Standard ECM/334

December 2001

ECMA

Standardizing Information and Communication Systems

C# Language Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

~N o o b

@

10
11
12
13

14

15

16
17
18

19
20

21
22

23

24
25
26

27
28
29

30

31
32

33

34

35

36

37

38

39

40

Brief history

This ECMA Standard is based on a submission from He#vi@ackard, Intel, and Microsoft, that describes a
language called C#, which was developed within MioftsThe principal inventors of this language were
Anders Hejlsberg, Scott Wiltamuth, and Peter Goldee Tirst widely distributed implementation of C# was
released by Microsoft in July 2000, as part of its .NET Framework initiative.

ECMA Technical Committee 39 (TC39) Task Group 2 (TG2) was formed in September 2000, to produce a
standard for C#. Another Task Group, TG3, was atsoied at that time to produce a standard for a library
and execution environment called Common Languagrastructure (CLI). (CLI is based on a subset of the
.NET Framework.) Although Microsoft's implemeation of C# relies on CLI for library and runtime

support, other implementations of C# need notyjated they support an alternate way of getting at the
minimum CLI features required by this C# standard.

As the definition of C# evolved, the goals used in its design were as follows:
« C#isintended to be a simple, modern, general-purpose, object-oriented programming language.

» The language, and implementations thereof, shouwdige support for software engineering principles
such as strong type checking, array bounds checkingctieh of attempts to use uninitialized variables, and
automatic garbage collection. Software robustnessility, and programmer productivity are important.

* Thelanguage is intended for use in developinfjveare components suitable for deployment in
distributed environments.

e Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

e Support for internationalization is very important.

» C#isintended to be suitable for writing applications for both hosted and embedded systems, ranging
from the very large that use sophisticated operating systems, down to the very small having dedicated
functions.

» Although C# applications are intended to be ecoimawith regards to memory and processing power
requirements, the language was not intended topstendirectly on performance and size with C or
assembly language.

The development of this standard started in November 2000.

It is intended that the final version of this ECMA Stard will be submitted to ISO/IEC JTC 1 for adoption
under its fast-track procedure.

It is expected there will be future revisions to this Standard, primarily to add new functionality.

Adopted as an ECMA Standard by the General Assembly of December 2001.

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45
46
47

Table of Contents

Table of Contents

S oo oL TP U PSR PRSP 1
P OTo | 0] 14T ol TSP 3
O < = 1 o TSRS 5
I T 1 1 o] PR 7
5. NOLAtiONAl CONVENTIONS.....cceiiieiee ettt ettt te s te et e s te st eseesaeeneeseeeseesesseeneeaaesaeensessesneeseesneensessenn 9
6. ACrONYMS aNnd @DDI BVIBLIONS........couiiiieeeeeei ettt bbbt e et nb bbb e n s 11
A CT= L= = 0 [o T o] o PP 13
R I L To B E= o TS @ A= YT S 15
S T 1 1] o T3 = g (T o 15
S T 1Y ¢ 1L T PP TRUPPPPPPP 16
8.2. 1 Predefined tyPeS ..o 17
S I @ 01V =T =3 o] 1= STRSPRTRRTRRI 19
G IR N €=V 1 011 T PSPPI 20
8.2.4 Type SYSeM UNIFICALIONuuiiiiiiieieiiit et e e e e et er— 21
8.3 Variables and ParameterSo 22
8.4 AutomatiC MemOry ManagEeMENT..........ccoiiiii ittt ettt ettt et eeeaeeasasssresreees s aneeaeennannnns 25
ST (o] (=21 0] PO POPPPPPPPRPPPR
) = 1 (<] 0 1= o £ TSR PPUPPPPPPTTIN
8.7 CLASSES ... e e e et e ettt et e aa e e e e e e e e e e e e e e e e e e aaas
8.7.1 Constants
BT 2 FHIUS ..o
B. 7. B MEINOUS ... ————— s
8.7.4 Properties
o TR T Y= o £ U
8.7.6 Operators
877 INUEXEIS ..ttt e e 44 e o444 e oo oo oo oo e s Sm—— 11ttt £ttt b rren
8.7.8 INSTANCE CONSITUCTONS ... ceiti et e e e e e et e e e et e e e e et e e e e e tan e e e e et s me— 39
TR B =1 £ (0 [od (o] £ PP TPRP 39
8.7.10 STAtIC CONSIIUCIOISottt te e e e e e e e e e e e e e e e e e e eee s 40
S A R o] 1T 7= T o ORI 40
G 7S TS 1 U o £
8.9 Interfaces
B.10 DEIBGALES. .. .o i ittt 43
. 00 5 I = 11 PRSP 44
8.12 Namespaces and aSSEMBIIESuu i e a e e e e e e e e e e e e e e e e e e eeeeeeens 45
S 70 IRC TV 4T =1 o 1 o 46
I N 1] 10 (=SOSR URPPPRRTPIN 48
LS I (Lo | IR U ox (0 | =TSRSS 51
LSRN 0 0= 0 51
L B €] = 11 0] 00 =T T PP 51
LS B R =Y (o= o =1] .= 51
9.2.2 SYNTACHC GraMMIAeutieetiieiiieiieeieieeere s aa s a e s s e e s s e e s eaasseaasaaaaaaaaeens 51
S BRGNS To= L=V =11 PP 52
S IR T = (T g][g P (] £ PP 52
O.3.2 COMIMENES ...ttt e ettt e e e e et et e b e et e e e et e et bt e e e ettt ee st aeeeeeeenennnnaeeenenns 52

© 0 N O U A WN PP

e e =
oM W N PR O

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53

C#LANGUAGE SPECIFICATION

9.3 3 WHIEE SPACEeeeeeeiieee e ettt ettt e e e e e ettt et e e e e e e ettt e e e e e e e nrr e e e e aee e e e e e e nne 54
LS 0] 1 54
9.4.1 UnIiCOde €SCAPE SEUUENCESceeeeereeriiiiiieeeeeeeeaiinsseeeeseresttnnnseeeeeeesstsnnnsaeeeesessssssns mommmmm———

LS I B o [T o1 1] {11 =S UPPT PP

0.4, .3 KEYWOITS ...ttt e 4 e 4 e e 14 eaaaaaaeeeeeensenrennnrnnnnen
S I L= = | PR TRTRTR
9.4.5 Operators and PUNCIUALOIS.........ccceiii ittt eeeeeeeeeeeeeenres
9.5 Pre-proCeSSING QIMECHIVESceiiiiiiiiiiiiii ettt e e e e e e et e e e s
9.5.1 Conditional compilation symbols
9.5.2 Pre-proCesSing ©XPIrESSIONScccvviiiiiiiiiiiieieeeeeeeeeseeasessssessesssssssrerrrrrrrrrrrrr e —————eeeeeeeeennts
9.5.3 Declaration dir€CHVES........ccoee e
9.5.4 Conditional compilation directives
O.5.5 DIagNOSHIC AIFECHVES ...uvuui e e e ettt e e e e e e e e e et r e e e e e e e et sean s s eommm—— e
LS BRI = Te [o] o] o1 £ SRR
O.5.7 LINE QIMECLIVES ...ttt s e aeeeaaeaaaaaaaaaaaaaeees
O =T ol oo o= o) = 69
O Y o] o] [To= Vo] 1] ¢= 1] o 69
10.2 Application terMINALIONueii i e e e e et e e e e e e et e e e e e e e ee e st es s mmmmmm——— e e 69
L0.3 DECIATALIONSeeeeeieeeeeieeet ettt e e e sttt e e e e e s s bbbttt e e e e o4 — 1t 70
O V=T o g 1= 72
O =T g TS o = Lo o 4 =T o= S 72
OB S (U (o A0 11T 0] 0T PSP 72
10.4.3 ENUMETAtiON MEIMDEIS.eiiiiiiiieiiieeiiitiieeeiieiereeeeeeeneeeeeennae s a s s s s e s s e e e s aaaeaaanaaaenenees 73
O O O = TS 0 =T 0 o= PSP 73
10.4.5 INTEITACE MEIMDEIS ...ttt s e £ e e e e e e 42 s——— 11 73
10.4.6 AITAY MEIMDEISeiiiiie ettt e e e ettt e e e e e s e s s bbb b e ettt e e e e s e s e e e e e anmnneeeseeeeeeas 73
10.4.7 Delegate MEIMDEIS ...t e aaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaeaeees 73
10.5 MEMDEE GCCESS ... eee ettt e e e e e e a e aaan e e e e e e e 73
10.5.1 DeClare@CCeSSIDIlILY........cciiiiiiiiiiiiiiiee ettt m————— 1 nnnns 74
10.5.2 ACCeSSIDIlity DOMAINSeeviviiiiiiiiiiieiieiieeieeee et e e b eereeeeseeaeesnnssnnsssmmmmmmnmmmnnms e e s 74
10.5.3 Protected access fOStanCce MEMDEISuuiiiiiiie e e e e e e eemnnes 1.
10.5.4 AcCCESSIDIlity CONSITAINTS......uuuiieiiiiii e e e e e e e e e e e e s e e e smmmmmmmmmmmmme e e e 77
10.6 Signatures and OVEITOATINGuuiiii ettt e e e e s s et e e e e e e s bbb ammmneneeeeaaeeeeeas 78
O BT oTo] =S P UPPPPPPPT 79
10.7. 2 NAME NIAING ...eeeeiiiiii e e e e e e e e e e e et e e e e eeeeettana e e e e e e e s — e res 81
10.8 Namespace and tyPe NAMESccciieeei e e+ — OO
10.8.1 Fully QUANTIEO NAMES ...ttt e e e e e e e e e e e e e e e e e e s e 84
10.9 AutomaticC MEeMOrY MANAGEIMENTcieiieeiiiiiee e e eeee et s e e e e e e e et e e e e e eearrr e e eeeeeeertnnn e eernnnnnnnnnnd 85
OB KO I = =T ol W 11 o o] o = OO 87
O 1Y/ o =T PRSP STRP 89
L1 L VaAlUB Y PES ittt ——————————————— s — e e e e e e 89
0 3T = 1] o0 1 0 0] 90
0T Y 1 1 o 1Y/ 0= PP
0 B ST] o 1= 1Y/ 01T
I B [a1 (= To | oL 1Y 1T PO OPPPPP
11.1.5 Floating point types
IO T I T o P ol =T I 1Y/ LS
O O A I = oo Yo J I 1 o L= SRS 94
0 O 01T = T I 1Y 0 1= 94
A Lo (=T 1= o =N V4 1= P 94
B O = T30 1Y/ 0T T PRSP 95
A 1 o] o Jy Yok 1Y/ o1 T PP PP PPPPPP N 95...

2 B I =3 ol ol I Vo 1Y/ 1 95...

o 0o W N PP

~

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47
48
49
50
51
52
53

Table of Contents

11.2.4 INEEITACE TYPES .. eeeeeieeeee ittt ettt e e e e e et et e e e e e e e e bbb e e et e e e e e e e e eennnnreeeeeeeeeeenaanns
SR AN =\ V1Y 013 ST
11.2.6 DEIEOALE LYPES ...eeeiiiiii e e ei et e et e e e e e et e e e e e e et e e e e e e e et t e s m—— a1t
11.3 Boxing and unboxing
0 0 A =0) d o I o 0 1V =] =1 o] 1SS
11.3.2 Unboxing conversions

Y - T =1] ==

I R £ T T o] (R o= =T o o =
12.1.1 STAtiC VANADIES ...t e e mmmnn e e e eeee e e e e e e
12.1.2 INStAN@ VAriabIES ..ottt e nnnnnnnnnneeeeeeeeees
N G B AN o V=] =T 0 =] £
12. 1.4 ValU@ Par@mMeEterS......ccc i e e e e et ————
12.1.5 Reference parameters
12.1.6 OULPUL PATAIMETEIS ...ttt ettt e e e ettt e et e e e e e et ettt e e e e e e eeeebbaan s e e e e e s mmmmmmmmmmmmmnm eeee
12.0.7 LOCAI VANADIES ...ttt ettt e e e e e e s et e« cr— 1

12.2 Default values

12.3 DefiNite @SSIGNIMENTooeiiiiiiiiiiiiiiiitieitieeeeeeee ettt s e s s e e e e e e s e e e s mmeenmmnneeennssnsennees
12.3.1 Initially assigned variablesii i — 102
12.3.2 Initially unassigned VariabIeSo e 103
12.3.3 Precise rules for determining definite assignment ... 03.........

12.4 Variable referenCeS ... s 111

12.5 Atomicity of variable refErENCES..... ... e e 111

GO0 01V = Lo 1 PSSRSO 113

R A T T o o A oo 1)Y= 5] o] o PR 113
R 0 I I o 1= 11 Y o0 1Y =T =3 o] o PP 113
13.2.2 IMPliCit NUMEIIC CONVEISIONSvvuuiiiieeeeeeiiiiie e e e e e e e e eeies s e e e e e e ee ittt s s e e e e eeeettta e e eeeeees mmmmmmmmmnann 113
13.1.3 Implicit eNUMErAtiON CONVEISIONSuuuiieiieeee e ee e e ettt ettt e s eeeeeenees 114
13.1.4 IMPIiCit refEreNCEe CONVEISIONSuiiiiiiiiieeee ittt e e e e st e e e e e e e e st e e e e e e e e s e e eeesnnnnee 114
RS I =0) d] g To I o 0 V=] =1 o] o 1 115
13.1.6 Implicit constant>X@reSSION CONVEISIONS.......uiieeeiiieiiiiise e e eereeeeiis e e e e e eearrr e e e eeeearenneees 115
13.1.7 User-defined impliCIt CONVEISIONS........coiiiiiiiiiiiiie e 115

13.2 Explicit conversions
13.2.1 EXPIICIt NUMEIIC CONVEISIONSciieiiiiiii e e e e ee ettt s s e e e e e e et s e e e e e e e e et e e e e e e e e e eesesan s s srmm— 115
13.2.2 EXplicit eNUMEration CONVEISIONSuuuvviiriiiiiiiiriiniianrieansa s s as s s ss s s s e s s s e e e e e e e sneeeeaenan 117
13.2.3 EXPIICIt referenCe CONVEISIONSuvviiiiieiiiiiiiiie it e e ettt e e e e e e e e e e e e s eeeeeeeeeaas 117
13.2.4 UNDOXING CONVEISIONSciiiiieiiieieeee e ee ettt ettt ettt et eeteeeeeeeeeataeeaaeeseesessesneennnesnnennnsnnnes 118
13.2.5 User-defined eXpliCit CONVEISIONSuuuuiiiriiiiiiiiii s e n e e s s e e e e e e e e e eeaeeas 118

13.3 StANAArd CONVEISIONSvvvvieeiieeriiitiieeieeereeenreanreeeneeneeenneeeas s s a s aaasaaasaaaaaanesaaaeeeneeseeeeees

13.3.1 Standard implicit conversions
13.3.2 Standard explicit conversions

13.4 USer-defiNed CONVEISIONS.cuiiii ittt e ettt e e e ettt e e e e e e st e+ ¢ s—
13.4.1 Permitted user-defined CONVEISIONS e 119
13.4.2 Evaluation of user-defined CONVEISIONSouuiiiiiiiiiiiiiieiiieeiiieiieaiieeeeeeeeeeeereeeeeeeeeeneeeeeeeeeas 119..
13.4.3 User-defined impliCit CONVEISIONS.............cooiiiiiiiiiiiiiiieeieeeeeeeee ettt s e s mmm—— 120
13.4.4 User-defined eXpliCIt CONVEISIONSciiiiiiiiiiiiiii et e e reeeaeeas 120

o g o] =S o TSSO URPPORPTPPN 123

14.1 EXPressSion ClaSSITICAIONSuiiiiiiiiiiiiiiiii et e e e e e s e e e e e s e e snnnr e e e e s 123
14.1.1 Values Of EXPIrESSIONSiiiiiiiiii e e e e et e e e e e et e e e e e e e e ettt s e e e e e eeeatte e e eeeeeee st mmmmmm—— 124

@ 0T = 1 (0] £ TSP 124
14.2.1 Operator precede® and aSSOCIALIVITYcuuiiiiiiiiiiiieee e e e e e 124
I N @] 1] = 1o gl o) VZ=T4 (o= o 1 oo TR 125
14.2.3 Unary operator ovl@ad reSOIULION............uiiii it e e e e e e e e e e e e e e e enmmmmmnns 126
14.2.4 Binary operator oVerload reSOIULION............uuiiiiiiieiiiiiii e ee e e 127

Vii

© 0 N O U A WN PP

a oo o o0 g b~ B D DB DS DSBS DD DWW W WWoWwWwWwWwwWwNDNDDNDDNDNDNDNDMDNDNDNDMDNODDNDNERPRERPREPRREPRRPREPRE
g A W NEFP O O© 00N O O WNPFP O O© 0 NO OB WNEPOOOWSNOOGM™MWNDNEREROOOWNOOGM™MWDNLEREO

C#LANGUAGE SPECIFICATION

14.2.5 Candidate user-defined OPEratOrS...........uuuuriurriiiiiiiiiieeii s e s e mmmmmmmmmaes 127
I G N W] g L= T o o o] Vo] (o] £ 127
G B0V =T 4] 01T (0T (U o 129
L 3. L BaS By P S ettt ettt ettt ettt e s —— e 129
I W g od o] T 01T 0] 1= SRR 130
I AN o 10 1T L B 1= P 132
14.4.2 OVErl0Ad rESOIULIONcciiiiiiiiititeeee et e e e e e s mmmmeeeeeenan e e s 134
14.4.3 Function member iNVOCALION..........ooiiiii e 136
145 PriMAry @XPIESSIONS .. .iieiiieiiieeeiet ettt ettt ettt ettt ettt ettt ettt eteeeeeeeeeeeeeessesesesssees s e s mmmmmmmemmmnnns s ssssees 138
TNt R I =T = PSSR PPPPPPPPPRPT 138
14.5.2 SIMPIE NAIMES ...ttt e e e e e s e bbbt e et e et e e e e e s e sk s £ 155 138
14.5.3 Parenthesized @XPreSSIONSceiiiiiiieeiiie ettt ettt ettt e eeeeeeeeeeeeeeeseenestneeeeeeeeeeennes 140
L14.5.4 MEMDET GCCESS .. i i it s 140
14.5.5 INVOCALION EXPIESSIONS ...uuviuuueiieeiiiiieee s s s s s e s s s s s s s e s s s e e e e e e s e e s s e s s e e e s e e e e e aeaaeeeaeeaeeee s mmmmmm—— 142
T G =T 0 0= o T o =L 143
I A I 3= Tt o 1 TR 145
J4.5.8 BASE BCCESSuuuuuiieeeieiittii e e e ettt et e ettt e e et e e e e et e e e e e e et e mmmmmmmmmn—eena e 145
14.5.9 Postfix increment and deCrement OPEIratOrSc.uvvriiiiieeeiiiaiiiiie e e e e e e 146.....
14.5.20 TNENEW OPEIATON ...ttt e e e e e ettt e e e e e et e e et e e e e s e e e e et e e e e e e s e n e e e e e e e e e e e s mmnnan 147.
S A I T 2 o =Y o o 0 T=T = (0] R 51.....
14.5.12 Thechecked andunchecked OPEratOrSuuuiiiiiiieiiaiiiie e e e
G U F= 1 V=3 q 0] =377 0] 154
T R T F= T Y o [0 o] 1= = (o 154
I T W T = LV 0 1T U ES3 0] 0 1= = o S 154
14.6.3 LOQICal NEJALION OPEIALONeeiiiieeeeiiiiiiiite et e e e et e e e e e e et e e e e e e s st e e e e e e e e e eesannnnes 155
14.6.4 Bitwise COMPIEMENT OPEIALOF.........ccuiiiii e e s e e e e e et e e e e e e e e aaea e e enneeeenennn 155
14.6.5 Prefix increment and deCrement OPEIatOrScccceeeeeiieeieee et 155.....
14.6.6 CaASE EXPIESSIONS ...ttt e e e e ettt e e e e e e e et e et e e e e e e e e s s bbb e et et e e e e e e e e e bbb e e e e e aaeeeeeannnnree e 156
N g1 gL g g [T (ol 0T o =T = (o] SRS 157
0 RV [W] L]] o= X4 T g 0] 011 = | o] R Y 4
o A D 1AV o] g o] o =T = L (o | (PP PPPP PP 158
I =T o g F= T T [0] o= = (o) 159
0 Ao [[10T T 0] o= = (o] 160
IR TS0 o] (= Tox 10T 1 0] o 1= = Lo USRS 162
R ST o1 1] 01T €= 0] £ PO TP PPPPPPPI 163
14.9 Relational and type-testing OPEIratOrS...........ovviiiiiiiiiiiii ettt eee e eeeeeeeeees 164
14.9.1 Integer COMPAriSON OPEIALOISc.eiiiiiiiiiiiieee ettt ettt ettt eeeeeeeeeeeaeeesaaesssasssssstesssesreeeereeennens 165
14.9.2 Floating-point COMPAriSON OPEIALOIS.ceetiiiiiitriiiteeeeeesaaaiiirre e e e e e e e e s s e e e e e e e e s s mmmmmnns 166
14.9.3 Decimal COMPAriSON OPEIALOIS.........ciiiiiieeeeeeet et eeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeenennnsaaeeeaennn 166

14.9.4 Boolean equality OPEIatOrS.......cciciciiiieiiii s e et e e e e e e et s e e e e e e e e e s eom—
14.9.5 Enumeration comparison operators
14.9.6 Reference type equality OPEratorsSccoii it eeeeeeeeees
14.9.7 String eqUAality OPEIALOIScvuiiiiii e eieeeies e et r e e e e e e e e e e e e e e e ee e r e e e e e eeeeeaan e eaaaeeees
14.9.8 Delegate equality OPEratOrS..........ccceiiiiiiie ettt an
14.9.9 TREIS OPEIALONeeeeieeeiiieieet ettt e e e oottt et e e e et e s bbbt e et e e e e e e e e s b bbb e e et e e e e e e e e e ssbbe e e e s emmmmmmmnne
e T O I =X o] o =T = (o GO PP P PP PP PP
g O I o To [o= | I o] o= = (0] =
14.10.1 INteger 10QICAl OPEIALOIS.......cciiiiiiiiiiiee ettt e e et e e e e e e e r e e e e e e e sannnneeeeeeas
14.10.2 Enumeration 10gical OPEratorsSccooieiiiiiiiei e c—
14.10.3 Boolean logiCal OPEratorS........ccuuuuiiiiieeeiieeiieis e ee et e e e e e e e e e e e e eaae e emmen
14.11 Conditional 10giCal OPEIALOIScciiiiiiiiiiiii ettt aae e e e aessaeeseee s e s s s m——
14.11.1 Boolean conditional 10giCal OPEratOrsS..........ccceiiiiiiiiiiiiiiiee e e e e esmmnees 171.
14.11.2 User-defined conditional logical OpEeratorsccoeeeviiieiiiiiiii e ee e e e aeees 172....
14.12 CONAItIONA] OPEIALONuvvtiiiiiiiiieiiitreiaie e a s a e s s e s s e s s e e e e e a0 s e e s — e 172
14.13 ASSIGNMENT OPEIALOTS. ...cetiieitiiiiittiie et e e e e e e e ettt e e e e e s s e bbb e ettt e e e e e s s sebab e e et e e e e e s 44+ 173

