cecma

ANGAlrtl ECMA-262
- || 14" Edition / June 2023

ECMAScript® 2023
Language Specification

Rue du Rhone 114 CH-1204 Geneva T.+41 22 8496000 F: 441 22 849 6001

Jordan Harband

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://www.ecma-international.org

secnd

INTERNATIONAL

i$ the regstered trademark of Ecma Internaticnal

COPYRIGHT PROTECTED DOCUMENT

© Ecma International

http://www.ecma-international.org/

secmd

ALTERNATIVE COPYRIGHT NOTICE AND COPYRIGHT LICENSE

© 2023 Ecma International

By obtaining and/or copying this work, you (the licensee) agree that you have read, understood, and will
comply with the following terms and conditions.

Permission under Ecma’s copyright to copy, modify, prepare derivative works of, and distribute this work, with
or without modification, for any purpose and without fee or royalty is hereby granted, provided that you include
the following on ALL copies of the work or portions thereof, including modifications:

(i) The full text of this ALTERNATIVE COPYRIGHT NOTICE AND COPYRIGHT LICENSE in a location
viewable to users of the redistributed or derivative work.

(ii) Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the Ecma
alternative copyright notice should be included.

(iii) Notice of any changes or modifications, through a copyright statement on the document such as “This
document includes material copied from or derived from [title and URI of the Ecma document].
Copyright © Ecma International.”

Disclaimers

THIS WORK IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE
DOCUMENT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the
work without specific, written prior permission. Title to copyright in this work will at all times remain with
copyright holders.

© Ecma International 2023

secmd

© Ecma International 2023

ecma

Contents Page
1 SCOPE *+rrt e 1
2 ConNfOrMAanNcCe ' * » » * = =+t s s s s s s st s u s s s u s s s a s a s e 1
3 Normative References « » = =« = = st s s st ettt an s s an st s an s s e ansanssnnssnns 2
4 OVeIrVIEW * * = = s = s s s s e it st s s s s s s s s 2
41 Web Scripting ... 3
4.2 Hosts and Implementations ... 3
4_3 ECMAScript 0verview ... 3
4.4 Terms and DefinitionNs « = = * * = =« + = ¢ st ettt it e s 6
4.5 Organization of This Specification ... 1M
5 Notational Conventions = » = = =+ = =+ s s v s s et sttt i s s s s 12
5_1 Syntactic and Lexical Grammars .. 12
5.2 A|gor|thm CoNVEeNtioONS * ** =" = s s sttt e i e 20
6 ECMAScnpt Data Types aNd Values @ = = = = = = =« rrt s e e e 26
6.1 ECMAScnpt Language Types .. 26
6.2 ECMASc"pt Specification Types .. 53
7 Abstract oPerations ... 65
71 Type CONVEIrSION * " "= == =+ st s s s s s s s s ma s s s s s s s s s s s s as s ot as s nssns 65
7.2 Testing and Comparison 0perati°ns ... 76
7.3 Operations on Objects ... 81
7.4 Operations on lterator Objects ... 92
8 Syntax-Directed oPeration ... 95
8.1 Runtime Semantics: Scope Analysis ... 96
8_2 Labels .. 115
8.3 Functlon Name Inference .. 124
8.4 (ode)11 2 1 I I I L R R R T T R T I I I R I 129
8_5 Misce"aneoUS ... 132
9 Executable Code and Execution Contexts « -« - === x v v veerren e 141
9.1 Environment Records = = * = » =+ = sttt vt ettt it s s e 141
9.2 PrivateEnVIronment Records ... 159
93 Realms "+ =+ s = s vt o e it i s s s s s s s s s 160
9.4 EXecUtion CONtexts « = = = =+« =ttt s e ettt i it e s s e 162
9.5 Jobs and Host Operations to Enqueue Jobs « « === -+ »rr e 165
9.6 InitializeHostDefinedRealm () ... 167
9.7 Agents .. 168
9.8 Agent ClusSters : =+ ===+ sttt s s a sttt s s s s 170
9.9 Forward Progress .. 171
9.10 Processing Model of WeakRef and FinalizationRegistry Targets - - - -+ ==+« «-orntn 171
9.1 C|earKeptObjects () .. 174
9.12 AddToKeptObjects (value) ... 174
9.13 CleanupFinalizationRegistry (finalizationRegistry) = =« =« 174
9.14 CanBeHeldWeakly (v) .. 175
10 Ordinary and Exotic Objects BehaViours = =+ + ==+ =+ ==t tommrsmansnnnssnnnsnnnsss 175
10.1 Ordinary Object Internal Methods and Internal Slots - = - = === ===« s v e v e en et 175
10.2 ECMAScnpt Function Objects ... 184
10.3 Built-in Function Objects .. 194
10.4 Built-in Exotic Object Internal Methods and Slots - - -+ -+« - - - - - o v vvr v e 197
10.5 Proxy Object Internal Methods and Internal Slots - -+« = -+ = s v v ev v ee e 214
11 ECMAScript Language: SourceTexXt » === st rmmmnnnnane s nnnnnnnns 224
111 Source TexXt: =« - s vt ot ot i i it i s s e s s s s s s 224
11.2 Types Of SoUrce Code » » » »*rt s s s sttt i ittt i s 226
12 ECMAScript Language: Lexical Grammar =« +* ==+ ==t 2ot tomssnnnrsnansnnnsss 228
12.1 Unicode Format-Control Characters = = = = = = = = =+« s s u st nnanensrsnnnnnnnnns 230
12.2 White SPace .. 230
123 LineTerminators » » = = =+ = = s s s s s s s v st s s s s s s s s n s s a s st aa s nan 231
12_4 cOmments ... 232
12.5 Hashbang COMMENES == * * * ** s mm s s a st s e st saaaass s 233

© Ecma International 2023 iii

ecma

12.6
12.7
12.8
12.9
12.10

13
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16

14
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16

15
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10

16
16.1
16.2

17
171

18

19
19.1
19.2

Tokens ... 233
Names and Keywords .. 233
unctuators ... 236
LItEralS - = =+ * s s oo onos s ettt 237
Automatic Semicolon lnsertion ... 249
ECMAScript Language: Expressions 254
Identifiers ... 254
Primary Expression .. 256
Left-Hand-Side EXPreSSioNs « =+« s xxreesreeanr ettt 269
Update EXPreSSIONS =« =+« s xr et s reseeneenne e, 282
UNAry OPErators « - = =+« « st s rmssennanseenns e e e e aeeaeaennnnn, 284
Exponentiation 0perator .. 287
Multiplicative 0perators .. 287
Additive 0perators .. 288
Bitwise Shift Operators ... 289
Relational Operators ... 289
Equality OpPerators « - =+« ««+reeesnnsmeeeeenuane e, 292
Binary Bitwise OPerators ... 293
Binary Logical OPerators ... 294
Conditlonal Operator (? .) ... 295
Assignment 0perators ... 296
Comma Operator .. 306
ECMAScript Language: Statements and Declarations - - - - =« =« =« =+ o v e v e v i ve v 307
Statement SEMANLICS * + s s s sttt e 307
Block .. 308
Declarations and the Variable Statement - - - -« - = -« - s v v e e 309
Empty Statement * = = == =+ = s s e s s s a s s s 315
Expression Statement - - == - = = == s s st e s s s s 315
The 'i_-F statement ... 315
Iteration Statements -« - - == = - s s s e i e e s s s 316
The continue Statement = -« =« = s s s sttt ittt ittt st s 330
The break Statement = -+« «« « v s v e e ittt it i i i s s s i s 330
The return Statement - - - -+ -« -« - s sttt i it e s e a e 331
The w‘i_th statement ... 332
The switch Statement ... 332
Labelled Statements = = -+ = ===+ s s s o st et e s s s s 335
The thr'ow Statement .. 337
The £y Statement « -+« ««« v v v v vt e et 337
The debuggerl Statement - -+« st r e e e 339
ECMAScript Language: Functionsand Classes ' - - = - =+ = - -+ =+ v v v o on oo 340
Parameter Lists ... 340
Function Definitions -+ = = ==+ = =+ s s s s s i e it it i i s s s s s s 344
Arrow Function Definitions .. 348
Method Definitions = = =« + + s e semn s oannnnstaansas e sennnas 350
Generator Function Definition .. 353
Async Generator Function Definitions * = = = = = = =« + s s st st s it i i s s s 358
Class Definitions * = * = = = = = = s ¢ s s s st e i i s e s e st s s s r e 361
Async Function Definitlons .. 373
Async Arrow Function Definitions = = = =+ = = =« =« s o s s i s it i i i i s s s 376
Tail Position Ca"s ... 378
ECMAScript Language: Scripts and Modules - - -« - oo 384
Scripts ... 384
Modules .. 388
Error Handling and Language Extensions =+ = ===+ =+ = s s s i i s e s 425
Forbidden EXEENSIONS = = = = = = = =+ =+ +t st e reeaeeeeeenennnsnrnsnnnnnnnnnnns 426
ECMAScnpt Standard Built-in Objects 426
The GIobal ODJECt « + = = v+ s oo s s e 428
Value Properties of the Global object 428
Function Properties of the Global Object - - - -« v 429

© Ecma International 2023

ecma

19.3 Constructor Properties of the Global Object » - - =« «+ - - r o v v v 438
194 Other Properﬁes of the Global Object 441
20 Fundamental Objects .. 442
201 object objects ... 442
20.2 Function Objects .. 451
20.3 Boolean Objects .. 458
20_4 Symbol Objects ... 459
20.5 ErrOr ODJECES =+ s s v v e e et s s ennse et ettt 464
21 NumbersandDates ' = - - -« == - =+ s s s sttt e it i i it e st s s s 470
211 Number Objects .. 470
21.2 Biglnt Objects .. 478
21.3 The Math Object .. 480
21.4 Date Objects ... 493
22 TEXt PrOCESSING = # = * s s vt s s ettt i 520
221 String Objects .. 520
22.2 RegExp (Regular Expression) Objects 541
23 Indexed Collections ' = * » = * =+ = = s s s s i st e i i s s s s 588
231 Array Objects .. 588
23.2 TypedArray objects .. 621
24 Keyed Collections = = == = = =+ = = s s s e et i e e s s e s s 646
241 Map Objects ... 647
242 SEtODJECES = =+ »+n s s st 653
24.3 WeakMap Objects ... 658
24.4 WeakSet Objects .. 661
25 Structured Data - - -+ - - == === s s s s e s e e s e s e s e 664
251 ArrayBuffer objects ... 664
25_2 SharedArrayBuffer objects .. 672
25.3 DataView Objects ... 675
254 The Atomics Object .. 681
25.5 The JSON Object .. 691
26 Managing Memory ... 699
26.1 WeakRef objects .. 699
26.2 FinalizatlonReglstry objects ... 701
27 Control Abstraction Objects ... 703
271 Iteration ... 703
27.2 Promise Objects .. 709
27_3 GeneratorFunction objects .. 728
27.4 AsyncGeneratorFunction objects ... 730
27.5 Generator ODJECES « = = = =+ === s+ v s e e et 733
27.6 AsyncGenerator ObjeCtS .. 737
27.7 AsyncFunction Objects ... 744
28 Reflection ... 748
28.1 The Reflect Object ... 748
28.2 Proxy objects .. 751
28.3 Module Namespace objects ... 752
29 Memory Model -+ s e s i s s e e s 752
29.1 Memory Model Fundamentals = =+ =+ = ==« s s s st ettt i i i i s s 752
29_2 Agent Events Records ' = == - =+ = = = = s s s s e it i e s s e s s 754
29.3 Chosen Value Records - - -+ st r o e o ittt et i i e s s s 754
294 Candidate EXecutions = = = = =+« = = = s s s s s ot e s e e s e s s e e 754
29.5 Abstract Operations for the Memory Model - - - - -+ - -+ - - oo v en v e e e e e 755
29.6 Relations of Candidate Executions = = ==« =+ s = s = s s v s it it ittt s i s s s s 757
297 Properties of Valid ExecUtions - -+« === =« s s s sttt ottt it i e st s s a s 758
29_8 Races .. 761
29.9 DataRaces -+ - " - " st s s it e s s s s 761
2910 DataRaceFreedom == =+« =+ = s s v s vttt it i i i s s s e s s 761
29.11 Shared Memory Guidelines .. 761

© Ecma International 2023 v

vi

ecmna

Annex A (lnformat|ve) Grammar Summary .. 765
A1 Lexical Grammar ... 765
A2 Expressions ... 771
A.3 Statements .. 778
A.4 Functions and Classes ... 782
A.5 8cripts and Modules ... 786
A.6 Number COnversions .. 787
A.7 Time Zone Offset String Format - - - -+« -« - s s e e it i i s e 788
A_8 Regular Expressions .. 788
Annex B (normative) Additional ECMAScript Features for Web Browsers - - -:-:---------. 793
B.1 Additional Syntax ... 793
B.2 Additional Bu"t_in Properties .. 799
B.3 Other Addltional Features .. 805
Annex C (informative) The Strict Mode of ECMAScript - = = = == s s o 813
Annex D (|nformatlve) Host Layerlng Points - - - =+ = = = = s s s s e e i e e e e e 815
D.1 HOSt HOOKS - = - -+« == s s s s e e e i it e e i it e e i s e s i i s s st s s s s s a s s s aa s s ns 81 5
D_2 Host_defined Fields ... 815
D_3 Host-defined Objects .. 81 5
D.4 Running Jobs .. 816
D.5 Internal Methods of Exotic Objects .. 816
D.6 Built_in Objects and Methods .. 816
Annex E (informative) Corrections and Clarifications in ECMAScript 2015 with Possible -

Compatibility Impact ... 817
Annex F (informative) Additions and Changes That Introduce Incompatibilities

with Prior Editions .. 819
Bibliography .. 823
Software License ... 825
Colophon ... 827

© Ecma International 2023

ecma

Introduction

This Ecma Standard defines the ECMAScript 2023 Language. It is the fourteenth edition of the ECMAScript
Language Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the
world's most widely used general-purpose programming languages. It is best known as the language
embedded in web browsers but has also been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that
company's Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all
browsers from Microsoft starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of
this Ecma Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of future language growth. The third edition of the ECMAScript standard was adopted
by the Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World
Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. However, that work was not
completed and not published as the fourth edition of ECMAScript but some of it was incorporated into the
development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5t edition) codified de facto interpretations of the
language specification that have become common among browser implementations and added support for
new features that had emerged since the publication of the third edition. Such features include accessor
properties, reflective creation and inspection of objects, program control of property attributes, additional
array manipulation functions, support for the JSON object encoding format, and a strict mode that provides
enhanced error checking and program security. The fifth edition was adopted by the Ecma General Assembly
of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved
as international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor
corrections and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General
Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for
publication. However, this was preceded by significant experimentation and language enhancement design
efforts dating to the publication of the third edition in 1999. In a very real sense, the completion of the sixth
edition is the culmination of a fifteen year effort. The goals for this edition included providing better support
for large applications, library creation, and for use of ECMAScript as a compilation target for other
languages. Some of its major enhancements included modules, class declarations, lexical block scoping,
iterators and generators, promises for asynchronous programming, destructuring patterns, and proper tail
calls. The ECMAScript library of built-ins was expanded to support additional data abstractions including
maps, sets, and arrays of binary numeric values as well as additional support for Unicode supplementary
characters in strings and regular expressions. The built-ins were also made extensible via subclassing. The
sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth
edition was adopted by the General Assembly of June 2015.

© Ecma International 2023 Vi

ecmna

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release
cadence and open development process. A plain-text source document was built from the ECMAScript 2015
source document to serve as the base for further development entirely on GitHub. Over the year of this
standard's development, hundreds of pull requests and issues were filed representing thousands of bug
fixes, editorial fixes and other improvements. Additionally, numerous software tools were developed to aid in
this effort including Ecmarkup, Ecmarkdown, and Grammarkdown. ES2016 also included support for a new
exponentiation operator and adds a new method to Array.prototype called includes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language
and library enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous
programming experience by providing syntax for promise-returning functions. Shared Memory and Atomics
introduce a new memory model that allows multi-agent programs to communicate using atomic operations
that ensure a well-defined execution order even on parallel CPUs. It also included new static methods on
Object: Object.values, Object.entries, and Object.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the Asynclterator protocol and async
generators. It also included four new regular expression features: the dotAl1l flag, named capture groups,
Unicode property escapes, and look-behind assertions. Lastly it included object rest and spread properties.

ECMAScript 2019 introduced a few new built-in functions: flat and flatMap on Array.prototype for
flattening arrays, Object. fromEntries for directly turning the return value of Object.entries into a
new Object, and trimStart and trimEnd on String.prototype as better-named alternatives to the
widely implemented but non-standard String.prototype.trimLeft and trimRight built-ins. In
addition, it included a few minor updates to syntax and semantics. Updated syntax included optional catch
binding parameters and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in
string literals to align with JSON. Other updates included requiring that Array.prototype.sort be a
stable sort, requiring that JSON.stringify return well-formed UTF-8 regardless of input, and clarifying
Function.prototype.toString by requiring that it either return the corresponding original source text
or a standard placeholder.

ECMAScript 2020, the 11t edition, introduced the matchAll method for Strings, to produce an iterator for
all match objects generated by a global regular expression; import(), a syntax to asynchronously import
Modules with a dynamic specifier; BigInt, a new number primitive for working with arbitrary precision
integers; Promise.allSettled, a new Promise combinator that does not short-circuit; globalThis, a
universal way to access the global this value; dedicated export * as ns from 'module' syntax for
use within modules; increased standardization of for-in enumeration order; import.meta, a host-
populated object available in Modules that may contain contextual information about the Module; as well as
adding two new syntax features to improve working with “nullish” values (null or undefined): nullish
coalescing, a value selection operator; and optional chaining, a property access and function invocation
operator that short-circuits if the value to access/invoke is nullish.

ECMAScript 2021, the 12t edition, introduced the replaceAll method for Strings; Promise.any, a
Promise combinator that short-circuits when an input value is fulfilled; AggregateError, a new Error type
to represent multiple errors at once; logical assignment operators (??=, &&=, | |=); WeakRef, for referring to
a target object without preserving it from garbage collection, and FinalizationRegistry, to manage
registration and unregistration of cleanup operations performed when target objects are garbage collected;
separators for numeric literals (1_000); and Array.prototype.sort was made more precise, reducing
the amount of cases that result in an implementation-defined sort order.

ECMAScript 2022, the 13" edition, introduced top-level await, allowing the keyword to be used at the top
level of modules; new class elements: public and private instance fields, public and private static fields,
private instance methods and accessors, and private static methods and accessors; static blocks inside
classes, to perform per-class evaluation initialization; the #x in obj syntax, to test for presence of private
fields on objects; regular expression match indices via the /d flag, which provides start and end indices for
matched substrings; the cause property on Error objects, which can be used to record a causation chain in
errors; the at method for Strings, Arrays, and TypedArrays, which allows relative indexing; and
Object.hasOwn, a convenient alternative to Object.prototype.hasOwnProperty.

ECMAScript 2023, the 14" edition, introduced the toSorted, toReversed, with, findLast, and
findLastIndex methods on Array.prototype and TypedArray.prototype, as well as the

viii © Ecma International 2023

ecma

toSpliced method on Array.prototype; added support for #! comments at the beginning of files to
better facilitate executable ECMAScript files; and allowed the use of most Symbols as keys in weak
collections.

Dozens of individuals representing many organizations have made very significant contributions within Ecma
TC39 to the development of this edition and to the prior editions. In addition, a vibrant community has
emerged supporting TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed
thousands of bug reports, performed implementation experiments, contributed test suites, and educated the
world-wide developer community about ECMAScript. Unfortunately, it is impossible to identify and
acknowledge every person and organization who has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, Project Editor, 6t Edition

Brian Terlson
ECMA-262, Project Editor, 71" through 10" Editions

Jordan Harband
ECMA-262, Project Editor, 10" through 12t Editions

Shu-yu Guo
ECMA-262, Project Editor, 12! through 14" Editions

Michael Ficarra
ECMA-262, Project Editor, 12! through 14t Editions

Kevin Gibbons
ECMA-262, Project Editor, 12 through 14! Editions

This Ecma Standard was developed by Technical Committee 39 and was adopted by the General
Assembly of June 2023.

© Ecma International 2023 iX

secmd

About this Specification

The document at https://tc39.es/ecma262/ is the most accurate and up-to-date ECMAScript specification.
It contains the content of the most recent yearly snapshot plus any finished proposals (those that have
reached Stage 4 in the proposal process and thus are implemented in several implementations and will

be in the next practical revision) since that snapshot was taken.

This document is available as a single page and as multiple pages.

Contributing to this Specification

This specification is developed on GitHub with the help of the ECMAScript community. There are a

number of ways to contribute to the development of this specification:

GitHub Repository: https://github.com/tc39/ecma262
Issues: All Issues, File a New Issue

Pull Requests: All Pull Requests, Create a New Pull Request
Test Suite: Test262

Editors:

o Shu-yu Guo (@_shu)

o Michael Ficarra (@smooshMap)

o Kevin Gibbons (@bakkoting)

Community:

o Discourse: https://es.discourse.group

o Chat: Matrix

o Mailing List Archives: https://esdiscuss.org/

Refer to the colophon for more information on how this document is created.

o Community:

o Matrix: #tc39:matrix.org
o Matrix: #tc39-ecma402:matrix.org

Refer to the colophon for more information on how this document is created.

