') is true.

(5) - for each process P executing on execution_site,
CONFIDENTIALITY_LABEL_WITHIN_RANGE (P, execution_site') is true.

(6) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(7) A write lock of the default mode is established on execution_site.

- 260 -

Errors

(8) ACCESS_ERRORS (execution_site, ATOMIC, CHANGE, CONTROL_MANDATORY)
(9) DEVICE_IS_UNKNOWN (execution_site)
(10) CONFIDENTIALITY_LABEL_IS_INVALID (high_label)
(11) CONFIDENTIALITY_LABEL_IS_INVALID (low_label)
(12) LABEL_IS_OUTSIDE_RANGE (D, execution_site)
(13) LABEL_IS_OUTSIDE_RANGE (P, execution_site)
(14) LABEL_RANGE_IS_BAD (high_label, low_label)
(15) PROCESS_IS_IN_TRANSACTION

20.2.4 EXECUTION_SITE_SET_INTEGRITY_RANGE

(1) EXECUTION_SITE_SET_INTEGRITY_RANGE (
execution_site : Execution_site_designator,
high_label : Security_label,
low_label : Security_label

)

(2) EXECUTION_SITE_SET_INTEGRITY_RANGE sets the integrity range high label and
integrity range low label of execution_site to high_label and low_label respectively, subject to
the following conditions, where execution_site' is execution_site with the integrity range so
changed.

(3) If INTEGRITY_RANGE_WITHIN_RANGE (execution_site', execution_site) or not
INTEGRITY_RANGE_WITHIN_RANGE (execution_site, execution_site'):

(4) - for each device D controlled by execution_site, INTEGRITY_RANGE_WITHIN_RANGE
(D, execution_site') is true.

(5) - for each process P executing on execution_site, INTEGRITY_LABEL_WITHIN_RANGE
(P, execution_site') is true.

(6) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(7) A write lock of the default mode is established on execution_site.

Errors

(8) ACCESS_ERRORS (execution_site, ATOMIC, CHANGE, CONTROL_MANDATORY)
(9) DEVICE_IS_UNKNOWN (execution_site)
(10) INTEGRITY_LABEL_IS_INVALID (high_label)
(11) INTEGRITY_LABEL_IS_INVALID (low_label)
(12) LABEL_IS_OUTSIDE_RANGE (D, execution_site)
(13) LABEL_IS_OUTSIDE_RANGE (P, execution_site)
(14) LABEL_RANGE_IS_BAD (high_label, low_label)
(15) PROCESS_IS_IN_TRANSACTION

- 261 -

20.2.5 OBJECT_SET_CONFIDENTIALITY_LABEL

(1) OBJECT_SET_CONFIDENTIALITY_LABEL (
object : Object_designator,
label : Security_label

)

(2) OBJECT_SET_CONFIDENTIALITY_LABEL sets the confidentiality label of object to label.

(3) If the previous value of the confidentiality label of object is L, then
RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY (calling process, label, L) must
be true.

(4) CONFIDENTIALITY_LABEL_WITHIN_RANGE (object, volume) must remain true, where
volume is the volume on which the object resides.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on the designated object.

Errors

(7) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object, ATOMIC)
(9) CONFIDENTIALITY_LABEL_IS_INVALID (label)
(10) LABEL_IS_OUTSIDE_RANGE (object, volume)
(11) OBJECT_IS_A_PROCESS (object)
(12) OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTION (object)

20.2.6 OBJECT_SET_INTEGRITY_LABEL

(1) OBJECT_SET_INTEGRITY_LABEL (
object : Object_designator,
label : Security_label

)

(2) OBJECT_SET_INTEGRITY_LABEL sets the integrity label of object to label.

(3) If the previous value of the integrity label of object is L, then
RELATIVE_LABEL_DOMINATES_IN_INTEGRITY (calling process, L, label) must be true.

(4) INTEGRITY_LABEL_WITHIN_RANGE (object, volume) must remain true, where volume is
the volume on which object resides.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on the designated object.

Errors

(7) ACCESS_ERRORS (object, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object, ATOMIC)
(9) INTEGRITY_LABEL_IS_INVALID (label)
(10) LABEL_IS_OUTSIDE_RANGE (object,volume)
(11) OBJECT_IS_A_PROCESS (object)

- 262 -

(12) OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTION (object)

20.2.7 VOLUME_SET_CONFIDENTIALITY_RANGE

(1) VOLUME_SET_CONFIDENTIALITY_RANGE (
volume : Volume_designator,
high_label : Security_label,
low_label : Security_label
)

(2) VOLUME_SET_CONFIDENTIALITY_RANGE sets the confidentiality high label and
confidentiality low label of volume to high_label and low_label respectively subject to the
following conditions, where volume' is volume with its confidentiality range so changed,
simply_enlarged is CONFIDENTIALITY_RANGE_WITHIN_RANGE (volume, volume'), and
simply_reduced is CONFIDENTIALITY_RANGE_WITHIN_RANGE (volume', volume).

(3) - If simply_enlarged or not simply_reduced, let device be the device on which the volume is
mounted, then CONFIDENTIALITY_RANGE_WITHIN_RANGE (volume', device) must
be true.

(4) - If simply_reduced or not simply_enlarged, then for each object G residing on the volume,
CONFIDENTIALITY_LABEL_WITHIN_RANGE (G, volume') must be true.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on volume.

Errors

(7) ACCESS_ERRORS (volume, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) CONFIDENTIALITY_LABEL_IS_INVALID (high_label)
(9) CONFIDENTIALITY_LABEL_IS_INVALID (low_label)
(10) For each object G residing on volume:

LABEL_IS_OUTSIDE_RANGE (G, device)
(11) LABEL_RANGE_IS_BAD (high_label, low_label)
(12) RANGE_IS_OUTSIDE_RANGE (volume, device)
(13) PROCESS_IS_IN_TRANSACTION
(14) VOLUME_HAS_OBJECT_OUTSIDE_RANGE (volume, high_label, low_label)
(15) VOLUME_IS_UNKNOWN (volume)

(16) NOTE - It is possible that the range is being enlarged and reduced at the same time, e.g. if both high_label and
low_label are upgrades, in which case both constraints must be applied.

20.2.8 VOLUME_SET_INTEGRITY_RANGE

(1) VOLUME_SET_INTEGRITY_RANGE (
volume : Volume_designator,
high_label : Security_label,
low_label : Security_label

)

(2) VOLUME_SET_INTEGRITY_RANGE sets the integrity range high label and integrity range
low label of volume to high_label and low_label respectively subject to the following
conditions, where volume' is volume with its integrity range so changed, simply_enlarged is

- 263 -

INTEGRITY_RANGE_WITHIN_RANGE (volume, volume'), and simply_reduced is
INTEGRITY_RANGE_WITHIN_RANGE (volume', volume):

(3) - If simply_enlarged or not simply_reduced, let device be the device on which the volume is
mounted, then INTEGRITY_RANGE_WITHIN_RANGE (volume', device) must be true.

(4) - If simply_reduced or not simply_enlarged, then for each object G residing on the volume,
INTEGRITY_LABEL_WITHIN_RANGE (G, volume') must be true.

(5) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

(6) A write lock of the default mode is obtained on volume.

Errors

(7) ACCESS_ERRORS (volume, ATOMIC, CHANGE, CONTROL_MANDATORY)
(8) INTEGRITY_LABEL_IS_INVALID (high_label)
(9) INTEGRITY_LABEL_IS_INVALID (low_label)
(10) For each object G residing on volume:

LABEL_IS_OUTSIDE_RANGE (G, device)
(11) LABEL_RANGE_IS_BAD (high_label, low_label)
(12) RANGE_IS_OUTSIDE_RANGE (volume, device)
(13) PROCESS_IS_IN_TRANSACTION
(14) VOLUME_HAS_OBJECT_OUTSIDE_RANGE (volume, high_label, low_label)
(15) VOLUME_IS_UNKNOWN (volume)

(16) NOTE - It is possible that the range is being enlarged and reduced at the same time, e.g. if both high_label and
low_label are upgrades, in which case both constraints must be applied.

20.3 Mandatory security administration operations

20.3.1 CONFIDENTIALITY_CLASS_INITIALIZE

(1) CONFIDENTIALITY_CLASS_INITIALIZE (
object : Confidentiality_class_designator,
class_name : Name,
to_be_dominated : [Confidentiality_class_designator]

)

(2) CONFIDENTIALITY_CLASS_INITIALIZE initializes object as a confidentiality class. A
"known_mandatory_class" link keyed by class_name is created from the master of the
mandatory directory to object. If to_be_dominated is supplied, a
"dominates_in_confidentiality" link is created from object to to_be_dominated, and a
"confidentiality_dominator" link is created from to_be_dominated to object.

(3) If to_be_dominated is not supplied, the operation creates a new confidentiality tower consisting
of the one confidentiality class object. If to_be_dominated is supplied, the operation adds object
to the tail (the 'top') of an existing confidentiality tower.

(4) Write locks of the default mode are obtained on the created links.

Errors

(5) ACCESS_ERRORS (the mandatory directory, ATOMIC, MODIFY, APPEND_LINKS)

- 264 -

(6) ACCESS_ERRORS (object, ATOMIC, CHANGE, APPEND_IMPLICIT)
(7) If to_be_dominated is supplied:

ACCESS_ERRORS (object, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (to_be_dominated, ATOMIC, MODIFY, APPEND_LINKS)

(8) MANDATORY_CLASS_IS_ALREADY_DOMINATED (to_be_dominated)
(9) MANDATORY_CLASS_IS_KNOWN(object)
(10) MANDATORY_CLASS_IS_UNKNOWN (to_be_dominated)
(11) MANDATORY_CLASS_NAME_IS_IN_USE (class_name)
(12) PROCESS_IS_IN_TRANSACTION

(13) NOTE - This operation does not change any copies of the mandatory directory.

20.3.2 GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE

(1) GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE (
group : User_designator | User_group_designator |

Program_group_designator,
confidentiality_class : Confidentiality_class_designator

)

(2) GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE deletes a "may_downgrade"
link from group to confidentiality_class and a "downgradable_by" link from
confidentiality_class to group.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (confidentiality_class, ATOMIC, MODIFY, WRITE_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (confidentiality_class)
(7) SECURITY_GROUP_IS_NOT_ENABLED (group, confidentiality_class)
(8) SECURITY_GROUP_IS_UNKNOWN (group)

20.3.3 GROUP_DISABLE_FOR_INTEGRITY_UPGRADE

(1) GROUP_DISABLE_FOR_INTEGRITY_UPGRADE (
group : User_designator | User_group_designator | Program_group_designator,
integrity_class : Confidentiality_class_designator

)

(2) GROUP_DISABLE_FOR_INTEGRITY_UPGRADE deletes a "may_upgrade" link from group
to integrity_class and an "upgradable_by" link from integrity_class to group.

(3) Write locks of the default mode are obtained on the links so deleted.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (integrity_class, ATOMIC, MODIFY, WRITE_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (integrity_class)
(7) SECURITY_GROUP_IS_NOT_ENABLED (group, integrity_class)
(8) SECURITY_GROUP_IS_UNKNOWN (group)

- 265 -

20.3.4 GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE

(1) GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE (
group : User_designator | User_group_designator |

Program_group_designator,
confidentiality_class : Confidentiality_class_designator

)

(2) GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE creates a "may_downgrade"
link, keyed by the confidentiality class name of confidentiality_class, from group to
confidentiality_class and a "downgradable_by" link, keyed by the group identifier, from
confidentiality_class to group.

(3) Write locks of the default mode are obtained on the links so created.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (confidentiality_class, ATOMIC, MODIFY, APPEND_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (confidentiality_class)
(7) SECURITY_GROUP_IS_ALREADY_ENABLED (group, confidentiality_class)
(8) SECURITY_GROUP_IS_UNKNOWN (group)

20.3.5 GROUP_ENABLE_FOR_INTEGRITY_UPGRADE

(1) GROUP_ENABLE_FOR_INTEGRITY_UPGRADE (
group : User_designator | User_group_designator | Program_group_designator,
integrity_class : Confidentiality_class_designator

)

(2) GROUP_ENABLE_FOR_INTEGRITY_UPGRADE creates a "may_upgrade" link, keyed by
the integrity class name of integrity_class, from group to integrity_class and an
"upgradable_by" link, keyed by the group identifier, from integrity_class to group.

(3) Write locks of the default mode are obtained on the links so created.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (integrity_class, ATOMIC, MODIFY, APPEND_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (integrity_class)
(7) SECURITY_GROUP_IS_ALREADY_ENABLED (group, integrity_class)
(8) SECURITY_GROUP_IS_UNKNOWN (group)

20.3.6 INTEGRITY_CLASS_INITIALIZE

(1) INTEGRITY_CLASS_INITIALIZE (
object : Integrity_class_designator,
class_name : Name,
to_be_dominated : [Integrity_class_designator]

)

(2) INTEGRITY_CLASS_INITIALIZE initializes object as an integrity class. A
"mandatory_class" link keyed by class_name is created from the master of the mandatory
directory to object. If to_be_dominated is supplied, a "dominates_in_integrity" link is created

- 266 -

from object to to_be_dominated, and a "integrity_dominator" link is created from
to_be_dominated to object.

(3) If to_be_dominated is not supplied, the operation creates a new integrity tower consisting of the
one integrity class object. If to_be_dominated is supplied, the operation adds object to the tail
(the "top") of an existing integrity tower.

(4) Write locks of the default mode are obtained on the created links.

Errors

(5) ACCESS_ERRORS (the mandatory directory, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (object, ATOMIC, CHANGE, APPEND_IMPLICIT)
(7) If to_be_dominated is supplied:

ACCESS_ERRORS (object, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (to_be_dominated, ATOMIC, MODIFY, APPEND_LINKS)

(8) MANDATORY_CLASS_IS_ALREADY_DOMINATED (to_be_dominated)
(9) MANDATORY_CLASS_IS_KNOWN(object)
(10) MANDATORY_CLASS_IS_UNKNOWN (to_be_dominated)
(11) MANDATORY_CLASS_NAME_IS_IN_USE (class_name)
(12) PROCESS_IS_IN_TRANSACTION

(13) NOTE - This operation does not change any copies of the mandatory directory.

20.3.7 USER_EXTEND_CONFIDENTIALITY_CLEARANCE

(1) USER_EXTEND_CONFIDENTIALITY_CLEARANCE (
user : User_designator,
confidentiality_class : Confidentiality_class_designator

)

(2) USER_EXTEND_CONFIDENTIALITY_CLEARANCE creates a "cleared_for" link, keyed by
the name of the confidentiality class confidentiality_class, from user to confidentiality_class and
a "having_clearance" link, keyed by the group identifier, from confidentiality_class to user.

(3) Write locks of the default mode are obtained on the links so created.

Errors

(4) ACCESS_ERRORS (user, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (confidentiality_class, ATOMIC, MODIFY, APPEND_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (confidentiality_class)
(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_IS_ALREADY_CLEARED_TO_CLASS (user, confidentiality_class)
(9) USER_IS_IN_USE (user)

20.3.8 USER_EXTEND_INTEGRITY_CLEARANCE

(1) USER_EXTEND_INTEGRITY_CLEARANCE (
user : User_designator,
integrity_class : Integrity_class_designator

)

- 267 -

(2) USER_EXTEND_INTEGRITY_CLEARANCE creates a "cleared_for" link, keyed by the name
of the integrity class integrity_class, from user to integrity_class, and a "having_clearance" link,
keyed by the group identifier, from integrity_class to user.

(3) Write locks of the default mode are obtained on the links so created.

Errors

(4) ACCESS_ERRORS (user, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (integrity_class, ATOMIC, MODIFY, APPEND_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (integrity_class)
(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_IS_ALREADY_CLEARED_TO_CLASS (user, integrity_class)
(9) USER_IS_IN_USE (user)

20.3.9 USER_REDUCE_CONFIDENTIALITY_CLEARANCE

(1) USER_REDUCE_CONFIDENTIALITY_CLEARANCE (
user : User_designator,
confidentiality_class : Confidentiality_class_designator

)

(2) USER_REDUCE_CONFIDENTIALITY_CLEARANCE deletes a "cleared_for" link from user
to confidentiality_class or to a confidentiality class which dominates confidentiality_class and a
"having_clearance" link from that confidentiality class to user.

(3) Write locks of the default mode are obtained on the links so deleted.

Errors

(4) ACCESS_ERRORS (user, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (confidentiality_class, ATOMIC, MODIFY, WRITE_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (confidentiality_class)
(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_IS_NOT_CLEARED_TO_CLASS (user, confidentiality_class)
(9) USER_IS_IN_USE (user)

(10) NOTE - There is at most one link that satisfies the conditions above for deletion.

20.3.10 USER_REDUCE_INTEGRITY_CLEARANCE

(1) USER_REDUCE_INTEGRITY_CLEARANCE (
user : User_designator,
integrity_class : Integrity_class_designator

)

(2) USER_REDUCE_INTEGRITY_CLEARANCE deletes a "cleared_for" link from user to
integrity_class or to an integrity class which dominates integrity_class and a "having_clearance"
link from that integrity class to user.

(3) Write locks of the default mode are obtained on the deleted links.

Errors

(4) ACCESS_ERRORS (user, ATOMIC, MODIFY, WRITE_LINKS)

- 268 -

(5) ACCESS_ERRORS (integrity_class, ATOMIC, MODIFY, WRITE_LINKS)
(6) MANDATORY_CLASS_IS_UNKNOWN (integrity_class)
(7) SECURITY_GROUP_IS_UNKNOWN (user)
(8) USER_IS_NOT_CLEARED_TO_CLASS (user, integrity_class)
(9) USER_IS_IN_USE (user)

20.4 Mandatory security operations for processes

20.4.1 PROCESS_SET_CONFIDENTIALITY_LABEL

(1) PROCESS_SET_CONFIDENTIALITY_LABEL (
process : [Process_designator],
confidentiality_label : Security_label

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_CONFIDENTIALITY_LABEL sets the confidentiality label of process to
confidentiality_label.

(4) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

Errors

(5) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, CHANGE, CONTROL_MANDATORY)

(6) CONFIDENTIALITY_LABEL_IS_INVALID (confidentiality_label)
(7) If process is the calling process:

LABEL_IS_OUTSIDE_RANGE (process, execution site of process)
(8) LABEL_IS_OUTSIDE_RANGE (process, volume on which process resides)
(9) PROCESS_CONFIDENTIALITY_IS_NOT_DOMINATED (confidentiality_label, process)
(10) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(11) PROCESS_IS_UNKNOWN (process)
(12) USER_IS_NOT_CLEARED (process, confidentiality_label)

20.4.2 PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL

(1) PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL (
process : [Process_designator],
floating_mode : Floating_level

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL sets the floating confidentiality
level of process to floating_mode.

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

- 269 -

(5) If process is not the calling process:
PROCESS_LACKS_REQUIRED_STATUS (process, READY)

(6) PROCESS_IS_UNKNOWN (process)

20.4.3 PROCESS_SET_FLOATING_INTEGRITY_LEVEL

(1) PROCESS_SET_FLOATING_INTEGRITY_LEVEL (
process : [Process_designator],
floating_mode : Floating_level

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_FLOATING_INTEGRITY_LEVEL sets the floating integrity level of process
to floating_mode.

Errors

(4) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, MODIFY, WRITE_ATTRIBUTES)

(5) If process is not the calling process:
PROCESS_LACKS_REQUIRED_STATUS (process, READY)

(6) PROCESS_IS_UNKNOWN (process)

20.4.4 PROCESS_SET_INTEGRITY_LABEL

(1) PROCESS_SET_INTEGRITY_LABEL (
process : [Process_designator],
integrity_label : Security_label

)

(2) If no value is supplied for process, process designates the calling process.

(3) PROCESS_SET_INTEGRITY_LABEL sets the integrity label of process to integrity_label.

(4) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

Errors

(5) If process is not the calling process:
ACCESS_ERRORS (process, ATOMIC, CHANGE, CONTROL_MANDATORY)

(6) PROCESS_INTEGRITY_DOES_NOT_DOMINATE (integrity_label, process)
(7) INTEGRITY_LABEL_IS_INVALID (integrity_label)
(8) If process is the calling process:

LABEL_IS_OUTSIDE_RANGE (process, execution site of process)
(9) LABEL_IS_OUTSIDE_RANGE (process, volume on which process resides)
(10) If process is not the calling process:

PROCESS_LACKS_REQUIRED_STATUS (process, READY)
(11) PROCESS_IS_UNKNOWN (process)

- 270 -

21 Auditing

21.1 Auditing concepts

21.1.1 Audit files

(1) Selectable_event_type = WRITE | READ | COPY | ACCESS_CONTENTS | EXPLOIT
| CHANGE_ACCESS_CONTROL_LIST | CHANGE_LABEL
| USE_PREDEFINED_GROUP | SET_USER_IDENTITY
| WRITE_CONFIDENTIALITY_VIOLATION | READ_CONFIDENTIALITY_VIOLATION
| WRITE_INTEGRITY_VIOLATION | READ_INTEGRITY_VIOLATION | COVERT_CHANNEL
| INFORMATION

(2) Mandatory_event_type = CHANGE_IDENTIFICATION | SELECT_AUDIT_EVENT
| SECURITY_ADMINISTRATION

(3) Auditing_record = Object_auditing_record
| Exploit_auditing_record
| Information_auditing_record
| Copy_auditing_record
| Security_auditing_record

(4) Basic_auditing_record ::
USER : Group_identifier
TIME : Time
WORKSTATION : Execution_site_identifier
EVENT_TYPE : Selectable_event_type | Mandatory_event_type
RETURN_CODE : Return_code
PROCESS : Exact_identifier

(5) Object_auditing_record :: Basic_auditing_record &&
OBJECT : Exact_identifier

(6) Exploit_auditing_record :: Basic_auditing_record &&
NEW_PROCESS : Exact_identifier
EXPLOITED_OBJECT : Exact_identifier

(7) Information_auditing_record :: Basic_auditing_record &&
 INFORMATION : String

(8) Copy_auditing_record :: Basic_auditing_record &&
SOURCE : Exact_identifier
DESTINATION: Exact_identifier

(9) Security_auditing_record :: Basic_auditing_record &&
GROUP : Exact_identifier

(10) Exact_identifier = Text

(11) Audit_file = seq of Auditing_record

(12) Return_code = FAILURE | SUCCESS

(13) sds discretionary_security:

(14) import object type system-object, system-workstation;

(15) audit_file: child type of object with
contents audit_file ;
link

audit_of: reference link (number) to workstation reverse audit;
end audit_file;

- 271 -

(16) extend object type workstation with
link

audit: (navigate) existence link to audit_file reverse audit_of;
end workstation;

(17) end discretionary_security;

(18) An audit file is an object which stores data associated with events that occur on one or more
workstations. It may be associated with one or more workstations which share the same
administration volume. The audit file associated with a workstation is the destination of an
"audit" link from the workstation.

(19) The audit file contains auditing records, each of which records information concerning one event
on the workstation. An auditing record has a general part and a part that depends on the event
type of the event being audited.

(20) The general part, represented by the fields of the basic auditing record, is defined as follows:

(21) - USER: the identity of the user invoking the operation giving rise to the event;

(22) - TIME: the system time of the event;

(23) - WORKSTATION: the workstation on which the event takes place;

(24) - EVENT_TYPE: the event type of the event;

(25) - RETURN_CODE: FAILURE if the operation giving rise to the event terminates in an error,
SUCCESS otherwise;

(26) - PROCESS: the process performing the operation giving rise to the event.

(27) Event-type-specific fields are defined as follows:

(28) - Events of type SELECT_AUDIT_EVENT are represented by basic auditing records;

(29) - For object auditing records, representing events of types WRITE, READ,
ACCESS_CONTENTS, CHANGE_ACCESS_CONTROL_LIST, CHANGE_LABEL,
WRITE_CONFIDENTIALITY_VIOLATION, WRITE_INTEGRITY_VIOLATION,
READ_CONFIDENTIALITY_VIOLATION, READ_INTEGRITY_VIOLATION,
SECURITY_ADMINISTRATION, and COVERT_CHANNEL:

(30) . OBJECT: the object on which the operation takes place.

(31) - For exploit auditing records, representing events of type EXPLOIT:

(32) . NEW_PROCESS: the process resulting from the exploitation of the object, e.g. if the
operation has started execution of a program;

(33) . EXPLOITED_OBJECT: the object being exploited.

(34) - For information auditing records, representing events of type INFORMATION:

(35) . INFORMATION: the message associated with the event.

(36) - For copy auditing records, representing events of types COPY and
CHANGE_IDENTIFICATION:

(37) . SOURCE: the object being copied from, or the old identification of the object;

(38) . DESTINATION: the object being copied to, or the new identification of the object.

(39) - For security auditing records, representing events of types USE_PREDEFINED_GROUP,
and SET_USER_IDENTITY:

- 272 -

(40) . GROUP: the group being used, the user identifier being set or the user performing the
audit selection.

(41) If, when writing to the audit file, the write fails because the audit file is unavailable for some
reason, then the operation which caused the auditable event to occur waits until an audit file is
made available, unless the calling process is acting with the predefined group PCTE_AUDIT.
The means by which the audit file unavailability is notified to the operators of the PCTE
installation is implementation-defined.

NOTES

(42) 1 The usage mode of the "audit" link type prevents any create or delete accesses. It is the role of an
implementation-dependent bootstrap procedure to ensure that the audit file exists on a workstation when it is
brought up. The audit data must be protected so that access to it is limited to users who are authorized for audit
data.

(43) 2 No constraints on the label of the audit file are enforced by the system when the system writes to the audit file
(i.e. it is up to the auditor to define it). When the system writes to the audit file, a bitwise write occurs but even in
the case where this bitwise write results in a covert channel, it is not audited.

21.1.2 Audit selection criteria

(1) General_criterion = Selectable_event_type * Selected_return_code

(2) User_criterion = Selectable_event_type * Group_identifier

(3) Confidentiality_criterion = Selectable_event_type * Security_label

(4) Integrity_criterion = Selectable_event_type * Security_label

(5) Object_criterion = Selectable_event_type * Object_designator

(6) Audit_status = ENABLED | DISABLED

(7) Selection_criterion = General_criterion | Specific_criterion

(8) Specific_criterion = User_criterion | Confidentiality_criterion | Integrity_criterion | Object_criterion

(9) Removed_criterion = Selectable_event_type | Specific_criterion

(10) Selected_return_code = Return_code | ANY_CODE

(11) Criterion_type = GENERAL | USER_DEPENDENT | CONFIDENTIALITY_DEPENDENT |
INTEGRITY_DEPENDENT | OBJECT_DEPENDENT

(12) General_criteria = set of General_criterion

(13) User_criteria = set of User_criterion

(14) Confidentiality_criteria = set of Confidentiality_criterion

(15) Integrity_criteria = set of Integrity_criterion

(16) Object_criteria = set of Object_criterion

(17) Criteria = General_criteria | User_criteria | Confidentiality_criteria | Integrity_criteria |
Object_criteria

(18) Event types may be selected for auditing on a per workstation basis. When a selected event
occurs, audit data is written to the audit file associated with the workstation where the event
occurred. The event types CHANGE_IDENTIFICATION, SELECT_AUDIT_EVENT and
SECURITY_ADMINISTRATION are always audited, regardless of the current selection
criteria. A list of event types is in annex E.

(19) Selected events are only audited when auditing is enabled on the workstation. When auditing is
disabled, only the event types that are always audited are audited.

- 273 -

(20) Events are selected on the basis of their types and either a return code, a user, an object, or a
label. Each workstation maintains a set of audit selection criteria. The set of audit selection
criteria is not persistent across workstation failure.

(21) Criteria of each type select events as follows:

(22) - General criterion: all events of the specified type and with the specified return code are
selected for auditing, or if the specified return code is ANY_CODE then all events of that
type are selected.

(23) - User-dependent criterion: all events of the specified type and being performed on behalf of
the user identified by the group identifier are selected for auditing.

(24) - Confidentiality-dependent criterion: all events of the specified type that are performed on
objects of the specified confidentiality label are selected for auditing.

(25) - Integrity-dependent criterion: all events of the specified type that are performed on objects of
the specified integrity label are selected for auditing.

(26) - Object-dependent criterion: all events of the specified type that are performed on the
specified object are selected for auditing.

21.2 Auditing operations

21.2.1 AUDIT_ADD_CRITERION

(1) AUDIT_ADD_CRITERION (
station : Workstation_designator,
criterion : Selection_criterion

)

(2) AUDIT_ADD_CRITERION adds the criterion criterion to the audit selection criteria for the
workstation station. Events of the type specified in criterion will then be audited on station,
dependent on the type of criterion specified:

(3) - General criterion: The events are recorded on the basis of the return code of the operation
generating the event. If the event type is already selected with the same return code, then the
operation has no effect.

(4) - Confidentiality-dependent criterion: Events performed on objects of the specified
confidentiality label are audited on station. If the event type and confidentiality label are
already selected then the operation has no effect.

(5) - Integrity-dependent criterion: Events performed on objects of the specified integrity label
are be audited on station. If the event type and integrity label are already selected then the
operation has no effect.

(6) - Object-dependent criterion: Events performed on the specified object are audited on station.
The object specified by criterion must be accessible. If the event type and object are
already selected then the operation has no effect.

(7) - User-dependent criterion: Events performed by the specified user are audited on station. If
the event type and user are already selected then the operation has no effect.

Errors

(8) For confidentiality-dependent criterion:
CONFIDENTIALITY_LABEL_IS_INVALID (security label specified by criterion)

- 274 -

(9) For object-dependent criterion:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED (specified object, ATOMIC)

(10) For user-dependent criterion:
GROUP_IDENTIFIER_IS_INVALID (group identifier of criterion)
USER_IS_UNKNOWN (user specified by criterion)

(11) For integrity-dependent criterion:
INTEGRITY_LABEL_IS_INVALID (security label specified by criterion)

(12) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(14) WORKSTATION_IS_UNKNOWN (station)

21.2.2 AUDIT_FILE_COPY_AND_RESET

(1) AUDIT_FILE_COPY_AND_RESET (
source : Audit_file_designator,
destination : Audit_file_designator

)

(2) AUDIT_FILE_COPY_AND_RESET copies the audit file source into the audit file destination.
The contents of source is cleared. No audit records are lost.

(3) This operation may not be invoked from within a transaction.

(4) Write locks of the default mode are obtained on source, on destination, and on the created and
deleted links.

Errors

(5) ACCESS_ERRORS (source, ATOMIC, MODIFY, (READ_CONTENTS,
WRITE_CONTENTS))

(6) ACCESS_ERRORS (destination, ATOMIC, MODIFY, WRITE_CONTENTS)
(7) OBJECT_IS_IN_USE_FOR_MOVE (destination)
(8) AUDIT_FILE_IS_NOT_ACTIVE (source)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(10) PROCESS_IS_IN_TRANSACTION

21.2.3 AUDIT_FILE_READ

(1) AUDIT_FILE_READ (
audit_file : Audit_file_designator

)
records : Audit_file

(2) AUDIT_FILE_READ reads the contents of the audit file audit_file, returning the result as a
sequence of auditing records in records.

Errors

(3) ACCESS_ERRORS (audit_file, ATOMIC, READ, READ_CONTENTS)

- 275 -

21.2.4 AUDIT_GET_CRITERIA

(1) AUDIT_GET_CRITERIA (
station : Workstation_designator,
criterion_type : Criterion_type

)
criteria : Criteria

(2) AUDIT_GET_CRITERIA returns the set of criteria of the type given by criterion_type that have
been set for the workstation station. The returned set contains the event types that have been
selected mapped to the return codes, mandatory labels, object designators, or user designators
(depending on the criterion_type) associated with each event type.

(3) The set of criteria returned depends on the value of criterion_type:

(4) - GENERAL: the set of general criteria is returned.

(5) - CONFIDENTIALITY_DEPENDENT the set of confidentiality-dependent criteria is
returned.

(6) - INTEGRITY_DEPENDENT: the set of integrity-dependent criteria is returned.

(7) - OBJECT_DEPENDENT: the set of object-dependent criteria is returned.

(8) - USER_DEPENDENT: the set of user-dependent criteria is returned.

Errors

(9) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(10) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(11) WORKSTATION_IS_UNKNOWN (station)

21.2.5 AUDIT_RECORD_WRITE

(1) AUDIT_RECORD_WRITE (
text : String

)

(2) AUDIT_RECORD_WRITE writes an information auditing record in the audit file audit_file of
the local workstation. The INFORMATION field of the auditing record is specified by text.

Errors

(3) ACCESS_ERRORS (audit_file, ATOMIC, MODIFY, APPEND_CONTENTS)
(4) AUDIT_FILE_IS_NOT_ACTIVE (audit_file)
(5) LIMIT_WOULD_BE_EXCEEDED (MAX_AUDIT_INFORMATION_LENGTH)

21.2.6 AUDIT_REMOVE_CRITERION

(1) AUDIT_REMOVE_CRITERION (
station : Workstation_designator,
criterion : Removed_criterion

)

(2) AUDIT_REMOVE_CRITERION removes the criterion criterion from the audit criteria of the
workstation station.

(3) For a selectable event type, all general selection criteria with that event type are removed
regardless of the return code specified.

- 276 -

(4) For a confidentiality-dependent criterion, events of the selected type performed on objects with
the selected confidentiality label are no longer audited.

(5) For an integrity-dependent criterion, events of the selected type performed on objects with the
selected integrity label are no longer audited.

(6) For an object-dependent criterion, events of the selected type performed on the selected object
are no longer audited.

(7) For a user-dependent criterion, events of the selected type performed on behalf of the selected
user are no longer audited.

Errors

(8) For confidentiality-dependent criterion:
CONFIDENTIALITY_CRITERION_IS_NOT_SELECTED (criterion)
CONFIDENTIALITY_LABEL_IS_INVALID (security label specified by criterion)

(9) For event type:
EVENT_TYPE_IS_NOT_SELECTED (criterion)

(10) For integrity-dependent criterion:
INTEGRITY_CRITERION_IS_NOT_SELECTED (criterion)
INTEGRITY_LABEL_IS_INVALID (security label specified by criterion)

(11) For object-dependent criterion:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, ATOMIC)
OBJECT_CRITERION_IS_NOT_SELECTED (criterion)

(12) For user-dependent criterion:
GROUP_IDENTIFIER_IS_INVALID (group identifier of criterion)
USER_IS_UNKNOWN (user specified by criterion)
USER_CRITERION_IS_NOT_SELECTED (criterion)

(13) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(14) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(15) WORKSTATION_IS_UNKNOWN (station)

21.2.7 AUDIT_SELECTION_CLEAR

(1) AUDIT_SELECTION_CLEAR (
station : Workstation_designator

)

(2) AUDIT_SELECTION_CLEAR removes all selected audit criteria from the workstation station.

Errors

(3) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(4) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(5) WORKSTATION_IS_UNKNOWN (station)

21.2.8 AUDIT_SWITCH_OFF_SELECTION

(1) AUDIT_SWITCH_OFF_SELECTION (
station : Workstation_designator

)

- 277 -

(2) AUDIT_SWITCH_OFF_SELECTION disables auditing on the workstation station. Events on
station will no longer be audited, except for the event types that are always audited.

(3) The current auditing selection criteria are maintained.

Errors

(4) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(5) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(6) WORKSTATION_IS_UNKNOWN (station)

21.2.9 AUDIT_SWITCH_ON_SELECTION

(1) AUDIT_SWITCH_ON_SELECTION (
station : Workstation_designator

)

(2) AUDIT_SWITCH_ON_SELECTION enables auditing on the workstation station. Events on
station will then be audited according to the current selection criteria. If auditing is already
enabled, then the operation has no effect.

Errors

(3) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(4) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(5) WORKSTATION_IS_UNKNOWN (station)

21.2.10 AUDITING_GET_STATUS

(1) AUDITING_GET_STATUS (
station : Workstation_designator

)
status : Audit_status

(2) AUDITING_GET_STATUS returns ENABLED if auditing is currently enabled on the
workstation station, and DISABLED otherwise.

Errors

(3) OBJECT_IS_INACCESSIBLE (station, ATOMIC)
(4) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(5) WORKSTATION_IS_UNKNOWN (station)

22 Accounting

22.1 Accounting concepts

22.1.1 Consumers and accountable resources

(1) Consumer_identifier = Natural

(2) Resource_identifier = Natural

(3) sds accounting:

(4) import object type system-object, system-process, system-common_root;

- 278 -

(5) import attribute type system-number;

(6) accounting_directory: child type of object with
link

known_consumer_group: (navigate) existence link (consumer_identifier: natural) to
consumer_group;

known_resource_group: (navigate) existence link (resource_identifier: natural) to
resource_group;

accounts_of: implicit link to common_root reverse accounts;
end accounting_directory;

(7) consumer_group: child type of object with
link

consumer_process: (navigate) non_duplicated designation link (number) to process;
end consumer_group;

(8) resource_group: child type of object with
link

resource_group_of: (navigate) reference link (number) to object reverse
in_resource_group;

end resource_group;

(9) extend object type process with
link

consumer_identity: (navigate) designation link to consumer_group;
end process;

(10) extend object type object with
link

in_resource_group: (navigate) reference link to resource_group reverse
resource_group_of;

end object;

(11) extend object type common_root with
link

accounts: (navigate) existence link to accounting_directory reverse accounts_of;
end common_root;

(12) end accounting;

(13) A consumer group is a group of consumer processes which are accounted together for their
usage of accountable resources.

(14) A resource group is a group of accountable resources, the usage of which are accounted
together. Accountable resources are files, pipes, devices, static contexts, workstations, SDSs,
and message queues. There is a "resource_group_of" link from the resource group to each of its
accountable resources.

(15) The accounting directory is an administrative object (see 9.1.2).

(16) Each consumer group and each resource group has an associated consumer identifier or resource
identifier respectively which identifies it uniquely within the PCTE installation and is used in
the construction of accounting records. These identifiers are key attributes of the links from the
accounting directory to the consumer group and resource group respectively.

(17) A process may be associated with a consumer group, which is the destination of the
"consumer_identity" link. If a process is not associated with a consumer group, accounting is
still effective for that process.

- 279 -

22.1.2 Accounting logs and accounting records

(1) Accounting_log ::
RECORDS : seq of Accounting_record
represented by accounting_log

(2) Accounting_record = Workstation_accounting_record
| Static_context_accounting_record
| Sds_accounting_record
| Device_accounting_record
| File_accounting_record
| Pipe_accounting_record
| Message_queue_accounting_record
| Information_accounting_record

(3) Basic_accounting_record ::
SECURITY_USER : Group_identifier
ADOPTED_USER_GROUP : Group_identifier
CONSUMER_GROUP : [Consumer_identifier]
RESOURCE_GROUP : [Resource_identifier]
START_TIME : Time
KIND : Resource_kind

(4) Resource_kind = WORKSTATION | STATIC_CONTEXT | SDS | DEVICE | FILE | PIPE |
MESSAGE_QUEUE | INFORMATION

(5) Workstation_accounting_record :: Basic_accounting_record &&
- - KIND = WORKSTATION

DURATION : Float
CPU_TIME : Float
SYS_TIME : Float

(6) Static_context_accounting_record :: Basic_accounting_record &&
- - KIND = STATIC_CONTEXT

DURATION : Float
CPU_TIME : Float
SYS_TIME : Float

(7) Sds_accounting_record = Basic_accounting_record - - KIND = SDS

(8) Device_accounting_record :: Basic_accounting_record && - - KIND = DEVICE
DURATION : Float
READ_COUNT : Natural
WRITE_COUNT : Natural
READ_SIZE : Natural
WRITE_SIZE : Natural

(9) File_accounting_record :: Basic_accounting_record && - - KIND = FILE
DURATION : Float
READ_COUNT : Natural
WRITE_COUNT : Natural
READ_SIZE : Natural
WRITE_SIZE : Natural

(10) Pipe_accounting_record :: Basic_accounting_record && - - KIND = PIPE
DURATION : Float
READ_COUNT : Natural
WRITE_COUNT : Natural
READ_SIZE : Natural
WRITE_SIZE : Natural

- 280 -

(11) Message_queue_accounting_record :: Basic_accounting_record &&
- - KIND = MESSAGE_QUEUE

OPERATION : SEND | RECEIVE
MESSAGE_SIZE : Natural

(12) Information_accounting_record :: Basic_accounting_record && - - KIND = INFORMATION
INFORMATION : String

(13) sds accounting:

(14) import object type system-workstation;

(15) extend object type workstation with
link

has_log: (navigate) reference link to accounting_log reverse is_log_for;
end workstation;

(16) accounting_log: child type of object with
contents accounting_log ;
link

is_log_for: (navigate) reference link (number) to workstation reverse has_log;
end accounting_log;

(17) end accounting;

(18) An accounting log is an object associated with a workstation which is a server (see below). It
has an "is_log_for" link to each associated workstation.

(19) An accounting record is a record of accountable resource usage by a process. Each usage has a
start event when the usage is deemed to start and an end event when it is deemed to be complete.
The accounting record is written to the accounting log associated with the workstation which is
a server for the accountable resource at the end event. The accountable resource usages are as
follows.

(20) - Use of the contents of a file, pipe, or device (KIND is FILE, PIPE or DEVICE respectively).
The start event is when the process opens the contents (CONTENTS_OPEN); the end event
is when the process next closes the contents (CONTENTS_CLOSE) or when the process
terminates (PROCESS_TERMINATE).

(21) - Use of a static context or workstation associated with the process (KIND is
STATIC_CONTEXT or WORKSTATION respectively). The start event is when the
process is started (PROCESS_START or PROCESS_CREATE_AND_START); the end
event is when the process terminates (PROCESS_TERMINATE).

(22) - Use of an SDS in the working schema of the process (KIND is SDS). The start event is
when the process is started (PROCESS_START or PROCESS_CREATE_AND_START) or
when a working schema containing the SDS is set
(PROCESS_SET_WORKING_SCHEMA); the end event is when a new working schema is
set (PROCESS_SET_WORKING_SCHEMA) or the process terminates
(PROCESS_TERMINATE).

(23) - Sending a message to a message queue or receiving a message from a message queue (KIND
is MESSAGE_QUEUE). The start and end events are the same: the sending or receiving of
the message (MESSAGE_SEND_WAIT, MESSAGE_SEND_NO_WAIT,
MESSAGE_RECEIVE_ WAIT, MESSAGE_RECEIVE_NO_WAIT).

(24) - Certain operations act as an end event followed by a start event for all started accounting
resource usages by the calling process; they are PROCESS_SET_CONSUMER_

- 281 -

IDENTITY, PROCESS_UNSET_CONSUMER_IDENTITY, PROCESS_SET_USER, and
PROCESS_ADOPT_GROUP.

(25) - Certain operations act as an end event for certain started accounting resource usages by the
calling process; they are WORKSTATION_DISCONNECT for accountable resources on
volumes of the workstation; VOLUME_UNMOUNT for accountable resources on the
volume; PROCESS_TERMINATE and ACTIVITY_ABORT for started accounting resource
usages by the process. ACCOUNTING_OFF acts as an end event for all accountable
resources on volumes of the workstation, for all processes.

(26) - Certain events may be end events for started accounting resource usages by the calling
process; they are failure of the execution site of the process, and the volume on which the
accountable resource resides becoming inaccessible. In the case of static context and SDS
resources on inaccessible volumes, whether such events are end events or not is
implementation-defined.

(27) When a resource is made accountable after its usage has started, or is removed from being
accountable before its usage has ended, if such usage is recorded, and if so how, are
implementation-defined.

(28) If an accountable resource becomes inaccessible to the process, this counts as an end event for
the usage of that resource.

(29) A process may also write accounting records via ACCOUNTING_RECORD_WRITE (KIND is
INFORMATION).

(30) A workstation is a server for an accountable resource if the accountable resource resides on a
volume mounted on a device controlled by the workstation, and the workstation is associated
with an accounting log and accounting is enabled on the workstation.

(31) The information in an accounting record depends on the kind of accountable resource involved.
Each accounting record has a fixed part and a resource specific part. The fields of the
accounting record are set as follows.

(32) - Basic accounting record (fixed part):

(33) . SECURITY_USER: the group identifier of the user identity of the process;

(34) . ADOPTED_USER_GROUP: the group identifier of the adopted user group of the
process;

(35) . CONSUMER_GROUP: the exact identifier of the consumer group of the process;

(36) . RESOURCE_GROUP: the exact identifier of the resource group of the accountable
resource;

(37) . START_TIME: the time by the system clock at the start event of the usage of the
accountable resource;

(38) . DURATION: the duration of the usage of the accountable resource, in seconds, from the
start event to the end event;

(39) . INFORMATION: free for use by tools writing accounting records into the accounting
log via ACCOUNTING_RECORD_WRITE; absent in other accounting records.

(40) - Workstation accounting record and static context accounting record:

(41) . CPU_TIME: the consumption of processor time in seconds by the process during the
usage of the workstation or static context;

- 282 -

(42) . SYS_TIME: the consumption of system time in seconds by the process during the usage
of the workstation or static context.

(43) - Device accounting record, File accounting record, or Pipe accounting record:

(44) . READ_COUNT: number of read operations by the process from the device, file, or pipe
during the usage;

(45) . WRITE_COUNT: number of write operations by the process to the device, file, or pipe
during the usage;

(46) . READ_SIZE: total size in octets of data read by the process from the device, file, or pipe
during the usage;

(47) . WRITE_SIZE: total size in octets of data written by the process to the device, file, or
pipe during the usage.

(48) A read operation for device accounting purposes is a CONTENTS_READ only. A write
operation for device accounting purposes is CONTENTS_WRITE or
CONTENTS_TRUNCATE.

(49) - Message queue accounting record:

(50) . OPERATION: whether the usage was to send or to receive a message;

(51) . MESSAGE_SIZE: the size in octets of the message sent or received.

(52) The structure of the accounting log is implementation-defined.

(53) If, when writing to an accounting log, the write fails because the accounting log is unavailable,
then the operation which caused the accountable event to occur waits until an accounting log is
made available. The means by which the accounting log unavailability is notified to the
operators of the PCTE installation is implementation-defined. When an end event occurs, the
completed accounting record is not lost. If there is an abnormal closedown of the workstation
before the end event of the usage of accountable resources, the extent to which the completion
of such usages are recorded in further accounting records is implementation-defined.

NOTES

(54) 1 It is intended that accounting logs are persistent across workstation failures, and that modifications to an
accounting log are not subject to the transaction rollback mechanism (i.e. updates to an accounting log can never be
discarded).