viii

o 0o W N PP

~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53

Table of Contents

14.13.1 SIMPIE @SSIGNIMENT......eiiiiiiieiiii ettt e e e e e e e e e e e e s s e s bbb e e e e e e s i £ £ 173
I S 2 @0 o] o To 10] [0 = 1S3 o T 0 0= o | 175
14.13.3 EVENE @SSIONIMENT....uuiiiiiiieiiiiii e e e s e e e e e e e e e e e e e ee e s e e e e e ee et tannn s eeeees mmmeemmmmmmmmmm eeees 176
I e q o1 £ =TT (o] RO SEPPTPPPPPTPP PP 176
I S @0 g 1S3 = T g 0 21 (=TS0 P 176
N K =Yoo (== T b o] €2 (] PP 177
TS = 1= 1.0 0SSOSO 179
15.1 End points and reachability...............ooii i 179
ST =] o Tod T P 181
T R = 1 =T 0 =T o 1] (N 181
15.3 The empty StAtEMENT.......ooui i e e et s e e e e e e e et e oo ———————— e e e 181
15.4 Labeled StatemMeNtS........ccoo oot ——————————————_ 182
15.5 DECIAration STAtEMENTSciiie ettt e e e e e et e e e e et e e et et e e s e s mmmmmmmmnmm———ran s 182
15.5.1 Local variable decClarations.........ccoooc it e e e e e e e e eeea 182
15.5.2 Local constant deCIaratiONsuuuueiuieeiiiiiiiiiiiiiiiiieeere e m———————— 183
15.6 EXPreSSiON StAtEMENTSiiviiiiieiiiiiieiiiiieiiiaiieeerieeareeeeeeeeeeaaeeeaeenae e e s e ea s s e s smmmmmmmmmm s e e eeees 184
T A T=T T=Tod (o] g JR] =1 =] 0 0=] £ 184
0t R N T Y = 10T 1T L 184
15.7.2 TheSWTTCh STAIEMENTviiiiiiiiiieii e e e e e e e a e e e e e e e e e e e aaeeas 185........
15.8 Iteration StAtEMENTSccuvuiii i e e e e et s e e e e e e e ettt e e e eeeeeeeette s smmmmmmeeeennnseeeeeeennns 188
15.8.1 ThawhiTe StAlEMENT ... e e e e e et e e e e e e e e aaa e e eemms 188.....
15.8.2 Thado StAEMENL.......cco ettt ee—————— 189
15.8.3 ThEfOr SLAIEMENT... ..o e e et e e e e e e e e ettt eeeeeeeesannaaes 189
15.8.4 Theforeach StAlEMENT ... e e e e e et r e e e e e e e eetta e e e e eaeenes 0. 19
TR N W g o TS = U= 1 =T £ 192
15.9.1 ThEreak StAtEMENT ... oo e e e e e e e e et e e e e e e e e e rbaa e e eemms 193.....
15.9.2 ThECONTTNUE STAIEMENT......oiiii e e e e e e e e et e e e e e e e eat s s e eeeeeesannaneeeaeeennnes 19/
15.9.3 ThEJOTO StAIEMENT.....oee et e e e e e e e e e et e e e e e saa e e e esba s mmmnns 194...
15.9.4 Thereturn STAIEMENTvviiiiiiriiiii it s e s e e e e e e e e e s e e e e e e e eaaeeas 195........
15.9.5 ThELhrow STAIEMENT e e e e e e e e e et e e e e e e e e e e reaa e e eemns 196......
T O o= o VS = 1 (=] 0 1= o | P 197
15.11 Thechecked andunchecked StateMENES........ccccoeiiiiiiii i, 199
T 2 N =] Ko Yod L) = 1 =10 1= o | AU 200
15.13 TheUSTNG STALEIMENT.....oiiiiiiiieieiiie ettt e s mmmmmnes 200
L6, INBIMESPACES ... eeeteetee it et e ettt ee e et e bt e she e s he e saeesaee e aseeabe e beeehe e ehe e eae e eabeSabe e be e b e e eReeaaeeeaeeeaneenbeeabeesaeesanesabeeanin 203
G I @0] 1 =T o T £ 203
16.2 Namespace AECIAratiONS..........cciiieeiiee e eee et e e e e e e e e e e e e e e aa e e e e e e s cm———— s 203
16.3 USING QIMECLIVES ... eee e et et e ettt et e et e et eeeeaeeeaaeeaaeeaeessamaaaaaaaaaaanssessssnnnrnes 204
16.3.1 USIiNg @lias dir€CLVESccoe i e 205
16.3.2 USIiNg NAMESPACE AIFECHIVESuuuuuiiieieiieiiiiii e e ee ettt s s e e e e e ee et s s e e e e e e settt s e e e e e e e e s wmmmmmmmmnaas 207
16.4 NamMeESPACE MEMDEIScoiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeaaaaaee e aeeaaeae e e e e e eeeasesanssanssssnsssnss meeeeennnennnnnnsees 208
GRS Y/ o Yol o [=Tod FoT = L1 o] g 1 209
L7, ClASSES. ...ttt ettt ettt ettt e e te e bt et e s beete e besaeeasesbeeaeesbeeheeabesheeaeebeeaeabeeheeatesheeheeReebeeaeenteabeenresreeaeetenrean 211
17.1 ClasS UECIAIALIONS ...uuuiiieiiiiiiiii i e e e e e e et e e e e e e et ettt s s e e eeeeeattaan s eeeee e s mom— e rren 211
At O O = TS 1 T T [T £ 211
17.1.2 Class base SPeCIfiCatioN..............ooiiiiiiii e ———— 212
L17. 1.3 ClaSS DOAYooeeeiiiii e a e e e 214
A O = TS 0 41T 0] o 1T P 214
A N] 1= 1 = U o = OO UPRTPPN: 215
A N g U= TN g o T [T PSSR 215
A B oo =TT 3 4T T [=T 216
A o] 153 1 (0 1T B Y2 1= 216
17.2.5 Static and iNSTANCE MEMDETSuuiiiie et e e e e e e e e et e e emmmmmma 216

© 0 N O U A WN PP

A DA DD W W WWWWWWWWNDNDDNDNDNDNDNDNDMDNDNDNDNDMNNDNERPRPEPREREPEPRRPRRPRPREPPRE
W NP O © 00 NO O WNPEFP O O© 0 NO O WN P O O 0 ~NO O B~ w NN PEF-E o

44

45
46
47
48
49
50
51
52
53
54

C#LANGUAGE SPECIFICATION

A G T N2 3 (T I 0 L= 217
17.2.7 RESErved MEMDEI NAIMES.... ...ttt e e e e e e e e et e e s e nmnennns 220
G T o T 3 r= T] £ 221
A 1= [223
17.4.1 Static and instance fields wnmmmnnnns s 224

17.4.2 REAUONIY fIEIUS. ... e e e e e e e e e e e e et — 111 224
AR A o1 F- 11 (=3 [=1 o F TR 225
A T (o T g T E= 1 [10] 226
17.4.5 Variable INILALIZEIS ..cou i e et e et e e et e e et e e s e s s———— s 227
L7 5 MELNOAS ...eeiieeie ettt et e e ettt e e e et e e e et e e s ata e e e e tan s e s s—— 111 e e s eban 229
R AV =1 g oo [T= =T g 1] (] £ 230
17.5.2 Static and INStANCE METNOASccuniiii e e ¢ — 235
ARSI A AT (V=1 g 011 1 [T F 236
S N @ V=T g (o [N g 1111 a0 Lo F T 238
RS RS (=10 [0 g 1= 1 Lo Lo FS 239
17.5.6 ADSITACE MEINOUSccce e e e e e e s e mma e emnee s saass 240
ST A o (=1 g P (=11 g oo £ 241
17.5.8 MEtNOU DOAY ...ttt e e ettt e e+ s— 241
17.5.9 Method OVErIOAdiNgoooiiiiiiiiieeee ettt 242
A G o o 0T 1= 242
17.6.1 Static and iNSTANCE PrOPEITIESccceee i e e e e 243
A T oo S TST <o | (=S 244
17.6.3 Virtual, sealed, oved®, and abSIraCt ACCESSOIS . ..uirniieiiiee ettt e e e e e e e e e een o 248.....
A A V=T] £ 7S TP 249
A R =] (o B 11 SRR =AY/ T 251
N A V=T g A= Todod =TT 0] £ 252
17.7.3 StatiC and INSTANCE BVENTS.........uei it et e e e e e e et e e e e e be s s ——— 253
17.7.4 Virtual, sealed, oved®, and abSIraCt ACCESSOIScivuiiii et e e e e e e e e e ebs o 253....
R T 10 [T T 254
A 70 R Vg o (= =T 01 VZ=T 5 [= T L] o SN 257
17,0 O PIALONS ..ottt 257
17.9.2 UNAIY OPEIALOIS ...ttt ee ettt ettt e e e et ettt e e e e e et ee b b e e e e et e eeebbaa e e e e e e eenennnnaaseeeaans 258
e T T = Vo] 0 1= = 1o 259
17.9.3 CONVEISION OPEIALOIS. .. uuuuiiiiiiiiriiieieinieiatiaae s s s aa s s s s e s e e s s s s e e e s e e aaaeaaaaeaaeeeees s mmmmmm— 260
A KO R 11y = aTod =T o (0 T3 (0 261
A O TR R o g) 1 (U oa (o] | gV 1= 1[4 £ 262
17.10.2 Instance variable iINAIZEISooiiee e e e e e et m——— 263
17.10.3 CONSIIUCTON EXECULION ..euutiieiiieteiei ettt e eei e e et e e et e e et e saasssa s s st se st s ssbassstassssns s nnnnesnnnennnness 263
A O R D I<] =10 || oT0) 4 1) (0 (o1 (0] £ 264
17.10.5 PriVate CONSIIUCTOIS ... cevuiieiiiieie et et e e e e e e et e et e s e e s eba e e sba s e s ba s s bas s ess smnmmmmenmmmene s baes 265
17.10.6 Optional instance CONSrUCLOr PAramMeterscccovvvieeiiie i 265......
A) = L T o0 151 0 (1 (0 £ 266
A I I T3 1 0 [(0] 267
S TS 1 U [R 271
R TR Y 1 0 Toa o [Tl = = (o N 271
RS T O A 1 U (o o 0 (0 1o 11 1= £ 271
RS TR S 1 0 [(T =3 271
18.1.3 SHTUCT DOAY ..o e———————— 272
S TS U od M 0 110 1] o T £ 272
18.3 Class and StrUCE IffEIENCESuuiiiieiie ettt e e et e e et e st e s s s ennsemnsenass 272
R R T AV Z= 118 (ST T =T 0 1 F= 1 Lo 272
TR T [1 11 5= T (o = 273
S B =] T [T =T o 273
18.3.4 DEFAUIL VAIUEBS ... et e et e et e e e e e et e e s ba s s ma————— s 273

0 N O 0o b W NP

©

10
11
12
13
14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39

40

41
42
43

44

45
46
47
48

49
50

Table of Contents

18.3.5 BOXING QN0 UNDOXINGtttiiieiieieiieitt ettt e e e e e s e e e+ s £+ 274
18.3.6 MEANING OB TS, e e e e 274......
18.3.7 FHEld INITIAIIZEIS ... e e e e e e e e e e e e e e e s s e 274
G TG TR S O 0] 151 £ U o (0] P 274
TG I B B LCT] {1 (o1 (0] £ T PR TPPPPP 275
S s 0 o A== 10]] L= 275
18.4.1 DatabasS@UEgEr TYPE .ooeveeiieeiiieeiieetiieet et 275
18.4.2 Database DOOIEAN TYPE.......oviiiiiiieiiieeieee ettt e eb b e brreerreenn e e emmn e nn——— 277
RS T - YT SRR 279
R TR N AV 1Y o 1L T PSP PUPPPPRPTRN 279
R I R I e Y oY TN ol o= V20 17/ 01
LS N 0 - Vo3 (= £) o 280
SN g o VA= 1= 0 g 1= = ol o =TS 280
S N o o Y 0 0= 0] o= S 280
19.5 AITAY COVANANCEcieeiiieiiiei et eeee et ettt ettt ettt e et eaeee s eaaasee s sesseesseeeeeeee e e e e ee e s es e s s e s 5o s se—— 12555550 280
S G 0 = Y 1= 4= 281
PO L g1 =T TSRS 283
20.1 Interface ECIAratiONSuuui it e e e e e et e e e e e e e e et e e e e e e er e eaaaaae 283
P20 It I g1 (=T = Lo < (0 o 1= P 283
20.1.2 Base interfaces rennnneenn 283
20.1.3 INTEITACE DOAYt e e et — 284
L I (0] (] g = Tt 41T 0] 0T PP 284
PO I I [g1 (=T = 1ot <3 1= 1 T Lo L PP 285
20.2.2 INterfaCe PrOPEITIES. . .cci i e e 285
20.2.3 INTEITACE BVENLSo e e ettt e e e e e e e e ettt e e e e e e e e e e st bt s mmnnnaaeeeneneeseseens 286
20.2.4 INTEITACE INUEXEIS ... 286
20.2.5 INterface MEMDEI BCCESSciiiiiiiiiiitiii ittt e e e st e e e e e e e e e s bbbt e e e e+ e 286
20.3 Fully qualified interface member NAMES............oviii i s 288
20.4 Interface iIMPIEMENTALIONS.o it e e e e e e es 288
20.4.1 Explicit interface member implementationS............coovuiiiiii e 289.....
20.4.2 INTEITACE MAPPING .- ttteeeeeeeeeeaeettte ettt e e e e e e s et b e e e e e e e s s s s e be e e e e e e e e aaaasnbbb e e et eeeesaaaeeeesnnnnnnseeeees 291
20.4.3 Interface implementation iINheritanCe ... s 293
20.4.4 Interface re-implementationooiii i e e e e —— 294
20.4.5 Abstract Clames and INTEITACESooii i e e e e e 296
P2 = o 0] 1 T PRSP PR PRSP TR 297
P2 I = [0 o [=Tod o = Ao 1 TSP 297
A o T T T T 13 1= 297
21 3 ENUM MEIMIDEIS .ttt a e aaaaaaeaaaeeeees s — s 298
21.4 ENUM ValuES @nd OPEIALIONSuuieiiiee e i ettt emr e e e e 300
22, DEIEQALES.ocueeie ettt ettt ettt ettt e st e bt e teeEeeat e teaReeteeheeRe e teaReeeeate et e nreereetenreenaenrenrean 301
22.1 Delegate deCIaratiONSooviiiiiiiii ettt e e — e et mmm——— 301
22.2 Delegate iNSTANTIALION.eiiiieeiiiii ettt e e e e e e e e e e e e e e e eeeeeeeees 303
ARG BT [=To Fo Y (=T LYo Yo o] o U 303
2 (o= | o 1 307
A T R O = 10 LTS o = o] o] 1o 1 USSP 307
23.2 TheSYStem.EXCEPETON ClASS.....uuiii it e e e ettt e e e e e e e e e s et e e e eeeeeeees
23.3 How exceptions are NANAIEAuviiiiiiiii e e e e e e e e e snnnnes 307
23.4 CommON EXCEPLION ClASSESuuiiiieiiiieiiiiie it e e e e et e e e e e e e ettt e e eraaeeeeeennnnnn 308
B N] UL =SSOSR 309
241 ALTIDULE CIASSES . .. 309

Xi

C#LANGUAGE SPECIFICATION

1 R I N] U L= 1= =V = 309

2 24.1.2 Positional and Named PAramMEtEISuuuuuuuuuririiiiiiiieeiineiiee s eae e e e e e e e e e e e e e e eeeeaeenan 310.

3 24.1.3 AIIDULE ParamMEtEr tYPES ... e e e e e e e e et e e e e e e e e eta e e e emeeeeeennnmnnnes

4 24.2 ATDULE SPECITICATION......eeiieiiiieeii ittt e e e e e e e

5 24.3 AHIIDULE INSTANCES .. .ciieiiiii e e e e r e e e e e e ettt e e eeeeeeee st s s mmmm———— e rren

6 24.3.1 Compilation of an attribute

7 24.3.2 Run-time retrieval of an attribute INStanNCecccooeeieii i 315...

8 24.4 ReSEerved attribULES.........uuuiii e e e e e e et

9 24.4.1 TheattributeUsage attribute
10 24.4.2 Theconditional attribBULe ...
11 24.4.3 ThaDbSOTEtE AttIDULE......cciiiiiiie e e e e e e et e e e e e e e e sabb e e eeeeeeenes 8. 31
T U g 1= | L oo [SRRSO 321
13 25,1 UNSAIE CONIEXES ... ittt e e et e e e e e e e e e ettt seeeeeeeetbtaa s seeanaeeeennnmmessstnnnssnns 321
14 A I o o1 (=] g 1Y o= TP 323
15 25.3 Fixed and moveable VariabIes........ ... 326
16 25,4 POINTEI CONVEISIONS . uuuuiiieeiiieiiti et e e ettt e e e e e e e et ettt e e eeeeeeae sttt aeeeseeestaaassaseesesssnnnnnnnnnnaaaeseeeseennes
17 25.5 POINEEIS IN EXPIrESSIONS iei ettt e
18 P4 T T A o] | (=T | T [T =T ox 1 o o PSPPSR
19 25.5.2 Pointer member access -
20 25.5.3 POINLEI EIEMENT ACCESSciiieeiiiiiiie e e eee et e e e e e et e e e e e e e e ettt seeeeeeeesttaa e e e s eom———
21 25.5.4 The addreSs-0f OPEIALOr........ciii i e e e e e e e e e e e ee e e e e e eeeeannnns 330
22 25.5.5 Pointer increment and GECIEMENT..........uuuuiiiiiiiiiiiiiii s — 330
23 25.5.6 POINEN AMENMELIC ..uvuu e e et e e e e e e e e ettt e e e e e s s o mmmmmmmmme e s e seees 331
24 A R T A o]] (=] g oo T 0] o =T <o] 1R 332
25 A T o TR S B I 1= -4 <o) 0] 1= =\ (o 332......
26 25.6 Thefixed STAtBMENT e e e e et e e e e e e e e et b e e e e e e e e s manaanenns 332
27 25.7 Stack allocation
28 25.8 Dynamic memory allocation
1o T N 1 - o o1 = |
30 A.1l Lexicalgrammar
31 N R I T g Lo (Y 1 01T = (o TR 339
32 A.1.2 White space S 12 1°)
33 Nt R N @0 0 1] 1= 1 RS 339
34 N 0124 1O 340
35 A.1.5 Unicode character @SCaPE SEOUENCESccuuuuririeieeeeaaaiiiriereeeeeeassaibbeer e e e e e e e s aaannnneeeeeaeeas 340....
36 N L o =T 1 (11T P 340
37 N I A AT 0 o £ S 341
38 N < B I (=T = | £ PO 342
39 A.1.9 Operators and PUNCLUALOIScoeieiieeie e e e e e e e e e e e e e neeenneenaee 343
40 A.1.10 Pre-processSing QIr€CHIVES.........uuiii et e e s e e e e et s e e e e e e et e e e e e s emeeenmmmmmmmmmr e 344
41 A2 SYNTACHC QrAMIMATciiiiiiiiieeeeceeeee ettt ettt e et e eeeeaaeeaaaessaasssasssesseses s e s s s so—— 11111+ 345
42 YN B = - 1 (ol oo Tod= o | £ 3R 345
43 D 1Y/ o 1= PP 346
44 F N Y- | - o] 1= SR 347
45 N o 1 £ =<1 0] R 347
46 A S S = 1] 1 11T] £ 350
47 N O = 1] 354
48 R s Y 1 8o £ 359
49 A2 8 ATAY S ..ttt e e oottt e e e e et et b bt ————tt 11 s 360
50 N I 1] (=] = (o = 360
51 N 0 = 10 [1 UPPTT 361
52 AL 2. L DIBGALES ..o ————— s 362
53 N A N (| o101 (= PERPPRR 362

Xii

Table of Contents

1 A.3 Grammar extensions for UNSAfe COUEuuuuummmiiii e e 363
P2 = T o = o1 11 TS 1SS 365
3 B.1 UNAEfiNEA DENAVIONueei et e ————— e e e ae 365
4 B.2 Implementation-defined Benaviorccoooo i ———- 365
5 B.3 Unspecified DENAVIOL..........ccoo o ———— 366
6 B.4 O NEI ISSUEBSceitiii it ettt e ettt e e e e e e e e ettt e e e eeeeeesttaa e eeeeeeessbannseeeeeeenaansaaeeeeesrnns 366
A O \F-= 1 41T g o I TU T Lo = 1T g TSRS 367
8 O R OF= o] =1 1122V iTo] ¢ JE=1 17 (= 367
9 O I A =TT 1= 1Y T PP 367

10 (O I @r= 0 0[] o= 1= [T TS 367

11 (O R Iy | U] o] o= o= Lo PO P PP POPPP 367

12 C.1.4 Capitalization SUMIMEAIYuueuueeeiiieeieieiieeeiieeieeeeeaen e s mmmmmmmmmmmmn s 367

13 O V1Y o] s [od s To] ol NPT 368

14 LORC B N\ = T =TS o = Lol PSPPSR 368

15 O = T

16 C.5 Interfaces

17 ORI = 11 0 PP UPPPPPP

18 O = Lo 1T=1 [0 [T RRPUPPPPIRIN 371

19 CL8 PATBIMEBLEIS ...ttt e e e ettt oo e e ettt ettt e oo e e et et ¢ t— 111111 371

20 CLO MEBINOUS ...ttt e ettt e e e e e e ettt ettt smmmmm————— b 371

21 O O o 0] o 1= 1= PP 371

22 O R Y= o | £ TP PP 372

23 C.12 CASE SENSIIVITY ...uuiiieeeieeiiiiies i e e e e et s s e e e e e e et e e e e e e e e et e aseeeeeeeeeaas s seeeeesesss s mmmmmmmmmm———nss e eeeeeeenes 372

24 C.13 Avoiding type Name CONFUSIONooiiiiiiiiiii ettt e e emeemnnnnes 373

7L I B B =T To I Lo I T o = S 375

26 E. DOCUMENTALION COMMENTS.....ccuiitiiiieieiieiisiesie sttt e ettt b et e bt e b e e e e et e st e benbesbenee s e neneas

27 R 1o o [F o1 1o o IO PPPPPRPPPR

28 E.2 RECOMMENMELAGS.cceiiiiiiiitee it e ettt e ettt e e e e e e e et e e e e e e e e e e st bbb e e e e e eeeeaannnneeeeeas

29 2 o>

30 A oo o [>T

31 E.2.3 <eXample> ..o

32 A B = o =T o (0] o

33 8 ST 11 iR

34 A S I 0 - L= D PSPPI

35 EL2.7 SPAIaIMS .. e e e e e e e e e e e e e nnn

36 E.2.8 <paramref> ...

37 S I o =1 0 17T 0] o

38 A KO R (=11 4 F= 1 ORI

39 N B R (=] 11 LS PP TUUOPPPPIN

40 N T TP PUPP

41 EL2.13 SSBRAISO™Soeiiiiiii ittt ettt e e e e e e e e e em——————— e

42 N I U {1 0] 4 F= TP RPTSPPP

43 E.2.05 QUAIUES L.

44 E.3 Processing the documentation file

45 E.3.1 1D SENG FOMMIAL ...ttt e e e e e s ettt e e e+ e+ 2422

46 E.3.2 ID StrNQ EXAMPIES ...ttt e e e e e e ¢ mm——

47 AN g == 1]][

48 E.4.1 C# source code

49 [=T 1 1] o 0 Y PR

10T e 1 T 1= S

51

Xiii

10

11

12

13

14
15

16
17

18

Chapter 1 Scope

1. Scope

Thisclauseisinformative.

This ECMA Standard specifies the form and estddaisthe interpretation of programs written in the
C# programming language. It specifies

* The representation of C# programs;

» The syntax and constraints of the C# language;

» The semantic rules for interpreting C# programs;

* The restrictions and limits imposed by a conforming implementation of C#.

This ECMA Standard does not specify

» The mechanism by which C# programs are transid for use by a data-processing system;

» The mechanism by which C# applications are invoked for use by a data-processing system;

» The mechanism by which input data are transformed for use by a C# application;

e The mechanism by which output data are transformed after being produced by a C# application;

» The size or complexity of a program and its datattiill exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

» Al minimal requirements of a data-processing system that is capable of supporting a conforming
implementation.

End of informative text.

10

11

12
13
14
15
16

17
18
19
20

21
22
23
24

25

26
27

28
29
30

31
32

33
34
35

36
37
38
39
40
41

Chapter 2 Conformance

2. Conformance

Conformance is of interest to the following audiences:

e Those designing, implementing, or maintaining C# implementations.

» Governmental or commercial entities Wisg to procure C# implementations.
e Testing organizations wishing to provide a C# conformance test suite.

* Programmers wishing to port code from one C# implementation to another.
» Educators wishing to teach Standard C#.

» Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this ECMA Standard is aimed at specifying the
characteristics that make C# implementations and C# programs conforming ones.

The text in this ECMA Standard that specifies requirements is considereshtive. All other text in this
specification ignformative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken integuired andconditional categoriesConditionally
normative text specifies requirements for a feature such that if that feature is provided, its syntax and
semantics must be exactly as specified.

If any requirement of this ECMA Standard is violatéke behavior is undefined. Undefined behavior is
otherwise indicated in this ECMA Standard by the words “undefined behavior” or by the omission of any
explicit definition of behavior. There is no differee in emphasis among these three; they all describe
“behavior that is undefined.”

A dtrictly conforming program shall use only those features of the language specified in this ECMA
Standard as being required. (This means that etlstgonforming program cannot use any conditionally
normative feature.) It shall not produce output dependearany unspecified, undefined, or implementation-
defined behavior.

A conforming implementation of C# must accept any strictly conforming program.

A conforming implementation of C# must provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in this ECMA Standard.

A conforming implementation of C# shall interpret cheters in conformance with the Unicode Standard,
Version 3.0 or later, and ISO/IEC 10646-1. Conforminmgplementations must accept Unicode source files
encoded with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source contaiégrar
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produddeast one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirementriarked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to prdgiadditional types, values, objects, properties, and
methods beyond those described in this ECMA Stashdarovided they do not alter the behavior of any
strictly conforming program. Conforming implemntations are required to diagnose programs that use
extensions that are ill formed according to this EEMtandard. Having done so, however; they can compile
and execute such programs. (The ability to have extensions implies that a conforming implementation
reserves no identifiers other than thoseleitly reserved in this ECMA Standard.)

C#LANGUAGE SPECIFICATION

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in 8D. This library is
included by reference in this ECMA Standard.

A conforming programis one that is acceptable to a conforming implementation. (Such a program may
contain extensions or conditionally normative features.)