© Ecma International 2023

https://tc39.es/ecma262/
https://github.com/tc39/proposals/blob/HEAD/finished-proposals.md
https://tc39.es/process-document/
https://tc39.es/ecma262/2023/
https://tc39.es/ecma262/2023/multipage/
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262/issues
https://github.com/tc39/ecma262/issues/new
https://github.com/tc39/ecma262/pulls
https://github.com/tc39/ecma262/pulls/new
https://github.com/tc39/test262
mailto:syg%20at%20google%20dot%20com
https://twitter.com/_shu
mailto:ecma262-editor-list%20at%20michael%20dot%20ficarra%20dot%20me
https://twitter.com/smooshMap
mailto:bakkot%20at%20gmail%20dot%20com
https://twitter.com/bakkoting
https://es.discourse.group/
https://github.com/tc39/how-we-work/blob/HEAD/matrix-guide.md
https://esdiscuss.org/
https://matrix.to/#/#tc39:matrix.org
https://matrix.to/#/#tc39-ecma402:matrix.org

ecma

ECMASCcript® 2023 Language Specification

1 Scope

This Standard defines the ECMAScript 2023 general-purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest
version of the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that
supports programs that need to adapt to the linguistic and cultural conventions used by different human
languages and countries must implement the interface defined by the most recent edition of ECMA-402 that
is compatible with this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and
functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript may provide properties not described in this specification, and values for those properties, for
objects that are described in this specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not
described in this specification. In particular, a conforming implementation of ECMAScript may support
program syntax that makes use of any “future reserved words” noted in subclause 12.7.2 of this
specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden
Extension in subclause 17.1.

A conforming implementation of ECMAScript must not redefine any facilities that are not implementation-
defined, implementation-approximated, or host-defined.

A conforming implementation of ECMAScript may choose to implement or not implement Normative Optional
subclauses. If any Normative Optional behaviour is implemented, all of the behaviour in the containing
Normative Optional clause must be implemented. A Normative Optional clause is denoted in this
specification with the words "Normative Optional" in a coloured box, as shown below.

NORMATIVE OPTIONAL
2.1 Example Normative Optional Clause Heading

Example clause contents.

A conforming implementation of ECMAScript must implement Legacy subclauses, unless they are also
marked as Normative Optional. All of the language features and behaviours specified within Legacy
subclauses have one or more undesirable characteristics. However, their continued usage in existing
applications prevents their removal from this specification. These features are not considered part of the core
ECMAScript language. Programmers should not use or assume the existence of these features and
behaviours when writing new ECMAScript code.

© Ecma International 2023 1

ecma

LEGACY
2.2 Example Legacy Clause Heading

Example clause contents.

NORMATIVE OPTIONAL, LEGACY
2.3 Example Legacy Normative Optional Clause Heading

Example clause contents.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 10646 Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
Amendment 1:2005, Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional
amendments and corrigenda, or successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
https://ecma-international.org/publications/standards/Ecma-402.htm

ECMA-404, The JSON Data Interchange Format.
https://ecma-international.org/publications/standards/Ecma-404.htm

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data
or output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that
can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a
general-purpose programming language. A scripting language is a programming language that is used to
manipulate, customize, and automate the facilities of an existing system. In such systems, useful
functionality is already available through a user interface, and the scripting language is a mechanism for
exposing that functionality to program control. In this way, the existing system is said to provide a host
environment of objects and facilities, which completes the capabilities of the scripting language. A scripting
language is intended for use by both professional and non-professional programmers.

2 © Ecma International 2023

https://ecma-international.org/publications/standards/Ecma-402.htm
https://ecma-international.org/publications/standards/Ecma-404.htm

ecmna

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript is now used to provide core scripting capabilities for a variety of host environments. Therefore
the core language is specified in this document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of
programming tasks in many different environments and scales. As the usage of ECMAScript has expanded,
so have the features and facilities it provides. ECMAScript is now a fully featured general-purpose
programming language.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction, and
there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and
server-side scripting together, it is possible to distribute computation between the client and server while
providing a customized user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Hosts and Implementations

To aid integrating ECMAScript into host environments, this specification defers the definition of certain
facilities (e.g., abstract operations), either in whole or in part, to a source outside of this specification.
Editorially, this specification distinguishes the following kinds of deferrals.

An implementation is an external source that further defines facilities enumerated in Annex D or those that
are marked as implementation-defined or implementation-approximated. In informal use, an implementation
refers to a concrete artefact, such as a particular web browser.

An implementation-defined facility is one that defers its definition to an external source without further
qualification. This specification does not make any recommendations for particular behaviours, and
conforming implementations are free to choose any behaviour within the constraints put forth by this
specification.

An implementation-approximated facility is one that defers its definition to an external source while
recommending an ideal behaviour. While conforming implementations are free to choose any behaviour
within the constraints put forth by this specification, they are encouraged to strive to approximate the ideal.
Some mathematical operations, such as Math. exp, are implementation-approximated.

A host is an external source that further defines facilities listed in Annex D but does not further define other
implementation-defined or implementation-approximated facilities. In informal use, a host refers to the set of
all implementations, such as the set of all web browsers, that interface with this specification in the same way
via Annex D. A host is often an external specification, such as WHATWG HTML
(https://html.spec.whatwg.org/). In other words, facilities that are host-defined are often further defined in
external specifications.

A host hook is an abstract operation that is defined in whole or in part by an external source. All host hooks
must be listed in Annex D. A host hook must conform to at least the following requirements:

¢ |t must return either a normal completion or a throw completion.

© Ecma International 2023 3

https://html.spec.whatwg.org/

ecma

A host-defined facility is one that defers its definition to an external source without further qualification and is
listed in Annex D. Implementations that are not hosts may also provide definitions for host-defined facilities.

A host environment is a particular choice of definition for all host-defined facilities. A host environment
typically includes objects or functions which allow obtaining input and providing output as host-defined
properties of the global object.

This specification follows the editorial convention of always using the most specific term. For example, if a
facility is host-defined, it should not be referred to as implementation-defined.

Both hosts and implementations may interface with this specification via the language types, specification
types, abstract operations, grammar productions, intrinsic objects, and intrinsic symbols defined herein.

4.3 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more
properties each with attributes that determine how each property can be used—for example, when the
Writable attribute for a property is set to false, any attempt by executed ECMAScript code to assign a
different value to the property fails. Properties are containers that hold other objects, primitive values, or
functions. A primitive value is a member of one of the following built-in types: Undefined, Null, Boolean,
Number, Bigint, String, and Symbol; an object is a member of the built-in type Object; and a function is a
callable object. A function that is associated with an object via a property is called a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These
built-in objects include the global object; objects that are fundamental to the runtime semantics of the
language including Object, Function, Boolean, Symbol, and various Error objects; objects that
represent and manipulate numeric values including Math, Number, and Date; the text processing objects
String and RegExp; objects that are indexed collections of values including Array and nine different kinds
of Typed Arrays whose elements all have a specific numeric data representation; keyed collections including
Map and Set objects; objects supporting structured data including the JSON object, ArrayBuffer,
SharedArrayBuffer, and DataView; objects supporting control abstractions including generator functions
and Promise objects; and reflection objects including Proxy and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple
sequences of statements and declarations. Each module explicitly identifies declarations it uses that need to
be provided by other modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve
as an easy-to-use scripting language. For example, a variable is not required to have its type declared nor
are types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.3.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally
class-based such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways
including via a literal notation or via constructors which create objects and then execute code that initializes
all or part of them by assigning initial values to their properties. Each constructor is a function that has a
property named "prototype™” that is used to implement prototype-based inheritance and shared properties.

4 © Ecma International 2023

ecmna

Objects are created by using constructors in new expressions; for example, new Date(2009, 11) creates
a new Date object. Invoking a constructor without using new has consequences that depend on the
constructor. For example, Date() produces a string representation of the current date and time rather than
an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of
its constructor's "prototype™ property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

Figure 1: Object/Prototype Relationships

L) b ———— >
________ CF implicit prototype link
prototype - CFP ______ “
Fl _
- CFDl explicit prototype property
& & 1
drsasnans cf1 cf2 Cf3 Cf.‘ fmmmamil l'::;f5
gl gl gl gl s

i
[
Hd
| S
W
[)
ie]
[EN]

J

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by
classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, while structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using hew expressions: cfy, cf,
cf;, cfy, and cfs. Each of these objects contains properties named "q1" and "q2". The dashed lines
represent the implicit prototype relationship; so, for example, cfs's prototype is CFp. The constructor, CF, has
two properties itself, named "P1" and "P2", which are not visible to CF,, cfy, cf;, cf;, cfy, or cfs. The
property named "CFP1" in CF, is shared by cfy, cfy, cf3, cfs, and cfs (but not by CF), as are any properties
found in CFp's implicit prototype chain that are not named "q1", "g2", or "CFP1". Notice that there is no
implicit prototype link between CF and CFp.

Unlike most class-based object languages, properties can be added to objects dynamically by assigning
values to them. That is, constructors are not required to name or assign values to all or any of the
constructed object's properties. In the above diagram, one could add a new shared property for cf4, cfy, cf3,

cfy, and cfg by assigning a new value to the property in CFp.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like
abstractions based upon a common pattern of constructor functions, prototype objects, and methods. The

© Ecma International 2023 5

ecma

ECMAScript built-in objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015,
the ECMAScript language includes syntactic class definitions that permit programmers to concisely define
objects that conform to the same class-like abstraction pattern used by the built-in objects.

4.3.2 The Strict Variant of ECMAScript

The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript source text units as described in 11.2.2. Because strict mode is selected at the level
of a syntactic source text unit, strict mode only imposes restrictions that have local effect within such a
source text unit. Strict mode does not restrict or modify any aspect of the ECMAScript semantics that must
operate consistently across multiple source text units. A complete ECMAScript program may be composed of
both strict mode and non-strict mode ECMAScript source text units. In this case, strict mode only applies
when actually executing code that is defined within a strict mode source text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict variant of the ECMAScript language as defined by this

specification. In addition, an implementation must support the combination of unrestricted and strict mode
source text units into a single composite program.

4.4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.4.1 implementation-approximated

an implementation-approximated facility is defined in whole or in part by an external source but has a
recommended, ideal behaviour in this specification

4.4.2 implementation-defined

an implementation-defined facility is defined in whole or in part by an external source to this specification

4.4.3 host-defined

same as implementation-defined

NOTE Editorially, see clause 4.2.

4.4.4 type

set of data values as defined in clause 6

6 © Ecma International 2023

ecma

4.4.5 primitive value

member of one of the types Undefined, Null, Boolean, Number, Bigint, Symbol, or String as defined in clause
6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

4.4.6 object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may
be null.

4.4.7 constructor

function object that creates and initializes objects

NOTE The value of a constructor's "prototype"” property is a prototype object that is used to
implement inheritance and shared properties.

4.4.8 prototype

object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor's
"prototype" property for the purpose of resolving property references. The constructor's
"prototype" property can be referenced by the program expression
constructor.prototype, and properties added to an object's prototype are shared,
through inheritance, by all objects sharing the prototype. Alternatively, a new object may be
created with an explicitly specified prototype by using the Object. create built-in function.

4.4.9 ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.4.10 exotic object

object that does not have the default behaviour for one or more of the essential internal methods

NOTE Any object that is not an ordinary object is an exotic object.

© Ecma International 2023 7

ecmna

4.4.11 standard object

object whose semantics are defined by this specification
4.4.12 built-in object
object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may
specify and supply additional kinds of built-in objects. A built-in constructor is a built-in object
that is also a constructor.

4.4.13 undefined value

primitive value used when a variable has not been assigned a value

4.4.14 Undefined type

type whose sole value is the undefined value

4.4.15 null value

primitive value that represents the intentional absence of any object value

4.4.16 Null type

type whose sole value is the null value
4.417 Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.4.18 Boolean type

type consisting of the primitive values true and false

4.4.19 Boolean object

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying
a Boolean value as an argument. The resulting object has an internal slot whose value is the
Boolean value. A Boolean object can be coerced to a Boolean value.

8 © Ecma International 2023

ecma

4.4.20 String value

primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer values

NOTE A String value is a member of the String type. Each integer value in the sequence usually
represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any
restrictions or requirements on the values except that they must be 16-bit unsigned integers.

4.4.21 String type

set of all possible String values

4.4.22 String object

member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a
String value as an argument. The resulting object has an internal slot whose value is the
String value. A String object can be coerced to a String value by calling the String constructor
as a function (22.1.1.1).

4.4.23 Number value

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2019 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.4.24 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity

4.4.25 Number object

member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a hew expression, supplying a
Number value as an argument. The resulting object has an internal slot whose value is the
Number value. A Number object can be coerced to a Number value by calling the Number
constructor as a function (21.1.1.1).

4.4.26 Infinity

Number value that is the positive infinite Number value

© Ecma International 2023 9

ecmna

4.4.27 NaN

Number value that is an IEEE 754-2019 “Not-a-Number” value

4.4.28 Bigint value

primitive value corresponding to an arbitrary-precision integer value

4.4.29 Bigint type

set of all possible Biglnt values

4.4.30 Bigint object

member of the Object type that is an instance of the standard built-in Bigint constructor

4.4.31 Symbol value

primitive value that represents a unique, non-String Object property key

4.4.32 Symbol type

set of all possible Symbol values

4.4.33 Symbol object

member of the Object type that is an instance of the standard built-in Symbol constructor

4.4.34 function

member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how
it behaves when invoked. A function's code may or may not be written in ECMAScript.

4.4.35 built-in function

built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. A host or implementation
may provide additional built-in functions that are not described in this specification.

4.4.36 property

part of an object that associates a key (either a String value or a Symbol value) and a value

10 © Ecma International 2023

ecma

NOTE Depending upon the form of the property the value may be represented either directly as a
data value (a primitive value, an object, or a function object) or indirectly by a pair of accessor
functions.

4.4.37 method

function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its
this value.

4.4.38 built-in method

method that is a built-in function

NOTE Standard built-in methods are defined in this specification. A host or implementation may
provide additional built-in methods that are not described in this specification.

4.4.39 attribute

internal value that defines some characteristic of a property

4.4.40 own property

property that is directly contained by its object

4.4.41 inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object's
prototype

4.5 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6 through 10 define the execution environment within which ECMAScript programs operate.

Clauses 11 through 17 define the actual ECMAScript programming language including its syntactic encoding
and the execution semantics of all language features.

Clauses 18 through 28 define the ECMAScript standard library. They include the definitions of all of the
standard objects that are available for use by ECMAScript programs as they execute.

Clause 29 describes the memory consistency model of accesses on SharedArrayBuffer-backed memory and
methods of the Atomics object.

© Ecma International 2023 11

ecma

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called
a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with
zero or more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 12. This grammar has as its terminal symbols Unicode
code points that conform to the rules for SourceCharacter defined in 11.1. It defines a set of productions,
starting from the goal symbol InputElementDiv, InputElementTemplateTail, InputElementRegExp,
InputElementRegExpOrTemplateTail, or InputElementHashbangOrRegExp, that describe how sequences of
such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar
for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals,
and punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be
tokens, also become part of the stream of input elements and guide the process of automatic semicolon
insertion (12.10). Simple white space and single-line comments are discarded and do not appear in the
stream of input elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form
/*...*/ regardless of whether it spans more than one line) is likewise simply discarded if it contains no line
terminator; but if a MultiLineComment contains one or more line terminators, then it is replaced by a single
line terminator, which becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 22.2.1. This grammar also has as its terminal symbols the
code points as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of code points are translated into regular expression patterns.
Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

A numeric string grammar appears in 7.1.4.1. It has as its terminal symbols SourceCharacter, and is used for
translating Strings into numeric values starting from the goal symbol StringNumericLiteral (which is similar to
but distinct from the lexical grammar for numeric literals).

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation, and
are never used for parsing source text.

12 © Ecma International 2023

ecma

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 13 through 16. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from two alternative goal symbols Script and Module, that describe how sequences of tokens form
syntactically correct independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a
stream of input elements by repeated application of the lexical grammar; this stream of input elements is
then parsed by a single application of the syntactic grammar. The input stream is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal (Script
or Module), with no tokens left over.

When a parse is successful, it constructs a parse tree, a rooted tree structure in which each node is a Parse
Node. Each Parse Node is an instance of a symbol in the grammar; it represents a span of the source text
that can be derived from that symbol. The root node of the parse tree, representing the whole of the source
text, is an instance of the parse's goal symbol. When a Parse Node is an instance of a nonterminal, it is also
an instance of some production that has that nonterminal as its left-hand side. Moreover, it has zero or more
children, one for each symbol on the production's right-hand side: each child is a Parse Node that is an
instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even
of identical source text. Parse Nodes are considered the same Parse Node if and only if they represent the
same span of source text, are instances of the same grammar symbol, and resulted from the same parser
invocation.

NOTE 1 Parsing the same String multiple times will lead to different Parse Nodes. For example,
consider:

let str = "1 + 1;";
eval(str);
eval(str);

Each call to eval converts the value of str into ECMAScript source text and performs an
independent parse that creates its own separate tree of Parse Nodes. The trees are distinct
even though each parse operates upon a source text that was derived from the same String
value.

NOTE 2 Parse Nodes are specification artefacts, and implementations are not required to use an
analogous data structure.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 13 through 16 is not a complete account of which token
sequences are accepted as a correct ECMAScript Script or Module. Certain additional token sequences are
also accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token
sequences that are described by the grammar are not considered acceptable if a line terminator character
appears in certain “awkward” places.

In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that
permit token sequences that do not form a valid ECMAScript Script or Module. For example, this technique is
used for object literals and object destructuring patterns. In such cases a more restrictive supplemental
grammar is provided that further restricts the acceptable token sequences. Typically, an early error rule will
then state that, in certain contexts, "P must cover an N", where P is a Parse Node (an instance of the
generalized production) and N is a nonterminal from the supplemental grammar. This means:

© Ecma International 2023 13

ecma

1. The sequence of tokens originally matched by P is parsed again using N as the goal symbol. If N
takes grammatical parameters, then they are set to the same values used when P was originally
parsed.

2. If the sequence of tokens can be parsed as a single instance of /N, with no tokens left over, then:

1. We refer to that instance of V (a Parse Node, unique for a given P) as "the N that is covered by
P".
2. All Early Error rules for N and its derived productions also apply to the N that is covered by P.

3. Otherwise (if the parse fails), it is an early Syntax Error.

5.1.5 Grammar Notation

5.1.5.1 Terminal Symbols

In the ECMAScript grammars, some terminal symbols are shown in fixed-width font. These are to appear
in a source text exactly as written. All terminal symbol code points specified in this way are to be understood
as the appropriate Unicode code points from the Basic Latin block, as opposed to any similar-looking code
points from other Unicode ranges. A code point in a terminal symbol cannot be expressed by a \
UnicodeEscapeSequence.

In grammars whose terminal symbols are individual Unicode code points (i.e., the lexical, RegExp, and
numeric string grammars), a contiguous run of multiple fixed-width code points appearing in a production is a
simple shorthand for the same sequence of code points, written as standalone terminal symbols.

For example, the production:
HexIntegerlLiteral :: 0x HexDigits
is a shorthand for:
HexIntegerLiteral :: 0 x HexDigits

In contrast, in the syntactic grammar, a contiguous run of fixed-width code points is a single terminal symbol.

Terminal symbols come in two other forms:

« In the lexical and RegExp grammars, Unicode code points without a conventional printed representation
are instead shown in the form "<ABBREV>" where "ABBREV" is a mnemonic for the code point or set of
code points. These forms are defined in Unicode Format-Control Characters, White Space, and Line
Terminators.

« In the syntactic grammar, certain terminal symbols (e.g. IdentifierName and RegularExpressionLiteral) are
shown in italics, as they refer to the nonterminals of the same name in the lexical grammar.

5.1.5.2 Nonterminal Symbols and Productions

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is

introduced by the name of the nonterminal being defined followed by one or more colons. (The number of

colons indicates to which grammar the production belongs.) One or more alternative right-hand sides for the

nonterminal then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

14 © Ecma International 2023

ecmna

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive,
that is, it is defined in terms of itself. The result is that an ArgumentList may contain any positive number of
arguments, separated by commas, where each argument expression is an AssignmentExpression. Such
recursive definitions of nonterminals are common.

5.1.5.3 Optional Symbols

The subscripted suffix “opt"’ which may appear after a terminal or nonterminal, indicates an optional symbol.

The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Bindingldentifier Initializer,, .

is a convenient abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

ForStatement :

for (LexicalDeclaration Expressionopt ; Expression) Statement

pt
is a convenient abbreviation for:

ForStatement :

for (LexicalDeclaration ; Expression) Statement

opt

for (LexicalDeclaration Expression ; Expression) Statement

pt
which in turn is an abbreviation for:

ForStatement :
for (LexicalDeclaration ;) Statement
for (LexicalDeclaration ; Expression) Statement
for (LexicalDeclaration Expression ;) Statement
for (LexicalDeclaration Expression ; Expression) Statement

s0, in this example, the nonterminal ForStatement actually has four alternative right-hand sides.