(55) 2 The start of accountable usage for a resource may be when it is defined as an accountable resource, and the end
of accountable usage may be when it is defined to be no longer an accountable resource. While the optimum
implementation is to use the start and end of accountability of the resource as the start and end events of usage for
resources which are in use at the time of change, it is recognized that this may cause unnecessary complication and
inefficiency. An implementation must therefore specify how this situation is handled.

(56) 3 No constraints on the label of the accounting log are enforced by the system when it writes accounting records,
although a bitwise write occurs. Whether this bitwise write, when it gives rise to a covert channel, is audited or
not, is implementation-defined.

22.2 Accounting administration operations

22.2.1 ACCOUNTING_LOG_COPY_AND_RESET

(1) ACCOUNTING_LOG_COPY_AND_RESET (
source_log : Accounting_log_designator,
destination_log : Accounting_log_designator

)

- 283 -

(2) ACCOUNTING_LOG_COPY_AND_RESET appends the contents of the accounting log
source_log to the contents of the accounting log destination_log. The contents of source_log is
then reset, i.e. the contents of source_log is now empty.

(3) There is no loss of accounting records.

(4) A write lock of the default mode is obtained on source_log.

Errors

(5) ACCESS_ERRORS (source_log, ATOMIC, MODIFY, (READ_CONTENTS,
WRITE_CONTENTS))

(6) ACCESS_ERRORS (destination_log, ATOMIC, MODIFY, APPEND_CONTENTS)
(7) ACCOUNTING_LOG_IS_NOT_ACTIVE (source_log)
(8) OBJECT_IS_IN_USE_FOR_MOVE (destination_log)
(9) PROCESS_IS_IN_TRANSACTION

22.2.2 ACCOUNTING_LOG_READ

(1) ACCOUNTING_LOG_READ (
log : Accounting_log_designator

)
records : Accounting_log

(2) ACCOUNTING_LOG_READ returns the sequence of accounting records in the accounting log
log.

Errors

(3) ACCESS_ERRORS (log, ATOMIC, READ, READ_CONTENTS)

22.2.3 ACCOUNTING_OFF

(1) ACCOUNTING_OFF (
station : Workstation_designator

)

(2) ACCOUNTING_OFF disables the accounting mechanism on the workstation station.

(3) The "has_log" link from the object station (if there is one) and its reverse "is_log_for" link are
deleted.

(4) Write locks of the default mode are obtained on the deleted link.

Errors

(5) ACCESS_ERRORS (accounting log of station, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS (station, ATOMIC, MODIFY, WRITE_LINKS)
(7) WORKSTATION_IS_UNKNOWN (station)

22.2.4 ACCOUNTING_ON

(1) ACCOUNTING_ON (
log : Accounting_log_designator,
station : Workstation_designator

)

- 284 -

(2) ACCOUNTING_ON enables the accounting mechanism on the workstation station with
accounting log log.

(3) A "has_log" link, reversed by an "is_log_for" link, is created from station to log.

(4) Write locks of the default mode are obtained on the created links.

Errors

(5) ACCESS_ERRORS (log, ATOMIC, MODIFY, APPEND_CONTENTS)
(6) ACCESS_ERRORS (station, ATOMIC, MODIFY, APPEND_LINKS)
(7) LINK_EXISTS (station, "has_log" link)
(8) OBJECT_IS_NOT_ON_ADMINISTRATION_VOLUME (log, station)
(9) WORKSTATION_IS_UNKNOWN (station)

(10) NOTE - The error LINK_EXISTS indicates that accounting was already enabled.

22.2.5 ACCOUNTING_RECORD_WRITE

(1) ACCOUNTING_RECORD_WRITE (
log : Accounting_log_designator,
information : String

)

(2) ACCOUNTING_RECORD_WRITE appends a basic accounting record to the accounting log
log.

(3) The fields of the accounting record are set as follows:

(4) - SECURITY_USER is set to the group identifier of the destination of the "user_identity" link
of the calling process;

(5) - ADOPTED_USER_GROUP is set to the group identifier of the adopted user group of the
calling process;

(6) - CONSUMER_GROUP is set to the exact identifier of the destination of the
"consumer_identity" link of the calling process;

(7) - RESOURCE_GROUP is set to null;

(8) - KIND is set to INFORMATION;

(9) - START_TIME is set to the current system time;

(10) - INFORMATION is set to the parameter information.

Errors

(11) ACCESS_ERRORS (log, ATOMIC, MODIFY, APPEND_CONTENTS)
(12) ACCOUNTING_LOG_IS_NOT_ACTIVE (log)
(13) LIMIT_WOULD_BE_EXCEEDED (MAX_ACCOUNT_INFORMATION_LENGTH)

22.2.6 CONSUMER_GROUP_INITIALIZE

(1) CONSUMER_GROUP_INITIALIZE (
group : Consumer_group_designator

)
identifier : Consumer_identifier

- 285 -

(2) CONSUMER_GROUP_INITIALIZE establishes the object group as a known consumer group.
A "consumer_group" link is created from the accounting directory to group. The key of this link
is set to a unique value, which is guaranteed never to be re-used as a consumer group identifier,
and is returned in identifier.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, CHANGE, APPEND_IMPLICIT)
(5) ACCESS_ERRORS (the accounting directory, ATOMIC, MODIFY, APPEND_LINKS)
(6) CONSUMER_GROUP_IS_KNOWN (group)

22.2.7 CONSUMER_GROUP_REMOVE

(1) CONSUMER_GROUP_REMOVE (
group : Consumer_group_designator

)

(2) CONSUMER_GROUP_REMOVE removes the consumer group group from the set of known
consumer groups.

(3) No process must currently use the "consumer_identity" associated with that consumer group
(i.e. the object group must not have any "consumer_process" links).

(4) The "known_consumer_group" link from the accounting directory to group is deleted.

(5) If it is the only existence link to the object group and if there are no composition links to group,
then group is also deleted. In that case, the "object_on_volume" link to group from the volume
on which group was residing is also deleted.

(6) Write locks of the default mode are obtained on the deleted links and on group if it is deleted.

Errors

(7) ACCESS_ERRORS (group, ATOMIC, CHANGE, WRITE_IMPLICIT)
(8) ACCESS_ERRORS (the accounting directory, ATOMIC, MODIFY, WRITE_LINKS)
(9) If conditions hold for the deletion of the group:

ACCESS_ERRORS (group, COMPOSITE, MODIFY, DELETE)
(10) CONSUMER_GROUP_IS_IN_USE (group)
(11) CONSUMER_GROUP_IS_UNKNOWN (group)
(12) OBJECT_HAS_LINKS_PREVENTING_DELETION (group)
(13) OBJECT_IS_IN_USE_FOR_DELETE (group)

22.2.8 RESOURCE_GROUP_ADD_OBJECT

(1) RESOURCE_GROUP_ADD_OBJECT (
object : Object_designator,
group : Resource_group_designator

)

(2) RESOURCE_GROUP_ADD_OBJECT defines the object object to be an accountable resource.

(3) An "in_resource_group" link is created from object to group. Its reverse "resource_group_of"
link is keyed by the next unused value (see 23.1.2.7).

- 286 -

(4) Write locks of the default mode are obtained on the created links.

Errors

(5) ACCESS_ERRORS (object, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (group, ATOMIC, MODIFY, APPEND_LINKS)
(7) OBJECT_IS_ALREADY_IN_RESOURCE_GROUP (object, group)
(8) OBJECT_IS_NOT_ACCOUNTABLE_RESOURCE (object)
(9) RESOURCE_GROUP_IS_UNKNOWN (group)

22.2.9 RESOURCE_GROUP_INITIALIZE

(1) RESOURCE_GROUP_INITIALIZE (
group : Resource_group_designator

)
identifier : Resource_identifier

(2) RESOURCE_GROUP_INITIALIZE establishes the object group as a known resource group. A
"resource_group" link is created from the accounting directory to group. The key of this link is
set to a unique value, which is guaranteed never to be re-used as a resource group identifier, and
is returned in identifier.

(3) Write locks of the default mode are obtained on the created links.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, CHANGE, APPEND_IMPLICIT)
(5) ACCESS_ERRORS (the accounting directory, ATOMIC, MODIFY, APPEND_LINKS)
(6) RESOURCE_GROUP_IS_KNOWN (group)

22.2.10 RESOURCE_GROUP_REMOVE

(1) RESOURCE_GROUP_REMOVE (
group : Resource_group_designator

)

(2) RESOURCE_GROUP_REMOVE removes the resource group group from the set of known
resource groups.

(3) group must have no "resource_group_of" links to accountable resources.

(4) The "known_resource_group" link from the accounting directory to group is deleted. If it is the
only existence link to group and if there are no composition links to group then group is also
deleted. In that case, the "object_on_volume" link to group from the volume on which the
group was residing is also deleted.

(5) Write locks of the default mode are obtained on the deleted links and on group if it is deleted.

Errors

(6) ACCESS_ERRORS (group, ATOMIC, CHANGE, WRITE_IMPLICIT)
(7) ACCESS_ERRORS (the accounting directory, ATOMIC, MODIFY, WRITE_LINKS)
(8) If conditions hold for the deletion of the group:

ACCESS_ERRORS (group, COMPOSITE, MODIFY, DELETE)
(9) OBJECT_HAS_LINKS_PREVENTING_DELETION (group)

- 287 -

(10) OBJECT_IS_IN_USE_FOR_DELETE (group)
(11) RESOURCE_GROUP_IS_UNKNOWN (group)

22.2.11 RESOURCE_GROUP_REMOVE_OBJECT

(1) RESOURCE_GROUP_REMOVE_OBJECT (
object : Object_designator,
group : Resource_group_designator

)

(2) RESOURCE_GROUP_REMOVE_OBJECT removes the object object as an accountable
resource from the resource group group.

(3) The "resource_group_of" link and the "in_resource_group" reverse link between object and
group are deleted.

(4) Write locks of the default mode are obtained on the deleted links.

Errors

(5) ACCESS_ERRORS (object, ATOMIC, MODIFY, WRITE_LINKS)
(6) ACCESS_ERRORS (group, ATOMIC, MODIFY, WRITE_LINKS)
(7) OBJECT_IS_NOT_IN_RESOURCE_GROUP (object, group)
(8) RESOURCE_GROUP_IS_UNKNOWN (group)

22.3 Consumer identity operations

22.3.1 PROCESS_SET_CONSUMER_IDENTITY

(1) PROCESS_SET_CONSUMER_IDENTITY (
group : Consumer_group_designator

)

(2) PROCESS_SET_CONSUMER_IDENTITY sets the consumer identity of the calling process,
by creating a "consumer_identity" link from the calling process to group and a complementary
"consumer_process" link from group to the calling process.

(3) If the calling process already has a "consumer_identity" link, that link and its complementary
"consumer_process" link are deleted.

Errors

(4) ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)
(5) CONSUMER_GROUP_IS_UNKNOWN (group)
(6) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (group, ATOMIC,

EXPLOIT_CONSUMER_IDENTITY)
(7) If process is the calling process:

VOLUME_IS_FULL (calling process)

22.3.2 PROCESS_UNSET_CONSUMER_IDENTITY

(1) PROCESS_UNSET_CONSUMER_IDENTITY (
)

- 288 -

(2) PROCESS_UNSET_CONSUMER_IDENTITY suppresses the consumer identity of the calling
process by deleting the "consumer_identity" link, if any, from the calling process and a
complementary "consumer_process" link. If the calling process has no "consumer_identity"
link, the operation has no effect.

Errors

(3) None.

23 Common binding features

23.1 Mapping of types

23.1.1 Mapping of predefined PCTE datatypes

(1) Predefined PCTE datatypes are the datatypes used as or to form the types of parameters and
results of operations defined in this ECMA Standard which are not constructed from other
PCTE datatypes. They are: Boolean, Natural, Integer, Float, Time, Text, and Octet. In order to
define the possible values of these PCTE datatypes in a way which allows sensible binding
decisions to be made, use is made of ISO/IEC 11404 which defines a comprehensive set of LI
datatypes in abstract terms as sets of values and of associated characterizing operations. A
language binding must define a mapping from these LI datatypes to binding language datatypes,
which must ensure that all the characterizing operations are supported. In most cases the
binding language supports them, but if not then the binding must supply them separately.

23.1.1.1 Boolean values

(1) The PCTE datatype Boolean is mapped to the primitive LI datatype boolean. This has 2 values,
true and false; it is unordered. The characterizing operations are Equal, Not, And, Or.

23.1.1.2 Integer values

(1) The PCTE datatype Integer is mapped to the primitive LI datatype integer or to a generated LI
datatype integer range (lowerbound .. upperbound) with appropriate bounds.

(2) integer is a primitive LI datatype comprising the mathematical integers (positive, negative,
and zero); its characterizing operations are Equal, Add, Multiply, Negate, NonNegative, and
InOrder.

(3) range is a subtype generator which creates a subtype of an ordered LI datatype within given
bounds. The characterizing operations of the subtype are the same as those of the parent type.

(4) The bounds are required to satisfy:

(5) - upperbound = MAX_INTEGER_ATTRIBUTE;

(6) - lowerbound = MIN_INTEGER_ATTRIBUTE.

23.1.1.3 Natural values

(1) The PCTE datatype Natural is mapped to a generated LI datatype integer range (0 .. upperbound)
with appropriate upper bound.

- 289 -

(2) The characterizing operations are as for the LI datatype integer except for Negate (and
NonNegative which is not required as it is always true).

(3) The upper bound is required to satisfy:

(4) - upperbound = MAX_NATURAL_ATTRIBUTE.

23.1.1.4 Float values

(1) The PCTE datatype Float is mapped to a primitive LI datatype real (radix, factor), where radix
and factor are integers with radix > 1, or to a generated LI datatype real (radix, factor) range
(lowerbound .. upperbound). float (radix, factor) is a subset of the mathematical datatype of real
numbers with precision of at least radix – factor. The characterizing operations are Equal, Add,
Multiply, Negate, Reciprocal, and InOrder (and Promote which is not required as there is no
PCTE datatype corresponding to the LI datatype rational).

(2) The values radix, factor, lowerbound, and upperbound must satisfy the following:

(3) - upperbound = MAX_FLOAT_ATTRIBUTE;

(4) - lowerbound = MIN_FLOAT_ATTRIBUTE;

(5) - radix – factor ≤ 10 – MAX_DIGITS_FLOAT_ATTRIBUTE;

(6) - the smallest positive and negative numbers representable are
± SMALLEST_FLOAT_ATTRIBUTE.

23.1.1.5 Time values

(1) The PCTE datatype Time is mapped to a primitive LI datatype time (second) or time (second,
radix, factor), where radix and factor are integers with radix > 1, or to a subtype time (second) range
(lowerbound .. upperbound) or time (second, radix, factor) range (lowerbound .. upperbound) with
appropriate bounds. This is a datatype representing moments in time to a resolution of 1
second, or to a fraction of a second defined by radix – factor. The characterizing operations are
Equal, InOrder, Difference, Extend (to a more precise resolution), and Round (to a less precise
resolution).

(2) The binding mapping must respect the limits:

(3) - factor ≥ 0 (resolution at worst 1 second);

(4) - upperbound = MAX_TIME_ATTRIBUTE;

(5) - lowerbound = MIN_TIME_ATTRIBUTE.

23.1.1.6 Octet, character, and text values

(1) The PCTE datatype Octet is mapped to the LI datatype octet = new integer range (0 .. 255). The
characterizing operation is Equal (and Select and Replace (from array) which are not required
as there is no PCTE datatype corresponding to bit).

(2) Octet values have no intrinsic graphical representation. When a graphical representation is
required, the graphical representation of the PCTE datatype Character is used.

(3) The PCTE datatype Character comprises the human-readable characters of one or more
character sets selected by the PCTE implementation. In a character set, a single character may
be represented by a single byte or by more than one byte.

- 290 -

(4) The PCTE Datatype Text comprises sequences of characters. Characters of more than one
character set may exist in a single text value. The method of identifying the character set of a
given character is implementation-defined.

NOTES

(5) 1 By the definition of the PCTE datatype Character, an octet may be part of a character of a multi-byte character
set. Therefore, it may occur that an octet which is identical to an octet associated with a character of a single-byte
character set is part of a character of a multi-byte character set. Even if such an octet is identical to an octet
associated with a special character (e.g. '/', '$', '#', '.' in a pathname), a PCTE implementation should not interpret
the octet as such a special character.

(6) 2 For the definitions of the terms 'octet' and 'character set' see ISO/IEC 10646-1. For the definition of the term
'byte' see ISO/IEC 2022.

23.1.1.7 Token values

(1) The PCTE datatype Token is used only as the field type of a single anonymous field of a record
type, called a private PCTE datatype, as e.g. in:

User_defined_message_type :: Token

This ensures that the values of type User_defined_message_type are distinct from the values of
all other types.

(2) Except for designators and nominators (for which see 23.1.2), each private PCTE datatype is
mapped to a distinct LI datatype new private (length), where private is an LI datatype defined by

type private (length: NaturalNumber) = new array (1 .. length) of (bit)

For each such type length is a binding-defined positive integer.

23.1.1.8 Enumeration values

(1) Enumerated PCTE datatypes are unions of VDM-SL enumeration types, each comprising a
single enumerated value. An enumerated PCTE datatype:

VALUE1 | VALUE2 | ...

is mapped to an LI enumerated datatype enumerated (value1, value2, ...) with corresponding
values. The characterizing operation is Equal (and InOrder and Successor which are not
required as an enumerated PCTE datatype is unordered).

23.1.2 Mapping of designators and nominators

(1) This clause defines the constraints on the PCTE datatypes used in bindings for referring to
objects, attributes, links, and types, and types in SDS.

(2) These datatypes are object designators, attribute designators, link designators, type nominators,
type nominators in SDS, and actual keys, when used as or in parameters or results of operations
defined in clauses 9 to 22; the corresponding binding types are called object references, attribute
references, link references, type references, type names in SDS, and keys respectively. Object
references, attribute references, link references, and type references are binding-defined
datatypes supported by operations defined in 23.2 to 23.4. Type names in SDS and keys are text
values with an internal syntax, defined in the BSI metasyntactic notation.

(3) For all designators and nominators, except link designators used in the creation of links, the
entity designated must always exist. The process of identifying the entity from a reference is

- 291 -

called evaluation of the reference; this is implicitly performed by all operations in clauses 9 to
22 for unevaluated references. This process can give rise to error conditions, which are defined
in 23.1.2.1 to 23.1.2.4.

(4) NOTE - The mapping of the PCTE datatypes used in the bindings is summarized in table 11, with the operations
used to create values of the types. Text creation is binding-defined.

Table 11 - Mapping of PCTE datatypes to common binding datatypes

PCTE datatype Binding datatype Created by

object designator object reference OBJECT_REFERENCE_SET_ABSOLUTE,
OBJECT_REFERENCE_SET_RELATIVE

attribute designator attribute reference TYPE_REFERENCE_SET

link designator link reference LINK_REFERENCE_SET

type nominator type reference TYPE_REFERENCE_SET

type nominator in SDS type name in SDS text creation

actual key key text creation

23.1.2.1 References

(1) X_reference = Internal_X_reference | External_X_reference

(2) External_X_reference ::
NAME : X_name
EVALUABILITY : Boolean

(3) Evaluation_point = NOW | FIRST_USE | EVERY_USE

(4) Evaluation_status = INTERNAL | EXTERNAL

(5) Reference_equality = EQUAL_REFS | UNEQUAL_REFS | EXTERNAL_REFS

(6) References are an abstract datatype characterized by the operations of 23.2 to 23.4; the above
VDM-SL type definition of an X_reference, where 'X' is 'object', 'attribute', 'link', or 'type', is for
expository purposes only and need not be mapped explicitly in a binding.

(7) References provide two ways of designating an object, attribute, link, or type: by a name (an
external reference), and by a handle (an internal reference). The evaluation status of a
reference is external or internal accordingly. An object, attribute, link, or type is accessed from
a reference by evaluating it. The syntax of external references and the structure of internal
references are defined in 23.1.2.2 to 23.1.2.5 inclusive. An external reference is evaluated by
first pre-evaluating it to give an internal reference; pre-evaluation in general evaluates the
reference as far as possible in the absence of any other information. The internal reference is
then evaluated in the context of any other required information to complete the process.

(8) The evaluability applies only to external references; it is true if the reference is to be converted
to an internal reference when next pre-evaluated by an operation of clauses 9 to 22 and false
otherwise. Evaluation points are used as parameters of operations returning references to
indicate the evaluation status and evaluability required: NOW indicates an internal reference,
FIRST_USE an external reference with evaluability true; and EVERY_USE an external
reference with evaluability false.

- 292 -

(9) The evaluation of a reference takes place during the successful execution of an operation of
clauses 9 to 22 of which the reference is a parameter. Operations in clause 23 do not as a rule
evaluate their reference parameters, though in some cases (where stated) external reference
parameters are pre-evaluated.

(10) References returned by any of the operations in clauses 9 to 22 are always internal.

23.1.2.2 Object references

(1) Internal_object_reference :: Token

(2) An object reference identifies an object. The syntax of object names (also called pathnames) is
as follows:

(3) pathname = referenced object name, ['/', relative pathname] | ['$current_object', '/'],
relative pathname;

(4) relative pathname = link name, {'/', link name};

(5) referenced object name = '$', key string value | alias;

(6) For link references see 23.1.2.4.

(7) Pre-evaluation of an external object reference is the same as evaluation, and evaluation of an
internal object reference is a null process.

(8) A relative pathname specifies a chain of links starting from a given origin object; the first link
is specified by the origin object and the first link name; the second by the destination of the
first link and the second link name, and so on. Finally the relative pathname specifies the
destination object of the final link.

(9) A pathname with no relative pathname specifies the same object as the referenced object name.
A pathname with a relative pathname specifies the final destination object given by the object
specified by the referenced object name and the relative pathname, as just described.

(10) A pathname which consists only of a relative pathname is equivalent to a pathname starting
from the current object and following the specified relative pathname, as just described.

(11) A referenced object name of the first form specifies the destination of the "referenced_object"
link from the calling process with the key given by the key string value. The key is a string
which is the referenced object name. If the link to reference object is omitted from an external
object designator, the default reference object is ".".

(12) For practical purposes, aliases are provided for the most commonly used referenced objects;
see table 12.

- 293 -

Table 12 - Aliases of referenced objects

Alias Key of referenced
object

Meaning

"$" "self" The current process object

"#" "static_context" The static context of the current process

"_" "common_root" The common root of the PCTE installation

"~" "home_object" An object conventionally associated with each user, called
"home". The type of home is not predefined.

"." "current_object" An object conventionally chosen for the interpretation of a
pathname without a starting referenced object name (see
above) and providing the conventional notion of a current
directory.

(13) When an object reference is evaluated, the constituent pathname, if any, is evaluated. The
evaluation of the pathname involves the evaluation of the link names in the pathname.

(14) The visible types are those that are visible at the time of calling an operation. Thus even if an
internal object reference is used in an operation, the visible types are those that are visible
when the operation is called rather than when the object reference is evaluated.

(15) Evaluation of an external object reference reference may give rise to the following errors,
which can therefore occur in any operation which has an object designator as parameter or
result.

(16) ACCESS_ERRORS (object identified by reference, ATOMIC, READ, NAVIGATE)
(17) For each link name link in the relative pathname:

ACCESS_ERRORS (origin object of link, ATOMIC, SYSTEM_ACCESS)
LINK_DESTINATION_DOES_NOT_EXIST (link)
LINK_DESTINATION_IS_NOT_VISIBLE (link)
USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (origin object of
link, link, NAVIGATE)
Errors arising from evaluation of link (see 23.1.2.4)

(18) LINK_DESTINATION_DOES_NOT_EXIST ("referenced_object" link from the calling
process identified by the referenced object name of reference)

(19) REFERENCE_CANNOT_BE_ALLOCATED
(20) REFERENCE_NAME_IS_INVALID (reference)
(21) REFERENCED_OBJECT_IS_UNSET (reference)

(22) Any use of an object reference reference as parameter of an operation may additionally raise
the following errors, whatever its evaluation status.

(23) OBJECT_IS_OF_WRONG_TYPE (reference)
(24) OBJECT_REFERENCE_IS_INVALID (reference)
(25) OBJECT_REFERENCE_IS_UNSET (reference)

- 294 -

23.1.2.3 Attribute references

(1) Internal_attribute_reference :: Internal_type_reference

(2) An attribute reference identifies an attribute relative to a given object or link. It may therefore
identify different attributes depending on the object or link. The syntax of attribute names is as
follows:

(3) attribute name = type name;

(4) Pre-evaluation of an external attribute reference consists in evaluating the type name (see
23.1.2.5) as an attribute type name to give an internal type reference. Evaluation of an internal
attribute reference consists in identifying the attribute of the given object or link with that
attribute type; as no two attributes of an object or link may have the same attribute type,
evaluation is unambiguous.

(5) Evaluation of an attribute reference reference may give rise to the following errors:

(6) ATTRIBUTE_TYPE_IS_NOT_VISIBLE (reference)
(7) If the operation does not delete the attribute

ATTRIBUTE_TYPE_OF_LINK_TYPE_IS_NOT_APPLIED (reference)
ATTRIBUTE_TYPE_OF_OBJECT_TYPE_IS_NOT_APPLIED (reference)

(8) Errors arising from evaluation of the attribute type reference (see 23.1.2.5).

23.1.2.4 Link references

(1) Internal_link_reference ::
ACTUAL_LINK_TYPE : [Internal_type_reference]
KEY : [Key]

(2) An internal link type reference must contain an actual link type or a key (or both). A key is a
text value obeying the syntax of a key (see 23.1.2.7).

(3) A link reference identifies a link in the context of its origin. It may therefore identify different
links depending on the origin. The syntax of link names is as follows:

(4) link name = cardinality one link name | cardinality many link name;

(5) cardinality one link name = '.', type name;

(6) cardinality many link name = key, '.', [type name] | key;

(7) The canonical form of a link name is with a type identifier for link type name, and no '+', '++',
or '-' key attribute values in the key.

(8) The second form of cardinality many link name is allowed only if the key consists of a single
key attribute value, or if the rightmost key attribute value of the key does not obey the syntax
of a type name.

(9) The pre-evaluation of an external link reference is as follows. If the link name contains a type
name, that type name is evaluated as a link type name (see 23.1.2.5) to give the actual link
type. If not, the internal link reference has no actual link type and the determination of the
actual link type is deferred. For an external reference with a cardinality one link name, the
internal link reference has no key; for an external link reference with a cardinality many link
name, the key of the internal link reference is the same as the key of the link name.

- 295 -

(10) The evaluation of an internal link reference is as follows:

(11) - If the link reference does not contain an actual link type, the preferred link type of the
origin is used as actual link type.

(12) - If there is no key, the link reference identifies the cardinality one link with the given origin
and the actual link type.

(13) - If there is a key, it is evaluated in the context of the actual link type to yield an actual key,
as described in 23.1.2.7. The identified link is the cardinality many link with the given
origin, the actual link type, and the actual key.

(14) Pre-evaluation of a link reference reference may give rise to the following errors.

(15) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
(16) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_SIZE)
(17) LIMIT_WOULD_BE_EXCEEDED (MAX_LINK_NAME_SIZE)
(18) Errors arising from evaluation of the link type reference (see 23.1.2.5)
(19) Evaluation of a link reference reference in the context of the origin origin may additionally

give rise to the following errors, whatever the evaluation status of reference.

(20) If any '+' or '++' key attribute values are evaluated:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED (origin, ATOMIC,
READ_LINKS)

(21) If any '-' key attribute values are evaluated:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED (origin, ATOMIC,
READ_ATTRIBUTES)

(22) KEY_IS_BAD (origin, reference)
(23) LINK_DOES_NOT_EXIST (origin, reference)
(24) LINK_TYPE_IS_NOT_APPLIED_TO_OBJECT_TYPE (object type of origin, link type

reference of reference)
(25) If the link type name is not supplied:

PREFERENCE_DOES_NOT_EXIST (origin, reference)
(26) Errors arising from evaluation of the preferred link type reference (see 23.1.2.5).

23.1.2.5 Type references

(1) Internal_type_reference :: Token

(2) A type reference identifies a type. The syntax of a type name is as follows:

(3) type name = local name | full type name | type identifier;

(4) local name = name;

(5) full type name = sds name, '-', local name;

(6) sds name = name;

(7) type identifier = '_', string;

(8) Pre-evaluation of an external type reference is the same as evaluation, and evaluation of an
internal type reference is a null process.

(9) A full type name identifies a type with the given local name in the SDS specified by the SDS
name which is a member of the sequence of SDS names in the current working schema. A type

- 296 -

name which is just a local name identifies the type in the current working schema. If derived
from a local name, the evaluation of the type reference yields the first type in working schema
(in the sequence of SDS names in the current working schema) with that local name as its local
name.

(10) A type identifier is a string with first character '_'; the syntax and interpretation of the rest of
the string are implementation-defined. The value of the "type_identifier" attribute of a "type"
object (see 10.1.2) is the corresponding type identifier without the initial '_' character.

(11) If a type name or a link name is returned by an operation rather than a type reference or a link
reference, the type name or link name is returned as a type name if the type is visible and
named in the current working schema, and as a type identifier otherwise. When a type name is
returned it is the local name of the first named associated type in SDS in the sequence of SDS
names in the working schema, provided that this local name does not occur earlier in the
sequence of SDS names for another type. In the latter case, the full type name, i.e. prefixed by
an SDS name, of the first associated type in SDS in the sequence of SDS names in the working
schema is returned.

(12) The use of a type identifier as or as part of an input parameter is allowed if the type is visible,
or if the predefined program group PCTE_CONFIGURATION is effective for the calling
process; creating objects and links, getting, setting, and resetting attributes (including the
working schema operations of 10.4), and converting objects by means of types which are not
visible are invalid even for the PCTE_CONFIGURATION program group.

(13) Evaluation of a type reference reference may give rise to the following errors:
(14) If PCTE_CONFIGURATION is not effective for the calling process:

ATTRIBUTE_TYPE_IS_NOT_VISIBLE (reference)
ENUMERAL_TYPE_IS_NOT_VISIBLE (reference)
LINK_TYPE_IS_NOT_VISIBLE (reference)
OBJECT_TYPE_IS_NOT_VISIBLE (reference)

(15) If PCTE_CONFIGURATION is effective for the calling process:
OPERATION_IS_NOT_ALLOWED_ON_TYPE (reference)

(16) If reference contains a type identifier identifier, the following implementation-defined
error may be raised:

TYPE_IDENTIFIER_IS_INVALID (identifier)
 (17) If reference is a full type name:

SDS_IS_NOT_IN_WORKING_SCHEMA (SDS name of reference)
SDS_IS_UNKNOWN (SDS name of reference)
TYPE_IS_UNKNOWN_IN_SDS (SDS name of reference)

(18) TYPE_IS_NOT_DESCENDANT (reference, expected type)
 (19) TYPE_IS_OF_WRONG_KIND (reference)

(20) Any use of an internal type reference reference as a parameter of an operation may additionally
raise the following error:

TYPE_REFERENCE_IS_INVALID (reference)

NOTES

(21) 1 The ability of the program group PCTE_CONFIGURATION to identify types which are not part of the
working schema of the calling process, is intended to be used to remove garbage from the object base, e.g. "type"
objects associated with types which are no longer in existence.

(22) 2 Internal type references are independent of the working schema, and remain valid over changes to the working
schema.

- 297 -

23.1.2.6 Type names in SDS

(1) A type nominator in SDS in clauses 9 to 22 corresponds to a type name in SDS in a language
binding. A type name in SDS is a text value with the following syntax.

(2) type name in sds = local name | type identifier;

(3) A type name in SDS identifies a type in SDS in a given SDS. A type nominator in SDS
returned by an operation is returned as a local name if the type is named in the relevant SDS,
otherwise as a type identifier.

(4) Evaluation of a type name in SDS name may give rise to the following errors:

(5) TYPE_IDENTIFIER_USAGE_IS_INVALID (name)
(6) TYPE_IS_UNKNOWN_IN_SDS (given SDS, name)

23.1.2.7 Keys

(1) A value of type Actual_key in clauses 9 to 22 corresponds to a key in a language binding. A
key is a text value with the following syntax.

(2) key = key attribute value, {'.', key attribute value};

(3) key attribute value = key natural value | key string value | key nil value;

(4) key string value = key first character, {key character};

(5) key first character = key character - ('$' | '#' | '~' | '_' | '+');

(6) key character = character - ('.' | '-' | '/');

(7) key natural value = '0' | nonzero digit, {digit} | highest used value | next unused value;

(8) nonzero digit = '1'| '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

(9) digit = '0' | nonzero digit;

(10) highest used value = '+';

(11) next unused value = '++';

(12) key nil value = '-';

(13) A key identifies a link in the context of a given origin object and an actual link type. It is
evaluated to give an actual key according to the rules given below; the actual key is a sequence
of key values (strings or naturals), and identifies the link with given type and origin object, and
with that sequence of values of its key attributes. The length of a key is limited to
MAX_KEY_SIZE and the values of key attribute values are limited to MAX_KEY_VALUE
and MAX_KEY_SIZE (see 24.1).

(14) The key attribute values in the key are evaluated in order giving key values of the actual key as
follows.

(15) - A key string value gives that string.

(16) - A key natural value of the first or second form gives the natural number which it represents
in the usual decimal representation.

(17) - The highest used value '+' gives the greatest key attribute value, if any, in that position in
the sequence of key values among all links which have the same origin and the same key
prefix (the preceding sequence of key values evaluated according to these rules). If there
are no such links, the value of '+' is zero.

- 298 -

(18) - The next unused value '++' gives the value of '+' plus one when the actual key is to be used
as the key of a link created by the operation, and the value of '+' in other cases.

(19) - The key nil value '-' is undefined if the origin object of the link has no preferred link key, or
if its preferred link type is not the given actual link type. Otherwise it gives the value of the
key attribute in the same position in the preferred link key of the origin object. If the
preferred link key attribute value is '+' or '++', it is evaluated as described above.

(20) - If fewer key values are present than the number of key attribute types of the given link type,
then the number is effectively made up by adding further '-' key attribute values, except that
if the origin object of the link has no preferred link key, or if its preferred link type is not
the given actual link type, a missing key attribute value corresponding to a string key
attribute gives the empty string.

(21) An actual key returned as or as part of the result of an operation has the form of a key with no
'+', '++', or '-' key attribute values.

NOTES

(22) 1 Although a key must contain at least one key attribute value, the effect of an empty key can be obtained by
using a key '-' consisting of a single key nil value.

(23) 2 All names are valid key string values.

23.1.3 Mapping of other values

23.1.3.1 Security labels

(1) A value of type Security_label in clauses 9 to 22 corresponds to a security label in a language
binding. A security label is a text value with the following syntax.

(2) security_label = class name | conjunction | disjunction | '*';

(3) conjunction = unit, {space, 'AND', space, unit};

(4) disjunction = unit, {space, 'OR', space, unit};

(5) unit = class name | '(', security label,')';

(6) class name = name;

(7) space = (* space character *);

(8) A class name corresponds to the mandatory class designator of the security or integrity class
which is the destination of a "known_mandatory_class" link from the mandatory directory with
that class name as "name" key attribute value. The units in a conjunction or disjunction
correspond to the security labels of the UNITS field in some order; all orders are equivalent.

(9) Class names are interpreted as confidentiality class names in confidentiality labels and as
integrity class names in integrity labels. The security label value '*' is valid only as the high
label of a range and represents MAXIMUM_LABEL (see 20.1.5). A null label is represented
by an empty text value.

(10) Evaluation of a security label can give rise to the following error:

(11) CLASS_NAME_IS_INVALID (name)

- 299 -

23.1.3.2 Names

(1) A value of type Name is represented by a string having the syntax of a name according to the
following rules.

(2) name = name first character, { name character };

(3) name first character = name character - ('/', '$', '#', '-', '_', '.', '~', '*', '(');

(4) name character = character - ('/', '$', '#', '-', '~', ')');

(5) The following synonyms for national characters (i.e outside the ISO 646 invariant subset) are
permitted in names: /S for $, /T for ~, and /H for #.

(6) Names are used as SDS names and local names of types within SDSs, and as class names. The
syntax is the same as for identifiers in DDL (see B.7).

23.1.3.3 Other compound types

(1) There are no constraints on the mapping of values of other VDM-SL compound types:
sequences, sets, optional types, product types, record types, union types, and map types.
Bindings may specify rules for special values, e.g. for a set containing all possible elements.

23.2 Object reference operations

23.2.1 OBJECT_REFERENCE_COPY

(1) OBJECT_REFERENCE_COPY (
reference : Object_reference,
point : Evaluation_point

)
new_reference : Object_reference

(2) OBJECT_REFERENCE_COPY returns a new object reference new_reference designating the
same object as reference. The evaluation status and evaluability of new_reference are specified
by point (see 23.1.2.1).

(3) If reference is external and point is NOW, then reference is pre-evaluated.

Errors

(4) EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT (reference,
point)

23.2.2 OBJECT_REFERENCE_GET_EVALUATION_POINT

(1) OBJECT_REFERENCE_GET_EVALUATION_POINT (
reference : Object_reference

)
point : Evaluation_point

(2) OBJECT_REFERENCE_GET_EVALUATION_POINT returns an evaluation point indicating
the evaluation status and evaluability of the object reference reference, as defined in 23.1.2.1.

Errors

(3) None.

- 300 -

23.2.3 OBJECT_REFERENCE_GET_PATH

(1) OBJECT_REFERENCE_GET_PATH (
reference : Object_reference

)
pathname : Pathname

(2) OBJECT_REFERENCE_GET_PATH returns the pathname of the external object reference
reference.

Errors

(3) OBJECT_REFERENCE_IS_INTERNAL (reference)

23.2.4 OBJECT_REFERENCE_GET_STATUS

(1) OBJECT_REFERENCE_GET_STATUS (
reference : Object_reference

)
status : Evaluation_status

(2) OBJECT_REFERENCE_GET_STATUS returns the evaluation status of the object reference
reference.

Errors

(3) OBJECT_REFERENCE_IS_UNSET (reference)

23.2.5 OBJECT_REFERENCE_SET_ABSOLUTE

(1) OBJECT_REFERENCE_SET_ABSOLUTE (
pathname : Pathname,
point : Evaluation_point

)
new_reference : Object_reference

(2) OBJECT_REFERENCE_SET_ABSOLUTE creates a new object reference new_reference from
a pathname pathname and an evaluation point point. The evaluation status and evaluability of
new_reference are specified by point (see 23.1.2.1).

Errors

(3) PATHNAME_SYNTAX_IS_WRONG (pathname)

23.2.6 OBJECT_REFERENCE_SET_RELATIVE

(1) OBJECT_REFERENCE_SET_RELATIVE (
reference : Object_reference,
pathname : Relative_pathname,
point : Evaluation_point

)
new_reference : Object_reference

(2) OBJECT_REFERENCE_SET_RELATIVE creates a new object reference from an existing
object reference reference, a relative pathname pathname, and an evaluation point point. The
evaluation status and evaluability of new_reference are specified by point (see 23.1.2.1).

(3) If reference is external and point is NOW, then reference is pre-evaluated.

- 301 -

Errors

(4) EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT (reference,
point)

(5) If point is NOW:
REFERENCE_CANNOT_BE_ALLOCATED

(6) OBJECT_REFERENCE_IS_INVALID (reference)
(7) PATHNAME_SYNTAX_IS_WRONG (pathname)

23.2.7 OBJECT_REFERENCE_UNSET

(1) OBJECT_REFERENCE_UNSET (
reference : Object_reference

)

(2) OBJECT_REFERENCE_UNSET deletes the object reference reference, releasing any
associated resources.

Errors

(3) OBJECT_REFERENCE_IS_UNSET (reference)

23.2.8 OBJECT_REFERENCES_ARE_EQUAL

(1) OBJECT_REFERENCES_ARE_EQUAL (
first_reference : Object_reference,
second_reference : Object_reference

)
equal : Reference_equality

(2) OBJECT_REFERENCES_ARE_EQUAL returns EQUAL_REFS if both object references
first_reference and second_reference are internal and designate the same object;
UNEQUAL_REFS if both object references are internal and designate different objects; and
EXTERNAL_REFS otherwise (i.e. if one or both are external). REFERENCES_ARE_EQUAL
does not evaluate either object reference.

Errors

(3) OBJECT_REFERENCE_IS_UNSET (first_reference)
(4) OBJECT_REFERENCE_IS_UNSET (second_reference)

23.3 Link reference operations

23.3.1 LINK_REFERENCE_COPY

(1) LINK_REFERENCE_COPY (
reference : Link_reference
point : Evaluation_point

)
new_reference : Link_reference

(2) LINK_REFERENCE_COPY returns a new link reference new_reference which would identify
the same link relative to a given object as reference. The evaluation status and evaluability of
new_reference are specified by point (see 23.1.2.1).

(3) If reference is external and point is NOW, then reference is pre-evaluated.

- 302 -

Errors

(4) EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT (reference,
point)

(5) LINK_REFERENCE_IS_UNSET (reference)

23.3.2 LINK_REFERENCE_GET_EVALUATION_POINT

(1) LINK_REFERENCE_GET_EVALUATION_POINT (
reference : Link_reference

)
point : Evaluation_point

(2) LINK_REFERENCE_GET_EVALUATION_POINT returns an evaluation point indicating the
evaluation status and evaluability of the link reference reference, as defined in 23.1.2.1.

Errors

(3) LINK_REFERENCE_IS_UNSET (reference)

23.3.3 LINK_REFERENCE_GET_KEY

(1) LINK_REFERENCE_GET_KEY (
reference : Link_reference
)
key : Key

(2) LINK_REFERENCE_GET_KEY returns the key of the link reference reference.

(3) The key key is the key before any evaluation.

Errors

(4) LINK_REFERENCE_IS_UNSET (reference)

23.3.4 LINK_REFERENCE_GET_KEY_VALUE

(1) LINK_REFERENCE_GET_KEY_VALUE (
reference : Link_reference,
index : Natural
)
key_value : Natural | Text

(2) LINK_REFERENCE_GET_KEY_VALUE returns the key value key_value indexed by index of
the link reference reference, if this key value exists.

(3) The first key value of the key of reference has index 1, the second 2, and so on.

Errors

(4) KEY_VALUE_DOES_NOT_EXIST (reference, index)
(5) LINK_REFERENCE_IS_UNSET (reference)

- 303 -

23.3.5 LINK_REFERENCE_GET_NAME

(1) LINK_REFERENCE_GET_NAME (
reference : Link_reference
)
link_name : Link_name

(2) LINK_REFERENCE_GET_NAME returns the link name of the link reference reference.

(3) If reference is external, then reference is pre-evaluated.

(4) If the link type of reference is visible then the link type name of link_name is the local name of
the first type in working schema in the sequence of SDSs in the working schema, or if there is
no local name, the link type name of link_name is the full type name of the first type in working
schema in the sequence of SDSs in the working schema.

Errors

(5) LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA (link name of
reference)

(6) LINK_REFERENCE_IS_UNSET (reference)

23.3.6 LINK_REFERENCE_GET_STATUS

(1) LINK_REFERENCE_GET_STATUS (
reference : Link_reference
)
status : Evaluation_status

(2) LINK_REFERENCE_GET_STATUS returns the evaluation status of the link reference
reference.

Errors

(3) LINK_REFERENCE_IS_UNSET (reference)

23.3.7 LINK_REFERENCE_GET_TYPE

(1) LINK_REFERENCE_GET_TYPE (
reference : Link_reference

)
type_reference : Link_type_reference

(2) LINK_REFERENCE_GET_TYPE returns the link type reference of the link reference
reference.

Errors

(3) LINK_REFERENCE_IS_UNSET (reference)

23.3.8 LINK_REFERENCE_SET

(1) LINK_REFERENCE_SET (
link_name : Link_name | Type_reference | (Key * Type_reference)
point : Evaluation_point

)
new_reference : Link_reference

- 304 -

(2) LINK_REFERENCE_SET creates a new link reference new_reference from a link name
link_name. The evaluation status and evaluability of new_reference are specified by point (see
23.1.2.1).

(3) If link_name is provided as a link name (i.e. as a text value), then it must conform to the syntax
rules defined in 23.1.2.4.

(4) If link_name is provided as a type reference reference, the link reference new_reference
designates a cardinality one link with reference as a link type reference.

(5) If link_name is provided as a key key and a type reference reference, the link reference
new_reference designates a cardinality many link with key as a key and reference as a link type
reference.

Errors

(6) KEY_SYNTAX_IS_WRONG (key)
(7) If link_name is a type reference or a key and a type reference:

EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT
(reference, point)

(8) If link_name is a link name:
LINK_NAME_SYNTAX_IS_WRONG (link_name)

23.3.9 LINK_REFERENCE_UNSET

(1) LINK_REFERENCE_UNSET (
reference : Link_reference

)

(2) LINK_REFERENCE_UNSET deletes the link reference reference, releasing any associated
resources.

Errors

(3) LINK_REFERENCE_IS_UNSET (reference)

23.3.10 LINK_REFERENCES_ARE_EQUAL

(1) LINK_REFERENCES_ARE_EQUAL (
first_reference : Link_reference,
second_reference : Link_reference

)
equal : Reference_equality

(2) LINK_REFERENCES_ARE_EQUAL returns EQUAL_REFS if both link references
first_reference and second_reference are internal, they have textually equal keys, and their link
types are equal as defined by TYPE_REFERENCES_ARE_EQUAL (see 23.4.8);
UNEQUAL_REFS if both references are internal, but do not satisfy the equality rules for
EQUAL_REFS; and EXTERNAL_REFS otherwise (i.e. if one or both are external).
LINK_REFERENCES_ARE_EQUAL does not evaluate either link reference.

Errors

(3) LINK_REFERENCE_IS_UNSET (first_reference)
(4) LINK_REFERENCE_IS_UNSET (second_reference)

- 305 -

23.4 Type reference operations

23.4.1 TYPE_REFERENCE_COPY

(1) TYPE_REFERENCE_COPY (
reference : Type_reference,
point : Evaluation_point

)
new_reference : Type_reference

(2) TYPE_REFERENCE_COPY returns a new type reference new_reference identifying the same
type as reference. The evaluation status and evaluability of new_reference are specified by point
(see 23.1.2.1).

(3) If reference is external and point is NOW, then reference is pre-evaluated.

Errors

(4) EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT (reference,
point)

(5) TYPE_REFERENCE_IS_UNSET (reference)

23.4.2 TYPE_REFERENCE_GET_EVALUATION_POINT

(1) TYPE_REFERENCE_GET_EVALUATION_POINT (
reference : Type_reference

)
point : Evaluation_point

(2) TYPE_REFERENCE_GET_EVALUATION_POINT returns an evaluation point indicating the
evaluation status and evaluability of the type reference reference, as defined in 23.1.2.1.