N O 0o WDN

10

11
12

13

14

15
16
17
18
19

20
21
22

23

24

25

26

27

28

29
30

31

32

Chapter 3 References

3. References

The following normative documents contain provisiowsich, through reference in this text, constitute
provisions of this ECMA Standard. For dated referensabsequent amendments to, or revisions of, any of
these publications do not apply. However, partie agreements based on this ECMA Standard are
encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the ladiiton of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid ECMA Standards.

ECMA-335, ' Edition, December 2001Common Language Infrastructure (CLI), Partition |V: Base Class
Library (BCL), Extended Numerics Library, and Extended Array Library.

ISO 31.11:1992Quantities and units—Part 11: Mathematical signs and symbols for usein the physical
sciences and technol ogy.

ISO/IEC 2382.1:1993 nformation technology — Vocabulary — Part 1: Fundamental terms.
ISO/IEC 10646 (all parts)nformation technology — Universal Multiple-Octet Coded Character Set (UCS).

IEC 60559:1989Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
|EEE Standard for Binary Floating-Point Arithmetic.) Due to the extremely widespread recognition BEE

as the name of a form of floating-point representation and arithmetic, this ECMA Standard uses that term
instead of its IEC equivalent.

The Unicode Consortium. The Unico&andard, Version 3.0, defined bihe Unicode Standard, Version
3.0 (Reading, MA, Addison-Wesley, 2000. ISBN2D1-61633-5), and Unicode Technical Report #15:
Unicode Normalization Forms.

Thefollowing references ar einformative:

ISO/IEC 9899:1999%rogramming languages — C.
ISO/IEC 14882:1998Programming languages — C++.

ANSI X3.274-1996 Programming Language REXX. (This document is useful in understanding floating-
point decimal arithmetic rules.)

End of informativereferences

o O b~ WODN

10

11
12
13
14
15
16
17

18
19

20
21
22
23
24

25

26
27

28
29
30
31
32

33
34

35
36
37
38
39

40
4

42

43

Chapter 4 Definitions

4. Definitions

For the purposes of this ECMA Standard, the followdwgfinitions apply. Other terms are defined where

they appear intalic type or on the left side of a syntax rule. Terms explicitly defined in this ECMA Standard
are not to be presumed to refer implicitly to similarms defined elsewhere. Terms not defined in this
ECMA Standard are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in
this ECMA Standard are to be interpreted according to ISO 31.11.

Application — refers to an assembly that has an entry point (§10.1). When an application is run, a new
application domain is created. Several differestéamtiations of an application may exist on the same
machine at the same time, and each has its own application domain.

Application domain — an entity that enables application isolatiby acting as a container for application

state. An application domain acts as a container and boundary for the types defined in the application and the
class libraries it uses. Types loaded into one apptinadomain are distinct from the same type loaded into
another application domain, and instances of objeetsiat directly shared between application domains.

For instance, each application domain has its own copy of static variables for these types, and a static
constructor for a type is run at most once per aggilon domain. Implementations are free to provide
implementation-specific policy or mechanisms for @neation and destruction of application domains.

Argument — an expression in the comma-separated list bounded by the parentheses in a method or instance
constructor call expression. It is also known asaatual argument.

Assembly — refers to one or more files that are output by the compiler as a result of program compilation.

An assembly is a configured set of loadable code modules and other resources that together implement a unit
of functionality. An assembly may contain types, the executable code used to implement these types, and
references to other assemblies. The physical representation of an assembly is not defined by this
specification. Essentially, an assembly is the output of the compiler.

Behavior — external appearance or action.

Behavior, implementation-defined — unspecified behavior where each implementation documents how
the choice is made.

Behavior, undefined — behavior, upon use of a nonportable aio@eous construct or of erroneous data,
for which this ECMA Standard imposes no requiremefRessible handling of undefined behavior ranges
from ignoring the situation completely with unpretdible results, to behaving during translation or
execution in a documented manner characteristib@&nvironment (with or without the issuance of a
diagnostic message), to terminating a translatiorxecetion (with the issuance of a diagnostic message)].

Behavior, unspecified — behavior where this ECMA Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance.

Classlibrary — refers to an assembly that can be used by other assemblies. Use of a class library does not
cause the creation of a new application domain. Insteatiss library is loaded into the application domain

that uses it. For instance, when an application usgass library, that class library is loaded into the

application domain for that application. If an application uses a class librtrgt itself uses a class

library B, then botha andB are loaded into the application domain for the application.

Diagnostic message — a message belonging to an implementatilefined subset of the implementation’s
output messages.

Error, compile-time — an error reported during program translation.

Exception — an error condition that is outside the ordinary expected behavior.

10

11
12
13

14
15

16
17
18
19

20
21

C#LANGUAGE SPECIFICATION

Implementation — particular set of software (running in a particular translation environment under
particular control options) thatgsforms translation of programs for, and supports execution of methods in, a
particular execution environment.

Namespace — a logical organizational system that providesay of presenting program elements that are
exposed to other programs.

Parameter — a variable declared as part of a method, instance constructor, or indexer definition, which
acquires a value on entry to that method. It is also knowforasal parameter.

Program — refers to one or more source files that are preed to the compiler. Essentially, a program is
the input to the compiler.

Program, valid — a C# program constructed according to the syntax rules and diagnosable semantic rules.

Program instantiation — the execution of an application.
Recommended practice — specification that is strongly recommended as being aligned with the intent of
the standard, but that may be impractical for some implementations

Sour ce file— an ordered sequence of Unicode characters. Source files typically have a one-to-one
correspondence with files in a file systebut this correspondence is not required.

Unsafe code — code that is permitted to perform such lower-level operations as declaring and operating on
pointers, performing conversions between pointersiategjral types, and taking the address of variables.
Such operations provide functionality such as permitimgrfacing with the underlying operating system,
accessing a memory-mapped device, or implementing a time-critical algorithm.

Warning, compile-time — an informational message reported dgrprogram translation, that is intended
to identify a potentially questionable usage of a program element.

A WON

© 00 N o u

10
11
12
13
14
15
16
17

18

19
20
21

22
23

24

25
26
27
28
29
30
31
32
33
34
35

36
37

38
39

40

Chapter 5 Notational conventions

5. Notational conventions

Lexical and syntactic grammars for C# are interspetbealighout this specification. The lexical grammar
defines how characters can be combined to ftokens (§9.4), the minimal lexical elements of the language.
The syntactic grammar defines how tokens can be combined to make valid C# programs.

Grammar productions include both non-terminal and terminal symbols. In grammar produabiens,

terminal symbols are shown in italic type, andrminal symbols are shown in a fixed-width font. Each
non-terminal is defined by a set of productions. Thstfiine of a set of productions is the name of the non-
terminal, followed by a colon. Each successive indented line contains the right-hand side for a production
that has the non-terminal symbol as the left-hand side. For example:

class-modifier:
new
public
protected
internal
private
abstract
sealed

defines theclass-modifier non-terminal as having seven productions.

Alternatives are normally listed on separate liresshown above, though in cases where there are many
alternatives, the phrase “one of” precedes a list ofogpégons. This is simply shorthand for listing each of
the alternatives on a separate line. For example:

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

is equivalent to:
decimal-digit:

OooNOUVLId WNREREO

A subscripted suffix g, as inidentifiery, is used as shorthand to indicate an optional symbol. The
example:

for-statement:
for (for-initializeroy ; for-conditiony,: ; for-iteratoryy) embedded-statement

is equivalent to:

© 00 N O U~ WN PP

=
o

B
N P

C#LANGUAGE SPECIFICATION

All terminal characters are to be understood as figr@priate Unicode character from the ASCII range, as

for-statement:
for (; ;) embedded-statement
for (for-initializer ; ;) embedded-statement
for (; for-condition ;) embedded-statement
for (; ; for-iterator) embedded-statement
for (for-initializer ; for-condition ;) embedded-statement
for (; for-condition ; for-iterator) embedded-statement
for (for-initializer ; ; for-iterator) embedded-statement
for (for-initializer ; for-condition ; for-iterator) embedded-statement

opposed to any similar-looking characters from other Unicode ranges.

10

10

11
12
13
14

15
16

17

Chapter 6 Acronymsand abbreviations

6. Acronyms and abbreviations

Thisclauseisinformative.

The following acronyms and abbreviations are used throughout this ECMA Standard:

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, striagipulation, formatting, streams, and collections.

CLI — Common Language Infrastructure

CLS — Common Language Specification

IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers

ISO — the International Organization for Standardization

The name C# is pronounced “C Sharp”.

The name C# is written as theTIN CAPITAL LETTER C (U+0043) followed by theNUMBER SIGN#
(u+000D).

End of infor mative text.

11

10

11
12
13

14
15
16

17
18

19

20

21

Chapter 7 General description

7. General description

Thisclauseisinformative.

This ECMA Standard is intended to be used by implementacademics, and application programmers. As
such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a
formal language specification.

This standard is divided into the following subdivisions:

1
2.
3

4.

Front matter (clauses 1-7);
Language overview (clause 8);
The language syntax, constraints, and semantics (clauses 9-25);

Annexes

Examples are provided to illustrate possible formghef constructions described. References are used to
refer to related clauses. Notes are provided to gdwdce or guidance to implementers or programmers.
Annexes provide additional information and sumraiihe information contained in this ECMA Standard.

Clauses 2-5, 9-24, the beginning of 25, and the beginning of D form a normative part of this standard; all of
clause 25 with the exception of the beginning is conditionally normative; and Brief history, clauses 1, 6-8,
annexes A, B, C, and most of D, notes, examples, and the index are informative.

Except for whole clauses or annexes that are idedtdigebeing informative, informative text that is
contained within normative text is indicated in two ways:

1.
2.

[Example: The following example ... code fragment, possibly with some narrativend exampl €]

[Note: narrative ...end note]

End of informative text.

13

[2 N

© 00 N O

10
11
12

13
14
15
16
17
18

19
20

21

22
23

24

25

26
27
28
29
30

31
32

33
34

35
36

37
38

Chapter 8 Language Overview

8. Language Overview

Thisclauseisinformative.

C# (pronounced “C Sharp”) is a simple, modern, objétnted, and type-safe programming language. It
will immediately be familiar to C and C++ prograners. C# combines the high productivity of Rapid
Application Development (RAD) languages and the raw power of C++.

The rest of this chapter describes the essential featirthe language. While later chapters describe rules
and exceptions in a detail-oriented and sometimes emadtical manner, this chapter strives for clarity and
brevity at the expense of completeness. The inteto provide the reader with an introduction to the
language that will facilitate the writing of earpyrograms and the reading of later chapters.

8.1 Getting started

The canonical “hello, world” program can be written as follows:
using System;
class Hello

static void Main() {
console.writeLine("hello, world");

}

The source code for a C# program is typically stored in one or more text files with a file extensios,@fs
in hello.cs. Using a command-line compiler, such a program can be compiled with a command line like

csc hello.cs

which produces an application namieell 1o . exe. The output produced by this application when it is run
is:

hello, world
Close examination of this program is illuminating:

» Theusing System; directive references a namespace caflgdtem that is provided by the Common
Language Infrastructure (CLI) class library. This namespace contaitetisn1e class referred to in the
Main method. Namespaces provide a hierarchicaamseof organizing the elements of one or more
programs. A using-directive enables unqualified use of the types that are members of the namespace. The
“hello, world” program usesonsole.writeLine as shorthand fofystem.Console.WriteLine

« TheMain method is a member of the class11o. It has thestatic modifier, and so it is a method on
the clas#e110 rather than on instances of this class.

» The entry point for an application—the method that is called to begin execution—is always a static
method namedaiin.

* The “hello, world” output is produced using a class library. This standard does not include a class
library. Instead, it references the class library provided by CLI.

For C and C++ developers, it is interesting to note a few things thabtlappear in the “hello, world”
program.

15

10
11

12

13
14
15

16
17
18
19
20

21
22

23
24
25
26

27
28
29
30
31
32

33
34
35

36
37
38
39

40

41
42

43
44
45

46

47
48

49
50

C#LANGUAGE SPECIFICATION

» The program does not use a global methodvfoin. Methods and variables are not supported at the
global level; such elements are always containétinwtype declarations (e.g., class and struct
declarations).

* The program does not use either:” or “ ->" operators. The ¢:” is not an operator at all, and the
“->" operator is used in only a small fraction of pragns (which involve unsafe code). The separatdris
used in compound names suchcamsole.writeLine.

» The program does not contain forward declarations. Forward declarations are never needed, as
declaration order is not significant.

» The program does not u#é nclude to import program text. Dependencies among programs are
handled symbolically rather than textually. This amgrh eliminates barriers between applications written
using multiple languages. For example, tamsole class need not be written in C#.

8.2 Types

C# supports two kinds of typesalue types andreference types. Value types include simple types (e.qg.,
char, int, andfloat), enum types, and struct types. Reference types include class types, interface types,
delegate types, and array types.

Value types differ from reference types in that vates of the value types directly contain their data,

whereas variables of the reference types store references to objects. With reference types, it is possible for
two variables to reference the same object, and thus possible for operations on one variable to affect the
object referenced by the other variable. With value $ypke variables each have their own copy of the data,
and it is not possible for operations on one to affect the other.

The example
using System;
class Classl

public int value = 0;

class Test

static void Main() {
int vall = 0;
int val2 = vall;

val2 = 123;

Classl refl new Class1l(Q);
Classl ref2 refl;
ref2.value = 123;

console.writeLine("values: {0}, {1}", vall, val2);
console.writeLine("Refs: {0}, {1}", refl.value, ref2.value);

}
}

shows this difference. The output produced is

values: 0, 123
Refs: 123, 123

The assignment to the local varialle11 does not impact the local variabla12 because both local
variables are of a value type (the typet) and each local variable of a value type has its own storage. In
contrast, the assignmene¢f2.value = 123; affects the object that botef1 andref2 reference.

The lines

console.writeLine("values: {0}, {1}", vall, val2);
console.writeLine("Refs: {0}, {1}", refl.value, ref2.value);

deserve further comment, as they demonstrate some of the string formatting behavior of
Cconsole.WriteLine, which, in fact, takes a variable number of arguments. The first argument is a string,

16

w N -

o~N O 01 b

11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27
28

29
30
31
32
33

34
35
36

37
38
39
40

41

42

43
44

45
46
47

48
49
50

51
52
53

Chapter 8 Language Overview

which may contain numbered placeholders &g and{1}. Each placeholder refers to a trailing argument
with {0} referring to the second argumefit,} referring to the third argument, and so on. Before the output
is sent to the console, each placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value types through enutinstmict declarations, and can define new reference
types via class, interface, and delegate declarations. The example

using System;
pubTic enum Color

Red, Blue, Green

}

Eub11c struct Point

) pubTlic int x, y;

?ub1ic interface IBase
void FQ;

}

?ub1ic interface IDerived: IBase
void GQO);

}

Eub11c class A

protected virtual void H() {
console.writeLine("A.H");

public class B: A, IDerived

public void FO {.]) .
Console.wWriteLine("B.F, implementation of IDerived.F");

public void GO {.)))
Console.writeLine("B.G, implementation of IDerived.G");

override_protected void HQ) {
console.writeLine("B.H, override of A.H");

}
public delegate void EmptybDelegate();
shows an example of each kind of type declaratiottet.aections describe type declarations in detail.

8.2.1 Predefined types
C# provides a set of predefined types, most bfch will be familiar to C and C++ developers.

The predefined reference types atgject andstring. The typeobject is the ultimate base type of all
other types. The typstring is used to represent Unicode string values. Values of ypd ng are
immutable.

The predefined value types include signed and unsigmegjial types, floating-point types, and the types
bool, char, anddecimal. The signed integral types asbyte, short, int, andlong; the unsigned
integral types areéyte, ushort, uint, andulong; and the floating-point types aifdl oat anddoube.

Thebool type is used to represent boolean values: valo@sare either true or false. The inclusionbaio
makes it easier to write self-documenting code, also helps eliminate the all-too-common C++ coding
error in which a developer mistakenly uses When “==" should have been used. In C#, the example

17

A WNBE

o O

10
11

12
13

14
15
16
17

18
19
20
21
22

C#LANGUAGE SPECIFICATION

int i = .

F(i);
1'1:1 8 = 0) // Bug: the test should be (i == 0)
GQ;

results in a compile-time error because the expressien 0 is of typeint, andi f statements require an
expression of typéooT.

Thechar type is used to represent Unicode characters. A variable ofdigpe represents a single 16-bit
Unicode character.

Thedecimal type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common exampleslinfinancial calculations such as tax computations
and currency conversions. Thecimal type provides 28 significant digits.

The table below lists the predefined types, ahdws how to write literal values for each of them.

Type Description Example

object | The ultimate base type of all other types object o = null;

string | String type; a string is a sequence of Unicode string s = "hello";

characters

sbyte 8-bit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-hit signed integral type int val = 12;

Tong 64-bit signed integral type }828 x:}% = %LZ“,_,

byte 8-bit unsigned integral type byte vall = 12;

ushort 16-bit unsigned integral type ushort vall = 12;

uint 32-bit unsigned integral type 312% x:}% - %LZH,J,

ulong 64-bit unsigned integral type 31828 x:}% - %iu
Long vala = 7801 ;

float Single-precision floating point type float val = 1.23F;

double | Double-precision floating point type ggﬂmg x:}% - H%D,

bool Boolean type; ®oo1 value is either true or false bool vall = true;
bool val2 = false;

char Character type; ahar value is a Unicode character| char val = 'h';

decimal | pPrecise decimal type with 28 significant digits decimal val = 1.23m;

Each of the predefined types is shorthand for a system-provided type. For example, the keyweters
to the strucsystem.Int32. As a matter of style, use of the keyword is favored over use of the complete
system type name.

Predefined value types suchast are treated specially in a few ways but are for the most part treated
exactly like other structs. Operator overloading enables developers to define new struct types that behave
much like the predefined value types. For instandei g t struct can support the same mathematical
operations as the predefined integsgdés, and can define conversions betwe#git and predefined

types.

18

10
11
12
13
14
15
16
17
18

19

20
21

22
23

24

25
26
27
28
29

30
31
32
33
34
35
36
37
38

39

40

41
42
43
44
45
46
47
48
49

50
51

52

Chapter 8 Language Overview

The predefined types employ operator overloadiregniselves. For example, the comparison operaters
and ! = have different semantics for different predefined types:

» Two expressions of typént are considered equal if they represent the same integer value.

+ Two expressions of typebject are considered equal if both refer to the same object, or if both are
null.

» Two expressions of typetring are considered equal if the string instances have identical lengths and
identical characters in each character position, or if botmaid .

The example
using System;

%1ass Test
static void Main() {
string s = "Test";
string t = string.Copy(s);
Console.writeLine(s == t);]
Console.writeLine((object)s == (object)t);
}
produces the output
True
False

because the first comparison compares two expressions oétypieng, and the second comparison
compares two expressions of typkject.

8.2.2 Conversions

The predefined types also have predefined coneess For instance, conversions exist between the
predefined typesnt andTong. C# differentiates between two kinds of conversidnglicit conversions
andexplicit conversions. Implicit conversions are supplied for conversions that can safely be performed
without careful scrutiny. For instance, the conversion fromt to Tong is an implicit conversion. This
conversion always succeeds, and never results in a loss of information. The following example

using System;
class Test

{
static void Main() {
int intvalue = 123;
Tong longvalue = intvalue;
Console.writeLine("{0}, {1}", intvalue, longvalue);
ks

implicitly converts anint to along.

In contrast, explicit conversions are fmmed with a cast expression. The example

using System;
class Test

{
static void Main() {
Tong longvalue = Int64.Maxvalue;
int intvalue = (int) longvalue;
Console.writeLine("(int) {0} = {1}", Tongvalue, intvalue);
ks

uses an explicit conversion to convert@ang to anint. The output is:
(int) 9223372036854775807 = -1

because an overflow occurs. Cast expressions p#mmitse of both implicit and explicit conversions.

19

35

36
37
38

39
40
41
42
43
44

45
46
a7
48
49
50

51
52
53
54
55

C#LANGUAGE SPECIFICATION

8.2.3 Array types
Arrays may be single-dimensional or multi-dim@nrsl. Both “rectangular” and “jagged” arrays are
supported.
Single-dimensional arrays are the most common type. The example
using System;
class Test

static void Main() {
int[] arr = new int[5];

for (int_i = 0; i < arr.Length; i++)
arr[i] =1 * 1i;

for (int i = 0; i < arr.Length; i++)
) console.writeLine("arr[{0}] = {1}", i, arr[i]);

}

creates a single-dimensional arrayioft values, initializes the array elements, and then prints each of them
out. The output produced is:

arr[0] =0
arr[l] =1
arr[2] = 4
arr[3] =9
arr[4] = 16

The typeint[] used in the previous example is an array tyfwgay types are written using a non-array-
type followed by one or more rank specifiers. The example

class Test

static void Main() {

int[] al; // single-dimensional array of 1int

int[,] az2; // 2-dimensional array of int

int[,,] a3; // 3-dimensional array of int

int[1[] j2; // "jagged" array: array of (array of int)
int[101[0] j3; // array of (array of (array of int))

}
}

shows a variety of local variable declarations that use array typesiwitfas the element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the
reference to the array. Array instances are actually created via array initializers and array creation
expressions. The example

class Test

static void Main() {
int[] al = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];

int[][] j2 = new int[3][];

j2[0] = new int[] {1, 2, 3};
j2[1] = new int[] {1, 2, 3, 4, 5, 6};
j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};

}
}

shows a variety of array creation expressions. The variailes2 anda3 denoterectangular arrays, and

the variablej2 denotes gagged array. It should be no surprise that these terms are based on the shapes of
the arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the
array, its rectangular shape is clear. For example, the leng® othree dimensions are 10, 20, and 30,
respectively, and it is easy to see that this array contedri20*30 elements.

20

g A W N P

[«

10
11
12

13
14

15
16

17

18
19

20

21
22
23
24
25
26

27
28

29
30

31
32
33

34

35
36

37
38
39
40
41
42
43

44

45

Chapter 8 Language Overview

In contrast, the variablg2 denotes a “jagged” array, or an “array of arrays”. SpecificgiB/denotes an

array of an array ofnt, or a single-dimensional array of typet[]. Each of thesént[] variables can be
initialized individually, and this allows the array to take on a jagged shape. The example gives each of the
int[] arrays a different length. Specifically, the lengthj@f 0] is 3, the length ofji2[1] is 6, and the

length ofj2[2] is 9.

[Note: In C++, an array declared dasat x[3][5][7] would be considered a three dimensional rectangular
array, while in C#, the declaratiomt[] [][] declares a jagged array typmd note]

The element type and shape of an array—includingtivér it is jagged or rectangular, and the number of
dimensions it has—are part of its type. On the otherdhahe size of the array—as represented by the length
of each of its dimensions—is not part of an array’s type. This split is made clear in the language syntax, as
the length of each dimension is specified in the array creation expression rather than in the array type. For
instance the declaration

int[,,] a3 = new int[10, 20, 30];
has an array type afnt[,,] and an array creation expressiomefv int[10, 20, 30].

For local variable and field declarations, a shorthéorm is permitted so that it is not necessary to re-state
the array type. For instance, the example

int[] al = new int[] {1, 2, 3};
can be shortened to

int[] al = {1, 2, 3};
without any change in program semantics.

The context in which an array initializer such b, 2, 3} is used determines the type of the array being
initialized. The example

class Test
static void Main() {
short[] a = {1, 2, 3};
int[] b = {1, 2, 3};
Tong[] c = {1, 2, 3};

shows that the same array initializer syntax can be tmeseveral different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an
expression context without explicitly stating the type of the array.

8.2.4 Type system unification

C# provides a “unified type system”. All types—including value types—derive from thedppect. Itis
possible to call object methods on any value, even values of “primitive” types suigitaghe example

using System;
class Test

{
static void Main() {
Console.writeLine(3.ToSstring());

}

calls theobject-definedToString method on an integer literal, resulting in the outpait.”

The example

21

O~NOOhAWNBE

10
11
12
13

14
15
16
17
18
19
20

21
22

23
24

25
26

27

28
29
30
31

32
33

34
35

36

37

38
39
40
4
42
43
44
45
46

47
48

49
50
51
52

C#LANGUAGE SPECIFICATION

class Test

static void Main() {
int i = 123;
object o = 1; // boxing
int j = (int) o; // unboxing

3

is more interesting. Arint value can be converted tdhject and back again tént. This example shows
bothboxing andunboxing. When a variable of a value type needs to be converted to a reference type, an
objectbox is allocated to hold the value, and the value is copied into the Bokoxing is just the opposite.
When an object box is cast back to its original value type, the value is copied out of the box and into the
appropriate storage location.

This type system unification provides value types with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’'t needralues to act like objectint values are simply
32-bit values. For programs that negdt values to behave like objects, this capability is available on

demand. This ability to treat value types as objects bridges the gap between value types and reference types

that exists in most languages. For examplstack class can provideush andpop methods that take and
returnobject values.

public class Stack

public object pPop() {.}
public void Push(object o) {.}

Because C# has a unified type system,dhack class can be used with elements of any type, including
value types likeint.