5.1.5.4 Grammatical Parameters

A production may be parameterized by a subscripted annotation of the form “,5rameters]’» Which may appear
as a suffix to the nonterminal symbol defined by the production. “parameters” May be either a single name or a

comma separated list of names. A parameterized production is shorthand for a set of productions defining all
combinations of the parameter names, preceded by an underscore, appended to the parameterized
nonterminal symbol. This means that:

© Ecma International 2023 15

secmd

StatementList| geyrn

ReturnStatement
ExpressionStatement

is a convenient abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

and that:
StatementList| nirr, 1]

ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ReturnStatement
ExpressionStatement

StatementList_In :
ReturnStatement

ExpressionStatement

StatementList Return_In :
ReturnStatement
ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily

referenced in a complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList :
ReturnStatement
ExpressionStatement | .1,

is equivalent to saying:

StatementList :
ReturnStatement

ExpressionStatement_In

and:
StatementList :
ReturnStatement
ExpressionStatement; _+,,,
16

© Ecma International 2023

secmd

is equivalent to:

StatementList :
ReturnStatement
ExpressionStatement

A nonterminal reference may have both a parameter list and an “,1" suffix. For example:

VariableDeclaration :

Bindingldentifier Initializer .1, o«

is an abbreviation for:

VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer_In

Prefixing a parameter name with “,” on a right-hand side nonterminal reference makes that parameter value

dependent upon the occurrence of the parameter name on the reference to the current production's left-hand
side symbol. For example:

VariableDeclaration
Bindingldentifier Initializer , .,

is an abbreviation for:

VariableDeclaration :
Bindingldentifier Initializer

VariableDeclaration_In :
Bindingldentifier Initializer _In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production's nonterminal symbol. If a right-hand side alternative is
prefixed with “[~parameter]”’ that alternative is only available if the named parameter was not used in
referencing the production's nonterminal symbol. This means that:

StatementList[
[+Return] ReturnStatement
ExpressionStatement

Return]

is an abbreviation for:

StatementList :
ExpressionStatement

StatementList_Return :

ReturnStatement
ExpressionStatement
and that:
StatementList| i ,rn;
[~Return] ReturnStatement
ExpressionStatement

is an abbreviation for:

© Ecma International 2023 17

ecma

StatementList :
ReturnStatement
ExpressionStatement

StatementList_Return :
ExpressionStatement

5.1.5.5 one of
When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for

ECMAScript contains the production:

NonZeroDigit :: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit ::
1

W oo~ OUL i WN

5.1.5.6 [empty]

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

5.1.5.7 Lookahead Restrictions

If the phrase “[lookahead = seq]” appears in the right-hand side of a production, it indicates that the
production may only be used if the token sequence seq is a prefix of the immediately following input token
sequence. Similarly, “[lookahead € sef]”, where set is a finite non-empty set of token sequences, indicates
that the production may only be used if some element of set is a prefix of the immediately following token
sequence. For convenience, the set can also be written as a nonterminal, in which case it represents the set
of all token sequences to which that nonterminal could expand. It is considered an editorial error if the
nonterminal could expand to infinitely many distinct token sequences.

These conditions may be negated. “[lookahead # seq]” indicates that the containing production may only be
used if seq is not a prefix of the immediately following input token sequence, and “[lookahead ¢ sef]’
indicates that the production may only be used if no element of sef is a prefix of the immediately following
token sequence.

As an example, given the definitions:

DecimalDigit :: one of
01234567829

18 © Ecma International 2023

ecma

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition:

LookaheadExample ::
n [lookahead ¢ {1,3,5, 7,9} DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

Note that when these phrases are used in the syntactic grammar, it may not be possible to unambiguously
identify the immediately following token sequence because determining later tokens requires knowing which
lexical goal symbol to use at later positions. As such, when these are used in the syntactic grammar, it is
considered an editorial error for a token sequence seq to appear in a lookahead restriction (including as part
of a set of sequences) if the choices of lexical goal symbols to use could change whether or not seq would
be a prefix of the resulting token sequence.

5.1.5.8 [no LineTerminator here]
If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production is a restricted production: it may not be used if a LineTerminator

occurs in the input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences
of LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the script.

5.1.5.9 but not

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal I/dentifier may be replaced by any sequence of code points that could replace
IdentifierName provided that the same sequence of code points could not replace ReservedWord.
5.1.5.10 Descriptive Phrases

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code point

© Ecma International 2023 19

ecma

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not
intended to imply the use of any specific implementation technique. In practice, there may be more efficient
algorithms available to implement a given feature.

Algorithms may be explicitly parameterized with an ordered, comma-separated sequence of alias names
which may be used within the algorithm steps to reference the argument passed in that position. Optional
parameters are denoted with surrounding brackets ([, name]) and are no different from required parameters
within algorithm steps. A rest parameter may appear at the end of a parameter list, denoted with leading
ellipsis (, ...name). The rest parameter captures all of the arguments provided following the required and
optional parameters into a List. If there are no such additional arguments, that List is empty.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be
further divided into indented substeps. Outline numbering conventions are used to identify substeps with the
first level of substeps labelled with lowercase alphabetic characters and the second level of substeps
labelled with lowercase roman numerals. If more than three levels are required these rules repeat with the
fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if’ predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that
is the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to
make explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional
semantic requirements and hence need not be checked by an implementation. They are used simply to
clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Let x be someValue”. These
aliases are reference-like in that both x and someValue refer to the same underlying data and modifications
to either are visible to both. Algorithm steps that want to avoid this reference-like behaviour should explicitly
make a copy of the right-hand side: “Let x be a copy of someValue” creates a shallow copy of someValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps
prior to the alias's declaration. Aliases may be modified using the form “Set x to someOtherValue”.

5.2.1 Abstract Operations

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract
operations, are named and written in parameterized functional form so that they may be referenced by name
from within other algorithms. Abstract operations are typically referenced using a functional application style
such as OperationName(arg1, arg2). Some abstract operations are treated as polymorphically dispatched
methods of class-like specification abstractions. Such method-like abstract operations are typically
referenced using a method application style such as someValue.OperationName(arg1, arg2).

20 © Ecma International 2023

recimd

5.2.2 Syntax-Directed Operations

A syntax-directed operation is a named operation whose definition consists of algorithms, each of which is
associated with one or more productions from one of the ECMAScript grammars. A production that has
multiple alternative definitions will typically have a distinct algorithm for each alternative. When an algorithm
is associated with a grammar production, it may reference the terminal and nonterminal symbols of the
production alternative as if they were parameters of the algorithm. When used in this manner, nonterminal
symbols refer to the actual alternative definition that is matched when parsing the source text. The source
text matched by a grammar production or Parse Node derived from it is the portion of the source text that
starts at the beginning of the first terminal that participated in the match and ends at the end of the last
terminal that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any
‘[" grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and
have no effect on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the
conventions on steps 1, 3, and 4 in the following algorithm:

1. Let status be SyntaxDirectedOperation of SomeNonTerminal.

2. Let someParseNode be the parse of some source text.

3. Perform SyntaxDirectedOperation of someParseNode.

4. Perform SyntaxDirectedOperation of someParseNode with argument "value”.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every operation that
might be applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the
same operation with the same parameters, if any, to the chain production's sole right-hand side nonterminal
and then returns the result. For example, assume that some algorithm has a step of the form: “Return
Evaluation of Block” and that there is a production:

Block :
{ StatementList }

but the Evaluation operation does not associate an algorithm with that production. In that case, the
Evaluation operation implicitly includes an association of the form:

Runtime Semantics: Evaluation
Block : { StatementList }

1. Return Evaluation of StatementList.

5.2.3 Runtime Semantics

Algorithms which specify semantics that must be called at runtime are called runtime semantics. Runtime
semantics are defined by abstract operations or syntax-directed operations.

5.2.3.1 Completion (completionRecord)

The abstract operation Completion takes argument completionRecord (a Completion Record) and returns a
Completion Record. It is used to emphasize that a Completion Record is being returned. It performs the
following steps when called:

1. Assert: completionRecord is a Completion Record.
2. Return completionRecord.

© Ecma International 2023 21

secmd

5.2.3.2 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.

mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

5.2.3.3 ReturnlfAbrupt

Algorithms steps that say or are otherwise equivalent to:
1. ReturnlfAbrupt(argument).

mean the same thing as:

1. Assert: argument is a Completion Record.
2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

Algorithms steps that say or are otherwise equivalent to:
1. ReturnlfAbrupt(AbstractOperation()).
mean the same thing as:

1. Let hygienicTemp be AbstractOperation().

2. Assert: hygienicTemp is a Completion Record.

3. If hygienicTemp is an abrupt completion, return Completion(hygienic Temp).
4. Else, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.
Algorithms steps that say or are otherwise equivalent to:

1. Let result be AbstractOperation(ReturnlfAbrupt(argument)).
mean the same thing as:

1. Assert: argument is a Completion Record.

2. If argument is an abrupt completion, return Completion(argument).
3. Else, set argument to argument.[[Value]].

4. Let result be AbstractOperation(argument).

5.2.3.4 ReturnifAbrupt Shorthands

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate that
ReturnIfAbrupt should be applied to the resulting Completion Record. For example, the step:

1. ? OperationName().
is equivalent to the following step:

22 © Ecma International 2023

secmd

1. ReturnlfAbrupt(OperationName()).
Similarly, for method application style, the step:

1. ? someValue.OperationName().
is equivalent to:

1. ReturnlfAbrupt(someValue.OperationName()).
Similarly, prefix ! is used to indicate that the following invocation of an abstract or syntax-directed operation
will never return an abrupt completion and that the resulting Completion Record's [[Value]] field should be
used in place of the return value of the operation. For example, the step:

1. Let val be ! OperationName().

is equivalent to the following steps:

1. Let val be OperationName().
2. Assert: val is a normal completion.
3. Set val to val.[[Value]].

Syntax-directed operations for runtime semantics make use of this shorthand by placing ! or ? before the
invocation of the operation:

1. Perform ! SyntaxDirectedOperation of NonTerminal.

5.2.3.5 Implicit Normal Completion
In algorithms within abstract operations which are declared to return a Completion Record, and within all
built-in functions, the returned value is first passed to NormalCompletion, and the result is used instead. This

rule does not apply within the Completion algorithm or when the value being returned is clearly marked as a
Completion Record in that step; these cases are:

« when the result of applying Completion, NormalCompletion, or ThrowCompletion is directly returned
* when the result of constructing a Completion Record is directly returned

It is an editorial error if a Completion Record is returned from such an abstract operation through any other
means. For example, within these abstract operations,

1. Return true.
means the same things as any of

1. Return NormalCompletion(true).
or

1. Let completion be NormalCompletion(true).
2. Return Completion(completion).

or
1. Return Completion Record { [[Type]]: normal, [[Value]]: true, [[Target]]: empty }.

Note that, through the ReturnlfAbrupt expansion, the following example is allowed, as within the expanded
steps, the result of applying Completion is returned directly in the abrupt case and the implicit

© Ecma International 2023 23

ecmna

NormalCompletion application occurs after unwrapping in the normal case.
1. Return ? completion.

The following example would be an editorial error because a Completion Record is being returned without
being annotated in that step.

1. Let completion be NormalCompletion(true).
2. Return completion.

5.2.4 Static Semantics

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of
input elements form a valid ECMAScript Script or Module that may be evaluated. In some situations
additional rules are needed that may be expressed using either ECMAScript algorithm conventions or prose
requirements. Such rules are always associated with a production of a grammar and are called the static
semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic
Rules are associated with grammar productions and a production that has multiple alternative definitions will
typically have for each alternative a distinct algorithm for each applicable named static semantic rule.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions
(see clause 17) that are associated with specific grammar productions. Evaluation of most early error rules
are not explicitly invoked within the algorithms of this specification. A conforming implementation must, prior
to the first evaluation of a Script or Module, validate all of the early error rules of the productions used to
parse that Script or Module. If any of the early error rules are violated the Script or Module is invalid and
cannot be evaluated.

5.2.5 Mathematical Operations
This specification makes reference to these kinds of numeric values:

Mathematical values: Arbitrary real numbers, used as the default numeric type.

Extended mathematical values: Mathematical values together with +°0 and —<°.

Numbers: IEEE 754-2019 double-precision floating point values.

Bigints: ECMAScript language values representing arbitrary integers in a one-to-one correspondence.

In the language of this specification, numerical values are distinguished among different numeric kinds using
subscript suffixes. The subscript refers to Numbers, and the subscript ; refers to Bigints. Numeric values

without a subscript suffix refer to mathematical values.

Numeric operators such as +, x, =, and = refer to those operations as determined by the type of the
operands. When applied to mathematical values, the operators refer to the usual mathematical operations.
When applied to extended mathematical values, the operators refer to the usual mathematical operations
over the extended real numbers; indeterminate forms are not defined and their use in this specification
should be considered an editorial error. When applied to Numbers, the operators refer to the relevant
operations within IEEE 754-2019. When applied to Bigints, the operators refer to the usual mathematical
operations applied to the mathematical value of the Biglnt.

In general, when this specification refers to a numerical value, such as in the phrase, "the length of y" or "the
integer represented by the four hexadecimal digits ...", without explicitly specifying a numeric kind, the
phrase refers to a mathematical value. Phrases which refer to a Number or a Bigint value are explicitly
annotated as such; for example, "the Number value for the number of code points in ..." or "the BigInt value
for...".

Numeric operators applied to mixed-type operands (such as a Number and a mathematical value) are not
defined and should be considered an editorial error in this specification.

24 © Ecma International 2023

secmd

This specification denotes most numeric values in base 10; it also uses numeric values of the form 0Ox
followed by digits 0-9 or A-F as base-16 values.

When the term integer is used in this specification, it refers to a mathematical value which is in the set of
integers, unless otherwise stated. When the term integral Number is used in this specification, it refers to a
Number value whose mathematical value is in the set of integers.

Conversions between mathematical values and Numbers or Bigints are always explicit in this document. A
conversion from a mathematical value or extended mathematical value x to a Number is denoted as "the
Number value for x" or F(x), and is defined in 6.1.6.1. A conversion from an integer x to a Biglnt is denoted as
"the Bigint value for x" or Z(x). A conversion from a Number or BigInt x to a mathematical value is denoted as
"the mathematical value of x", or R(x). The mathematical value of +0p and -0 is the mathematical value 0.

The mathematical value of non-finite values is not defined. The extended mathematical value of x is the
mathematical value of x for finite values, and is +° and — for +% and = respectively; it is not defined

for NaN.

The mathematical function abs(x) produces the absolute value of x, which is -x if x < 0 and otherwise is x
itself.

The mathematical function min(x7, x2, ... , xN) produces the mathematically smallest of x7 through x/N. The
mathematical function max(x7, x2, ..., xN) produces the mathematically largest of x7 through x/N. The domain
and range of these mathematical functions are the extended mathematical values.

The notation “x modulo y” (v must be finite and non-zero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x - k = g x y for some integer q.

The phrase "the result of clamping x between lower and upper" (where x is an extended mathematical value
and lower and upper are mathematical values such that lower < upper) produces lower if x < lower, produces
upper if x > upper, and otherwise produces x.

The mathematical function floor(x) produces the largest integer (closest to +°°) that is not larger than x.

The mathematical function truncate(x) removes the fractional part of x by rounding towards zero, producing -
floor(-x) if x < 0 and otherwise producing floor(x).

Mathematical functions min, max, abs, floor, and truncate are not defined for Numbers and Bigints, and any
usage of those methods that have non-mathematical value arguments would be an editorial error in this
specification.

NOTE floor(x) = x - (x modulo 1).

An interval from lower bound a to upper bound b is a possibly-infinite, possibly-empty set of numeric values
of the same numeric type. Each bound will be described as either inclusive or exclusive, but not both. There
are four kinds of intervals, as follows:

* Aninterval from a (inclusive) to b (inclusive), also called an inclusive interval from a to b, includes all
values x of the same numeric type such that a < x < b, and no others.

* An interval from a (inclusive) to b (exclusive) includes all values x of the same numeric type such that a <
x < b, and no others.

¢ An interval from a (exclusive) to b (inclusive) includes all values x of the same numeric type such that a <
x £ b, and no others.

* An interval from a (exclusive) to b (exclusive) includes all values x of the same numeric type such that a <
x < b, and no others.

For example, the interval from 1 (inclusive) to 2 (exclusive) consists of all mathematical values between 1
and 2, including 1 and not including 2. For the purpose of defining intervals, -0y < +0f, so, for example, an

inclusive interval with a lower bound of +0p includes +0 but not -0r. NaN is never included in an interval.

© Ecma International 2023 25

secmd

5.2.6 Value Notation

In this specification, ECMAScript language values are displayed in bold. Examples include null, true, or
"hello". These are distinguished from ECMAScript source text such as Function.prototype.apply or
let n = 42;.

5.2.7 Identity

In this specification, both specification values and ECMAScript language values are compared for equality.
When comparing for equality, values fall into one of two categories. Values without identity are equal to other
values without identity if all of their innate characteristics are the same — characteristics such as the
magnitude of an integer or the length of a sequence. Values without identity may be manifest without prior
reference by fully describing their characteristics. In contrast, each value with identity is unique and therefore
only equal to itself. Values with identity are like values without identity but with an additional unguessable,
unchangeable, universally-unique characteristic called identity. References to existing values with identity
cannot be manifest simply by describing them, as the identity itself is indescribable; instead, references to
these values must be explicitly passed from one place to another. Some values with identity are mutable and
therefore can have their characteristics (except their identity) changed in-place, causing all holders of the
value to observe the new characteristics. A value without identity is never equal to a value with identity.

From the perspective of this specification, the word “is” is used to compare two values for equality, as in “If
bool is true, then ...”, and the word “contains” is used to search for a value inside lists using equality
comparisons, as in "If /ist contains a Record r such that r.[[Foo]] is true, then ...". The specification identity of
values determines the result of these comparisons and is axiomatic in this specification.

From the perspective of the ECMAScript language, language values are compared for equality using the
SameValue abstract operation and the abstract operations it transitively calls. The algorithms of these
comparison abstract operations determine language identity of ECMAScript language values.

For specification values, examples of values without specification identity include, but are not limited to:
mathematical values and extended mathematical values; ECMAScript source text, surrogate pairs, Directive
Prologues, etc; UTF-16 code units; Unicode code points; enums; abstract operations, including syntax-
directed operations, host hooks, etc; and ordered pairs. Examples of specification values with specification
identity include, but are not limited to: any kind of Records, including Property Descriptors, PrivateElements,
etc; Parse Nodes; Lists; Sets and Relations; Abstract Closures; Data Blocks; Private Names; execution
contexts and execution context stacks; agent signifiers; and WaiterLists.

Specification identity agrees with language identity for all ECMAScript language values except Symbol
values produced by Symbol.for. The ECMAScript language values without specification identity and without
language identity are undefined, null, Booleans, Strings, Numbers, and Bigints. The ECMAScript language
values with specification identity and language identity are Symbols not produced by Symbol.for and Objects.
Symbol values produced by Symbol.for have specification identity, but not language identity.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript
language types and specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to
the ECMAScript language and specification types defined in this clause.

26 © Ecma International 2023

ecma

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null,
Boolean, String, Symbol, Number, Bigint, and Object. An ECMAScript language value is a value that is
characterized by an ECMAScript language type.

6.1.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value has the value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

6.1.4 The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values

(“elements”) up to a maximum length of 253 _ 1 elements. The String type is generally used to represent
textual data in a running ECMAScript program, in which case each element in the String is treated as a UTF-
16 code unit value. Each element is regarded as occupying a position within the sequence. These positions
are indexed with non-negative integers. The first element (if any) is at index 0, the next element (if any) at
index 1, and so on. The length of a String is the number of elements (i.e., 16-bit values) within it. The empty
String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do
interpret String values treat each element as a single UTF-16 code unit. However, ECMAScript does not
restrict the value of or relationships between these code units, so operations that further interpret String
contents as sequences of Unicode code points encoded in UTF-16 must account for ill-formed
subsequences. Such operations apply special treatment to every code unit with a numeric value in the
inclusive interval from 0xD800 to OxDBFF (defined by the Unicode Standard as a leading surrogate, or more
formally as a high-surrogate code unit) and every code unit with a numeric value in the inclusive interval from
0xDCO00 to OxDFFF (defined as a trailing surrogate, or more formally as a low-surrogate code unit) using the
following rules:

* A code unit that is not a leading surrogate and not a trailing surrogate is interpreted as a code point with
the same value.

* A sequence of two code units, where the first code unit ¢7 is a leading surrogate and the second code unit
c2 a trailing surrogate, is a surrogate pair and is interpreted as a code point with the value (c7 - 0xD800) x
0x400 + (c2 - 0xDCO00) + 0x10000. (See 11.1.3)

* A code unit that is a leading surrogate or trailing surrogate, but is not part of a surrogate pair, is interpreted
as a code point with the same value.

The function String.prototype.normalize (see 22.1.3.14) can be used to explicitly normalize a String
value. String.prototype.localeCompare (see 22.1.3.11) internally normalizes String values, but no
other operations implicitly normalize the strings upon which they operate. Operation results are not
language- and/or locale-sensitive unless stated otherwise.

© Ecma International 2023 27

oechna

NOTE The rationale behind this design was to keep the implementation of Strings as simple and
high-performing as possible. If ECMAScript source text is in Normalized Form C, string
literals are guaranteed to also be normalized, as long as they do not contain any Unicode
escape sequences.

In this specification, the phrase "the string-concatenation of A, B, ..." (where each argument is a String value,
a code unit, or a sequence of code units) denotes the String value whose sequence of code units is the
concatenation of the code units (in order) of each of the arguments (in order).

The phrase "the substring of S from inclusiveStart to exclusiveEnd" (where S is a String value or a sequence
of code units and inclusiveStart and exclusiveEnd are integers) denotes the String value consisting of the
consecutive code units of S beginning at index inclusiveStart and ending immediately before index
exclusiveEnd (which is the empty String when inclusiveStart = exclusiveEnd). If the "to" suffix is omitted, the
length of S is used as the value of exclusiveEnd.

The phrase "the ASCII word characters" denotes the following String value, which consists solely of every
letter and number in the Unicode Basic Latin block along with U+005F (LOW LINE):
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_".

For historical reasons, it has significance to various algorithms.

6.1.4.1 StringindexOf (siring, searchValue, fromindex)

The abstract operation StringlndexOf takes arguments string (a String), searchValue (a String), and
fromIndex (a non-negative integer) and returns an integer. It performs the following steps when called:

1. Let /en be the length of string.

2. If searchValue is the empty String and fromindex < len, return fromindex.

3. Let searchLen be the length of searchValue.

4. For each integer / such that fromindex < i < len - searchLen, in ascending order, do
a. Let candidate be the substring of siring from i to i + searchlLen.
b. If candidate is searchValue, return .

5. Return -1.

NOTE 1 If searchValue is the empty String and fromindex < the length of sfring, this algorithm returns
fromindex. The empty String is effectively found at every position within a string, including
after the last code unit.