Errors

(3) TYPE_REFERENCE_IS_UNSET (reference)

23.4.3 TYPE_REFERENCE_GET_IDENTIFIER

(1) TYPE_REFERENCE_GET_IDENTIFIER (
reference : Type_reference

)
identifier : Type_name

(2) TYPE_REFERENCE_GET_IDENTIFIER returns the type identifier identifier of the type
reference reference.

(3) If reference is external, then reference is pre-evaluated.

Errors

(4) TYPE_IS_NOT_VISIBLE (reference)
(5) TYPE_REFERENCE_IS_UNSET (reference)

- 306 -

23.4.4 TYPE_REFERENCE_GET_NAME

(1) TYPE_REFERENCE_GET_NAME (
sds : [Sds_designator],
reference : Type_reference

)
name : Type_name

(2) TYPE_REFERENCE_GET_NAME returns the type name name of the type reference reference.

(3) If sds is not provided, name is the local name, full type name, or type identifier, according to the
rules for returned names in 23.1.2.5.

(4) If sds is provided, name is the local name of the associated type in SDS in the SDS sds.

(5) If reference is external, then reference is pre-evaluated.

Errors

(6) If sds is supplied:
ACCESS_ERRORS (sds, ATOMIC, READ, READ_LINKS)
SDS_IS_UNKNOWN (sds)
TYPE_HAS_NO_LOCAL_NAME (sds, reference)
TYPE_IS_UNKNOWN_IN_SDS (sds, reference)

(7) TYPE_REFERENCE_IS_UNSET (reference)

23.4.5 TYPE_REFERENCE_GET_STATUS

(1) TYPE_REFERENCE_GET_STATUS (
reference : Type_reference

)
status : Evaluation_status

(2) TYPE_REFERENCE_GET_STATUS returns the evaluation status of the type reference
reference.

Errors

(3) TYPE_REFERENCE_IS_UNSET (reference)

23.4.6 TYPE_REFERENCE_SET

(1) TYPE_REFERENCE_SET (
name : Type_name,
point : Evaluation_point

)
new_reference : Type_reference

(2) TYPE_REFERENCE_SET creates a new type reference new_reference from a type name name
and an evaluation point point. The evaluation status and evaluability of new_reference are
specified by point (see 23.1.2.1).

Errors

(3) TYPE_IDENTIFIER_IS_INVALID (name)
(4) If point is NOW:

TYPE_IS_NOT_VISIBLE (name)
(5) TYPE_NAME_IS_INVALID (name)

- 307 -

23.4.7 TYPE_REFERENCE_UNSET

(1) TYPE_REFERENCE_UNSET (
reference : Type_reference

)

(2) TYPE_REFERENCE_UNSET deletes the type reference reference releasing any associated
resources.

Errors

(3) TYPE_REFERENCE_IS_UNSET (reference)

23.4.8 TYPE_REFERENCES_ARE_EQUAL

(1) TYPE_REFERENCES_ARE_EQUAL (
first_reference : Type_reference,
second_reference : Type_reference

)
equal : Reference_equality

(2) TYPE_REFERENCES_ARE_EQUAL returns EQUAL_REFS if both type references
first_reference and second_reference are internal and designate the same type;
UNEQUAL_REFS if both references are internal and designate different types; and
EXTERNAL_REFS otherwise (i.e. if one or both are external).
TYPE_REFERENCES_ARE_EQUAL does not evaluate either type reference.

Errors

(3) TYPE_REFERENCE_IS_UNSET (first_reference)
(4) TYPE_REFERENCE_IS_UNSET (second_reference)

24 Implementation limits

(1) Implementations may impose limits on the range, size, or number of certain quantities. Any
attempt to exceed these limits gives rise to an error condition in the operation concerned. These
error conditions are defined in the appropriate operation definitions.

(2) This section defines bounds on these implementation-defined limits. Each bound defines the most
constrained value of the limit that an implementation may impose, and is therefore the limit that
should be assumed for portability by a tool writer.

(3) The limits fall into two categories:

(4) - installation-wide limits, which must be the same for all workstations in a PCTE installation;

 (5) - workstation-dependent limits, which may vary for different workstations in a PCTE
installation.

24.1 Bounds on installation-wide limits

(1) MAX_ACCESS_CONTROL_LIST_LENGTH: The maximum number of entries which may
appear in each of the atomic ACLs of an object or the default access control list of a process, as a
natural; must be at least 64.

- 308 -

(2) MAX_ACCOUNT_DURATION, DELTA_ACCOUNT_DURATION: Upper and lower limits
respectively for duration values in an accounting record, as floats.
MAX_ACCOUNT_DURATION must be at least 86400 seconds;
DELTA_ACCOUNT_DURATION must be at most 1 second.

(3) MAX_ACCOUNT_INFORMATION_LENGTH: The maximum number of octets in the
INFORMATION field of an accounting record, as a natural; must be at least 128.

(4) MAX_AUDIT_INFORMATION_LENGTH: The maximum number of octets in the TEXT part
of an audit record, as a natural; must be at least 128.

(5) MAX_DIGIT_FLOAT_ATTRIBUTE: The precision of a float attribute value, in decimal digits,
as a natural; must be at least 6.

(6) MAX_FLOAT_ATTRIBUTE, MIN_FLOAT_ATTRIBUTE: Upper and lower limits
respectively for float attribute values, as floats. MAX_FLOAT_ATTRIBUTE must be at least
1032. MIN_FLOAT_ATTRIBUTE must be negative and its absolute value must be at least that
of MAX_FLOAT_ATTRIBUTE.

(7) MAX_INTEGER_ATTRIBUTE, MIN_INTEGER_ATTRIBUTE: Upper and lower limits
respectively for integer attribute values, as integers. MAX_INTEGER_ATTRIBUTE must be at
least 2147483647; MIN_INTEGER_ATTRIBUTE must be negative, and its absolute value must
be one greater than MAX_INTEGER_ATTRIBUTE.

(8) MAX_KEY_SIZE: The maximum number of octets in a string key attribute value, as a natural;
must be at least 127.

(9) MAX_KEY_VALUE: The maximum natural value in a natural key attribute value; must be at
least 32000.

(10) MAX_LINK_NAME_SIZE: The maximum number of octets in a link reference, as a natural;
must be at least 191.

(11) MAX_MESSAGE_SIZE: The maximum number of octets in the data a message, as a natural;
must be at least 1024.

(12) MAX_NAME_SIZE: The maximum number of octets in a name or enumeral type image, as a
natural; must be at least 31.

(13) MAX_NATURAL_ATTRIBUTE: The upper limit for a non-key natural attribute value, as a
natural. Must be at least 2147483647.

(14) MAX_PRIORITY_VALUE: The maximum priority value for a process, as a natural; must be at
least 31.

(15) MAX_SECURITY_GROUPS: The maximum number of security groups which may be
initialized in a PCTE installation, as a natural; must be at least 32000.

(16) MAX_STRING_ATTRIBUTE_SIZE: The maximum number of octets in a string non-key
attribute value, as a natural; must be at least 32000.

(17) MAX_TIME_ATTRIBUTE: The latest time attribute value, as a time value; must be no earlier
than 2044-12-31T24:00:00Z (24:00 on 31 December 2044 UTC).

(18) MIN_TIME_ATTRIBUTE: The earliest time attribute value, as a time value; must be no later
than 1980-01-01T00:00:00Z (00:00 on 1 January 1980 UTC).

(19) SMALLEST_FLOAT_ATTRIBUTE: The lower limit on the absolute value of float attribute
values, as a float; must be at greatest 10-32.

- 309 -

24.2 Bounds on workstation-dependent limits

(1) MAX_ACTIVITIES: The maximum number of activities on the workstation, as a natural; must
be at least 256.

(2) MAX_ACTIVITIES_PER_PROCESS: The maximum number of activities for a process
executing on the workstation, as a natural; must be at least 8.
MAX_ACTIVITIES_PER_PROCESS is also the maximum depth of nesting of activities on the
workstation.

(3) MAX_FILE_SIZE: The maximum size in octets of a file on the workstation, as a natural; must
be at least 100,000,000.

(4) MAX_MESSAGE_QUEUE_SPACE: The maximum total space of a message queue on the
workstation, as a natural; must be at least 32000.

(5) MAX_MOUNTED_VOLUMES: The maximum number of volumes mounted on devices
controlled by this workstation, as a natural; must be at least 16.

(6) MAX_OPEN_OBJECTS: The maximum number of concurrently open objects on the
workstation, as a natural; must be at least 512.

(7) MAX_OPEN_OBJECTS_PER_PROCESS: The maximum number of concurrently open objects
for a process executing on the workstation, as a natural; must be at least 16.

(8) MAX_PIPE_SIZE: The maximum size in octets in a pipe on the workstation, as a natural; must
be at least 4096.

(9) MAX_PROCESSES: The maximum number of processes running, stopped, or suspended on the
workstation, as a natural; must be at least 64.

(10) MAX_PROCESSES_PER_USER: The maximum number of processes existing simultaneously
and created by a user on the workstation, as a natural; must be at least 16.

(11) MAX_SDS_IN_WORKING_SCHEMA: The maximum number of SDSs in a working schema
on the workstation, as a natural; must be at least 32.

24.3 Limit operations

24.3.1 Datatypes for limit operations

(1) Limit_category = STANDARD | IMPLEMENTATION | REMAINING

(2) Limit_name = MAX_ACCESS_CONTROL_LIST_LENGTH | MAX_ACCOUNT_DURATION |
DELTA_ACCOUNT_DURATION | MAX_ACCOUNT_INFORMATION_LENGTH |
MAX_ACTIVITIES | MAX_ACTIVITIES_PER_PROCESS |
MAX_AUDIT_INFORMATION_LENGTH | MAX_DIGIT_FLOAT_ATTRIBUTE |
MAX_FILE_SIZE | MAX_FLOAT_ATTRIBUTE | MIN_FLOAT_ATTRIBUTE |
MAX_INTEGER_ATTRIBUTE | MIN_INTEGER_ATTRIBUTE | MAX_KEY_SIZE |
MAX_KEY_VALUE | MAX_LINK_REFERENCE_SIZE | MAX_MESSAGE_QUEUE_SPACE |
MAX_MESSAGE_SIZE | MAX_MOUNTED_VOLUMES | MAX_NAME_SIZE |
MAX_NATURAL_ATTRIBUTE | MAX_OPEN_OBJECTS |
MAX_OPEN_OBJECTS_PER_PROCESS | MAX_PIPE_SIZE | MAX_PRIORITY_VALUE |
MAX_PROCESSES | MAX_PROCESSES_PER_USER |
MAX_SDS_IN_WORKING_SCHEMA | MAX_SECURITY_GROUPS |
MAX_STRING_ATTRIBUTE_SIZE | MAX_TIME_ATTRIBUTE | MIN_TIME_ATTRIBUTE |
SMALLEST_FLOAT_ATTRIBUTE

(3) Limit_value = Natural | Integer | Float | Time

- 310 -

(4) These datatypes are used in the operation LIMIT_GET_VALUE.

24.3.2 LIMIT_GET_VALUE

(1) LIMIT_GET_VALUE (
limit_category : Limit_category,
limit_name : Limit_name

)
limit_value : [Limit_value]

(2) LIMIT_GET_VALUE returns for the limit named by limit_name the limit bound given in 24.1
or 24.2, the limit imposed by the implementation, or (where relevant) the current available
quantity of the resource in the PCTE installation or local workstation, according as
limit_category is STANDARD, IMPLEMENTATION, or REMAINING respectively. If the
implementation does not impose a particular limit, then IMPLEMENTATION returns no value
for that limit.

(3) REMAINING returns a value for the following values of limit_name, otherwise no value is
returned: MAX_SECURITY_GROUPS, MAX_ACTIVITIES, MAX_MOUNTED_
VOLUMES, MAX_OPEN_OBJECTS, MAX_PROCESSES.

Errors

(4) None.

- 311 -

Annex A
(normative)

VDM Specification Language for the Abstract Specification

A.1 Introduction

(1) The Abstract Specification uses a very limited subset of VDM-SL, the Specification Language of
the Vienna Development Method as defined in ISO/IEC DIS 13817. This annex defines the
subset, explains the semantics of the subset informally, and defines concrete syntax for use in the
Abstract Specification.

(2) The definition of VDM-SL in ISO/IEC DIS 13817 is principally in terms of its abstract syntax,
i.e. the bare structure of the language with all concrete syntactic details removed. It is
permissible to use any concrete syntax which can be mapped to the abstract syntax, but ISO/IEC
DIS 13817 does define two particular concrete syntaxes, called the mathematical and the ISO 646
syntaxes. As their names suggest, the former uses many mathematical and quasimathematical
symbols, and is intended for typeset text; the latter uses only the ISO 646 character set and is
intended for use with unsophisticated data preparation equipment and for information
interchange. The two are virtually isomorphic down to the lexical level.

(3) The VDM-SL subset used in this ECMA Standard uses the ISO 646 syntax, which for the subset
is perfectly readable and avoids the need for special symbols. Use is also made of a convention,
defined below, for different styles for different kinds of identifiers.

A.2 The VDM-SL subset

(1) The subset consists of:

(2) - type definitions, to define the types of the various conceptual entities;

(3) - state definitions, to define the PCTE state;

(4) - a simple form of operation definitions, to define operation headings;

(5) - a simple form of function definition, to define auxiliary function headings;

(6) - operation and function calls;

(7) - identifiers;

(8) - literals, to express values.

(9) There are three small extensions. The first is of a purely syntactic nature; it has been found very
useful for defining composite types as extensions of previously defined composite types (the
'&&' notation). The second is used to relate the VDM-SL and the DDL definitions (the
'represented by' notation). The third is to allow an operation to return more than result; it is
simple in each case to map such an operation to an equivalent operation returning a single result
of a composite type with the results of the original operation as its fields.

- 312 -

A.2.1 Type definitions

Syntax

(1) type definition = identifier, '=', type expression | identifier, '::', [identifier, '&&'], field list,
['represented ', 'by ', identifier];

(2) type expression = bracketed type expression | type name | quote type expression | set type
expression | map type expression | sequence type expression | union type expression | optional
type expression | product type expression;

(3) bracketed type expression = '(', type expression, ')';

(4) type name = identifier;

(5) quote type expression = quote literal;

(6) set type expression = 'set ', 'of ', type expression;

(7) map type expression = 'map ', type expression, 'to ', type expression;

(8) sequence type expression = 'seq ', 'of ', type expression | 'seq1 ', 'of ', type expression;

(9) union type expression = type expression, '|', type expression;

(10) optional type expression = '[', type expression, ']';

(11) product type expression = type expression, '*', type expression;

(12) field list = {field};

(13) field = [identifier, ':'], type expression;

Semantics

(14) A type definition declares a type, i.e. a set of values, and associates it with an identifier. The
declared type is defined as follows, according to the different kinds of type definition.

(15) - I = T. The type denoted by the identifier I is defined by the type expression T.

(16) - I :: I1 : T1 I2 : T2 The type denoted by I is a composite type: each value of the type is in
effect an ordered set of values called fields, one from each of the field types T1, T2, ... in that
order. The field identifiers I1, I2, ... are used in full VDM-SL to access the fields; in our
subset they are descriptive only. The different notation is to emphasize that values from two
different composite types are always distinct, even though they have the same field types and
values: composite types use name equivalence, whereas other types use structural
equivalence.

(17) The form I :: I' && I1 : T1 I2 : T2 ... is short for I :: I1' : T1' I2' : T2' ... I1 : T1 I2 : T2 ...
where I1' : T1' I2' : T2' ... are the fields of the composite type I'.

(18) The 'represented by I', if present, indicates that the type is represented by the predefined
DDL object type definition with local name I. All the local names of object types in the
predefined SDSs are different, so there is no ambiguity.

(19) The various forms of type expression define types as follows.

(20) - bracketed type expression (T). This denotes the same type as the type expression T; the
brackets are used to override or emphasize the precedence of the type operators.

(21) - type name I. This denotes the type associated with the identifier I in a type definition. The
predefined PCTE types (which take the place of VDM-SL basic types) are defined in 23.1.1.

(22) - quote type expression. This denotes a quote type containing a single quote value denoted by
the same quote literal as the quote type expression. Quote values have no predefined

- 313 -

properties except equality and inequality. Types containing quote values are built up as
union types, e.g.:

Colour = RED | GREEN | BLUE

Result = Natural | ERROR

(23) - set type expression: set of T. Values of this type are the finite subsets of values of type T.

(24) - sequence type expression: seq of T, seq1 of T. Values of these types are finite ordered
sequences of values of type T; in the first case including, and in the second case excluding,
the empty sequence.

(25) - map type expressions: map T1 to T2. A value of either of these types is a finite map from
type T1 to type T2, i.e. an association with each of a finite subset of T1 (the domain of the
map) of a value of T2. The element of T2 associated with an element x of the domain of a
map M is denoted by M(x).

(26) - union type expression: T1 | T2 | This denotes the union of the constituent types T1, T2,
... ; a value of a union type is a value of one of the constituent types (which must be disjoint).

(27) - optional type expression: [T]. This denotes the same type as T | nil , where nil is the only
value of a special anonymous type (the nil type). nil is used conventionally to stand for
absence of a value.

(28) - product type expression: T1 * T2 * Values of a product type are ordered tuples of values
from the constituent types T1, T2, The distinction from a composite type is that product
types use structural equivalence, and the components are not named.

(29) NOTE - Optional types are sometimes used to indicate the preferred default value.

A.2.2 State definitions

Syntax

(1) state definition = 'state ', identifier, 'of ', field list, 'end ';

Semantics

(2) The state definition

state I of
I1 : T1
I2 : T2
 ...

end

defines the state to consist of variables I1, .. of types T1, ... respectively. In the VDM-SL subset
the identifier I is descriptive only (in full VDM-SL it is used to identify the state from within a
different module).

A.2.3 Operation headings

Syntax

(1) operation heading = identifier, '(', [typed parameter list], ')', [typed results];

(2) typed parameter list = identifier, ':', type expression, {',', identifier, ':', type expression};

(3) typed results = identifier, ':', type expression, {',', identifier, ':', type expression};

- 314 -

Semantics

(4) The operation heading

Op (
I1: T1,
I2: T2,
...,

)
R1 : T1'
R2 : T2'
...

declares Op as the name of an operation with formal parameters I1 of type T1, I2 of type T2,
etc., and with results R1 of type T1', R2 of type T2', etc. If R1 : T1' etc. is omitted, the
operation has no result. Note that the () are needed even if the operation has no parameters.

A.2.4 Function headings

Syntax

(1) function heading = identifier, '(', [typed parameter list, ')', identifier, ':', type expression;

Semantics

(2) The function heading

Fn (
I1 : T1,
I2 : T2,
...

)
R : Tr

declares Fn as the name of a function with formal parameters I1 of type T1, I2 of type T2, ...,
and with result R of type Tr. Note that the () are needed even if the function has no parameters.

A.2.5 Operation and function calls

Syntax

(1) operation call = identifier, '(', [expression, {',', expression}], ')';

(2) function application = identifier, '(', [expression, {',', expression}], ')';

Semantics

(3) The operation call or function application

Id (E1, E2, ...)

denotes a call to the operation or function with name Id, with actual parameters E1, E2,

A.2.6 Identifiers

Syntax

(1) identifier = plain letter , {plain letter | digit | '_'};

(2) plain letter = capital letter | small letter;

- 315 -

(3) capital letter = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' |
'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z';

(4) small letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' |
'w' | 'x' | 'y' | 'z';

(5) digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

Semantics

(6) Identifiers have no intrinsic meaning; they are used as names of various entities.

A.2.7 Literals

Syntax

(1) symbolic literal = boolean literal | numeric literal | character literal | text literal | quote literal;

(2) boolean literal = 'true ' | 'false ';

(3) numeric literal = numeral, ['.', digit, {digit}], [exponent];

(4) exponent = 'E', ['+' | '-'], numeral;

(5) numeral = digit, {digit};

(6) character literal = ' ' ', character, ' ' ';

(7) text literal = ' " ', {' "" ' | character - ' " '}, ' " ';

(8) quote literal = capital letter, {'_' | capital letter};

Semantics

(9) Literals denote values of basic types.

(10) Boolean literals denote the corresponding truth values.

(11) Numeric literals denote rational numbers in the usual decimal notation, using '.' as the decimal
point. An exponent E+n (or En) or E-n denotes multiplication by 10n or 10-n respectively.

(12) A character literal denotes a graphic character. A text literal denotes a sequence of characters,
i.e. a value of type seq of char; as usual, the double quote character " is denoted by two
successive double quote characters : "".

(13) A quote literal denotes the only value of a quote type, and also the quote type itself.

A.3 Conventions for identifiers and keywords

(1) Identifiers are used in the VDM-SL subset to name entities of the kinds shown below. The
conventions for these identifiers used in the Abstract Specification are shown. Note that two
identifiers cannot be distinguished, strictly speaking, just by the use of italics or not, as the ISO
646 syntax only recognizes one set of letters (capitals and small letters).

(2) - Types: small letters with capital initial, e.g. Object, Type_in_sds.

(3) - Fields of composite types: capital letters, e.g. DIRECT_COMPONENTS.

(4) - States: there is only one, PCTE_Installation.

(5) - State variables: capital letters, e.g. OBJECT_BASE.

(6) - Operations: capital letters, e.g. OBJECT_GET_ATTRIBUTE

- 316 -

(7) - Operation parameters and results: small italic letters: queue, next_message.

(8) The same conventions are used in English text, except that names of types, fields, states, state
variables, and values are converted to conventional English phrases (usually by replacing
underscores by spaces and capital by small letters, but not always: PCTE installation, type in
SDS).

(9) In the ISO 646 syntax keywords are essentially reserved; there is a way of using a keyword as an
identifier, but this is not used in the Abstract Specification. The keywords in the subset are:

end false map of seq seq1 set
state to true value

- 317 -

Annex B
(normative)

The Data Definition Language (DDL)

(1) This annex defines the PCTE Data Definition Language (DDL). DDL is used to define SDSs and
the type definitions within them, and so serves for the definition of the schema of a PCTE
installation. 'This definition serves as a language standard for DDL.

B.1 SDSs and clauses

Syntax

(1) DDL definition = sds section, {sds section};

(2) sds section =
'sds ', sds name, ':',

{clause, ';'},
'end ', sds name, ';';

(3) clause =
type importation | object type declaration | object type extension |
attribute type declaration | link type declaration | link type extension |
enumeration type declaration;

(4) type importation =
'import ', import type, global name, ['as', local name], [type mode declaration],
{ ',', global name, ['as', local name], [type mode declaration] };

(5) import type = 'object ', 'type ' | 'attribute ', 'type ' | 'link ', 'type ' | 'enumeral ', 'type ';

Meaning

(6) A DDL definition defines a number of SDSs containing types in SDS, and the corresponding
types.

(7) All the SDS sections in the schema declaration with a particular SDS name define an SDS
(schema definition set). This SDS has the common SDS name, and the set of types in SDS
defined by the SDS sections as explained below.

(8) The SDS section in which a clause occurs, and the SDS to which it contributes, are called the
current SDS section and SDS, respectively.

(9) The type importation

import import_type sds_name-local_name_1 as local_name_2 [type_mode_declaration]

defines a type in SDS in the current SDS. This type in SDS is a copy of the type in SDS denoted
by local_name_1 in the SDS denoted by sds_name, with the same type identifier, except that the
creation or importation date is set to the value of the system clock at the time of importation. It is
denoted by local name local_name_2 in the current SDS; if local_name_2 is not given, the default
is local_name_1. Except for an enumeral type, the type mode declaration defines the usage and
export modes of the new type in SDS; they may not contain any access values not in the export
mode of the imported type. The default for both modes is the export mode of the imported type.
The maximum mode is set to the export mode of the imported type.

- 318 -

(10) A multiple type importation:

import import_type sds_name1-local_name1 [as new_local_name1] [type_mode_declaration1],
sds_name2-local_name2 [as new_local_name2] [type_mode_declaration2],
...,
sds_namen-local_namen [as new_local_namen] [type_mode_declarationn]

is equivalent to n single type importations:

import import_type sds_name1-local_name1 [as new_local_name1]
[type_mode_declaration1];

import import_type sds_name2-local_name2 [as new_local_name2]
[type_mode_declaration2];

...,
import import_type sds_namen-local_namen [as new_local_namen]

[type_mode_declarationn]

(11) Every type name used in an SDS must be declared in the same SDS, in a type importation, a type
declaration, or type extension. Except for destination object types and reverse link types in link
type declarations, all type names must be declared before use.

(12) If a type mode declaration is omitted, all the definition mode values are set for the imported type.

B.2 Object types

Syntax

(1) object type declaration =
local name, ':', [type mode declaration], ['child ', 'type ', 'of ', object type list], ['with ',
['contents ', contents type indication, ';'],
['attribute ',

attribute indication list, ';'],
['link ',

link indication list, ';'],
['component ',

component indication list, ';'],
'end ', local name];

(2) object type extension =
'extend ', 'object ', 'type ', local name,'with ',
['attribute ',

attribute indication list, ';'],
['link ',

 link indication list, ';'],
['component ',

component indication list, ';'],
'end ', local name;

(3) contents type indication = 'file ' | 'pipe ' | 'device ' | 'audit_file ' | 'accounting_log ';

(4) attribute indication list = attribute indication list item, { ';', attribute indication list item };

(5) attribute indication list item = attribute type name | attribute type declaration;

(6) link indication list = link indication list item, { ';', link indication list item };

(7) link indication list item = link type name | link type declaration;

(8) component indication list = component indication list item, { ';', component indication list item };

(9) component indication list item = link type name | link type declaration;

- 319 -

Constraints

(10) The 'child type of' clause may be omitted only for the object type "object" (see 9.1.1).

(11) The local name after 'end' in an object type declaration or object type extension, if present, must
be the same as the first local name of that object type declaration or object type extension.

(12) In an object type declaration the local name must be distinct from the local names of all other
object types, and of all attribute types and link types, defined in the same SDS as the object type
declaration.

(13) In an object type extension the local name must be the name of an object type introduced earlier
in the SDS by an object type declaration or a type importation.

(14) Each attribute type name in an attribute indication list must be the local name of an attribute type
introduced earlier in the specification by an attribute type declaration or a type importation.

(15) Each link type name in a link indication list must be the local name of a non-composition link
type introduced earlier in the specification by an object or link type declaration or a type
importation.

(16) Each link type name in a component indication list must be the local name of a composition link
type introduced earlier in the specification by an object or link type declaration or a type
importation.

(17) The type mode declaration must define either protected or create for each of the usage mode and
the export mode.

(18) All the attribute types and link types in the list must be different.

(19) If any parents of an object type have contents, then they must all have the same contents type
(there may be other parents with no contents). The child type inherits the common contents type,
or if none of its parents has contents, neither has the child.

Meaning

(20) An object type declaration defines an object type, and an object type in SDS in the current SDS
with the local name within that SDS. The new object type has the following characteristics (see
8.3.1).

(21) - The contents type is as defined by the contents type indication. If a contents type indication is
given, it defines the contents type of the object type as FILE, PIPE, DEVICE, AUDIT_FILE,
or ACCOUNTING_LOG respectively (see 8.3.1). The contents type indication is used only
for the predefined types "file", "pipe", "device", "audit_file", and "accounting_log"; user-
defined types always inherit contents type (or lack of it) from their parents.

(22) - The parent types are the object types defined by the object type list after 'child type of'; the
object type is added to the child types of all its parent types. The object type has no child
types initially.

(23) The new object type in SDS has the following characteristics (see 8.4.1).

(24) - The direct outgoing link types in SDS are all those defined by the link indication list and
component indication list (see below).

(25) - The direct attribute types in SDS are all those defined by the attribute indication list (see
below)

(26) - The direct component object types in SDS are all those defined as the destination object types
of the composition links defined in the component indication list.

- 320 -

(27) - The usage and export modes are set by the type mode declaration, if present (see B.6); the
default is usage mode and export mode both set to CREATE.

(28) - The maximum usage mode is set to CREATE.

(29) An object type extension extends the object type in SDS with the same local name in the current
SDS section, by adding further outgoing link types, attribute types, and component object types,
defined as for an object type declaration.

(30) An attribute indication list defines the following set of attribute types.

(31) - For each attribute indication list item which is an attribute type name, the attribute type with
that local name in the current SDS.

(32) - For each attribute indication list item which is an attribute type declaration, all the attribute
types defined by that attribute type declaration (see clause B.3).

(33) A link indication list or a component indication list defines the following set of link types.

(34) - For each link indication list item or component indication list item which is a link type name,
the link type with that local name in the current SDS.

(35) - For each link indication list item or component indication list item which is a link type
declaration, the link type defined by that link type declaration (see clause B.4).

B.3 Attribute types

Syntax

(1) attribute type declaration =
local name, {',' local name}, ':', [type mode declaration], ['non_duplicated '],
value type indication, [':=', initial value];

(2) value type indication= 'integer ' | 'natural ' | 'boolean ' | 'time ' | 'float ' | 'string ' |
'enumeration ', enumeration type name | enumeration type indication;

(3) enumeration type indication = 'enumeration ', '(', basic enumeration,
 {',', basic enumeration}, ')';

(4) basic enumeration = enumeration image | enumeration subrange;

(5) enumeration image = identifier | ' " ', {character}, ' " ' ;

(6) enumeration subrange = attribute type name, 'range ', enumeration image, '..',
enumeration image;

(7) initial value =
['+' | '-'], digit, {digit} (* integer *)
| digit, {digit} (* natural *)
| 'true ' | 'false ' (* boolean *)
| year, '-', month, '-', day, ['T', hour, ':', minute, ':', second], 'Z' (* time *)
| ['+' | '-'], digit, {digit}, ['. ', digit, {digit}], ['E', ['+' | '-'], digit, {digit}] (* float *)
| ' " ', {character}, ' " ' (* string*)
| enumeration image; (* enumeration value type*)

(8) day = digit, digit;

(9) month = digit, digit;

(10) year = [digit, digit], digit, digit;

(11) hour = digit, digit;

(12) minute = digit, digit;

- 321 -

(13) second = digit, digit;

Constraints

(14) All the local names of an attribute type declaration must be distinct from the local names of all
other attribute types, and of all object types and link types, defined in the current SDS.

(15) The initial value, if any, in an attribute type declaration must denote a value of the value type
defined by the value type indication.

(16) In a basic enumeration which is an enumeration subrange, the two enumeration images must
identify different enumeral types of the enumeration value type of the enumeration attribute type
denoted by the attribute type name. In that enumeration value type the enumeral type identified
by the second enumeration image must not precede that identified by the first.

(17) The type mode declaration must define either protected or one or both of read and write for
each of the usage mode and the export mode.

Meaning

(18) An attribute type declaration defines an attribute type, and an attribute type in SDS in the current
SDS with the local name within that SDS. The new attribute type has the following
characteristics (see 8.3.2).

(19) - The value type is as given by the value type indication.

(20) - The initial value of the attribute type is defined by the initial value of the attribute type
declaration, if present, as follows.

(21) . An initial value ['+' | '-'], digit, {digit} denotes an integer in the conventional decimal
representation.

(22) . An initial value 'true' or 'false' denotes the logical value TRUE or FALSE respectively.

(23) . An initial value year, '-', month, '-', day, ['T' hour, ':', minute, ':', second] 'Z' denotes the
time consisting of the given year, month, day, and the time of day given by hour, minute,
second (if present) or otherwise 00:00:00, in Coordinated Universal Time (UCT). When
omitted, the first two digits of the year are taken to be '19', thus '88-11-09Z' denotes the
same time as '1988-11-09T00:00:00Z'.

(24) . An initial value ['+' | '-'], digit, {digit}, ['.', digit, {digit}], ['E', ['+' | '-'], digit, {digit}]
denotes a rational number in the conventional decimal representation, where '.' represents
the decimal point and E a decimal exponent. Leading and trailing zeros are permitted.

(25) . An initial value ' " ', {character}, ' " ' denotes the string value consisting of the sequence of
characters, without the delimiting ' " ' characters, except that the character ' " ' within the
string is denoted by ' "" '.

(26) . An initial value which is an enumeration image denotes the corresponding enumeral type.

(27) - The duplication is NON_DUPLICATED if the keyword 'non_duplicated' appears, and
otherwise DUPLICATED.

(28) The new attribute type in SDS has the following properties (see 8.4.2).

(29) - The usage and export modes are set by the type mode declaration, if present (see clause B.6);
the default is usage mode and export mode both set to READ and WRITE.

(30) - The maximum usage mode is set to READ and WRITE.

- 322 -

(31) An enumeration type indication defines an enumeration value type consisting of the
concatenation of the sequences of enumeral types defined by the constituent basic enumerations,
as follows. An enumeration image which is delimited by ' " " ' is interpreted as for a string
attribute initial value.

(32) - If the basic enumeration is an enumeration image, then a sequence containing the single
enumeral type with that image in the current SDS.

(33) - If the basic enumeration is an enumeration subrange, then the sequence containing the
enumeral types between and including those identified by the two enumeration images, in the
ordering of the enumeration value type of the attribute type.

B.4 Link types

Syntax

(1) link type declaration =
local name, ':', [type mode declaration], ['exclusive '], ['non_duplicated '],

[stability name], category name, 'link ', [cardinality range], [key list],
['to' , object type list], ['reverse ', link type name], ['with ',

'attribute ',
attribute indication list, ';',

'end ', local name];

(2) link type extension =
'extend ', 'link ', 'type ', local name,['to ', object type list], ['with ',
'attribute ',

attribute indication list, ';',
'end ', local name];

(3) category name = ['composition '] | 'existence ' | 'reference ' | 'implicit ' | 'designation ';

(4) cardinality range = '[', [lower bound], '..', [upper bound], ']';

(5) lower bound = digit, { digit };

(6) upper bound = digit, { digit };

(7) stability name = 'atomic ', 'stable ' | 'composite ', 'stable ';

(8) key list = '(', attribute indication list, ')';

Constraints

(9) In a cardinality range:

(10) - The lower bound must be greater than or equal to zero.

(11) - The upper bound must be greater than zero.

(12) - The lower bound must be less than or equal to the upper bound.

(13) - Links of category name implicit or existence must have a lower bound equal to zero.

(14) If the upper bound of a link type is greater than one, and the link type has category name
implicit , then the key list must consist of a single attribute type name. If the upper bound of a
link type is greater than one, then the key list must not be omitted.

(15) The link type denoted by the link type name after 'reverse', if present, must be a direct outgoing
link type of each destination object type of the link type, and must have the link type as its
reverse. See 8.3.3 for constraints on the properties of the reverse link type.

- 323 -

(16) The type mode declaration must define either protected or a combination of one or more of
create, navigate, and delete for each of the usage mode and the export mode.

Meaning

(17) A link type declaration defines a link type, and a link type in SDS in the current SDS with the
local name within that SDS. The new link type has the following properties (see 8.3.3).

(18) - Category: COMPOSITION, EXISTENCE, REFERENCE, IMPLICIT, or DESIGNATION, as
given by the category name. The default is COMPOSITION.

(19) - Cardinality. As defined by the cardinality range. A missing lower bound is equivalent to a
lower bound of 0. A missing upper bound is equivalent to an implementation-defined upper
bound (which may depend on the link type) (see clause 24). A missing cardinality is
equivalent to [0 ..] if there is a key list and [0..1] if not.

(20) - Exclusiveness: EXCLUSIVE if the keyword 'exclusive' is present, otherwise SHARABLE.

(21) - Stability: ATOMIC_STABLE if the stability name 'atomic stable' is present,
COMPOSITE_STABLE if the stability name 'composite stable' is present, and
NON_STABLE if no stability name is present.

(22) - Duplication: NON_DUPLICATED if the keyword 'non_duplicated' is present, otherwise
DUPLICATED.

(23) - The reverse link type is the link type denoted by the link type name after 'reverse'; if this is
absent, there is no reverse link type if the link type is a designation link type, and otherwise
the reverse link type is an implicit link type of cardinality many with no local name.

(24) The new link type in SDS has the following properties (see 8.4.3).

(25) - Destination object types. This is the set of object types denoted by the object type list.

(26) - Key attribute types. This is the sequence of attributes defined by that attribute indication list
(see below).

(27) - Non-key attribute types. This is the set of attributes defined by the attribute indication list
following the keyword 'with ', or the empty set if there is no such attribute indication list
present.

(28) - The usage and export modes are set by the type mode declaration, if present (see clause B.6);
the default is usage mode and export mode both set to CREATE, DELETE, and NAVIGATE.

(29) - The maximum usage mode is set to CREATE, DELETE, and NAVIGATE.

(30) When used in a key list, an attribute indication list denotes the list of attribute types as defined
above, in the order of the appearance of their attribute type names or attribute type declarations in
the attribute indication list.

(31) A link type extension extends the link type definition with the same local name in the current SDS
section, by adding further outgoing destination object types and attribute types, defined as for a
link type declaration.

B.5 Enumeration types

Syntax

(1) enumeration type declaration =
local name, ':', enumeration image, {',', enumeration image};

- 324 -

Meaning

(2) An enumeration type declaration defines one enumeral type, and one enumeral type in SDS in the
current SDS, for each of the enumeration images. The local name may be used in an enumeration
type name (see clause B.7) in an attribute type declaration to denote the enumeration value type
consisting of the defined sequence of enumeral types.

(3) Each enumeral type in SDS has the corresponding enumeration image as its image (see 8.4.4).

B.6 Type mode declarations

Syntax

(1) type mode declaration = '(', 'usage ', type mode, ';', 'export ', type mode, ')'
| '(', ['usage ', ',', 'export '], type mode, ')';

(2) type mode = 'protected ' | allowed access, {',', allowed access};

(3) allowed access = 'read ' | 'write ' | 'navigate ' | 'create ' | 'delete ';

Meaning

(4) A type mode declaration occurs in a type declaration, and sets the usage and export modes of the
type in SDS denoted by the type declaration to the values denoted by the type modes after usage
and export respectively. The second form of type mode declaration sets both usage and export
modes to the values denoted by the type mode.

(5) The type mode denotes the set of definition mode values corresponding to the allowed access
values mentioned (i.e. READ_MODE, WRITE_MODE, NAVIGATE_MODE,
CREATE_MODE, and DELETE_MODE, corresponding to read, write , navigate, create, and
delete respectively), or the empty set if the type mode is protected.

B.7 Names

Syntax

(1) object type name = global name | local name;

(2) object type list = object type name, {',', object type name};

(3) attribute type name = global name | local name;

(4) attribute type list = attribute type name, {',', attribute type name};

(5) link type name = global name | local name;

(6) link type list = link type name, {',', link type name};

(7) enumeration type name = global name | local name;

(8) sds name = name;

(9) local name = name;

(10) global name = sds name, '-', local name;

(11) name = identifier | ' " ', character, { character }, ' " ';

(12) identifier = letter, {letter | digit | '_'};

(13) character = (* any value of the PCTE datatype Character (see 23.1.1.6) *);

(14) newline = (* implementation-defined *);

- 325 -

(15) capital letter = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' |
'T' | 'U' | 'V' | 'W' | 'X' | 'Y' | 'Z';

(16) small letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' |
'w' | 'x' | 'y' | 'z';

(17) letter = capital letter | small letter;

(18) digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

Constraints

(19) An object, attribute, link, or enumeration type name without an SDS name must occur in an
object, attribute, link, or enumeration type declaration, respectively, within the local
specification.

(20) The local name of an object, attribute, link, or enumeration type name with an SDS name must
occur in an object, attribute, link, or enumeration type declaration, respectively, within the
specification with that SDS name.

(21) No spaces or control characters may occur between the component parts of a global name, nor
within compound lexical items, i.e. keywords and compound symbols ('..', '--', ':=', '""'),
enumeration images, initial values (except in strings, where they are significant), lower and upper
bounds, and identifiers. One or more separators (spaces and/or newlines) must occur between
adjacent keywords and identifiers.

(22) The sequence of characters of a name of the second form must respect the syntax of names in
23.1.3.2.

Meaning

(23) Local names denote object types, attribute types, and link types within an SDS, as established by
the corresponding clauses.

(24) Sds names denote SDSs; an SDS name may be prefixed to a local name declared in that SDS to
disambiguate it.

(25) NOTE – Differences of font and style are not significant; in particular there is no mandatory convention for
distinguishing keywords from identifiers. Upper and lower case letters are however distinguished, and underscores
in identifiers and keywords are significant, so that 'type1', 'Type1', and 'Type_1' are all distinct.

B.8 Comments

Syntax

(1) comment = '– –', { character }, newline;

Constraints

(2) A comment may contain any graphic characters. It may appear anywhere that a control character
can, and nowhere else. It is terminated by the first newline after the opening '--'.

Meaning

(3) A comment has no effect on the meaning of the DDL definition.

- 326 -

B.9 Use of DDL identifiers as technical terms

(1) There are two styles for referring to DDL identifiers in running text:

(2) - Style 1. The description is phrased in representational terms, i.e. in terms of objects,
attributes, and links. The appropriate style is as in:

(3) . A "type_in_sds" object is created.

(4) . The destination of the "adopted_user_group" link from the "system-process" object
process is ...

(5) the value of the "contents_confidentiality_label" attribute of the "volume_object" object
must be ...

(6) The SDS name is not given; all DDL object type identifiers are distinct.

(7) - Style 2. The description is phrased in logical terms, i.e. in terms of logical entities. The
appropriate style is as in:

(8) . A type in SDS is created.

(9) . The adopted user group of the process process is ...

(10) the contents confidentiality label of the device must be ...

(11) These phrases are equivalent. Style 1 is always possible and is used when the mapping between
logical entities and objects is not straightforward (e.g. types), at least to describe the mapping.
Style 2 is preferred when there is no ambiguity; though the names used, especially for links,
sometimes make this style grammatically impossible.

(12) The equivalent phrases 'a "type_in_sds" object' and 'a type in SDS' signify an object of type
"type_in_sds" or of any descendant of "type_in_sds"; similarly for other object types.

- 327 -

Annex C
(normative)

Specification of Errors

C.1 Error conditions and error names

(1) For each error condition, the definition is obtained by textually substituting the actual parameters
for the corresponding formal parameters throughout the text given in this annex. A list of two or
more items as an actual parameter is enclosed in parentheses '()' with the items separated by
commas. A formal parameter in square brackets '[]' means that the corresponding actual
parameter may be omitted.

(2) Each error name is in two parts: the name of the troublesome entity followed by an indication of
what is wrong.

C.2 Scope of error conditions

(1) Some error condition definitions take as parameters an object designator object and an object
scope scope. These are used to define a set of objects to any of which the error condition may
apply. This set of objects is the scope of the error condition and is defined as follows.

(2) - scope = ATOMIC. The scope is the object object.

(3) - scope = COMPOSITE. The scope is the object object and all its subcomponents.

(4) - scope = COMPONENTS. The scope is an implementation-dependent subset of the object
object and its components.

C.3 Groupings of errors

C.3.1 Access errors

(1) Certain error conditions apply to many operations which access an object or objects; they are
grouped together for convenience under the name of access errors:

(2) ACCESS_ERRORS (object, scope, access_mode, [permission])

(3) If several objects are mentioned, the error conditions apply to each separately. The error
conditions represented by ACCESS_ERRORS depend on the value of access_mode, as follows.

(4) - For access_mode = READ, MODIFY, CHANGE, or SYSTEM_ACCESS:

(5) OBJECT_IS_ARCHIVED (object)
(6) OBJECT_IS_INACCESSIBLE (object, scope)
(7) if object resides in a cluster then:

ACCESS_ERRORS (cluster of object, scope, access_mode, permission)

(8) - Additionally, for access_mode = READ, MODIFY, or CHANGE:

(9) CONFIDENTIALITY_WOULD_BE_VIOLATED (object, scope)
(10) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, scope, [permission])
(11) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object, scope)

- 328 -

(12) - Additionally, for access_mode = MODIFY, CHANGE, or SYSTEM_ACCESS:

(13) VOLUME_IS_FULL (volume on which object resides)

(14) - Additionally, for access_mode = MODIFY or CHANGE:

(15) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object, scope)
(16) INTEGRITY_WOULD_BE_VIOLATED (object, scope)
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
(18) REPLICATED_COPY_UPDATE_IS_FORBIDDEN (object, scope)
(19) VOLUME_IS_READ_ONLY (volume on which object resides)

(20) - Additionally, for access_mode = MODIFY:

(21) OBJECT_IS_STABLE (object)

C.3.2 Value limit errors

(1) Error conditions relating to the limits on attribute values are grouped together as value limit
errors:

VALUE_LIMIT_ERRORS (value)

(2) This is equivalent to one or more cases of LIMIT_WOULD_BE_EXCEEDED, according to the
value type of value:

(3) - value type is INTEGER:

LIMIT_WOULD_BE_EXCEEDED ((MAX_INTEGER_ATTRIBUTE,
MIN_INTEGER_ATTRIBUTE))

(4) - value type is FLOAT:

LIMIT_WOULD_BE_EXCEEDED ((MAX_FLOAT_ATTRIBUTE,
MIN_FLOAT_ATTRIBUTE, SMALLEST_FLOAT_ATTRIBUTE))

(5) - value type is STRING:

LIMIT_WOULD_BE_EXCEEDED (MAX_STRING_ATTRIBUTE_SIZE)

(6) - value type is TIME:

LIMIT_WOULD_BE_EXCEEDED ((MAX_TIME_ATTRIBUTE,
MIN_TIME_ATTRIBUTE))

C.3.3 OWNER right errors

(1) OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (object)

(2) This stands for the following, where group is the group for which the OWNER mode is being
changed:

(3) ATOMIC_ACL_IS_INCOMPATIBLE_WITH_OWNER_CHANGE (object)
(4) OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNER (object, group)

(5) COMPONENT_ADDITION_ERRORS (dest, link)

(6) This stands for:

(7) ACCESS_ERRORS (dest, COMPOSITE, CHANGE, OWNER)

- 329 -

(8) ACCESS_ERRORS (dest, ATOMIC, CHANGE, CONTROL_DISCRETIONARY)
(9) ACCESS_ERRORS (component of dest, ATOMIC, CHANGE,

CONTROL_DISCRETIONARY)
(10) LINK_EXCLUSIVENESS_WOULD_BE_VIOLATED (dest, link)
(11) If origin of link has OWNER granted or denied for a group group:

OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNER (dest, group)
(12) OBJECT_OWNER_CONSTRAINT_WOULD_BE_VIOLATED (dest)
(13) The following implementation-dependent error may be raised:

OBJECT_IS_INACCESSIBLE (outer object of dest, ATOMIC)

C.4 Other errors

(1) ACCESS_MODE_IS_INCOMPATIBLE (scope, modes) An attempt is being made to check for
OWNER permission in modes when the scope scope is ATOMIC, or for
CONTROL_DISCRETIONARY permission in modes when the scope scope is COMPOSITE.