8.3 Variables and parameters

Variables represent storage locations. Every variable hiypa that determines what values can be stored in
the variableLocal variables are variables that are declared in methods, properties, or indexers. A local
variable is defined by specifying a type name and a declarator that specifies the variable name and an
optional initial value, as in:

int a;
int b = 1;

but it is also possible for a local variable declaration to include multiple declarators. The declarations of
andb can be rewritten as:

int a, b = 1;
A variable must be assigned before its value can be obtained. The example

class Test
static void Main() {
int a;
int b = 1;]
int c = a + b; // error, a not yet assigned

}
}

results in a compile-time error because it attempts to use the vaadigtore it is assigned a value. The
rules governing definite assignment are defined in §12.3.

A field (817.4) is a variable that is associated with a class or struct, or an instance of a class or struct. A field

declared with thestatic modifier defines atatic variable, and a field declared without this modifier
defines arinstance variable. A static field is associated with a type, whereas an instance variable is
associated with an instance. The example

22

o N [e20N¢)] A WNBE

©

10
11

12
13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28

29

30
31
32

33

34
35
36
37

38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53

54

55
56

Chapter 8 Language Overview

using Personnel.Data;
class Employee

private static DataSet ds;

public string Name;
pubTic decimal Salary;

3

shows areEmpToyee class that has a private static variable and two public instance variables.

Formal parameter declarations also define variaflbere are four kinds of parameters: value parameters,
reference parameters, output pagders, and parameter arrays.

A value parameter is used for “in” parameter passing, in which the value of an argument is passed into a
method, and modifications of the parameter do not imgeebriginal argument. A value parameter refers to
its own variable, one that is distinct from the corresponding argument. This variable is initialized by copying
the value of the corresponding argument. The example
using System;
class Test {
static void F(int p) {

console.writeLine("p = {0}", p);
p++;

static void Main() {

int a = 1;
console.writeLine("pre: a = {0}", a);
F(a);

Console.writeLine("post: a = {0}", a);

}
shows a method that has a value parameter nanped he example produces the output:

pre: a =1
p=1
post: a =1
even though the value paramegeis modified.

A reference parameter is used for “by reference” parameter passing, in which the parameter acts as an alias
for a caller-provided argument. A reference parameétes not itself define a variable, but rather refers to

the variable of the corresponding argument. Modifications of a reference parameter impact the
corresponding argument. A reference parameter is declared wilfi emodifier. The example

using System;
class Test {
static void Swap(ref int a, ref int b) {
int t = a;
a =b;
b = t;
ks

static void Main() {
int x = 1;
int y

2;

{0}, vy
{0}, vy

{1}", x, y);
{1}", x, ¥);

Console.writeLine("pre: x
swap(ref x, ref y);
Console.writeLine("post: x

3
shows aswap method that has two reference parameters. The output produced is:

=N

23

w N -

23
24
25
26

27
28
29
30

31
32
33
34
35
36
37
38

39
40
4
42
43
44
45
46

a7
48

C#LANGUAGE SPECIFICATION

Theref keyword must be used in both the declaration of the formal parameter and in uses of it. The use of
ref at the call site calls special attention to the paeger, so that a developer reading the code will
understand that the value of the argument could change as a result of the call.

An output parameter is similar to a reference parameter, excéyatttthe initial value of the caller-provided
argument is unimportant. An output parameter is declared widuarmodifier. The example
using System;
class Test { . . . _
static void Divide(int a, int b, out int result, out int remainder) {
result = a / b;
remainder = a % b;

static void Main() {
for (int i = 1; i < 10; i++)
for (int j = 1; j < 10; j++) {
int ans, r;
Divide(i, j, out ans, out r);
Console.writeLine("{0} / {1} = {2}r{3}", i, j, ans, r);

}
}

shows aivide method that includes two output parameters—one for the result of the division and another
for the remainder.

For value, reference, and output parameters, thea®ite-to-one correspondence between caller-provided
arguments and the parameters used to represent thparafeter array enables a many-to-one
relationship: many arguments can be representeddiyge parameter array. In other words, parameter
arrays enable variable length argument lists.

A parameter array is declared witlparams modifier. There can be only one parameter array for a given
method, and it must always be the last parameter pdcilhe type of a parameter array is always a single
dimensional array type. A caller can either pasigle argument of this array type, or any number of
arguments of the element type of this array type. For instance, the example

using System;

class Test

{
static void F(params 1nt[] args) {
Console. wr1teL1ne(# of arguments: {0}", args.Length);
for (int i = 0; i < args. Length; i++)
Console. Wr1teL1ne(\targs[{O}] {1}", 1, args[il);

}
static void Main() {
FQ;
F(L;
F(1, 2);
F(1, 2, 3);
; F(new 1nt[] {1, 2, 3, 4});

}

shows a method that takes a variable number ofit arguments, and several invocations of this method.
The output is:

24

O~NOOhAWNBE

34

35
36
37
38
39

40

41
42
43
44

45
46
47
48
49

50
51
52
53
54
55
56
57
58

FH H*

Chapter 8 Language Overview

of arguments: 0
of arguments: 1

args[0] =1

of arguments: 2
args[0] =1
args[1l] = 2

of arguments: 3
args[0] =1
args[1l] = 2
args[2] = 3

of arguments: 4
args[0] =1
args[1l] = 2
args[2] = 3
args[3] = 4

Most of the examples presented in this introduction useévthieceLine method of theconsole class. The
argument substitution behavior of this method, as exhibited in the example

inta=1, b = 2;
console.writeLine("a = {0}, b = {1}", a, b);

is accomplished using a parameter array. WheteLine method provides several overloaded methods for

the common cases in which a small number of arguments are passed, and one method that uses a parameter

array.

namespace System

}

pubTic class Console
public static void writeLine(string s) {..}
public static void writeLine(string s, object a) {.}
public static void writeLine(string s, object a, object b) {.}

5ub1ic static void writeLine(string s, params object[] args) {..}

8.4 Automatic memory management

Manual memory management requires developers to manage the allocation and de-allocation of blocks of
memory. Manual memory management can be both time-consuming and difficult. &uG#hatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of
cases, automatic memory management increasesouadiéy and enhances developer productivity without
negatively impacting either expressiveness or performance.

The example

using System;
pubTic class Stack

private Node first = null;

pubTic bool Empty {
get {
return (first == null);

}

public object Pop() {
if (first == null)
] thEow new Exception("Can't Pop from an empty Stack.");
else
object temp = first.value;
first = first.Next;
return temp;

25

0 ~NO O A WN P

Nl =
B WN R O©

15
16
17
18

19

20
21
22
23
24
25
26
27
28

29
30
31
32

33
34
35
36
37

38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

C#LANGUAGE SPECIFICATION

public void Push(object o) {
first = new Node(o, first);

class Node

pubTic Node Next;
public object value;
public Node(object value): this(value, null) {}
public Node(object value, Node next) {
Next = next;
value = value;

}
}

shows astack class implemented as a linked listidde instances. Node instances are created irpthgh
method and are garbage collected when no longer neededddinstance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed
from thestack, the associateNode instance becomes eligible for garbage collection.

The example
class Test

static void Main() {
Stack s = new Stack();
for (int i = 0; i < 10; i++)
s.Push(i);
s = null;
3
ks

shows code that uses tBe&ack class. Astack is created and initialized with 10 elements, and then
assigned the valueuT1. Once the variabls is assigned null, thetack and the associated Node

instances become eligible for garbage collection. Tddage collector is permitted to clean up immediately,
but is not required to do so.

The garbage collector underlying C# may work by moving objects around in memory, but this motion is
invisible to most C# developers. For developers who are generally content with automatic memory
management but sometimes need fine-grained cootithat extra bit of performance, C# provides the
ability to write “unsafe” code. Such code can deal diewith pointer types and object addresses, however,
C# requires the programmer fix objects to temporarily prevent the garbage collector from moving them.

This “unsafe” code feature is in fact a “safe” feature from the perspective of both developers and users.
Unsafe code must be clearly marked in the code with the modifisafe, so developers can't possibly use
unsafe language features accidentally, and the dermmgnd the execution engine work together to ensure
that unsafe code cannot masquerade as safe code. Thegdions limit the use of unsafe code to situations
in which the code is trusted.

The example

using System;
%1ass Test
static void writeLocations(byte[] arr) {
unsafe {
fixed (byte* pArray = arr) {
byte* pElem = pArray;
for (int i = 0; i < arr.Length; i++) {
byte value = *pElem;
console.writeLine("arr[{0}] at Ox{1:X} is {2}",
i, (uint)pElem, value);
pElem++;

26

a b wN ek

o N O

11
12
13

14

15

16
17
18

19
20
21
22

23
24

Chapter 8 Language Overview

static void Main() {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
writeLocations(arr);

3

shows an unsafe block in a method named teLocations that fixes an array instance and uses pointer
manipulation to iterate over the elements. The indelyejaand location of each array element are written to
the console. One possible example of output is:

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]

at Ox8E0360 is
at Ox8E0361 is
at Ox8E0362 is
at Ox8E0363 is
at Ox8E0364 is

VAWNR

but, of course, the exact memory locations may be different in different executions of the application.

8.5 Expressions
C# includes unary operators, binary operators, and anangoperator. The following table summarizes the

operators, listing them in order of precedence from highest to lowest:

Section | Category Operators

14.5 Primary x.y f(x) alx] x++ x-- new
typeof checked unchecked

0 Unary + - 1~ ++x --x (T)x

14.7 Multiplicative /%

14.7 Additive + -

0 Shift < >>

14.9 Relation_aland < > <= >= 1s as

type-testing

14.9 Equality == =

14.10 | Logical AND &

14.10 | Logical XOR A

14.10 | Logical OR |

14.11 | Conditional AND | &&

14.11 | Conditional OR | Il

14.12 | Conditional 7t

14.13 | Assignment = F= /= %= 4= -= <<= >>= & A= |=

When an expression contains multiple operatorsptieeedence of the operators controls the order in which
the individual operators are evaluated. For example, the expressiory * zis evaluated as
x + (y * z) because th& operator has higher precedence thantloperator.

When an operand occurs between two operators with the same precedemssodiativity of the operators
controls the order in which the operations are performed:

27

10
11

C#LANGUAGE SPECIFICATION

» Except for the assignment operators, all binary operatoriefirassociative, meaning that operations
are performed from left to right. For exampie,+ y + zis evaluated agx +y) + z.

* The assignment operators and the conditional operatgrareright-associative, meaning that
operations are performed from right to left. For examples y = zisevaluatedag = (y = z).

Precedence and associativity can be controlled using parentheses. For exampje* z first multiplies
y by z and then adds the resultxobut (x + y) * zfirstaddsx andy and then multiplies the result ke

8.6 Statements

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for
each.

28

Chapter 8 Language Overview

Statement Example
Statement lists and block statl%)_/oi d MainQ {
statements a0y
{
HQ;
10;
}
}

Labeled statements amgto
statements

static void Main(string[] args) {
if (args.Length == 0
goto done;
Console.wWriteLine(args.Length);

done:))
console.writeLine("Done");

Local constant declarations

static void Main() {
const float pi = 3.14f;
const int r = 123;
console.writeLine(pi * r * r);

Local variable declarations

static void Main() {
int a;
int b =2, c = 3;
a=1;
console.writeLine(a + b + ¢);

}

Expression statements

static int F(int a, int b) {
return a + b;

static void Main() {
F(1, 2); // Expression statement

if statements

static void Main(string[] args) {
if (args.Length == 0
Console.WriteLine("No args");
else
console.writeLine("Args");

}

switch statements

static void Main(string[] args) {
switch (args.Length) {

case 0:
Console.writeLine("No args");
break;

case 1:
Console.writeLine("One arg ");
break;

default:
int n_= args.Length;
Console.writeLine("{0} args", n);

break;
}
3
while statements static void Main(string[] args) {
int i = 0;
while (i < args.Length) {
Console.writeLine(args[i]);
i4+;
3
3

29

C#LANGUAGE SPECIFICATION

30

do statements

static void Main() {

string s;
do { s = console.ReadLine(); }
while (s !'= "Exit");

for statements

static void Main(string[] args) {
for (int i = 0; i < args.Length; i++)
console.WriteLine(args[i]);

}

foreach statements

static void Main(string[] args) {
foreach (string s in args)
Console.writeLine(s);

}
break statements static void Main(string[] args) {
int i = 0;
while (true) {
if (i == args.Length)
break;
Console.writeLine(args[i++]);
ks
continue statements StatiCtVQid gain(string[] args) {
int i = 0;
while (true) {
console.WriteLine(args[i++]);
if (i < args.Length)
continue;
break;
ks

return statements

static int F(int a, int b) {
return a + b;

static void Main() {
console.writeLine(F(1, 2));
return;

throw statements andry
statements

static int F(int a, int b) {
if (b == 0)
throw new Exception("Divide by zero");
return a / b;

static void Main() {
try {) .
console.writeLine(F(5, 0));

catch(Exception e) {
console.writeLine("Error");

}

checked andunchecked
statements

static void Main() {
int X = Int32.Maxvalue;
console.writeLine(x + 1); // overflow
checked {
Console.writeLine(x + 1); // Exception

unchecked {
console.writeLine(x + 1); // overflow

N

© 0N o O

10
11

12
13
14
15
16
17

18
19
20
21

22
23
24

25
26

27
28
29

30
31
32
33

Chapter 8 Language Overview

Tock statements static void Main() {

Aa=.;
Tock(a) {
; a.P = a.P + 1;

}

static void Main() {
using (Resource r =

r.rQ;

using statements

new Resource()) {

8.7 Classes

Class declarations define new reference types. A class can inherit from another class, and can implement

interfaces.

Class members can include constants, fields, methodpegies, events, indexers, operators, instance
constructors, destructors, statmnstructors, and nested type declarations. Each member has an associated
accessibility (§10.5), which controls the regions afgnam text that are able to access the member. There
are five possible forms of accessibilityh@&se are summarized in the table below.

Form Intuitive meaning

public Access not limited

protected Access limited to the containing class or types derived from the containing clas$
internal Access limited to this program

?;g‘éﬁﬁﬁd Access limited to this program or types derived from the containing class
private Access limited to the containing type

The example

using System;
class MycClass

public MyClass() {

Console.writeLine("Instance constructor");

public MyClass(int value) {
MyField = value;

console.writeLine("Instance constructor');

~MyClass() { |)
console.writeLine("Destructor™);

pubTic const int MyConst = 12;

pubTlic int MyField = 34;

public void MyMethod(){
Cconsole.writeLine("MyClass.MyMethod");

public int MyProperty {
get {
return MyField;

31

0 ~N O O A WNBE

11
12

13

14
15
16

17
18
19

20

21
22
23
24
25
26

27
28

29
30
31

32
33

34
35
36

37
38
39

40
41

42
43
44

45
46
a7

48
49
50

51

52

53
54
55

C#LANGUAGE SPECIFICATION

}

set {
MyField = value;

public int this[int index] {

}

get {
return O;

set {
console.writeLine("this[{0}] = {1}", 1index, value);

public event EventHandler MyEvent;

public static MyClass operator+(MyClass a, MyClass b) {

return new MyClass(a.MyField + b.MyField);

internal class MyNestedClass

}

shows a class that contains each kind of member. The example
class Test

static void Main() {

}

// Instance constructor usage
MyClass a = new MyClass();
MyClass b = new MyClass(123);

// Constant usage
Console.wWriteLine("MyConst = {0}", MyClass.MyConst);

// Field usage
a.MyField++;
Console.writeLine("a.MyField = {0}", a.MyField);

// Method usage
a.MyMethod();

// Property usage
a.MyProperty++;
Console.writeLine("a.MyProperty = {0}", a.MyProperty);

// Indexer usage
a[3] = a[1] = a[2];
console.writeLine("a[3] = {0}", a[3]1);

// Event usage
a.MyEvent += new EventHandler(MyHandler);

// Overloaded operator usage
MyClass c = a + b;

static void MyHandler(object sender, EventArgs e) {

Console.writeLine("Test.MyHandler");

internal class MyNestedClass

3

shows uses of these members.

8.7.1 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time.
Constants are permitted to depend on other cotstaithin the same program as long as there are no
circular dependencies. The rules governing constaptessions are defined in §14.15. The example

32

a b wN ek

[«2]

10
11
12
13
14
15

16

17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32
33

34
35

36
37
38
39
40
41
42
43
44
45
46

47
48

49
50
51
52
53

Chapter 8 Language Overview

class Constants

public const int A
public const int B

A+ 1;

shows a class nhamembnstants that has two public constants.

Even though constants are considered static membem;stant declaration neither requires nor allows the
modifier static. Constants can be accessed through the class, as in

using System;

class Test

{
static void Main() {
console.writeLine("{0}, {1}", Constants.A, Constants.B);

}
which prints out the values @fonstants.A andConstants.B, respectively.

8.7.2 Fields
A field is a member that represents a variable associated with an object or class. The example
class color

internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;

public Color(ushort red, ushort blue, ushort green) {
redPart = red;
bTuePart = blue;
greenPart = green;

public static Color Red = new Color(OxFF, 0, 0);

pubTlic static Color Blue = new Color(0, OxFF, 0);

public static Color Green new Color(0, 0, OXFF);
public static Color white new Color(OxFF, OXFF, OXFF);

}

shows acolor class that has internal instance fields namedprart, bluePart, andgreenpPart, and
static fields name@ed, Blue, Green, andwhite

The use of static fields in this manner is not ideal. The fields are initialized at some point before they are
used, but after this initialization there is nothingstop a client from changing them. Such a modification
could cause unpredictable errors in other programs thataber and assume that the values do not
changeReadonly fields can be used to prevent such problems. Assignments to a readonly field can only

occur as part of the declaration, or in an instance constructor or static constructor in the same class. A static

readonly field can be assigned in a static construetiod, a non-static readonly field can be assigned in an
instance constructor. Thus, thelor class can be enhanced by adding the modifeerdon1y to the static
fields:

class color

internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;

public Color(ushort red, ushort blue, ushort green) {
redPart = red;
bTuePart = blue;
greenPart = green;

33

a b wN ek

© 0N O

10

12
13
14

15
16
17

18
19

21
22
23
24
25
26

27
28

29
30
31
32

34
35

36
37
38
39

40
41
42
43
44
45

46
47
48

49
50
51

52
53
54

C#LANGUAGE SPECIFICATION

public static readonly Color Red = new Color(OxFF, 0, 0);

public static readonly Color Blue = new Color(0, OxFF, 0);

pubTlic static readonly Color Green new Color(0, 0, OXFF);
public static readonly Color White new Color(OxFF, OXFF, OXFF);

3

8.7.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods have a (possibly empty) list of formal parameters, a return value (unless the meghod$ype is

void), and are either static or non-stat8tatic methods are accessed through the clasen-static methods,

which are also callethstance methods, are accessed through instances of the class. The example

using System;
pubTic class Stack

public static Stack Clone(stack s) {..}
pubTic static Stack Flip(stack s) {..}
public object Pop() {.}

public void Push(object o) {.}

public override string ToString() {..}

3

class Test

static void Main() {
Stack s = new Stack();
for (int i = 1; i < 10; i++)
s.Push(i);

Stack flipped = Stack.FTlip(s);
Stack cloned = Stack.Clone(s);

Console.writeLine("original stack: " + s.ToString());
Console.writeLine("Flipped stack: " + flipped.ToString());
Console.writeLine("Cloned stack: " + cloned.ToString());

}
}

shows astack that has several static methodd ¢ne andF11ip) and several instance metho@®p, Push,
andToString).

Methods can be overloaded, which means that meltipethods may have the same name so long as they
have unique signatures. The signature of a metwrists of the name of the method and the number,
modifiers, and types of its formal parameters. The signature of a method does not include the return type.
The example

using System;

class Test

{
static void FO {
console.writeLine("FO");

static void F(object o) {
Console.writeLine("F(object)");

static void F(int value) {
console.writeLine("F(int)");

static void F(ref int value) {
console.writeLine("F(ref int)");

34

o N o U1 b WN P

24

25
26
27
28
29
30

31
32
33
34

35
36

37
38
39
40

41
42
43
44
45
46

47
48
49
50

51
52
53

Chapter 8 Language Overview

static void F(int a, int b) {
console.writeLine("F(int, int)");

static void F(int[] values) {
console.writeLine("F(int[1)");

static void Main() {
FQ;
F(L;
int i = 10;
F(ref 1i);
F((object)1);
F(1, 2);
) F(new int[] {1, 2, 3});
}

shows a class with a number of methods calted@he output produced is

FQ

F(int)
F(ref int)
F(object)
F(int, int)
FGnt[D

8.7.4 Properties

A property is a member that provides access to a characteristic of an object or a class. Examples of
properties include the length of a string, the size tr#, the caption of a window, the name of a customer,
and so on. Properties are a natural extension ofdidath are named members with associated types, and
the syntax for accessing fields and properties is tineesddowever, unlike fields, properties do not denote
storage locations. Instead, properties have accessairspecify the statements to be executed when their
values are read or written.

Properties are defined with property declarations. flits& part of a property declaration looks quite similar
to a field declaration. The second part includes a get accessor and/or a set accessor. In the example below,
theButton class defines @aption property.

pubTic class Button

private string caption;

public string Caption {
get {)
return caption;

set {
caption = value;
Repaint();

}
}

Properties that can be both read and written, suctapsion, include both get and set accessors. The get
accessor is called when the property’s value is readséheaccessor is called when the property’s value is
written. In a set accessor, the new value for the prggennade available via an implicit parameter named
value.

The declaration of properties is relatively straightforward, but the real value of properties is seen when they
are used. For example, tkaption property can be read and written in the same way that fields can be read
and written:

35

A WNBE

o N o O

10
11
12

13
14

15
16
17
18
19
20
21

22
23
24
25

26

27
28
29
30
31
32

33

34
35
36

37
38
39
40

41
42

43
44

45

46
47

48
49
50
51
52
53

C#LANGUAGE SPECIFICATION

Button b = new Button();

b.Caption = "ABC"; // set; causes repaint

string s = b.Caption; // get)

b.Caption += "DEF"; // get & set; causes repaint
8.7.5 Events

An event is a member that enables an object or class to provide notifications. A class defines an event by

providing an event declaration (which reseetba field declaration, though with an addadnt keyword)
and an optional set of event accessors. The bffibis declaration must be a delegate type.

An instance of a delegate type encapsulates one og gailable entities. For instance methods, a callable
entity consists of an instance and a method on thatinmt®. For static methods, a callable entity consists of
just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that

delegate instance’s methods with that set of arguments.

In the example
public delegate void EventHandler(object sender, System.EventArgs e);
public class Button

public event EventHandler Click;
public void Reset() {
Click = null;

3

theButton class defines alick event of typeEventHandTer. Inside theButton class, thec11 ck
member is exactly like a private field of tyentHand1er. However, outside thButton class, the
CT11ick member can only be used on the left-hand side oftthand-= operators. The= operator adds a
handler for the event, and the: operator removes a handler for the event. The example

using System;
public class Forml

public Forml() {))
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl.Click += new EventHandler(Buttonl_Click);

Button Buttonl = new Button();

void Buttonl_Click(object sender, EventArgs e) {
console.writeLine("Buttonl was clicked!");

pubTic void Disconnect() {
Buttonl.Click -= new EventHandler(Buttonl_Click);

}

shows aForml class that addButtonl_cC11ck as an event handler feuttonl’s C11ick event. In the
Disconnect method, that event handler is removed.

For a simple event declaration such as
pubTlic event EventHandler Click;
the compiler automatically provideld implementation underlying the- and-= operators.

An implementer who wants more control can get it bplcitly providing add and remove accessors. For
example, th&utton class could be rewritten as follows:

public class Button
private EventHandler handler;

public event EventHandler Click {
add { handler += value; }

36

w N

(&)]

© 00N O

10
11

12
13

15

16
17
18
19

20

21
22
23

24
25
26

27
28
29

30
31
32

33
34
35

36
37
38

39
40
41
42

43
44
45

46
47
48
49

Chapter 8 Language Overview

remove { handler -= value; }

}

This change has no effect on client code, but allowsstineton class more implementation flexibility. For
example, the event handler fot i ck need not be represented by a field.

8.7.6 Operators

An operator is a member that defines the meaning of an esgitn operator that can be applied to instances
of the class. There are three kinds of operators¢hatbe defined: unary operators, binary operators, and
conversion operators.

The following example definestzi gi t type that represents decimal digits—integral values between
and 9.
using System;
public struct Digit
byte value;

pubTlic Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

public Digit(int value): this((byte) value) {}

public static implicit operator byte(bigit d) {
return d.value;

public static explicit operator Digit(byte b) {
return new Digit(b);

public static Digit operator+(Digit a, Digit b) {
return new Digit(a.value + b.value);

public static Digit operator-(Digit a, Digit b) {
return new Digit(a.value - b.value);

public static bool operator==(Digit a, Digit b) {
return a.value == b.value;

public static bool operator!=(Digit a, Digit b) {
return a.value != b.value;

public override bool Equals(object value) {
if (value == null) return false;
if (GetType() == value.GetType()) return this == (Digit)value;
return false;

pubTic override int GetHashCode() {
return value.GetHashCode();

public override string ToString() {
return value.ToString(Q);

37

O~NOOhAWNBE

16

17

18

19

20

21
22

23
24
25
26

27
28
29

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47

48
49
50
51
52
53
54

55
56

C#LANGUAGE SPECIFICATION

class Test

static void Main() {

Digit a = (Digit) 5;

Digit b = (Digit) 3;

Digit plus = a + b;

Digit minus a - b;

bool equals (a == b);
Cconsole.writeLine("{0} + {1}
console.writeLine("{0} - {1}
console.writeLine("{0} == {1} =

", a, b, plus);
, a, b, minus);
, a, b, equals);

Ll
A
AN N
N

}
}

TheDigit type defines the following operators:

An implicit conversion operator frormigit to byte.