NOTE 2 This algorithm always returns -1 if fromindex + the length of searchValue > the length of
string.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a
String value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this
specification. They are typically used as the keys of properties whose values serve as extension points of a

28 © Ecma International 2023

ecmna

specification algorithm. Unless otherwise specified, well-known symbols values are shared by all realms

(9.3).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where
“name” is one of the values listed in Table 1.

Table 1: Well-known Symbols

Specification Name

[[Description]]

Value and Purpose

@@asynclterator

"Symbol.asynclterator”

A method that returns the default
Asynclterator for an object. Called by the
semantics of the for-await-of statement.

@@haslinstance

"Symbol.hasInstance"

A method that determines if a constructor
object recognizes an object as one of the
constructor's instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable

"Symbol.isConcatSpreadable”

A Boolean valued property that if true
indicates that an object should be flattened
to its array elements by
Array.prototype.concat.

@@iterator

"Symbol.iterator”

A method that returns the default Iterator for
an object. Called by the semantics of the for-
of statement.

@@match

"Symbol.match"

A regular expression method that matches
the regular expression against a string.
Called by the String.prototype.match
method.

@@matchAll

"Symbol.matchAll"

A regular expression method that returns an
iterator, that yields matches of the regular
expression against a string. Called by the
String.prototype.matchAll method.

@@replace

"Symbol.replace”

A regular expression method that replaces
matched substrings of a string. Called by the
String.prototype.replace method

@@search

"Symbol.search”

A regular expression method that returns the
index within a string that matches the regular
expression. Called by the
String.prototype.search method

@@species

"Symbol.species”

A function valued property that is the
constructor function that is used to create
derived objects.

@@split

"Symbol.split"

A regular expression method that splits a
string at the indices that match the regular
expression. Called by the
String.prototype.split method

@@toPrimitive

"Symbol.toPrimitive"

A method that converts an object to a
corresponding primitive value. Called by the
ToPrimitive abstract operation.

© Ecma International 2023

29

secmd

Table 1 (continued)

Specification [[Description]] Value and Purpose
Name

@@toStringTag | "Symbol.toStringTag™ | A String valued property that is used in the creation of the
default string description of an object. Accessed by the built-
in method Object.prototype.toString.

@@unscopables | "Symbol.unscopables™ | An object valued property whose own and inherited
property names are property names that are excluded from
the with environment bindings of the associated object.

6.1.6 Numeric Types

ECMAScript has two built-in numeric types: Number and Bigint. The following abstract operations are
defined over these numeric types. The "Result" column shows the return type, along with an indication if it is
possible for some invocations of the operation to return an abrupt completion.

Table 2: Numeric Type Operations

Operation Example Invoked by the Evaluation Result
source semantics of ...
Number::unaryMinus [-Xx Unary - Operator Number
Biglnt::unaryMinus Bigint
Number::bitwiseNOT | ~X Bitwise NOT Operator (~) Number
BigInt::bitwiseNOT BigInt
Number::exponentiate | x ** y Exponentiation Operator and Number
Math.pow (base, exponent)
BigInt::exponentiate either a normal completion

containing a BiglInt or a
throw completion

Number::multiply X ¥y Multiplicative Operators Number

Biglnt::multiply Biglnt

Number::divide x/y Multiplicative Operators Number

BigInt::divide either a normal completion

containing a BigInt or a
throw completion

Number::remainder X%y Multiplicative Operators Number

Biglnt::remainder either a normal completion
containing a BiglInt or a
throw completion

Number::add X ++ Postfix Increment Operator, Prefix Number
++ X Increment Operator, and The Addition

Biglnt::add X +Yy Operator (+) Bigint

Number::subtract X -- Postfix Decrement Operator, Prefix Number
-- X Decrement Operator, and The

BigInt::subtract X -y Subtraction Operator (=) Bigint

30 © Ecma International 2023

secmd

Table 2 (continued)

BigInt::toString

functions, via ToString (argument)

Operation Example source Invoked by the Evaluation Result
semantics of ...
Number::leftShift X <<y The Left Shift Operator (<<) Number
BigInt::leftShift Bigint
Number::signedRightShift X >y The Signed Right Shift Operator (| Number
>>)
BiglInt::signedRightShift Bigint
Number::unsignedRightShift | X >>> y The Unsigned Right Shift Operator | Number
(>>>)
BigInt::unsignedRightShift a throw
completion
Number::lessThan X<y Relational Operators, via Boolean or
X >y IsLessThan (x, y, LeftFirst) undefined (for
X <=Y unordered
X >=Yy inputs)
Biglnt::lessThan Boolean
Number::equal X =Y Equality Operators, via Boolean
X l=y IsStrictlyEqual (x, v)
BigInt::equal X e
Number::sameValue Object.is(x, y) | Object internal methods, via Boolean
SameValue (x, y), to test exact
value equality
Number::sameValueZero [x].includes(y) | Array, Map, and Set methods, via | Boolean
SameValueZero (x, y), to test
value equality, ignoring the
difference between +0y and -0
Number::bitwiseAND X &y Binary Bitwise Operators Number
Biglnt::bitwiseAND Bigint
Number::bitwiseXOR XAy Number
Biglnt::bitwiseXOR Bigint
Number::bitwiseOR xly Number
Biglnt::bitwiseOR BigInt
Number::toString String(x) Many expressions and built-in String

Because the numeric types are in general not convertible without loss of precision or truncation, the
ECMAScript language provides no implicit conversion among these types. Programmers must explicitly call
Number and BigInt functions to convert among types when calling a function which requires another type.

© Ecma International 2023

31

ecma

NOTE The first and subsequent editions of ECMAScript have provided, for certain operators, implicit
numeric conversions that could lose precision or truncate. These legacy implicit conversions
are maintained for backward compatibility, but not provided for Bigint in order to minimize
opportunity for programmer error, and to leave open the option of generalized value types in a
future edition.

6.1.6.1 The Number Type

The Number type has exactly 18,437,736,874,454,810,627 (that is, 264253 4 3) values, representing the
double-precision 64-bit format IEEE 754-2019 values as specified in the IEEE Standard for Binary Floating-

Point Arithmetic, except that the 9,007,199,254,740,990 (that is, 253 . 2) distinct “Not-a-Number” values of
the IEEE Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value
is produced by the program expression NaN.) In some implementations, external code might be able to
detect a difference between various Not-a-Number values, but such behaviour is implementation-defined; to
ECMAScript code, all NaN values are indistinguishable from each other.

NOTE The bit pattern that might be observed in an ArrayBuffer (see 25.1) or a SharedArrayBuffer
(see 25.2) after a Number value has been stored into it is not necessarily the same as the
internal representation of that Number value used by the ECMAScript implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +%and =, respectively. (Note that these two

infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and
-Infinity.)

The other 18,437,736,874,454,810,624 (that is, 264 - 253) values are called the finite numbers. Half of these
are positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0p and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +@ (or simply @) and -0.)

The 18,437,736,874,454,810,622 (that is, 264 - 253 - 2) finite non-zero values are of two kinds:
18,428,729,675,200,069,632 (that is, 264 254) of them are normalized, having the form

sxmx2°

where sis 1 or -1, m is an integer in the interval from 252 (inclusive) to 253 (exclusive), and e is an integer in
the inclusive interval from -1074 to 971.

The remaining 9,007,199,254,740,990 (that is, 293 2) values are denormalized, having the form
sxmx2°
where sis 1 or -1, mis an integer in the interval from 0 (exclusive) to 252 (exclusive), and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 253 are representable in
the Number type. The integer 0 has two representations in the Number type: +0y and -0

A finite number has an odd significand if it is non-zero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

32 © Ecma International 2023

recimd

In this specification, the phrase “the Number value for x” where x represents an exact real mathematical

quantity (which might even be an irrational number such as) means a Number value chosen in the
following manner. Consider the set of all finite values of the Number type, with -0 removed and with two

additional values added to it that are not representable in the Number type, namely 21024 (which is +1 x 253

x 2971) and -21024 (which is -1 x 253 x 2971). Choose the member of this set that is closest in value to x. If
two values of the set are equally close, then the one with an even significand is chosen; for this purpose, the

two extra values 21924 and -219%% are considered to have even significands. Finally, if 21024 was chosen,
replace it with +; if -21024 \yas chosen, replace it with = if +O was chosen, replace it with -0 if and

only if x < 0; any other chosen value is used unchanged. The result is the Number value for x. (This
procedure corresponds exactly to the behaviour of the IEEE 754-2019 roundTiesToEven mode.)

The Number value for + is +%, and the Number value for == is =0,

Some ECMAScript operators deal only with integers in specific ranges such as the inclusive interval from

231 t0 237 - 1 or the inclusive interval from 0 to 26 - 1. These operators accept any value of the Number
type but first convert each such value to an integer value in the expected range. See the descriptions of the
numeric conversion operations in 7.1.

6.1.6.1.1 Number::unaryMinus (x)

The abstract operation Number::unaryMinus takes argument x (a Number) and returns a Number. It performs
the following steps when called:

1. If x is NaN, return NaN.
2. Return the result of negating x; that is, compute a Number with the same magnitude but opposite sign.

6.1.6.1.2 Number::bitwiseNOT (x)

The abstract operation Number::bitwiseNOT takes argument x (a Number) and returns an integral Number. It
performs the following steps when called:

1. Let oldValue be ! Tolnt32(x).
2. Return the result of applying bitwise complement to o/dValue. The mathematical value of the result is
exactly representable as a 32-bit two's complement bit string.

6.1.6.1.3 Number::exponentiate (base, exponent)

The abstract operation Number::exponentiate takes arguments base (a Number) and exponent (a Number)
and returns a Number. It returns an implementation-approximated value representing the result of raising
base to the exponent power. It performs the following steps when called:

1. If exponent is NaN, return NaN.
2. If exponent is either +0g or -0, return 1.
3. If base is NaN, return NaN.

4. If base is +%0r, then
a. If exponent > +0p, return +°. Otherwise, return +0.
5. If base is =%, then
a. If exponent > +0, then
i. If exponent is an odd integral Number, return = . Otherwise, return +o,

b. Else,
i. If exponent is an odd integral Number, return -0p. Otherwise, return +0p.

© Ecma International 2023 33

secmd

10.

11.
12.
13.

. If base is +0f, then

a. If exponent > +0p, return +0p. Otherwise, return +%.

. If base is -0, then

a. If exponent > +0f, then
i. If exponent is an odd integral Number, return -0p. Otherwise, return +0p.
b. Else,

i. If exponent is an odd integral Number, return = . Otherwise, return +.,

. Assert: base is finite and is neither +0p nor -0f.

. If exponent is +%0r, then

a. If abs(R(base)) > 1, return +o,
b. If abs(R(base)) = 1, return NaN.
c. If abs(R(base)) < 1, return +0p.
If exponent is =%, then
a. If abs(R(base)) > 1, return +0p.
b. If abs(R(base)) = 1, return NaN.
c. If abs(R(base)) < 1, return +oo.
Assert: exponent is finite and is neither +0g nor -0p.
If base < -0 and exponent is not an integral Number, return NaN.

Return an implementation-approximated Number value representing the result of raising R(base) to
the R(exponent) power.

NOTE The result of base ** exponent when base is 1g or -1 and exponent is +° or =%, or when

base is 1 and exponent is NaN, differs from IEEE 754-2019. The first edition of ECMAScript
specified a result of NaN for this operation, whereas later revisions of IEEE 754 specified 1.
The historical ECMAScript behaviour is preserved for compatibility reasons.

6.1.6.1.4 Number::multiply (x, y)

The abstract operation Number::multiply takes arguments x (a Number) and y (a Number) and returns a
Number. It performs multiplication according to the rules of IEEE 754-2019 binary double-precision
arithmetic, producing the product of x and y. It performs the following steps when called:

1. If xis NaN or y is NaN, return NaN.

2. If x is either +°o or =0, then

a. If y is either +0p or -0, return NaN.

b. If y > 40, return x.
c. Return -x.

3. If y is either +%0 or =0, then

a. If x is either +0 or -0, return NaN.

b. If x > +0f, return y.

c. Return -y.
4. If x is -0, then

a.If yis -0por y < -0, return +0.
b. Else, return -0p.

5. If y is -0, then
a. If x < -0, return +0p.

34

© Ecma International 2023

ecma

b. Else, return -0
6. Return FHR(x) x R(y)).

NOTE Finite-precision multiplication is commutative, but not always associative.

6.1.6.1.5 Number::divide (x, y)

The abstract operation Number::divide takes arguments x (a Number) and y (a Number) and returns a
Number. It performs division according to the rules of IEEE 754-2019 binary double-precision arithmetic,
producing the quotient of x and y where x is the dividend and y is the divisor. It performs the following steps
when called:

1. If xis NaN or y is NaN, return NaN.

2. If x is either +°0 or =0, then

a. If y is either +0 or =, return NaN.

b. If y is +0p or y > +0, return x.

c. Return -x.
3. If yis +, then

a. If x is +0 or x > +0p, return +0. Otherwise, return -0f.
4. If yis =0, then

a. If x is +0 or x > +0, return -0p. Otherwise, return +0p.
5. If x is either +0 or -0f, then

a. If y is either +0p or -0, return NaN.

b. If y > +0f, return x.

c. Return -x.
6. If y is +0f, then

a. If x > +0p, return +o. Otherwise, return =°op.
7.1f yis -0, then

a. If x > +0r, return =% Otherwise, return +oo,
8. Return HR(x) / R(y)).

6.1.6.1.6 Number::remainder (n, d)

The abstract operation Number::remainder takes arguments 1 (a Number) and d (a Number) and returns a
Number. It yields the remainder from an implied division of its operands where n is the dividend and d is the
divisor. It performs the following steps when called:

. If nis NaN or d is NaN, return NaN.
. If n'is either %0 or =%, return NaN.

. If d is either +°0 or =, return n.

. If d is either +0p or -0, return NaN.

. If n'is either +0 or -0, return n.

. Assert: n and d are finite and non-zero.
. Let quotient be R(n) / R(d).

. Let g be truncate(quotient).

. Let rbe R(n) - (R(d) x q).

.Ifr=0and n < -0, return -0

. Return [K(r).

- O ©WoONO O & W N -

_ =

© Ecma International 2023 35

ecmna

NOTE 1 In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also
accepts floating-point operands.

NOTE 2 The result of a floating-point remainder operation as computed by the % operator is not the
same as the “remainder” operation defined by IEEE 754-2019. The I|IEEE 754-2019
“remainder” operation computes the remainder from a rounding division, not a truncating
division, and so its behaviour is not analogous to that of the usual integer remainder operator.
Instead the ECMAScript language defines % on floating-point operations to behave in a
manner analogous to that of the Java integer remainder operator; this may be compared with
the C library function fmod.

6.1.6.1.7 Number::add (x, y)

The abstract operation Number::add takes arguments x (a Number) and y (a Number) and returns a Number.
It performs addition according to the rules of IEEE 754-2019 binary double-precision arithmetic, producing
the sum of its arguments. It performs the following steps when called:

. If xis NaN or y is NaN, return NaN.
. f xis +°0and y is =, return NaN.

. f xis =% and y is %, return NaN.
. If x is either +%0 or =0, return x.

. If y is either +%0or =0, return y.
. Assert: x and y are both finite.

.If xis -0pand y is -0, return -0

. Return HR(x) + R(y)).

0o NOoO o0 b~ W N =

NOTE Finite-precision addition is commutative, but not always associative.

6.1.6.1.8 Number::subtract (x, y)

The abstract operation Number::subtract takes arguments x (a Number) and y (a Number) and returns a
Number. It performs subtraction, producing the difference of its operands; x is the minuend and y is the
subtrahend. It performs the following steps when called:

1. Return Number::add(x, Number::unaryMinus(y)).

NOTE It is always the case that X - Yy produces the same resultas X + (-y).

6.1.6.1.9 Number::leftShift (x, y)

The abstract operation Number::leftShift takes arguments x (a Number) and y (a Number) and returns an
integral Number. It performs the following steps when called:

1. Let /num be ! ToInt32(x).

2. Let rnum be ! ToUint32(y).

3. Let shiftCount be R(rnum) modulo 32.

4. Return the result of left shifting /num by shiftCount bits. The mathematical value of the result is exactly
representable as a 32-bit two's complement bit string.

36 © Ecma International 2023

recimd

6.1.6.1.10 Number::signedRightShift (x, y)

The abstract operation Number::signedRightShift takes arguments x (a Number) and y (a Number) and
returns an integral Number. It performs the following steps when called:

. Let /num be ! ToInt32(x).

. Let rnum be ! ToUint32(y).

. Let shiftCount be R(rnum) modulo 32.

. Return the result of performing a sign-extending right shift of /num by shiftCount bits. The most
significant bit is propagated. The mathematical value of the result is exactly representable as a 32-bit
two's complement bit string.

A WDN -

6.1.6.1.11 Number::unsignedRightShift (x, y)

The abstract operation Number::unsignedRightShift takes arguments x (a Number) and y (a Number) and
returns an integral Number. It performs the following steps when called:

1. Let Inum be ! ToUint32(x).

2. Let rnum be ! ToUint32(y).

3. Let shiftCount be R(rnum) modulo 32.

4. Return the result of performing a zero-filling right shift of /num by shiftCount bits. Vacated bits are filled
with zero. The mathematical value of the result is exactly representable as a 32-bit unsigned bit string.

6.1.6.1.12 Number::lessThan (x,)

The abstract operation Number::lessThan takes arguments x (a Number) and y (a Number) and returns a
Boolean or undefined. It performs the following steps when called:

. If x is NaN, return undefined.

. If yis NaN, return undefined.

. If xis y, return false.

. If xis +0p and y is -0, return false.

. If xis -0pand y is +0f, return false.
. If x is +9or, return false.

. If yis +%o, return true.

. If y is =, return false.

. If x is =%, return true.

. Assert: x and y are finite and non-zero.
A R(x) < R(y), return true. Otherwise, return false.

- O © 00 N O O b WN-=-

_ =

6.1.6.1.13 Number::equal (x, y)

The abstract operation Number::equal takes arguments x (a Number) and y (a Number) and returns a
Boolean. It performs the following steps when called:

1. If x is NaN, return false.

2. If y is NaN, return false.

3. If xis y, return true.

4. If xis +0pand y is -0, return true.

5. If xis -0pand y is +0, return true.

© Ecma International 2023 37

ecmna

6. Return false.

6.1.6.1.14 Number::sameValue (x, y)

The abstract operation Number::sameValue takes arguments x (a Number) and y (a Number) and returns a
Boolean. It performs the following steps when called:

1. If x is NaN and y is NaN, return true.
2. If xis +Og and y is -0, return false.
3. If xis -0pand y is +0, return false.
4. If x is y, return true.

5. Return false.

6.1.6.1.15 Number::sameValueZero (x, y)

The abstract operation Number::sameValueZero takes arguments x (a Number) and y (a Number) and
returns a Boolean. It performs the following steps when called:

1. If x is NaN and y is NaN, return true.
2. If xis +0p and y is -0, return true.

3. If xis -0pand y is +0f, return true.

4. If x is y, return true.

5. Return false.

6.1.6.1.16 NumberBitwiseOp (op, x, y)

The abstract operation NumberBitwiseOp takes arguments op (&, A, or |), x (a Number), and y (a Number)
and returns an integral Number. It performs the following steps when called:

. Let /num be ! ToInt32(x).

. Let rnum be ! Tolnt32(y).

. Let /bits be the 32-bit two's complement bit string representing R(/num).

. Let rbits be the 32-bit two's complement bit string representing R(rnum).

. If op is &, let result be the result of applying the bitwise AND operation to /bits and rbits.

. Else if op is A, let result be the result of applying the bitwise exclusive OR (XOR) operation to /bits and
rbits.

. Else, op is |. Let result be the result of applying the bitwise inclusive OR operation to /bits and rbits.

. Return the Number value for the integer represented by the 32-bit two's complement bit string result.

o Ok WN -

o

6.1.6.1.17 Number::bitwiseAND (x, y)

The abstract operation Number::bitwiseAND takes arguments x (a Number) and y (a Number) and returns an
integral Number. It performs the following steps when called:

1. Return NumberBitwiseOp(&, x, ¥).

6.1.6.1.18 Number::bitwiseXOR (x, y)

The abstract operation Number::bitwise XOR takes arguments x (a Number) and y (a Number) and returns an
integral Number. It performs the following steps when called:

1. Return NumberBitwiseOp(A, x, y).

38 © Ecma International 2023

oechna

6.1.6.1.19 Number::bitwiseOR (x, y)

The abstract operation Number::bitwiseOR takes arguments x (a Number) and y (a Number) and returns an
integral Number. It performs the following steps when called:

1. Return NumberBitwiseOp(l, x, y).

6.1.6.1.20 Number::toString (x, radix)

The abstract operation Number::toString takes arguments x (a Number) and radix (an integer in the inclusive
interval from 2 to 36) and returns a String. It represents x as a String using a positional numeral system with
radix radix. The digits used in the representation of a number using radix r are taken from the first r code
units of "0123456789abcdefghijkimnopqrstuvwxyz" in order. The representation of numbers with
magnitude greater than or equal to 1 never includes leading zeroes. It performs the following steps when

called:

. If x is NaN, return "NaN".
. If x is either +0p or -0, return "0".
. If x < -0, return the string-concatenation of "-" and Number::toString(-x, radix).

. If x is +0F, return "Infinity".

a A WO N =

. Let n, k, and s be integers such that k 2 1, radix“ =1 < s < radix, F(s x radix” =¥} is x, and k is as small
as possible. Note that k is the number of digits in the representation of s using radix radix, that s is not
divisible by radix, and that the least significant digit of s is not necessarily uniquely determined by
these criteria.