(2) ACCESS_MODE_IS_NOT_ALLOWED (scope, modes) The access mode modes contains
OWNER discretionary access mode and scope is ATOMIC or modes contains
CONTROL_DISCRETIONARY and scope is COMPOSITE.

(3) ACCOUNTING_LOG_IS_NOT_ACTIVE (accounting_log) accounting_log is not currently an
active accounting log.

(4) ACTIVITY_IS_OPERATING_ON_A_RESOURCE A resource is currently being operated on
by the current activity.

(5) ACTIVITY_STATUS_IS_INVALID (activity, status) The activity status of activity does not
have the value status.

(6) ACTIVITY_WAS_NOT_STARTED_BY_CALLING_PROCESS The current activity was not
started by the calling process.

(7) ARCHIVE_EXISTS (archive_identifier) The natural value archive_identifier is already the
archive identifier of a known archive.

(8) ARCHIVE_HAS_ARCHIVED_OBJECTS (archive) The archive archive already has archived
objects.

(9) ARCHIVE_IS_INVALID_ON_DEVICE (device, archive) The contents of device either does not
correspond in format to the implementation-defined format of an archive, or does not contain the
archive identifier of archive.

(10) ARCHIVE_IS_UNKNOWN (archive) The archive archive is unknown, i.e. not the destination
of a "known_archive" link from the archive directory.

(11) ATOMIC_ACL_IS_INCOMPATIBLE_WITH_OWNER_CHANGE (object) The groups for
which OWNER is granted or denied for the origin object of a newly created composition link do
not have CONTROL_DISCRETIONARY mode granted or denied respectively in the atomic
ACL of the destination object object of that link.

(12) ATTRIBUTE_TYPE_IS_NOT_VISIBLE (reference) The attribute type identified by reference
is not a visible type.

- 330 -

(13) ATTRIBUTE_TYPE_OF_LINK_TYPE_IS_NOT_APPLIED (reference) The attribute type of
the attribute reference reference is not applied to the type of the link relative to which reference is
being evaluated.

(14) ATTRIBUTE_TYPE_OF_OBJECT_TYPE_IS_NOT_APPLIED (reference) The attribute type
of the attribute reference reference is not applied to the type of the object relative to which
reference is being evaluated, nor to any of its visible ancestor types.

(15) AUDIT_FILE_IS_NOT_ACTIVE (audit_file) The object audit_file is not currently active as the
audit file of any station.

(16) BREAKPOINT_IS_NOT_DEFINED (breakpoint) breakpoint is not a breakpoint set by
PROCESS_ADD_BREAKPOINT

(17) CARDINALITY_IS_INVALID (link_type) The cardinality of link_type is not valid for the
operation.

(18) CATEGORY_IS_BAD (object, link, categories) The category of the link link of the object
object is not one of categories.

(19) CLASS_NAME_IS_INVALID (name) The string name is not a valid confidentiality or integrity
class name (according to context).

(20) CLUSTER_EXISTS (cluster_identifier, volume) The specified cluster number cluster_identifier
corresponds to an existing cluster in the volume volume.

(21) CLUSTER_HAS_OTHER_LINKS (cluster) There are links starting from the cluster cluster
which are not the "cluster_in_volume" link to its associated volume.

(22) CLUSTER_IS_UNKNOWN (cluster) The "cluster" object cluster is not linked to a volume via
link of type "known_cluster".

(23) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object, scope) A
confidentiality confinement violation would occur on one or more objects of the scope defined by
object and scope. More precisely, for some object A of the scope of the error condition:

LABEL_DOMINATES (confidentiality label of A, confidentiality context of calling process) = false

(24) CONFIDENTIALITY_CRITERION_IS_NOT_SELECTED (criterion) The event to be removed
in criterion is not in the list of confidentiality label dependent criteria.

(25) CONFIDENTIALITY_LABEL_IS_INVALID (label) The confidentiality label label does not
conform to the defined syntax or contains a class that is not a known confidentiality class.

(26) CONFIDENTIALITY_WOULD_BE_VIOLATED (object, scope) A confidentiality violation
would occur on one or more objects of the scope defined by object and scope. More precisely,
for some object A of the scope of the error condition:

LABEL_DOMINATES (confidentiality context of calling process, confidentiality label of A) = false

(27) CONNECTION_IS_DENIED The requested connection to the network cannot be made.

(28) CONSUMER_GROUP_IS_IN_USE (group) The consumer group group is currently the
associated consumer group of a process.

(29) CONSUMER_GROUP_IS_KNOWN (group) group is already a known consumer group of the
accounting directory.

(30) CONSUMER_GROUP_IS_UNKNOWN (object) object is not a known consumer group of the
accounting directory.

- 331 -

(31) CONTENTS_FORMAT_IS_INVALID (file) The contents of the file file was not saved by
QUEUE_SAVE.

(32) CONTENTS_IS_NOT_EMPTY (object) object has a non-empty contents.

(33) CONTENTS_IS_NOT_FILE_CONTENTS (contents) The contents handle contents does not
refer to a file contents.

(34) CONTENTS_IS_NOT_OPEN (contents) The contents handle contents does not refer to an open
object.

(35) CONTENTS_OPERATION_IS_INVALID (contents_handle) contents_handle is the result of an
opening where the opening mode or positioning does not allow the current operation to be
performed.

(36) CONTROL_WOULD_NOT_BE_GRANTED (new_object) The
CONTROL_DISCRETIONARY access right or CONTROL_MANDATORY access right would
be no longer granted to any group or would be denied to the predefined user group ALL_USERS
in the atomic ACL of new_object or one of its components.

(37) DATA_ARE_NOT_AVAILABLE (contents) It is not possible to read any octets from the opened
object contents.

(38) DEFAULT_ACL_WOULD_BE_INCONSISTENT_WITH_DEFAULT_OBJECT_OWNER
(group) group must have its CONTROL_DISCRETIONARY access mode value granted in the
default atomic ACL of a given process if group is the default object owner of the same process.

(39) DEFAULT_ACL_WOULD_BE_INVALID (process, group, modes) No group would have
atomic CONTROL_DISCRETIONARY discretionary access right or atomic
CONTROL_MANDATORY discretionary access right to any objects (as defined in 19.1.3)
created by process if group were set to modes.

(40) DEFINITION_MODE_VALUE_WOULD_BE_INVALID (definition_mode, type) The
definition mode definition_mode contains a mode value which is invalid for the type kind of the
type type as defined in 8.4.1, 8.4.2, and 8.4.3.

(41) DESTINATION_OBJECT_TYPE_IS_INVALID (origin, link, destination_object) In the current
working schema the object type of destination_object is not among the destination object types of
the link type of the link designator link of the object origin.

(42) DEVICE_CHARACTERISTICS_ARE_INVALID (device_characteristics) The string device-
characteristics is not a valid device characteristics value.

(43) DEVICE_CONTROL_OPERATION_IS_INVALID (device, operation) The operation operation
is not a valid operation or the device device.

(44) DEVICE_EXISTS (device_identifier) device_identifier is already the device identifier of a
known device.

(45) DEVICE_IS_BUSY (device_object, volume_identifier) Another volume than the volume
designated by the identifier volume_identifier is mounted on the device represented by
device_object.

(46) DEVICE_IS_IN_USE (device) The device device is in use, i.e. a volume is mounted on it, or its
contents is open, or it is in use by an archiving operation.

(47) DEVICE_IS_UNKNOWN (device_object) The physical device described by the object
device_object does not exist (i.e. there is no "controlled_device" link from a workstation to
device_object).

- 332 -

(48) DEVICE_LIMIT_WOULD_BE_EXCEEDED (data, contents) The writing of data to contents
would exceed a device-dependent maximum size.

(49) DEVICE_SPACE_IS_FULL (device) The device device has insufficient available space.

(50) DISCRETIONARY_ACCESS_IS_NOT_GRANTED (object, scope, [permission]) The calling
process does not have the atomic or composite right (according to scope) permission (or one of
the rights if a list is given) to the object object. If permission is absent, the calling process does
not have any atomic or composite right (according to scope) to objects. (If a list of access rights
is given, they are all required.)

(51) DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS (process, object, scope, [
permission]) The process process does not have the atomic or composite right (according to
scope) permission (or one of the rights if a list is given) to the object object. If permission is
absent, process does not have any atomic or composite rights (according to scope) to object. (If a
list of access rights is given, they are all required.)

(52) ENUMERATION_ATTRIBUTE_WOULD_HAVE_NO_ENUMERAL_TYPES (values) An
enumeration attribute type would be created with an empty sequence values of enumeral types.

(53) ENUMERAL_TYPE_IS_INVALID (value) value is not an enumeral type which is a member of
the sequence of enumeral types defined for the enumeration attribute type.

(54) ENUMERAL_TYPE_IS_NOT_IN_ATTRIBUTE_VALUE_TYPE (type1, type2) The enumeral
type type1 is not a member of the value type of the enumeration attribute type type2.

(55) ENUMERAL_TYPE_IS_NOT_VISIBLE (reference) The enumeral type identified by reference
is not a visible type.

(56) ENUMERAL_TYPES_ARE_MULTIPLE (enumeral_types) An enumeral type occurs more than
once in the sequence enumeral_types.

(57) ENUMERATION_VALUE_IS_OUT_OF_RANGE (initial_value, values) The value given by
initial_value is outside the range of positions defined by the sequence of enumerals values.

(58) EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT (reference,
point) The evaluation status of the object reference, link reference, or type reference reference is
internal but the evaluation point point is not NOW.

(59) EVENT_TYPE_IS_NOT_SELECTED (event_type) There is no general selection criterion with
the selectable event type event_type in the list of criteria.

(60) EXECUTION_CLASS_HAS_NO_USABLE_EXECUTION_SITES (execution_class) The
execution class execution_class has no usable execution sites.

(61) EXECUTION_SITE_IS_INACCESSIBLE (site) The execution site site is not accessible.

(62) EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS (site, static_context) The execution
site site is not in the execution class of the static context static_context.

(63) EXECUTION_SITE_IS_UNKNOWN (site) The execution site site is unknown to the PCTE
installation (i.e. it is not linked to the execution site directory with a "known_execution_site"
link).

(64) EXTERNAL_LINK_IS_BAD (version) One or more of the outgoing external existence,
reference, or designation links of version which is to be copied is to an inaccessible object.

- 333 -

(65) EXTERNAL_LINK_IS_NOT_DUPLICABLE (object) One or more of the outgoing external
existence, reference, or designation links of object is reversed by a link which is not an implicit
link of cardinality many.

(66) FOREIGN_DEVICE_IS_INVALID (foreign_device) foreign_device cannot be interpreted as
specifying an appropriate device.

(67) FOREIGN_EXECUTION_IMAGE_HAS_NO_SITE (image) There is no "on_foreign_system"
link from the foreign execution image image.

(68) FOREIGN_EXECUTION_IMAGE_IS_BEING_EXECUTED (foreign_system, foreign_name)
The file designated by foreign_name on foreign_system is a foreign execution image which is
being executed.

(69) FOREIGN_OBJECT_IS_INACCESSIBLE (foreign_system, foreign_name) The object
foreign_object residing on the foreign system foreign_system is not accessible.

(70) FOREIGN_SYSTEM_IS_INACCESSIBLE (foreign_system) The foreign system identified by
foreign_system is valid but is not accessible.

(71) FOREIGN_SYSTEM_IS_INVALID (foreign_system, process, class) The foreign system
foreign_system, that is or would be the execution site of process, does not support the
functionality of the class class.

(72) FOREIGN_SYSTEM_IS_UNKNOWN (foreign_system) The foreign system foreign_system
does not identify an execution site known to the PCTE installation.

(73) GROUP_IDENTIFIER_IS_IN_USE (natural) The natural value natural is already in use as a
security group identifier.

(74) GROUP_IDENTIFIER_IS_INVALID (natural) The natural value natural has never been
returned by GROUP_INITIALIZE.

(75) IMAGE_IS_ALREADY_ASSOCIATED (image, sds, enumeral_type) The string image is
already the associated image of an enumeral type in SDS in the SDS sds, and there is an
enumeration attribute type in SDS in sds with value type containing both that enumeral type and
enumeral_type.

(76) IMAGE_IS_DUPLICATED (enumeral_types, sds) Two or more of the enumeral types in SDS
associated with the elements of enumeral_types in the SDS sds have the same image.

(77) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object, scope) An integrity
confinement violation would occur on one or more objects of the scope defined by object and
scope. More precisely, for some object A of the scope of the error condition:

LABEL_DOMINATES (integrity label of A, integrity context of calling process) = false

(78) INTEGRITY_CRITERION_IS_NOT_SELECTED (criterion) The event to be removed in
criterion is not in the list of integrity label dependent criteria.

(79) INTEGRITY_LABEL_IS_INVALID (label) The integrity label label does not conform to the
defined syntax or contains a class that is not a known integrity class.

(80) INTEGRITY_WOULD_BE_VIOLATED (object, scope) An integrity violation would occur on
one or more objects of the scope defined by object and scope. More precisely, for some object A
of the scope of the error condition:

(81) LABEL_DOMINATES (integrity context of calling process, integrity label of A) = false

- 334 -

(82) INTERPRETER_IS_INTERPRETABLE (static_context) The selected interpreter for the static
context static_context is itself an interpretable static context and so cannot be used as an
interpreter.

(83) INTERPRETER_IS_NOT_AVAILABLE (static_context) static_context is an interpretable static
context but no interpreter for it can be executed.

(84) KEY_ATTRIBUTE_TYPE_APPLY_IS_FORBIDDEN (attribute_type) The attribute type
attribute_type is a key attribute type and cannot be applied.

(85) KEY_IS_BAD (object, reference) The link reference reference has a key which supplies either
too many or too few key attribute values or supplies key attribute values of the wrong value type
for the link type specified by reference and the origin object.

(86) KEY_SYNTAX_IS_WRONG (key) The text value key does not have the syntax of a key.

(87) KEY_TYPE_IS_BAD (type) The value type of the attribute type type is not natural or string.

(88) KEY_TYPES_ARE_MULTIPLE (types) An attribute type occurs more than once in types.

(89) KEY_UPDATE_IS_FORBIDDEN (object, link, attribute) The attribute attribute of the link link
of the object object is a key attribute and cannot be modified.

(90) KEY_VALUE_DOES_NOT_EXIST (link_reference, index) The index index designates a key
value in the key of the link reference link_reference which does not exist.

(91) LABEL_IS_OUTSIDE_RANGE (object, device) A mandatory label of the object object is or
would be outside the corresponding mandatory security range of the multi-level secure device
device. More precisely, one of the following is false:

CONFIDENTIALITY_LABEL_WITHIN_RANGE (object, device)

INTEGRITY_LABEL_WITHIN_RANGE (object, device)

(92) LABEL_RANGE_IS_BAD (high_label, low_label) high_label does not dominate low_label in a
new security range for a multi-level secure device. More precisely, LABEL_DOMINATES
(high_label, low_label) is false.

(93) LAN_ERROR_EXISTS An error has occurred on the local area network.

(94) LIMIT_WOULD_BE_EXCEEDED (limit) The implementation limit limit would be exceeded.

(95) LINK_DESTINATION_DOES_NOT_EXIST (link) The destination of the link link does not
exist and so cannot be accessed.

(96) LINK_DESTINATION_IS_NOT_VISIBLE (link) The object type of the destination of the link
link is not a visible destination object type of the link type of link.

(97) LINK_DOES_NOT_EXIST (object, link_name) The link specified by link_name and object as
origin does not exist and therefore cannot be accessed.

(98) LINK_EXCLUSIVENESS_WOULD_BE_VIOLATED (dest, link) Creation of the link link to
the object dest would violate exclusivity: either link is an exclusive composition link and there is
already a composition link to dest, or link is a composition link and there is already an exclusive
composition link to dest.

(99) LINK_EXISTS (object, link) The link link of the object object already exists and therefore
cannot be created.

- 335 -

(100) LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA (link_name) The link
name link_name cannot be represented in the current working schema because the limit
MAX_LINK_NAME_SIZE would be exceeded.

(101) LINK_NAME_SYNTAX_IS_WRONG (link_name) The syntax of the link name link_name is
wrong.

(102) LINK_REFERENCE_IS_UNSET (reference) The link reference reference has never been set or
has been explicitly unset by LINK_REFERENCE_UNSET.

(103) LINK_TYPE_CATEGORY_IS_BAD (link_type, categories) The category of the link type
link_type is not one of categories.

(104) LINK_TYPE_IS_NOT_APPLIED_TO_OBJECT_TYPE (object_reference, link_reference) The
link type of link_reference is not a visible type of the object type in working schema of the object
object_reference.

(105) LINK_TYPE_IS_NOT_VISIBLE (reference) The link type identified by reference is not a
visible type.

(106) LINK_TYPE_IS_UNKNOWN (name) name is not the name of a link type in the current
working schema.

(107) LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT
(link_type_properties, key_attribute_types) The properties specified by link_type_properties are
inconsistent with the key attribute types specified by key_attribute_types.

(108) LINK_TYPE_PROPERTIES_ARE_INCONSISTENT (link_type_properties) The properties
specified by link_type_properties are inconsistent among themselves (see 8.3.3).

(109) LOCK_COULD_NOT_BE_ESTABLISHED (resource, scope) A lock could not be immediately
established or promoted on the resource resource with scope scope.

(110) LOCK_INTERNAL_MODE_CANNOT_BE_CHANGED (object, lock_mode) There is a
conflict between the requested internal lock mode lock_mode of object object and other
concurrent acquisitions of resources in the concerned domain of object.

(111) LOCK_IS_NOT_EXPLICIT (object) The object object is not explicitly locked by the current
activity.

(112) LOCK_MODE_IS_NOT_ALLOWED (lock_mode) The lock mode lock_mode is WTR or DTR
which is not allowed in the current activity.

(113) LOCK_MODE_IS_TOO_STRONG (lock_mode, resource) The required internal mode
lock_mode is stronger than the external one established on resource.

(114) LOWER_BOUND_WOULD_BE_VIOLATED (object, link) The object object is not deleted by
the operation, and the deletion of link from its origin object would leave the number of links of
object with the link type of link less than the lower bound of the link type of link.

(115) MANDATORY_CLASS_IS_ALREADY_DOMINATED (object) There already exists a
confidentiality or integrity class which directly dominates the confidentiality or integrity class
designated by object . Only one such class is permitted.

(116) MANDATORY_CLASS_IS_KNOWN(object) object is already a known mandatory class.

(117) MANDATORY_CLASS_IS_UNKNOWN (class) class does not identify a mandatory class
known to the PCTE installation, i.e. there is no link from the mandatory directory to class.

- 336 -

(118) MANDATORY_CLASS_NAME_IS_IN_USE (class_name) There already exists a mandatory
class with the name class_name.

(119) MASTER_IS_INACCESSIBLE (object, scope) The master of the object object, or object itself if
normal, is inaccessible.

(120) MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED (type, definition_mode) The usage
mode or export mode definition_mode exceeds the maximum usage mode associated with the
type type.

(121) MEMORY_ADDRESS_IS_OUT_OF_PROCESS (address, process) The address address is not
a valid address in the memory space of the process process.

(122) MEMORY_REGION_IS_NOT_IN_PROFILING_SPACE (start, end) The addresses start and
end do not define a region in the profiling space of the calling process.

(123) MESSAGE_IS_NOT_A_NOTIFICATION_MESSAGE (message) The message type of the
message message is not a notification message type.

(124) MESSAGE_POSITION_IS_NOT_VALID (context, queue) The natural position does not denote
a position in the message queue queue.

(125) MESSAGE_QUEUE_HAS_BEEN_DELETED (queue) The message queue queue was deleted
while the calling process was waiting to receive a message from it.

(126) MESSAGE_QUEUE_HAS_BEEN_WOKEN (queue) A message of message type WAKE was
received while the calling process was waiting to receive a message from the message queue
queue.

(127) MESSAGE_QUEUE_HAS_NO_HANDLER (queue) No valid handler routine has been
specified for the message queue queue.

(128) MESSAGE_QUEUE_IS_BUSY (queue) There are messages on the message queue queue.

(129) MESSAGE_QUEUE_IS_NOT_RESERVED (queue) The caller has not reserved the message
queue queue.

(130) MESSAGE_QUEUE_IS_RESERVED (queue) The message queue queue is reserved by another
process.

(131) MESSAGE_QUEUE_TOTAL_SPACE_WOULD_BE_TOO_SMALL (queue, total_space) The
space currently in use by message queue queue is greater than the requested space limit of
total_space or total_space is less than four times MAX_MESSAGE_SIZE.

(132) MESSAGE_QUEUE_WOULD_BE_TOO_BIG (queue, file) The size of the message queue
queue would exceed the queue's current value of the total space.

(133) MESSAGE_TYPES_NOT_FOUND_IN_QUEUE (queue, types, context) There is no message of
a message type in types in the message queue queue after the position given by context.

(134) NON_BLOCKING_IO_IS_INVALID (object, non_blocking_io) An attempt is being made to
open an object object of type "file" with non_blocking_io false, or to open an object object of
type "pipe" or "device" with non_blocking_io true when it does not support non-blocking input-
output.

(135) NOTIFIER_KEY_DOES_NOT_EXIST (natural) No notifier with the key natural exists.

(136) NOTIFIER_KEY_EXISTS (natural) A notifier with the key natural exists.

- 337 -

(137) NUMBER_OF_PARAMETERS_IS_WRONG (operation) The number of parameters of the
operation operation does not match the operation signature.

(138) OBJECT_ARCHIVING_IS_INVALID (objects) One or more of the objects of objects cannot be
archived, i.e. it is one of the following:

- a master or copy object;

- a volume;

- a locked object;

- a message queue that is reserved or contains one or more messages;

- a pipe or device;

- an active audit file or accounting log;

- a static context that is being executed or interpreted;

- an active process or activity;

- a mandatory class;

- an archive.

(139) OBJECT_CANNOT_BE_CLUSTERED (object) An attempt is being made to create an object
object or a copy of an object object in a cluster, or to move an object object into a cluster, but the
type of object is "file", "pipe", "message_queue", "device", "accounting_log", "audit_file",

"volume", "cluster", "archive", "archive_directory", "process", "activity", "common_root", "sds",
"workstation", "execution_class", "execution_site", "execution_site_directory",
"replica_set_directory", "replica_set", "security_group", "program_group",
"mandatory_directory", "mandatory_class", or "security_group_directory", or a descendant of
one of those types.

(140) OBJECT_CANNOT_BE_STABILIZED (object) The object object cannot be stabilized, i.e. it is
one of the following:

- an active process or activity;

- an active audit file or accounting log;

- a mounted volume;

- a message queue;

- a pipe.

(141) OBJECT_CRITERION_IS_NOT_SELECTED (criterion) The event to be removed in criterion
is not in the list of object-dependent criteria.

(142) OBJECT_HAS_COPIES (object) The master object object has copies and therefore cannot be
removed.

(143) OBJECT_HAS_EXTERNAL_LINKS_PREVENTING_DELETION (object) The object object
or a component of object that should be deleted by the operation has incoming external reference
links or outgoing external existence links.

(144) OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNER (object, group) An attempt is
being made to change the OWNER discretionary access mode value to DENIED for group when
group is not in the effective discretionary groups for the calling process, and group has OWNER
right granted in the composite ACL of object. See 19.1.2.

- 338 -

(145) OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETION (object) The object object or
a component of object cannot be deleted as there are internal reference links from another
component which is the destination of an external composition or existence link.

(146) OBJECT_HAS_LINKS_PREVENTING_DELETION (object) Other reference links to the
object object or composition or existence links from it exist.

(147) OBJECT_IS_A_PROCESS (object). The object object is a process.

(148) OBJECT_IS_A_REPLICA_SET (object) object is a replica set and so must be replicated in
itself. A copy of object must exist on each of its copy volumes.

(149) OBJECT_IS_ALREADY_IN_RESOURCE_GROUP (object, group) The object object is
already a member of the resource group group.

(150) OBJECT_IS_ARCHIVED (object) The object object resides in an archive.

(151) OBJECT_IS_FINE_GRAIN (object) object is fine-grain and an attempt is being made to
perform one of the operations which are not permitted on fine-grain objects.

(152) OBJECT_IS_IN_USE_FOR_DELETE (object) The object object , or any of its non-shared
components, is being operated on or is one of:

- the "process" object of an executing process;

- a static context being executed or interpreted;

- the "activity" object of a non-terminated activity;

- a message queue which is non-empty or reserved.

(153) OBJECT_IS_IN_USE_FOR_MOVE (object) The object object or any of its components is
being operated on or is one of:

- the "process" object of an executing process;

- a static context being executed or interpreted;

- the "activity" object of a non-terminated activity;

- a message queue which is non-empty or reserved.

- object is locked (including an object with open contents);

- object is an active accounting log and accounting is switched on;

- object is an active audit file.

(154) OBJECT_IS_INACCESSIBLE (object, scope) One or more of the objects defined by object and
scope is not accessible.

(155) OBJECT_IS_INACCESSIBLY_ARCHIVED (object, scope) One or more of the objects defined
by object and scope is archived and the archive is inaccessible.

(156) OBJECT_IS_LOCKED (object, scope) One or more objects defined by object and scope is
locked.

(157) OBJECT_IS_NOT_ACCOUNTABLE_RESOURCE (object) The object object is not an
accountable resource.

(158) OBJECT_IS_NOT_ARCHIVED (object) The object object does not reside in an archive.

- 339 -

(159) OBJECT_IS_NOT_CONVERTIBLE (object) The object object cannot have its type converted
because its replicated state is not NORMAL, and it is an object of a type such that it cannot be
replicated (see 17.1.2).

(160) OBJECT_IS_NOT_IN_RESOURCE_GROUP (object, group) The object object is not in the
resource group group.

(161) OBJECT_IS_NOT_LOCKED (object) There is no lock on the object resource object.

(162) OBJECT_IS_NOT_MASTER_REPLICATED_OBJECT (object) The object object does not
have replication status MASTER.

(163) OBJECT_IS_NOT_MOVABLE (object, scope) The type of one or more of the objects of the
scope defined by object and scope is one.of the predefined types "volume", "device", and
"workstation", or a descendant of one of those types.

(164) OBJECT_IS_NOT_ON_ADMINISTRATION_VOLUME (object, station) The object object
does not reside on the administration volume of the workstation station.

(165) OBJECT_IS_NOT_ON_MASTER_VOLUME_OF_REPLICA_SET (replica_set, object) The
object object does not reside on the master volume of the replica set replica_set.

(166) OBJECT_IS_NOT_REPLICABLE (object) The type of the object object is one of the predefined
types "process", "activity", "pipe", "message_queue", "volume", "audit_file", "accounting_log",
"device", and "execution_site", or a descendant of one of them

(167) OBJECT_IS_NOT_REPLICATED_ON_VOLUME (object, volume) The object object is not a
replicated object with a master or copy replica on the volume volume.

(168) OBJECT_IS_OF_WRONG_TYPE (reference) The object type of the object reference is not the
object type required by the operation, nor a descendant of that type.

(169) OBJECT_IS_OPERATED_ON (object, scope) One or more objects of the scope defined by
object and scope which is to be unlocked is currently being operated on.

(170) OBJECT_IS_PREDEFINED_REPLICATED (object) The object object is a predefined
replicated object.

(171) OBJECT_IS_REPLICATED (object) The object object is either a master or copy of a replicated
object.

(172) OBJECT_IS_STABLE (object) The object object is the destination of an atomically stabilizing
link, or is a component of the destination of a compositely stabilizing link.

(173) OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTION (object) The object object
is a message queue or a pipe and an attempt is being made to change the confidentiality or
integrity label of object on behalf of a transaction.

(174) OBJECT_OWNER_CONSTRAINT_WOULD_BE_VIOLATED (object) An attempt to change
the atomic or composite ACL of object would result in an inconsistency with the OWNER rights
on object or an outer object of object.

(175) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL (object)
An attempt has been made to set up an atomic ACL for newly created object with
CONTROL_DISCRETIONARY mode not granted for a discretionary group which is the default
object owner and which therefore has OWNER mode granted in the composite ACL.

(176) OBJECT_REFERENCE_IS_INTERNAL (reference) reference is an internal object reference.

- 340 -

(177) OBJECT_REFERENCE_IS_INVALID (reference) The reference reference designates an object
which has been moved, archived, or deleted.

(178) OBJECT_REFERENCE_IS_UNSET (reference) The object reference reference has never been
set or has been explicitly unset by REFERENCE_UNSET.

(179) OBJECT_TYPE_IS_ALREADY_IN_DESTINATION_SET (link_type, object_type, sds) The
object type object_type is already in the destination object types of link_type in the SDS sds.

(180) OBJECT_TYPE_IS_INVALID (type) The object type type is "volume", "device", or a
descendant of "volume" or "device".

(181) OBJECT_TYPE_IS_NOT_IN_DESTINATION_SET (link_type, object_type, sds) The object
type object_type is not in the destination object types of link_type in the SDS sds.

(182) OBJECT_TYPE_IS_NOT_VISIBLE (reference) The object type identified by reference is not a
visible object type.

(183) OBJECT_TYPE_IS_UNKNOWN (type) type is not an object type in the current working
schema.

(184) OBJECT_TYPE_WOULD_HAVE_NO_PARENT_TYPE (parents) An object type would be
created with an empty set parents of parent types.

(185) OPEN_KEY_IS_INVALID (key). The key key is not a valid open key because there already
exists an "open_object" link with key key from the calling process, or because it is greater than
MAX_OPEN_OBJECTS_PER_PROCESS.

(186) OPENING_MODE_IS_INVALID (object, opening_mode) opening_mode is not compatible with
the type of object

(187) OPERATION_HAS_TIMED_OUT The duration of the operation has exceeded the time out of
the calling process at the time the operation was called.

(188) OPERATION_IS_INTERRUPTED The current process has been interrupted while executing the
current operation.

(189) OPERATION_IS_NOT_ALLOWED_ON_TYPE (reference) The operation has used a type
which is not visible and the operation is one of the operations where its usage is not allowed,
even when PCTE_CONFIGURATION is an effective group of the process.

(190) OPERATION_METHOD_CANNOT_BE_FOUND (operation) The method related to the
operation operation cannot be found in the method repository.

(191) OPERATION_METHOD_CANNOT_BE_ACTIVATED (operation) The method related to the
operation operation cannot be activated.

(192) PARENT_BASIC_TYPES_ARE_MULTIPLE (parent_types) parent_types contains types
which are or are descended from at least two different types from the following list: "system-
file", "system-pipe", "system-device", "system-volume", "system-message_queue", "system-
process", "system-activity", "security-audit_file", "accounting-accounting_log"; or which are or
are descended from at least two different types from the following list: "security-user", "security-
user_group", "security-program_group".

(193) PATHNAME_SYNTAX_IS_WRONG (pathname) The syntax of the text value pathname is not
that of a pathname.

- 341 -

(194) PIPE_HAS_NO_WRITERS (contents) An attempt has been made to read the blocking pipe
contents and no contents handle was open in APPEND_ONLY mode when the operation was
called.

(195) POSITION_HANDLE_IS_INVALID (position_handle, contents_handle) position_handle does
not designate a valid position in the sequence of octets designated by contents_handle.

(196) POSITION_IS_INVALID (position) The position position is less than FIRST.

(197) POSITIONING_IS_INVALID (contents, positioning) The required positioning positioning is
invalid for the specified file or device.

(198) PREFERENCE_DOES_NOT_EXIST (object, reference) Evaluation of the link reference
reference relative to the origin object object requires some preferred key attributes or some
preferred link type to be specified, but the required preference information is not provided by
object.

(199) PREFERRED_LINK_KEY_IS_BAD (object, link, string) The string string is unsuitable as the
preferred key type for the link link of the object object; it supplies too many or too few key
attribute types, supplies key value attributes of the wrong types, or is syntactically invalid for a
preferred key.

(200) PREFERRED_LINK_TYPE_IS_UNSET (object) The preferred link type of the object object is
already unset.

(201) PRIVILEGE_IS_NOT_GRANTED (group) The predefined security group group is not effective
for the calling process.

(202) PROCESS_CONFIDENTIALITY_IS_NOT_DOMINATED (confidentiality_label, process) The
confidentiality label of the process process is not dominated by confidentiality_label.

(203) PROCESS_FILE_SIZE_LIMIT_WOULD_BE_EXCEEDED (data, contents) The writing of
data to the file contents would cause contents to exceed the process file size limit for the calling
process.

(204) PROCESS_HAS_NO_UNTERMINATED_CHILD The calling process has no child process.

(205) PROCESS_INTEGRITY_DOES_NOT_DOMINATE (integrity_label, process) The integrity
label of the process process does not dominate integrity_label.

(206) PROCESS_IS_IN_TRANSACTION The calling process is currently running in a transaction or
the calling process is currently running in an activity nested in a transaction.

(207) PROCESS_IS_INITIAL_PROCESS (process) The process process is the initial process of a
workstation, and so cannot be terminated.

(208) PROCESS_IS_NOT_ANCESTOR (process) The process process is neither the calling process
nor an ancestor of the calling process.

(209) PROCESS_IS_NOT_CHILD (process) The process process is not a child of the calling process.

(210) PROCESS_IS_NOT_TERMINABLE_CHILD (process) The process process is either in a
READY state or is not a child of the current process.

(211) PROCESS_IS_NOT_THE_CALLER (process) The process process is not the calling process.

(212) PROCESS_IS_THE_CALLER (process) The process process is the calling process.

(213) PROCESS_IS_UNKNOWN (process) The process process has process status UNKNOWN.

- 342 -

(214) PROCESS_LABELS_WOULD_BE_INCOMPATIBLE(user) The determination of the new
mandatory labels of the calling process has failed because the new label values are incompatible
with the clearance of user user or the security ranges of the workstation or volume on which the
calling process is located (see 13.4.11).

(215) PROCESS_LACKS_REQUIRED_STATUS (process, status) The process process has not got
the required status status (or any of the list of statuses status), other than UNKNOWN.

(216) PROCESS_TERMINATION_IS_ALREADY_ACKNOWLEDGED (process) The
acknowledged termination of process is already true.

(217) PROFILING_IS_NOT_SWITCHED_ON Profiling is not yet switched on for the calling process.

(218) PROGRAM_GROUP_IS_NOT_EMPTY (group) There are static contexts in the program group
group so that it cannot be removed.

(219) RANGE_IS_OUTSIDE_RANGE (device1, device2) The mandatory security range of the device
device1 is or would be not entirely enclosed within the mandatory security range of the multi-
level secure device device2. More precisely, one of the following does not hold:

CONFIDENTIALITY_RANGE_WITHIN_RANGE (device1, device2)

INTEGRITY_RANGE_WITHIN_RANGE (device1, device2)

(220) REFERENCE_CANNOT_BE_ALLOCATED There is not enough space to create an internal
reference.

(221) REFERENCE_NAME_IS_INVALID (reference_name) reference_name is not a valid referenced
object name.

(222) REFERENCED_OBJECT_IS_NOT_MUTABLE (referenced_object) The referenced object
referenced_object is non-mutable (e.g. $common_root, $static_context).

(223) REFERENCED_OBJECT_IS_UNSET(reference) The object reference reference contains a
referenced object name which is neither the key of a "referenced_object" link from the calling
process, nor an alias.

(224) RELATIONSHIP_TYPE_PROPERTIES_ARE_INCONSISTENT (forward_properties,
backward_properties) The forward link type properties forward_properties and the reverse link
type properties backward_properties are inconsistent with the properties of a link type and its
reverse link type (see 8.3.3).

(225) REPLICA_SET_COPY_IS_NOT_EMPTY (replica_set, volume) The volume volume contains
copies of objects in the replica set replica_set other than a copy of replica_set itself.

(226) REPLICA_SET_HAS_COPY_VOLUMES (replica_set) The replica set replica_set has at least
one associated copy volume.

(227) REPLICA_SET_IS_NOT_EMPTY (replica_set) The replica set replica_set contains masters of
objects other than the master of replica_set itself.

(228) REPLICA_SET_IS_NOT_KNOWN (replica_set) The replica set replica_set is not known
within the replica set directory.

(229) REPLICATED_COPY_IS_IN_USE (object) The copy object object has a usage designation
link.

(230) REPLICATED_COPY_UPDATE_IS_FORBIDDEN (object, scope) An object of the scope
defined by object and scope is replicated and the calling process is attempting to update a copy.

- 343 -

(231) RESOURCE_GROUP_IS_KNOWN (object) The object object is already known by the PCTE
installation as a valid resource group.

(232) RESOURCE_GROUP_IS_UNKNOWN (group) group does not identify a known resource
group of the accounting directory.

(233) REVERSE_KEY_IS_BAD (origin, link, destination, reverse_key) The link link of the object
origin is reversed by a link of cardinality many for which reverse_key supplies either too many or
too few key attribute values or supplies key attribute values of the wrong value type.

(234) REVERSE_KEY_IS_NOT_SUPPLIED (origin, link, destination) The link link of the object
origin has a reverse link of cardinality many for which no key can be inferred, i.e. it is not an
implicit link, destination does not have a preferred key specified for its type, and no specific key
value is provided as a parameter to the operation.

(235) REVERSE_KEY_IS_SUPPLIED (reverse_key) A reverse key reverse_key is supplied for the
reverse of a created link though the reverse link is of category IMPLICIT or cardinality one..

(236) REVERSE_LINK_EXISTS (origin, link, destination, reverse_key) The link link of the object
origin is reversed by a link of cardinality many for which reverse_key would result in the creation
of a link which already exists in the links of destination.

(237) SDS_IS_IN_A_WORKING_SCHEMA (sds_name) The SDS sds_name is currently included in
a working schema (i.e there is an "in_working_schema_of" link from sds_name)

(238) SDS_IS_KNOWN (sds) The SDS sds is already known to the PCTE installation.

(239) SDS_IS_NOT_EMPTY_NOR_VERSION (sds) The "sds" object sds is neither empty (i.e. has
no types in SDS) nor a version of a known SDS. An object is a version of another object if
related by a series of "predecessor" or a series of "successor" links.

(240) SDS_IS_NOT_IN_WORKING_SCHEMA (sds) The SDS sds is not in the current working
schema.

(241) SDS_IS_PREDEFINED (sds) The SDS sds is predefined and cannot be changed.

(242) SDS_IS_UNDER_MODIFICATION (sds_name) The SDS sds_name contains typing
information currently being modified in an uncommitted non-enclosing transaction.

(243) SDS_IS_UNKNOWN (sds) The SDS designator sds does not identify a known SDS in the SDS
directory.

(244) SDS_NAME_IS_DUPLICATE (sds_name) There is already an SDS of the name sds_name.

(245) SDS_NAME_IS_INVALID (name) name is not valid for an SDS name.

(246) SDS_WOULD_APPEAR_TWICE_IN_WORKING_SCHEMA (sds_sequence) sds_sequence
has two SDS names of the same "sds" object. This would result in an invalid working schema.

(247) SECURITY_GROUP_ALREADY_HAS_THIS_SUBGROUP (group, subgroup) subgroup is
already a subgroup of group.

(248) SECURITY_GROUP_IS_ALREADY_ENABLED (group, class) group is already enabled for
confidentiality downgrade/integrity upgrade from class.

(249) SECURITY_GROUP_IS_IN_USE (group) The group group is effective for a process.

(250) SECURITY_GROUP_IS_KNOWN (group) group is already defined as a security group.

(251) SECURITY_GROUP_IS_NOT_A_SUBGROUP (subgroup, group) subgroup is not a subgroup
of group.

- 344 -

(252) SECURITY_GROUP_IS_NOT_ADOPTABLE (user_group, process) user_group is not an
adoptable user group for the process process.

(253) SECURITY_GROUP_IS_NOT_ENABLED (group, class) group is not enabled for
confidentiality downgrade/integrity upgrade from class.

(254) SECURITY_GROUP_IS_PREDEFINED (group) group is one of the predefined security groups
(see 19.1.1).

(255) SECURITY_GROUP_IS_REQUIRED_BY_OTHER_GROUPS (group) group has subgroups or
is a subgroup or (for a user group or program group) has group members or (for a user) is a
member of user groups.

(256) SECURITY_GROUP_IS_UNKNOWN (group) group does not identify a security group known
to the PCTE installation i.e. there is no link from the security group directory.

(257) SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPH (subgroup, group) subgroup may
not become a subgroup of group since this would result in a graph of security groups which is not
a directed acyclic graph.

(258) SECURITY_POLICY_WOULD_BE_VIOLATED A violation of the built-in security policy of
the PCTE implementation (see 20.1.8) has been attempted.

(259) STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTED (static_context, station) The
contents of the static context static_context cannot be executed on the workstation station.

(260) STATIC_CONTEXT_IS_ALREADY_MEMBER (program, group) The static context program
is already a member of the program group group.

(261) STATIC_CONTEXT_IS_BEING_WRITTEN (static_context) The object contents of
static_context is open for writing.

(262) STATIC_CONTEXT_IS_IN_USE (object) object is a static context that is being executed or
interpreted.

(263) STATIC_CONTEXT_IS_NOT_MEMBER (program, program_group) program is not a
member of the program group program_group.

(264) STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY (static_context) Execution of
static_context requires more memory than is available.

(265) STATUS_IS_BAD (status) The value of status is neither CONNECTED nor CLIENT.

(266) TIME_CANNOT_BE_CHANGED The system time cannot be changed.

(267) TRANSACTION_CANNOT_BE_COMMITTED The activity to be committed is a transaction
and the system cannot commit the updates made on behalf of this transaction. Note that this error
implies an ABORT_ACTIVITY. This may be due, for example, to network failure, system
crash, disk crash, disk physically switched to a read only protection etc. The circumstances under
which this occurs are implementation-defined.

(268) TYPE_CANNOT_BE_APPLIED_TO_LINK_TYPE (link_type, attribute_type). The attribute
type attribute_type cannot be applied to the link type link_type because it is the
"object_on_volume" link type or a usage designation or service designation link type.

(269) TYPE_HAS_DEPENDENCIES (sds, type) The type type cannot be deleted because it has type
dependencies and its deletion would violate SDS well-formedness rules, i.e. within the SDS sds:

- for an attribute type, it is applied to an object or link type;

- 345 -

- for a link type, it is applied to an object type, or it has a non-empty set of destination link
types, or non-key attribute types are applied to it; or the same is true of its reverse link type, if
any;

- for an object type, it has a child type, or there is an attribute or link type applied to it;

- for an enumeral type, it is be associated with an enumeration attribute type.

(270) TYPE_HAS_NO_LOCAL_NAME (sds, type_reference) The type in sds identified by
type_reference does not have a local name in the SDS sds.

(271) TYPE_IDENTIFIER_IS_INVALID (identifier) identifier is not a valid type identifier.

(272) TYPE_IDENTIFIER_USAGE_IS_INVALID (reference) The operation does not allow a type
identifier such as reference to be used.

(273) TYPE_IS_ALREADY_APPLIED (sds, type, definition_type) In the SDS sds, the type (either an
attribute type or a link type) type is already applied to definition_type (either a link type or an
object type).

(274) TYPE_IS_ALREADY_CONSTRAINED (sds, parameter_type) The parameter type
parameter_type is already constrained to an attribute type, an object type, or an interface type.

(275) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds) The type type is already defined in the
SDS sds.

(276) TYPE_IS_NOT_APPLIED (sds, type1, type2) The type type1 is not applied to the type type2 in
the SDS sds.

(277) TYPE_IS_NOT_DESCENDANT (type, other_type) The object type other_type is neither type
nor a descendant object type of type.

(278) TYPE_IS_NOT_VISIBLE (type) The type reference or type name type is not visible.

(279) TYPE_IS_OF_WRONG_KIND (reference) The reference reference identifies a type which is
not of the kind expected by the operation (object type, link type, attribute type, or enumeral type).

(280) TYPE_IS_UNKNOWN_IN_SDS (sds, type) The type type is not defined in the SDS sds.

(281) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds_name, type_name) The name type_name
duplicates a local name of a type already defined in the SDS sds_name.

(282) TYPE_NAME_IS_INVALID (type_name) type_name does not conform to the syntax of a type
name.

(283) TYPE_OF_OBJECT_IS_INVALID (object, scope) The type of one or more of the objects of the
scope defined by object and scope is "volume", "device", or a descendant of "volume" or
"device".

(284) TYPE_OF_PARAMETER_IS_WRONG (operation, parameter) The type of the value of the
parameter parameter does not match that defined by the signature of the operation operation.

(285) TYPE_REFERENCE_IS_INVALID (reference) The type in working schema referenced by the
evaluated type reference reference no longer exists as a result of a call to
PROCESS_SET_WORKING_SCHEMA.

(286) TYPE_REFERENCE_IS_UNSET (reference) The type reference reference has never been set or
has been explicitly unset by TYPE_REFERENCE_UNSET.

(287) UNLOCKING_IN_TRANSACTION_IS_FORBIDDEN To perform the operation would unset
or reset a lock within a transaction.

- 346 -

(288) UPPER_BOUND_WOULD_BE_VIOLATED (object, link) The creation of link from its origin
object would violate the upper bound of the link type of link.

(289) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED (object, [link], attribute,
mode_value) The usage mode of the type in working schema of the attribute attribute of the
object object or of the link link of the object object does not include mode_value.

(290) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (object, link, mode_value) The
usage mode of the type in working schema of the link link of the object object does not include
mode_value.

(291) USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED (initial_type, type) The
usage mode of initial_type, type, or any type in working schema which is a descendant of
initial_type and an ancestor of type does not include CREATE_MODE.

(292) USER_CRITERION_IS_NOT_SELECTED (criterion) The event to be removed in criterion is
not in the list of user-dependent criteria.

(293) USER_GROUP_IS_IN_USE (user, group) A process executing on behalf of user currently has
the group group as its adopted group.

(294) USER_GROUP_LACKS_ALL_USERS_AS_SUPERGROUP (group) The predefined user
group ALL_USERS is not a supergroup of group.

(295) USER_GROUP_WOULD_NOT_HAVE_ALL_USERS_AS_SUPERGROUP (group) Deleting
the "user_subgroup_of" link from group would mean that the predefined group ALL_USERS
would no longer be a supergroup of group; and either group has users as members, or there is a
group G which has members and which has group as one of its supergroups and G would no
longer have ALL_USERS as a supergroup.

(296) USER_IS_ALREADY_CLEARED_TO_CLASS (group, class) The user group group is already
cleared to a class which dominates or is dominated by class.

(297) USER_IS_ALREADY_MEMBER (user, group) The user user is already a member of group.