An explicit conversion operator frolyte toDigit.

An addition operator that adds tvid gi t values and returnsmzi gi t value.

A subtraction operator that subtracts anigyi t value from another, and return®a&gi t value.

The equality £=) and inequality (=) operators, which compare tvidi gi t values.

8.7.7 Indexers

An indexer is a member that enables an object to be indexed in the same way as an array. Whereas
properties enable field-like access, indexers enable array-like access.

As an example, consider tlseack class presented earlier. The designer of this class might want to expose
array-like access so that it is possible to inspect or alter the items on the stack without performing
unnecessarpush andpPop operations. That is, clasxack is implemented as a linked list, but it also
provides the convenience of array access.

Indexer declarations are similar to property declarai with the main differences being that indexers are
nameless (the “name” used in the declarationhiss, sincethis is being indexed) and that indexers
include indexing parameters. Thedexing parameters are providedween square brackets. The example

38

using System;
public class Stack

private Node GetNode(int index) {
Node temp = first;
while (index > 0) {
temp = temp.Next;
index--;

return temp;

public object this[int index] {
get {
if (!validIndex(index))
] throw new Exception("Index out of range.");
else
return GetNode(index) .value;

set {
if (!validIndex(index))
] throw new Exception("Index out of range.");
else
GetNode(index) .value = value;

© ~N o g A WNBE

14
15

16

17
18
19
20

21
22
23
24

25
26
27
28

29
30
31
32
33

34
35
36
37

38
39
40
41
42
43
44
45

47
48

49
50

51

52
53
54

Chapter 8 Language Overview

class Test

static void Main() {
Stack s = new Stack();

s.Push(1);

s.Push(2);

s.Push(3);

s[0] = 33; // Changes the top item from 3 to 33
s[1] = 22; // Changes the middle item from 2 to 22
s[2] = 11; // Changes the bottom item from 1 to 11

}
}

shows an indexer for thetack class.

8.7.8 Instance constructors
An instance constructor is a member that implements the actionguieed to initialize an instance of a class.
The example

using System;
class Point

{
public double x, y;
pubTic Po1nt() {
this.x = 0;
this.y = 0;
pubTic Point(double x, double y) {
this.x = Xx;
this.y = vy;
public static double Distance(Point a, Point b) {
doubTle xdiff = a.x - b. X;
doubTle ydiff = a.y - b.y
return Math.sqrt(xdiff X "xdiff + ydiff * ydiff);
public override string ToString() {
return string.Format(" ({0}, {1})", X, y);
b

class Test

static void Main() {
Point a = new Point(Q);
Point b = new Point(3, 4);
double d = Point. D1stance(a b);
console.writeLine("Distance from {0} to {1} is {2}", a, b, d);

}

shows aPoint class that provides two public instance constructors, one of which takes no arguments, while
the other takes twdoubTe arguments.

If no instance constructor is supplied for a clasgntian empty one with no parameters is automatically
provided.

8.7.9 Destructors

A destructor is a member that implements the actions requiceddstruct an instance of a class. Destructors
cannot have parameters, they cannot have accessibiitifiers, and they cannot be called explicitly. The
destructor for an instance is called aonatically during garbage collection.

39

=

0 N O a b wnN

11
12

13
14
15
16

17

18

19
20
21

22

23
24
25
26

27
28
29

30
31
32
33

34

35
36

37

38
39
40
41
42

43

44
45
46
47

48
49
50
51
52
53
54

C#LANGUAGE SPECIFICATION

The example
using System;
class Point
public double x, y;
pubTic Point(double x, double y) {

this.x = Xx;
this.y = vy;
~Point() {

console.writeLine("Destructed {0}", this);

public override string Tostring() {
return string.Format(" ({0}, {1})", X, y);

}

shows aPo1int class with a destructor.

8.7.10 Static constructors

A static constructor is a member that implements the actions reggliito initialize a class. Static constructors
cannot have parameters, they cannot have accessibiitifiers, and they cannot be called explicitly. The
static constructor for a ¢ is called automatically.

The example

using Personnel.Data;
class Employee

private static DataSet ds;

static Employee() {
) ds = new DataSet(.);

public string Name;
pubTlic decimal Salary;

h
shows arEmpTloyee class with a static constructor that initializes a static field.

8.7.11 Inheritance
Classes support single inheritance, and the tipgect is the ultimate base class for all classes.

The classes shown in earlier examples all implicitly derive frdomect. The example

using System;
class A

public void F() { console.writeLine("A.F"); }

shows a clasa that implicitly derives fronobject. The example
class B: A

pubTic void G() { console.writeLine("B.G"); }

class Test

static void Main() {

B b =new BQ;

b.FQ); // Inherited from A
b.GO; // Introduced in B

40

A WNBE

(&)]

31
32
33

34
35
36
37
38

39
40
41
42

43
44
45
46
47

48
49
50

52
53

54

55
56

Chapter 8 Language Overview

= b; // Treat a B as an A
) .

shows a clasB that derives fromA. The class inheritsA’s F method, and introduces@method of its own.

Methods, properties, and indexers carnviséual, which means that their implementation can be overridden
in derived classes. The example

using System;
class A

public virtual void FQ) { Console.writeLine("A.F"); }

class B: A

public override void FQ) {
base.F(Q);
console.writeLine("B.F");

}

class Test

static void Main() {
B b =new BQ;
b.FO;

A a = b;
a.FQ;

}

shows a clasa with a virtual method-, and a class that overrides. The overriding method iB contains
a call,base.F(), which calls the overridden method An

A class can indicate that it is incomplete, and is intehdely as a base class for other classes, by including
the modifierabstract. Such a class is called abstract class. An abstract class can specistract
members—members that a non-abstract dedvaass must implement. The example

using System;
abstract class A

public abstract void FQ);

class B: A

public override void F() { Console.writeLine("B.F"); }

class Test

static void Main() {
B b=newBQ;
b.FO;

A a = b;
a.FQ;
}
}

introduces an abstract methedn the abstract class. The non-abstract clagsprovides an implementation
for this method.

8.8 Structs

The list of similarities between classes and structs is long—structs can implement interfaces, and can have

the same kinds of members as classes. Structs dlitfer classes in several important ways, however:

41

w N -

o N o o b

©

11
12
13
14
15

16
17
18
19
20
21
22
23

24

25
26
27

28
29
30
31
32

33
34
35
36

37

38
39

40

41
42
43
44
45
46
47

48

49

50

51
52
53
54

C#LANGUAGE SPECIFICATION

structs are value types rather than reference typesnaedtance is not supported for structs. Struct values
are stored “on the stack” or “in-line”. Careful pr@mmers can sometimes enhance performance through
judicious use of structs.

For example, the use of a struct rather than a class fariat can make a large difference in the number of
memory allocations performed at run time. The progratowereates and initializes an array of 100 points.
With point implemented as a class, 101 separate objects are instantiated—one for the array and one each
for the 100 elements.

class Point

pubTlic int x, y;
public Point(int x, int y) {

th‘lS-X = X’
th'is.y =Y;
}
class Test
static void Main() {
Point[] points = new Point[100];
for (int i = 0; i < 100; i++)
pO'intS['i] = new Po-in-t(-i, -i*-i);
}

If Pointis instead implemented as a struct, as in
struct Point

public int x, y;

pubTic Point(int x, int y) {
this.x X;
this.y = vy;

}

only one object is instantiated—the one for the array. Rtrent instances are allocated in-line within the
array. This optimization can be misused. Using d8listead of classes can also make an application run
slower or take up more memory, as passing a struct instance by value causes a copy of that struct to be
created.

8.9 Interfaces

An interface defines a contract. A class or struct thgilements an interface must adhere to its contract.
Interfaces can contain methods, properties, events, and indexers as members.

The example

interface IExample

string this[int index] { get; set; }
event EventHandler E;
void F(int value);

) string P { get; set; }

public delegate void EventHandler(object sender, EventArgs e);
shows an interface that contains an indexer, an evemimethodr, and a property P.

Interfaces may employ multiple inheritance. In the example
interface IControl

void Paint();

42

(o] 0 ~N O O A WNBE

=
o

11

12
13
14
15

16
17
18
19
20

21

22
23
24
25
26
27
28
29
30

31
32

33
34
35
36
37
38
39
40
41
42
43
44
45

46

47
48

49
50
51
52
53

Chapter 8 Language Overview

interface ITextBox: IControl

void SetText(string text);

interface IListBox: IControl

void SetItems(string[] items);

interface IComboBox: ITextBox, IListBox {}
the interfacelComboBox inherits from bothiiTextBox andIListBox.

Classes and structs can implement multiple interfaces. In the example
interface IDataBound

void Bind(Binder b);

public class EditBox: Control, IControl, IDataBound

pubTlic void Paint() {..}
public void Bind(Binder b) {.}

the clas€d1itBox derives from the classontrol and implements botlhControl andIDataBound.

In the previous example, tiraint method from theControl interface and theind method from
IDataBound interface are implemented using public members orethetBox class. C# provides an
alternative way of implementing these methods thiaings the implementing class to avoid having these
members be public. Interface members can be implemented using a qualified name. For example, the
EditBox class could instead be implemented by providitgntrol.Paint andIDataBound.Bind
methods.

pubTic class EditBox: IControl, IDataBound

void IControl.Paint() {.}
void IDataBound.Bind(Binder b) {.}

Interface members implemented in this way are cadbgalicit interface members because each member
explicitly designates the interface member beimpliemented. Explicit interface members can only be
called via the interface. For example, thesi tBox’s implementation of theaint method can be called
only by casting to th&Control interface.

class Test

static void Main() {
EditBox editbox = new EditBox();
editbox.Paint(); // error: no such method
IControl control = editbox;
) control.Paint(); // calls EditBox’s Paint implementation
3

8.10 Delegates

Delegates enable scenarios that some other langueaye addressed with function pointers. However,
unlike function pointers, delegates are object-oriented and type-safe.

A delegate declaration defines a class that is derived from the &yas®m.Delegate. A delegate instance
encapsulates one or more methods, each of which is referred taHalade entity. For instance methods, a
callable entity consists of an instance and a methothat instance. For static methods, a callable entity
consists of just a method. Given a delegate instandeaarappropriate set of arguments, one can invoke all
of that delegate instance’s methods with that set of arguments.

43

10
11
12
13

14
15
16
17
18

19

20
21
22

23
24
25
26
27

28
29
30
31

32

33
34
35

36

37
38
39
40
41
42

43
44
45
46
47
48
49

50
51
52

C#LANGUAGE SPECIFICATION

An interesting and useful property of a delegateanse is that it does not know or care about the classes of

the methods it encapsulates; all that matters is that those methods be compatible (§22.1) with the delegate’s

type. This makes delegates perfectly suited‘@aronymous” invocation. This is a powerful capability.

There are three steps in defining and using delegagdarchtion, instantiation, and invocation. Delegates
are declared using delegate declaration syntax. The example

delegate void SimpleDelegate();
declares a delegate nam&itinp1eDelegate that takes no arguments and returns no result.

The example
class Test

static void FO_{ _
System.Console.WriteLine("Test.F");

static void Main() {
31?p1eDe1egate d = new SimpleDelegate(F);

h
creates &impleDelegate instance and then immediately calls it.

There is not much point in instantiating a delegate for a method and then immediately calling that method
via the delegate, as it would be simpler to call the mettiioglctly. Delegates really show their usefulness
when their anonymity is used. The example
void Multicall(simplebelegate d, int count) {
for (int i = 0; 1 < count; i++)

dO;

3

shows amu1ticall method that repeatedly callssampTleDelegate. ThemulticCall method doesn’t
know or care about the type of the target method forstivep1eDelegate, what accessibility that method
has, or whether or not that method is static. All thtters is that the target method is compatible (822.1)
with SimpleDelegate.

8.11 Enums

An enum type declaration defines a type name for a related group of symbolic constants. Enums are used for

“multiple choice” scenarios, in which a runtime decision is made from a fixed number of choices that are
known at compile-time.

The example

enum Color

Red,
Blue,
Green

class Shape
public void Fill(Color color) {
switch(color) {
case Color.Red:

Break;
case Color.Blue:

Break;

0 ~NO O A WN P

©

10

11
12
13
14
15

16

17
18
19
20
21

22
23
24
25

26
27

28
29
30

31
32

33
34
35
36
37
38
39
40
41
42
43

44
45

46
47

48

49
50
51
52
53

Chapter 8 Language Overview

case Color.Green:

Break;

default:
break;
}
3
3

shows acolor enum and a method that uses this enum. The signature &fithemethod makes it clear
that the shape can be filled with one of the given colors.

The use of enums is superior to the use of integaistants—as is common in languages without enums—
because the use of enums makes the code more readabse|f-documenting. The self-documenting nature
of the code also makes it possible for the developn®ul to assist with code writing and other “designer”
activities. For example, the use od1or rather thanint for a parameter type enables smart code editors to
suggestolor values.

8.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on a few system-provided
classes such ag/stem.Console. It is far more common, however, for real-world applications to consist of
several different pieces, each compiled separakaly example, a corporate application might depend on
several different components, including some digwed internally and some purchased from independent
software vendors.

Namespaces andassemblies enable this component-based system. Namespaces provide a logical
organizational system. Namespaces are used both astamal” organization system for a program, and as
an “external” organization system—a way of presenting program elements that are exposed to other
programs.

Assemblies are used for physical packaging and deploymAntassembly may contain types, the executable
code used to implement these types, and references to other assemblies.

To demonstrate the use of namespaces and assentibiéesection revisits the “hello, world” program
presented earlier, and splits it into two pieces:assllibrary that provides messages and a console
application that displays them.

The class library will contain a single class naniad 1oMessage. The example

// HelloLibrary.cs
namespace CSharp.Introduction

public class HelloMessage

public string Message {
get {
return "hello, world";

}
}
}

shows theHeTToMessage class in a namespace nan&harp.Introduction. TheHelloMessage
class provides a read-only property named sage. Namespaces can nest, and the declaration

namespace CSharp.Introduction

is shorthand for two levels of namespace nesting:
namespace CSharp

namespace Introduction

45

0 N o o~ W NP

Nl
2 WNRO©

15
16

17
18
19

20

21

22
23
24
25

26
27

28

29

30
31
32
33
34

35
36
37

38
39
40
41

42
43
44
45
46
47
48

C#LANGUAGE SPECIFICATION

The next step in the componentization of “hello, Wdiis to write a console application that uses the
HelloMessage class. The fully qualified name for the class—
CSharp.Introduction.HelloMessage—could be used, but this name is quite long and unwieldy. An
easier way is to usewsing namespace directive, which makes it possible to use all of the types in a
namespace without qualification. The example

// HelloApp.cs
using CSharp.Introduction;
class HelloApp

static void Main() {

HelloMessage m = new HelloMessage();
System.Console.WriteLine(m.Message) ;

3

shows a using namespace directive that refers tasharp . Introduction namespace. The occurrences
of HelloMessage are shorthand fotSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliasessiAg alias directive defines an alias for a type. Such
aliases can be useful in situation in which name callisioccur between two class libraries, or when a small
number of types from a much larger namespace are being used. The example

using MessageSource = CSharp.Introduction.HelloMessage;
shows a using alias directive that defimesssageSource as an alias for thael1oMessage class.

The code we have written can be compiled into a class library containing theHela¥sMessage and an
application containing the clas®110App. The details of this compilation step might differ based on the
compiler or tool being used. A command-line compiler might enable compilation of a class library and an
application that uses that library withe following command-line invocations:

csc /target:Tlibrary HelloLibrary.cs
csc /reference:HelloLibrary.d11 HelloApp.cs

which produce a class library namadlloLibrary.d11 and an application nametk110App. exe.

8.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component isource compatible with a previous version if code that plends on the previous version can,
when recompiled, work with the new version. In contrast, a new version of a compotemérig

compatible if an application that depended on the old version can, without recompilation, work with the new
version.

Most languages do not support binary compatibiityall, and many do little to facilitate source
compatibility. In fact, some languages contain flawsttimake it impossible, in general, to evolve a class
over time without breaking at least some client code.

As an example, consider the situation of a base class author who ships a classaamdd the first
version,Base contains no method. A component nameberiived derives fromBase, and introduces
anF. Thisberived class, along with the clagase on which it depends, is released to customers, who
deploy to numerous clients and servers.

// Author A
namespace A

?ub1ic class Base // version 1
}
}

46

QWO ~NOOUDWNLPE

=

12

13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29

30
31
32

33
34

35
36
37
38
39

40
41

42
43
44
45
46
47
48
49
50
51

Chapter 8 Language Overview

// Author B
namespace B

class Derived: A.Base

public virtual void FO {)
System.Console.WriteLine("Derived.F");

}
}

So far, so good, but now the versioning trouble begins. The autrgasd produces a new version, giving it
its own methodr.

// Author A
namespace A

public class Base // version 2

public virtual void FO { // added in version 2
System.Console.WriteLine("Base.F");

}
}

This new version oBase should be both source and binary compatible with the initial version. (If it weren’t
possible to simply add a method then a base adas&d never evolve.) Unfortunately, the névin Base

makes the meaning oferived’s F unclear. Didberived mean to overrid@ase’s F? This seems unlikely,
since wherperived was compiledBase did not even have anl Further, ifDerived’s F does override
Base’s F, then it must adhere to the contract specifiehge—a contract that was unspecified when
Derived was written. In some cases, this is impossible. For exarBplee’'s F might require that overrides

of it always call the bas@erived's F could not possibly adhere to such a contract.

C# addresses this versioning problem by requiring bigess to state their intent clearly. In the original
code example, the code was clear, siBaee did not even have an. Clearly,Derived’s F is intended as a
new method rather than an override of a base method, since no base method-rextis¢s!

If Base adds arr and ships a new version, then the intent of a binary versiaeof ved is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override.

However, whermerived is recompiled, the meaning is unclear—the authaveafived may intend itsF to
overrideBase’s F, or to hide it. Since the intent is unclear, the compiler produces a warning, and by default
makesDerived’s F hideBase’s F. This course of action duplicates the semantics for the case in which
Derived is not recompiled. The warning that is generated aleetsi ved's author to the presence of the

F method inBase.

If Derived’s F is semantically unrelated ®ase’s F, thenberived’s author can express this intent—and,
in effect, turn off the warning—»by using threew keyword in the declaration a.

// Author A
namespace A

public class Base // version 2

public virtual void FO) { // added in version 2
System.Console.WriteLine("Base.F");

47

QWO ~NOOUDWNLPE

=

12

13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

39

40
41
42
43
44
45

46
47
48

49
50
51
52
53
54
55

56
57

C#LANGUAGE SPECIFICATION

// Author B
namespace B

class Derived: A.Base // version 2a: new

new public virtual void FQ {)
System.Console.writeLine("Derived.F");

}
}

On the other handyerived’s author might investigate further, and decide thextived’s F should
overrideBase’s F. This intent can be specified by using thveerride keyword, as shown below.

// Author A
namespace A

public class Base // version 2

public virtual void FO { // added in version 2
System.Console.WriteLine("Base.F");

}
}

// Author B
hamespace B

class Derived: A.Base // version 2b: override

public override void F() {
base.F(Q);
System.cConsole.WriteLine("Derived.F");

}
}

The author oberived has one other option, and that is to change the namfetbius completely avoiding
the name collision. Although this change would break source and binary compatibiliig fared, the
importance of this compatibility varies depending on the scenarie tfived is not exposed to other
programs, then changing the namera$ likely a good idea, as it would improve the readability of the
program—there would no longer be any confusion about the meanipg of

8.14 Attributes

C# is an imperative language, but like all imperatiseduages it does have some declarative elements. For
example, the accessibility of a method in a class is specified by declapngtic, protected,

internal, protected internal, orprivate. C# generalizes this capability, so that programmers can
invent new kinds of declarative information, attacksttieclarative information to various program entities,
and retrieve this declarative information at run-time. Programs specify this additional declarative
information by defining and using attributes (824).

For instance, a framework might defineéial pAttribute attribute that can be placed on program elements
such as classes and methods, enabling devedapégrovide a mapping from program elements to
documentation for them. The example

using System;]
[AttributeUsage(AttributeTargets.Al1)]
public class HelpAttribute: Attribute

public HelpAttribute(string url) {
this.url = url;

public string Topic = null;
private string url;

48

A WNBE

o N o »

10
11
12
13
14
15

16

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

36

37

Chapter 8 Language Overview

public string url {
get { return url; }

}

defines an attribute class nameell pAttribute, orHelp for short, that has one positional parameter
(string url) and one named parametertfing Topic). Positional parameters are defined by the
formal parameters for public instance constructorthefattribute class, and named parameters are defined
by public non-static read-write fields and properties of the attribute class.

The example

[Help("http://www.mycompany.com/../Classl.htm")]
public class Classl

[Help("http://www.mycompany.com/../Classl.htm", Topic = "F")]
public void FO {}

shows several uses of the attributel p.

Attribute information for a given program element damretrieved at run-time by using reflection support.
The example

using System;
class Test

{
static void Main() {
Type type = typeof(Classl);
; object[] arr = type.GetCustomAttributes(typeof(HelpAttribute),
true);
if (arr.Length == 0)
] Co?so1e.Wr1teL1ne("C1assl has no Help attribute.");
else
HelpAttribute ha = (HelpAttribute) arr[0];
Console.writeLine("url = {0}, Topic = {1}", ha.url, ha.Topic);
3
3

checks to see if1ass1 has aHelp attribute, and writes out the associatexbic andurl values if the
attribute is present.

End of informative text.

49

10

11
12
13
14

15
16
17
18
19
20
21
22
23

24

25
26
27
28

29

30
31
32
33

34

35

36
37
38

39
40

Chapter 9 Lexical structure

9. Lexical structure

9.1 Programs

A C# program consists of one or more source files, known formallyxaspilation units (§16.1). A source
file is an ordered sequence of Unicode characterar& files typically have a one-to-one correspondence
with files in a file system, but this correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a fpeular character repertoire and encoding scheme
into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations must accept Unicoderse files encoded with the UTF-8 encoding form (as
defined by the Unicode standard), and transféhem into a sequence of Unicode characters.
Implementations may choose to accept and transforrtiaddl character encoding schemes (such as UTF-
16, UTF-32, or non-Unicode character mappings).

[Note: It is beyond the scope of this standard to define hoWleausing a character representation other than
Unicode might be transformed into a sequence of baéccharacters. During such transformation, however,
it is recommended that the usual line-separating character (or sequence) in the other character set be
translated to the two-character sequence consisfitigedJnicode carriage-return character followed by
Unicode line-feed character. For the most part thisgfarmation will have no visible effects; however, it

will affect the interpretation of verbatim string litd tokens (89.4.4.5). Thaurpose of this recommendation
is to allow a verbatim string literal to produce thersacharacter sequence when its source file is moved
between systems that support differing non-Unicodsratter sets, in particular, those using differing
character sequences for line-separatémad. note]

9.2 Grammars

This specification presents the syntax of théfogramming language using two grammars. lexéecal
grammar (89.2.1) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives syitactic grammar (89.2.2) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

9.2.1 Lexical grammar

The lexical grammar of C# is presented in 89.3, 89, 89.5. The terminal symbols of the lexical grammar
are the characters of the Unicode character set, and the lexical grammar specifies how characters are
combined to form tokens (89.4), white space (89.3.3), comments (89.3.2), and pre-processing directives
(89.5).

Every source file in a C# program must conform to ithygut production of the lexical grammar (89.3).

9.2.2 Syntactic grammar

The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The
terminal symbols of the syntactic grammar are the mskaefined by the lexical grammar, and the syntactic
grammar specifies how tokens are combined to form C# programs.

Every source file in a C# program must conform to tenpilation-unit production (§16.1) of the syntactic
grammar.

51

10
11

12
13
14

15
16
17
18

19
20
21

22
23
24
25

26
27
28
29

30
31

32
33
34
35
36
37

38
39
40

41

42
43
44

45
46

C#LANGUAGE SPECIFICATION

9.3 Lexical analysis

Theinput production defines the lexical structure of a C# source file. Each source file in a C# program must
conform to this lexical grammar production.
input::
i NpUt-Secti ONgp
input-section::
input-section-part
input-section input-section-part

input-section-part::
input-elements, new-line
pp-directive

input-elements: :
input-el ement
input-elements input-element

input-element::
whitespace
comment
token

Five basic elements make up the lexical structure of a@#ce file: Line terminators (89.3.1), white space
(89.3.3), comments (89.3.2), tokens (89.4), and poegssing directives (89.5). Of these basic elements,
only tokens are significant in the syntactic grammar of a C# program (89.2.2).