6. If radix # 10 or n is in the inclusive interval from -5 to 21, then
a. If n 2k, then
i. Return the string-concatenation of:
= the code units of the k digits of the representation of s using radix radix
= 1 -k occurrences of the code unit 0x0030 (DIGIT ZERO)
b. Else if n > 0, then
i. Return the string-concatenation of:
» the code units of the most significant n digits of the representation of s using radix
radix
= the code unit 0x002E (FULL STOP)
= the code units of the remaining k - n digits of the representation of s using radix radix
c. Else,
i. Assert: n 0.
ii. Return the string-concatenation of:
» the code unit 0x0030 (DIGIT ZERO)
= the code unit 0x002E (FULL STOP)
= -n occurrences of the code unit 0x0030 (DIGIT ZERO)
= the code units of the k digits of the representation of s using radix radix
7. NOTE: In this case, the input will be represented using scientific E notation, such as 1.2e+3.
8. Assert: radix is 10.
9.1f n <0, then
a. Let exponentSign be the code unit 0x002D (HYPHEN-MINUS).
10. Else,
a. Let exponentSign be the code unit 0x002B (PLUS SIGN).
11. If k=1, then
a. Return the string-concatenation of:
= the code unit of the single digit of s

© Ecma International 2023 39

ecma

= the code unit 0x0065 (LATIN SMALL LETTER E)
= exponentSign
» the code units of the decimal representation of abs(n - 1)
12. Return the string-concatenation of:
o the code unit of the most significant digit of the decimal representation of s
o the code unit 0x002E (FULL STOP)
o the code units of the remaining k - 1 digits of the decimal representation of s
o the code unit 0x0065 (LATIN SMALL LETTER E)
o exponentSign
o the code units of the decimal representation of abs(n - 1)

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part
of the normative requirements of this Standard:

« If x is any Number value other than -0, then ToNumber(ToString(x)) is x.

» The least significant digit of s is not always uniquely determined by the requirements listed
in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules
above, it is recommended that the following alternative version of step 5 be used as a
guideline:

5. Let n, k, and s be integers such that k = 1, radix* =1 < s < radix, s x radix” " ¥) is x,
and k is as small as possible. If there are multiple possibilities for s, choose the value

of s for which s x radix” - is closest in value to R(x). If there are two such possible
values of s, choose the one that is even. Note that k is the number of digits in the
representation of s using radix radix and that s is not divisible by radix.

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for
binary-to-decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions.
Numerical Analysis, Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). 30
November 1990. Available as

http://ampl.com/REFS/abstracts.html#rounding. Associated code available as
http://netlib.sandia.gov/fp/dtoa.c and as

http://netlib.sandia.gov/fp/g_fmt.c and may also be found at the various netlib mirror sites.

6.1.6.2 The Bigint Type

The Bigint type represents an integer value. The value may be any size and is not limited to a particular bit-
width. Generally, where not otherwise noted, operations are designed to return exact mathematically-based
answers. For binary operations, Bigints act as two's complement binary strings, with negative numbers
treated as having bits set infinitely to the left.

6.1.6.2.1 Bigint::unaryMinus (x)

The abstract operation Bigint::unaryMinus takes argument x (a BigInt) and returns a Bigint. It performs the
following steps when called:

1. If x is 0y, return 0.
2. Return the BiglInt value that represents the negation of R(x).

40 © Ecma International 2023

http://ampl.com/REFS/abstracts.html#rounding
http://netlib.sandia.gov/fp/dtoa.c
http://netlib.sandia.gov/fp/g_fmt.c

recimd

6.1.6.2.2 Bigint::bitwiseNOT (x)

The abstract operation Bigint::bitwiseNOT takes argument x (a Bigint) and returns a Bigint. It returns the
one's complement of x. It performs the following steps when called:

1. Return -x - 15.

6.1.6.2.3 BiglInt::exponentiate (base, exponent)

The abstract operation Biglnt::exponentiate takes arguments base (a Biglnt) and exponent (a Biglnt) and
returns either a normal completion containing a BigInt or a throw completion. It performs the following steps
when called:

1. If exponent < 07, throw a RangeError exception.
2. If base is 07 and exponent is 0y, return 1.
3. Return the Biglint value that represents R(base) raised to the power R(exponent).

6.1.6.2.4 Bigint::multiply (x, y)

The abstract operation Biglnt::multiply takes arguments x (a Bigint) and y (a Bigint) and returns a Biglint. It
performs the following steps when called:

1. Return the Bigint value that represents the product of x and y.

NOTE Even if the result has a much larger bit width than the input, the exact mathematical answer is
given.

6.1.6.2.5 Biglnt::divide (x, y)

The abstract operation Biglnt::divide takes arguments x (a Biglnt) and y (a Biglnt) and returns either a normal
completion containing a Biglnt or a throw completion. It performs the following steps when called:

1. If y is 04, throw a RangeError exception.
2. Let quotient be R(x) / R(y).
3. Return Z(truncate(quotient)).

6.1.6.2.6 BigiInt::remainder (n, d)

The abstract operation BigInt::remainder takes arguments n (a Bigint) and d (a Bigint) and returns either a
normal completion containing a Biglnt or a throw completion. It performs the following steps when called:

1. If d is 04, throw a RangeError exception.
2. If nis 0z, return 05.
3. Let quotient be R(n) / R(d).

4. Let g be Z(truncate(quotient)).
5. Return n - (d x q).

NOTE The sign of the result is the sign of the dividend.

© Ecma International 2023 41

ecma

6.1.6.2.7 Bigint::add (x, y)

The abstract operation Bigint::add takes arguments x (a BigInt) and y (a Bigint) and returns a Biglint. It
performs the following steps when called:

1. Return the Biglint value that represents the sum of x and y.

6.1.6.2.8 Biglnt::subtract (x, y)

The abstract operation Biglnt::subtract takes arguments x (a Biglnt) and y (a BigInt) and returns a Biglint. It
performs the following steps when called:

1. Return the Biglnt value that represents the difference x minus y.

6.1.6.2.9 Biglnt::leftShift (x, v)

The abstract operation Bigint::leftShift takes arguments x (a Bigint) and y (a Bigint) and returns a Biglint. It
performs the following steps when called:

1. If y < 0y, then

a. Return the Bigint value that represents R(x) / 2780, rounding down to the nearest integer,
including for negative numbers.

2. Return the Biglnt value that represents R(x) x 280,

NOTE Semantics here should be equivalent to a bitwise shift, treating the Bigint as an infinite length
string of binary two's complement digits.

6.1.6.2.10 Biglnt::signedRightShift (x, y)

The abstract operation Biglnt::signedRightShift takes arguments x (a Bigint) and y (a Bigint) and returns a
BigInt. It performs the following steps when called:

1. Return Biglnt::leftShift(x, -y).

6.1.6.2.11 Bigint::unsignedRightShift (x, y)

The abstract operation Biglnt::unsignedRightShift takes arguments x (a BigInt) and y (a BigInt) and returns a
throw completion. It performs the following steps when called:

1. Throw a TypeError exception.

6.1.6.2.12 Bigint::lessThan (x, y)

The abstract operation Bigint::lessThan takes arguments x (a BigInt) and y (a Bigint) and returns a Boolean.
It performs the following steps when called:

1. If R(x) < R(y), return true; otherwise return false.

6.1.6.2.13 Bigint::equal (x,)

The abstract operation Biglnt::equal takes arguments x (a Bigint) and y (a Biglnt) and returns a Boolean. It
performs the following steps when called:

42 © Ecma International 2023

secmd

1. If R(x) = R(y), return true; otherwise return false.

6.1.6.2.14 BinaryAnd (x,)

The abstract operation BinaryAnd takes arguments x (0 or 1) and y (0 or 1) and returns 0 or 1. It performs
the following steps when called:

1.Ifx=1and y =1, return 1.
2. Else, return 0.

6.1.6.2.15 BinaryOr (x, y)

The abstract operation BinaryOr takes arguments x (0 or 1) and y (0 or 1) and returns 0 or 1. It performs the
following steps when called:

1.ifx=1ory=1,return 1.
2. Else, return 0.

6.1.6.2.16 BinaryXor (x, y)

The abstract operation BinaryXor takes arguments x (0 or 1) and y (0 or 1) and returns O or 1. It performs the
following steps when called:

1.lfx=1and y =0, return 1.
2. Elseifx=0and y =1, return 1.
3. Else, return 0.

6.1.6.2.17 BigintBitwiseOp (op, x, y)

The abstract operation BigIntBitwiseOp takes arguments op (&, A, or 1), x (a Bigint), and y (a Bigint) and
returns a Biglint. It performs the following steps when called:

1. Set x to R(x).
2. Set y to R(y).
3. Let result be 0.
4. Let shift be 0.
5. Repeat, until (x=0orx=-1)and (y=0or y=-1),
a. Let xDigit be x modulo 2.
b. Let yDigit be y modulo 2.
c. If op is &, set result to result + 25" x BinaryAnd(xDigit, yDigit).
d. Elseif opis |, set result to result + 25 x BinaryOr(xDigit, yDigit).
e. Else,
i. Assert: op is A.
ii. Set result to result + 257 x BinaryXor(xDigit, yDigit).
f. Set shift to shift + 1.
g. Set x to (x - xDigit) | 2.
h. Set y to (v - yDigit) I 2.
6. If op is &, let tmp be BinaryAnd(x modulo 2, y modulo 2).
7. Elseif opis |, let tmp be BinaryOr(x modulo 2, y modulo 2).
8. Else,
a. Assert: op is A.

© Ecma International 2023 43

ecma

b. Let imp be BinaryXor(x modulo 2, y modulo 2).
9. If imp # 0, then

a. Set result to result -
b. NOTE: This extends the sign.
10. Return the Biglint value for result.

zshift

6.1.6.2.18 Biglnt::bitwiseAND (x, y)

The abstract operation Biglnt::bitwiseAND takes arguments x (a Bigint) and y (a Bigint) and returns a Biglnt.
It performs the following steps when called:

1. Return BigIntBitwiseOp(&, x, y).

6.1.6.2.19 Bigint::bitwiseXOR (x, y)

The abstract operation Biglnt::bitwiseXOR takes arguments x (a BigInt) and y (a Bigint) and returns a Bigint.
It performs the following steps when called:

1. Return BigIntBitwiseOp(A, x, y).

6.1.6.2.20 Bigint::bitwiseOR (x, v)

The abstract operation Biglnt::bitwiseOR takes arguments x (a Bigint) and y (a Bigint) and returns a Bigint. It
performs the following steps when called:

1. Return BigIntBitwiseOp(l, x, y).

6.1.6.2.21 Bigint::toString (x, radix)

The abstract operation Biglnt::toString takes arguments x (a Bigint) and radix (an integer in the inclusive
interval from 2 to 36) and returns a String. It represents x as a String using a positional numeral system with
radix radix. The digits used in the representation of a BigInt using radix r are taken from the first r code units
of "0123456789abcdefghijkimnopqrstuvwxyz" in order. The representation of Bigints other than 0; never

includes leading zeroes. It performs the following steps when called:

1. If x < 0, return the string-concatenation of "-" and Biglnt::toString(-x, radix).
2. Return the String value consisting of the representation of x using radix radix.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor
property:

* A data property associates a key value with an ECMAScript language value and a set of Boolean
attributes.

* An accessor property associates a key value with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

Properties are identified using key values. A property key value is either an ECMAScript String value or a

Symbol value. All String and Symbol values, including the empty String, are valid as property keys. A
property name is a property key that is a String value.

44 © Ecma International 2023

ecmna

An integer index is a String-valued property key that is a canonical numeric string and whose numeric value
is either +0p or a positive integral Number < DE(253 - 1). An array index is an integer index whose numeric

value /is in the range +0 </ < [F(232 -1).

Property keys are used to access properties and their values. There are two kinds of access for properties:
get and set, corresponding to value retrieval and assignment, respectively. The properties accessible via get
and set access includes both own properties that are a direct part of an object and inherited properties which
are provided by another associated object via a property inheritance relationship. Inherited properties may be
either own or inherited properties of the associated object. Each own property of an object must each have a
key value that is distinct from the key values of the other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their

semantics for accessing and manipulating their properties. Please see 6.1.7.2 for definitions of the multiple
forms of objects.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties as described in
Table 3. Unless specified explicitly, the initial value of each attribute is its Default Value.

Table 3: Attributes of an Object property

Attribute Types of Value Default Description
Name property Domain Value
for which it
is present
[[Valuel]] data an undefined | The value retrieved by a get access of the
property ECMAScript property.
language
value
[[Writable]] | data a Boolean false If false, attempts by ECMAScript code to change
property the property's [[Value]] attribute using [[Set]] will
not succeed.
[[Get]] accessor an Object or | undefined | If the value is an Object it must be a function
property undefined object. The function's [[Call]] internal method

(Table 5) is called with an empty arguments list to
retrieve the property value each time a get
access of the property is performed.

[[Set]] accessor an Object or | undefined | If the value is an Object it must be a function
property undefined object. The function's [[Call]] internal method
(Table 5) is called with an arguments list
containing the assigned value as its sole
argument each time a set access of the property
is performed. The effect of a property's [[Set]]
internal method may, but is not required to, have
an effect on the value returned by subsequent
calls to the property's [[Get]] internal method.

© Ecma International 2023 45

ecma

Table 3 (continued)

Attribute Types of Value Default Description
Name property for | Domain | Value
which it is
present

[[Enumerable]] | data property |a false If true, the property will be enumerated by a for-in
or accessor Boolean enumeration (see 14.7.5). Otherwise, the property
property is said to be non-enumerable.

[[Configurable]] | data property |a false If false, attempts to delete the property, change it
or accessor Boolean from a data property to an accessor property or
property from an accessor property to a data property, or

make any changes to its attributes (other than
replacing an existing [[Value]] or setting [[Writable]]
to false) will fail.

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each
object in an ECMAScript engine is associated with a set of internal methods that defines its runtime
behaviour. These internal methods are not part of the ECMAScript language. They are defined by this
specification purely for expository purposes. However, each object within an implementation of ECMAScript
must behave as specified by the internal methods associated with it. The exact manner in which this is
accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different
algorithms when a common internal method name is invoked upon them. That actual object upon which an
internal method is invoked is the “target” of the invocation. If, at runtime, the implementation of an algorithm
attempts to use an internal method of an object that the object does not support, a TypeError exception is
thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon
the specific internal slot specification, such state may consist of values of any ECMAScript language type or
of specific ECMAScript specification type values. Unless explicitly specified otherwise, internal slots are
allocated as part of the process of creating an object and may not be dynamically added to an object. Unless
specified otherwise, the initial value of an internal slot is the value undefined. Various algorithms within this
specification create objects that have internal slots. However, the ECMAScript language provides no direct
way to associate internal slots with an object.

All objects have an internal slot named [[PrivateElements]], which is a List of PrivateElements. This List
represents the values of the private fields, methods, and accessors for the object. Initially, it is an empty List.

Internal methods and internal slots are identified within this specification using names enclosed in double
square brackets [[]].

Table 4 summarizes the essential internal methods used by this specification that are applicable to all objects
created or manipulated by ECMAScript code. Every object must have algorithms for all of the essential
internal methods. However, all objects do not necessarily use the same algorithms for those methods.

An ordinary object is an object that satisfies all of the following criteria:

« For the internal methods listed in Table 4, the object uses those defined in 10.1.

+ If the object has a [[Call]] internal method, it uses either the one defined in 10.2.1 or the one defined in
10.3.1.

« [f the object has a [[Construct]] internal method, it uses either the one defined in 10.2.2 or the one defined
in 10.3.2.

46 © Ecma International 2023

ecma

An exotic object is an object that is not an ordinary object.

This specification recognizes different kinds of exotic objects by those objects' internal methods. An object
that is behaviourally equivalent to a particular kind of exotic object (such as an Array exotic object or a bound
function exotic object), but does not have the same collection of internal methods specified for that kind, is
not recognized as that kind of exotic object.

The “Signature” column of Table 4 and other similar tables describes the invocation pattern for each internal
method. The invocation pattern always includes a parenthesized list of descriptive parameter names. If a
parameter name is the same as an ECMAScript type name then the name describes the required type of the
parameter value. If an internal method explicitly returns a value, its parameter list is followed by the symbol
“—” and the type name of the returned value. The type names used in signatures refer to the types defined in
clause 6 augmented by the following additional names. “any” means the value may be any ECMAScript
language type.

In addition to its parameters, an internal method always has access to the object that is the target of the
method invocation.

An internal method implicitly returns a Completion Record, either a normal completion that wraps a value of
the return type shown in its invocation pattern, or a throw completion.

Table 4: Essential Internal Methods

Internal Method Signature Description

[[GetPrototypeOf]] (') — Object | Null Determine the object that provides inherited properties
for this object. A null value indicates that there are no
inherited properties.

[[SetPrototypeOf]] (Object | Null) — Associate this object with another object that provides
Boolean inherited properties. Passing null indicates that there
are no inherited properties. Returns true indicating that
the operation was completed successfully or false
indicating that the operation was not successful.

[[IsExtensible]] () — Boolean Determine whether it is permitted to add additional
properties to this object.

[[PreventExtensions]] | () — Boolean Control whether new properties may be added to this
object. Returns true if the operation was successful or
false if the operation was unsuccessful.

[[GetOwnProperty]] (propertyKey) — Return a Property Descriptor for the own property of this
Undefined | Property object whose key is propertyKey, or undefined if no
Descriptor such property exists.

[[DefineOwnProperty]] | (propertyKey, Create or alter the own property, whose key is
PropertyDescriptor) — | propertyKey, to have the state described by
Boolean PropertyDescriptor. Return true if that property was

successfully created/updated or false if the property
could not be created or updated.

[[HasProperty]] (propertyKey) — Return a Boolean value indicating whether this object
Boolean already has either an own or inherited property whose
key is propertyKey.

[[Get]] (propertyKey, Receiver) | Return the value of the property whose key is

— any propertyKey from this object. If any ECMAScript code
must be executed to retrieve the property value,
Receiver is used as the this value when evaluating the
code.

© Ecma International 2023 47

ecma

Table 4 (continued)

Internal Method Signature Description
[[Set]] (propertyKey, Set the value of the property whose key is propertyKey to
value, Receiver) — | value. If any ECMAScript code must be executed to set the
Boolean property value, Receiver is used as the this value when

evaluating the code. Returns true if the property value was set
or false if it could not be set.

[[Delete]] (propertyKey) — Remove the own property whose key is propertyKey from this
Boolean object. Return false if the property was not deleted and is still
present. Return true if the property was deleted or is not
present.
[[OwnPropertyKeys]] | () — List of Return a List whose elements are all of the own property keys
property keys for the object.

Table 5 summarizes additional essential internal methods that are supported by objects that may be called
as functions. A function object is an object that supports the [[Call]] internal method. A constructor is an object
that supports the [[Construct]] internal method. Every object that supports [[Construct]] must support [[Call]];
that is, every constructor must be a function object. Therefore, a constructor may also be referred to as a
constructor function or constructor function object.

Table 5: Additional Essential Internal Methods of Function Objects

Internal Signature Description
Method
[[Call]] (any, a List Executes code associated with this object. Invoked via a function call
of any) — expression. The arguments to the internal method are a this value and a List
any whose elements are the arguments passed to the function by a call
expression. Objects that implement this internal method are callable.
[[Construct]] | (a List of Creates an object. Invoked via the hew operator or a super call. The first
any, Object) | argument to the internal method is a List whose elements are the arguments
— Object of the constructor invocation or the super call. The second argument is the

object to which the new operator was initially applied. Objects that
implement this internal method are called constructors. A function object is
not necessarily a constructor and such non-constructor function objects do
not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are
specified in clause 10. If any specified use of an internal method of an exotic object is not supported by an
implementation, that usage must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified
below. Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain
these invariants. ECMAScript Proxy objects maintain these invariants by means of runtime checks on the
result of traps invoked on the [[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation
of these invariants may cause ECMAScript code to have unpredictable behaviour and create security issues.
However, violation of these invariants must never compromise the memory safety of an implementation.

48 © Ecma International 2023

ecma

An implementation must not allow these invariants to be circumvented in any manner such as by providing
alternative interfaces that implement the functionality of the essential internal methods without enforcing their
invariants.

Definitions:

* The target of an internal method is the object upon which the internal method is called.

* Atarget is non-extensible if it has been observed to return false from its [[IsExtensible]] internal method,
or true from its [[PreventExtensions]] internal method.

* A non-existent property is a property that does not exist as an own property on a non-extensible target.

« All references to SameValue are according to the definition of the SameValue algorithm.

Return value:
The value returned by any internal method must be a Completion Record with either:

* [[Type]] = normal, [[Target]] = empty, and [[Value]] = a value of the "normal return type" shown below for
that internal method, or
* [[Type]] = throw, [[Target]] = empty, and [[Value]] = any ECMAScript language value.

NOTE 1 An internal method must not return a continue completion, a break completion, or a return
completion.

[[GetPrototypeOf]] ()

« The normal return type is either Object or Null.
« If target is non-extensible, and [[GetPrototypeOf]] returns a value V, then any future calls to
[[GetPrototypeOf]] should return the SameValue as V.

NOTE 2 An object's prototype chain should have finite length (that is, starting from any object,
recursively applying the [[GetPrototypeOf]] internal method to its result should eventually lead
to the value null). However, this requirement is not enforceable as an object level invariant if
the prototype chain includes any exotic objects that do not use the ordinary object definition
of [[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when
accessing object properties.

[[SetPrototypeOf]] (V)

¢ The normal return type is Boolean.
« |[f target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the target's
observed [[GetPrototypeOf]] value.

[[IsExtensible]] ()

¢ The normal return type is Boolean.
« [f [[IsExtensible]] returns false, all future calls to [[IsExtensible]] on the target must return false.

[[PreventExtensions]] ()

¢ The normal return type is Boolean.
« [f [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false and
the target is now considered non-extensible.

[[GetOwnProperty]] (P)

* The normal return type is either Property Descriptor or Undefined.

« [f the Type of the return value is Property Descriptor, the return value must be a fully populated Property
Descriptor.

« If Pis described as a non-configurable, non-writable own data property, all future calls to
[[GetOwnProperty]] (P) must return Property Descriptor whose [[Value]] is SameValue as P's [[Value]]

© Ecma International 2023 49

ecmna

attribute.