(298) USER_IS_IN_USE (user) The user user is the destination of a "user_identity" link from a
process.

(299) USER_IS_NOT_CLEARED (process, mandatory_label) The user group on whose behalf
process is executing does not have an overall clearance to the level given by the label
mandatory_label. More precisely:

LABEL_DOMINATES (user confidentiality clearance of process, mandatory_label)

(300) USER_IS_NOT_CLEARED_TO_CLASS (group, class) The user group group is not cleared to
mandatory class class nor to a mandatory class dominating class.

(301) USER_IS_NOT_MEMBER (user, user_group) user is not a member of the user group
user_group.

(302) USER_IS_UNKNOWN (object) The user designated by object in a user-dependent criterion is
not a known user, i.e. it is not a known security group which is of the child type "user" nor of one
of its descendent types.

(303) VALUE_TYPE_IS_INVALID (value, object, [link], attribute) The type of value is not of the
value type of the associated type of the attribute attribute of the object object or of the link link of
the object object.

(304) VERSION_GRAPH_IS_INVALID (version, predecessor) Adding predecessor as a predecessor
of version would render its version graph invalid; i.e. not a directed acyclic graph.

- 347 -

(305) VERSION_IS_REQUIRED (version, scope) One of the objects specified by version and scope
cannot be removed as it has no successors and there are no incoming composition or existence
links other than the predecessor link from one of the objects to at least one of its predecessors.

(306) VOLUME_CANNOT_BE_MOUNTED_ON_DEVICE (volume, device) The device device is
inappropriate for the mounting of the volume volume.

(307) VOLUME_EXISTS (volume_identifier) The specified volume number volume_identifier
corresponds to an existing volume.

(308) VOLUME_HAS_OBJECT_OUTSIDE_RANGE (volume, high_label, low_label) The volume
volume has one or more objects whose mandatory label lies outside the range low_label to
high_label.

(309) VOLUME_HAS_OBJECTS_IN_USE (volume_identifier) The volume volume_identifier cannot
be unmounted. This could occur if:

- some resources (objects or links) residing on that volume are currently locked;

- some "sds", "type_in_sds", or "type" objects residing on the volume are currently included in
some working schemas;

- a message queue object residing on the volume is associated with a reserved message queue;

- some static contexts residing on the volume are being currently executed or are currently used
as an interpreter;

- some process objects residing on the volume are associated with processes currently running
or some activity objects residing on the volume are associated with non- terminated activities.

(310) VOLUME_HAS_OTHER_LINKS (volume) There are links starting from the volume volume
which are not the "object_on_volume" link to itself, the "mounted_on" link to the device on
which the volume is mounted, or the reverse of the link from the volume directory.

(311) VOLUME_HAS_OTHER_OBJECTS (volume) The volume volume has other objects residing
on it apart from the volume object representing the volume itself.

(312) VOLUME_IDENTIFIER_IS_INVALID (volume_identifier) volume_identifier is not a valid
volume number.

(313) VOLUME_IS_ADMINISTRATION_VOLUME (volume) The volume volume is an
administration volume.

(314) VOLUME_IS_ALREADY_COPY_VOLUME_OF_REPLICA_SET (replica_set, volume) The
volume volume is already a copy volume of the replica set replica_set.

(315) VOLUME_IS_ALREADY_MOUNTED (volume) The volume volume is already mounted.

(316) VOLUME_IS_FULL (volume) There is insufficient space for one of the objects or for one of the
links to be created on the volume volume.

(317) VOLUME_IS_INACCESSIBLE (volume) The volume volume is not accessible (see 18.1.5).

(318) VOLUME_IS_MASTER_VOLUME_OF_REPLICA_SET (replica_set, volume) The volume
volume is already the master volume of the replica set replica_set.

(319) VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SET (replica_set, volume) The volume
volume is not a copy volume of the replica set replica_set.

- 348 -

(320) VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SET (replica_set,
volume) The volume volume is neither the master nor a copy volume of the replica set
replica_set.

(321) VOLUME_IS_READ_ONLY (volume) The volume volume is mounted as a read-only volume.

(322) VOLUME_IS_UNKNOWN (volume) The "volume" object volume is not linked to the volume
directory.

(323) WORKSTATION_EXISTS (identifier) A workstation already exists in the specified
administration volume with the execution site identifier identifier.

(324) WORKSTATION_HAS_NO_CHOICE_OF_VOLUME_FOR_REPLICA_SET (station,
replica_set) The workstation station has no chosen volume for accessing replica set replica_set.

(325) WORKSTATION_IDENTIFIER_IS_INVALID (identifier) The natural identifier is not a valid
execution site identifier.

(326) WORKSTATION_IS_BUSY (station) The workstation station is busy.

(327) WORKSTATION_IS_CONNECTED (station) The connection status of the workstation station
is not LOCAL or AVAILABLE.

(328) WORKSTATION_IS_NOT_CONNECTED (station) The status of the workstation station is
LOCAL or AVAILABLE.

(329) WORKSTATION_IS_UNKNOWN (station) The workstation station is unknown to the PCTE
installation (i.e. it is not linked to the execution site directory with a "known_execution_site"
link).

- 349 -

Annex D
(normative)

Auditable Events

D.1 Selectable events

D.1.1 Selectable event type = WRITE

ACCOUNTING_LOG_COPY_AND_RESET
ACCOUNTING_OFF
ACCOUNTING_ON
ACCOUNTING_RECORD_WRITE
AUDIT_FILE_COPY_AND_RESET
CONSUMER_GROUP_DELETE
CONSUMER_GROUP_INITIALIZE
CONTENTS_COPY_FROM_FOREIGN_SYSTEM
CONTENTS_OPEN
CONTENTS_SET_POSITION
CONTENTS_SET_PROPERTIES
DEVICE_CREATE
DEVICE_REMOVE
LINK_CREATE
LINK_DELETE
LINK_DELETE_ATTRIBUTE
LINK_REPLACE
LINK_RESET_ATTRIBUTE
LINK_SET_ATTRIBUTE
LINK_SET_SEVERAL_ATTRIBUTES
MESSAGE_SEND_NO_WAIT
MESSAGE_SEND_WAIT
NOTIFY_DELETE
NOTIFY_SWITCH_EVENTS
OBJECT_CONVERT
OBJECT_CREATE
OBJECT_DELETE
OBJECT_DELETE_ATTRIBUTE
OBJECT_RESET_ATTRIBUTE
OBJECT_SET_ATTRIBUTE
OBJECT_SET_PREFERENCE
OBJECT_SET_SEVERAL_ATTRIBUTES
OBJECT_SET_TIME_ATTRIBUTES
PROCESS_SET_ADOPTABLE_FOR_CHILD
PROCESS_SET_ALARM
PROCESS_SET_CONSUMER_IDENTITY
PROCESS_SET_DEFAULT_ACL_ENTRY
PROCESS_SET_DEFAULT_OWNER
PROCESS_SET_OPERATION_TIME_OUT
PROCESS_UNSET_CONSUMER_IDENTITY

- 350 -

QUEUE_SET_TOTAL_SPACE
RESOURCE_GROUP_ADD_OBJECT
RESOURCE_GROUP_DELETE
RESOURCE_GROUP_INITIALIZE
RESOURCE_GROUP_REMOVE_OBJECT
SDS_ADD_DESTINATION
SDS_APPLY_ATTRIBUTE_TYPE
SDS_APPLY_LINK_TYPE
SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE
SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE
SDS_CREATE_ENUMERAL_TYPE
SDS_CREATE_FLOAT_ATTRIBUTE_TYPE
SDS_CREATE_INTEGER_ATTRIBUTE_TYPE
SDS_CREATE_LINK_TYPE
SDS_CREATE_NATURAL_ATTRIBUTE_TYPE
SDS_CREATE_OBJECT_TYPE
SDS_CREATE_RELATIONSHIP_TYPE
SDS_CREATE_STRING_ATTRIBUTE_TYPE
SDS_CREATE_TIME_ATTRIBUTE_TYPE
SDS_DELETE_TYPE
SDS_INITIALIZE
SDS_REMOVE
SDS_REMOVE_DESTINATION
SDS_SET_ENUMERAL_TYPE_IMAGE
SDS_SET_TYPE_MODES
SDS_SET_TYPE_NAME
SDS_UNAPPLY_ATTRIBUTE_TYPE
SDS_UNAPPLY_LINK_TYPE
VERSION_ADD_PREDECESSOR
VERSION_REMOVE
VERSION_REMOVE_PREDECESSOR
VOLUME_CREATE
VOLUME_DELETE

D.1.2 Selectable event type = READ

ACCOUNTING_LOG_READ
CONTENTS_COPY_TO_FOREIGN_SYSTEM
CONTENTS_GET_POSITION
CONTENTS_OPEN
GROUP_GET_IDENTIFIER
LINK_GET_ATTRIBUTE
LINK_GET_DESTINATION_ARCHIVE
LINK_GET_DESTINATION_VOLUME
LINK_GET_KEY
LINK_GET_SEVERAL_ATTRIBUTES
MESSAGE_DELETE
MESSAGE_PEEK
MESSAGE_RECEIVE_NO_WAIT
MESSAGE_RECEIVE_WAIT

- 351 -

OBJECT_CHECK_PERMISSION
OBJECT_CHECK_TYPE
OBJECT_GET_ACL
OBJECT_GET_ATTRIBUTE
OBJECT_GET_PREFERENCE
OBJECT_GET_SEVERAL_ATTRIBUTES
OBJECT_GET_TYPE
OBJECT_LIST_LINKS
OBJECT_LIST_VOLUMES
PROCESS_ADD_BREAKPOINT
PROCESS_CONTINUE
PROCESS_GET_WORKING_SCHEMA
PROCESS_PEEK
PROCESS_POKE
PROCESS_PROFILING_OFF
PROCESS_PROFILING_ON
PROCESS_REMOVE_BREAKPOINT
QUEUE_EMPTY
QUEUE_RESERVE
QUEUE_UNRESERVE
SDS_GET_ATTRIBUTE_TYPE_PROPERTIES
SDS_GET_ENUMERAL_TYPE_IMAGE
SDS_GET_ENUMERAL_TYPE_POSITION
SDS_GET_LINK_TYPE_PROPERTIES
SDS_GET_NAME
SDS_GET_OBJECT_TYPE_PROPERTIES
SDS_GET_TYPE_KIND
SDS_GET_TYPE_MODES
SDS_GET_TYPE_NAME
SDS_SCAN_ATTRIBUTE_TYPE
SDS_SCAN_ENUMERAL_TYPE
SDS_SCAN_LINK_TYPE
SDS_SCAN_OBJECT_TYPE
SDS_SCAN_TYPES
VERSION_IS_CHANGED
VERSION_TEST_ANCESTRY
VERSION_TEST_DESCENT
VOLUME_LIST_OBJECTS

D.1.3 Selectable event type = COPY

ACCOUNTING_LOG_COPY_AND_RESET
OBJECT_COPY
QUEUE_RESTORE
QUEUE_SAVE
SDS_IMPORT_ATTRIBUTE_TYPE
SDS_IMPORT_ENUMERAL_TYPE
SDS_IMPORT_LINK_TYPE
SDS_IMPORT_OBJECT_TYPE

- 352 -

VERSION_REVISE
VERSION_SNAPSHOT

D.1.4 Selectable event type = ACCESS_CONTENTS

CONTENTS_READ
CONTENTS_TRUNCATE
CONTENTS_WRITE

D.1.5 Selectable event type = EXPLOIT

PROCESS_CREATE
PROCESS_CREATE_AND_START
PROCESS_SET_WORKING_SCHEMA
PROCESS_START
VOLUME_MOUNT
VOLUME_UNMOUNT

D.1.6 Selectable event type = CHANGE_ACCESS_CONTROL

OBJECT_SET_ACL_ENTRY

D.1.7 Selectable event type = CHANGE_LABEL

DEVICE_SET_CONFIDENTIALITY_RANGE
DEVICE_SET_INTEGRITY_RANGE
EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE
EXECUTION_SITE_SET_INTEGRITY_RANGE
OBJECT_SET_CONFIDENTIALITY_LABEL
OBJECT_SET_INTEGRITY_LABEL
PROCESS_SET_CONFIDENTIALITY_LABEL
PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL
PROCESS_SET_FLOATING_INTEGRITY_LEVEL
PROCESS_SET_INTEGRITY_LABEL
VOLUME_SET_CONFIDENTIALITY_RANGE
VOLUME_SET_INTEGRITY_RANGE

D.1.8 Selectable event type = VIOLATION_CONFIDENTIALITY_WRITE and
VIOLATION_INTEGRITY_WRITE

All operations with mandatory security errors plus:

DEVICE_SET_CONTROL
PROCESS_INTERRUPT_OPERATION

- 353 -

D.1.9 Selectable event type = VIOLATION_CONFIDENTIALITY_READ and
VIOLATION_INTEGRITY_READ

All operations with mandatory security errors plus:

CONTENTS_GET_HANDLE_FROM_KEY
CONTENTS_GET_KEY_FROM_HANDLE
CONTENTS_OPEN
CONTENTS_SEEK
DEVICE_GET_CONTROL
LINK_GET_REVERSE
MESSAGE_RECEIVE_NO_WAIT
MESSAGE_RECEIVE_WAIT
MESSAGE_SEND_NO_WAIT
MESSAGE_SEND_WAIT
NOTIFY_CREATE
OBJECT_IS_COMPONENT
PROCESS_SET_REFERENCED_OBJECT
PROCESS_UNSET_REFERENCED_OBJECT
QUEUE_HANDLER_DISABLE
QUEUE_HANDLER_ENABLE
VOLUME_GET_STATUS

D.1.10 Selectable event type = USE_PREDEFINED_GROUP

All uses of type identifiers for access to non-visible types (PCTE_CONFIGURATION)

All modifications to master objects (PCTE_REPLICATION)

All operations defined in 10.2

ARCHIVE_RESTORE
ARCHIVE_SAVE
DEVICE_CREATE
DEVICE_REMOVE
OBJECT_SET_TIME_ATTRIBUTES
PROCESS_SET_FILE_SIZE_LIMIT
PROCESS_SET_PRIORITY
REPLICA_SET_CREATE
REPLICA_SET_REMOVE
REPLICA_SET_ADD_COPY_VOLUME
REPLICA_SET_REMOVE_COPY_VOLUME
REPLICATED_OBJECT_CREATE
REPLICATED_OBJECT_DELETE_REPLICA
REPLICATED_OBJECT_DUPLICATE
REPLICATED_OBJECT_REMOVE
TIME_SET
VERSION_ADD_PREDECESSOR
VERSION_REMOVE
VERSION_REMOVE_PREDECESSOR
VOLUME_CREATE
VOLUME_DELETE

- 354 -

WORKSTATION_REDUCE_CONNECTION
WORKSTATION_CONNECT
WORKSTATION_CREATE
WORKSTATION_DELETE
WORKSTATION_DISCONNECT
WORKSTATION_SELECT_REPLICA_SET_VOLUME
WORKSTATION_UNSELECT_REPLICA_SET_VOLUME

D.1.11 Selectable event type = SET_USER_IDENTITY

PROCESS_ADOPT_USER_GROUP
PROCESS_SET_USER

D.1.12 Selectable event type = COVERT_CHANNEL

ACTIVITY_ABORT
ACTIVITY_END
ACTIVITY_START
CONTENTS_GET_POSITION
CONTENTS_READ
CONTENTS_SET_POSITION
CONTENTS_TRUNCATE
CONTENTS_WRITE
LINK_CREATE
LOCK_RESET_INTERNAL_MODE
LOCK_SET_INTERNAL_MODE
LOCK_SET_OBJECT
LOCK_UNSET_OBJECT
PROCESS_RESUME
PROCESS_SET_REFERENCED_OBJECT
PROCESS_SUSPEND
PROCESS_TERMINATE

D.2 Mandatory Events

D.2.1 Mandatory event type = CHANGE_IDENTIFICATION

OBJECT_MOVE

D.2.2 Mandatory event type = SELECT_AUDIT_EVENT

AUDIT_ADD_CRITERION
AUDIT_FILE_COPY_AND_RESET
AUDIT_REMOVE_CRITERION
AUDIT_SELECTION_CLEAR
AUDIT_SWITCH_OFF_SELECTION
AUDIT_SWITCH_ON_SELECTION

- 355 -

D.2.3 Mandatory event type = SECURITY_ADMINISTRATION

CONFIDENTIALITY_CLASS_INITIALIZE
GROUP_DELETE
GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE
GROUP_DISABLE_FOR_INTEGRITY_UPGRADE
GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE
GROUP_ENABLE_FOR_INTEGRITY_UPGRADE
GROUP_INITIALIZE
GROUP_RESTORE
INTEGRITY_CLASS_INITIALIZE
PROGRAM_GROUP_ADD_MEMBER
PROGRAM_GROUP_ADD_SUBGROUP
PROGRAM_GROUP_REMOVE_MEMBER
PROGRAM_GROUP_REMOVE_SUBGROUP
USER_EXTEND_CONFIDENTIALITY_CLEARANCE
USER_EXTEND_INTEGRITY_CLEARANCE
USER_GROUP_ADD_MEMBER
USER_GROUP_ADD_SUBGROUP
USER_GROUP_REMOVE_MEMBER
USER_GROUP_REMOVE_SUBGROUP
USER_REDUCE_CONFIDENTIALITY_CLEARANCE
USER_REDUCE_INTEGRITY_CLEARANCE

D.3 List of operations not audited

AUDIT_FILE_READ
AUDIT_GET_CRITERIA
AUDIT_RECORD_WRITE
AUDITING_STATUS
CONTENTS_CLOSE
NOTIFICATION_MESSAGE_GET_KEY
PROCESS_GET_DEFAULT_ACL
PROCESS_GET_DEFAULT_OWNER
PROCESS_SET_TERMINATION_STATUS
PROCESS_WAIT_FOR_ANY_CHILD
PROCESS_WAIT_FOR_CHILD
REFERENCE_COPY
REFERENCE_GET_EVALUATION_POINT
REFERENCE_GET_PATH
REFERENCE_GET_STATUS
REFERENCE_SET_ABSOLUTE
REFERENCE_SET_RELATIVE
REFERENCE_UNSET
REFERENCES_ARE_EQUAL
TIME_GET
TYPE_IDENTIFIER_CONVERT_TO_NAME
TYPE_NAME_CONVERT_TO_IDENTIFIER
WORKSTATION_STATUS

- 356 -

- 357 -

Annex E
(informative)

The Predefined Schema Definition Sets

E.1 The system SDS

(1) sds system:

(2) volume_identifier (read) non_duplicated natural ;

(3) locked_link_name: (read) string ;

(3) lock_identifier : (read) string ;

(4) exact_identifier: (read) non_duplicated string ;

(5) number: natural ;

(6) name: string ;

(7) system_key: (read) natural ;

(8) replica_set_identifier: natural ;

(9) object: with
attribute

exact_identifier;
volume_identifier;
replicated_state: (read) non_duplicated enumeration (NORMAL, MASTER, COPY):=

NORMAL;
last_access_time: (read) non_duplicated time ;
last_modification_time: (read) non_duplicated time ;
last_change_time: (read) non_duplicated time ;
last_composite_access_time: (read) non_duplicated time ;
last_composite_modif_time: (read) non_duplicated time ;
last_composite_change_time: (read) non_duplicated time;
num_incoming_links: (read) non_duplicated natural ;
num_incoming_composition_links: (read) non_duplicated natural ;
num_incoming_existence_links: (read) non_duplicated natural ;
num_incoming_reference_links: (read) non_duplicated natural ;
num_incoming_stabilizing_links: (read) non_duplicated natural ;
num_outgoing_composition_links: (read) non_duplicated natural ;
num_outgoing_existence_links: (read) non_duplicated natural ;

link
predecessor: (navigate) non_duplicated composite stable existence link

(predecessor_number: natural) to object reverse successor;
successor: (navigate) implicit link (system_key) to object reverse predecessor;
opened_by: (navigate) non_duplicated designation link (number) to process;
locked_by: (navigate) non_duplicated designation link (lock_identifier) to activity with
attribute

locked_link_name;
end locked_by;
replicated_as_part_of: (navigate) implicit link to replica_set reverse includes_object;
replica_on: implicit link to administration_volume reverse replica;

end object;

- 358 -

(10) volume_directory: child type of object with
link

known_volume: (navigate) non_duplicated existence link (volume_identifier) to volume;
volumes_of: implicit link to common_root reverse volumes;

end volume_directory;

(11) volume: child type of object with
attribute

volume_characteristics: (read) string ;
link

object_on_volume: (navigate) non_duplicated designation link (exact_identifier) to object;
mounted_on: (navigate) non_duplicated designation link to device_supporting_volume

reverse mounted_volume with
attribute

read_only: (read) boolean ;
end mounted_on;

end volume;

(12) administration_volume: (protected) child type of volume with
link

administration_volume_of: non_duplicated designation link (number) to workstation;
replica: (navigate) reference link (exact_identifier) to object reverse replica_on;
master_volume_of: (navigate) reference link (replica_set_identifier) to replica_set reverse

master_volume;
copy_volume_of: (navigate) reference link (replica_set_identifier) to replica_set reverse

copy_volume;
end administration_volume;

(13) archive_directory: child type of object with
link

saved_archive: (navigate) non_duplicated existence link (archive_identifier: natural) to
archive;

archives_of: implicit link to common_root reverse archives;
end archive_directory;

(14) archive: child type of object with
attribute

archiving_time: (read) time ;
link

archived_object: (navigate) non_duplicated designation link (exact_identifier) to object;
end archive;

(15) positioning: (read) enumeration (SEQUENTIAL, DIRECT, SEEK):= SEQUENTIAL;

(16) file: child type of object with
contents file ;
attribute

contents_size: (read) natural ;
positioning;

end file;

(17) pipe: child type of object with
contents pipe ;

end pipe;

- 359 -

(18) device: child type of object with
contents device ;
attribute

device_characteristics: (read) string ;
positioning;

link
device_of: (navigate) reference link to workstation reverse controlled_device;

end device;

(19) device_supporting_volume: child type of device with
link

mounted_volume: (navigate) non_duplicated designation link to volume;
end device_supporting_volume;

(20) static_context : child type of file with
attribute

max_inheritable_open_objects: natural: = 3;
interpretable: boolean := false ;

link
interpreter: reference link to static_context;
restricted_execution_class: reference link to execution_class;

end static_context;

(21) foreign_execution_image: child type of object with
attribute

foreign_name: string ;
link

on_foreign_system: reference link to foreign_system;
end foreign_execution_image;

(22) execution_site_identifier: natural ;

(23) execution_class: child type of object with
link

usable_execution_site: reference link (execution_site_identifier) to execution_site;
end execution_class;

(24) inheritable: boolean := true ;

(25) referenced_object: (navigate) designation link (reference_name: string) to object with
attribute

inheritable;
end referenced_object;

(26) open_object: (navigate) designation link (open_object_key: natural) to file, pipe, device
with

attribute
opening_mode: (read) enumeration (READ_WRITE, READ_ONLY, WRITE_ONLY,

APPEND_ONLY):= READ_ONLY;
non_blocking_io: (read) boolean ;
inheritable;

end open_object;

(27) is_listener: (navigate) non_duplicated designation link (number) to message_queue with
attribute

message_types: (read) string ;
end is_listener;

(28) lock_mode: READ_UNPROTECTED, READ_SEMIPROTECTED, WRITE_UNPROTECTED,
WRITE_SEMIPROTECTED, DELETE_UNPROTECTED, DELETE_SEMIPROTECTED,
READ_PROTECTED, DELETE_PROTECTED, WRITE_PROTECTED,
WRITE_TRANSACTIONED, DELETE_TRANSACTIONED;

- 360 -

(29) lock_external_mode: (read) enumeration (lock_mode):= READ_UNPROTECTED;

(30) lock_internal_mode: (read) enumeration (lock_external_mode range READ_UNPROTECTED
.. WRITE_PROTECTED):= READ_UNPROTECTED;

(31) process_waiting_for: (navigate) designation link (number) to object with
attribute

waiting_type: (read) enumeration (WAITING_FOR_LOCK, WAITING_FOR_TERMINATION,
WAITING_FOR_WRITE, WAITING_FOR_READ):= WAITING_FOR_LOCK;

locked_link_name;
lock_external_mode;
lock_internal_mode;

end process_waiting_for;

(32) process: child type of object with
attribute

process_status: (read) non_duplicated enumeration (UNKNOWN, READY, RUNNING,
STOPPED, SUSPENDED, TERMINATED):= UNKNOWN;

process_creation_time: (read) time ;
process_start_time: (read) time ;
process_termination_time: (read) time ;
process_user_defined_result: string ;
process_termination_status: (read) integer ;
process_priority: (read) natural ;
process_file_size_limit: (read) natural ;
process_string_arguments: (read) string ;
process_environment: (read) string ;
process_time_out: (read) natural ;
acknowledged_termination: (read) boolean ;
deletion_upon_termination: (read) boolean := true ;
time_left_until_alarm: (read) non_duplicated natural ;
character_encoding: (read) non_duplicated natural ;

link
process_object_argument: designation link (number) to object;
executed_on: (navigate) designation link to execution_site;
referenced_object;
open_object;
reserved_message_queue: (navigate) designation link (number) to message_queue;
is_listener;
default_interpreter: designation link to static_context;
actual_interpreter: (navigate) designation link to static_context;
process_waiting_for;
parent_process: (navigate , delete) implicit link to process reverse child_process;
started_in_activity: (navigate) reference link to activity reverse process_started_in;

component
child_process: (navigate , delete) composition link (number) to process reverse

parent_process;
started_activity: (navigate) composition link (number) to activity reverse started_by;

end process;

- 361 -

(33) message_queue: child type of object with
attribute

reader_waiting: (read) non_duplicated boolean ;
writer_waiting: (read) non_duplicated boolean ;
space_used: (read) non_duplicated natural ;
total_space: (read) natural ;
message_count: (read) non_duplicated natural ;
last_send_time: (read) non_duplicated time ;
last_receive_time: (read) non_duplicated time ;

link
reserved_by: (navigate) non_duplicated designation link to process;
listened_to: (navigate) non_duplicated designation link to process;
notifier: (navigate) non_duplicated designation link (notifier_key: natural) to object with
attribute

modification_event: (read) boolean ;
change_event: (read) boolean ;
delete_event: (read) boolean ;
move_event: (read) boolean ;

end notifier;
end message_queue;

(34) activity_class: (read) enumeration (UNPROTECTED, PROTECTED, TRANSACTION) :=
UNPROTECTED;

(35) activity_status: (read) non_duplicated enumeration (UNKNOWN, ACTIVE, COMMITTING,
ABORTING, COMMITTED, ABORTED):= UNKNOWN;

(36) activity: child type of object with
attribute

activity_class;
activity_status;
activity_start_time: (read) time ;
activity_termination_start_time: (read) time ;
activity_termination_end_time: (read) time ;

link
started_by: (navigate) reference link to process reverse started_activity;
nested_in: (navigate) reference link to activity reverse nested_activity;
nested_activity: (navigate) implicit link (system_key) to activity reverse nested_in;
process_started_in: (navigate) implicit link (system_key) to process reverse

started_in_activity;
lock: (navigate) non_duplicated designation link (number) to object with
attribute

locked_link_name;
lock_external_mode;
lock_internal_mode;
lock_explicitness: (read) enumeration (EXPLICIT, IMPLICIT):= IMPLICIT;
lock_duration: (read) enumeration (SHORT, LONG):= SHORT;

end lock;
end activity;

(37) replica_set_directory: child type of object with
link

known_replica_set: (navigate) non_duplicated existence link (replica_set_identifier) to
replica_set reverse known_replica_set_of;

replica_sets_of: implicit link to common_root reverse replica_sets;
end replica_set_directory;

- 362 -

(38) replica_set: child type of object with
link

master_volume: (navigate) reference link to administration_volume reverse
master_volume_of;

copy_volume: (navigate) reference link (volume_identifier) to administration_volume reverse
copy_volume_of;

known_replica_set_of: implicit link to replica_set_directory reverse known_replica_set;
includes_object: (navigate) reference link (exact_identifier) to object reverse

replicated_as_part_of;
end replica_set;

(39) execution_site_directory: child type of object with
link

known_execution_site: non_duplicated existence link (execution_site_identifier) to
execution_site;

execution_sites_of: implicit link to common_root reverse execution_sites;
end execution_site_directory;

(40) execution_site: child type of object with
link

running_process: (navigate) non_duplicated designation link (number) to process;
end execution_site;

(41) workstation: child type of execution_site with
attribute

connection_status: (read) non_duplicated enumeration (LOCAL, CLIENT, AVAILABLE,
CONNECTED):= LOCAL;

PCTE_implementation_name: (read) non_duplicated string ;
PCTE_implementation_release: (read) non_duplicated string ;
PCTE_implementation_version: (read) non_duplicated string ;
node_name: (read) non_duplicated string ;
machine_name: (read) non_duplicated string ;

link
controlled_device: (navigate) non_duplicated existence link (device_identifier: natural) to

device reverse device_of;
associated_administration_volume: (navigate) non_duplicated designation link to

administration_volume;
initial_process: non_duplicated existence link (number) to process;
outermost_activity: (navigate) non_duplicated existence link (number) to activity;
replica_set_chosen_volume: (navigate) designation link (replica_set_identifier) to

administration_volume;
end workstation;

(42) foreign_system: child type of execution_site with
attribute

system_class: enumeration (FOREIGN_DEVICE, BARE_MACHINE,
HAS_EXECUTIVE_SYSTEM, SUPPORTS_IPC_AND_CONTROL,
SUPPORTS_MONITOR):= BARE_MACHINE;

end foreign_system;

(43) common_root: child type of object with
link

archives: (navigate) existence link to archive_directory reverse archives_of;
execution_sites: (navigate) existence link to execution_site_directory reverse

execution_sites_of;
ground: (protected) existence link to common_root;
replica_sets: (navigate) existence link to replica_set_directory reverse replica_sets_of;
volumes: (navigate) existence link to volume_directory reverse volumes_of;

end common_root;

- 363 -

(44) end system;

(45) The fine-grain objects module requires the following extensions to the system SDS:

(46) sds system:

(47) extend object with
attribute

cluster_identifier: (read) non_duplicated natural ;
end object;

(48) extend object type volumewith
link

known_cluster: (navigate) non_duplicated existence link (cluster_identifier) to cluster
reverse cluster_in_volume;

end volume;

(49) cluster: child type of object with
attribute

cluster_characteristics: (read) string ;
link

object_in_cluster: (navigate) non_duplicated designation link (exact_identifier) to object;
cluster_in_volume: (navigate) implicit link to volume reverse known_cluster;

end cluster;

(50) end system;

(51) The object-orientation module requires the following extensions to the system SDS:

(52) sds system:

(53) exec_class_name: string ;

(54) operation_id: (read) string ;

(55) exploits: (navigate) designation link (name) to sds;

(56) tool: child type of object with
link

external_component_of: (navigate) reference link (number) to tool reverse
external_component;

executable: (navigate) reference link (exec_class_name) to static_context reverse
implementing_tool;

exploits;
has_map: (navigate) reference link (number) to method_selection reverse map_used_by;

component
external_component: (navigate) composition link (number) to tool reverse

external_component_of;
internal_component: (navigate) composition link (number) to module reverse

internal_component_of;
end tool;

(57) module: child type of object with
link

internal_component_of: (navigate) reference link (number) to tool reverse
internal_component;

exploits;
linkable: (navigate) reference link (exec_class_name) to linkable_library reverse linkable_to;

end module;

(58) linkable_library: child type of file with
link

linkable_to: implicit link (system_key) to module reverse linkable;
end linkable_library;

- 364 -

(59) method_selection: child type of file with
link

realized_by: (navigate) reference link (number; operation_id; type_identifier) to
method_actions reverse realizes;

map_used_by: (navigate) implicit link (system_key) to tool reverse has_map;
end method_selection;

(60) method_actions: child type of file with
link

implemented_by: (navigate) designation link (number) to tool, module;
realizes: (navigate) implicit link (system_key) to method_selection reverse realized_by;

end method_actions;

(61) dispatching_context: child type of file;

(62) extend object type process with
link

has_dispatching_context: (navigate) designation link to dispatching_context;
end process;

(63) extend object type static_context with
link

implementing_tool: (navigate) implicit link to tool reverse executable;
end static_context;

(64) end system;

E.2 The metasds SDS

(1) sds metasds:

(2) import object type system-object, system-process, system-common_root;

(3) import attribute type system-number, system-system_key;

(4) type_identifier: (read) string ;

(5) sds_directory: child type of object with
link

known_sds: (navigate) non_duplicated existence link (sds_name: string) to sds;
schemas_of: implicit link to common_root reverse schemas;

end sds_directory;

(6) sds: child type of object with
link

named_definition: (navigate) reference link (local_name: string) to type_in_sds reverse
named_in_sds;

in_working_schema_of: (navigate) non_duplicated designation link (number) to process;
component

definition: (navigate) exclusive composition link (type_identifier) to type_in_sds reverse
in_sds;

end sds;

(7) extend object type common_root with
link

schemas: (navigate) existence link to sds_directory reverse schemas_of;
end common_root;

- 365 -

(8) type: (protected) child type of object with
attribute

type_identifier;
link

has_type_in_sds: (navigate) implicit link (system_key) to type_in_sds reverse of_type;
end type;

(9) type_in_sds: (protected) child type of object with
attribute

annotation : string ;
creation_or_importation_time: (read) time ;

link
in_sds: (navigate) implicit link to sds reverse definition;
of_type: (navigate) existence link to type reverse has_type_in_sds;
named_in_sds: (navigate) implicit link to sds reverse named_definition;

end type_in_sds;

(10) usage_mode: (read) natural ;

(11) export_mode: (read) natural ;

(12) maximum_usage_mode: (read) natural ;

(13) object_type: (protected) child type of type with
attribute

contents_type: (read) enumeration (FILE_TYPE, PIPE_TYPE, DEVICE_TYPE,
AUDIT_FILE_TYPE, ACCOUNTING_LOG_TYPE, NO_CONTENTS_TYPE) :=
NO_CONTENTS_TYPE;

link
parent_type: (navigate) reference link (number) to object_type reverse child_type;
child_type: (navigate) implicit link (system_key) to object_type reverse parent_type;

end object_type;

(14) object_type_in_sds: (protected) child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
in_attribute_set: (navigate) reference link (number) to attribute_type_in_sds reverse

is_attribute_of;
in_link_set: (navigate) reference link (number) to link_type_in_sds reverse is_link_of;
is_destination_of: (navigate) reference link (number) to link_type_in_sds reverse

in_destination_set;
end object_type_in_sds;

(15) duplication: (read) enumeration (DUPLICATED, NON_DUPLICATED):= DUPLICATED;

(16) key_attribute_of: (navigate) implicit link (system_key) to link_type reverse key_attribute;

(17) attribute_type: (protected) child type of type with
attribute

duplication;
end attribute_type;

(18) string_attribute_type: (protected) child type of attribute_type with
attribute

string_initial_value: (read) string ;
link

key_attribute_of;
end string_attribute_type;

- 366 -

(19) integer_attribute_type: (protected) child type of attribute_type with
attribute

integer_initial_value: (read) integer ;
end integer_attribute_type;

(20) natural_attribute_type: (protected) child type of attribute_type with
attribute

natural_initial_value: (read) natural ;
link

key_attribute_of;
end natural_attribute_type;

(21) float_attribute_type: (protected) child type of attribute_type with
attribute

float_initial_value: (read) float ;
end float_attribute_type;

(22) boolean_attribute_type: (protected) child type of attribute_type with
attribute

boolean_initial_value: (read) boolean ;
end boolean_attribute_type;

(23) time_attribute_type: (protected) child type of attribute_type with
attribute

time_initial_value: (read) time ;
end time_attribute_type;

(24) enumeration_attribute_type: (protected) child type of attribute_type with
attribute

initial_value_position: (read) natural ;
component

enumeral: (navigate) composition link [1 ..] (position: natural) to enumeral_type reverse
enumeral_of;

end enumeration_attribute_type;

(25) attribute_type_in_sds: (protected) child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
is_attribute_of: (navigate) reference link (number) to object_type_in_sds, link_type_in_sds

reverse in_attribute_set;
end attribute_type_in_sds;

(26) link_type: (protected) child type of type with
attribute

category: (read) enumeration (COMPOSITION, EXISTENCE, REFERENCE, IMPLICIT,
DESIGNATION) := COMPOSITION;

lower_bound: (read) natural := 0;
upper_bound: (read) natural := MAX_INTEGER_ATTRIBUTE;
stability: (read) enumeration (ATOMIC_STABLE, COMPOSITE_STABLE, NON_STABLE) :=

NON_STABLE;
exclusiveness: (read) enumeration (SHARABLE, EXCLUSIVE) := SHARABLE;
duplication;

link
reverse: (navigate) reference link to link_type;
key_attribute: (navigate) reference link (key_number: natural) to string_attribute_type,

natural_attribute_type reverse key_attribute_of;
end link_type;

- 367 -

(27) link_type_in_sds: child type of type_in_sds with
attribute

usage_mode;
export_mode;
maximum_usage_mode;

link
in_attribute_set;
is_link_of: (navigate) reference link (number) to object_type_in_sds reverse in_link_set;
in_destination_set: (navigate) reference link (number) to object_type_in_sds reverse

is_destination_of;
end link_type_in_sds;

(28) enumeral_type: (protected) child type of type with
link

enumeral_of: (navigate) implicit link (system_key) to enumeration_attribute_type reverse
enumeral;

end enumeral_type;

(29) enumeral_type_in_sds: (protected) child type of type_in_sds with
attribute

image: (read) string ;
end enumeral_type_in_sds;

(30) extend object type process with
link

sds_in_working_schema: (navigate) designation link (number) to sds;
end process;

(31) end metasds;

(32) The object-orientation module requires the following extensions to the metasds SDS:

(33) sds metasds:

(34) import object type method_selection;

(35) extend object type object_type with
link

obj_used_in_map: (navigate) implicit link (system_key) to method_selection reverse
uses_object;

end object_type;

(36) interface_type: child type of type with
link

parent_interface: (navigate) reference link (number) to interface_type reverse
child_interface;

child_interface: (navigate) implicit link (system_key) to interface_type reverse
parent_interface;

has_operation: (navigate) reference link (uuid: string) to operation_type reverse
used_in_interface;

end interface_type;

- 368 -

(37) operation_type: child type of type with
attribute

operation_kind: (read) enumeration (NORMAL_CALL, ONEWAY_CALL) := NORMAL_CALL;
link

used_in_interface: (navigate) implicit link (system_key) to interface_type reverse
has_operation;

has_parameter: (navigate) reference link (position: natural ; name) to parameter_type
reverse parameter_of with

attribute
parameter_mode: (read) enumeration (IN, OUT, INOUT) := IN;

end has_parameter;
has_return_value: (navigate) reference link to parameter_type reverse return_value_of;
op_used_in_map: (navigate) implicit link (system_key) to method_selection reverse

uses_operation;
end operation_type;

(38) parameter_type: child type of type with
link

parameter_of: (navigate) implicit link (system_key) to operation_type reverse
has_parameter;

return_value_of: (navigate) implicit link (system_key) to operation_type reverse
has_return_value;

end parameter_type;

(39) data_parameter_type: child type of parameter_type with
link

constrained_to_attribute_type: (navigate) reference link to attribute_type;
end data_parameter_type;

(40) interface_parameter_type: child type of parameter_type with
link

constrained_to_interface_type: (navigate) reference link to interface_type;
end interface_parameter_type;

(41) object_parameter_type: child type of parameter_type with
link

constrained_to_object_type: (navigate) reference link to object_type;
end object _parameter_type;

(42) extend object type object_type_in_sds with
link

supports_interface: (navigate) reference link (name) to interface_type_in_sds reverse
applies_to;

end object_type_in_sds;

(43) interface_type_in_sds: child type of type_in_sds with
link

applies_to: (navigate) implicit link (type_identifier) to object_type_in_sds reverse
supports_interface;

in_operation_set: (navigate) reference link (number; name) to operation_type_in_sds
reverse is_operation_of;

end interface_type_in_sds;

(44) operation_type_in_sds: child type of type_in_sds with
link

is_operation_of: (navigate) implicit link (system_key) to interface_type reverse
in_operation_set;

end operation_type_in_sds;

- 369 -

(45) extend object type method_selection with
link

uses_operation: (navigate) reference link (number) to operation_type reverse
op_used_in_map;

uses_object: (navigate) reference link (number) to object_type reverse obj_used_in_map;
end method_selection;

(46) end metasds;

E.3 The discretionary security SDS

(1) sds discretionary_security:

(2) import object type system-object, system-static_context, system-process, system-workstation,
system-common_root;

(3) import attribute type system-name, system-number;

(4) security_group_directory: child type of object with
link

known_security_group: (navigate) existence link (group_identifier: natural) to
security_group;

security_groups_of: implicit link to common_root reverse security_groups;
end security_group_directory;

(5) security_group: child type of object;

(6) user: child type of security_group with
link

user_identity_of: (navigate) non_duplicated designation link (number) to process;
user_member_of: (navigate) reference link (number) to user_group reverse has_users;

end user;

(7) user_group: child type of security_group with
link

has_users: (navigate) reference link (number) to user reverse user_member_of;
user_subgroup_of: (navigate) reference link (number) to user_group reverse

has_user_subgroups;
has_user_subgroups: (navigate) reference link (number) to user_group reverse

user_subgroup_of;
adopted_user_group_of: (navigate) non_duplicated designation link (number) to process;

end user_group;

(8) program_group: child type of security_group with
link

has_programs: (navigate) reference link (number) to static_context reverse
program_member_of;

program_subgroup_of: (navigate) reference link (number) to program_group reverse
has_program_subgroups;

has_program_subgroups: (navigate) reference link (number) to program_group reverse
program_subgroup_of;

end program_group;

(9) extend object type static_context with
link

program_member_of: (navigate) implicit link (system_key) to program_group reverse
has_programs;

end static_context;

- 370 -

(10) extend object type process with
attribute

default_atomic_acl: (protected) string ;
default_object_owner: (protected) natural ;

link
user_identity: (navigate) designation link to user;
adopted_user_group: (navigate) designation link to user_group;
adoptable_user_group: (navigate) designation link (number) to user_group with
attribute

adoptable_for_child: (read) boolean := true ;
end adoptable_user_group;

end process;

(11) extend object type object with
attribute

atomic_acl: (protected) non_duplicated string ;
composite_acl: (protected) non_duplicated string ;

end object;

(12) extend object type common_root with
link

security_groups: (navigate) existence link to security_group_directory reverse
security_groups_of;

end common_root;

(13) audit_file: child type of object with
contents audit_file;
link

audit_of: reference link (number) to workstation reverse audit;
end audit_file;

(14) extend object type workstation with
link

audit: (navigate) existence link to audit_file reverse audit_of;
end workstation;

(15) end discretionary_security;

E.4 The mandatory security SDS

(1) sds mandatory_security;

(2) import object type system-object, system-volume, system-device, system-common_root,
system-execution_site, system-process;

(3) import attribute type system-name, system-number;

(4) import object type discretionary_security-security_group, discretionary_security-user;

(5) import attribute type discretionary_security-group_identifier;

(6) extend object type security_group with
link

may_downgrade: (navigate) reference link (name) to confidentiality_class reverse
downgradable_by;

may_upgrade: (navigate) reference link (name) to integrity_class reverse upgradable_by;
end security_group;

- 371 -

(7) extend object type user with
link

cleared_for: (navigate) reference link (name) to mandatory_class reverse having_clearance;
end user;

(8) mandatory_directory: child type of object with
link

known_mandatory_class: (navigate) existence link (name) to mandatory_class;
mandatory_classes_of: implicit link to common_root reverse mandatory_classes;

end mandatory_directory;

(9) mandatory_class: child type of object with
link

having_clearance: (navigate) reference link (group_identifier) to user reverse cleared_for;
end mandatory_class;

(10) confidentiality_class: child type of mandatory_class with
link

dominates_in_confidentiality: (navigate) reference link to confidentiality_class reverse
confidentiality_dominator;

confidentiality_dominator: (navigate) reference link to confidentiality_class reverse
dominates_in_confidentiality;

downgradable_by: (navigate) reference link (group_identifier) to security_group reverse
may_downgrade;

end confidentiality_class;

(11) integrity_class: child type of mandatory_class with
link

dominates_in_integrity: (navigate) reference link to integrity_class reverse
integrity_dominator;

integrity_dominator: (navigate) reference link to integrity_class reverse
dominates_in_integrity;

upgradable_by: (navigate) reference link (group_identifier) to security_group reverse
may_upgrade;

end integrity_class;

(12) extend object type object with
attribute

confidentiality_label: (read) string ;
integrity_label: (read) string ;

end object;

(13) extend object type common_root with
link

mandatory_classes: (navigate) existence link to mandatory_directory reverse
mandatory_classes_of;

end common_root;

(14) extend object type volume with
attribute

confidentiality_high_label: (read) non_duplicated string ;
confidentiality_low_label: (read) non_duplicated string ;
integrity_high_label: (read) non_duplicated string ;
integrity_low_label: (read) non_duplicated string ;

end volume;

- 372 -

(15) extend object type device with
attribute

confidentiality_high_label;
confidentiality_low_label;
integrity_high_label;
integrity_low_label;
contents_confidentiality_label: (read) non_duplicated string ;
contents_integrity_label: (read) non_duplicated string ;

end device;

(16) extend object type execution_site with
attribute

confidentiality_high_label;
confidentiality_low_label;
integrity_high_label;
integrity_low_label;

end execution_site;

(17) floating_level: NO_FLOAT, FLOAT_IN, FLOAT_OUT, FLOAT_IN_OUT;

(18) extend object type process with
attribute

floating_confidentiality_level: (read) non_duplicated enumeration (floating_level) :=
NO_FLOAT;

floating_integrity_level: (read) non_duplicated enumeration (floating_level) := NO_FLOAT;
end process;

(19) end mandatory_security;

E.5 The accounting SDS

(1) sds accounting:

(2) import object type system-object, system-process, system-common_root, system-workstation;

(3) import attribute type system-number;

(4) accounting_directory: child type of object with
link

known_consumer_group: (navigate) existence link (consumer_identifier: natural) to
consumer_group;

known_resource_group: (navigate) existence link (resource_identifier: natural) to
resource_group;

accounts_of: implicit link to common_root reverse accounts;
end accounting_directory;

(5) consumer_group: child type of object with
link

consumer_process: (navigate) non_duplicated designation link (number) to process;
end consumer_group;

(6) resource_group: child type of object with
link

resource_group_of: (navigate) reference link (number) to object reverse in_resource_group;
end resource_group;

(7) extend object type process with
link

consumer_identity: (navigate) designation link to consumer_group;
end process;

- 373 -

(8) extend object type object with
link

in_resource_group: (navigate) reference link to resource_group reverse resource_group_of;
end object;

(9) extend object type common_root with
link

accounts: (navigate) existence link to accounting_directory reverse accounts_of;
end common_root;

(10) extend object type workstation with
link

has_log: (navigate) reference link to accounting_log reverse is_log_for;
end workstation;

(11) accounting_log: child type of object with
contents accounting_log ;
link

is_log_for: (navigate) reference link (number) to workstation reverse has_log;
end accounting_log;

(12) end accounting;

- 374 -

- 375 -

Annex F
(normative)

The fine-grain objects module

F.1 Extensions to object management (see clause 9)

F.1.1 Additional object management concepts (see 9.1)

(1) sds system:

(2) extend object with
attribute

cluster_identifier: (read) non_duplicated natural ;
end object;

(3) end system;

(4) The cluster identifier identifies the cluster in which the object resides. If the cluster identifier is
0, the object does not reside in a cluster. If the cluster identifier is not 0, it is the key of a
"known_cluster" link from the volume on which the object resides to the cluster in which the
object resides. See 11.1.