The lexical processing of a C# source file consigteeducing the file into a sequence of tokens which
becomes the input to the syntactic analysis. Linenteators, white space, and comments can serve to
separate tokens, and pre-processing directia@scause sections of the source file to be skipped, but
otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions matchcqueace of characters in a source file, the lexical
processing always forms the longest possible lexical element. For example, the character ségisence
processed as the beginning of a single-line comment because that lexical element is longer thar a single
token.

9.3.1 Line terminators
Line terminators divide the characters of a C# source file into lines.

new-line::
Carriage return charactey{000D)
Line feed charactetu¢-000A)
Carriage return charactews€000D) followed by line feed characteu{000A)
Line separator charactew£2028)
Paragraph separator character029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to
be viewed as a sequence of properly terminated lilesfdllowing transformations are applied, in order, to
every source file in a C# program:

» Ifthe last character of the source file is a Control-Z characte0(Q1A), this character is deleted.

» A carriage-return charactew{000D) is added to the end of the source file if that source file is non-
empty and if the last character of the source file is not a carriage rets@9QD), a line feed (+000A), a
line separatory+2028), or a paragraph separat@r2029).

9.3.2 Comments
Two forms of comments are supported: deéted comments and single-line comments.

52

P OOWOoKLO~NO U b~W N -

R =
N

=
AW

NNRNNER R R
WNPO®©OONO®U

N
S

25
26
27

28
29

30
31
32

33
34

35
36
37
38
39

40
4

42
43
44

45
46
47

48
49

50
51

Chapter 9 Lexical structure

A delimited comment begins with the characteyss and ends with the characterg. Delimited comments
can occupy a portion of a line, a single line, or multiple lin&gmple: The example

/* Hello, world program
This program writes “hello, world” to the console
class Hello

static void Main() {.)
System.Console.wWriteLine("hello, world");

3

includes a delimited commerdnd example]

A single-line comment begins with the characteyy and extends to the end of the linExpmple: The
example

// Hello, world program
// This program writes “hello, world” to the console

class Hello // any name will do for this class

static void Main() { // this method must be named "Main"
System.Console.wWriteLine("hello, world");

}
shows several single-line commerdsd example]

comment::
single-line-comment
delimited-comment

single-line-comment: :
// input-character sy

input-characters::
input-character
input-characters input-character

input-character::
Any Unicode character excephaw-line-character

new-line-character::
Carriage return charactey{000D)
Line feed charactetu¢-000A)
Line separator charactew£2028)
Paragraph separator character029)

delimited-comment::
/* delimited-comment-charactersy, */

delimited-comment-characters::
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character::
not-asterisk
* not-slash
not-asterisk::
Any Unicode character except
not-slash::
Any Unicode character except

53

10
11

12

13
14

15
16
17
18
19
20
21
22

23

24
25
26

27
28
29

30
31
32
33

34
35

36

37
38
39
40
41
42
43
44

45

C#LANGUAGE SPECIFICATION

Comments do not nest. The character sequentesd*/ have no special meaning within a single-line
comment, and the character sequentéand/* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

9.3.3 White space

White space is defined as any character with Unicodex¥s (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace::
Any character with Unicode class Zs
Horizontal tab characteu¢0009)
Vertical tab characteu¢G-000B)
Form feed characteu{000C)

9.4 Tokens

There are several kinds tdkens: identifiers, keywords, literals, opors, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token::
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

9.4.1 Unicode escape sequences

A Unicode escape sequence represents a Unicode character. Unicode escape sequences are processed in
identifiers (89.4.2), regular string literals (89.4.4.80d character literals (89.4.4.4). A Unicode character
escape is not processed in any other location (fomgate, to form an operator, punctuator, or keyword).

unicode-escape-sequence: :
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit
A Unicode escape sequence represents the singmUdaicharacter formed by the hexadecimal number
following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode characters in characters
and string values, a Unicode character in the rang)000 to U+10FFFF is represented using two Unicode
surrogate characters. Unicode characters with code points @kd@€FFF are not supported.

Multiple translations are not performed. For instance, the string lit&z®d05Ccu005C” is equivalent to
“\u005cC” rather than \". [Note: The Unicode valu&u005c is the character\". end note]

[Example: The example
class Classl

static void Test(bool \u0066) {
char c = "\u0066"';
if (\u0066)
) System.Console.WriteLine(c.ToString());

3

shows several uses §t0066, which is the escape sequence for the letfér The program is equivalent to

54

O~NOOhAWNBE

©

10

11
12
13
14

15
16
17

18
19

20
21

22
23
24

25
26
27

28
29
30
31
32
33

34
35
36

37
38
39

40
41
42

43
44
45

46
47
48

Chapter 9 Lexical structure

class Classl

static void Te§t(boo1) {

char c = 'f';
if (f)
; System.cConsole.WriteLine(c.ToString());
}
end exampl €]

9.4.2 Identifiers

The rules for identifiers rules given in this secticorrespond exactly to those recommended by the Unicode

Standard Annex 15 except that underscore is altbagan initial character (as is traditional in the

C programming language), Unicodecape sequences are permitted in identifiers, and the “@” character is

allowed as a prefix to enable keywords to be used as identifiers.
identifier::
available-identifier
@ identifier-or-keyword

available-identifier::
An identifier-or-keyword that is not akeyword

identifier-or-keyword::
identifier-start-character identifier-part-character sy

identifier-start-character::
| etter-character
_ (the underscore charact@r005F)

identifier-part-characters::
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character::
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

|etter-character::
A Unicode character of classes Lu, LI, Lt, Lm, Lo, or NI

A unicode-escape-sequence representing a character of classes Lu, LI, Lt, Lm, Lo, or NI

combining-character::
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character::
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character::
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

55

10
11
12

13

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

29
30
31

32
33

34

35

36

37
38
39

40

41
42

C#LANGUAGE SPECIFICATION

[Note: For information on the Unicode character classes mentioned abovEheemicode Standard,
Verson 3.0, 84.5.)end note]

[Example: Examples of valid identifiers includeitlentifierl”, “ _identifier2”, and “@if". end
example]

An identifier in a conforming program must be in tbanonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 1% blhavior when encountering an identifier not in
Normalization Form C is implementationfiteed; however, a diagnostic is not required.

The prefix ‘@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The charadés not actually part of the identifier, so the identifier might be seen
in other languages as a normal identifigithout the prefix. An identifier with ai@ prefix is called a

verbatim identifier. [Note: Use of the@ prefix for identifiers that are not keywords is permitted, but strongly
discouraged as a matter of styéad note]

[Example: The example:

class @class

pubTic static void @static(bool @bool) {
if (@bool)
System.Console.WriteLine("true");
else
) System.Console.WriteLine("false");

}

class Classl

static void MO {
cT\u0061ss.st\u0061ltic(true);

}

defines a class namedTass” with a static method nameds'tatic” that takes a parameter named
“boo1”. Note that since Unicode escapes are not permitted in keywords, the tok&nd061ss” is an
identifier, and is the same identifier a@c¢lass”. end example]

Two identifiers are considered the same if they are identical after the following transformations are applied,
in order:

» The prefix @”, if used, is removed.
» Eachunicode-escape-sequence is transformed into its corresponding Unicode character.
» Any formatting-characters are removed.

Identifiers containing two consecutive underscore charadte®05F) are reserved for use by the
implementation; however, no diagnostic igjuired if such an identifier is defined\pte: For example, an
implementation might provide extendedykvords that begin with two underscoresd note]

9.4.3 Keywords

A keyword is an identifier-like sequence of characters tlsaeiserved, and cannot be used as an identifier
except when prefaced by tidecharacter.

56

© 00 N O U~ WN PP

S N =
N o b wNBRP O

18
19
20
21

22
23

24
25
26
27
28
29
30

31
32

33
34
35

36

37

38
39

40
4
42

43
44

45
46
47

keyword:: one of

abstract as

byte case
class const
delegate do

event explicit
fixed float

if implicit
internal is

new null
override params
readonly ref
short sizeof
struct switch
try typeof
unsafe ushort
volatile while

base
catch
continue
double
extern
for

in

Tock
object
private
return
stackalloc
this
uint
using

bool
char
decimal
else
false
foreach
int

Tong
operator
protected
shyte
static
throw
ulong
virtual

Chapter 9 Lexical structure

break
checked
default
enum
finally
goto
interface
namespace
out
public
sealed
string
true
unchecked
void

In some places in the grammar, specific identffibave special meaning, but are not keyworlst¢: For
example, within a property declaration, thget” and “set” identifiers have special meaning (817.6.2). An

identifier other tharget or set is never permitted in these locations, so this use does not conflict with a use

of these words as identifierend note]

9.4.4 Literals

A literal is a source code representation of a value.

literal::
boolean-literal
integer-literal
real-literal

character-literal

string-literal
null-literal

9.4.4.1 Boolean literals

There are two boolean literal values:ue andfalse.

boolean-literal::
true
false

The type of aboolean-literal is booT.

9.4.4.2 Integer literals

Integer literals are used to write values of typ@s, uint, Tong, andulong. Integer literals have two
possible forms: decimal and hexadecimal.

integer-literal::

decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal::

decimal-digits integer-type-suffiXyp

decimal-digits::
decimal-digit

decimal-digits decimal-digit

57

N -

10

11
12

13

14
15

16
17

18
19

20

21
22

23
24

25
26

27
28
29

30
31
32
33

34
35

36
37
38
39
40

41
42
43

44
45

C#LANGUAGE SPECIFICATION

decimal-digit:: one of
01 2 3 456 7 8 9

integer-type-suffix:: one of
U u L 1T ur ul ur ul LU Lu Tu Tu

hexadecimal-integer-literal::
0x hex-digits integer-type-suffiXop
0X hex-digits integer-type-suffiXop
hex-digits::
hex-digit
hex-digits hex-digit
hex-digit:: one of
01 2 3 456 7 8 9 ABCDFETFabcdef
The type of an integer literal is determined as follows:

» Ifthe literal has no suffix, it has the first of these types in which its value can be represéntgd:int,
Tong, ulong.

» Ifthe literal is suffixed byu or u, it has the first of these types in which its value can be represented:
uint, ulong.

» Ifthe literal is suffixed byL or 1, it has the first of these types in which its value can be represented:
Tong, ulong.

» Ifthe literal is suffixed byuL, U1, uL, ul, LU, Lu, 1U, or 1u, itis of typeuTong.

If the value represented by an integer literal is outside the range ofltveg type, a compile-time error
occurs.

[Note: As a matter of style, it is suggested that ‘be used instead ofT
since it is easy to confuse the lettdr‘with the digit “1”. end note]

when writing literals of typelong,

To permit the smallest possibiet and1ong values to be written as decimal integer literals, the following
two rules exist:

« When adecimal-integer-literal with the value 2147483648 {3 and nointeger-type-suffix appears as
the token immediately following a unary minus operdtiken (§14.6.2), the result is a constant of tyipe:
with the value —2147483648 (2. In all other situations, suchdecimal-integer-literal is of typeuint.

« When adecimal-integer-literal with the value 9223372036854775808%2nd nointeger-type-suffix or
theinteger-type-suffix L or T appears as the token immediately following a unary minus operator token
(814.6.2), the result is a constant of typeng with the value —9223372036854775808 {)2In all other
situations, such decimal-integer-literal is of typeulong.

9.4.4.3 Real literals
Real literals are used to write values of tyffd®at, double, anddecimal.

real-literal::
decimal-digits . decimal-digits exponent-party, real-type-suffiXop
decimal-digits exponent-partq, real-type-suffiXqp
decimal-digits exponent-part real-type-suffiXop
decimal-digits real-type-suffix

exponent-part::
e Signy decimal-digits
E Signy: decimal-digits
sign:: one of
+ —

58

N -

10
11
12
13
14

15

16
17

18
19

20
21

22
23
24
25
26

27
28

29
30

31
32

33
34

35
36

37

38

39
40

Chapter 9 Lexical structure

real-type-suffix:: one of
F f D d M m

If no real-type-suffix is specified, the type of the real literaldeubTe. Otherwise, theeal-type-suffix
determines the type of the real literal, as follows:

» Arreal literal suffixed byrF or f is of typefloat. [Example: For example, the literalsf, 1.5f, 1el10f,
and123.456F are all of typefloat. end example]

» Areal literal suffixed byp or d is of typedoubTe. [Example: For example, the literalsd, 1. 5d,
1lel0d, and123.456D are all of typedoubTe. end example]

» Areal literal suffixed by or m is of typedecimal. [Example: For example, the literalsm, 1. 5m,

1lelOm, and123.456M are all of typedecimal. end example] This literal is converted to decimal

value by taking the exact value, and, if necessary, rouqth the nearest representable value using banker's
rounding (811.1.6). Any scale apparent in the litesgbieserved unless the value is rounded or the value is
zero (in which latter case the sign and scale will be Bpt§: Hence, the literak . 900m will be parsed to

form thedecimal with sign 0, coefficient 2900, and scaleedd note]

If the specified literal cannot be representedha indicated type, a compile-time error occurs.

The value of a real literal having tyfdoat or double is determined by using the IEEE “round to nearest”
mode.

9.4.4.4 Character literals
A character literal represents a single characted, @sually consists of a character in quotes, asaih

character-literal::
' character '

character::
single-character
simple-escape-sequence
hexadeci mal-escape-sequence
uni code-escape-sequence

single-character::
Any character except (U+0027), \ (U+005C), andnew-line-character

simple-escape-sequence:: one of
AN AN N0 \a \b \f A\n \r A\t \v

hexadeci mal -escape-sequence: :
\x hex-digit hex-digityy hex-digity: hex-digityy

[Note: A character that follows a backslash charact@rit a character must be one of the following
characters!, ", \,0,a, b, f,n, r, t, u, U, x, v. Otherwise, a compile-time error occuesd note]

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following\k”.

If the value represented by a character literal is greateruh&rFF, a compile-time error occurs.
A Unicode character escape sequence (8Yia a character literal must be in the range000 to U+FFFF.

A simple escape sequence represents a Unicodaatieaencoding, as described in the table below.

59

~N o o b~ W N -

o]

10
11
12

13
14
15

16
17

18
19
20

21
22
23
24
25

26
27

28
29

C#LANGUAGE SPECIFICATION

Escape Character Unicode
sequence name encoding
\! Single quote 0x0027
\" Double quote | 0x0022
\\ Backslash 0x005¢C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000cC
\n New line 0x000A
\r Carriage return | 0x000D
\t Horizontal tab | 0x0009
\v Vertical tab 0x0008B

The type of acharacter-literal is char.

9.4.4.5 String literals

C# supports two forms of string literalsegular string literals andverbatim string literals. A regular string
literal consists of zero or more characters enclosed in double quotes;tasliho, world", and may
include both simple escape sequences (suditdsr the tab character), and hexadecimal and Unicode
escape sequences.

A verbatim string literal consists of acharacter followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple exan@!edé3 1o, worl1d". In a verbatim
string literal, the characters between the delimitersraerpreted verbatim, with the only exception being a
guote-escape-sequence. In particular, simple escape sequenessl hexadecimal and Unicode escape
sequences are not processed in verbatim string ltehaverbatim string literal may span multiple lines.

60

string-literal::
regular-string-literal
verbatim-string-literal

regular-string-literal::
" regular-string-literal-character sy

regular-string-literal-characters::
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character::
single-regular-string-literal-character
simple-escape-sequence
hexadeci mal-escape-sequence
uni code-escape-sequence

single-regular-string-literal-character::
Any character except (U+0022), \ (U+005C), andnew-line-character

verbatim-string-literal::
@" verbatim -string-literal-character Sy

10

11
12
13

14

15
16

17
18

19
20

21
22

23
24
25
26

27
28
29

30
31
32

33

34
35
36
37
38
39
40
41
42

43
44

45

46

47
48

49

Chapter 9 Lexical structure

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character::
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character::
any character exceft

quote-escape-sequence::

[Note: A character that follows a backslash charactgriif aregular-string-literal-character must be one of
the following characters:, ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occuesd
note]

[Example: The example

string a = "Happy birthday, Joel"; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string c = "hello \t world"; // hello world

string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\r\ntwo\r\nthree";

string j = @"one

two

three";

shows a variety of string literals. The last string litergljs a verbatim string literal that spans multiple lines.
The characters between the quotation marksuitialg white space such as new line characters, are
preserved verbatinend example]

[Note: Since a hexadecimal escape sequence can haagsdole number of hex digits, the string literal
"\x123" contains a single character with hex value 123. To create a string containing the character with hex
value 12 followed by the character 3, one could wlitx00123" or "\x12" + "3" insteadend note]

The type of astring-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that
are equivalent according to the string equality operédh4.9.7), appear in the same assembly, these string
literals refer to the same string instandexgmple: For instance, the output produced by

class Test

static void Main() {
object a = "hello";
object b = "hello";
System.Console.WriteLine(a == b);

}
is True because the two literals refer to the same string instaamckeexampl €]

9.4.4.6 The null literal

null-literal::
null

The type of anull-literal is the null type.

61

A WDN

© 00 N o u

10

11

12
13
14
15
16

17
18
19
20
21
22

23

24
25

26

27

28

29

30
31
32

33
34
35

36
37
38

39
40

4
42
43
44
45
46
47

C#LANGUAGE SPECIFICATION

9.4.5 Operators and punctuators

There are several kinds of operators and punctsa@perators are used in expressions to describe
operations involving one or more operandsdmple: For example, the expressian+ b uses the
+ operator to add the two operanalsindb. end example] Punctuators are for grouping and separating.

operator-or-punctuator:: one of

{ } L] () . , : ;
+ - % / % & | A ! ~
= < > ? ++ -- && | << >>
== ' = <= >= += -= = = 00= =

= A= <<L= >>= -

9.5 Pre-processing directives

The pre-processing directives provide the ability to ¢bodally skip sections of source files, to report error
and warning conditions, and to delineatistinct regions of source cod®&dte: The term “pre-processing
directives” is used only for consistency withetlC and C++ programming languages. In C#, there is no
separate pre-processing step; pre-processing diesciire processed as part of the lexical analysis phase.
end note]
pp-directive::

pp-declaration

pp-conditional

pp-line

pp-diagnostic

pp-region
The following pre-processing directives are available:

» #define and#undef, which are used to define and undefine, respectively, conditional compilation
symbols (89.5.3).

o #if, #elif, #else, and#endif, which are used to conditionally skip sections of source code (§89.5.1).
e #11ine, which is used to control line numbers emitted for errors and warnings (89.5.7).

e #error and#warning, which are used to issue errors and warnings, respectively (89.5.5).

e #region and#endregion, which are used to explicitly mark sections of source code (89.5.6).

A pre-processing directive always occupies assafe line of source code and always begins with a
character and a pre-processing directive name. White space may occur befoohé#nacter and between
the# character and the directive name.

A source line containing #idefine, #undef, #if, #el1if, #else, #endif, or#11ne directive may end
with a single-line comment. Delimited comments (the*/ style of comments) are not permitted on source
lines containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-

processing directives can be used to include or exclude sequences of tokens and can in that way affect the

meaning of a C# program. For example, when compiled, the program

#define A
#undef B

class C

#if A
void FQO {}

#else
void GO {}
#endif

62

O Ul WN P

10
11
12

13

14

15
16

17
18

19
20
21
22
23
24
25

26
27
28

29

30
31

32
33

34
35
36

37
38
39

40
41
42
43

44
45
46

Chapter 9 Lexical structure

#if B
void HO {}

#else

void 10 {}

#endif

}
results in the exact same sequence of tokens as the program
class C

void F() {}
O {}

void I
Thus, whereas lexically, the two programs are qditeerent, syntactically, they are identical.

9.5.1 Conditional compilation symbols

The conditional compilation functionality provided by théf, #e11f, #el1se, and#endi f directives is
controlled through pre-processing expressions (89.5.2) and conditional compilation symbols.

conditional-symbol::
Any identifier-or-keyword excepttrue or false

A conditional compilation symbol has two possible statiefined or undefined. At the beginning of the
lexical processing of a source file, a conditionahpilation symbol is undefined unless it has been
explicitly defined by an external mechanissu¢h as a command-line compiler option). Whefdafine
directive is processed, the conditional compilatigmbol named in that directive becomes defined in that
source file. The symbol remains defined until#umdef directive for that same symbol is processed, or
until the end of the source file is reached. An implication of this is #tltfine and#undef directives in
one source file have no effect on other source files in the same program.

The name space for conditional compilation symbols is distinct and separate from all other named entities in

a C# program. Conditional compilation symbols can only be referencédedfiine and#undef directives
and in pre-processing expressions.

9.5.2 Pre-processing expressions

Pre-processing expressions can occufiifi and#e11 f directives. The operatorls ==, !=,&& and| | are
permitted in pre-processing expressioms] parentheses may be used for grouping.

pp-expression::
whitespace,,: pp-or-expression whitespace,y

pp-or-expression::

pp-and-expression

pp-or-expression whitespace,: || whitespace,: pp-and-expression
pp-and-expression::

pp-equality-expression

pp-and-expression whitespace,: && whitespace,; pp-equality-expression
pp-equality-expression::

pp-unary-expression

pp-equality-expression whitespace, == whitespace,, [pp-unary-expression
pp-equality-expression whitespace, != whitespace,: pp-unary-expression

pp-unary-expression::
pp-primary-expression
I whitespace,, pp-unary-expression

63

g A W N P

[«

10

11
12

13
14
15

16
17

18
19
20
21

22
23
24

25
26

27
28
29

30
31
32
33
34
35

36

37

38

39
40
4
42
43
44
45
46

47

48
49
50

C#LANGUAGE SPECIFICATION

pp-primary-expression::
true
false
conditional-symbol
(whitespace,,: pp-expression whitespacey,:)

When referenced in a pre-processing expressiorfiaetl conditional compilation symbol has the boolean
valuetrue, and an undefined conditional compilation symbol has the boolean ¥allse.

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre-

processing expression are the same as those for tacbexpression (814.15), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

9.5.3 Declaration directives
The declaration directives are used to define or undefine conditional compilation symbols.
pp-declaration::
whitespace,,: # whitespace,, define whitespace conditional-symbol pp-new-line
whitespace,; # whitespacey,, undef whitespace conditional-symbol pp-new-line
pp-new-line::
whitespace,,: single-line-comment,,; new-line
The processing of #def1ine directive causes the given conditionahapilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing#fiahef directive

causes the given conditional compilation symboléadme undefined, starting with the source line that
follows the directive.

Any #define and#undef directives in a source file must occur before the ficken (89.4) in the source
file; otherwise a compile-time error occurs. In intuitive terfédefine and#undef directives must
precede any “real code” in the source file.
[Example: The example:

#define Enterprise

#if Professional || Enterprise
#define Advanced
#endif

namespace Megacorp.Data

#if Advanced
class PivotTable {...}
#endif

is valid because th#define directives precede the first token (themespace keyword) in the source file.

end example]

[Example: The following example results in a compile-time error becau#éees i ne follows real code:

#define A
namespace N

#define B

#if B

class Cclassl {}
#endif

end exampl €]

A #define may define a conditional compilation symbol that is already defined, without there being any
intervening#undef for that symbol. Example: The example below defines a conditional compilation
symbolA and then defines it again.

64

N -

[S2 N

= O © o N O

o

13
14

15
16

17
18
19

20
21
22

23
24
25

26
27

28
29

30
31
32

33
34
35

36
37
38

39
40

41
42

43
44
45
46
47

Chapter 9 Lexical structure

#define A
#define A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to idefthe symbol as a compiler option as well as in the
source end exampl €]

A #undef may “undefine” a conditional compilation symbol that is not definéajmple: The example
below defines a conditional compilation symizchnd then undefines it twice; although the secénddef
has no effect, it is still valid.

#define A

#undef A
#undef A

end exampl €]

9.5.4 Conditional compilation directives
The conditional compilation directives are used to dtadally include or exclude portions of a source file.

pp-conditional::
pp-if-section pp-elif-sections,, pp-€lse-sectiony,: pp-endif

pp-if-section::
whitespace,x # whitespace,: if whitespace pp-expression pp-new-line conditional-
SectioNgy

pp-€lif-sections::
pp-€lif-section
pp-€lif-sections pp-elif-section

pp-€lif-section::
whitespace,,: # whitespace,,: elif whitespace pp-expression pp-new-line conditional-
SECti ONgpt

pp-€lse-section::

whitespace, # whitespace,: else pp-new-line conditional-sectiongy
pp-endif::

whitespace,,: # whitespace,: endif pp-new-line
conditional-section::

input-section

skipped-section

skipped-section::
skipped-section-part
skipped-section skipped-section-part
skipped-section-part::
skipped-characters,: new-line
pp-directive

skipped-characters::

whitespace,, not-number-sign input-character Sy
not-number-sign::

Any input-character except#

[Note: As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in

order, an#if directive, zero or moréeli f directives, zero or on#else directive, and atendif

directive. Between the directives are conditionalises of source code. Each section is controlled by the
immediately preceding directive. A conditional section may itself contain nested conditional compilation
directives provided these directives form complete sidnote]

65

10
11
12
13
14
15

16

17
18

19
20
21
22
23
24
25
26
27
28
29
30

31
32

33

34
35
36
37
38
39
40
41
42
43

44
45

46
a7

C#LANGUAGE SPECIFICATION

A pp-conditional selects at most one of the contairesthditional-sections for normal lexical processing:

» Thepp-expressions of the#1i f and#e11 f directives are evaluated in order until one yietdsie. If an
expression yieldsrue, theconditional-section of the corresponding directive is selected.