« [f P's attributes other than [[Writable]] may change over time or if the property might be deleted, then P's
[[Configurable]] attribute must be true.

« If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

« |If the target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on the
target must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

NOTE 3 As a consequence of the third invariant, if a property is described as a data property and it
may return different values over time, then either or both of the [[Writable]] and
[[Configurable]] attributes must be true even if no mechanism to change the value is exposed
via the other essential internal methods.

[[DefineOwnProperty]] (P, Desc)

¢ The normal return type is Boolean.
+ [[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable own
property of the target, unless either:
1. Pis a writable data property. A non-configurable writable data property can be changed into a non-
configurable non-writable data property.
2. All attributes of Desc are the SameValue as P's attributes.
+ [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent own
property. That is, a non-extensible target object cannot be extended with new properties.

[[HasProperty]] (P)

¢ The normal return type is Boolean.
« If P was previously observed as a non-configurable own data or accessor property of the target,
[[HasProperty]] must return true.

[[Get]] (P, Receiver)

¢ The normal return type is any ECMAScript language type.

« |f P was previously observed as a non-configurable, non-writable own data property of the target with
value V, then [[Get]] must return the SameValue as V.

« |f P was previously observed as a non-configurable own accessor property of the target whose [[Get]]
attribute is undefined, the [[Get]] operation must return undefined.

[[Set]] (P, V, Receiver)

¢ The normal return type is Boolean.

« If P was previously observed as a non-configurable, non-writable own data property of the target, then
[[Set]] must return false unless V is the SameValue as P's [[Value]] attribute.

« |If P was previously observed as a non-configurable own accessor property of the target whose [[Set]]
attribute is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

e The normal return type is Boolean.

« |If P was previously observed as a non-configurable own data or accessor property of the target, [[Delete]]
must return false.

[[OwnPropertyKeys]] ()

e The normal return type is List.

¢ The returned List must not contain any duplicate entries.

* The Type of each element of the returned List is either String or Symbol.

* The returned List must contain at least the keys of all non-configurable own properties that have
previously been observed.

« |[f the target is non-extensible, the returned List must contain only the keys of all own properties of the
target that are observable using [[GetOwnProperty]].

50 © Ecma International 2023

recimd

[[Call]] ()

¢ The normal return type is any ECMAScript language type.

[[Construct]] ()

¢ The normal return type is Object.

* The target must also have a [[Call]] internal method.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification
and which usually have realm-specific identities. Unless otherwise specified each intrinsic object actually
corresponds to a set of similar objects, one per realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current
realm, corresponding to the name. A reference such as %name.a.b% means, as if the "b" property of the
value of the "a" property of the intrinsic object %name% was accessed prior to any ECMAScript code being
evaluated. Determination of the current realm and its intrinsics is described in 9.4. The well-known intrinsics

are listed in Table 6.

Table 6: Well-Known Intrinsic Objects

Intrinsic Name

Global Name

ECMAScript Language Association

%AggregateError% AggregateError The AggregateError constructor
(20.5.7.1)
Y%Array% Array The Array constructor (23.1.1)
%ArrayBuffer% ArrayBuffer The ArrayBuffer constructor (25.1.3)
Y%ArraylteratorPrototype% The prototype of Array iterator objects
(23.1.5)
%AsyncFromSynclteratorPrototype% The prototype of async-from-sync
iterator objects (27.1.4)
Y%AsyncFunction% The constructor of async function objects
(27.7.1)
%AsyncGeneratorFunction% The constructor of async iterator objects
(27.4.1)
%AsynclteratorPrototype% An object that all standard built-in async
iterator objects indirectly inherit from
%Atomics% Atomics The Atomics object (25.4)
%BigInt% BigInt The BiglInt constructor (21.2.1)
%BigInt64Array% BigInt64Array The BigInt64Array constructor (23.2)
%BigUint64Array% BigUint64Array The BigUint64Array constructor (23.2)
%Boolean% Boolean The Boolean constructor (20.3.1)
%DataView% DataView The DataView constructor (25.3.2)
%Date% Date The Date constructor (21.4.2)
%decodeURI% decodeURI The decodeURT function (19.2.6.1)
%decodeURIComponent% decodeURIComponent | The decodeURIComponent function

(19.2.6.2)

© Ecma International 2023

51

secmd

Table 6 (continued)

Intrinsic Name

Global Name

ECMAScript Language Association

%encodeURI% encodeURI The encodeURI function (19.2.6.3)
%encodeURIComponent% | encodeURIComponent The encodeURIComponent function (19.2.6.4)
Y% Error% Error The Error constructor (20.5.1)
%eval% eval The eval function (19.2.1)
%EvalError% EvalError The EvalError constructor (20.5.5.1)
%FinalizationRegistry% FinalizationRegistry | The FinalizationRegistry constructor (26.2.1)
%Float32Array% Float32Array The Float32Array constructor (23.2)
%Float64Array% Float64Array The Float64Array constructor (23.2)
Y%ForinlteratorPrototype% The prototype of For-In iterator objects
(14.7.5.10)
%Function% Function The Function constructor (20.2.1)
%GeneratorFunction% The constructor of Generators (27.3.1)
%Int8Array% Int8Array The Int8Array constructor (23.2)
%Int16Array% Int16Array The Int16Array constructor (23.2)
%Int32Array% Int32Array The Int32Array constructor (23.2)
%isFinite% isFinite The isFinite function (19.2.2)
%isNaN% isNaN The isNaN function (19.2.3)
%lteratorPrototype% An object that all standard built-in iterator
objects indirectly inherit from
%JSON% JSON The JSON object (25.5)
%Map% Map The Map constructor (24.1.1)
%MaplteratorPrototype% The prototype of Map iterator objects (24.1.5)
%Math% Math The Math object (21.3)
Y%Number% Number The Number constructor (21.1.1)
%Object% Object The Object constructor (20.1.1)
%parseFloat% parseFloat The parseFloat function (19.2.4)
Y%parselnt% parselnt The parselnt function (19.2.5)
%Promise% Promise The Promise constructor (27.2.3)
%Proxy% Proxy The Proxy constructor (28.2.1)
%RangeError% RangeError The RangeError constructor (20.5.5.2)
%ReferenceError% ReferenceError The ReferenceError constructor (20.5.5.3)
%Reflect% Reflect The Reflect object (28.1)

52

© Ecma International 2023

secmd

Table 6 (continued)

Intrinsic Name

Global Name

ECMAScript Language Association

%RegExp% RegExp The RegExp constructor (22.2.4)
%RegExpStringlteratorPrototype% The prototype of RegExp String Iterator
objects (22.2.9)
%Set% Set The Set constructor (24.2.1)
%SetlteratorPrototype% The prototype of Set iterator objects (24.2.5)
%SharedArrayBuffer% SharedArrayBuffer | The SharedArrayBuffer constructor (25.2.2)
%String% String The String constructor (22.1.1)
%StringlteratorPrototype% The prototype of String iterator objects
(22.1.5)
%Symbol% Symbol The Symbol constructor (20.4.1)
%SyntaxError% SyntaxError The SyntaxError constructor (20.5.5.4)
Y% ThrowTypeError% A function object that unconditionally throws
a new instance of % TypeError%
%TypedArray% The super class of all typed Array
constructors (23.2.1)
%TypeError% TypeError The TypeError constructor (20.5.5.5)
%Uint8Array% Uint8Array The Uint8Array constructor (23.2)
%Uint8ClampedArray% Uint8ClampedArray | The Uint8ClampedArray constructor (23.2)
%Uint16Array% Uint16Array The Uint16Array constructor (23.2)
%Uint32Array% Uint32Array The Uint32Array constructor (23.2)
%URIError% URIError The URIError constructor (20.5.5.6)
%WeakMap% WeakMap The WeakMap constructor (24.3.1)
%WeakRef% WeakRef The WeakRef constructor (26.1.1)
%WeakSet% WeakSet The WeakSet constructor (24.4.1)
NOTE Additional entries in Table 91.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types include
Reference, List, Completion Record, Property Descriptor, Environment Record, Abstract Closure, and Data
Block. Specification type values are specification artefacts that do not necessarily correspond to any specific
entity within an ECMAScript implementation. Specification type values may be used to describe intermediate
results of ECMAScript expression evaluation but such values cannot be stored as properties of objects or
values of ECMAScript language variables.

© Ecma International 2023

53

ecma

6.2.1 The Enum Specification Type

Enums are values which are internal to the specification and not directly observable from ECMAScript code.
Enums are denoted using a sans-serif typeface. For instance, a Completion Record's [[Type]] field takes on
values like normal, return, or throw. Enums have no characteristics other than their name. The name of an
enum serves no purpose other than to distinguish it from other enums, and implies nothing about its usage or
meaning in context.

6.2.2 The List and Record Specification Types

The List type is used to explain the evaluation of argument lists (see 13.3.8) in new expressions, in function
calls, and in other algorithms where a simple ordered list of values is needed. Values of the List type are
simply ordered sequences of list elements containing the individual values. These sequences may be of any
length. The elements of a list may be randomly accessed using 0-origin indices. For notational convenience
an array-like syntax can be used to access List elements. For example, arguments[2] is shorthand for saying

the 3" element of the List arguments.

When an algorithm iterates over the elements of a List without specifying an order, the order used is the
order of the elements in the List.

For notational convenience within this specification, a literal syntax can be used to express a new List value.
For example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific
value. A new empty List can be expressed as « ».

In this specification, the phrase "the list-concatenation of A, B, ..." (where each argument is a possibly empty
List) denotes a new List value whose elements are the concatenation of the elements (in order) of each of
the arguments (in order).

The Record type is used to describe data aggregations within the algorithms of this specification. A Record
type value consists of one or more named fields. The value of each field is an ECMAScript language value or
specification value. Field names are always enclosed in double brackets, for example [[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a
Record value. For example, { [[Field1]]: 42, [[Field2]]: false, [[Field3]]: empty } defines a Record value that
has three fields, each of which is initialized to a specific value. Field name order is not significant. Any fields
that are not explicitly listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value.
For example, if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of
R named [[Field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a
prefix to a literal Record value to identify the specific kind of aggregations that is being described. For
example: PropertyDescriptor { [[Value]]: 42, [[Writable]]: false, [[Configurable]]: true }.

6.2.3 The Set and Relation Specification Types

The Set type is used to explain a collection of unordered elements for use in the memory model. It is distinct
from the ECMAScript collection type of the same name. To disambiguate, instances of the ECMAScript
collection are consistently referred to as "Set objects" within this specification. Values of the Set type are
simple collections of elements, where no element appears more than once. Elements may be added to and
removed from Sets. Sets may be unioned, intersected, or subtracted from each other.

The Relation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered

pairs of values from its value domain. For example, a Relation on events is a set of ordered pairs of events.
For a Relation R and two values a and b in the value domain of R, a R b is shorthand for saying the ordered

54 © Ecma International 2023

ecma

pair (a, b) is a member of R. A Relation is least with respect to some conditions when it is the smallest
Relation that satisfies those conditions.

A strict partial order is a Relation value R that satisfies the following.
e Forall a, b, and ¢ in R's domain:

o ltis not the case that a R a, and
o IfaRbandb Rc,thenaRc.

NOTE 1 The two properties above are called irreflexivity and transitivity, respectively.

A strict total order is a Relation value R that satisfies the following.
e Forall a, b, and cin R's domain:
o aisbhoraRborbR a, and

o ltis not the case that a R a, and
o IfaRbandb R c,thenaR c.

NOTE 2 The three properties above are called totality, irreflexivity, and transitivity, respectively.

6.2.4 The Completion Record Specification Type

The Completion Record specification type is used to explain the runtime propagation of values and control
flow such as the behaviour of statements (break, continue, return and throw) that perform nonlocal
transfers of control.

Completion Records have the fields defined in Table 7.

Table 7: Completion Record Fields

Field Name Value Meaning

[[Typel] normal, break, continue, return, or throw | The type of completion that occurred.
[[Value]] any value except a Completion Record | The value that was produced.

[[Target]] a String or empty The target label for directed control transfers.

The following shorthand terms are sometimes used to refer to Completion Records.

normal completion refers to any Completion Record with a [[Type]] value of normal.

break completion refers to any Completion Record with a [[Type]] value of break.

continue completion refers to any Completion Record with a [[Type]] value of continue.

return completion refers to any Completion Record with a [[Type]] value of return.

throw completion refers to any Completion Record with a [[Type]] value of throw.

abrupt completion refers to any Completion Record with a [[Type]] value other than normal.

a normal completion containing some type of value refers to a normal completion that has a value of that
type in its [[Value]] field.

Callable objects that are defined in this specification only return a normal completion or a throw completion.
Returning any other kind of Completion Record is considered an editorial error.

Implementation-defined callable objects must return either a normal completion or a throw completion.

© Ecma International 2023 55

secmd

6.2.4.1 NormalCompletion (value)

The abstract operation NormalCompletion takes argument value (any value except a Completion Record)
and returns a normal completion. It performs the following steps when called:

1. Return Completion Record { [[Type]]: normal, [[Value]]: value, [[Target]]: empty }.

6.2.4.2 ThrowCompletion (value))

The abstract operation ThrowCompletion takes argument value (an ECMAScript language value) and returns
a throw completion. It performs the following steps when called:

1. Return Completion Record { [[Type]l: throw, [[Value]]: value, [[Target]]: empty }.

6.2.4.3 UpdateEmpty (completionRecord, value)

The abstract operation UpdateEmpty takes arguments completionRecord (a Completion Record) and value
(any value except a Completion Record) and returns a Completion Record. It performs the following steps
when called:

1. Assert: If completionRecord.[[Type]] is either return or throw, then completionRecord.[[Value]] is not
empty.

2. If completionRecord.[[Value]] is not empty, return ? completionRecord.

3. Return Completion Record { [[Typell: completionRecord.[[Type]], [[Value]]: value, [[Target]]:
completionRecord.[[Target]] }.

6.2.5 The Reference Record Specification Type
The Reference Record type is used to explain the behaviour of such operators as delete, typeof, the
assignment operators, the super keyword and other language features. For example, the left-hand operand
of an assignment is expected to produce a Reference Record.

A Reference Record is a resolved name or property binding; its fields are defined by Table 8.

Table 8: Reference Record Fields

Field Name Value Meaning
[[Basel]] an ECMAScript The value or Environment Record which holds the binding.
language value, an A [[Base]] of unresolvable indicates that the binding could

Environment Record, | not be resolved.
or unresolvable

[[ReferencedName]] | a String, a Symbol, or | The name of the binding. Always a String if [[Base]] value is

a Private Name an Environment Record.
[[Strict]] a Boolean true if the Reference Record originated in strict mode code,
false otherwise.
[[ThisValue]] an ECMAScript If not empty, the Reference Record represents a property
language value or binding that was expressed using the super keyword; it is
empty called a Super Reference Record and its [[Base]] value will

never be an Environment Record. In that case, the
[[ThisValue]] field holds the this value at the time the
Reference Record was created.

56 © Ecma International 2023

secmd

The following abstract operations are used in this specification to operate upon Reference Records:

6.2.5.1 IsPropertyReference (V)

The abstract operation IsPropertyReference takes argument V' (a Reference Record) and returns a Boolean.
It performs the following steps when called:

1. If V.[[Base]] is unresolvable, return false.
2. If V.[[Base]] is an Environment Record, return false; otherwise return true.

6.2.5.2 IsUnresolvableReference (V)

The abstract operation IsUnresolvableReference takes argument V (a Reference Record) and returns a
Boolean. It performs the following steps when called:

1. If V.[[Base]] is unresolvable, return true; otherwise return false.

6.2.5.3 IsSuperReference (V)

The abstract operation IsSuperReference takes argument V (a Reference Record) and returns a Boolean. It
performs the following steps when called:

1. If V.[[ThisValue]] is not empty, return true; otherwise return false.

6.2.5.4 IsPrivateReference (V)

The abstract operation IsPrivateReference takes argument V (a Reference Record) and returns a Boolean. It
performs the following steps when called:

1. If V.[[ReferencedName]] is a Private Name, return true; otherwise return false.

6.2.5.5 GetValue (V)

The abstract operation GetValue takes argument V (a Reference Record or an ECMAScript language value)
and returns either a normal completion containing an ECMAScript language value or an abrupt completion. It
performs the following steps when called:

1. If Vis not a Reference Record, return V.
2. If IsUnresolvableReference(V) is true, throw a ReferenceError exception.
3. If IsPropertyReference(V) is true, then

a. Let baseObj be ? ToObject(V.[[Base]]).

b. If IsPrivateReference(V) is true, then

i. Return ? PrivateGet(baseObj, V.[[ReferencedName]]).

c. Return ? baseObj.[[Get]](V.[[ReferencedName]], GetThisValue(V)).
4. Else,

a. Let base be V.[[Basel]].

b. Assert: base is an Environment Record.

c. Return ? base.GetBindingValue(V.[[ReferencedName]], V.[[Strict]]) (see 9.1).

© Ecma International 2023 57

secmd

NOTE The object that may be created in step 3.a is not accessible outside of the above abstract
operation and the ordinary object [[Get]] internal method. An implementation might choose to
avoid the actual creation of the object.

6.2.5.6 PutValue (V, W)

The abstract operation PutValue takes arguments V/ (a Reference Record or an ECMAScript language value)
and W (an ECMAScript language value) and returns either a normal completion containing unused or an
abrupt completion. It performs the following steps when called:

1. If Vis not a Reference Record, throw a ReferenceError exception.
2. If IsUnresolvableReference(V) is true, then
a. If V. [[Strict]] is true, throw a ReferenceError exception.
b. Let globalObj be GetGlobalObject().
c. Perform ? Set(globalObj, V.[[ReferencedName]], IV, false).
d. Return unused.
3. If IsPropertyReference(V) is true, then
a. Let baseObj be ? ToObject(V.[[Base]]).
b. If IsPrivateReference(V) is true, then
i. Return ? PrivateSet(baseObj, V.[[ReferencedName]], W).
c. Let succeeded be ? baseObj.[[Set]](V.[[ReferencedName]], W, GetThisValue(V)).
d. If succeeded is false and V/.[[Strict]] is true, throw a TypeError exception.
e. Return unused.
4. Else,
a. Let base be V.[[Basel]].
b. Assert: base is an Environment Record.
c. Return ? base.SetMutableBinding(V.[[ReferencedName]], W, V.[[Strict]]) (see 9.1).

NOTE The object that may be created in step 3.a is not accessible outside of the above abstract
operation and the ordinary object [[Set]] internal method. An implementation might choose to
avoid the actual creation of that object.

6.2.5.7 GetThisValue (V)

The abstract operation GetThisValue takes argument V' (a Reference Record) and returns an ECMAScript
language value. It performs the following steps when called:

1. Assert: IsPropertyReference(V) is true.
2. If IsSuperReference(V) is true, return V.[[ThisValue]]; otherwise return V.[[Base]].

6.2.5.8 InitializeReferencedBinding (V, W)

The abstract operation InitializeReferencedBinding takes arguments V' (a Reference Record) and W (an
ECMAScript language value) and returns either a normal completion containing unused or an abrupt
completion. It performs the following steps when called:

1. Assert: IsUnresolvableReference(V) is false.

2. Let base be V.[[Base]].

3. Assert: base is an Environment Record.

4. Return ? base.InitializeBinding(V.[[ReferencedName]], W).

58 © Ecma International 2023

recimd

6.2.5.9 MakePrivateReference (baseValue, privateldentifier)

The abstract operation MakePrivateReference takes arguments baseValue (an ECMAScript language value)
and privateldentifier (a String) and returns a Reference Record. It performs the following steps when called:

1. Let privEnv be the running execution context's PrivateEnvironment.

2. Assert: privEnv is not null.

3. Let privateName be ResolvePrivateldentifier(privEnv, privateldentifier).

4. Return the Reference Record { [[Base]l: base Value, [[ReferencedName]]: privateName, [[Strict]]: true,
[[ThisValue]]: empty }.

6.2.6 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes.
A Property Descriptor is a Record with zero or more fields, where each field's name is an attribute name and
its value is a corresponding attribute value as specified in 6.1.7.1. The schema name used within this
specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property
Descriptors based upon the existence or use of certain fields. A data Property Descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any
fields named either [[Get]] or [[Set]]. Any Property Descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data Property Descriptor and an accessor
Property Descriptor; however, it may be neither (in which case it is a generic Property Descriptor). A fully
populated Property Descriptor is one that is either an accessor Property Descriptor or a data Property
Descriptor and that has all of the corresponding fields defined in Table 3.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.6.1 IsAccessorDescriptor (Desc)

The abstract operation IsAccessorDescriptor takes argument Desc (a Property Descriptor or undefined) and
returns a Boolean. It performs the following steps when called:

1. If Desc is undefined, return false.

2. If Desc has a [[Get]] field, return true.
3. If Desc has a [[Set]] field, return true.
4. Return false.

6.2.6.2 IsDataDescriptor (Desc)

The abstract operation IsDataDescriptor takes argument Desc (a Property Descriptor or undefined) and
returns a Boolean. It performs the following steps when called:

1. If Desc is undefined, return false.

2. If Desc has a [[Value]] field, return true.

3. If Desc has a [[Writable]] field, return true.
4. Return false.

6.2.6.3 IsGenericDescriptor (Desc)

The abstract operation IsGenericDescriptor takes argument Desc (a Property Descriptor or undefined) and
returns a Boolean. It performs the following steps when called:

© Ecma International 2023 59

secmd

1.
2.
3.
4.

If Desc is undefined, return false.

If IsAccessorDescriptor(Desc) is true, return false.
If IsDataDescriptor(Desc) is true, return false.
Return true.

6.2.6.4 FromPropertyDescriptor (Desc)

The abstract operation FromPropertyDescriptor takes argument Desc (a Property Descriptor or undefined)
and returns an Object or undefined. It performs the following steps when called:

A WON -

10.