(5) An object which resides in a cluster is called a fine-grain object. An object which does not
reside in a cluster is called a coarse-grain object. The same object can be created as coarse-
grain object and become fine-grain after it is moved into a cluster and conversely.

(6) Objects which have the following types (or one of their descendant types) cannot reside in a
cluster. They are always coarse-grain objects:

(7) - "file", "pipe", "message_queue", "device", "accounting_log", "audit_file";

(8) - "volume", "cluster", "archive", "archive_directory";

(9) - "process", "activity";

(10) - "common_root";

(11) - "sds";

(12) - "workstation", "execution_class", "execution_site", "execution_site_directory";

(13) - "replica_set_directory", "replica_set";

(14) - "security_group", "program_group", "mandatory_directory", "mandatory_class",
"security_group_directory";

(15) - "accounting_directory", "consumer_group", "resource_group".

(16) The last access time of a fine-grain object is equal to the default initial value of time attributes
(see 8.3.2).

(17) The last modification time of a fine-grain object is equal to the last modification time of the
cluster in which it resides.

(18) The last change time of a fine-grain object is equal to the last change time of the cluster in which
it resides.

- 376 -

(19) The last modification time of a fine-grain object is set only:

(20) - when the object is created in a cluster (operations OBJECT_CREATE, OBJECT_COPY,
VERSION_REVISE, VERSION_SNAPSHOT),

(21) - when the object is moved into a cluster (operation OBJECT_MOVE),

(22) - when the last modification time of the cluster in which it resides is modified.

(23) The last modification time of a cluster is the system time of the last release of a write or delete
lock for an object residing in the cluster.

(24) The replicated state of a fine-grain object is equal to the replicated state of the cluster in which it
resides.

(25) NOTE - Neither a fine-grain object nor a cluster has contents, so the last access time is meaningless for both. That
is why it is always equal to the default initial value of time attributes.

F.1.2 Link operations affected by support of fine-grain objects (see 9.2)

F.1.2.1 LINK_CREATE

(1) LINK_CREATE (
origin : Object_designator,
new_link : Link_designator,
dest : Object_designator,
reverse_key : [Actual_key]

)

New semantics

(2) If dest is a fine-grain object and new_link is a composition link, then any security group that has
OWNER granted or denied to origin has OWNER granted or denied respectively to all objects
which reside in the cluster of dest; similarly if origin is a fine-grain object and reverse_link (the
reverse link of new_link) is a composition link, then any security group that has OWNER
granted or denied to dest has OWNER granted or denied respectively to all objects which reside
in the cluster of origin. This requires the process to have OWNER rights on dest or origin
respectively. See 19.1.2 for details.

F.1.2.2 LINK_DELETE

(1) LINK_DELETE (
origin : Object_designator,
link : Link_designator,

)

New semantics

(2) For each deleted fine-grain object object, the "object_in_cluster" link from the cluster in which
object was residing to object is also deleted.

- 377 -

F.1.2.3 LINK_REPLACE

(1) LINK_REPLACE (
origin : Object_designator,
link : Link_designator,
new_origin : Object_designator,
new_link : Link_designator
on_reverse_key : [Actual_key]

)

New semantics

(2) The semantics of this operation refers to LINK_DELETE. It is therefore affected in the same
way.

F.1.3 Object operations affected by support of fine-grain objects (see 9.3)

F.1.3.1 OBJECT_COPY

(1) OBJECT_COPY (
object : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

New semantics

(2) If on_same_volume_as is supplied, then new_object and all its components reside in the same
volume as on_same_volume_as.

(3) If on_same_volume_as is not supplied, then new_object resides in the same volume as object,
and each component of new_object resides in the same volume as its corresponding component
in object.

(4) Additionally:

(5) - If on_same_volume_as is supplied and if the cluster identifier of on_same_volume_as is not
0, then new_object and all its components reside in the same cluster as on_same_volume_as.

(6) - If on_same_volume_as is supplied is itself a cluster, then new_object and all its components
reside in the cluster on_same_volume_as.

(7) - If on_same_volume_as is not supplied and if the cluster identifier of object is not 0, then
new_object resides in the same cluster as object. Similarly, if the cluster identifier of a
component of object is not 0, the corresponding component of new_object is created in the
same cluster as that component of object, and so on for subcomponents.

(8) If new_object or any of its components is created in a cluster, then an "object_in_cluster" link is
created from that cluster to the new object or component. Each created link is keyed by the
exact identifier of the created object.

(9) For each object X created in a cluster C:

(10) - The atomic ACL of X is set to the atomic ACL of C.

- 378 -

(11) - The security labels of X are set to the security labels of C.

(12) - The last modification time and last change time of X are set to the last modification time and
last change time of C, respectively.

New errors

 (13) OBJECT_CANNOT_BE_CLUSTERED (object or its components)
 (14) If object is a fine-grain object:

ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, APPEND_LINKS)

F.1.3.2 OBJECT_CREATE

(1) OBJECT_CREATE (
type : Object_type_nominator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

New semantics

(2) If on_same_volume_as is supplied, then new_object resides in the same volume as
on_same_volume_as.

(3) If on_same_volume_as is not supplied, then new_object resides in the same volume as
new_origin.

(4) Additionally:

(5) - If on_same_volume_as is supplied and if the cluster identifier of on_same_volume_as is not
0, then new_object resides in the same cluster as on_same_volume_as.

(6) - If on_same_volume_as is itself a cluster, then new_object resides in the cluster
on_same_volume_as.

(7) - If on_same_volume_as is not supplied and if the "cluster_identifier" of new_origin is not 0,
then new_object resides in the same cluster as new_origin.

(8) If new_object is created in a cluster, then:

(9) - An "object_in_cluster" link is created from this cluster to the new object. The created link is
keyed by the exact identifier of the created object.

(10) - The atomic ACL of new_object is set to the atomic ACL of the cluster.

(11) - The security labels of new_object are set to the security labels of the cluster.

(12) - The last modification time and last change time of new_object are set to the last modification
time and last change time of the cluster, respectively.

New errors

(13) OBJECT_CANNOT_BE_CLUSTERED (object to be created)
(14) If object is a fine-grain object:

ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, APPEND_LINKS)

- 379 -

F.1.3.3 OBJECT_DELETE

(1) OBJECT_DELETE (
origin : Object_designator,
link : Link_designator

)

New semantics

(2) For each deleted fine-grain object, if any, the "object_in_cluster" link from the cluster in which
the deleted object resided to the deleted object is also deleted.

New errors

(3) If any deleted object is a fine-grain object:
- ACCESS_ERRORS (cluster of deleted object, ATOMIC,

MODIFY, WRITE_LINKS)

F.1.3.4 OBJECT_MOVE

(1) OBJECT_MOVE (
object : Object_designator,
on_same_volume_as : Object_designator,
scope : Object_scope

)

New semantics

(2) object and all its components are moved to the same volume as on_same_volume_as.

(3) Additionally, if the cluster identifier of on_same_volume_as is not 0, or on_same_volume_as is
itself a cluster, then:

(4) - object and all its components are moved into the cluster of on_same_volume_as, or the
cluster on_same_volume_as.

(5) - An "object_in_cluster" link is created from that cluster to the moved object and to each of its
components and subcomponents. Each created link is keyed by the exact identifier of the
moved object.

(6) - The atomic ACLs of object and all its components are set to the atomic ACL of the cluster.

(7) - The security labels of object are set to the security labels of the cluster.

(8) - The last modification time and last change time of object and all its components are set to
the last modification time and last change time of the cluster, respectively.

(9) For object (if moved) and each moved component, which was previously residing in a cluster,
the "object_in_cluster" link from the cluster to the object is deleted.

New errors

(10) OBJECT_CANNOT_BE_CLUSTERED (object)
(11) If object is a fine-grain object:

ACCESS_ERRORS (cluster of object, ATOMIC, MODIFY, WRITE_LINKS)
(12) If on_same_volume_as resides in or is a cluster cluster:

ACCESS_ERRORS (cluster, ATOMIC, MODIFY, APPEND_LINKS)

- 380 -

F.1.3.5 OBJECT_SET_TIME_ATTRIBUTES

(1) OBJECT_SET_TIME_ATTRIBUTES(
object : Object_designator,
last_access : [Time],
last_modification : [Time],
scope : Object_scope

)

New semantics

(2) If object is a cluster, the new time attributes are also set on all objects residing in the cluster.

New errors

(3) If object is a fine-grain object:
OBJECT_IS_FINE_GRAIN (object)

F.1.4 Version operations affected by support of fine-grain objects (see 9.4)

F.1.4.1 VERSION_IS_CHANGED

(1) VERSION_IS_CHANGED (
version : Object_designator,
predecessor : Natural

)
changed : Boolean

New errors

(2) If object is a fine-grain object:
OBJECT_IS_FINE_GRAIN (object)

F.1.4.2 VERSION_REVISE

(1) VERSION_REVISE (
version : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_version : Object_designator

New semantics

(2) The semantics of VERSION_REVISE refers to the semantics of OBJECT_COPY. It is
therefore indirectly changed in the same way.

F.1.4.3 VERSION_SNAPSHOT

(1) VERSION_SNAPSHOT (
version : Object_designator,
new_link_and_origin : [Link_descriptor],
on_same_volume_as : [Object_designator],
access_mask : Atomic_access_rights

)
new_version : Object_designator

- 381 -

New semantics

(2) The semantics of VERSION_SNAPSHOT refers to the semantics of OBJECT_COPY. It is
therefore indirectly changed in the same way.

F.2 Volumes, clusters, devices, and archives (see clause 11)

F.2.1 Cluster concepts (see 11.1)

(1) Cluster_identifier = Natural

(2) sds system:

(3) extend object type volume with
link

known_cluster: (navigate) non_duplicated existence link (cluster_identifier) to cluster
reverse cluster_in_volume;

end volume;

(4) cluster: child type of object with
attribute

cluster_characteristics: (read) string ;
link

object_in_cluster: (navigate) non_duplicated designation link (exact_identifier) to object;
cluster_in_volume: (navigate) implicit link to volume reverse known_cluster;

end cluster;

(5) end system;

(6) A cluster is an object which groups a set of objects sharing some common properties or behaviour
in respect with concurrency control, time attributes, auditing, security, notification and
accounting. See 9.1.

(7) The destinations of the "known_cluster" links from a volume are the clusters residing on that
volume.

(8) The destinations of the "object_in_cluster" links from a cluster are called the objects residing in
that cluster. The value of the "exact_identifier" attribute is the exact identifier of the object (see
9.1.1).

(9) All objects which reside in a cluster must also reside on the same volume as the volume of the
cluster itself.

(10) The "cluster_characteristics" attribute is an implementation-defined string specifying
implementation-dependent characteristics of the cluster.

F.2.2 Archive operations affected by support of fine-grain objects (see 11.1.4)

F.2.2.1 ARCHIVE_RESTORE

(1) ARCHIVE_RESTORE (
device : Device_designator,
archive : Archive_designator,
scope : Archive_selection,
on_same_volume_as : Object_designator

)
restoring_status : Archive_status

- 382 -

New semantics

(2) Additionally, if the cluster identifier of on_same_volume_as is not 0, or if on_same_volume_as
is itself a cluster, then for each restored object:

(3) - The object is allocated in the cluster of on_same_volume_as, or the cluster
on_same_volume_as.

(4) - An "object_in_cluster" link is created from that cluster to the restored object. Each created
link is keyed by the exact identifier of the restored object.

(5) - The atomic ACLs of object and all its components are set to the atomic ACL of the cluster.

(6) - The last access time, last modification time, and last change time of object and all its
components are set to the last access time, last modification time, and last change time of the
cluster, respectively.

New errors

(7) OBJECT_CANNOT_BE_CLUSTERED (any object being restored)
(8) If on_same_volume_as resides in or is a cluster cluster:

ACCESS_ERRORS (cluster, ATOMIC, MODIFY, APPEND_LINKS)

F.2.2.2 ARCHIVE_SAVE

(1) ARCHIVE_SAVE (
device : Device_designator,
archive : Archive_designator,
objects : Object_designators

)
archiving_status : Archive_status

New semantics

(2) For each object to be archived which resides in a cluster, the "object_in_cluster" link from the
cluster on which the object resides to the object is deleted.

New errors

(3) For any object X of objects which resides in a cluster
ACCESS_ERRORS (cluster of X, ATOMIC, MODIFY, APPEND_LINKS)

F.2.3 New operations on clusters (see 11.2)

F.2.3.1 CLUSTER_CREATE

(1) CLUSTER_CREATE (
on_same_volume_as : Object_designator,
cluster_identifier : Natural,
access_mask : Atomic_access_rights,
cluster_characteristics : String,

)
new_cluster : Cluster_designator

(2) CLUSTER_CREATE creates a new cluster new_cluster in the volume volume in which the
object on_same_volume_as resides.

(3) A new "known_cluster" link with key cluster_identifier is created from volume to new_cluster.

- 383 -

(4) access_mask is used in conjunction with the default atomic ACL and default object owner of the
calling process to define the atomic ACL and the composite ACL which are to be associated
with the created object (see 19.1.4).

(5) The confidentiality and integrity labels of cluster are respectively set to the confidentiality and
integrity labels of the mandatory context of the calling process.

(6) The "cluster_characteristics" attribute of new_cluster is set to cluster_characteristics.

(7) Write locks of the default mode are obtained on on_same_volume_as, on new_cluster, and on
the new "known_cluster" link.

Errors

(8) ACCESS_ERRORS (volume, ATOMIC, MODIFY, APPEND_LINKS)
(9) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)
(10) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(11) REFERENCE_CANNOT_BE_ALLOCATED
(12) CLUSTER_EXISTS (cluster_identifier, volume)

F.2.3.2 CLUSTER_DELETE

(1) CLUSTER_DELETE (
cluster : Cluster_designator

)

(2) CLUSTER_DELETE deletes the "known_cluster" link to cluster from the volume volume on
which cluster is residing. and then deletes cluster.

(3) Write locks (of the default kind) are obtained on cluster and the deleted cluster and the deleted
link.

Errors

(4) ACCESS_ERRORS (volume, ATOMIC, MODIFY, WRITE_LINKS)
(5) ACCESS_ERRORS (cluster, ATOMIC, CHANGE, WRITE_IMPLICIT)
(6) If the conditions hold for deletion of the "cluster" object cluster:

ACCESS_ERRORS (volume, ATOMIC, MODIFY, DELETE)
(7) CLUSTER_HAS_OTHER_LINKS (cluster)
(8) CLUSTER_IS_UNKNOWN (cluster)

F.2.3.3 CLUSTER_LIST_OBJECTS

(1) CLUSTER_LIST_OBJECTS (
cluster : Cluster_designator,
types : Object_type_nominators

)
objects : Object_designators

(2) CLUSTER_LIST_OBJECTS returns in objects a set of object designators determined by types.

(3) An object designator is returned in objects for each object which resides in cluster, whose type
in working schema is an element of types.

(4) A read lock of the default mode is obtained on cluster.

- 384 -

Errors

(5) ACCESS_ERRORS (cluster, ATOMIC, READ, READ_LINKS)
(6) REFERENCE_CANNOT_BE_ALLOCATED

F.3 Notification (see clause 15)

F.3.1 Notification concepts (see 15.1)

(1) Notifiers cannot be associated with fine-grain objects.

F.3.2 Notification operations affected by support of fine-grain objects (see 15.2)

F.3.2.1 NOTIFY_CREATE

(1) NOTIFY_CREATE (
notifier_key : Natural,
queue : Message_queue_designator,
object : Object_designator

)

New errors

(2) OBJECT_IS_FINE_GRAIN (object)

F.4 Concurrency and integrity control (see clause 16)

 (3) - The requested external lock mode is compatible with the external lock mode of other locks
obtained by concurrent activities.

(4) - The requested internal lock mode is compatible with the external lock mode of the child
activities.

(5) - The requested external lock mode is compatible with the internal lock mode of the parent
activity (if any).

(6) - If a read lock is already acquired by at least one different process running in the same activity
and the current process is performing an operation which requests a write lock, the lock
acquisition (such a request is a promotion from read to write for a coarse-grain object) is
delayed until the lock can be promoted to write and until all other processes which have made a
lock request, are terminated.

(7) - If a write lock is already acquired by one (and only one) different process running in the same
activity and the current process is performing an operation which requests a read or a write
lock acquisition on a fine-grain object (such a request is necessarily satisfied in case of a lock
on a coarse-grain object) , the lock acquisition is delayed until the process which made the
write lock request on the cluster, is terminated.

NOTES

(8) 1. It is intended that an implementation supports caching of fine-grain objects by loading in main memory all the
objects of a cluster. For performance reasons, it is intended that the loading of all the objects of a cluster is done in
the private user space of processes which need to access the objects.

(9) 2. The additional locking rules prevent two different processes running in the same activity from accessing the same
fine-grain objects and from performing concurrent non-synchronized updates on their caches. With these additional
locking rules, the loading of the cache is intended to happen as follows:

- 385 -

(10) - when an activity acquires a read lock on a cluster, all objects of the cluster are placed in a read-only cache stored
in the space of the process which is performing the operation causing the lock acquisition.

(11) - When an activity acquires a write lock on a cluster, all objects of the cluster are placed in a read-write cache
stored in the space of the process which is performing the operation causing the lock acquisition.

(12) - Several processes can have read-only caches on the same cluster.

(13) - Only one process can have a read-write cache on a cluster, at a given time.

(14) 3. It is intended that a process unloads a cache when the activity causing the cache to be loaded is ended or aborted. If
the activity commits, the cache has to be downloaded to the object base. If the activity is aborted, the cache must be
simply discarded, without updates in the object base.

(15) 4. Whenever this ECMA Standard or this amendment says 'a read/write lock of the default mode is obtained on an
object object' , if object is a fine-grain object this is implicitly equivalent to 'a read/write lock of the default mode is
obtained on the cluster in which object resides' as a consequence of the first rule above.

F.5 Replication (see clause 17)

F.5.1 Replication concepts (see 17.1)

(1) When a cluster is duplicated, all the fine-grain objects residing in the cluster are replicated.

(2) A fine-grain object cannot be replicated in isolation (i.e. the only way to duplicate it is by
duplicating its cluster).

F.5.2 Replication operations affected by support of fine-grain objects (see 17.2)

F.5.2.1 REPLICATED_OBJECT_CREATE

(1) REPLICATED_OBJECT_CREATE (
replica_set : Replica_set_designator,
object : Object_designator

)

New semantics

(2) If object is a cluster, its replicated state is set to MASTER.

New errors

(3) OBJECT_IS_FINE_GRAIN (object)

F.5.2.2 REPLICATED_OBJECT_DUPLICATE

(1) REPLICATED_OBJECT_DUPLICATE (
object : Object_designator,
volume : Administration_volume_designator,
copy_volume : Administration_volume_designator

)

New semantics

(2) If object is a cluster, then all the objects which reside in the cluster are replicated

- 386 -

F.5.2.3 REPLICATED_OBJECT_REMOVE

(1) REPLICATED_OBJECT_REMOVE (
object : Object_designator

)

New semantics

(2) If object is a cluster, its replicated state is set to NORMAL.

New errors

(3) OBJECT_IS_FINE_GRAIN (object)

F.6 Discretionary security (see clause 19)

F.6.1 Concepts of discretionary security (see 19.1)

(1) All fine-grain objects residing in a cluster have the same ACLs as the cluster.

F.6.2 Discretionary access control operations affected by support of fine-grain objects (see 19.2)

F.6.2.1 OBJECT_SET_ACL_ENTRY

(1) OBJECT_SET_ACL_ENTRY (
object : Object_designator,
group : Group_identifier,
modes : Atomic_access_rights,
scope : Object_scope

)

New semantics

(2) If object is a cluster, then the same ACL entry is added to the ACL of all objects residing in the
cluster.

New errors

(3) OBJECT_IS_FINE_GRAIN (object)

F.7 Mandatory security (see clause 20)

F.7.1 Mandatory security concepts (see 20.1)

(1) All fine-grain objects residing in a cluster have the same confidentiality and integrity labels as the
cluster.

F.7.2 Mandatory security operations affected by support of fine-grain objects (see 20.2)

F.7.2.1 OBJECT_SET_CONFIDENTIALITY_LABEL

(1) OBJECT_SET_CONFIDENTIALITY_LABEL (
object : Object_designator,
label : Security_label

)

- 387 -

New semantics

(2) If object is a cluster, then the same confidentiality label is set on all objects residing in the
cluster.

New errors

(3) OBJECT_IS_FINE_GRAIN (object)

F.7.2.2 OBJECT_SET_INTEGRITY_LABEL

(1) OBJECT_SET_INTEGRITY_LABEL (
object : Object_designator,
label : Security_label

)

New semantics

(2) If object is a cluster, then the same confidentiality label is set on all objects residing in the
cluster.

New errors

(3) OBJECT_IS_FINE_GRAIN (object)

F.8 Auditing (see clause 21)

 (1) Operations on fine-grain objects do not produce auditable events.

- 388 -

- 389 -

Annex G
(normative)

The object-orientation module

(1) This annex defines the object-orientation module in terms of some additions to the predefined
SDSs metasds and system, additional error conditions, some new operations, and additional
semantics to one operation.

G.1 Extensions to the foundation (see clause 8)

G.1.1 Additional classes of types (see 8.3)

G.1.1.1 New type classes

(1) Type = Object_type | Attribute_type | Link_type | Enumeral_type | Interface_type |
Operation_type | Parameter_type

(2) Type_nominator = Object_type_nominator | Attribute_type_nominator | Link_type_nominator |
Enumeral_type_nominator | Interface_type_nominator | Operation_type_nominator |
Parameter_type_nominator

(3) Interface_type_nominator :: Token

(4) Interface_type_nominators = set of Interface_type_nominator

(5) Interface_scope = NO_OPERATION | ALL_OPERATION

(6) Operation_type_nominator :: Token

(7) Operation_type_nominators = set of Operation_type_nominator

(8) Parameter_type_nominator :: Token

(9) Data_parameter_type_nominator = Parameter_type_nominator

(10) Operation_parameter_type_nominator = Parameter_type_nominator

(11) Interface_parameter_type_nominator = Parameter_type_nominator

(12) Parameter_type_nominators = seq of Parameter_type_nominator

(13) The datatypes Type and Type_nominator are extended to include the new datatypes
Interface_type, Operation_type, and Parameter_type, and their corresponding type nominator
datatypes, respectively. Data parameter type nominators, operation parameter type nominators,
and interface parameter type nominators denote data parameter types, operation parameter types,
and interface parameter types respectively (see G.3.1).

G.1.1.2 Interface types

(1) Interface_type ::
TYPE_NOMINATOR : Interface_type_nominator
OPERATION_TYPES : Operation_type_nominators
PARENT_INTERFACES : Interface_type_nominators
CHILD_INTERFACES : Interface_type_nominators

represented by interface_type

(2) The parent interfaces define the inheritance rules governing the ability of an object type to
support a given interface. The operations supported by an object type supporting an interface are

- 390 -

the operations of that interface and of all its ancestor interfaces, where the ancestor interfaces of
an interface are the parent interfaces of that interface, their parent interfaces, and so on, excluding
the interface itself.

(3) The child interfaces are the interfaces which have that interface as parent interface. The child
interfaces of an interface, their child interfaces, and so on, excluding the interface itself, are called
the descendant interfaces of that interface.

(4) The parent-interface/child-interface relation between interfaces forms a directed acyclic graph.

(5) The 'operation types' operation types are the operations that can be invoked on an object of an
object type supporting that interface.

G.1.1.3 Operation types

(1) Operation_type ::
TYPE_NOMINATOR : Operation_type_nominator
USED_IN_INTERFACE : Interface_type_nominators
PARAMETERS : seq of (Parameter_type_nominator * Parameter_mode)
KIND : Operation_kind
RETURN_VALUE : Parameter_type_nominator

represented by operation_type

(2) Parameter_mode = IN | OUT | INOUT

(3) Operation_kind = NORMAL_CALL | ONEWAY_CALL

(4) The 'used in interface' interface types are the interface types for which this operation type is
among the operation types.

(5) The sequence 'parameters' is the sequence of parameter types and modes of parameters that are
passed during an invocation. The parameter mode specifies whether the parameter value is
passed from the caller to the operation only (IN), from the operation to the caller only (OUT), or
both ways (INOUT).

(6) The kind is NORMAL_CALL if an operation of this type is expected to return a value after the
execution of the method associated with the operation completes, and ONEWAY_CALL
otherwise.

(7) The return value is the parameter type of an extra out parameter that is returned by an invocation.

G.1.1.4 Parameter types

(1) Parameter_type ::
TYPE_NOMINATOR : Parameter_type_nominator
PARAMETER_TYPE_IDENTIFIER : Attribute_type_nominator | Interface_type_nominator |

Object_type_nominator
represented by parameter_type

(2) The parameter type identifier constrains the datatype of parameters of the parameter type to be
the value type of the attribute type, an object type supporting the interface type, or the object
type, respectively.

- 391 -

G.1.2 Types in SDS (see 8.4)

G.1.2.1 New type in SDS classes

(1) Type_in_sds = Object_type_in_sds | Attribute_type_in_sds | Link_type_in_sds |
Enumeral_type_in_sds | Interface_type_in_sds | Operation_type_in_sds |
Parameter_type_in_sds

(2) Type_nominator_in_sds = Object_type_nominator_in_sds | Attribute_type_nominator_in_sds |
Link_type_nominator_in_sds | Enumeral_type_nominator_in_sds |
Interface_type_nominator_in_sds | Operation_type_nominator_in_sds |
Parameter_type_nominator_in_sds

(3) Interface_type_nominator_in_sds :: Token

(4) Interface_type_nominators_in_sds = set of Interface_type_nominator_in_sds

(5) Operation_type_nominator_in_sds :: Token

(6) Operation_type_nominators_in_sds = set of Operation_type_nominator_in_sds

G.1.2.2 Interface types in SDS

(1) Interface_type_in_sds :: Type_in_sds_common_part &&
APPLIED_OBJECT_TYPES : Object_type_nominators_in_sds
APPLIED_OPERATIONS : Operation_type_nominators_in_sds

represented by interface_type_in_sds

(2) The applied object types are the object types that support the interface, i.e. of which instances can
be used as the controlling objects of an invocations.

(3) The applied operations are the operations of the associated interface type that are visible.

G.1.2.3 Operation types in SDS

(1) Operation_type_in_sds :: Type_in_sds_common_part

G.1.3 Method invocation

(1) Parameter_item :: Attribute_value | Object_designator

(2) Parameter_items = seq of Parameter_item

(3) Method_request ::
TARGET_OBJECT : Object_designator
OPERATION_ID : Operation_type_nominator
PARAMETERS : Parameter_items
CONTEXT : Object_designator

(4) Method_requests = seq of Method_request

(5) Context_adoption = ADOPT_WORKING_SCHEMA | ADOPT_ACTIVITY | ADOPT_USER |
ADOPT_OPEN_OBJECTS | ADOPT_REFERENCE_OBJECTS | ADOPT_ALL

(6) Context_adoptions = set of Context_adoption

(7) Method_request_id :: Token

(8) Method_request_ids = seq of Method_request_id

- 392 -

(9) Methods are invoked synchronously, but the synchronization may be deferred so that the
requesting process does not wait immediately. Each invocation is described by a method request.
A method request has the following properties:

(10) - a target object which is the controlling object of the request;

(11) - an operation id(entifier) that specifies the operation being invoked;

(12) - a sequence of parameters that specifies the sequence of parameter items required by the
operation's definition;

(13) - a context that specifies where contextual information is held; the contextual information is
implementation-defined and is used to determine the methods for the request or passed as
required by the operation's definition.

(14) When an operation is performed, the corresponding request is assigned a set of context adoptions
that specify which parts of the invoking process's current context may be adopted by the method
for the request:

(15) - ADOPT_WORKING_SCHEMA: the method may adopt the current working schema of the
invoking process.

(16) - ADOPT_ACTIVITY: the method may adopt the current activity of the invoking process.

(17) - ADOPT_USER: the method may adopt the security context of the invoking process.

(18) - ADOPT_OPEN_OBJECTS: the method has access to the same set of open objects as the
invoking process.

(19) - ADOPT_REFERENCE_OBJECTS: the method has access to the same set of reference object
as the invoking process.

(20) - ADOPT_ALL: the method has the same context as the invoking process.

(21) When an operation is performed, the corresponding request is assigned a method request
id(entifier), which may be used to determine the completion status of the request.

(22) NOTE - Adopting a context is similar to starting a child process which adopts certain properties of the calling
process.

G.2 Object-oriented invocation management

G.2.1 Invocation concepts

G.2.1.1 Datatypes for modules

(1) sds system:

(2) exec_class_name: string ;

(3) operation_id: (read) string ;

(4) exploits: (navigate) designation link (name) to sds;

- 393 -

(5) tool: child type of object with
link

external_component_of: (navigate) reference link (number) to tool reverse
external_component;

executable: (navigate) reference link (exec_class_name) to static_context reverse
implementing_tool;

exploits;
has_map: (navigate) reference link (number) to method_selection reverse map_used_by;

component
external_component: (navigate) composition link (number) to tool reverse

external_component_of;
internal_component: (navigate) composition link (number) to module reverse

internal_component_of;
end tool;

(6) module: child type of object with
link

internal_component_of: (navigate) reference link (number) to tool reverse
internal_component;

exploits;
linkable: (navigate) reference link (exec_class_name) to linkable_library reverse linkable_to;

end module;

(7) linkable_library: child type of file with
link

linkable_to: implicit link (system_key) to module reverse linkable;
end linkable_library;

(8) end system;

(9) This part of the data model describes how tools and the methods they implement are represented
and stored in the object base. This model is used to activate a specific method selected using the
method mapping that connects the interfaces with the methods.

(10) An exec[ution] class name is a string uniquely identifying an execution class.

(11) An operation id[entifier] is used in the key of a "realized_by" link (see 9.1.2) to denote an
operation.

(12) A tool is an executable program making use of the PCTE facilities. It is a composite object each
of whose components is a tool or a module supporting part of the functionality of the tool.

(13) The destination of an "executable" link from a tool is an executable static context implementing
the tool, keyed by the execution class name of the execution class of the workstations where the
static context may be executed.

(14) The destinations of the "has_map" links from a tool constitute a set of method selections for use
by the tool in resolving an invocation or a request to execute a method (see below).

(15) A module is a component of a tool that can be loaded and executed by the operating system.

(16) The destination of a "linkable" link from a module is a linkable library implementing the
module, keyed by the execution class name of the execution class of the workstations where the
linkable library may be loaded.

(17) The destinations of the "exploits" links from a tool or a module constitute a set of SDSs whose
definitions were bound into the code of the tool module(s) at some time in order to interface
with the object-oriented invocation management in a static rather than a dynamic way.

- 394 -

(18) A linkable library is a file containing information that can be linked by the operating system to
produce a module.

G.2.1.2 Datatypes for method mapping

(1) sds system:

(2) method_selection: child type of file with
link

realized_by: (navigate) reference link (number; operation_id; type_identifier) to
method_actions reverse realizes;

map_used_by: (navigate) implicit link (system_key) to tool reverse has_map;
end method_selection;

(3) method_actions: child type of file with
link

implemented_by: (navigate) designation link (number) to tool, module;
realizes: (navigate) implicit link (system_key) to method_selection reverse realized_by;

end method_actions;

(4) dispatching_context: child type of file;

(5) extend object type process with
link

has_dispatching_context: (navigate) designation link to dispatching_context;
end process;

(6) extend object type static_context with
link

implementing_tool: (navigate) implicit link to tool reverse executable;
end static_context;

(7) end system;

(8) This part of the data model describes how an operation is mapped into a specific method: this
can depend on many factors, e.g. platform type, user context preferences, or user role.

(9) A "method_selection" object represents a ternary relationship that connects operations (the
destinations of the "uses_operation" links), object types (the destinations of the "uses_object"
links), and the method actions that realize the operation for that object type (the destinations of
the "realized_by" links). (For "uses_operation" and "uses_object" see G.3.1.)

(10) The destination of the "realized_by" link is a "method_actions" object, which describes a set of
methods to be activated in response to an operation request. The keys operation_id and
type_identifier represent respectively the operation and the object type to which the method is
connected, and an additional key number is used to select multiple realizations according to the
method selection and the dispatching context. How the links from a method selection to a
"method_actions" object are chosen is implementation-defined.

(11) The destinations of the "implemented_by" links from a "method_actions" object are tools and
modules whose methods are to be activated, in an implementation-defined order.

(12) A dispatching context holds the information needed to resolve an operation mapping.

NOTES

(13) 1. The model is intended to provide a common basis to implement a generic mapping and is expected that each
implementor may extend this model to support specific needs of its method of the object-orientation services. The
data model should remain general enough to allow different styles of mapping.

- 395 -

(14) A dispatching context may resolve, among other things, the platform and the host where the invocation should be
executed or the kind of tool class requested by the user (e.g. preferences over an editor).

(15) 2. Table 13 is an example of a possible method selection. The table is contained inside the "method_selection"
object contents and is used to select the method according to the attributes specified by the user during the
invocation or inside the invocation context.

(16) 3. The two first fields and the last correspond to the keys of the "realized_by" link.

Table 13 - Example of a method selection

Operation id Type identifier Attribute_1 Attribute_n Number

123 555 "user" "Platform_1" 1

345 666 - "Platform_2" 2

789 777 "system" "Platform_3" 3

G.2.2 Invocation operations

G.2.2.1 PROCESS_ADOPT_CONTEXT

(1) PROCESS_ADOPT_CONTEXT (
context_adoptions : Context_adoptions

)

(2) PROCESS_ADOPT_CONTEXT changes invoked parts of the current process's context to
match those of the process whose request is being serviced. No part of the requesting process's
context may be adopted unless permitted by the "context_adoptions" part of the request. When
the method action which performed the context adoption returns, the changed parts of the
current process's context return to their prior values.

(3) - If ADOPT_WORKING_SCHEMA is specified among the context adoptions, then the
working schema of the current process is changed.

(4) - If ADOPT_ACTIVITY is specified among the context adoptions, then the activity of the
process is changed.

(5) - If ADOPT_USER is specified among the context adoptions, then the current user of the
current process is changed.

(6) - If ADOPT_OPEN_OBJECTS is specified, then the current opened objects of the current
process are changed.

(7) - If ADOPT_REFERENCE_OBJECTS is specified, then the current object references of the
current process are changed.

(8) - If ADOPT_ALL is specified, then the current context of the current process is set to that of
the invoking process.

Errors

(9) For each SDS sds which is adopted by the current process from the new context adoption:
ACCESS_ERRORS (sds, ATOMIC, SYSTEM_ACCESS)

(10) For each open object object which is adopted by the current process from the new context
adoption:

ACCESS_ERRORS (object, ATOMIC, SYSTEM_ACCESS)

- 396 -

(11) For activity activity which is adopted by the current process from the new context adoption:
ACCESS_ERRORS (activity, ATOMIC, SYSTEM_ACCESS)

(12) For user user which is adopted by the current process from the new context adoption:
ACCESS_ERRORS (user, ATOMIC, SYSTEM_ACCESS)

(13) For group group which is adopted by the current process from the new context adoption:
ACCESS_ERRORS (group, ATOMIC, SYSTEM_ACCESS)

G.2.2.2 REQUEST_INVOKE

(1) REQUEST_INVOKE (
request : Method_request,
context_adoptions : Context_adoptions,

)
request_id : Method_request_id

(2) REQUEST_INVOKE invokes the methods for the method request request and returns execution
control when they have completed. It returns a unique method request identifier request_id for
use in determining completion status.

(3) A "method_selection" object is selected which is the destination of a "has_map" link from the
current tool. How the current tool and the key of the "has_map" link are determined is
implementation-defined.

(4) The object type, operation identifier, and context of request are used to determine the key of a
"realized_by" link from the method selection to a "method_actions" object.

(5) The "methods_actions" object determines one or more method actions to be performed and
controls the order and resolution of the actions, and the manner in which the parameter lists for
the actions are formed. The destination of the corresponding "implemented_by" link from the
"methods_actions" object is either a module or a tool.

(6) If the method action is to take place in a module within the invoking process and the module is
already loaded, then execution control is transferred directly to the method action.

(7) If the method action is to take place in a module within the invoking process which is not
already loaded, the module is loaded and execution control is transferred directly to the method
action.

(8) If the method action is to take place in a tool requiring another PCTE process (the target tool),
then the request and context adoption information is delivered to the target tool.

(9) If the target tool is already executing, then the execution control is transferred directly to the
method action in that process.

(10) If the tool is not already executing, then a new process is created immediately or at a later time.
If the new process is to be started, it is started within the invoking process's space by way of a
PROCESS_CREATE_AND_START. The new process inherits the invoking process's context,
including working schema, activity, and user. When that process is started, the information is
made available using the ACCEPT_REQUESTS operation. Then execution control is
transferred directly to the method action in that process.

(11) If the tool is not already executing, a new process is created for it by way of some intermediate
agent, immediately or at a later time. The intermediate agent transfers the request to the process.
When that process is started, the information is made available using the ACCEPT_REQUESTS
operation. Then execution control is transferred directly to the method action in that process.

- 397 -

NOTES

(12) 1. It is expected that the language bindings for this operation will yield the same language base code as is obtained
for the corresponding operation defined in the Request Broker, with the context adoption information being passed
within the request broker 'context'.

(13) 2. The actual object type is used for determination of the "method_actions" object from the method selection even
if not visible in the invoking process's working schema.

(14) 3. The manner in which object type, operation type, and context information are combined to determine the
'realization key' may vary and may employ information stored in the "method_selection" object or its contents.

(15) 4. The method action may take place in a non-PCTE process, but the semantics is not specified by this Standard.

(16) 5. The formation of parameter lists and the manner of passing control to a method action in a process may vary and
is analogous to the processing performed by the object-adapter skeleton introduced in the Common Object Request
Broker. This process may employ information stored in the "method_actions" object or its contents.

(17) 6. The way in which the request and the context information is passed to the target object is implementation-
defined.

Errors

(18) NUMBER_OF_PARAMETERS_IS_WRONG (operation_id)
(19) TYPE_OF_PARAMETER_IS_WRONG (operation_id, parameter item from parameters of

request)
(20) OPERATION_METHOD_CANNOT_BE_FOUND (operation_id)
(21) OPERATION_METHOD_CANNOT_BE_ACTIVATED (operation_id)

G.2.2.3 REQUEST_SEND

(1) PCTE_REQUEST_SEND (
request : Method_request,
context_adoptions : Context_adoptions,

)
request_id : Method_request_id

(2) REQUEST_SEND causes the methods for the request request to be executed as for
REQUEST_INVOKE except that it may return execution control before they have begun.

Errors

(3) NUMBER_OF_PARAMETERS_IS_WRONG (operation_id)
(4) TYPE_OF_PARAMETER_IS_WRONG (operation_id, parameter_item)
(5) OPERATION_METHOD_CANNOT_BE_FOUND (operation_id)
(6) OPERATION_METHOD_CANNOT_BE_ACTIVATED (operation_id)

G.2.2.4 REQUEST_SEND_MULTIPLE

(1) REQUEST_SEND_MULTIPLE (
requests : Method_requests,
context_adoptions : Context_adoptions,

)
request_ids : Method_request_ids

(2) REQUEST_SEND_MULTIPLE causes the methods for each request of requests to be executed
as for REQUEST_SEND, employing the same context adoptions for all requests, and returning a
unique request identifier in the corresponding position of request_ids.

- 398 -

Errors

(3) NUMBER_OF_PARAMETERS_IS_WRONG (operation_id)
(4) TYPE_OF_PARAMETER_IS_WRONG (operation_id, parameter_item)
(5) OPERATION_METHOD_CANNOT_BE_FOUND (operation_id)
(6) OPERATION_METHOD_CANNOT_BE_ACTIVATED (operation_id)

G.3 Object-oriented schema management

G.3.1 Datatypes for interface definition

(1) sds metasds:

(2) import object type method_selection;

(3) extend object type object_type with
link

obj_used_in_map: (navigate) implicit link (system_key) to method_selection reverse
uses_object;

end object_type;

(4) interface_type: child type of type with
link

parent_interface: (navigate) reference link (number) to interface_type reverse
child_interface;

child_interface: (navigate) implicit link (system_key) to interface_type reverse
parent_interface;

has_operation: (navigate) reference link (uuid: string) to operation_type reverse
used_in_interface;

end interface_type;

(5) operation_type: child type of type with
attribute

operation_kind: (read) enumeration (NORMAL_CALL, ONEWAY_CALL) := NORMAL_CALL;
link

used_in_interface: (navigate) implicit link (system_key) to interface_type reverse
has_operation;

has_parameter: (navigate) reference link (position: natural ; name) to parameter_type
reverse parameter_of with

attribute
parameter_mode: (read) enumeration (IN, OUT, INOUT) := IN;

end has_parameter;
has_return_value: (navigate) reference link to parameter_type reverse return_value_of;
op_used_in_map: (navigate) implicit link (system_key) to method_selection reverse

uses_operation;
end operation_type;

(6) parameter_type: child type of type with
link

parameter_of: (navigate) implicit link (system_key) to operation_type reverse
has_parameter;

return_value_of: (navigate) implicit link (system_key) to operation_type reverse
has_return_value;

end parameter_type;

- 399 -

(7) data_parameter_type: child type of parameter_type with
link

constrained_to_attribute_type: (navigate) reference link to attribute_type;
end data_parameter_type;

(8) interface_parameter_type: child type of parameter_type with
link

constrained_to_interface_type: (navigate) reference link to interface_type;
end interface_parameter_type;

(9) object_parameter_type: child type of parameter_type with
link

constrained_to_object_type: (navigate) reference link to object_type;
end object _parameter_type;

(10) extend object type object_type_in_sds with
link

supports_interface: (navigate) reference link (name) to interface_type_in_sds reverse
applies_to;

end object_type_in_sds;

(11) interface_type_in_sds: child type of type_in_sds with
link

applies_to: (navigate) implicit link (type_identifier) to object_type_in_sds reverse
supports_interface;

in_operation_set: (navigate) reference link (number; name) to operation_type_in_sds
reverse is_operation_of;

end interface_type_in_sds;

(12) operation_type_in_sds: child type of type_in_sds with
link

is_operation_of: (navigate) implicit link (system_key) to interface_type reverse
in_operation_set;

end operation_type_in_sds;

(13) extend object type method_selection with
link

uses_operation: (navigate) reference link (number) to operation_type reverse
op_used_in_map;

uses_object: (navigate) reference link (number) to object_type reverse obj_used_in_map;
end method_selection;

(14) end metasds;

(15) This part of the data model is used to define the characteristics of an interface (inheritance,
operations, signature, etc.) used at run-time to determine if an invocation is syntactically
acceptable (e.g. if the correct number and type of parameters have been passed). Figure 2.1 of
annex D gives an overview of the data model, with the new object types, link types and attribute
types.

(16) The interfaces are represented by new types "interface_type" and "interface_type_in_sds". An
interface type has the following properties:

(17) - The parent interfaces are the interfaces from which an interface can inherit operations.

(18) - The destinations of the "has_operation" links are the operations supported by the interface
type. The key is an implementation-defined unique identifier.

(19) An interface type in SDS has the following properties:

(20) - The destinations of the "applies_to" links are the visible object types supporting this interface;

- 400 -

(21) - The destinations of the "in_operation_set" links are the operations of the interface. The two
keys of the link type are the local operation name and an increasing integer identifier, used to
disambiguate operations in case of overloading.

(22) Operations are represented by new types "operation_type" and "operation_type_in_sds". An
operation type has the following properties:

(23) - The operation kind is used to define if the operation must return values or not; see 8.4).

(24) - The destinations of the "has_parameter" links are the parameter types that constitutes the
operation signature (excluding the return value). For the parameter mode see 8.4.

(25) - The destinations of the "has_return_value" link is the return value of the operation.

(26) Parameter types are represented by new type "parameter_type", which is specialized to
"data_parameter_type", "interface_parameter_type", and "object_parameter_type". The value of
a parameter of a data parameter type must be a value of the value type of the destination of the
"constrained_to_attribute_type" link. The value of a parameter of an interface parameter type
must be an object of an object type that supports the destination of the
"constrained_to_interface_type" link. The value of a parameter of an object parameter type must
be an object of the object type that is the destination of the "constrained_to_object_type" link.

(27) The type "object_type_in_sds" is extended by the "supports_interface" link type; the destinations
of these links are the interfaces that are supported by the origin object type.

G.3.2 New SDS operations

G.3.2.1 SDS_APPLY_INTERFACE_TYPE

(1) SDS_APPLY_INTERFACE_TYPE (
sds : Sds_designator,
interface_type : Interface_type_nominator_in_sds
type : Object_type_nominator_in_sds

)

(2) SDS_APPLY_INTERFACE_TYPE extends the object type type by the application of the
interface type interface_type in the SDS sds.

(3) An "supports_interface" link and its reverse "applies_to" link are created between the type in
SDS type_in_sds associated with type in sds and the interface type in SDS interface_type_in_sds
associated with interface_type in sds.

(4) Neither the application of this link nor the notion of its existence is inherited by the child type of
type.

(5) Write locks of the default mode are obtained on the created links.