+ Ifall pp-expressions yieldfalse, and if an#else directive is present, theonditional-section of the
#else directive is selected.

» Otherwise, n@onditional-section is selected.

The selectedonditional-section, if any, is processed as a norniaput-section: the source code contained in
the section must adhere to the lexical grammar; toleeegenerated from the source code in the section; and
pre-processing directives in the section have the prescribed effects.

The remainingconditional-sections, if any, are processed gépped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated
from the source code in the section; and pre-processhegtilies in the section must be lexically correct but
are not otherwise processed. Withinanditional-section that is being processed askipped-section, any
nestecconditional-sections (contained in nestet#ti f.. #endif and#region..#endregion constructs) are

also processed akipped-sections.

[Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction

void commit() {
#if Debug
CheckConsistency();
#if Trace
writeToLog(this.ToString());
#endif
#endif
) CommitHelper();
}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in #ed se section:

#define Debug // Debugging on
class PurchaseTransaction

void commit() {
#if Debug
CheckConsistency();
#else
/* Do something else
#endif

}

Note, however, that pre-processing directives ageiired to be lexically correct even in skipped sections of
source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example,

the program:

66

O~NOOhAWNBE

e
N R O ©

13

14
15
16
17
18
19

20
21
22
23
24

25
26

27
28
29

30
31
32

33
34
35

36
37
38
39
40

41
42
43

44

45
46
47
48

49
50

51
52

Chapter 9 Lexical structure

class Hello

static void Main() {
System.Console.WriteLine(@"hello,
#if Debug
world
#else
Nebraska
#endif
ll);
}

}

results in the output:

hello,
#if Debug
world
#else
Nebraska
#endif

In peculiar cases, the set of pre-processing directivaisis processed might depend on the evaluation of the
pp-expression. The example:

#if X

#else

/* */ class Q { }
#endif

always produces the same token streaita6s Q { }), regardless of whether or netis defined. IfX is
defined, the only processed directives #ie¢f and#endi f, due to the multi-line comment. ¥ is
undefined, then three directivesi(f, #else, #endif) are part of the directive setnd example]

9.5.5 Diagnostic directives
The diagnostic directives are used to explicitly geneeater and warning messages that are reported in the
same way as other compile-time errors and warnings.
pp-diagnostic::
whitespace,,: # whitespace, error pp-message
whitespace,, # whitespace,x warning pp-message
pp-message: :
new-line
whitespace input-characters,, new-line
[Example: The example
#warning Code review needed before check-in

#if Debug && Retail
#error A build can't be both debug and retail
#endif

class Test {..}

always produces a warningdqéde review needed before check-in"), and produces a compile-time
error if the pre-processing identifiebebug andrRetail are both defined. Note thatpp-message can

contain arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single quote in
the wordcan’ t. end exampl€]

9.5.6 Region control
The region directives are used to explicitly mark regions of source code.

pp-region::
pp-start-region conditional-sectiony,: pp-end-region

67

N

0w N o O

10
11
12

13

14
15
16

17

18
19

20
21

22
23

24
25
26
27

28
29

30
31
32

33
34

35
36
37

38
39

40
41

C#LANGUAGE SPECIFICATION

pp-start-region::

whitespace,x # whitespace,x region pp-message
pp-end-region::

whitespace,x # whitespace,: endregion pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. The message specifiéckigrian or #endregion
directive likewise has no semantic meaningnerely serves to identify the region. Matchifigegion and
#endregion directives may have differemmp-messages.

The lexical processing of a region:
#region
#éﬁdregion

corresponds exactly to the lexical processing obaditional compilation directive of the form:
#if true

#endif
9.5.7 Line directives

Line directives may be used to alter the line numbessource file names that are reported by the compiler
in output such as warnings and errors.

[Note: Line directives are most commonly used in meta-programming tools that generate C# source code
from some other text inpuénd note]
pp-line::
whitespace,,x # whitespace,: 1ine whitespace line-indicator pp-new-line
line-indicator::
decimal-digits whitespace file-name
decimal-digits
default

file-name::
" file-name-characters "

file-name-characters::
file-name-character
file-name-characters file-name-character

file-name-character::
Any character except (U+0022), andnew-line

When no#11ine directives are present, the compiler reports true line numbers and source file names in its
output. When processing# ine directive that includes Bne-indicator that is notdefault, the compiler
treats the linafter the directive as having the given line number (and file name, if specified).

A #1ine default directive reverses the effect of all precediibi ne directives. The compiler reports
true line information for subsequent lines, precisely as i#mhone directives had been processed.

[Note: Note that dile-name differs from a regular string literal in that escape characters are not processed,;
the ‘\’ character simply designates an ordinary back-slash character witharame. end note]

68

N

© 0 ~N O [62 N SN OV]

10
11

12
13

14

15
16
17
18
19
20
21
22

23
24
25
26
27

28
29
30
31
32

33
34
35
36
37
38
39

40

41
42

Chapter 10 Basic concepts

10. Basic concepts

10.1 Application startup

Application startup occurs when the execution environment calldesignated method, which is referred to
as the application'entry point. This entry point method is always nameali n, and shall have one of the
following signatures:

static void Main() {..}

static void Main(string[] args) {.}

static int Main() {..}
static int Main(string[] args) {..}

As shown, the entry point may optionally return-amt value. This return value is used in application
termination (810.2).

The entry point may optionally have one formal paramedad this formal parameter may have any name. If
such a parameter is declared, it must obey the following constraints:

* The implementation shall ensureattthe value of this parameter is moi11.

* Letargs be the name of the parameter. If tleayth of the array designated bygs is greater than

zero, the array membeas gs [0] throughargs[args.Length-1], inclusive, must refer to strings, called
application parameters, which are given implementation-defined values by the host environment prior to
application startup. The intent is to supply to the agggiion information determined prior to application
startup from elsewhere in the hosted environment.dftitbst environment is not capable of supplying strings
with letters in both uppercase and lowercase, the imphtatien shall ensure that the strings are received in
lowercase. lote: On systems supporting a command line, application parameters correspond to what are
generally known as command-line argumeatsl note]

Since C# supports method overloading, a class ortstnag contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain
more than one method calledin whose definition qualifies it to be used as an application entry point.
Other overloaded versions Bh1in are permitted, however, provided they have more than one parameter, or
their only parameter is other than typering[].

An application can be made up of multiple classes or structs. It is possible for more than one of these classes
or structs to contain a method calledin whose definition qualifies it to be used as an application entry

point. In such cases, one of thesei n methods must be chosen as the entry point so that application startup
can occur. This choice of an entry point is beyond the scope of this specification—no mechanism for
specifying or determining an entry point is provided.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility
(810.5.1) of a method is determined by the access modifiers (817.2.3) specified in its declaration, and
similarly the declared accessibility of a type idelenined by the access modifiers specified in its

declaration. In order for a given method of a given type to be callable, both the type and the member must be
accessible. However, the application entry point isec&d case. Specifically, the execution environment

can access the application's entry point regardless déitkared accessibility and regardless of the declared
accessibility of its enclosing type declarations.

In all other respects, entry point methods behave like those that are not entry points.

10.2 Application termination
Application termination returns control to the execution environment.

69

10
11
12
13
14
15
16

17
18
19
20
21
22

23

24
25

26
27

28
29
30
31
32
33
34
35
36
37
38

39
40

41
42
43
44
45
46

47
48

C#LANGUAGE SPECIFICATION

If the return type of the application’s entry point method iet, the value returned serves as the
application'dermination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point methodvse1id, reaching the right bracé Y which terminates that
method, or executing eeturn statement that has no expression, results in a termination status c@de of

Prior to an application’s termination, destructors for all of its objects that have not yet been garbage
collected are called, unless such cleanup has been suppressed (by a call to the library method
GC.SuppressFinalize, for example).

10.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespaces (816), which can contain type declarations and nested namespace declarations. Type
declarations (816.5) are used to define classes (SiTicts (818), interfaces (820), enums (821), and
delegates (822). The kinds of members permitted in a type declaration depend on the form of the type
declaration. For instance, class declarations carag@odeclarations for constants (817.3), fields (817.4),
methods (817.5), properties (817.6), events (81 hdgexers (§17.8), operators (§817.9), instance
constructors (817.10), destructors (817.12tistconstructors (817.11), and nested types.

A declaration defines a name in tHeclaration space to which the declaration belongs. Except for
overloaded members (810.6), it is a compile-time etochave two or more declarations that introduce
members with the same name in a declaration spaceeker, no diagnostic is required if the declaration
space is a namespace for the global declaration space and the conflicting declarations are in separate
programs. It is never possible for a declaration space to contain different kinds of members with the same
name. For example, a declaration space can never contain a field and a method by the same name.

There are several different types of declaration spaces, as described in the following.

» Within all source files of a progranmamespace-member-declarations with no enclosingnamespace-
declaration are members of a single combined declaration space callegidbal declaration space.

» Within all source files of a progranmamespace-member-declarations within namespace-declarations
that have the same fully qualified namespace name are members of a single combined declaration space.

» Eachclass, struct, or interface declaration @eatnew declaration space. Names are introduced into
this declaration space througtass-member-declarations, struct-member-declarations, orinterface-
member-declarations. Except for overloaded instance constondeclarations and static constructor
declarations, a class or struct member declaratéymot introduce a member by the same name as the class
or struct. A class, struct, or interface permite theclaration of overloaded methods and indexers.
Furthermore, a class or struct permits the declaratfaverloaded instance consttors and operators. For
example, a class, struct, or interface may contain multiple method declarations with the same name,
provided these method declarations differ in their aigne (810.6). Note that base classes do not contribute
to the declaration space of a class, and base interfaces do not contribute to the declaration space of an
interface. Thus, a derived class or interface is allowed to declare a member with the same name as an
inherited member. Such a member is saitlitde the inherited member.

» Each enumeration declaration creates a newlatation space. Names are introduced into this
declaration space throughum-member-declarations.

» Eachblock or switch-block creates a different declaration space for local variables. Names are
introduced into this declaration space throligtal-variable-declarations. If a block is the body of an

instance constructor, method, or operator declaratioa,get or set accessor for an indexer declaration, the
parameters declared in such a declaration are members of the Hlwezt’'sariable declaration space. The

local variable declaration space of a block includes any nested blocks. Thus, within a nested block it is not
possible to declare a local variable with the samame as a local variable in an enclosing block.

» Eachblock or switch-block creates a separate declaration sgacéabels. Names are introduced into
this declaration space throutgibel ed-statements, and the names are referenced throggb-statements.

70

o 0o WN

~

10
11

12
13

14
15
16
17
18
19
20

21
22
23
24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43

44
45
46
47
48
49

Chapter 10 Basic concepts

Thelabel declaration space of a block includes any nested blocks. Thus, within a nested block it is not
possible to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is
not significant for the declaration and use of namespam®sstants, methods, prafies, events, indexers,
operators, instance constructors, desiors, static constructors, and types. Declaration order is significant in
the following ways:

« Declaration order for field declarations and locatighle declarations determines the order in which
their initializers (if any) are executed.

» Local variables must be defined before they are used (810.7).

» Declaration order for enum member deeltions (821.3) is significant wheonstant-expression values
are omitted.

[Example: The declaration space of a namespace is “open ended”, and two namespace declarations with the

same fully qualified name contribute to the same declaration space. For example
namespace Megacorp.Data

class Customer

}
}

namespace Megacorp.Data

class order

}
}

The two namespace declarations above contributees@ame declaration space, in this case declaring two
classes with the fully qualified nam&ggacorp.Data.Customer andMegacorp.Data.Order. Because
the two declarations contribute to the same detlamaspace, it would have caused a compile-time error if
each contained a declaration of a class with the same renthexample]

[Note: As specified above, the declaration space ofogkbincludes any nested blocks. Thus, in the
following example, thee andG methods result in a compile-time error because the nameleclared in the
outer block and cannot be redeclared in the inner block. Howeven dmelI methods are valid since the
two i’s are declared in separate non-nested blocks.

class A
void FQO {
int i = 0;
if (true) {
int i = 1;
}
void GO {
if (true) {
int i = 0;
int i = 1;

71

O~NOOhAWNBE

11
12
13
14
15

16

17

18
19
20

21
22
23
24
25
26
27

28

29
30

31
32

33
34

35

36
37

38
39

C#LANGUAGE SPECIFICATION

void HO {
if (true) {
; int i = 0;
if (true) {
int i = 1;
}
void I {
for E;nt i=0; 1 <10; i++)
HC);
for (int i = 0; i < 10; 1i++)
HO;
}
end note]

10.4 Members

Namespaces and types hawembers. [Note: The members of an entity are generally available through the
use of a qualified name that starts with a reference to the entity, followed b¥taken, followed by the
name of the membeend note]

Members of a type are either declared in the typeberited from the base class of the type. When a type
inherits from a base class, all members of the base @dasept instance constructors, destructors, and static
constructors become members of the derived t¥pe.declared accessibility afbase class member does

not control whether the member is inherited—iritearce extends to any member that isn’t an instance
constructor, static constructor, or destructdowever, an inherited member may not be accessible in a
derived type, either because of its declared accessif#it9.5.1) or because it is hidden by a declaration in
the type itself (§10.7.1.2).

10.4.1 Namespace members

Namespaces and types that have no enclosing namespace are membegkobatimamespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a nanoesgee members of that namespace. This corresponds
directly to the names declared iretdeclaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

10.4.2 Struct members

The members of a struct are the members declardtkistruct and the members inherited from class
object.

The members of a simple type correspond directly eorttembers of the struct type aliased by the simple
type:

72

10

11

12

13

14

15
16

17

18
19
20
21
22

23
24

25

26

27

28

29
30

31
32

33
34

35

36
37
38

Chapter 10 Basic concepts

 The members ofbyte are the members of ttgystem.SByte struct.
 The members dfyte are the members of theystem.Byte struct.
 The members ofhort are the members of tt&ystem.Int16 struct.
 The members ofishort are the members of thgystem.UInt16 struct.
 The members ofnt are the members of thgystem.Int32 struct.
 The members ofiint are the members of theystem.UInt32 struct.
 The members ofong are the members of th&ystem.Int64 struct.
 The members ofilong are the members of thgystem.UInt64 struct.
 The members ofhar are the members of tt&ystem. Char struct.
 The members of Toat are the members of ttgystem.Single struct.
* The members oflouble are the members of thgystem.DoubTe struct.
e The members oflecimal are the members of thgystem.Decimal struct.

 The members dfoo1 are the members of theystem.BooTean struct.

10.4.3 Enumeration members

The members of an enumeration are the constantsréedlathe enumeration and the members inherited
from classobject.

10.4.4 Class members

The members of a class are the members declared in the class and the members inherited from the base class
(except for clasebject which has no base class). The members inherited from the base class include the
constants, fields, methods, properties, events, indepperators, and types of the base class, but not the

instance constructors, destructors, and static coristiof the base class. Base class members are inherited
without regard to their accessibility.

A class declaration may contain declarations of canstdields, methods, properties, events, indexers,
operators, instance constructors, desiors, static constructors, and types.

The members obbject andstring correspond directly to the members of the class types they alias:
e The members obbject are the members of theystem.0object class.

e The members oftring are the members of theystem.String class.

10.4.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface, and the members inherited from clalsgect.

10.4.6 Array members
The members of an array are the members inherited from siasisem. Array.

10.4.7 Delegate members
The members of a delegate are the members inherited fromsylatem.Delegate.

10.5 Member access

Declarations of members allow control over member access. The accessibility of a member is established by
the declared accessibility (810.5.1) of the memberlmiord with the accessibility of the immediately
containing type, if any.

73

A W N P

[¢)]

10
11

12
13

14
15
16

17
18

19
20
21

22
23

24
25

26
27
28
29

30
31
32
33
34
35

36
37

38
39

40

41
42
43
44
45

C#LANGUAGE SPECIFICATION

When access to a particular member is allowed, the member is saicitodssible. Conversely, when
access to a particular member is disallowed, the member is said hadsessible. Access to a member is
permitted when the textual location in which the asctakes place is included in the accessibility domain
(810.5.2) of the member.

10.5.1 Declared accessibility
Thedeclared accessibility of a member can be one of the following:

» Public, which is selected by includingeab11i c modifier in the member declaration. The intuitive
meaning ofub1ic is “access not limited”.

» Protected, which is selected by includingeotected modifier in the member declaration. The
intuitive meaning oprotected is “access limited to the containing class or types derived from the
containing class”.

» Internal, which is selected by including anternal modifier in the member declaration. The intuitive
meaning ofinternal is “access limited to this program”.

» Protected internal, which is selected by including botiratected and aninternal modifier in the
member declaration. The intuitive meaningoofotected internal is “access limited to this program or
types derived from the containing class”.

» Private, which is selected by including&ivate modifier in the member declaration. The intuitive
meaning ofprivate is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access modifiers,
the context in which the declaration takes plde¢ermines the default declared accessibility.

* Namespaces implicitly hayaub11i c declared accessibility. No access modifiers are allowed on
namespace declarations.

e Types declared in compilation units or namespaces cangaykic or internal declared
accessibility and default tonternal declared accessibility.

» Class members can have any of the five kinds of declared accessibility and defauit/tote declared
accessibility. (Note that a type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can haubbityor internal

declared accessibility.)

e Struct members can hapeb1ic, internal, or private declared accessibility and default to
private declared accessibility because structs are intjylisealed. Struct members introduced in a struct
(that is, not inherited by that struct) cannot hgnetected or protected internal declared
accessibility. (Note that a type dedaras a member of a struct can hawb1ic, internal, orprivate
declared accessibility, whereas a type declared as a member of a namespace can Ipaxel dnlgr
internal declared accessibility.)

» Interface members implicitly hayaub1i c declared accessibility. No access modifiers are allowed on
interface member declarations.

» Enumeration members implicitly hayaib11 c declared accessibility. No access modifiers are allowed
on enumeration member declarations.

10.5.2 Accessibility domains

Theaccessibility domain of a member consists of the (possibly disjoint) sections of program text in which
access to the member is permitted. For purposes afidgfthe accessibility domain of a member, a member
is said to baop-level if it is not declared within a type, and a member is said toéged if it is declared

within another type. Furthermore, the text of an asdgnsbdefined as all source text contained in all source
files of that assembly, and the source text of a type is defined as all source text contained between the

74

10
11

12
13

14
15
16

17
18
19

20
21

22

23
24
25
26

27
28

29
30

31

32
33
34

35
36
37

38
39

40

41

42

43

Chapter 10 Basic concepts

opening and closing{” and “}” tokens in theclass-body, struct-body, interface-body, or enum-body of the
type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (suchlagect, int, ordouble) is unlimited.
The accessibility domain of a top-level typehat is declared in a programis defined as follows:

» Ifthe declared accessibility afis pub1i c, the accessibility domain af is the program text of and
any program that references P.

» Ifthe declared accessibility afis internal, the accessibility domain af is the program text of.

[Note: From these definitions it follows that the accessibility domain of a top-level type is always at least the

program text of the program in which that type is declassd. note]

The accessibility domain of a nested membeeclared in a typ& within a progranp, is defined as
follows (noting that M itself may possibly be a type):

» Ifthe declared accessibility of is pub1i c, the accessibility domain of is the accessibility domain
of T.

» Ifthe declared accessibility ofis protected internal, letD be the union of the program text pf
and the program text of any type derived frarmywhich is declared outside The accessibility domain of
is the intersection of the accessibility domainrofvith D.

» Ifthe declared accessibility ofis protected, letD be the union of the program text ofand the
program text of any type derived from The accessibility domain of is the intersection of the accessibility
domain ofT with D.

» Ifthe declared accessibility ofis internal, the accessibility domain of is the intersection of the
accessibility domain of with the program text of.

» Ifthe declared accessibility ofis private, the accessibility domain of is the program text of.

[Note: From these definitions it follows that the accedgjpdomain of a nested member is always at least
the program text of the type in which the member is deadl. Furthermore, it follows that the accessibility
domain of a member is never more inclusive thamalbcessibility domain of the type in which the member
is declaredend note]

[Note: In intuitive terms, when a type or membis accessed, the following steps are evaluated to ensure
that the access is permitted:

» First, if M is declared within a type (as opposed to a compilation unit or a namespace), a compile-time
error occurs if that type is not accessible.

* Then, ifmis pubTic, the access is permitted.

» Otherwise, iiMis protected internal, the access is permitted if it occurs within the program in
whichM is declared, or if it occurs within a class derived from the class in whishdeclared and takes
place through the derived class type (§10.5.3).

» Otherwise, ifM is protected, the access is permitted if it occurs within the class in wividgh declared,
or if it occurs within a class derived from the class in whicls declared and takes place through the
derived class type (810.5.3).

» Otherwise, ifMis internal, the access is permitted if it occurs within the program in wivich
declared.

» Otherwise, ifM is private, the access is permitted if it occurs within the type in whids declared.
» Otherwise, the type or member is inaccessible, and a compile-time error occurs.
end note]

[Example: In the example

75

o N O Ul WN P

o
= O ©

PR R R R R
No A WN

NNNNDDN PP
A WNEFEOWOO®

N
a1

26

27
28

29

30
31

32

33

34
35
36

37
38
39
40

41
42
43
44
45
46
47

48
49
50
51
52
53

C#LANGUAGE SPECIFICATION

public class A

public static int X;
internal static int v;
private static int z;

internal class B

public static int X;
internal static int v;
private static int z;

pubTlic class C

public static int X;
internal static int Y;
private static int z;

private class D

public static int X;
internal static int Y;
private static int z;

}
the classes and members have the following accessibility domains:
» The accessibility domain af andA. X is unlimited.

» The accessibility domain af.v, B,B.X,B.Y,B.C,B.C.X, andB.C.Y is the program text of the
containing program.

» The accessibility domain af. z is the program text oA.

* The accessibility domain @& .z andB.D is the program text o8, including the program text af. C
andB.D.

» The accessibility domain &.C.z is the program text o . C.
» The accessibility domain &.D.X, B.D.Y, andB.D.Z is the program text 0§ .D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing
type. For example, even though glmembers have public declared accessibility, all4ut have
accessibility domains that are constrained by a containing gylkexampl €]

As described in §10.4, all members of a base class, ¢feemstance constructors, destructors, and static
constructors are inherited by derived types. This includes even private members of a base class. However,
the accessibility domain of a private member includes only the program text of the type in which the
member is declaredEkample: In the example

class A
int Xx;
static void F(B b) {
) b.x = 1; // ok

}

class B: A

static void F(B b) {
) b.x = 1; // Error, x not accessible

}

76

w N -

© 00 N o o b

10

11

12

13
14

15

16
17
18

19
20
21
22
23

24
25
26
27
28
29
30

31
32
33

34

35
36
37
38

39

Chapter 10 Basic concepts

theB class inherits the private membefrom theA class. Because the member is private, it is only
accessible within thelass-body of A. Thus, the access to. x succeeds in the. F method, but fails in the
B . F method.end exampl €]

10.5.3 Protected access for instance members

When aprotected instance member is accessed outside the program text of the class in which it is
declared, and when@rotected internal instance member is accessed outside the program text of the
program in which it is declared, the access is required to take ghagegh an instance of the derived class
type in which the access occurs. IBebe a base class that declares a protected instance mepaet letb
be a class that derives froen Within theclass-body of D, access to can take one of the following forms:

* An unqualifiedtype-name or primary-expression of the formm.
* A primary-expression of the formEe .M, provided the type of is D or a class derived from.
* A primary-expression of the formbase .M.

In addition to these forms of access, a derived classaccess a protected instance constructor of a base
class in aconstructor-initializer (817.10.1).
[Example: In the example

pubTic class A

protected int x;

static void F(A a, B b) {
a.x 1; // Ok
b.x 1; // ok

}
}

public class B: A

static void F(A a, B b) {
a.x 1; // Error, must access through instance of B
b.x 1; // ok

}
}

within A, it is possible to accessthrough instances of bothandB, since in either case the access takes
placethrough an instance ok or a class derived from. However, withing, it is not possible to access
through an instance @f, sincea does not derive froms. end example]

10.5.4 Accessibility constraints

Several constructs in the C# language require a type t ksast as accessible asa member or another type.
A type T is said to be at least as accessible as a member omtifibe accessibility domain of is a

superset of the accessibility domainvfin other wordsT is at least as accessiblend T is accessible in

all contexts in whichm is accessible.