. If Desc is undefined, return undefined.

. Let obj be OrdinaryObjectCreate(%Object.prototype%).

. Assert: obj is an extensible ordinary object with no own properties.
. If Desc has a [[Value]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "value™, Desc.[[Value]]).

. If Desc has a [[Writable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "writable", Desc.[[Writable]]).

. If Desc has a [[Get]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "get", Desc.[[Get]]).

. If Desc has a [[Set]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "set", Desc.[[Set]]).

. If Desc has an [[Enumerable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "enumerable"”, Desc.[[Enumerable]]).

. If Desc has a [[Configurable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "configurable™, Desc.[[Configurable]]).
Return obj.

6.2.6.5 ToPropertyDescriptor (Obj)

The abstract operation ToPropertyDescriptor takes argument Obj (an ECMAScript language value) and
returns either a normal completion containing a Property Descriptor or a throw completion. It performs the
following steps when called:

A WDN -

60

. If Obj is not an Object, throw a TypeError exception.

. Let desc be a new Property Descriptor that initially has no fields.
. Let hasEnumerable be ? HasProperty(Obj, "enumerable").

. If hasEnumerable is true, then

a. Let enumerable be ToBoolean(? Get(Obj, "enumerable™)).
b. Set desc.[[Enumerable]] to enumerable.

. Let hasConfigurable be ? HasProperty(Obj, "configurable").
. If hasConfigurable is true, then

a. Let configurable be ToBoolean(? Get(Obj, "configurable™)).
b. Set desc.[[Configurable]] to configurable.

. Let hasValue be ? HasProperty(Obj, "value™).
. If hasValue is true, then

a. Let value be ? Get(Obj, "value”).
b. Set desc.[[Value]] to value.

. Let hasWritable be ? HasProperty(Obj, "writable™).
. If hasWritable is true, then

a. Let writable be ToBoolean(? Get(Obj, "writable™)).
b. Set desc.[[Writable]] to writable.

© Ecma International 2023

recimd

11. Let hasGet be ? HasProperty(Obj, "get").
12. If hasGet is true, then
a. Let getter be ? Get(Obj, "get").
b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
c. Set desc.[[Get]] to getter.
13. Let hasSet be ? HasProperty(Obj, "set").
14. If hasSet is true, then
a. Let seffer be ? Get(Obj, "set").
b. If IsCallable(setter) is false and sefter is not undefined, throw a TypeError exception.
c. Set desc.[[Set]] to setter.
15. If desc has a [[Get]] field or desc has a [[Set]] field, then
a. If desc has a [[Value]] field or desc has a [[Writable]] field, throw a TypeError exception.
16. Return desc.

6.2.6.6 CompletePropertyDescriptor (Desc)

The abstract operation CompletePropertyDescriptor takes argument Desc (a Property Descriptor) and
returns unused. It performs the following steps when called:

1. Let like be the Record { [[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined,
[[Enumerable]]: false, [[Configurable]]: false }.
2. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to /ike.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[Writable]] to /ike.[[Writable]].
3. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to /ike.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to /ike.[[Set]].
. If Desc does not have an [[Enumerable]] field, set Desc.[[Enumerable]] to /ike.[[Enumerable]].
. If Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to /ike.[[Configurable]].
. Return unused.

[20¢) N

6.2.7 The Environment Record Specification Type

The Environment Record type is used to explain the behaviour of nhame resolution in nested functions and
blocks. This type and the operations upon it are defined in 9.1.

6.2.8 The Abstract Closure Specification Type

The Abstract Closure specification type is used to refer to algorithm steps together with a collection of
values. Abstract Closures are meta-values and are invoked using function application style such as
closure(arg1, arg?). Like abstract operations, invocations perform the algorithm steps described by the
Abstract Closure.

In algorithm steps that create an Abstract Closure, values are captured with the verb "capture" followed by a
list of aliases. When an Abstract Closure is created, it captures the value that is associated with each alias at
that time. In steps that specify the algorithm to be performed when an Abstract Closure is called, each
captured value is referred to by the alias that was used to capture the value.

If an Abstract Closure returns a Completion Record, that Completion Record's [[Type]] must be either normal
or throw.

Abstract Closures are created inline as part of other algorithms, shown in the following example.

© Ecma International 2023 61

secmd

1. Let addend be 41.
2. Let closure be a new Abstract Closure with parameters (x) that captures addend and performs the
following steps when called:
a. Return x + addend.
3. Let val be closure(1).
4. Assert: val is 42.

6.2.9 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit)
numeric values. A byte value is an integer in the inclusive interval from 0 to 255. A Data Block value is
created with a fixed number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual
bytes of a Data Block value. This notation presents a Data Block value as a 0-origined integer-indexed

sequence of bytes. For example, if db is a 5 byte Data Block value then db[2] can be used to access its 3rd
byte.

A data block that resides in memory that can be referenced from multiple agents concurrently is designated a
Shared Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data
Block values) that is address-free: it is tied not to the virtual addresses the block is mapped to in any
process, but to the set of locations in memory that the block represents. Two data blocks are equal only if the
sets of the locations they contain are equal; otherwise, they are not equal and the intersection of the sets of
locations they contain is empty. Finally, Shared Data Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined using Shared Data Block events by the memory model.
Abstract operations below introduce Shared Data Block events and act as the interface between evaluation
semantics and the event semantics of the memory model. The events form a candidate execution, on which
the memory model acts as a filter. Please consult the memory model for full semantics.

Shared Data Block events are modeled by Records, defined in the memory model.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.9.1 CreateByteDataBlock (size)

The abstract operation CreateByteDataBlock takes argument size (a non-negative integer) and returns either
a normal completion containing a Data Block or a throw completion. It performs the following steps when
called:

1. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data
Block, throw a RangeError exception.

2. Set all of the bytes of db to 0.

3. Return db.

6.2.9.2 CreateSharedByteDataBlock (size)

The abstract operation CreateSharedByteDataBlock takes argument size (a non-negative integer) and
returns either a normal completion containing a Shared Data Block or a throw completion. It performs the
following steps when called:

1. Let db be a new Shared Data Block value consisting of size bytes. If it is impossible to create such a
Shared Data Block, throw a RangeError exception.
2. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

62 © Ecma International 2023

secmd

3. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose [[AgentSignifier]]
is AgentSignifier().
4. Let zero be « 0 ».
5. For each index / of db, do
a. Append WriteSharedMemory { [[Order]]: Init, [[NoTear]]: true, [[Block]]: db, [[Bytelndex]]: /,
[[ElementSize]]: 1, [[Payload]]: zero } to eventsRecord.[[EventList]].
6. Return db.

6.2.9.3 CopyDataBlockBytes (toBlock, tolndex, fromBlock, fromindex, count)

The abstract operation CopyDataBlockBytes takes arguments foBlock (a Data Block or a Shared Data
Block), tolndex (a non-negative integer), fromBlock (a Data Block or a Shared Data Block), from/ndex (a non-
negative integer), and count (a non-negative integer) and returns unused. It performs the following steps
when called:

1. Assert: fromBlock and foBlock are distinct values.
2. Let fromSize be the number of bytes in fromBlock.
3. Assert: fromindex + count < fromSize.
4. Let foSize be the number of bytes in toBlock.
5. Assert: tolndex + count £ toSize.
6. Repeat, while count > 0,
a. If fromBlock is a Shared Data Block, then
i. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent
Record.
ii. Let eventsRecord be the Agent Events Record of execution.[[EventsRecords]] whose
[[AgentSignifier]] is AgentSignifier().
ii. Let byfes be a List whose sole element is a nondeterministically chosen byte value.
iv. NOTE: In implementations, bytes is the result of a non-atomic read instruction on the
underlying hardware. The nondeterminism is a semantic prescription of the memory
model to describe observable behaviour of hardware with weak consistency.
v. Let readEvent be ReadSharedMemory { [[Order]]: Unordered, [[NoTear]]: true, [[Block]]:
fromBlock, [[Bytelndex]]: fromindex, [[ElementSize]]: 1 }.
vi. Append readEvent to eventsRecord.[[EventList]].
vii. Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]l: bytes } to
execution.[[ChosenValues]].
viii. If toBlock is a Shared Data Block, then
1. Append WriteSharedMemory { [[Order]]: Unordered, [[NoTear]]: true, [[Block]]:
foBlock, [[Bytelndex]]: tolndex, [[ElementSize]]: 1, [[Payload]]: bytes } to
eventsRecord.[[EventList]].
ix. Else,
1. Set toBlock[tolndex] to bytes[0].
b. Else,
i. Assert: toBlock is not a Shared Data Block.
ii. Set foBlock[tolndex] to fromBlock[fromIndex].
c. Set tolndex to folndex + 1.
d. Set fromindex to fromindex + 1.
e. Set count to count - 1.
7. Return unused.

© Ecma International 2023 63

ecmna

6.2.10 The PrivateElement Specification Type

The PrivateElement type is a Record used in the specification of private class fields, methods, and
accessors. Although Property Descriptors are not used for private elements, private fields behave similarly to
non-configurable, non-enumerable, writable data properties, private methods behave similarly to non-
configurable, non-enumerable, non-writable data properties, and private accessors behave similarly to non-
configurable, non-enumerable accessor properties.

Values of the PrivateElement type are Record values whose fields are defined by Table 9. Such values are
referred to as PrivateElements.

Table 9: PrivateElement Fields

Field Values of the [[Kind]] field for Value Meaning
Name which it is present
[[Key]] All a Private Name The name of the field,
method, or accessor.
[[Kind]] All field, method, or The kind of the element.
accessor
[[Valuel] field and method an ECMAScript The value of the field.
language value
[[Get]] accessor a function object or The getter for a private
undefined accessor.
[Set]] accessor a function object or The setter for a private
undefined accessor.

6.2.11 The ClassFieldDefinition Record Specification Type
The ClassFieldDefinition type is a Record used in the specification of class fields.

Values of the ClassFieldDefinition type are Record values whose fields are defined by Table 10. Such values
are referred to as ClassFieldDefinition Records.

Table 10: ClassFieldDefinition Record Fields

Field Name Value Meaning
[[Name]] a Private Name, a String, or a Symbol | The name of the field.
[[Initializer]] | a function object or empty The initializer of the field, if any.

6.2.12 Private Names

The Private Name specification type is used to describe a globally unique value (one which differs from any
other Private Name, even if they are otherwise indistinguishable) which represents the key of a private class
element (field, method, or accessor). Each Private Name has an associated immutable [[Description]] which
is a String value. A Private Name may be installed on any ECMAScript object with PrivateFieldAdd or
PrivateMethodOrAccessorAdd, and then read or written using PrivateGet and PrivateSet.

6.2.13 The ClassStaticBlockDefinition Record Specification Type

A ClassStaticBlockDefinition Record is a Record value used to encapsulate the executable code for a class
static initialization block.

64 © Ecma International 2023

secmd

ClassStaticBlockDefinition Records have the fields listed in Table 11.

Table 11: ClassStaticBlockDefinition Record Fields

Field Name Value Meaning

[[BodyFunction]] | a function object | The function object to be called during static initialization of a class.

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here solely to aid the
specification of the semantics of the ECMAScript language. Other, more specialized abstract operations are
defined throughout this specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics
of certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract
operations are polymorphic; they can accept a value of any ECMAScript language type. But no other
specification types are used with these operations.

The Bigint type has no implicit conversions in the ECMAScript language; programmers must call Bigint
explicitly to convert values from other types.

7.1.1 ToPrimitive (input [, preferredType])

The abstract operation ToPrimitive takes argument input (an ECMAScript language value) and optional
argument preferredType (string or number) and returns either a normal completion containing an
ECMAScript language value or a throw completion. It converts its input argument to a non-Object type. If an
object is capable of converting to more than one primitive type, it may use the optional hint preferredType to
favour that type. It performs the following steps when called:

1. If input is an Object, then
a. Let exoticToPrim be ? GetMethod(input, @@toPrimitive).
b. If exoticToPrim is not undefined, then
i. If preferredType is not present, let hint be "default”.
ii. Else if preferredType is string, let hint be "string".
iii. Else,
1. Assert: preferredType is number.
2. Let hint be "number”.
iv. Let result be ? Call(exoticToPrim, input, « hint »).
v. If result is not an Object, return result.
vi. Throw a TypeError exception.
c. If preferredType is not present, let preferred Type be number.
d. Return ? OrdinaryToPrimitive(input, preferredType).
2. Return input.

NOTE When ToPrimitive is called without a hint, then it generally behaves as if the hint were
number. However, objects may over-ride this behaviour by defining a @@toPrimitive method.
Of the objects defined in this specification only Dates (see 21.4.4.45) and Symbol objects
(see 20.4.3.5) over-ride the default ToPrimitive behaviour. Dates treat the absence of a hint
as if the hint were string.

© Ecma International 2023 65

secmd

7.1.1.1 OrdinaryToPrimitive (O, hint)

The abstract operation OrdinaryToPrimitive takes arguments O (an Object) and hint (string or number) and
returns either a normal completion containing an ECMAScript language value or a throw completion. It
performs the following steps when called:

1. If hint is string, then
a. Let methodNames be « "toString", "valueOf" ».
2. Else,
a. Let methodNames be « "valueOf", "toString" ».
3. For each element name of methodNames, do
a. Let method be ? Get(O, name).
b. If IsCallable(method) is true, then
i. Let result be ? Call(method, O).
ii. If result is not an Object, return result.
4. Throw a TypeError exception.

7.1.2 ToBoolean (argument)

The abstract operation ToBoolean takes argument argument (an ECMAScript language value) and returns a
Boolean. It converts argument to a value of type Boolean. It performs the following steps when called:

1. If argument is a Boolean, return argument.

2. If argument is one of undefined, null, +0g, -0, NaN, 0,, or the empty String, return false.
3. NOTE: This step is replaced in section B.3.6.1.

4. Return true.

7.1.3 ToNumeric (value)

The abstract operation ToNumeric takes argument value (an ECMAScript language value) and returns either
a normal completion containing either a Number or a Bigint, or a throw completion. It returns value converted
to a Number or a Bigint. It performs the following steps when called:

1. Let primValue be ? ToPrimitive(value, number).
2. If primValue is a Biglnt, return primValue.
3. Return ? ToNumber(primValue).

7.1.4 ToNumber (argument)

The abstract operation ToNumber takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a Number or a throw completion. It converts argument to a value of
type Number. It performs the following steps when called:

. If argument is a Number, return argument.

. If argument is either a Symbol or a Bigint, throw a TypeError exception.
. If argument is undefined, return NaN.

. If argument is either null or false, return +0p.

. If argument is true, return 1.

. If argument is a String, return StringToNumber(argument).
. Assert: argument is an Object.

NOoO O WN -

66 © Ecma International 2023

secmd

8. Let primValue be ? ToPrimitive(argument, number).
9. Assert: primValue is not an Object.
10. Return ? ToNumber(primValue).

7.1.4.1 ToNumber Applied to the String Type

The abstract operation StringToNumber specifies how to convert a String value to a Number value, using the
following grammar.

Syntax

StringNumericLiteral :::

StrWhiteSpace,
StrWhiteSpace . ~StrNumericLiteral StrihiteSpace,,+

StrWhiteSpace :::

StrhiteSpaceChar StrWhiteSpace, .

StrWhiteSpaceChar :::

WhiteSpace
LineTerminator

StrNumericLiteral :::

StrDecimallLiteral

NonDecimalintegerLiteral | g,

StrDecimallLiteral :::

StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimallLiteral

StrUnsignedDecimalLiteral :::

Infinity

DecimaIDigits[~Sep] . DecimalDigitshSep] opt ExponentPart[~Sep] opt
. DecimalDigits| _s..,, ExponentPart _s.., oot

DecimalDigits| _g.,; ExponentPart; s, oo+

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for
numeric literals (12.9.3)

NOTE

Some differences should be noted between the syntax of a StringNumericLiteral and a
NumericLiteral.

A StringNumericLiteral may include leading and/or trailing white space and/or line
terminators.

A StringNumericLiteral that is decimal may have any number of leading @ digits.

» A StringNumericLiteral that is decimal may include a + or - to indicate its sign.

» A StringNumericLiteral that is empty or contains only white space is converted to +0.

o Infinity and -Infinity are recognized as a StringNumericLiteral but not as a
NumericLiteral.

« A StringNumericLiteral cannot include a BigIntLiteralSuffix.

» A StringNumericLiteral cannot include a NumericLiteralSeparator.

© Ecma International 2023 67

secmd

7.1.4.1.1 StringToNumber (str)

The abstract operation StringToNumber takes argument sir (a String) and returns a Number. It performs the
following steps when called:

1. Let fext be StringToCodePoints(str).

2. Let literal be ParseText(text, StringNumericLiteral).
3. If literal is a List of errors, return NaN.

4. Return StringNumericValue of literal.

7.1.4.1.2 Runtime Semantics: StringNumericValue

The syntax-directed operation StringNumericValue takes no arguments and returns a Number.

NOTE The conversion of a StringNumericLiteral to a Number value is similar overall to the
determination of the NumericValue of a NumericLiteral (see 12.9.3), but some of the details
are different.

It is defined piecewise over the following productions:

StringNumericLiteral ::: StrWhiteSpace .«
1. Return +0p.

StringNumericLiteral ::: StrWhiteSpace StrNumericLiteral StrWhiteSpace,, .

opt
1. Return StringNumericValue of StrNumericLiteral.

StrNumericLiteral ::: NonDecimallntegerLiteral

1. Return MV of NonDecimallntegerLiteral).
StrDecimalLiteral ::: - StrUnsignedDecimallLiteral

1. Let a be StringNumericValue of StrUnsignedDecimalLiteral.
2.If ais +0f, return -0
3. Return -a.

StrUnsignedDecimalLiteral ::: Infinity
1. Return +o .

StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits Exponem‘Pam‘Opt

opt

1. Let a be MV of the first DecimalDigits.
2. If the second DecimalDigits is present, then
a. Let b be MV of the second DecimalDigits.
b. Let n be the number of code points in the second DecimalDigits.
3. Else,
a. Let b be 0.
b. Let n be 0.
4. If ExponentPart is present, let e be MV of ExponentPart. Otherwise, let e be 0.

5. Return RoundMVResult((a + (b x 107)) x 10°).

68 © Ecma International 2023

secmd

StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPar‘l‘opt

1. Let b be MV of DecimalDigits.
2. If ExponentPart is present, let e be MV of ExponentPart. Otherwise, let e be 0.
3. Let n be the number of code points in DecimalDigits.

4. Return RoundMVResult(b x 10¢~").

StrUnsignedDecimalLiteral ::: DecimalDigits ExponentPart, .

1. Let a be MV of DecimalDigits.
2. If ExponentPart is present, let e be MV of ExponentPart. Otherwise, let e be 0.

3. Return RoundMVResuli(a x 10).

7.1.4.1.3 RoundMVResult ()

The abstract operation RoundMVResult takes argument n (a mathematical value) and returns a Number. It
converts n to a Number in an implementation-defined manner. For the purposes of this abstract operation, a
digit is significant if it is not zero or there is a non-zero digit to its left and there is a non-zero digit to its right.
For the purposes of this abstract operation, "the mathematical value denoted by" a representation of a
mathematical value is the inverse of "the decimal representation of" a mathematical value. It performs the
following steps when called:

1. If the decimal representation of n has 20 or fewer significant digits, return FHn).

2. Let option1 be the mathematical value denoted by the result of replacing each significant digit in the
decimal representation of n after the 20th with a 0 digit.

3. Let option2 be the mathematical value denoted by the result of replacing each significant digit in the
decimal representation of n after the 20th with a 0 digit and then incrementing it at the 20th position
(with carrying as necessary).

4. Let chosen be an implementation-defined choice of either option1 or option2.

5. Return Fchosen).

7.1.5 TolntegerOrinfinity (argument)

The abstract operation TolntegerOrinfinity takes argument argument (an ECMAScript language value) and
returns either a normal completion containing either an integer, +*, or —*, or a throw completion. It
converts argument to an integer representing its Number value with fractional part truncated, or to +° or —
when that Number value is infinite. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is one of NaN, +0p, or -0, return 0.
3. If number is +%, return +°,

4. If number is =%, return —.
5. Return truncate(R(number)).

NOTE F(TolntegerOrlinfinity(x)) never returns -0 for any value of x. The truncation of the fractional
part is performed after converting x to a mathematical value.

© Ecma International 2023 69

secmd

7.1.6 Tolnt32 (argument)

The abstract operation TolInt32 takes argument argument (an ECMAScript language value) and returns either
a normal completion containing an integral Number or a throw completion. It converts argument to one of 232

integral Number values in the inclusive interval from F(-231) to (23 - 1). It performs the following steps when
called:

1. Let number be ? ToNumber(argument).
2. If number is not finite or number is either +0p or -0, return +0p.

3. Let int be truncate(R(number)).
4. Let int32bit be int modulo 232,
5. 1f int32bit 2 231, return H(int32bit - 232); otherwise return H(int32bit).

NOTE Given the above definition of Tolnt32:

* The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the
second application leaves that value unchanged.
« Tolnt32(ToUint32(x)) is the same value as Tolnt32(x) for all values of x. (It is to preserve

this latter property that +°and = are mapped to +0.)
e ToInt32 maps -0 to +0.

7.1.7 ToUint32 (argument)

The abstract operation ToUint32 takes argument argument (an ECMAScript language value) and returns
either a normal completion containing an integral Number or a throw completion. It converts argument to one
of 232 integral Number values in the inclusive interval from +0 to [F(232 - 1). It performs the following steps

when called:

1. Let number be ? ToNumber(argument).
2. If number is not finite or number is either +0p or -0, return +0p.

3. Let int be truncate(R(number)).

4. Let int32bit be int modulo 232
5. Return H(int32bit).

NOTE Given the above definition of ToUint32:

« Step 5 is the only difference between ToUint32 and Tolnt32.