Errors

(6) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (interface_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(8) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(10) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(11) SDS_IS_UNKNOWN (sds)
(12) TYPE_IS_ALREADY_APPLIED (sds,interface_type,type)

- 401 -

(13) TYPE_IS_UNKNOWN_IN_SDS (sds, interface_type)
(14) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

G.3.2.2 SDS_APPLY_OPERATION_TYPE

(1) SDS_APPLY_OPERATION_TYPE(
sds : Sds_designator,
operation_type : Operation_type_nominator_in_sds,
type : Interface_type_nominator_in_sds

)

(2) SDS_APPLY_OPERATION_TYPE extends the interface type type by the application of the
operation type operation_type in the SDS sds.

(3) An "in_operation_set" link and its reverse "is_operation_of" link are created between the type in
SDS type_in_sds associated with type in sds and the operation type in SDS
operation_type_in_sds associated with operation_type in sds.

(4) In addition an "has_operation " link is created between type and operation_type, together with
its reverse "used_in_interface" link, unless this link has already been applied to one of the
ancestors of type.

(5) Write locks of the default mode are obtained on the created links.

Errors

(6) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (operation_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(8) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(9) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(10) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(11) SDS_IS_UNKNOWN (sds)
(12) TYPE_IS_ALREADY_APPLIED (sds,attribute_type,type)
(13) TYPE_IS_UNKNOWN_IN_SDS (sds, attribute_type)
(14) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

G.3.2.3 SDS_CREATE_DATA_PARAMETER_TYPE

(1) SDS_CREATE_DATA_PARAMETER_TYPE(
sds : Sds_designator,
local_name : [Name],
data_type : Attribute_type_nominator

)
new_parameter : Data_parameter_type_nominator

(2) SDS_CREATE_DATA_PARAMETER_TYPE creates a new parameter that is bound to support
the data type data_type.

(3) The operation creates a "constrained_to_data_type" link from new_parameter to data_type.

Errors

(4) ACCESS_ERRORS (local_name, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (data_type, ATOMIC, MODIFY, APPEND_LINKS)

- 402 -

(6) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(8) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(9) SDS_IS_UNKNOWN (sds)
(10) TYPE_IS_ALREADY_CONSTRAINED (sds, data_type)
(11) TYPE_IS_UNKNOWN_IN_SDS (sds, data_type)

G.3.2.4 SDS_CREATE_INTERFACE_PARAMETER_TYPE

(1) SDS_CREATE_INTERFACE_PARAMETER_TYPE (
sds : Sds_designator,
local_name : [Name],
interface_type : Interface_type_nominator

)
new_parameter : Interface_parameter_type_nominator

(2) SDS_CREATE_INTERFACE_PARAMETER_TYPE creates a new parameter that is bound to
support the interface type interface_type.

(3) The operation creates a "constrained_to_interface_type" link from new_parameter to
interface_type.

Errors

(4) ACCESS_ERRORS (local_name, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (interface_type, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(8) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(9) SDS_IS_UNKNOWN (sds)
(10) TYPE_IS_ALREADY_CONSTRAINED (sds, interface_type)
(11) TYPE_IS_UNKNOWN_IN_SDS (sds, interface_type)

G.3.2.5 SDS_CREATE_INTERFACE_TYPE

(1) SDS_CREATE_INTERFACE_TYPE(
sds : Sds_designator,
local_name : [Name],
parents : Interface_type_nominators_in_sds,
new_operations : Operation_type_nominators_in_sds

)
new_interface : Interface_type_nominator_in_sds

(2) SDS_CREATE_INTERFACE_TYPE creates a new interface type new_interface and its
associated interface type in SDS new_interface_in_sds in the SDS sds.

(3) The type identifier of new_interface is set to an implementation-defined value which identifies
the interface within a PCTE installation.

(4) The operation creates a "definition" link from sds to new_interface_in_sds; the key of the link is
the system-assigned type identifier of new_interface. The operation also creates an "of_type"
link from new_interface_in_sds to new_interface.

- 403 -

(5) If local_name is supplied, a "named_definition" link is created from sds to
new_interface_in_sds with local_name as key, together with its reverse "named_in_sds" link.
"parent_interface" links are created from new_interface to each of parents, together with their
reverse "child_interface" link.

(6) The three definition mode attributes of new_interface_in_sds are set to 1, representing
CREATE_MODE, and its creation and importation time is set to the system time. If
local_name is supplied, the annotation of new_interface_in_sds is set to the complete name of
the created interface; otherwise it is set to the empty string.

(7) The new objects reside in the same volume as sds. Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(9) An "in_operation_set" link is created from new_interface_in_sds to each operation type in SDS
of new_operations, with key composed of the local name of the operation type in SDS and a
number initially 1 and incremented by 1 for each link.

(10) A "has_operation" link is created from interface_type to operation_type, with a system
generated key.

(11) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

(12) ACCESS_ERRORS (elements of parents, ATOMIC, CHANGE, APPEND_IMPLICIT)
(13) ACCESS_ERRORS (elements of new_operations, ATOMIC, CHANGE, APPEND_IMPLICIT)
(14) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(15) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_interface_in_sds)

(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(17) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(18) SDS_IS_UNKNOWN
(19) TYPE_IS_UNKNOWN_IN_SDS (sds, element of parents)
(20) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(21) TYPE_NAME_IS_INVALID (local_name)

G.3.2.6 SDS_CREATE_OBJECT_PARAMETER_TYPE

(1) SDS_CREATE_OBJECT_PARAMETER_TYPE (
sds : Sds_designator,
local_name : [Name],
object_type : Object_type_nominator

)
new_parameter : Object_parameter_type_nominator

(2) SDS_CREATE_OBJECT_PARAMETER_TYPE creates a new parameter that is bound to
support the object type object_type.

- 404 -

(3) The operation creates a "constrained_to_object_type" link from new_parameter to object_type.

Errors

(4) ACCESS_ERRORS (local_name, ATOMIC, MODIFY, APPEND_LINKS)
(5) ACCESS_ERRORS (object_type, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(7) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(8) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(9) SDS_IS_UNKNOWN (sds)
(10) TYPE_IS_ALREADY_CONSTRAINED (sds, object_type)
(11) TYPE_IS_UNKNOWN_IN_SDS (sds, object_type)

G.3.2.7 SDS_CREATE_OPERATION_TYPE

(1) SDS_CREATE_OPERATION_TYPE(
sds : Sds_designator,
local_name : [Name],
parameters : Parameter_type_nominators,
return_value : Parameter_type_nominator

)
new_operation : Operation_type_nominator_in_sds

(2) SDS_CREATE_OPERATION_TYPE creates a new operation type new_operation and its
associated operation type in SDS new_operation_in_sds in the SDS sds.

(3) The type identifier of new_operation is set to an implementation-defined value which identifies
the interface within a PCTE installation.

(4) The operation creates a "definition" link from sds to new_operation_in_sds; the key of the link
is the system-assigned type identifier of new_operation. The operation also creates an "of_type"
link from new_operation_in_sds to new_operation.

(5) If local_name is supplied, a "named_definition" link is created from sds to
new_operation_in_sds with local_name as key, together with its reverse "named_in_sds" link.

(6) The three definition mode attributes of new_operation_in_sds are set to 1, representing
CREATE_MODE, and its creation and importation time is set to the system time. If
local_name is supplied, the annotation of new_operation_in_sds is set to the complete name of
the created operation; otherwise it is set to the empty string.

(7) The new objects reside in the same volume as sds. Their ACLs are built using the default
atomic ACL and the default object owner of the calling process, and their confidentiality labels
and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(8) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact_identifier of the object.

(9) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

(10) The operation creates a "has_parameter" link from the operation new_operation to each of the
parameters in the parameters sequence. The key of each link is the position in the sequence and
an implementation-defined name of the parameter type.

- 405 -

Errors

(11) ACCESS_ERRORS (elements of parameters, ATOMIC, CHANGE, APPEND_IMPLICIT)
(12) ACCESS_ERRORS (return_value, ATOMIC, CHANGE, APPEND_IMPLICIT)
(13) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
(14) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_operation_in_sds)

(15) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(16) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(17) SDS_IS_UNKNOWN (sds)
(18) TYPE_NAME_IN_SDS_IS_DUPLICATE (sds, local_name)
(19) TYPE_NAME_IS_INVALID (local_name)

G.3.2.8 SDS_IMPORT_INTERFACE_TYPE

(1) SDS_IMPORT_INTERFACE_TYPE(
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Interface_type_nominator_in_sds,
local_name : [Name],
import_scope : Interface_scope

)

(2) SDS_IMPORT_INTERFACE_TYPE imports the interface type type from the SDS from_sds to
the SDS to_sds.

(3) The importation of an interface type implies the implicit importation of all its ancestor types if
not already in to_sds. The operations applied to the explicitly or implicitly imported types are
not imported, nor is the notion of their application, unless import_scope is set to
ALL_OPERATIONS. The interfaces implicitly imported do not have a local name assigned to
them within to_sds.

(4) The importation of an interface type (either implicitly or explicitly) results in the creation of an
interface type in SDS in to_sds with a "definition" link from to_sds whose key is the type
identifier of the imported type. An "of_type" link from the new interface type in SDS to the
imported type and its reverse "has_type_in_sds" link are created.

(5) If local_name is supplied, or if the imported type has a name in the originating SDS, a
"named_definition" link is created from to_sds to the new interface type in SDS associated with
type, together with its reverse "named_in_sds" link. The key of the "named_definition" link is
local_name if supplied, otherwise it is the local name of type in from_sds.

(6) Each of the three definition mode attributes of each new type in SDS is set to the export mode
for the corresponding type in SDS in from_sds.

(7) The creation or importation time of each new type in SDS is set to the system time.

(8) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS in from_sds.

(9) The new types in SDS reside in the same volume as to_sds. Their access control lists are built
using the default atomic ACL and the default object owner of the calling process, and their

- 406 -

confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(10) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(11) Read locks of the default mode are obtained on the types in SDS in from_sds. Write locks of the
default mode are obtained on the new types in SDS and links, except the new
"object_on_volume" links.

Errors

(12) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(13) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(14) ACCESS_ERRORS (interface type in SDS associated with type in from_sds, ATOMIC, READ,

EXPLOIT_SCHEMA)
(15) ACCESS_ERRORS (an imported type, ATOMIC, CHANGE, APPEND_IMPLICIT)
(16) For each ancestor interface type A of type not already present in to_sds:

ACCESS_ERRORS (A, ATOMIC, CHANGE, APPEND_IMPLICIT)
(17) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)
(18) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(19) SDS_IS_UNKNOWN (to_sds)
(20) SDS_IS_UNKNOWN (from_sds)
(21) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(22) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(23) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)
TYPE_NAME_IS_INVALID (local_name)

G.3.2.9 SDS_IMPORT_OPERATION_TYPE

(1) SDS_IMPORT_OPERATION_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Operation_type_nominator_in_sds,
local_name : [Name]

)

(2) SDS_IMPORT_OPERATION_TYPE imports the operation type type from the SDS from_sds to
the SDS to_sds.

(3) The operation creates an operation type in SDS type_in_sds in to_sds associated with type. For
each of the created types in SDS a "definition" link is created from to_sds whose key is the type
identifier of the associated type.

(4) An "of_type" link from each new type in SDS to its associated type and its reverse
"has_type_in_sds" link are created.

(5) If local_name is supplied, or if type has a local name in from_sds, a "named_definition" link
from to_sds to type_in_sds and its reverse "named_in_sds" link are created. The key of the

- 407 -

"named_definition" link is local_name if supplied, otherwise it is the local name of type in
from_sds.

(6) Each of the three definition mode attributes of type_in_sds is set to the export mode for the
corresponding type in SDS in from_sds.

(7) The creation or importation time of each new type in SDS is set to the system time.

(8) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS in from_sds.

(9) The new types in SDS reside in the same volume as to_sds. Their access control lists are built
using the default atomic ACL and the default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(10) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact_identifier of the object.

(11) Read locks of the default mode are obtained on the types in SDS in from_sds. Write locks of the
default mode are obtained on the new types in SDS and links, except the new
"object_on_volume" links.

Errors

(12) ACCESS_ERRORS (from_sds, ATOMIC, READ, NAVIGATE)
(13) ACCESS_ERRORS (to_sds, ATOMIC, MODIFY, APPEND_LINKS)
(14) ACCESS_ERRORS (operation type in SDS associated with type in from_sds, ATOMIC,

READ, EXPLOIT_SCHEMA)
(15) ACCESS_ERRORS (an imported type, ATOMIC, CHANGE, APPEND_IMPLICIT)
(16) If sds has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type_in_sds)
(17) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(18) SDS_IS_IN_A_WORKING_SCHEMA (to_sds)
(19) SDS_IS_UNKNOWN (to_sds)
(20) SDS_IS_UNKNOWN (from_sds)
(21) TYPE_IS_ALREADY_KNOWN_IN_SDS (type, to_sds)
(22) If local_name is supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local_name)
(23) If local_name is not supplied:

TYPE_NAME_IN_SDS_IS_DUPLICATE (to_sds, local name of type in from_sds)
TYPE_IS_UNKNOWN_IN_SDS (from_sds, type)
TYPE_NAME_IS_INVALID (local_name)

G.3.2.10 SDS_UNAPPLY_INTERFACE_TYPE

(1) SDS_UNAPPLY_INTERFACE_TYPE(
sds : Sds_designator,
interface_type : Interface_type_nominator_in_sds
type : Object_type_nominator_in_sds

)

- 408 -

(2) SDS_UNAPPLY_INTERFACE_TYPE removes the application of the interface type in the SDS
interface_type_in_sds associated with the type interface_type in the SDS sds from the type in
SDS type_in_sds associated with the interface type type in sds.

(3) The "supports_interface" link between type_in_sds and operation_type_in_sds and its reverse
"applies_to" link are deleted.

(4) Write locks of the default mode are obtained on the deleted links.

Errors

(5) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (interface_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(9) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(10) SDS_IS_UNKNOWN (sds)
(11) TYPE_IS_ALREADY_APPLIED (sds,interface_type,type)
(12) TYPE_IS_UNKNOWN_IN_SDS (sds, interface_type)
(13) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

G.3.2.11 SDS_UNAPPLY_OPERATION_TYPE

(1) SDS_UNAPPLY_OPERATION_TYPE(
sds : Sds_designator,
operation_type : Operation_type_nominator_in_sds
type : Interface_type_nominator_in_sds

)

(2) SDS_UNAPPLY_OPERATION_TYPE remove the application of the operation type in SDS
operation_type_in_sds associated with the operation type operation_type in the SDS sds from
the type in SDS type_in_sds associated with the interface type type in sds.

(3) The "in_operation_set" link between type_in_sds and operation_type_in_sds and its reverse
"is_operation_of" link are deleted.

(4) Write locks of the default mode are obtained on the deleted links.

Errors

(5) ACCESS_ERRORS (type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(6) ACCESS_ERRORS (operation_type_in_sds, ATOMIC, MODIFY, APPEND_LINKS)
(7) ACCESS_ERRORS (sds, ATOMIC, READ, NAVIGATE)
(8) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(9) SDS_IS_IN_A_WORKING_SCHEMA (sds)
(10) SDS_IS_UNKNOWN (sds)
(11) TYPE_IS_ALREADY_APPLIED (sds,attribute_type,type)
(12) TYPE_IS_UNKNOWN_IN_SDS (sds, attribute_type)
(13) TYPE_IS_UNKNOWN_IN_SDS (sds, type)

- 409 -

G.3.3 Modified SDS operations (see 10.2.23)

G.3.3.1 SDS_REMOVE_TYPE

(1) SDS_REMOVE_TYPE (
sds : Sds_designator,
type : Type_nominator_in_sds

)

Additional errors

(2) If the conditions for the deletion of the "type" object T associated with type are satisfied:
(3) If T is an interface type, for each parent interface P of T:

ACCESS_ERRORS (P, ATOMIC, CHANGE, WRITE_IMPLICIT)

G.4 DDL extensions (see annex B)

G.4.1 SDSs and clauses

Syntax

(1) import type = 'object ', 'type ' | 'attribute ', 'type ' | 'link ', 'type ' | 'enumeral ', 'type ' |
'interface ', 'type ' | 'operation ', 'type ';

Meaning

(2) Import types are extended to allow importation of interface and operation types.

G.4.2 Object types

Syntax

(1) object type declaration =
local name, ':', [type mode declaration], ['child ', 'type ', 'of ', object type list], ['with ',
['contents ', contents type indication, ';'],
['attribute ',

attribute indication list, ';'],
['link ',

link indication list, ';'],
['interface '

interface indication list, ';'],
['component ',

component indication list, ';'],
'end ', local name];

(2) object type extension =
'extend ', 'object ', 'type ', local name,'with ',
['attribute ',

attribute indication list, ';'],
['link ',

 link indication list, ';'],
['interface '

interface indication list, ';'],
['component ',

component indication list, ';'],
'end ', local name;

(3) interface indication list = interface indication list item, { ';', interface indication list item };

- 410 -

(4) interface indication list item = interface type name | interface type definition;

Constraints

(5) Each interface type name in an interface indication list must be the local name of an interface
type introduced earlier in the specification by an interface type declaration or a type importation.

(6) All the interface types in the list must be different.

Meaning

(7) Object type declarations and extensions are extended to include optional interface types. Each
interface indication list item defines an interface supported by the object type.

G.4.3 Interface types

Syntax

(1) interface type definition =
local name, ':', ['child ', 'type ', 'of ', interface type list], ['with ',
['operation '

operation indication list, ';'],
['applied '

object type list, ';'],
'end ', local name];

(2) interface type declaration =
interface , interface type definition;

(3) interface type extension =
'extend ', 'interface ', 'type ', local name, 'with '
['operation '

operation indication list, ';'],
'end ', local name;

(4) operation indication list = operation indication list item, { ';', operation indication list item };

(5) operation indication list item = operation type name | operation type definition;

Constraints

(6) The local name after 'end' in an interface type definition or interface type extension, if present,
must be the same as the first local name of that interface type definition or interface type
extension.

(7) In an interface type definition the local name must be distinct from the local names of all other
types defined in the same SDS as the interface type definition.

(8) In an interface type extension the local name must be the name of an interface type introduced
earlier in the SDS by an interface type definition or a type importation.

(9) Each operation type name in an operation indication list must be the local name of an operation
type introduced earlier in the specification by an operation type definition or a type importation.

(10) Each object type name in an object type list after the keyword 'applied' must be the local name of
an object type introduced earlier in the specification by an object type declaration or a type
importation.

- 411 -

Meaning

(11) An interface type definition defines an interface type, and an interface type in SDS in the current
SDS with the local name within that SDS. The new interface type has the following
characteristics (see 8.3).

(12) - The operation types are all those defined by the operation indications in the operation
indication list after 'operation'.

(13) - The parent interfaces are all those in the interface type list after 'child type of'; the interface
type is added to the child interfaces of all its parent interfaces. The interface type has no
child interfaces initially.

(14) The new interface type in SDS has the following characteristics (see 8.7).

(15) - The applied object types are all those in the object type list after 'applied'.

G.4.4 Operation types

Syntax

(1) operation type definition =
operation kind,
local name, ['with ',
['parameter ',

parameter indication list, ';']
['return ', parameter type name, ';']
'end ', local name];

(2) operation type declaration =
'operation ', operation type definition;

(3) operation kind = 'normal ' | 'oneway ';

(4) parameter indication list = parameter indication list item, { ';', parameter indication list item };

Constraints

(5) The local name after 'end' in an operation type definition, if present, must be the same as the first
local name of that operation type definition.

(6) In an definition the local name must be distinct from the local names of all other types defined in
the same SDS as the operation type definition.

(7) Each parameter type name in a parameter indication list must be the local name of a parameter
type introduced earlier in the specification by a parameter type declaration.

Meaning

(8) An operation type definition defines an operation type, and an operation type in SDS in the
current SDS with the local name within that SDS. The new operation type has the following
characteristics (see 8.4).

(9) - The 'used in interface' interface types are all those interface types for which the operation
occurs in the operation indication list of the interface type declaration or extension.

(10) - The sequence of parameter types is defined by the parameter indication list after 'parameter'.

(11) - The kind is defined by the operation kind.

(12) - The return value parameter type is defined by the parameter type name after 'return '.

- 412 -

G.4.5 Parameter types

Syntax

(1) parameter indication list item = [parameter mode], ':', parameter type name;

(2) parameter mode = 'in ' | 'out ' | 'inout ';

(3) parameter type name = object type name | interface type name | attribute type name;

Meaning

(4) A parameter indication list item defines a parameter type, and its associated mode.

G.4.6 Names

Syntax

(1) interface type name = global name | local name;

(2) interface type list = interface type name, {',', interface type name};

(3) operation type name = local name;

(4) operation type list = operation type name, {',', operation type name};

Constraints

(5) An interface or operation type name without an SDS name must occur in an interface type
declaration or an operation type definition, respectively, within the local specification.

(6) The local name of an interface type name with an SDS name must occur in an interface type
declaration, respectively, within the specification with that SDS name.

Meaning

(7) See B.8.

- 413 -

Index of Operations

ACCOUNTING_LOG_COPY_AND_RESET ...282
ACCOUNTING_LOG_READ..283
ACCOUNTING_OFF ...283
ACCOUNTING_ON...283
ACCOUNTING_RECORD_WRITE..284
ACTIVITY_ABORT...194
ACTIVITY_END ..195
ACTIVITY_START..196
ARCHIVE_CREATE..116
ARCHIVE_REMOVE...116
ARCHIVE_RESTORE..117; 381
ARCHIVE_SAVE...118; 382
AUDIT_ADD_CRITERION...273
AUDIT_FILE_COPY_AND_RESET...274
AUDIT_FILE_READ..274
AUDIT_GET_CRITERIA...275
AUDIT_RECORD_WRITE..275
AUDIT_REMOVE_CRITERION...275
AUDIT_SELECTION_CLEAR..276
AUDIT_SWITCH_OFF_SELECTION ..276
AUDIT_SWITCH_ON_SELECTION..277
AUDITING_GET_STATUS...277
CLUSTER_CREATE..382
CLUSTER_DELETE ..383
CLUSTER_LIST_OBJECTS ..383
CONFIDENTIALITY_CLASS_INITIALIZE..263
CONSUMER_GROUP_INITIALIZE...284
CONSUMER_GROUP_REMOVE...285
CONTENTS_CLOSE..127
CONTENTS_COPY_FROM_FOREIGN_SYSTEM ...222
CONTENTS_COPY_TO_FOREIGN_SYSTEM ...223
CONTENTS_GET_HANDLE_FROM_KEY...128
CONTENTS_GET_KEY_FROM_HANDLE...128
CONTENTS_GET_POSITION ..128
CONTENTS_HANDLE_DUPLICATE..128
CONTENTS_OPEN..129
CONTENTS_READ ...130
CONTENTS_SEEK ..130
CONTENTS_SET_POSITION...131
CONTENTS_SET_PROPERTIES..132
CONTENTS_TRUNCATE...132
CONTENTS_WRITE..133
DEVICE_CREATE...119
DEVICE_GET_CONTROL..134
DEVICE_REMOVE..120
DEVICE_SET_CONFIDENTIALITY_RANGE..258
DEVICE_SET_CONTROL...134
DEVICE_SET_INTEGRITY_RANGE ..258

- 414 -

EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE... 259
EXECUTION_SITE_SET_INTEGRITY_RANGE ... 260
GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE .. 264
GROUP_DISABLE_FOR_INTEGRITY_UPGRADE .. 264
GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE ... 265
GROUP_ENABLE_FOR_INTEGRITY_UPGRADE ... 265
GROUP_GET_IDENTIFIER ... 234
GROUP_INITIALIZE .. 238
GROUP_REMOVE .. 239
GROUP_RESTORE ... 239
INTEGRITY_CLASS_INITIALIZE.. 265
LIMIT_GET_VALUE .. 310
LINK_CREATE.. 376
LINK_DELETE.. 376
LINK_GET_DESTINATION_ARCHIVE... 120
LINK_REFERENCE_COPY ... 301
LINK_REFERENCE_GET_EVALUATION_POINT... 302
LINK_REFERENCE_GET_KEY .. 302
LINK_REFERENCE_GET_KEY_VALUE... 302
LINK_REFERENCE_GET_NAME... 303
LINK_REFERENCE_GET_STATUS ... 303
LINK_REFERENCE_GET_TYPE ..303
LINK_REFERENCE_SET... 303
LINK_REFERENCE_UNSET ... 304
LINK_REFERENCES_ARE_EQUAL .. 304
LINK_REPLACE ... 377
LOCK_RESET_INTERNAL_MODE.. 196
LOCK_SET_INTERNAL_MODE...197
LOCK_SET_OBJECT.. 197
LOCK_UNSET_OBJECT .. 199
MESSAGE_DELETE... 170
MESSAGE_PEEK.. 170
MESSAGE_RECEIVE_NO_WAIT... 171
MESSAGE_RECEIVE_WAIT... 171
MESSAGE_SEND_NO_WAIT ... 172
MESSAGE_SEND_WAIT ... 173
NOTIFICATION_MESSAGE_GET_KEY.. 178
NOTIFY_CREATE .. 179; 384
NOTIFY_DELETE... 179
NOTIFY_SWITCH_EVENTS ... 180
OBJECT_CHECK_PERMISSION... 235
OBJECT_COPY ... 377
OBJECT_CREATE .. 378
OBJECT_DELETE... 379
OBJECT_GET_ACL .. 236
OBJECT_MOVE .. 379
OBJECT_REFERENCE_COPY .. 299
OBJECT_REFERENCE_GET_EVALUATION_POINT.. 299
OBJECT_REFERENCE_GET_PATH... 300
OBJECT_REFERENCE_GET_STATUS .. 300

- 415 -

OBJECT_REFERENCE_SET_ABSOLUTE..300
OBJECT_REFERENCE_SET_RELATIVE...300
OBJECT_REFERENCE_UNSET...301
OBJECT_REFERENCES_ARE_EQUAL..301
OBJECT_SET_ACL_ENTRY ..236; 386
OBJECT_SET_CONFIDENTIALITY_LABEL...261; 386
OBJECT_SET_INTEGRITY_LABEL ...261; 387
OBJECT_SET_TIME_ATTRIBUTES ...380
PROCESS_ADD_BREAKPOINT..165
PROCESS_ADOPT_CONTEXT..395
PROCESS_ADOPT_USER_GROUP...159
PROCESS_CONTINUE ...166
PROCESS_CREATE ..145
PROCESS_CREATE_AND_START...147
PROCESS_GET_DEFAULT_ACL..161
PROCESS_GET_DEFAULT_OWNER ...161
PROCESS_GET_WORKING_SCHEMA ..149
PROCESS_INTERRUPT_OPERATION ...149
PROCESS_PEEK..166
PROCESS_POKE ...166
PROCESS_PROFILING_OFF..164
PROCESS_PROFILING_ON ...165
PROCESS_REMOVE_BREAKPOINT..167
PROCESS_RESUME..150
PROCESS_SET_ADOPTABLE_FOR_CHILD...161
PROCESS_SET_ALARM ..150
PROCESS_SET_CONFIDENTIALITY_LABEL..268
PROCESS_SET_CONSUMER_IDENTITY..287
PROCESS_SET_DEFAULT_ACL_ENTRY ...162
PROCESS_SET_DEFAULT_OWNER..162
PROCESS_SET_FILE_SIZE_LIMIT...151
PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL ..268
PROCESS_SET_FLOATING_INTEGRITY_LEVEL...269
PROCESS_SET_INTEGRITY_LABEL...269
PROCESS_SET_OPERATION_TIME_OUT ..151
PROCESS_SET_PRIORITY ..151
PROCESS_SET_REFERENCED_OBJECT ..152
PROCESS_SET_TERMINATION_STATUS..152
PROCESS_SET_USER ..163
PROCESS_SET_WORKING_SCHEMA...152
PROCESS_START ...154
PROCESS_SUSPEND..156
PROCESS_TERMINATE...156
PROCESS_UNSET_CONSUMER_IDENTITY ..287
PROCESS_UNSET_REFERENCED_OBJECT ..158
PROCESS_WAIT_FOR_ANY_CHILD...158
PROCESS_WAIT_FOR_BREAKPOINT ..167
PROCESS_WAIT_FOR_CHILD ...159
PROGRAM_GROUP_ADD_MEMBER..240
PROGRAM_GROUP_ADD_SUBGROUP..240

- 416 -

PROGRAM_GROUP_REMOVE_MEMBER... 241
PROGRAM_GROUP_REMOVE_SUBGROUP... 241
QUEUE_EMPTY.. 173
QUEUE_HANDLER_DISABLE ... 174
QUEUE_HANDLER_ENABLE .. 174
QUEUE_RESERVE ... 174
QUEUE_RESTORE ... 175
QUEUE_SAVE... 175
QUEUE_SET_TOTAL_SPACE .. 175
QUEUE_UNRESERVE.. 176
REPLICA_SET_ADD_COPY_VOLUME .. 203
REPLICA_SET_CREATE ... 204
REPLICA_SET_REMOVE.. 204
REPLICA_SET_REMOVE_COPY_VOLUME .. 205
REPLICATED_OBJECT_CREATE.. 206; 385
REPLICATED_OBJECT_DELETE_REPLICA.. 206
REPLICATED_OBJECT_DUPLICATE ... 207; 385
REPLICATED_OBJECT_REMOVE... 208; 386
REQUEST_INVOKE ... 396
REQUEST_SEND .. 397
REQUEST_SEND_MULTIPLE .. 397
RESOURCE_GROUP_ADD_OBJECT... 285
RESOURCE_GROUP_INITIALIZE ... 286
RESOURCE_GROUP_REMOVE ... 286
RESOURCE_GROUP_REMOVE_OBJECT... 287
SDS_APPLY_INTERFACE_TYPE...400
SDS_APPLY_OPERATION_TYPE.. 401
SDS_CREATE_DATA_PARAMETER_TYPE .. 401
SDS_CREATE_DESIGNATION_LINK_TYPE ... 76
SDS_CREATE_ENUMERAL_TYPE ... 77
SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE .. 78
SDS_CREATE_FLOAT_ATTRIBUTE_TYPE... 79
SDS_CREATE_INTEGER_ATTRIBUTE_TYPE .. 80
SDS_CREATE_INTERFACE_PARAMETER_TYPE ... 402
SDS_CREATE_INTERFACE_TYPE.. 402
SDS_CREATE_NATURAL_ATTRIBUTE_TYPE .. 81
SDS_CREATE_OBJECT_PARAMETER_TYPE... 403
SDS_CREATE_OBJECT_TYPE... 82
SDS_CREATE_OPERATION_TYPE... 404
SDS_CREATE_RELATIONSHIP_TYPE... 84
SDS_CREATE_STRING_ATTRIBUTE_TYPE... 86
SDS_CREATE_TIME_ATTRIBUTE_TYPE.. 87
SDS_GET_ATTRIBUTE_TYPE_PROPERTIES.. 101
SDS_GET_ENUMERAL_TYPE_IMAGE .. 102
SDS_GET_ENUMERAL_TYPE_POSITION... 102
SDS_GET_LINK_TYPE_PROPERTIES .. 103
SDS_GET_NAME.. 88
SDS_GET_OBJECT_TYPE_PROPERTIES ... 103
SDS_GET_TYPE_KIND.. 104
SDS_GET_TYPE_MODES ... 104

- 417 -

SDS_GET_TYPE_NAME ..105
SDS_IMPORT_ATTRIBUTE_TYPE...89
SDS_IMPORT_ENUMERAL_TYPE...90
SDS_IMPORT_INTERFACE_TYPE...405
SDS_IMPORT_LINK_TYPE ...91
SDS_IMPORT_OBJECT_TYPE..93
SDS_IMPORT_OPERATION_TYPE ..406
SDS_INITIALIZE ...95
SDS_REMOVE...95
SDS_REMOVE_DESTINATION ..96
SDS_REMOVE_TYPE...96; 409
SDS_SCAN_ATTRIBUTE_TYPE...105
SDS_SCAN_ENUMERAL_TYPE...106
SDS_SCAN_LINK_TYPE..106
SDS_SCAN_OBJECT_TYPE...107
SDS_SCAN_TYPES...108
SDS_SET_ENUMERAL_TYPE_IMAGE ...98
SDS_SET_TYPE_MODES...99
SDS_SET_TYPE_NAME...99
SDS_UNAPPLY_ATTRIBUTE_TYPE ...100
SDS_UNAPPLY_INTERFACE_TYPE ...407
SDS_UNAPPLY_LINK_TYPE..101
SDS_UNAPPLY_OPERATION_TYPE...408
TIME_GET..223
TIME_SET ..223
TYPE_REFERENCE_COPY..305
TYPE_REFERENCE_GET_EVALUATION_POINT...305
TYPE_REFERENCE_GET_IDENTIFIER...305
TYPE_REFERENCE_GET_NAME...306
TYPE_REFERENCE_GET_STATUS ...306
TYPE_REFERENCE_SET ...306
TYPE_REFERENCE_UNSET ...307
TYPE_REFERENCES_ARE_EQUAL...307
USER_EXTEND_CONFIDENTIALITY_CLEARANCE ...266
USER_EXTEND_INTEGRITY_CLEARANCE..266
USER_GROUP_ADD_MEMBER ...241
USER_GROUP_ADD_SUBGROUP ...242
USER_GROUP_REMOVE_MEMBER ...242
USER_GROUP_REMOVE_SUBGROUP ...243
USER_REDUCE_CONFIDENTIALITY_CLEARANCE...267
USER_REDUCE_INTEGRITY_CLEARANCE..267
VERSION_ADD_PREDECESSOR ...59
VERSION_IS_CHANGED...60; 380
VERSION_REMOVE...60
VERSION_REMOVE_PREDECESSOR ...61
VERSION_REVISE..62; 380
VERSION_SNAPSHOT ...380
VOLUME_CREATE...121
VOLUME_DELETE...122
VOLUME_GET_STATUS ...122

- 418 -

VOLUME_MOUNT... 123
VOLUME_SET_CONFIDENTIALITY_RANGE... 262
VOLUME_SET_INTEGRITY_RANGE ... 262
VOLUME_UNMOUNT ... 123
WORKSTATION_CONNECT .. 217
WORKSTATION_CREATE.. 218
WORKSTATION_DELETE .. 220
WORKSTATION_DISCONNECT.. 221
WORKSTATION_GET_STATUS .. 221
WORKSTATION_REDUCE_CONNECTION ... 221
WORKSTATION_SELECT_REPLICA_SET_VOLUME.. 209
WORKSTATION_UNSELECT_REPLICA_SET_VOLUME.. 209
WS_GET_ATTRIBUTE_TYPE_PROPERTIES... 108
WS_GET_ENUMERAL_TYPE_IMAGE.. 109
WS_GET_ENUMERAL_TYPE_POSITION .. 109
WS_GET_LINK_TYPE_PROPERTIES.. 109
WS_GET_OBJECT_TYPE_PROPERTIES... 110
WS_GET_TYPE_KIND... 110
WS_GET_TYPE_MODES... 110
WS_GET_TYPE_NAME... 110
WS_SCAN_ATTRIBUTE_TYPE.. 111
WS_SCAN_ENUMERAL_TYPE..111
WS_SCAN_LINK_TYPE .. 111
WS_SCAN_OBJECT_TYPE ... 112
WS_SCAN_TYPES.. 113

- 419 -

Index of Error Conditions

Grouped errors

ACCESS_ERRORS 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 48; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60;
61; 62; 63; 64; 65; 66; 73; 74; 75; 76; 77; 79; 80; 81; 82; 83; 85; 87; 88; 89; 90; 91; 92; 93; 94; 95; 96;
97; 98; 99; 100; 101; 102; 103; 104; 105; 106; 107; 108; 109; 116; 117; 118; 119; 120; 121; 122; 123;
124; 129; 147; 148; 149; 150; 151; 152; 153; 155; 156; 157; 158; 160; 162; 164; 165; 166; 167; 170;
171; 172; 173; 174; 175; 176; 179; 180; 203; 204; 205; 206; 207; 208; 209; 217; 219; 220; 221; 222;
223; 235; 236; 237; 238; 239; 240; 241; 242; 243; 258; 259; 260; 261; 262; 263; 264; 265; 266; 267;
268; 269; 274; 275; 283; 284; 285; 286; 287; 293; 306; 327; 328; 329; 378; 379; 382; 383; 384; 395;
396; 400; 401; 402; 403; 404; 405; 406; 407; 408; 409

COMPONENT_ADDITION_ERRORS ... 37; 43; 48; 63; 65; 79
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION 48; 50; 63; 65; 75; 77; 78; 79;

80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94; 147; 196; 403; 405; 406; 407
VALUE_LIMIT_ERRORS ...44; 45; 57; 58; 63; 65; 80; 81; 82; 88

Individual errors

ACCESS_MODE_IS_INCOMPATIBLE ..236
ACCESS_MODE_IS_NOT_ALLOWED ..238
ACCOUNTING_LOG_IS_NOT_ACTIVE ...283; 284
ACTIVITY_IS_OPERATING_ON_A_RESOURCE ..195; 196
ACTIVITY_STATUS_IS_INVALID ..155
ACTIVITY_WAS_NOT_STARTED_BY_CALLING_PROCESS ..195; 196
ARCHIVE_EXISTS ...116
ARCHIVE_HAS_ARCHIVED_OBJECTS ...116; 118
ARCHIVE_IS_INVALID_ON_DEVICE ..117
ARCHIVE_IS_UNKNOWN ..117
ATOMIC_ACL_IS_INCOMPATIBLE_WITH_OWNER_CHANGE ...328
ATTRIBUTE_TYPE_IS_NOT_VISIBLE ...294; 296
ATTRIBUTE_TYPE_OF_LINK_TYPE_IS_NOT_APPLIED ...294
ATTRIBUTE_TYPE_OF_OBJECT_TYPE_IS_NOT_APPLIED ..294
ATTRIBUTE_VALUE_LIMIT_WOULD_BE_EXCEEDED ..88
AUDIT_FILE_IS_NOT_ACTIVE ...274; 275
BREAKPOINT_IS_NOT_DEFINED ..167
CARDINALITY_IS_INVALID ...58
CATEGORY_IS_BAD ...37; 39; 43; 48; 50; 51; 63; 65
CLASS_NAME_IS_INVALID ..298
CLUSTER_EXISTS ...383
CLUSTER_HAS_OTHER_LINKS ...383
CLUSTER_IS_UNKNOWN ..383
COMPONENT_ADDITION_ERRORS ..328
CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED 132; 134; 135; 261; 328
CONFIDENTIALITY_CRITERION_IS_NOT_SELECTED ...276
CONFIDENTIALITY_LABEL_IS_INVALID 258; 260; 261; 262; 268; 273; 276
CONFIDENTIALITY_WOULD_BE_VIOLATED 53; 130; 132; 134; 135; 179; 236; 327
CONNECTION_IS_DENIED ..217
CONSUMER_GROUP_IS_IN_USE ...285
CONSUMER_GROUP_IS_KNOWN ..285

- 420 -

CONSUMER_GROUP_IS_UNKNOWN ... 285; 287
CONTENTS_FORMAT_IS_INVALID .. 175
CONTENTS_IS_NOT_EMPTY ... 132
CONTENTS_IS_NOT_FILE_CONTENTS .. 132
CONTENTS_IS_NOT_OPEN ...127; 128; 129; 130; 131; 132; 134; 135
CONTENTS_OPERATION_IS_INVALID ..128; 130; 131; 132; 134
CONTROL_WOULD_NOT_BE_GRANTED 48; 50; 63; 65; 116; 119; 121; 148; 219; 238
DATA_ARE_NOT_AVAILABLE ... 130
DEFAULT_ACL_WOULD_BE_INCONSISTENT_WITH_DEFAULT_OBJECT_OWNER . 162; 163
DEFAULT_ACL_WOULD_BE_INVALID ... 162
DEFINITION_MODE_VALUE_WOULD_BE_INVALID ... 99
DESTINATION_OBJECT_TYPE_IS_INVALID ..37; 39; 43; 48; 50; 51
DEVICE_CHARACTERISTICS_ARE_INVALID .. 119
DEVICE_CONTROL_OPERATION_IS_INVALID ... 134; 135
DEVICE_EXISTS ... 119
DEVICE_IS_BUSY ... 121; 123
DEVICE_IS_IN_USE .. 120
DEVICE_IS_UNKNOWN ..120; 121; 123; 258; 259; 260
DEVICE_LIMIT_WOULD_BE_EXCEEDED ... 134
DEVICE_SPACE_IS_FULL ... 118
DISCRETIONARY_ACCESS_IS_NOT_GRANTED 159; 196; 197; 199; 200; 274; 276; 287; 295; 327
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS 148; 153; 155
ENUMERAL_TYPE_IS_NOT_IN_ATTRIBUTE_VALUE_TYPE .. 103; 109
ENUMERAL_TYPE_IS_NOT_VISIBLE .. 296
ENUMERAL_TYPES_ARE_MULTIPLE ... 79
ENUMERATION_ATTRIBUTE_WOULD_HAVE_NO_ENUMERAL_TYPES 79
ENUMERATION_VALUE_IS_OUT_OF_RANGE .. 57
ENUMERATION_VALUE_IS_OUT_OF_RANGE .. 44; 45; 58; 79
EVALUATION_STATUS_IS_INCONSISTENT_WITH_EVALUATION_POINT 299; 301; 302; 304;

305
EVENT_TYPE_IS_NOT_SELECTED ... 276
EXECUTION_CLASS_HAS_NO_USABLE_EXECUTION_SITES 147; 148
EXECUTION_SITE_IS_INACCESSIBLE ... 147; 148; 155
EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS ... 147; 149; 155
EXECUTION_SITE_IS_UNKNOWN .. 147; 149; 155
EXTERNAL_LINK_IS_BAD ... 48; 63; 65
EXTERNAL_LINK_IS_NOT_DUPLICABLE .. 48
FOREIGN_DEVICE_IS_INVALID ...219
FOREIGN_EXECUTION_IMAGE_HAS_NO_SITE .. 147; 149
FOREIGN_EXECUTION_IMAGE_IS_BEING_EXECUTED .. 223
FOREIGN_OBJECT_IS_INACCESSIBLE .. 222; 223
FOREIGN_SYSTEM_IS_INACCESSIBLE ... 222; 223
FOREIGN_SYSTEM_IS_INVALID .. 149; 150; 155; 156
FOREIGN_SYSTEM_IS_UNKNOWN .. 223
GROUP_IDENTIFIER_IS_IN_USE ... 239
GROUP_IDENTIFIER_IS_INVALID ..235; 238; 239; 274; 276
IMAGE_IS_ALREADY_ASSOCIATED ... 98
IMAGE_IS_DUPLICATED .. 79; 90
INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED 53; 130; 132; 134; 135; 179; 236; 261; 327
INTEGRITY_CRITERION_IS_NOT_SELECTED ... 276

- 421 -

INTEGRITY_LABEL_IS_INVALID ... 259; 260; 261; 263; 269; 274; 276
INTEGRITY_WOULD_BE_VIOLATED .. 132; 134; 135; 328
INTERPRETER_IS_INTERPRETABLE ..149; 155
INTERPRETER_IS_NOT_AVAILABLE ...149; 156
KEY_ATTRIBUTE_TYPE_APPLY_IS_FORBIDDEN ...74
KEY_IS_BAD ..295
KEY_SYNTAX_IS_WRONG ...304
KEY_TYPE_IS_BAD ..76; 85
KEY_TYPES_ARE_MULTIPLE ..76; 85
KEY_UPDATE_IS_FORBIDDEN ..44; 45
KEY_VALUE_DOES_NOT_EXIST ...302
LABEL_IS_OUTSIDE_RANGE .. 48; 50; 116; 117; 118; 119; 121; 147; 149; 156; 223; 260; 261; 262;

263; 268; 269
LABEL_RANGE_IS_BAD ... 258; 259; 260; 262; 263
LAN_ERROR_EXISTS ...217
LIMIT_WOULD_BE_EXCEEDED 58; 59; 75; 76; 78; 79; 80; 81; 82; 83; 85; 87; 88; 95; 119; 121; 123;

129; 134; 147; 149; 153; 156; 172; 173; 175; 176; 196; 275; 284; 295; 328; 383; 403; 405
LINK_DESTINATION_DOES_NOT_EXIST ..41; 293
LINK_DESTINATION_IS_NOT_VISIBLE ...293
LINK_DOES_NOT_EXIST .. 60; 61; 128; 295
LINK_EXCLUSIVENESS_WOULD_BE_VIOLATED ...329
LINK_EXISTS ..38; 43; 48; 50; 63; 65; 204; 284
LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA 41; 55; 303
LINK_NAME_SYNTAX_IS_WRONG ..304
LINK_REFERENCE_IS_UNSET ...302; 303; 304
LINK_TYPE_CATEGORY_IS_BAD ...74; 85
LINK_TYPE_IS_NOT_APPLIED_TO_OBJECT_TYPE ...295
LINK_TYPE_IS_NOT_VISIBLE ..296
LINK_TYPE_IS_UNKNOWN ..58
LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT 77; 85
LINK_TYPE_PROPERTIES_ARE_INCONSISTENT ..77; 85
LOCK_COULD_NOT_BE_ESTABLISHED ...199
LOCK_INTERNAL_MODE_CANNOT_BE_CHANGED ..197
LOCK_IS_NOT_EXPLICIT ..196; 197; 200
LOCK_MODE_IS_NOT_ALLOWED ..199
LOCK_MODE_IS_TOO_STRONG ..197
LOWER_BOUND_WOULD_BE_VIOLATED ..39; 43; 51
MANDATORY_CLASS_IS_ALREADY_DOMINATED ...264; 266
MANDATORY_CLASS_IS_KNOWN ...264; 266
MANDATORY_CLASS_IS_UNKNOWN .. 264; 265; 266; 267; 268
MANDATORY_CLASS_NAME_IS_IN_USE ...264; 266
MASTER_IS_INACCESSIBLE ..60; 240
MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED ...99
MEMORY_ADDRESS_IS_OUT_OF_PROCESS ..165; 166
MEMORY_REGION_IS_NOT_IN_PROFILING_SPACE ..165
MESSAGE_IS_NOT_A_NOTIFICATION_MESSAGE ..178
MESSAGE_POSITION_IS_NOT_VALID ...170; 171; 172
MESSAGE_QUEUE_HAS_BEEN_DELETED ..172; 173
MESSAGE_QUEUE_HAS_BEEN_WOKEN ...172; 173
MESSAGE_QUEUE_HAS_NO_HANDLER ...174

- 422 -

MESSAGE_QUEUE_IS_BUSY ... 175
MESSAGE_QUEUE_IS_NOT_RESERVED ... 174; 179; 180
MESSAGE_QUEUE_IS_RESERVED ...170; 171; 172; 173; 174; 175; 176
MESSAGE_QUEUE_TOTAL_SPACE_WOULD_BE_TOO_SMALL .. 176
MESSAGE_QUEUE_WOULD_BE_TOO_BIG .. 172; 175
MESSAGE_TYPES_NOT_FOUND_IN_QUEUE ... 171
NON_BLOCKING_IO_IS_INVALID .. 129
NOTIFIER_KEY_DOES_NOT_EXIST ... 179; 180
NOTIFIER_KEY_EXISTS .. 179
NUMBER_OF_PARAMETERS_IS_WRONG .. 397; 398
OBJECT_ARCHIVING_IS_INVALID .. 118
OBJECT_CANNOT_BE_CLUSTERED .. 378; 379; 382
OBJECT_CANNOT_BE_STABILIZED .. 38; 43; 60; 63
OBJECT_CRITERION_IS_NOT_SELECTED .. 276
OBJECT_HAS_COPIES ... 208
OBJECT_HAS_EXTERNAL_LINKS_PREVENTING_DELETION ... 51; 61
OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNER ... 238; 328; 329
OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETION .. 51; 61
OBJECT_HAS_LINKS_PREVENTING_DELETION 39; 95; 98; 120; 205; 239; 285; 286
OBJECT_IS_A_PROCESS ... 261
OBJECT_IS_A_REPLICA_SET ... 207; 208
OBJECT_IS_ALREADY_IN_RESOURCE_GROUP .. 286
OBJECT_IS_ARCHIVED ...41; 53; 55; 179; 199; 200; 236; 327
OBJECT_IS_FINE_GRAIN ..380; 384; 385; 386; 387
OBJECT_IS_IN_USE_FOR_DELETE 39; 51; 61; 95; 117; 120; 205; 221; 239; 285; 287
OBJECT_IS_IN_USE_FOR_MOVE .. 56; 274; 283
OBJECT_IS_INACCESSIBLE ... 131; 132
OBJECT_IS_INACCESSIBLE .117; 130; 132; 134; 135; 161; 164; 179; 199; 200; 236; 238; 274; 275;

276; 277; 327; 329
OBJECT_IS_INACCESSIBLY_ARCHIVED .. 56; 118; 119
OBJECT_IS_LOCKED ... 56
OBJECT_IS_NOT_ACCOUNTABLE_RESOURCE .. 286
OBJECT_IS_NOT_ARCHIVED ... 121
OBJECT_IS_NOT_CONVERTIBLE ...46
OBJECT_IS_NOT_IN_RESOURCE_GROUP .. 287
OBJECT_IS_NOT_LOCKED ... 197
OBJECT_IS_NOT_MASTER_REPLICATED_OBJECT .. 208
OBJECT_IS_NOT_MOVABLE ... 56
OBJECT_IS_NOT_ON_ADMINISTRATION_VOLUME .. 284
OBJECT_IS_NOT_ON_MASTER_VOLUME_OF_REPLICA_SET ... 206
OBJECT_IS_NOT_REPLICABLE ... 206
OBJECT_IS_NOT_REPLICATED_ON_VOLUME .. 207
OBJECT_IS_OF_WRONG_TYPE ...293
OBJECT_IS_OPERATED_ON ... 197; 200
OBJECT_IS_PREDEFINED_REPLICATED .. 207; 208
OBJECT_IS_REPLICATED ... 56; 206
OBJECT_IS_STABLE .. 46; 328
OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTION 261; 262
OBJECT_OWNER_CONSTRAINT_WOULD_BE_VIOLATED ... 238; 329

- 423 -

OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL 48; 50; 63; 65;
119; 121; 147; 149; 219; 383

OBJECT_REFERENCE_IS_INTERNAL ...300
OBJECT_REFERENCE_IS_INVALID ..293; 301
OBJECT_REFERENCE_IS_UNSET ..293; 300; 301
OBJECT_TYPE_IS_ALREADY_IN_DESTINATION_SET ...73
OBJECT_TYPE_IS_INVALID ...46; 50
OBJECT_TYPE_IS_NOT_IN_DESTINATION_SET ..96
OBJECT_TYPE_IS_NOT_VISIBLE ..296
OBJECT_TYPE_IS_UNKNOWN ...46; 50
OBJECT_TYPE_WOULD_HAVE_NO_PARENT_TYPE ..83
OPEN_KEY_IS_INVALID ...129
OPENING_MODE_IS_INVALID ...129
OPERATION_HAS_TIMED_OUT ...29
OPERATION_IS_INTERRUPTED ...29
OPERATION_IS_NOT_ALLOWED_ON_TYPE ..296
OPERATION_METHOD_CANNOT_BE_ACTIVATED ..397; 398
OPERATION_METHOD_CANNOT_BE_FOUND ...397; 398
PARENT_BASIC_TYPES_ARE_MULTIPLE ...83
PATHNAME_SYNTAX_IS_WRONG ...300; 301
PIPE_HAS_NO_WRITERS ...130
POSITION_HANDLE_IS_INVALID ...131
POSITION_IS_INVALID ..131
POSITIONING_IS_INVALID ...132
PREFERENCE_DOES_NOT_EXIST ...295
PREFERRED_LINK_KEY_IS_BAD ..58
PREFERRED_LINK_TYPE_IS_UNSET ..58
PRIVILEGE_IS_NOT_GRANTED 39; 52; 59; 60; 61; 73; 74; 75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88;

90; 91; 93; 94; 95; 96; 98; 99; 100; 101; 116; 117; 118; 119; 120; 121; 122; 150; 151; 164; 204; 205;
206; 207; 208; 209; 217; 219; 221; 222; 224; 239; 274; 275; 276; 277; 328; 400; 401; 402; 403; 404;
405; 406; 407; 408

PROCESS_CONFIDENTIALITY_IS_NOT_DOMINATED ...268
PROCESS_FILE_SIZE_LIMIT_WOULD_BE_EXCEEDED ..134
PROCESS_HAS_NO_UNTERMINATED_CHILD ...159
PROCESS_INTEGRITY_DOES_NOT_DOMINATE ..269
PROCESS_IS_IN_TRANSACTION 117; 119; 121; 122; 123; 124; 219; 221; 258; 259; 260; 262; 263;

264; 266; 274; 283
PROCESS_IS_INITIAL_PROCESS ...158
PROCESS_IS_NOT_ANCESTOR ..147
PROCESS_IS_NOT_CHILD ...165; 166; 167
PROCESS_IS_NOT_TERMINABLE_CHILD ...159
PROCESS_IS_NOT_THE_CALLER ..156
PROCESS_IS_THE_CALLER ..150
PROCESS_IS_THE_CALLER ..150
PROCESS_IS_UNKNOWN 147; 149; 150; 151; 152; 153; 156; 158; 159; 161; 162; 163; 165; 166; 167;

268; 269
PROCESS_LABELS_WOULD_BE_INCOMPATIBLE ..164
PROCESS_LACKS_REQUIRED_STATUS 147; 149; 150; 152; 153; 156; 158; 161; 162; 163; 165; 166;

167; 268; 269
PROCESS_TERMINATION_IS_ALREADY_ACKNOWLEDGED ...159

- 424 -

PROFILING_IS_NOT_SWITCHED_ON ... 165
PROGRAM_GROUP_IS_NOT_EMPTY ... 241
RANGE_IS_OUTSIDE_RANGE ...123; 258; 259; 262; 263
REFERENCE_CANNOT_BE_ALLOCATED 41; 48; 50; 55; 59; 63; 65; 116; 120; 122; 147; 149; 293;

301; 383; 384
REFERENCE_NAME_IS_INVALID ... 152; 158; 293
REFERENCED_OBJECT_IS_NOT_MUTABLE .. 39; 44; 152; 158
REFERENCED_OBJECT_IS_UNSET ... 293
RELATIONSHIP_TYPE_PROPERTIES_ARE_INCONSISTENT ... 86
REPLICA_SET_COPY_IS_NOT_EMPTY .. 205
REPLICA_SET_HAS_COPY_VOLUMES .. 205
REPLICA_SET_IS_NOT_EMPTY ..205
REPLICA_SET_IS_NOT_KNOWN ... 204; 205; 206; 209
REPLICATED_COPY_IS_IN_USE ...208
REPLICATED_COPY_UPDATE_IS_FORBIDDEN .. 328
RESOURCE_GROUP_IS_KNOWN .. 286
RESOURCE_GROUP_IS_UNKNOWN ... 286; 287
REVERSE_KEY_IS_BAD .. 38; 43; 48; 50
REVERSE_KEY_IS_NOT_SUPPLIED ... 38; 43; 48; 50
REVERSE_KEY_IS_SUPPLIED ... 38; 48; 50
REVERSE_LINK_EXISTS ... 38; 49
SDS_IS_IN_A_WORKING_SCHEMA 73; 74; 75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94;

96; 98; 99; 100; 101; 400; 401; 402; 403; 404; 405; 407; 408
SDS_IS_IN_A_WORKING_SCHEMA .. 408
SDS_IS_KNOWN ... 95
SDS_IS_NOT_EMPTY_NOR_VERSION ... 95; 96
SDS_IS_NOT_IN_WORKING_SCHEMA .. 296
SDS_IS_PREDEFINED 73; 74; 75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94; 95; 96; 98; 99;

100; 101
SDS_IS_UNDER_MODIFICATION .. 155
SDS_IS_UNDER_MODIFICATION .. 153
SDS_IS_UNKNOWN .. 155
SDS_IS_UNKNOWN 73; 74; 75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94; 96; 98; 99; 100;

101; 102; 103; 104; 105; 106; 107; 108; 153; 296; 306; 400; 401; 402; 403; 404; 405; 406; 407; 408
SDS_NAME_IS_DUPLICATE ... 95
SDS_NAME_IS_INVALID .. 95
SDS_WOULD_APPEAR_TWICE_IN_WORKING_SCHEMA ... 153
SECURITY_GROUP_ALREADY_HAS_THIS_SUBGROUP ... 240; 242
SECURITY_GROUP_IS_ALREADY_ENABLED ... 265
SECURITY_GROUP_IS_IN_USE ...239; 240; 241; 242; 243
SECURITY_GROUP_IS_KNOWN .. 238; 240
SECURITY_GROUP_IS_NOT_A_SUBGROUP .. 241; 243
SECURITY_GROUP_IS_NOT_ADOPTABLE ... 161; 162
SECURITY_GROUP_IS_NOT_ENABLED .. 264
SECURITY_GROUP_IS_PREDEFINED .. 239
SECURITY_GROUP_IS_REQUIRED_BY_OTHER_GROUPS .. 239
SECURITY_GROUP_IS_UNKNOWN 161; 162; 163; 164; 240; 241; 242; 243; 264; 265; 266; 267; 268
SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPH .. 240; 242
STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTED ... 149; 156
STATIC_CONTEXT_IS_ALREADY_MEMBER ... 240

- 425 -

STATIC_CONTEXT_IS_BEING_WRITTEN ..149; 156
STATIC_CONTEXT_IS_IN_USE ..130
STATIC_CONTEXT_IS_IN_USE ... 207; 208; 223; 241
STATIC_CONTEXT_IS_NOT_MEMBER ..241
STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY ..147; 149; 156
STATUS_IS_BAD ...217
TIME_CANNOT_BE_CHANGED ...224
TRANSACTION_CANNOT_BE_COMMITTED ..196
TYPE_CANNOT_BE_APPLIED_TO_LINK_TYPE ...74
TYPE_HAS_DEPENDENCIES ..98
TYPE_HAS_NO_LOCAL_NAME ...306
TYPE_IDENTIFIER_IS_INVALID ..296; 306
TYPE_IDENTIFIER_USAGE_IS_INVALID ...297
TYPE_IS_ALREADY_APPLIED .. 74; 400; 401; 408
TYPE_IS_ALREADY_CONSTRAINED ...402; 404
TYPE_IS_ALREADY_KNOWN_IN_SDS .. 90; 91; 93; 94; 406; 407
TYPE_IS_NOT_APPLIED ..100; 101
TYPE_IS_NOT_DESCENDANT ..46; 296
TYPE_IS_NOT_VISIBLE ...305; 306
TYPE_IS_OF_WRONG_KIND ...296
TYPE_IS_UNKNOWN_IN_SDS 73; 74; 75; 77; 83; 86; 90; 91; 93; 94; 96; 98; 99; 100; 101; 102; 103;

104; 105; 106; 107; 108; 296; 297; 306; 401; 402; 403; 404; 406; 407; 408
TYPE_IS_UNKNOWN_IN_WORKING_SCHEMA .. 109; 110; 111; 112; 113
TYPE_NAME_IN_SDS_IS_DUPLICATE 75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94; 100;

403; 405; 406; 407
TYPE_NAME_IS_INVALID .75; 77; 78; 79; 80; 81; 82; 83; 86; 87; 88; 90; 91; 93; 94; 100; 306; 403;

405; 406; 407
TYPE_OF_OBJECT_IS_INVALID ... 49; 56; 63; 65
TYPE_OF_PARAMETER_IS_WRONG ..397; 398
TYPE_REFERENCE_IS_INVALID ...296
TYPE_REFERENCE_IS_UNSET ...305; 306; 307
UNLOCKING_IN_TRANSACTION_IS_FORBIDDEN ..200
UPPER_BOUND_WOULD_BE_VIOLATED .. 38; 43; 50; 63; 65
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATED 40; 42; 44; 45; 52; 53; 57; 58
USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED 38; 39; 41; 42; 43; 49; 50; 51; 55; 293
USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED 46; 49; 50; 63; 65; 120; 147
USER_CRITERION_IS_NOT_SELECTED ...276
USER_GROUP_IS_IN_USE ...243
USER_GROUP_LACKS_ALL_USERS_AS_SUPERGROUP ..242
USER_GROUP_WOULD_NOT_HAVE_ALL_USERS_AS_SUPERGROUP 243
USER_IS_ALREADY_CLEARED_TO_CLASS ...266; 267
USER_IS_ALREADY_MEMBER ..242
USER_IS_IN_USE ...266; 267; 268
USER_IS_NOT_CLEARED ..268
USER_IS_NOT_CLEARED_TO_CLASS ..267; 268
USER_IS_NOT_MEMBER ...161; 164; 243
USER_IS_UNKNOWN ...274; 276
VALUE_LIMIT_ERRORS ..87
VALUE_TYPE_IS_INVALID .. 44; 45; 57; 58
VERSION_GRAPH_IS_INVALID ...60

- 426 -

VERSION_IS_REQUIRED ... 61
VOLUME_CANNOT_BE_MOUNTED_ON_DEVICE .. 123
VOLUME_EXISTS ... 122; 219
VOLUME_HAS_OBJECT_OUTSIDE_RANGE ... 262; 263
VOLUME_HAS_OBJECTS_IN_USE .. 124; 221
VOLUME_HAS_OTHER_LINKS ... 122; 221
VOLUME_HAS_OTHER_OBJECTS .. 122; 221
VOLUME_IDENTIFIER_IS_INVALID .. 219
VOLUME_IS_ADMINISTRATION_VOLUME ... 124
VOLUME_IS_ALREADY_COPY_VOLUME_OF_REPLICA_SET ... 204
VOLUME_IS_ALREADY_MOUNTED .. 123
VOLUME_IS_FULL ..49; 56; 63; 65; 116; 118; 132; 134; 135; 147; 149; 152; 154; 161; 196; 287; 328
VOLUME_IS_INACCESSIBLE ... 134
VOLUME_IS_INACCESSIBLE 46; 53; 56; 118; 119; 122; 123; 124; 130; 132; 134; 135
VOLUME_IS_MASTER_VOLUME_OF_REPLICA_SET ... 204; 208
VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SET .. 205; 208
VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SET 208; 209
VOLUME_IS_NOT_MOUNTED ... 206; 208
VOLUME_IS_READ_ONLY ...56; 118; 119; 206; 208; 328
VOLUME_IS_UNKNOWN ..122; 123; 124; 219; 262; 263
WORKSTATION_EXISTS ... 219
WORKSTATION_HAS_NO_CHOICE_OF_VOLUME_FOR_REPLICA_SET 209
WORKSTATION_IDENTIFIER_IS_INVALID .. 219
WORKSTATION_IS_BUSY .. 221; 222
WORKSTATION_IS_CONNECTED ... 221
WORKSTATION_IS_NOT_CONNECTED .. 222
WORKSTATION_IS_UNKNOWN 120; 221; 222; 274; 275; 276; 277; 283; 284

- 427 -

Index of Technical Terms

The entries in this index are technical terms defined in clauses 8 to 24. Page references are given
to points of definition; these are as follows:

- VDM type definitions: e.g. Attribute_designator

- VDM field names: e.g. APPLIED_LINK_TYPES

- DDL type names: e.g. type_in_sds

- other technical terms (defined in the text): e.g. ancestor types

The original form (capital letters and underscores) is retained as a guide to finding the definition,
but in running text the form of VDM-SL and DDL terms is modified for readability: see clauses
A.3 and B.8.

abnormal closedown ...216
aborts the transaction ..187
access control list ...229
Access event ..28
Access right evaluation for a group ...230
Access right evaluation for a process ...231
Access_event ..176
Access_events ...176
Access_rights ..229
accessible ..214
Accountable resources ..278
Accounting event ...29
accounting_directory ..278
Accounting_log ..279; 280
Accounting_record ...279
accounts ..278
accounts_of ...278
acknowledged_termination ...138
ACL ...229
Acl ..229
acting with downgrade authority from a confidentiality class ...249
acting with upgrade authority to an integrity class ..249
actions ...31
activity ..180; 183
activity_class ..180
Activity_class ...180
activity_start_time ..180
activity_status ...180
activity_termination_end_time ...180
activity_termination_start_time ..180
actual key ..297
actual_interpreter ..138
Actual_key ..15
ACTUAL_LINK_TYPE ...294
Address ...144
administration replica set ...203
administration_volume ...114; 210

- 428 -

administration_volume .. 200; 201
administration_volume_of ... 114
administrative objects ..36
adoptable .. 227
adoptable_for_child ... 226
adoptable_user_group .. 226
adopted user group .. 226
adopted_user_group ... 226; 279
adopted_user_group_of .. 225
aliases .. 292
ancestor interfaces ... 390
ancestor types ... 17
annotation ... 68
APPLIED_ATTRIBUTE_TYPES ... 26; 27
APPLIED_LINK_TYPES ... 26
APPLIED_OBJECT_TYPES .. 391
APPLIED_OPERATIONS .. 391
applies_to ... 399
archive .. 115
archive_directory ... 115
archive_identifier ... 115
Archive_selection ... 115
Archive_status .. 115
archived on ... 115
archived_object .. 115
archives .. 36
archives_of ... 115
archiving_time ... 115
associated with ... 23; 25
associated_administration_volume .. 211
ASSOCIATED_TYPE ... 25
atomic ACL .. 229
atomic m discretionary access right .. 230
atomic m value ... 230
atomic object .. 14
atomic or composite m discretionary access right ... 231
Atomic_access_rights .. 229
atomic_acl .. 229
Atomic_discretionary_access_mode_value ... 229
atomically denied ... 230
atomically granted ... 230
atomically modify ... 35
atomically stabilizing link .. 20
atomically undefined ..230
atoms of an object .. 14
Attribute ... 14
attribute name ... 294
Attribute_assignments .. 15
Attribute_designator ... 15
Attribute_designators ... 15

- 429 -

Attribute_reference ...291
Attribute_scan_kind ..72
Attribute_selection ..15
ATTRIBUTE_TYPE ..14; 17; 69
Attribute_type_in_sds ...24; 70
Attribute_type_in_working_schema ...26
Attribute_type_nominator ..16
Attribute_type_nominator_in_sds ..22
Attribute_type_nominators ...16
Attribute_type_nominators_in_sds ...22
ATTRIBUTE_VALUE ...14
ATTRIBUTES ..13
attributes of the link ..15
audit ..271
Audit event ..29
audit selection criteria ..273
AUDIT_CRITERIA ...13
Audit_file ..270
audit_of ...270
Audit_status ..272
Auditing_record ..270
available ...181
Basic_accounting_record ..279
Basic_auditing_record ..270
belongs to ..23
binding-defined ...4
bitwise access ...257
BLOCK_SIZE ..113
Boolean ...288
boolean_attribute_type ...70
boolean_initial_value ..70
breakpoint ...139
Buffer ..144
busy ...212
calling process ..28
canonical form of a link name ..294
cardinality many link name ..294
cardinality one link name ..294
Categories ...18
CATEGORY ..18; 71
ceases to be a client ..215
ceases to be a server ...215
change ...34
change_event ..168
Character ...289
characterizing operations ...288
child_interface ..398
CHILD_INTERFACES ..389
child_process ..138
child_type ...69

- 430 -

CHILD_TYPES ... 16; 26
class name .. 244; 298
CLASS_DOMINATES .. 245
CLASS_STRICTLY_DOMINATES .. 246
cleared .. 244
cleared_for ... 244
client ... 212
cluster ... 381
cluster_characteristics .. 381
cluster_identifier .. 375; 381
cluster_in_volume .. 381
coarse-grain object .. 375
commits the transaction .. 187
committed ... 190
common root .. 141
common_root ... 36
common_root ... 67
compatibility .. 186
complementary ... 19
complete name .. 23
component of an object .. 14
composite ACL ... 229
composite m discretionary access right ... 230
composite m value .. 230
composite_acl ... 229
Composite_name .. 25
compositely denied .. 230
compositely granted ... 230
compositely modify ... 35
compositely partially denied .. 230
compositely stabilizing link .. 20
compositely undefined ... 230
composition links ... 20
composition property ... 20
concerned domain .. 184
confidentiality context .. 248
confidentiality_class ... 244
Confidentiality_criteria .. 272
Confidentiality_criterion .. 272
confidentiality_dominator .. 244
confidentiality_high_label ... 251
confidentiality_label ... 244
CONFIDENTIALITY_LABEL_WITHIN_RANGE .. 252
confidentiality_low_label ... 251
CONFIDENTIALITY_RANGE_WITHIN_RANGE .. 252
Confidentiality_tower .. 245
conjunction ... 298
Conjunction .. 246
connection_status ... 211
Connection_status .. 210

- 431 -

CONSTITUENT_TYPES_IN_SDS ...25
constrained_to_attribute_type ...399
constrained_to_interface_type ..399
constrained_to_object_type ..399
consumer_group ...278; 279
Consumer_identifier ...277; 278
consumer_identity ..278
consumer_process ...278
CONTENTS ...13
contents handle ...125
Contents_access_mode ...124
contents_confidentiality_label ..251
Contents_handle ...124
CONTENTS_HANDLES ...12
contents_integrity_label ..251
contents_size ...124
CONTENTS_TYPE ...16; 17; 69
CONTEXT ..391; 392
Context_adoption ..391
Context_adoptions ..391
Control_data ...124
controlled by ...212
controlled_device ..211
copy ...46; 201
Copy_auditing_record ..270
copy_volume ..200
copy_volume_of ...200
covert channel ...256
CPU_TIME ...279
creation ...138
creation_or_importation_time ..68
Criteria ..272
Criterion_type ...272
current activity ..181
current object ..141
current position ...125
current time ...13
CURRENT_POSITION ...124
Current_position ...124
CURRENT_POSITIONS ...12
DATA ...167
data access ..256
Data available event ...30
Data space available event ...30
data_parameter_type ...399
Data_parameter_type_nominator ...389
datatype ...4
default_atomic_acl ..229
default_interpreter ...138
default_object_owner ...229

- 432 -

definition .. 67
Definition_mode_value .. 23
Definition_mode_values .. 23
Definition_modes ... 23; 24
delete_event ... 168
deletion_upon_termination .. 138
descendant interfaces ... 390
descendant types .. 17
designation links .. 20
DESTINATION ... 15; 270
DESTINATION_OBJECT_TYPES .. 27
DESTINATION_OBJECT_TYPES_IN_SDS ... 24
device ... 125; 210
Device .. 124; 251
Device failure ... 29
Device_accounting_record ... 279
device_characteristics .. 125; 210
device_identifier ... 211
Device_identifier .. 114
device_of .. 125
device_supporting_volume .. 115
digit .. 297
Direct effects .. 28
direct program supergroup .. 226
direct user supergroup ... 226
DIRECT_ATTRIBUTE_TYPES_IN_SDS ... 24
DIRECT_COMPONENT_TYPES .. 26
DIRECT_COMPONENT_TYPES_IN_SDS .. 24
DIRECT_COMPONENTS .. 13
DIRECT_OUTGOING_LINK_TYPES_IN_SDS ... 24
disabled .. 272
discarding a lock .. 190
discretionary groups ..226
Discretionary_access_mode ... 229
Discretionary_access_mode_value .. 229
Discretionary_access_modes ... 229
disjunction .. 298
Disjunction ... 246
dispatching context .. 394
dispatching_context ... 394
dominated in confidentiality relative to the process .. 249
dominates ... 245; 246
dominates_in_confidentiality ... 244
dominates_in_integrity .. 244
downgradable_by ... 244
DOWNGRADE_AUTHORITY .. 249
duplicable ... 17
duplicable component ..20
duplicable link ... 20
DUPLICATION ... 17; 18; 69

- 433 -

DURATION ...279
effective security groups ...226
enabled ..272
enclosing activity ..181
end event ...280
entities ...13
enumeral ...70
enumeral_of ..72
Enumeral_type ..22; 72
Enumeral_type_in_sds ..25; 72
Enumeral_type_in_working_schema ...27
Enumeral_type_nominator ...16
Enumeral_type_nominator_in_sds ...22
Enumeral_type_nominators_in_sds ..23
Enumerated PCTE datatypes ..290
enumeration_attribute_type ..70
Enumeration_value_type_identifier ...17
Enumeration_values ...72
error ..30
error conditions ..30
established ..187
EVALUABILITY ...291
evaluating ...291
evaluation ...291
evaluation status ...291
Evaluation_point ...291
Evaluation_status ..291
EVENT_TYPE ...270
events ..28
exact_identifier ...32; 33; 270
exclusive composition link ..20
EXCLUSIVENESS ..18; 71
exec_class_name ...392
executable ...135; 393
executed ..28
executed_on ..138
executes ...138
execution class ..135
execution class name ..393
execution site of the process ...141
execution_class ...136
execution_site ...210
execution_site ...252
execution_site_directory ...210
execution_site_identifier ...136
execution_sites ..36
execution_sites_of ..210
existence links ...20
existence property ...20
explicit lock ...184

- 434 -

Explicit promotion ... 188
explicitly chosen volume .. 202
explicitly established ..187
Exploit_auditing_record ... 270
EXPLOITED_OBJECT ... 270
exploits ... 392
EXPORT_MODE .. 23; 68
external link of an object .. 14
external reference .. 291
External_attribute_reference .. 291
external_component ... 393
external_component_of .. 393
External_link_reference ... 291
External_object_reference .. 291
External_type_reference .. 291
file .. 124
File ... 124
File_accounting_record .. 279
fine-grain object ... 375
Float ... 289
float_attribute_type .. 70
FLOAT_DOWNGRADE ... 255
float_initial_value .. 70
FLOAT_UPGRADE .. 255
floating_confidentiality_level .. 254
floating_integrity_level .. 254
floating_level ... 254
Floating_level .. 254
foreign .. 135
FOREIGN_DEVICE .. 210
foreign_execution_image ... 136
foreign_name ... 136
foreign_system ... 213
FREE_BLOCKS .. 113
from .. 16
full type name ... 295
General_criteria .. 272
General_criterion ... 272
global schema .. 27
ground .. 36
GROUP .. 270
group_identifier .. 225
Group_identifier ... 225
Handler ... 168
has_dispatching_context .. 394
has_log ... 280
has_map ... 393
has_operation ... 398
has_parameter .. 398
has_program_subgroups .. 225

- 435 -

has_programs ..225
has_return_value ...398
has_type_in_sds ..67
has_user_subgroups ..225
has_users ...225
having_clearance ..244
highest used value ...297
hold ...183
home object ...141
IMAGE ...25; 27; 72
Implementation_defined_message_type ...168
implementation-defined ...4
implementation-dependent ..4
implemented_by ...394
implementing_tool ..394
implicit links ...20
implicit lock ..184
Implicit promotion ..188
implicitly chosen volume ...202
implicitly established ..187
in ...23
in_attribute_set ...69
in_destination_set ...71
in_link_set ..69
in_operation_set ..399
in_resource_group ..278
in_sds ..68
in_working_schema_of ...67
includes_object ...201
Indirect effects ..28
indirect program supergroup ...226
indirect user supergroup ..226
indivisible operation ...140
INFORMATION ..280
Information_accounting_record ...280
Information_auditing_record ..270
inheritable ...137
initial process ...144
initial_process ...211
Initial_status ..137
INITIAL_VALUE ..17
initial_value_position ...70
installation-wide limits ...307
instances of a type ..16
Integer ...288
integer_attribute_type ...70
integer_initial_value ...70
integrity context ..248
integrity_class ...244
Integrity_criteria ...272

- 436 -

Integrity_criterion .. 272
integrity_dominator .. 244
integrity_high_label ... 251
integrity_label .. 244
INTEGRITY_LABEL_WITHIN_RANGE ... 252
integrity_low_label .. 251
INTEGRITY_RANGE_WITHIN_RANGE .. 253
Integrity_tower ... 245
interface ... 4
interface_parameter_type ... 399
Interface_parameter_type_nominator .. 389
Interface_scope .. 389
Interface_type ... 389; 398
Interface_type_in_sds .. 391; 399
Interface_type_nominator .. 389
Interface_type_nominator_in_sds .. 391
Interface_type_nominators ... 389
Interface_type_nominators_in_sds .. 391
internal link of an object .. 14
internal reference ... 291
Internal_attribute_reference ... 294
internal_component .. 393
internal_component_of .. 393
Internal_link_reference .. 294
Internal_object_reference ... 292
Internal_type_reference .. 295
interpretable ... 135
interpretable ... 135
interpreter ... 135
interpreter .. 135
Interrupt operation event ... 29
is_attribute_of .. 70
is_destination_of .. 69
is_link_of ... 71
is_listener ... 137
is_log_for ... 280
is_operation_of ... 399
KEY ... 294; 297
key attribute value .. 297
key character .. 297
key first character ... 297
key natural value .. 297
key nil value ... 297
key string value .. 297
key_attribute ... 71
key_attribute_of ... 69
KEY_ATTRIBUTE_TYPES ... 18; 27
KEY_ATTRIBUTES ... 15
key_number .. 71
Key_types ... 18

- 437 -

Key_types_in_sds ...72
KIND ..279; 390
known_cluster ...381
known_consumer_group ...278
known_execution_site ..210
known_mandatory_class ...244
known_replica_set ..200
known_replica_set_of ...200
known_resource_group ...278
known_sds ..66
known_security_group ...225
known_volume ...113
LABEL_DOMINATES ..246
LABEL_STRICTLY_DOMINATES ...247
labels of contents ..253
last_access_time ...33
last_change_time ..33
last_composite_access_time ...33; 183
last_composite_change_time ..33
last_composite_modif_time ..33
last_modification_time ...33
last_receive_time ..168
last_send_time ..168
LI datatypes ..288
lies within the confidentiality or integrity range ..253
Limit_category ..309
Limit_name ...309
Limit_value ...309
Link ...15
link name ..294
link resource ...183
LINK_CREATE ...36
LINK_DELETE ..38
LINK_DELETE_ATTRIBUTE ...39
Link_descriptor ...15
Link_descriptors ...15
Link_designator ..15
Link_designators ..15
LINK_GET_ATTRIBUTE ...40
LINK_GET_DESTINATION_VOLUME ...40
LINK_GET_KEY ...41
LINK_GET_REVERSE ...41
LINK_GET_SEVERAL_ATTRIBUTES ...42
Link_reference ..291
LINK_REPLACE ...42
LINK_RESET_ATTRIBUTE ..44
Link_scan_kind ..72
Link_scope ..15
Link_selection ..15
LINK_SET_ATTRIBUTE ...44

- 438 -

Link_set_descriptor .. 15
Link_set_descriptors .. 15
LINK_SET_SEVERAL_ATTRIBUTES ... 45
LINK_TYPE .. 15; 18
link_type .. 71
Link_type_in_sds ... 24; 71
Link_type_in_working_schema ... 27
Link_type_nominator ... 16
Link_type_nominator_in_sds .. 22
Link_type_nominators ... 16
Link_type_nominators_in_sds ... 23
linkable ... 393
linkable library ... 394
linkable_library .. 393
linkable_to .. 393
LINKS .. 13
listened_to .. 168
local name .. 295
local workstation .. 213
LOCAL_NAME ... 22; 25; 67
LOCAL_SDS ... 22
lock ... 183
Lock release event .. 29
lock_duration ... 183
lock_explicitness .. 183
lock_external_mode ... 182
Lock_internal_mode .. 182
lock_mode .. 182
Lock_set_mode .. 182
locked_by ... 33
locked_identifier .. 32
locked_link_name .. 32; 33
long lock ... 184
LOWER_BOUND ... 18; 71
machine_name ... 211
mandatory context .. 248
mandatory_class ... 244
mandatory_classes ... 244
mandatory_classes_of .. 244
mandatory_directory .. 244
Mandatory_event_type ... 270
map_used_by ... 394
master ... 201
master_volume ... 200
master_volume_of .. 200
max_inheritable_open_objects ... 135
MAXIMUM_USAGE_MODE .. 23; 68
may_downgrade ... 243
may_upgrade .. 243
member of a program group ... 226

- 439 -

member of a user group ..226
MESSAGE ..167
Message ..167
Message queue event ..29
message_count ..168
Message_queue ...12; 168
Message_queue_accounting_record ...280
MESSAGE_QUEUES ..12
MESSAGE_SIZE ...280
MESSAGE_TYPE ..167
Message_type ...168
message_types ..137
Message_types ..168
MESSAGES ...12
method ...4
method_actions ...394
Method_request ..391
Method_request_id ...391
Method_request_ids ..391
Method_requests ...391
method_selection ..394; 399
modification ..34
modification_event ...168
module ..393
monitored access attributes ..176
monitored object ...176
mounted ..114
mounted on ...115
mounted_on ..114
mounted_volume ..115
move_event ...168
Multi_level_device_designator ...251
multi-levelsecuredevice ...252
Name ...12; 32; 291
Name_sequence ..12
named_definition ..67
named_in_sds ...68
native ..135
Natural ..288
natural_attribute_type ...70
natural_initial_value ...70
needed atomically ...231
needed compositely ...231
nested activities ...181
nested_activity ..180
nested_in ...180
Network failure ...29
network partition ..214
Network repair ..30
New_administration_volume ..210

- 440 -

NEW_PROCESS ... 270
next unused value ... 297
node_name ... 211
nominal serialization point .. 31
non_blocking_io .. 137
NON_KEY_ATTRIBUTE_TYPES_IN_SDS ... 24
NON_KEY_ATTRIBUTES .. 15
non-blocking ... 127
nonduplicable ... 17; 20
nonstabilizing link .. 20
nonzero digit .. 297
normal .. 201
normal behaviour ... 30
notification message ... 177
Notification_message_type .. 177
notifier .. 168; 176
notifier_key .. 168
null label .. 246
num_incoming_composition_links .. 33
num_incoming_existence_links ... 33
num_incoming_links .. 33
num_incoming_reference_links ... 33
num_incoming_stabilizing_links ... 33
NUM_OBJECTS ... 113
num_outgoing_composition_links ... 33
num_outgoing_existence_links .. 33
number ... 32
obj_used_in_map ... 398
Object ... 13; 33; 270; 375
object .. 201
object resource ... 183
Object_auditing_record .. 270
OBJECT_BASE ... 12
OBJECT_CHECK_TYPE ... 45
OBJECT_CONVERT .. 46
OBJECT_COPY .. 46
OBJECT_CREATE ... 49
Object_criteria .. 272
Object_criterion ... 272
OBJECT_DELETE .. 50
OBJECT_DELETE_ATTRIBUTE .. 51
Object_designator .. 13
Object_designators ... 13
OBJECT_GET_ATTRIBUTE ... 52
OBJECT_GET_PREFERENCE .. 52
OBJECT_GET_SEVERAL_ATTRIBUTES ... 53
OBJECT_GET_TYPE ... 53
object_in_cluster .. 381
OBJECT_IS_COMPONENT .. 54
OBJECT_LIST_LINKS ... 54

- 441 -

OBJECT_LIST_VOLUMES ..55
OBJECT_MOVE ..55
object_on_volume ..114
object_parameter_type ..399
Object_reference ...291
OBJECT_RESET_ATTRIBUTE ...56
Object_scan_kind ...72
Object_scope ...14
OBJECT_SET_ATTRIBUTE ..57
OBJECT_SET_PREFERENCE ...57
OBJECT_SET_SEVERAL_ATTRIBUTES ..58
OBJECT_SET_TIME_ATTRIBUTES ..58
OBJECT_TYPE ...13; 16; 69; 398
Object_type_in_sds ..24; 69; 399
Object_type_in_working_schema ..26
Object_type_nominator ..16
Object_type_nominator_in_sds ..22
Object_type_nominators ...16
Object_type_nominators_in_sds ..22
obtained ..188
Octet ..289
of cardinality many ...18
of cardinality one ..18
of_type ..68
on_foreign_system ..136
op_used_in_map ...398
open object ..125
open object key ...125
OPEN_CONTENTS ...12
Open_contents ..124
open_object ...137
OPEN_OBJECT_KEY ...124; 137
opened_by ...33
opening_mode ..137
operated on ...184
operation ..4; 280
operation id(entifier) ..392
operation identifier ...393
OPERATION_ID ...391; 392
Operation_kind ...390; 398
Operation_parameter_type_nominator ...389
Operation_type ...390; 398
Operation_type_in_sds ...391; 399
Operation_type_nominator ...389
Operation_type_nominator_in_sds ...391
Operation_type_nominators ...389
Operation_type_nominators_in_sds ...391
OPERATION_TYPES ...389
orderly closedown ...216
origin ..14

- 442 -

origin object type in SDS ... 24
outer object .. 14
outermost activity ... 181
outermost_activity .. 211
owner .. 232
Parameter_item .. 391
Parameter_items ... 391
Parameter_mode ... 390; 398
parameter_of .. 398
Parameter_type ... 390; 398
PARAMETER_TYPE_IDENTIFIER ... 390
Parameter_type_nominator .. 389
Parameter_type_nominators ... 389
PARAMETERS ... 390; 391; 392
parent_interface .. 398
PARENT_INTERFACES .. 389
parent_process .. 138
parent_type ... 69
PARENT_TYPES .. 16; 26
pathname .. 292
PCTE datatype ... 4
PCTE_implementation_name .. 211
PCTE_implementation_release .. 211
PCTE_implementation_version ... 211
PCTE_Installation .. 12
pipe ... 125
Pipe .. 124
Pipe_accounting_record ... 279
position ... 70; 167
position handle ... 125
position number ... 168
Position_handle .. 124
positioning .. 124
Positioning_style .. 124
predecessor ... 33
predecessor_number ... 33
predefined replicated objects ... 203
pre-evaluating .. 291
PREFERRED_LINK_KEY ... 13
PREFERRED_LINK_TYPE ... 13
private PCTE datatype ... 290
Process ... 12; 138; 270; 394
process .. 138; 254
Process alarm event ... 29
Process termination event .. 30
Process timeout event ... 29
process_creation_time .. 138
Process_data ... 144
process_environment ... 138
process_file_size_limit ... 138

- 443 -

PROCESS_OBJECT ..12
process_object_argument ...138
process_priority ..138
process_start_time ..138
process_started_in ...180
process_status ...138
process_string_arguments ...138
process_termination_status ...138
process_termination_time ...138
process_time_out ..138
process_user_defined_result ...138
process_waiting_for ..137; 183
PROCESSES ..12
Profile_handle ...144
program subgroup ..226
program supergroup ...226
program_group ...225
program_member_of ..225
program_subgroup_of ...225
promote ...188
properties ..19
protected activity ..181
QUEUE_OBJECT ..12
raise ..28
raised ..177
read ...248
Read lock modes ...186
READ_COUNT ..279
read_only ..114
READ_SIZE ...279
reader_waiting ..168
ready ...139
realized_by ..394
realizes ..394
Received_message ..167
RECORDS ..279
reference links ...20
Reference_equality ...291
reference_name ...137
referenced object name ...292
referenced_object ..137
referential integrity ...19
relative pathname ..292
relative strength ..186
relative weakness ..186
RELATIVE_CLASS_DOMINATES_IN_CONFIDENTIALITY ...249
RELATIVE_CLASS_DOMINATES_IN_INTEGRITY ...250
RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY ..250
RELATIVE_LABEL_DOMINATES_IN_INTEGRITY ...250
releasing a lock ...190

- 444 -

relevance to the origin ... 19
removal ... 97
Removed_criterion ... 272
replica ... 201
replica_on ... 201
replica_set .. 200
replica_set .. 201
replica_set_chosen_volume ... 202
replica_set_directory .. 200
replica_set_identifier .. 200
Replica_set_identifier .. 200
replica_sets ... 36
replica_sets_of ... 200
replicated as part of ... 201
replicated object ... 201
replicated_as_part_of ... 201
replicated_state ... 33
Replication redirection .. 202
requested .. 187
Requested_connection_status .. 210
reserved .. 169
reserved_by .. 168
reserved_message_queue ... 138
reserving ... 169
residing on ... 114
resource .. 183
Resource availability event .. 29
resource_group ... 278; 279
resource_group_of ... 278
Resource_identifier .. 277; 278
Resource_kind .. 279
restricted_execution_class ... 135
RETURN_CODE ... 270
RETURN_VALUE .. 390
return_value_of .. 398
REVERSE .. 15; 27; 71
REVERSE_LINK_TYPE .. 18
running ... 139
running_process ... 210
runs .. 138
saved_archive ... 115
schema definition set .. 23
schemas .. 67
schemas_of ... 66
SDS ... 23; 67
sds name ... 295
Sds_accounting_record .. 279
SDS_ADD_DESTINATIONO .. 73
SDS_APPLY_ATTRIBUTE_TYPEO .. 73
SDS_APPLY_LINK_TYPE .. 74

- 445 -

SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE ..75
sds_directory ...66
sds_in_working_schema ...138
SDS_NAME ...25; 66
SDS_NAMES ...12
Security attribute change ..30
Security_auditing_record ..270
security_group ..225
security_group ..243
security_group_directory ..225
security_groups ...226
security_groups_of ...225
security_label ..298
Security_label ...246
SECURITY_USER ..279
Seek_position ..124
Selectable_event_type ..270
selected ...272
Selected_return_code ..272
Selection_criterion ..272
server ..212
server for an accountable resource ...281
service designation links ...21
Set_position ..124
sharable composition link ..20
shared component ...14
short lock ..184
SOURCE ..270
space ...298
space_used ..168
Specific_criterion ..272
STABILITY ..18; 71
stable object ..20
Standard_message_type ..168
start event ...280
START_TIME ..279
started_activity ..138
started_by ..180
started_in_activity ..138
static context of the process ..141
static_context ..135; 394
Static_context_accounting_record ..279
stopped ..139
strictly dominates ..245; 246
String ..15
string_attribute_type ...70
string_initial_value ...70
Structured_contents ..13
subgroup ...226
successor ...33

- 446 -

supergroup ... 226
supports_interface .. 399
suspended ... 139
suspended ... 138
SYS_TIME .. 279
system_class ... 213
system_key ... 32
SYSTEM_TIME .. 12
target object ... 392
TARGET_OBJECT ... 391
terminate .. 30
terminated .. 139
Text .. 290
the user of a process ... 226
thread ... 138
TIME .. 270
Time ... 289
time_attribute_type .. 70
time_initial_value .. 70
time_left_until_alarm ... 138
to .. 16
Token ... 290
tool ... 393
TOTAL_BLOCKS ... 113
total_space .. 168
transaction ... 181
transaction activity .. 181
triggered ... 177
Type ... 16; 22; 67; 389
type identifier ... 295
type in global schema ... 27
type name ... 295
type name in sds ... 297
Type_ancestry .. 36
type_identifier .. 66; 67
Type_in_sds ... 22; 68; 391
Type_in_sds_common_part ... 22
Type_in_working_schema ... 25
Type_in_working_schema_common_part ... 25
Type_kind .. 16
Type_nominator ...16; 17; 18; 22; 389; 390
Type_nominator_in_sds ... 22; 391
Type_nominators ... 16
Type_nominators_in_sds ... 22
Type_reference ... 291
Undefined_message_type .. 168
unit ... 298
unknown ... 139
unprotected activity .. 181
unreachable .. 215

- 447 -

Unstructured_contents ..14
upgradable_by ...244
UPGRADE_AUTHORITY ..249
UPPER_BOUND ..18; 71
usable_execution_site ...136
usage designation links ...21
USAGE_MODE ...23; 68
USAGE_MODES ...26; 27
USED_IN_INTERFACE ..390; 398
user ..225; 270
user subgroup ...226
user supergroup ..226
User_criteria ...272
User_criterion ...272
User_defined_message_type ..290
user_group ..225
user_identity ...226
user_identity_of ..225
user_member_of ...225
user_subgroup_of ...225
user's confidentiality clearance ..247
user's integrity clearance ..248
uses_object ..399
uses_operation ..399
VALUE_TYPE_IDENTIFIER ...17
values ..288
Version_relation ...36
VERSION_SNAPSHOTO ...63
VERSION_TEST_ANCESTRYO ...65
VERSION_TEST_DESCENTO ..66
visible type ..13
VISIBLE_ATTRIBUTE_TYPES ..26
VISIBLE_DESTINATION_OBJECT_TYPES ...27
VISIBLE_LINK_TYPES ...26
VISIBLE_TYPES ...12
volume ..114; 381
volume ..251
Volume failure ..29
Volume_accessibility ..113
volume_characteristics ...114; 210
volume_directory ..113
volume_identifier ..32; 33; 113
Volume_identifier ...113
Volume_info ...113
Volume_infos ...113
VOLUME_LIST_OBJECTS ..59
Volume_status ..113
volumes ...36
waiting_type ...137
Work_status ..210

- 448 -

Work_status_item .. 210
Working_schema ... 12
Workstation .. 13; 211; 270; 271
workstation ... 202
Workstation_accounting_record .. 279
WORKSTATION_OBJECT .. 13
Workstation_status ... 210
workstation-dependent limits ... 307
WORKSTATIONS .. 12
write ... 248
Write lock modes .. 186
WRITE_COUNT ... 279
WRITE_SIZE ... 279
writer_waiting .. 168

.

.

Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as
password. This Standard is available from library ECMA-ST as a compacted, self-expanding file in MSWord 6.0 format (file
E149-DOC.EXE) and as two Acrobat PDF files (file E149-V1.PDF and E149-V2.PDF). File E149-EXP.TXT gives a short
presentation of the Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical
Reports.

ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Standard ECMA-149 is available free of charge in printed form and as a file.

See inside cover page for instructions