* The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the
second application leaves that value unchanged.

¢ ToUint32(Tolnt32(x)) is the same value as ToUint32(x) for all values of x. (It is to preserve

this latter property that +°and = are mapped to +0r.)
e ToUint32 maps -0 to +0p.

7.1.8 Tolnt16 (argument)

The abstract operation Tolnt16 takes argument argument (an ECMAScript language value) and returns either
a normal completion containing an integral Number or a throw completion. It converts argument to one of 216

integral Number values in the inclusive interval from [F(-215) to [F(215 - 1). It performs the following steps when
called:

70 © Ecma International 2023

secmd

1. Let number be ? ToNumber(argument).

2. If number is not finite or number is either +0g or -0, return +0p.

3. Let int be truncate(R(number)).

4. Let int16bit be int modulo 216

5. If int16bit 2 218, return [(int16bit - 216); otherwise return F(int16bit).

7.1.9 ToUint16 (argument)

The abstract operation ToUint16 takes argument argument (an ECMAScript language value) and returns
either a normal completion containing an integral Number or a throw completion. It converts argument to one

of 216 integral Number values in the inclusive interval from +0 to F(Z16 - 1). It performs the following steps
when called:

1. Let number be ? ToNumber(argument).
2. If number is not finite or number is either +0p or -0, return +0p.

3. Let int be truncate(R(number)).

4. Let int16bit be int modulo 218,
5. Return H(int16bit).

NOTE Given the above definition of ToUint16:

« The substitution of 2'® for 232 in step 4 is the only difference between ToUint32 and
ToUint16.
e ToUint16 maps -0 to +0p.

7.1.10 Tolnt8 (argument)

The abstract operation Tolnt8 takes argument argument (an ECMAScript language value) and returns either

a normal completion containing an integral Number or a throw completion. It converts argument to one of 28
integral Number values in the inclusive interval from -128f to 127p. It performs the following steps when

called:

1. Let number be ? ToNumber(argument).

2. If number is not finite or number is either +0p or -0, return +0p.
3. Let int be truncate(R(number)).

4. Let int8bit be int modulo 28,

5. If int8bit 2 27, return H(int8bit - 28); otherwise return F(int8bit).

7.1.11 ToUint8 (argument)

The abstract operation ToUint8 takes argument argument (an ECMAScript language value) and returns
either a normal completion containing an integral Number or a throw completion. It converts argument to one

of 28 integral Number values in the inclusive interval from +0p to 255 It performs the following steps when
called:

1. Let number be ? ToNumber(argument).
2. If number is not finite or number is either +0p or -0, return +0p.

3. Let int be truncate(R(number)).

© Ecma International 2023 71

secmd

4. Let int8bit be int modulo 28.
5. Return H(int8bit).

7.1.12 ToUint8Clamp (argument)

The abstract operation ToUint8Clamp takes argument argument (an ECMAScript language value) and
returns either a normal completion containing an integral Number or a throw completion. It converts

argument to one of 28 integral Number values in the inclusive interval from +0p to 255 It performs the
following steps when called:

. Let number be ? ToNumber(argument).
. If number is NaN, return +0p.

. If R(number) < 0, return +0.

. IfR(number) z 255, return 255.

. Let 7 be floor(R(number)).

. If 7+ 0.5 < R(number), return Hf + 1).
. fR(number) < f+ 0.5, return ().

. If fis odd, return K7 + 1).

. Return [(/).

© 00 NO O B W N -

NOTE Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds
rather than truncates non-integral values and does not convert +% to +0r. ToUint8Clamp

does “round half to even” tie-breaking. This differs from Math. round which does “round half
up” tie-breaking.

7.1.13 ToBigint (argument)

The abstract operation ToBigInt takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a BigInt or a throw completion. It converts argument to a Biglnt value,
or throws if an implicit conversion from Number would be required. It performs the following steps when
called:

1. Let prim be ? ToPrimitive(argument, number).
2. Return the value that prim corresponds to in Table 12.

Table 12: Bigint Conversions

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return 1n if prim is true and @n if prim is false.
BigInt Return prim.

Number Throw a TypeError exception.

72 © Ecma International 2023

secmd

Table 12 (continued)

Argument Type Result

String 1. Let n be StringToBigInt(prim).
2. If nis undefined, throw a SyntaxError exception.
3. Return n.

Symbol Throw a TypeError exception.

7.1.14 StringToBigInt (str)

The abstract operation StringToBigInt takes argument sir (a String) and returns a Bigint or undefined. It
performs the following steps when called:

1. Let text be StringToCodePoints(str).

2. Let literal be ParseText(text, StringIntegerLiteral).
3. If literal is a List of errors, return undefined.

4. Let mv be the MV of literal.

5. Assert: mv is an integer.

6. Return Z(mv).

7.1.14.1 StringIntegerLiteral Grammar
StringToBigInt uses the following grammar.

Syntax

StringintegerLiteral :::
StrwhiteSpace,, .

StriWhiteSpace StrintegerLiteral StrWhiteSpace, .

opt

StrintegerLiteral :::

Signedinteger| g,

NonDecimalintegerLiteral | _g.

7.1.14.2 Runtime Semantics: MV

» The MV of StringintegerLiteral ::: StrWhiteSpace,. is 0.
» The MV of StringintegerLiteral ::: StrWhiteSpace, . StrintegerLiteral StrWhiteSpace. is the MV
of StrintegerLiteral.

7.1.15 ToBigInt64 (argument)

The abstract operation ToBigInt64 takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a BigInt or a throw completion. It converts argument to one of 264
Biglnt values in the inclusive interval from Z(-263) to Z(263-1)- It performs the following steps when called:

1. Let n be ? ToBiglnt(argument).
2. Let int64bit be R(n) modulo 264,

© Ecma International 2023 73

secmd

3. If int64bit 2 283, return Z(int64bit - 264); otherwise return Z(int64bit).

7.1.16 ToBigUint64 (argument)

The abstract operation ToBigUint64 takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a BigInt or a throw completion. It converts argument to one of 264

BigInt values in the inclusive interval from 05 to Z(264-1). It performs the following steps when called:

1. Let n be ? ToBiglnt(argument).

2. Let int64bit be R(n) modulo 254,
3. Return Z(int64bit).

7.1.17 ToString (argument)

The abstract operation ToString takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a String or a throw completion. It converts argument to a value of type
String. It performs the following steps when called:

. If argument is a String, return argument.

. If argument is a Symbol, throw a TypeError exception.

. If argument is undefined, return "undefined".

. If argument is null, return "null”.

. If argument is true, return "true".

. If argument is false, return "false".

. If argument is a Number, return Number::toString(argument, 10).
. If argument is a Biglnt, return Biglnt::toString(argument, 10).
. Assert: argument is an Object.

. Let primValue be ? ToPrimitive(argument, string).

. Assert: primValue is not an Object.

. Return ? ToString(primValue).

0O ~NO O WN -

- A -
N = O ©

7.1.18 ToObject (argument)
The abstract operation ToObject takes argument argument (an ECMAScript language value) and returns
either a normal completion containing an Object or a throw completion. It converts argument to a value of

type Object according to Table 13:

Table 13: ToObject Conversions

Argument Result
Type
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to argument. See

20.3 for a description of Boolean objects.

Number Return a new Number object whose [[NumberDatal]] internal slot is set to argument. See
21.1 for a description of Number objects.

74 © Ecma International 2023

secmd

Table 13 (continued)

Argument Result
Type
Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to argument. See

20.4 for a description of Symbol objects.

Bigint Return a new Biglnt object whose [[BigIntDatal]] internal slot is set to argument. See 21.2
for a description of Bigint objects.

Object Return argument.

7.1.19 ToPropertyKey (argument)

The abstract operation ToPropertyKey takes argument argument (an ECMAScript language value) and
returns either a normal completion containing a property key or a throw completion. It converts argument to a
value that can be used as a property key. It performs the following steps when called:

1. Let key be ? ToPrimitive(argument, string).
2. If key is a Symbol, then

a. Return key.
3. Return ! ToString(key).

7.1.20 ToLength (argument)

The abstract operation ToLength takes argument argument (an ECMAScript language value) and returns
either a normal completion containing an integral Number or a throw completion. It clamps argument to an
integral Number suitable for use as the length of an array-like object. It performs the following steps when
called:

1. Let /en be ? TolntegerOrlinfinity(argument).
2.Iflen <0, return +0.

3. Return F(min(len, 2%3 - 1)).
7.1.21 CanonicalNumericlndexString (argument)

The abstract operation CanonicalNumericindexString takes argument argument (a String) and returns a
Number or undefined. If argument is either "-0" or exactly matches the result of ToString(n) for some
Number value n, it returns the respective Number value. Otherwise, it returns undefined. It performs the
following steps when called:

1. If argument is "-0", return -0f.

2. Let n be ! ToNumber(argument).

3. If I ToString(n) is argument, return n.
4. Return undefined.

A canonical numeric string is any String value for which the CanonicalNumericindexString abstract operation
does not return undefined.

7.1.22 Tolndex (value)

The abstract operation Tolndex takes argument value (an ECMAScript language value) and returns either a
normal completion containing a non-negative integer or a throw completion. It converts value to a non-
negative integer if the corresponding decimal representation, as a String, is an integer index. It performs the
following steps when called:

© Ecma International 2023 75

secmd

1. If value is undefined, then

a. Return 0.
2. Else,

a. Let infeger be ? TolntegerOrlInfinity(value).
b. Let clamped be ! ToLength(Finteger)).

c. If SameValue(Hinteger), clamped) is false, throw a RangeError exception.

d. Assert: 0 < integer < 253 1.

e. Return integer.

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible (argument)

The abstract operation RequireObjectCoercible takes argument argument (an ECMAScript language value)
and returns either a normal completion containing an ECMAScript language value or a throw completion. It
throws an error if argument is a value that cannot be converted to an Object using ToObject. It is defined by

Table 14:

Table 14: RequireObjectCoercible Results

Argument Type Result

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

BigInt Return argument.

Object Return argument.

7.2.2 IsArray (argument)

The abstract operation IsArray takes argument argument (an ECMAScript language value) and returns either
a normal completion containing a Boolean or a throw completion. It performs the following steps when called:

1. If argument is not an Object, return false.

2. If argument is an Array exotic object, return true.

3. If argument is a Proxy exotic object, then

a. Perform ? ValidateNonRevokedProxy(argument).
b. Let proxyTarget be argument.[[ProxyTarget]].
c. Return ? IsArray(proxyTarget).

4. Return false.

76

© Ecma International 2023

secmd

7.2.3 IsCallable (argument)

The abstract operation IsCallable takes argument argument (an ECMAScript language value) and returns a
Boolean. It determines if argument is a callable function with a [[Call]] internal method. It performs the
following steps when called:

1. If argument is not an Object, return false.
2. If argument has a [[Call]] internal method, return true.
3. Return false.

7.2.4 IsConstructor (argument)

The abstract operation IsConstructor takes argument argument (an ECMAScript language value) and returns
a Boolean. It determines if argument is a function object with a [[Construct]] internal method. It performs the
following steps when called:

1. If argument is not an Object, return false.
2. If argument has a [[Construct]] internal method, return true.
3. Return false.

7.2.5 IsExtensible (O)

The abstract operation IsExtensible takes argument O (an Object) and returns either a normal completion
containing a Boolean or a throw completion. It is used to determine whether additional properties can be
added to O. It performs the following steps when called:

1. Return ? O.[[IsExtensible]]().

7.2.6 IsintegralNumber (argument)

The abstract operation IsintegralNumber takes argument argument (an ECMAScript language value) and
returns a Boolean. It determines if argument is a finite integral Number value. It performs the following steps
when called:

1. If argument is not a Number, return false.

2. If argument is not finite, return false.

3. If truncate(R(argument)) # R(argument), return false.
4. Return true.

7.2.7 IsPropertyKey (argument)

The abstract operation IsPropertyKey takes argument argument (an ECMAScript language value) and
returns a Boolean. It determines if argument is a value that may be used as a property key. It performs the
following steps when called:

1. If argument is a String, return true.
2. If argument is a Symbol, return true.
3. Return false.

© Ecma International 2023 77

secmd

7.2.8 IsRegExp (argument)

The abstract operation IsRegExp takes argument argument (an ECMAScript language value) and returns
either a normal completion containing a Boolean or a throw completion. It performs the following steps when
called:

1. If argument is not an Object, return false.

2. Let matcher be ? Get(argument, @@match).

3. If matcher is not undefined, return ToBoolean(matcher).

4. If argument has a [[RegExpMatcher]] internal slot, return true.
5. Return false.

7.2.9 Static Semantics: IsStringWellFormedUnicode (string)

The abstract operation IsStringWellFormedUnicode takes argument siring (a String) and returns a Boolean.
It interprets string as a sequence of UTF-16 encoded code points, as described in 6.1.4, and determines
whether it is a well formed UTF-16 sequence. It performs the following steps when called:

1. Let /en be the length of string.

2. Let kbe 0.

3. Repeat, while k < Jen,
a. Let cp be CodePointAt(string, k).
b. If cp.[[IsUnpairedSurrogate]] is true, return false.
c. Set kto k + cp.[[CodeUnitCount]].

4. Return true.

7.2.10 SameValue (x, y)

The abstract operation SameValue takes arguments x (an ECMAScript language value) and y (an
ECMAScript language value) and returns a Boolean. It determines whether or not the two arguments are the
same value. It performs the following steps when called:

1. If Type(x) is not Type(y), return false.
2. If x is a Number, then

a. Return Number::sameValue(x, y).
3. Return SameValueNonNumber(x, y).

NOTE This algorithm differs from the IsStrictlyEqual Algorithm by treating all NaN values as
equivalent and by differentiating +0p from -0p.

7.2.11 SameValueZero (x, y)

The abstract operation SameValueZero takes arguments x (an ECMAScript language value) and y (an
ECMAScript language value) and returns a Boolean. It determines whether or not the two arguments are the
same value (ignoring the difference between +0p and -0p). It performs the following steps when called:

1. If Type(x) is not Type(y), return false.
2. If x is a Number, then

a. Return Number::sameValueZero(x, y).
3. Return SameValueNonNumber(x, y).

78 © Ecma International 2023

http://www.unicode.org/glossary/#well_formed_code_unit_sequence

secmd

NOTE SameValueZero differs from SameValue only in that it treats +0p and -0 as equivalent.

7.2.12 SameValueNonNumber (x, y)

The abstract operation SameValueNonNumber takes arguments x (an ECMAScript language value, but not a

Number) and y (an ECMAScript language value, but not a Number) and returns a Boolean. It performs the
following steps when called:

—_

. Assert: Type(x) is Type(y).
2. If x is either null or undefined, return true.
3. If x is a BigInt, then
a. Return BigInt::equal(x, y).
4. If x is a String, then
a. If x and y have the same length and the same code units in the same positions, return true;
otherwise, return false.
5. If xis a Boolean, then
a. If x and y are both true or both false, return true; otherwise, return false.
6. NOTE: All other ECMAScript language values are compared by identity.
7. If x is y, return true; otherwise, return false.

NOTE 1 For expository purposes, some cases are handled separately within this algorithm even if it is
unnecessary to do so.

NOTE 2 The specifics of what "x is y" means are detailed in 5.2.7.

7.213 IsLessThan (x, y, LeftFirst)

The abstract operation IsLessThan takes arguments x (an ECMAScript language value), y (an ECMAScript
language value), and LefiFirst (a Boolean) and returns either a normal completion containing either a
Boolean or undefined, or a throw completion. It provides the semantics for the comparison x < y, returning
true, false, or undefined (which indicates that at least one operand is NaN). The LeftFirst flag is used to
control the order in which operations with potentially visible side-effects are performed upon x and y. It is
necessary because ECMAScript specifies left to right evaluation of expressions. If LefiFirst is true, the x
parameter corresponds to an expression that occurs to the left of the y parameter's corresponding
expression. If LefiFirst is false, the reverse is the case and operations must be performed upon y before x. It
performs the following steps when called:

1. If LeftFirst is true, then
a. Let px be ? ToPrimitive(x, number).
b. Let py be ? ToPrimitive(y, number).
2. Else,
a. NOTE: The order of evaluation needs to be reversed to preserve left to right evaluation.
b. Let py be ? ToPrimitive(y, number).
c. Let px be ? ToPrimitive(x, number).
3. If pxis a String and py is a String, then
a. Let /x be the length of px.
b. Let Iy be the length of py.
c. For each integer / such that 0 </ < min(/x, ly), in ascending order, do
i. Let cx be the numeric value of the code unit at index / within px.

© Ecma International 2023 79

secmd

ii. Let cy be the numeric value of the code unit at index / within py.
iii. If cx < cy, return true.
iv. If cx > cy, return false.
d. If Ix < Iy, return true. Otherwise, return false.
4. Else,
a. If px is a BigInt and py is a String, then
i. Let ny be StringToBiglnt(py).
ii. If ny is undefined, return undefined.
iii. Return Biglnt::lessThan(px, ny).
b. If px is a String and py is a Biglnt, then
i. Let nx be StringToBiglnt(px).
ii. If nx is undefined, return undefined.
ii. Return BigInt::lessThan(nx, py).
. NOTE: Because px and py are primitive values, evaluation order is not important.
. Let nx be ? ToNumeric(px).
. Let ny be ? ToNumeric(py).
. If Type(nx) is Type(ny), then
i. If nx is a Number, then
1. Return Number::lessThan(nx, ny).
ii. Else,
1. Assert: nx is a Bigint.
2. Return Biglint::lessThan(nx, ny).
. Assert: nx is a BigInt and ny is a Number, or nx is a Number and ny is a Bigint.
h. If nx or ny is NaN, return undefined.

-~ ® O 0

«Q

Af nxis =g or ny is +%, return true.

j- If nxis +0or ny is =%, return false.
k. If R(nx) < R(ny), return true; otherwise return false.

NOTE 1 Step 3 differs from step 1.c in the algorithm that handles the addition operator + (13.15.3) by
using the logical-and operation instead of the logical-or operation.

NOTE 2 The comparison of Strings uses a simple lexicographic ordering on sequences of UTF-16
code unit values. There is no attempt to use the more complex, semantically oriented
definitions of character or string equality and collating order defined in the Unicode
specification. Therefore String values that are canonically equal according to the Unicode
Standard but not in the same normalization form could test as unequal. Also note that
lexicographic ordering by code unit differs from ordering by code point for Strings containing
surrogate pairs.

7.2.14 IsLooselyEqual (x, y)

The abstract operation IsLooselyEqual takes arguments x (an ECMAScript language value) and y (an
ECMAScript language value) and returns either a normal completion containing a Boolean or a throw
completion. It provides the semantics for the == operator. It performs the following steps when called:

1. If Type(x) is Type(y), then
a. Return IsStrictlyEqual(x,).
2. If xis null and y is undefined, return true.
3. If xis undefined and y is null, return true.
4. NOTE: This step is replaced in section B.3.6.2.

80 © Ecma International 2023

secmd

5. If x is a Number and y is a String, return ! IsLooselyEqual(x, ! ToNumber(y)).
. If xis a String and y is a Number, return ! IsLooselyEqual(! ToNumber(x), y).
7. If xis a BigInt and y is a String, then
a. Let n be StringToBigInt(y).
b. If n is undefined, return false.
c. Return ! IsLooselyEqual(x, n).
8. If x is a String and y is a Bigint, return ! IsLooselyEqual(y, x).
9. If x is a Boolean, return ! IsLooselyEqual(! ToNumber(x), y).
10. If y is a Boolean, return ! IsLooselyEqual(x, ! ToNumber(y)).
11. If x is either a String, a Number, a Biglnt, or a Symbol and y is an Object, return ! IsLooselyEqual(x,
? ToPrimitive(y)).
12. If x is an Object and y is either a String, a Number, a Biglnt, or a Symbol, return ! IsLooselyEqual(?
ToPrimitive(x), y).
13. If xis a BigInt and y is a Number, or if x is a Number and y is a Biglnt, then
a. If x is not finite or y is not finite, return false.
b. If R(x) = R(y), return true; otherwise return false.
14. Return false.

(e2}

7.2.15 IsStrictlyEqual (x, y)

The abstract operation IsStrictlyEqual takes arguments x (an ECMAScript language value) and y (an
ECMAScript language value) and returns a Boolean. It provides the semantics for the === operator. It
performs the following steps when called:

1. If Type(x) is not Type(y), return false.
2. If x is a Number, then

a. Return Number::equal(x, y).
3. Return SameValueNonNumber(x, y).

NOTE This algorithm differs from the SameValue Algorithm in its treatment of signed zeroes and
NaNs.

7.3 Operations on Objects

7.3.1 MakeBasicObject (infernalSlotsList)

The abstract operation MakeBasicObject takes argument internalSlotsList (a List of internal slot names) and
returns an Object. It is the source of all ECMAScript objects that are created algorithmically, including both
ordinary objects and exotic objects. It factors out common steps used in creating all objects, and centralizes
object creation. It performs the following steps when called:

1. Let obj be a newly created object with an internal slot for each name in internalSlotsList.

2. Set ob/'s essential internal methods to the default ordinary object definitions specified in 10.1.

3. Assert: If the caller will not be overriding both ob/'s [[GetPrototypeOf]] and [[SetPrototypeOf]] essential
internal methods, then internalSlotsList contains [[Prototypel]].

4. Assert: If the caller will not be overriding all of ob/'s [[SetPrototypeOf]], [[IsExtensible]], and
[[PreventExtensions]] essential internal methods, then internalSlotsList contains [[Extensible]].

5. If internalSlotsList contains [[Extensible]], set obj.[[Extensible]] to true.

6. Return obj.

© Ecma International 2023 81

secmd

NOTE Within this specification, exotic objects are created in abstract operations such as
ArrayCreate and BoundFunctionCreate by first calling MakeBasicObject to obtain a basic,
foundational object, and then overriding some or all of that object's internal methods. In or