The following accessibility constraints exist:

77

10

11

12
13
14
15
16

17

18
19

20
21
22

23

24
25

26
27

28
29

30
31
32
33

34
35
36

37
38

39
40
41

42

C#LANGUAGE SPECIFICATION

The direct base class of a class type must be at least as accessible as the class type itself.
The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

The return type and parameter types of a delegatenyymt be at least as accessible as the delegate type

itself.

The type of a constant must be at least as accessible as the constant itself.

The type of a field must be at least as accessible as the field itself.

The return type and parameter types of a method must be at least as accessible as the method itself.
The type of a property must be at least as accessible as the property itself.

The type of an event must be at least as accessible as the event itself.

The type and parameter types of an indexer must be at least as accessible as the indexer itself.

The return type and parameter types of an operator must be at least as accessible as the operator itself.

The parameter types of an instance constructor must be at least as accessible as the instance constructor

itself.

[Example: In the example

class A {.}
public class B: A {..}

theB class results in a compile-time error becanse not at least as accessibleeagnd example]

[Example: Likewise, in the example

class A {..}
pubTic class B

AFQO {.}
internal A Q) {.}

public A HO {.}

theH method inB results in a compile-time error because the return tygenot at least as accessible as the
method.end example]

10.6 Signatures and overloading
Methods, instance construcspindexers, and operators are characterized by stygiatures:

The signature of a method consists of the name ofrikthod and the type and kind (value, reference, or

output) of each of its formal parameters, considered in the order left to right. The signature of a method
specifically does not include the return type, nor does it include#rams modifier that may be specified
for the right-most parameter.

The signature of an instance constructor consisthe type and kind (value, reference, or output) of

each of its formal parameters, considered in the order left to right. The signature of an instance constructor
specifically does not include thgarams modifier that may be specified for the right-most parameter.

The signature of an indexer consists of the type of eddts formal parameters, considered in the order

left to right. The signature of an indexer specifically does not include the element type.

The signature of an operator consists of the eafthe operator and the type of each of its formal

parameters, considered in the order left to right. $igmature of an operator specifically does not include
the result type.

Signhatures are the enabling mechanisnokarloading of members in classes, structs, and interfaces:

78

N -

10

11
12
13

14
15
16
17
18
19
20

21
22

23
24
25
26
27

28

29
30
31
32
33
34
35

Chapter 10 Basic concepts

» Overloading of methods permits a class, struct, or interface to declare multiple methods with the same
name, provided their signatures are unique within that class, struct, or interface.

» Overloading of instance constructors permits a clasgrorct to declare multiple instance constructors,
provided their signatures are unique within that class or struct.

» Overloading of indexers permits a class, struct, agriisice to declare multiple indexers, provided their
signatures are unique within that class, struct, or interface.

» Overloading of operators permits a class or sttaateclare multiple operators with the same name,
provided their signatures are unique within that class or struct.

[Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest

void FQ; // FQ

void F(int x); // F(int)

void F(ref int x); // F(ref int)

void F(out int x); // F(out int)

void F(int x, int y); // FE(Cint, int)

int F(string s); // F(string)

int F(int x); // F(@int) error
void F(string[] a); // E(string[])

void F(params string[] a); // F(string[]) error

}

Note that anyref andout parameter modifiers (§17.5.1) are part of a signature. Th@mt), F(ref

int), andF(out int) are all unique signatures. Also, note that the return type anpahams modifier

are not part of a signature, so it is not possible to maatisolely based on return type or on the inclusion or
exclusion of theparams modifier. As such, the declarations of the methedsnt) andF(params
string[]) identified above, result in a compile-time errend example]

10.7 Scopes

Thescope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes camesied, and an inner scope may redeclare the
meaning of a name from an outer scopéote: This does not, however, remove the restriction imposed by
§10.3 that within a nested block it is not possible to declare a local variable with the same name as a local
variable in an enclosing blocknd note] The name from the outer scope is then said tdiaelen in the

region of program text covered by the inneope, and access to the outer name is only possible by
qualifying the name.

79

(2N

© 00 N O

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24

25
26

27

28
29

30
31

32
33

34
35
36

37
38

39
40
41
42
43
44
45

46

C#LANGUAGE SPECIFICATION

» The scope of a namespace member declaredraynaspace-member-declaration (816.4) with no
enclosingnamespace-declaration is the entire program text.

» The scope of a namespace member declaredraynespace-member-declaration within a namespace-
declaration whose fully qualified name is, is thenamespace-body of everynamespace-declaration whose
fully qualified name iN or starts withN, followed by a period.

» The scope of a name defined or imported hysiang-directive (816.3) extends over theamespace-
member-declarations of the compilation-unit or namespace-body in which theusing-directive occurs. A
using-directive may make zero or more namespace or type names available within a pararofgiation-

unit or namespace-body, but does not contribute any new members to the underlying declaration space. In
other words, aising-directive is not transitive, but, rather, affects only tb@mpilation-unit or namespace-

body in which it occurs.

» The scope of a member declared bgl@ss-member-declaration (817.2) is theclass-body in which the
declaration occurs. In addition, the scope of a class member extendsctastibody of those derived
classes that are included in the accessibility domain (810.5.2) of the member.

* The scope of a member declared bstraict-member-declaration (§18.2) is thestruct-body in which the
declaration occurs.

» The scope of a member declared bysaom-member-declaration (§21.3) is theenum-body in which the
declaration occurs.

» The scope of a parameter declared method-declaration (817.5) is thanethod-body of thatmethod-
declaration.

e The scope of a parameter declared iriradexer-declaration (817.8) is theaccessor-declarations of that
indexer-declaration.

» The scope of a parameter declared iroperator-declaration (§17.9) is theblock of thatoperator-
declaration.

» The scope of a parameter declared woastructor-declaration (817.10) is theconstructor-initializer
andblock of thatconstructor-declaration.

» The scope of a label declared iadbel ed-statement (815.4) is theblock in which the declaration occurs.

» The scope of a local variable declared itoeal-variable-declaration (815.5.1) is the block in which the
declaration occurs.

e The scope of a local variable declared iantch-block of a swi tch statement (815.7.2) is ttsvitch-
block.

» The scope of a local variable declared ifoeinitializer of a for statement (815.8.3) is tHer-
initializer, thefor-condition, thefor-iterator, and the containegtatement of the for statement.

» The scope of a local constant declared loaal-constant-declaration (§15.5.2) is the block in which the
declaration occurs. It is a compile-time error to refeatiocal constant in a textual position that precedes its
constant-declarator.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member
in a textual position that precedes the declaration of the mentbenrple: For example

class A
void FO {
i=1;
int i = 0;

Here, it is valid forF to refer toi before it is declaredend exampl €]

80

0 N O g b w N -

11
12
13

14
15
16

18
19
20
21
22
23

24
25
26
27
28

29
30

31
32

33
34
35
36
37

38

39
40
41
42

43
44

45

46
a7
48
49

50
51

Chapter 10 Basic concepts

Within the scope of a local variable, it is a compileie error to refer to the local variable in a textual
position that precedes tlhecal-variable-declarator of the local variable.Example: For example

class A
int i = 0;

void FO {
i=1; // Error, use precedes declaration
int i;
i=2;

}

void GO
int j = (G =1; // valid

-~

void HO
int a

I

1, b = ++a; // valid
3

In the F method above, the first assignmentitgpecifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable an@#ults in a compile-time error because it textually
precedes the declaration of the variable. Inghmethod, the use of in the initializer for the declaration of

j is valid because the use does not precedéatat-variable-declarator. In theH method, a subsequent
local-variable-declarator correctly refers to a local variable declared in an eattieal-variable-declarator
within the saméocal-variable-declaration. end example]

[Note: The scoping rules for local variables are desigreeduarantee that the meaning of a name used in an
expression context is always the same within a hldicthe scope of a local variable were to extend only

from its declaration to the end of the block, then in the example above, the first assignment would assign to
the instance variable and the second assignmentdaasdign to the local variable, possibly leading to
compile-time errors if the statements of the block were later to be rearranged.

The meaning of a name within a block may differ bd®n the context in which the name is used. In the
example

using System;
class A {}

class Test

static void Main() {

string A = "hello, world";

string s = A; // expression context
Type t = typeof(A); // type context
console.writeLine(s); // writes "hello, world"
Console.writeLine(t.ToString()); // writes "Type: A"

}
}

the nameA is used in an expression context to refer to the local varialaled in a type context to refer to
the class. end note]

10.7.1 Name hiding

The scope of an entity typically encompasses more pragext than the declaration space of the entity. In
particular, the scope of an entity may include declaratithat introduce new declaration spaces containing
entities of the same name. Such declarations cause the original entity to bleicllere Conversely, an

entity is said to beisible when it is not hidden.

Name hiding occurs when scopes overlap through ngsiim when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

81

17
18
19

20
21

22

23
24
25
26
27
28

29
30
31

32
33

34

35
36

37
38

39
40
41

42
43

44
45

46
47

48
49
50
51

C#LANGUAGE SPECIFICATION

10.7.1.1 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a
result of nesting types within classes or structs, and as a result of parameter and local variable declarations.
[Example: In the example

class A
int i = 0;
void FO {
int i = 1;
void GO {
i=1;
}
}

within the F method, the instance variabilds hidden by the local variable, but within theg method,i still
refers to the instance variablend example]

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name. Example: In the example

class oOuter

static void F(int i) {}
static void F(string s) {}
class Inner

void GO {
F(L; // Invokes outer.Inner.F
F("Hello"); // Error

static void F(long 1) {}
}

the callF (1) invokes ther declared intnner because all outer occurrencesradire hidden by the inner
declaration. For the same reason, the EdllHe110") results in a compile-time erroend exampl €]

10.7.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from
base classes. This type of name hiding takes one of the following forms:

» A constant, field, property, event, or type introduced in a class or struct hides all base class members
with the same name.

A method introduced in a class or struct hides all non-method base class members with the same name,
and all base class methods with the same signature (method name and parameter count, modifiers, and

types).

* Anindexer introduced in a class or struct hidédsase class indexers with the same signature
(parameter count and types).

The rules governing operator declarations (817.9) make it impossible for a derived class to declare an
operator with the same signature as an operator irsa blass. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reportedEkample: In the example

class Base

public void FO {}

82

A WNBE

© 00 N o O»

10
11
12
13

14
15

16
17
18
19

20
21

22
23
24
25

26
27

28
29
30
31

32
33
34
35

36
37
38

39

40
4

42
43

44
45

46
47
48

49
50

Chapter 10 Basic concepts

class Derived: Base

public void FO {} // warning, hiding an inherited name

the declaration oF in Derived causes a warning to be reported. Hiding an inherited name is specifically
not an error, since that would preclude separate éwwmwf base classes. For example, the above situation
might have come about because a later versi@ask introduced arF method that wasn’t present in an
earlier version of the class. Had the above situation been an erroiehange made to a base classin a
separately versioned class library could ptitdly cause derived classes to become invadidl exampl €]

The warning caused by hiding an inheritehme can be eliminated through use of tle&y modifier:
[Example:

class Base

public void FO {}

class Derived: Base

new public void FO {}

The new modifier indicates that the in berived is “new”, and that it is indeed intended to hide the
inherited memberend example]

A declaration of a new member hides an inherited member only within the scope of the new member.
[Example:

class Base

public static void FQO {}

class Derived: Base

new private static void FQ {} // Hides Base.F in Derived only

class MoreDerived: Derived

static void GO { FO; } // Invokes Base.F

In the example above, the declaratiorFdh Der1ived hides ther that was inherited frorBase, but since
the newr in Derived has private access, its scope does not extemd teDerived. Thus, the calF () in
MoreDerived.G is valid and will invokeBase. F. end exampl€]

10.8 Namespace and type names

Several contexts in a C# program requingaanespace-name or atype-nameto be specified. Either form of
name is written as one or more identifiers separated.bydkens.

namespace-name;
namespace-or -type-name

type-name:
namespace-or -type-name

namespace-or -type-name:
identifier
namespace-or-type-name . identifier

A type-name is anamespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or-type-name of atype-name must refer to a type, or otherwise a compile-time error occurs.

83

[&;]

© 00 N O

10
11

12
13
14

15
16
17

18
19

20
21
22

23
24
25

26
27
28

29

30
31
32
33

34
35

36

37

38

39
40

C#LANGUAGE SPECIFICATION

A namespace-name is anamespace-or-type-name that refers to a namespace. Following resolution as
described below, theamespace-or-type-name of a namespace-name must refer to a namespace, or
otherwise a compile-time error occurs.

The meaning of @mamespace-or-type-name is determined as follows:

» If the namespace-or-type-name consists of a single identifier:

o

o

If the namespace-or -type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuivith each enclosing class or struct declaration (if
any), if a member with the given name exists, is accessible, and denotes a type, themedpace-
or-type-name refers to that member. Note that non-type members (constants, fields, methods,
properties, indexers, operatonssiance constructors, destrustoand static constructors) are

ignored when determining the meaning afamespace-or-type-name.

Otherwise, starting with the namespace in whichri@espace-or-type-name occurs, continuing
with each enclosing namespace (if any), and endiitly the global namespace, the following steps
are evaluated until an entity is located:

» If the namespace contains a namespace member with the given name, themesmce-or-
type-name refers to that member and, depending on the member, is classified as a namespace or

atype.

+ Otherwise, if the namespace has a correspondingespace declaration dosing the location
where thenamespace-or-type-name occurs, then:

o Ifthe namespace declaration contains a using-alias-directive that associates the given name
with an imported namespace or type, then the namespace-or-type-name refers to that
namespace or type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the namespace-or-type-name
refers to that type.

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type wthile given name, then the namespace-or-type-
name is ambiguous and an error occurs.

Otherwise, thaamespace-or-type-name is undefined and a compile-time error occurs.

» Otherwise, thexamespace-or-type-name is of the formN. I, whereN is anamespace-or-type-name
consisting of all identifiers but the rightmost one, anis the rightmost identifiem is first resolved as a
namespace-or-type-name. If the resolution oN is not successful, a compile-time error occurs. Otherwise,
N.I isresolved as follows:

o

o

o

If N is a namespace arxds the name of an accessible member of that namespacey thaefers to
that member and, depending on the member, is classified as a namespace or a type.

If N is a class or struct type armdis the name of an accessible typenirthenN. I refers to that type.

OtherwiseN. I is aninvalid namespace-or-type-name, and a compile-time error occurs.

10.8.1 Fully qualified names

Every namespace and type hasily qualified name, which uniquely identifies the namespace or type
amongst all others. The fully qualified name of a namespace omypeetermined as follows:

84

w N

10
11
12
13
14
15

16
17
18
19
20

21
22
23
24

25

26

27
28
29

30
31

32
33
34
35
36
37
38

39
40

41
42
43

44
45

46
47
48

Chapter 10 Basic concepts

» If Nis a member of the global namespace, its fully qualified nanve is

» Otherwise, its fully qualified name 5. N, wheres is the fully qualified name of the namespace or type
in which N is declared.

In other words, the fully qualified name dfis the complete hierarchical path of identifiers that lean,to
starting from the global namespace. Because evemnber of a namespace or type must have a unique
name, it follows that the fully qualified name of a namespace or type is always unique.

[Example: The example below shows several namespace and type declarations along with their associated
fully qualified names.

class A {} // A
nhamespace X // X
class B // X.B
class C {} // X.B.C
namespace Y // X.Y
class D {} // X.Y.D
}
namespace X.Y // X.Y
class E {} // X.Y.E
end example]

10.9 Automatic memory management

C# employs automatic memory management, which frees developers from manually allocating and freeing
the memory occupied by objects. Automatic memonnagement policies are implemented by a garbage
collector. The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is
consideredive.

2. Ifthe object, or any part of it, cannot be accessed by any possible continuation of execution, other than
the running of destructors, the object is considaredonger in use, and it becomes eligible for
destruction. Note: Implementations may choose to analypele to determine which references to an
object may be used in the future. For instance, if a local variable that is in scope is the only existing
reference to an object, but that local variable is never referred to in any possible continuation of
execution from the current execution point in the pahae, an implementation may (but is not required
to) treat the object as no longer in usad note]

3. Once the object is eligible for destruction, at somepaasffied later time the destructor (817.12) (if any)
for the object is run. Unless overridden by explicit calls, the destructor for the object is run once only.

4. Once the destructor for an object is run, if that object, or any part of it, cannot be accessed by any
possible continuation of execution, including the running of destructors, the object is considered
inaccessible and the object becomes eligible for collection.

5. Finally, at some time after the object becomes eligibr collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make memory
management decisions, such as where in memory to locate a newly created object, when to relocate an
object, and when an object is no longer in use or inaccessible.

85

A W N P

~N o O

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

37
38
39

40
4

42

43
44

45

46
a7

48
49
50
51
52
53
54
55
56
57
58

C#LANGUAGE SPECIFICATION

Like other languages that assume the existence oftaagarcollector, C# is designed so that the garbage

collector may implement a wide range of memory ngeraent policies. For instance, C# does not require
that destructors be run or that objects be collectesan as they are eligible, or that destructors be run in
any particular order, or on any particular thread.

The behavior of the garbage collector can be cdlgipto some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, destructors to be run (or not run), and so
forth.

[Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and run
destructors, a conforming implementation may pradaatput that differs from that shown by the following
code. The program

using System;

class A
~AQ {]])
console.writeLine("Destruct instance of A");
3
class B
object Ref;
public B(object o) {
Ref = o;
3
~B(O) { .) .
console.wWriteLine("Destruct instance of B");
3
class Test
static void Main() {
B b =new B(hew AQ));
b = null;
GC.Collect();
GC.waitForPendingFinalizers();
3

creates an instance of classnd an instance of clags These objects become eligible for garbage
collection when the variable is assigned the valueu11, since after this time it is impossible for any user-
written code to access them. The output could be either

Destruct instance of A
Destruct instance of B

or

Destruct instance of B
Destruct instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligibledestruction” and “eligible for collection” can be
important. For example,

using System;
class A

{
~AQ |

console.writeLine("Destruct instance of A");
ks
public void FQ {

Console.writeLine("A.F");
Test.RefA = this;

86

O~NOOhAWNBE

(o]

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25

27
28
29
30

31
32

33
34
35
36
37
38

39
40
41

42

43
44
45
46
47
48

49
50

51

52
53
54
55

Chapter 10 Basic concepts

class B

public A Ref;
~BQ) {

console.writeLine("Destruct instance of B");
Ref.FQ);

3

class Test

public static A RefA;
public static B RefB;
static void Main() {
RefB = new B();
RefA = new AQ);
RefB.Ref = RefA;
RefB null;
RefA null;

// A and B now eligible for destruction
GC.Collect(Q);
GC.waitForPendingFinalizers();
// B now eligible for collection, but A is not
if (RefA !'= null)
) Cconsole.writeLine("RefA is not null");
3

In the above program, if the garbage collector chooses to run the destrustbefifre the destructor &,
then the output of this program might be:

Destruct instance of A

Destruct instance of B

A.F
RefA is not null

Note that although the instance ofvas not in use and's destructor was run, it is still possible for methods
of A (in this caseF) to be called from another destructor. Also, note that running of a destructor may cause
an object to become usable from the mainline program again. In this case, the runeisgestructor

caused an instance afthat was previously not in use to become accessible from the live refereifioe

After the call towaitForpPendingFinalizers, the instance of is eligible for collection, but the instance

of A is not, because of the referercefA.

To avoid confusion and unexpected behavior, it isagafty a good idea for destructors to only perform
cleanup on data stored in their object's own fields, and not to perform any actions on referenced objects or
static fields.end example]

10.10 Execution order

Execution shall proceed such that the side effects df eaecuting thread are preserved at critical execution
points. Aside effect is defined as a read or write of a volatile field, a write to a non-volatile variable, a write
to an external resource, and the throwing of an exoepi he critical execution points at which the order of
these side effects must be preserved are references to volatile fields (§1To4k3$tatements (§15.12), and
thread creation and termination. An implementation is free to change the order of execution of a

C# program, subject to the following constraints:

» Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

» Initialization ordering rules arerpserved (817.4.4 and §817.4.5).

» The ordering of side effects is preserved with exggo volatile reads and writes (817.4.3). Additionally,
an implementation need not evaluate part of an exgrassit can deduce that that expression’s value is not
used and that no needed side effects are producddding any caused by calling a method or accessing a
volatile field). When program execution is interrupted by an asynchronous event (such as an exception

87

C#LANGUAGE SPECIFICATION

1 thrown by another thread), it is not guaranteed that the observable side effects are visible in the original
2 program order.

88

10
11

12
13
14
15

16

17
18

19
20
21

22
23
24

25
26
27

28
29
30
31

32
33
34
35
36
37
38
39
40
41

Chapter 11 Types

11. Types

The types of the C# language are divided into two main categories: Value types and reference types.

type:
value-type
reference-type

A third category of types, pointers, is available only in unsafe code. This is discussed further in §25.2.

Value types differ from reference types in that vatés of the value types directly contain their data,

whereas variables of the reference types steferences to their data, the latter being known algjects.

With reference types, it is possible for two varieslto reference the same object, and thus possible for
operations on one variable to affect the object rafeeel by the other variable. With value types, the

variables each have their own copy of the data, and it is not possible for operations on one to affect the other.

C#'s type system is unified such theatalue of any type can be treated as an object. Every type in C#
directly or indirectly derives from thebject class type, andbject is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values abfyae. Values of
value types are treated as objects by performing boxing and unboxing operations (811.3).

11.1 Value types

A value type is either a struct type or an enumeratype. C# provides a set of predefined struct types
called thesimple types. The simple types are identified through reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
Tong
ulong
char

89

10
11
12

13

14

15

16

17

18

19

20

21

22

23

24
25

26
27
28
29
30
31
32
33

34
35

36
37
38

39

40
41

C#LANGUAGE SPECIFICATION

floating-point-type:
float
double

enum-type:
type-name

All value types implicitly inherit from classbject. It is not possible for any type to derive from a value
type, and value types are thus implicitly sealed (817.1.1.2).

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for
a value of a value type to beu11, or to reference an object of a more derived type.

Assignment to a variable of a value type createspy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by the
reference.

11.1.1 Default constructors

All value types implicitly declare a public pareeterless instance constructor calleddeiult constructor.
The default constructor returns a zero-initialized instance known agethelt value for the value type:

» For allsimple-types, the default value is the value produced by a bit pattern of all zeros:
Forsbyte, byte, short, ushort, int, uint, Tong, andulong, the default value is 0.
For char, the default value i$\x0000".

For f1oat, the default value i§.0f.

FordoubTe, the default value i§.0d.

Fordecimal, the default value i§ . Om.

O O O O o o

ForbooT, the default value ifalse.
* For anenumtype E, the default value is 0.

» For astruct-type, the default value is the value produced bitiag all value type fields to their default
value and all reference type fieldsral1.

Like any other instance constructor, the defaoltstructor of a value type is invoked using thav
operator. Note: For efficiency reasons, this requirement is not intended to actually have the implementation
generate a constructor cathd note] In the example below, variableisandj are both initialized to zero.

class A
void FO {
int i = 0;
int j = new int(Q);
ks

Because every value type implicitly has a public paranhete instance constructor, it is not possible for a
struct type to contain an explicit declaration of a parameterless constructor. A struct type is however
permitted to declare parameterized instance constructors (818.3.8).

11.1.2 Struct types

A struct type is a value type that can declare constdietgls, methods, properties, indexers, operators,
instance constructors, static constructors, m@sted types. Struct types are described in §818.

90

a A W DN

o N O

11
12

13

14
15
16
17

18
19
20

21
22

23
24
25

26

27
28

Chapter 11 Types

11.1.3 Simple types

C# provides a set of predefined struct types callecstimple types. The simple types are identified through
reserved words, but these reserved words are simply aliases for predefined struct typsy téne
namespace, as described in the table below.

Reserved word Aliased type
sbhyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System.Int32
uint System.UInt32
Tlong System.Int64
ulong System.UInt64
char System.Char
float System.Single
doubTe System.Double
bool System.Boolean
decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members. For exatrips,the
members declared lystem.Int32 and the members inherited frodlystem.Object, and the following
statements are permitted:

int i = int.Maxvalue; // System.Int32.Maxvalue constant
string s = 1.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(Q); // System.Int32.ToString() instance method

The simple types differ from other struct types lvat they permit certain additional operations:

* Most simple types permit values to be created by writiteyals (89.4.4). For examplé,23 is a literal
oftypeint and'a’ is a literal of typechar. C# makes no provision for literals of struct types in general,
and non-default values of other struct types are ultislyealways created through instance constructors of

those struct types.

* When the operands of an expression are all simple type constants, it is possible for the compiler to
evaluate the expression at compile-time. Such an expression is knovwo@sant-expression (§14.15).
Expressions involving operators defined by other sttyjoes are not considered to be constant expressions.

» Throughconst declarations, it is possible to declare constants of the simple types (817.3). It is not
possible to have constants of other struct types, but a similar effect is providedhlhyc readonly fields.

» Conversions involving simple types can particgpat evaluation of conversion operators defined by
other struct types, but a user-defined conversion opecatonever participate in evaluation of another user-
defined operator (813.4.2).

11.1.4 Integral types

C# supports nine integral typesbyte, byte, short, ushort, int, uint, Tong, uTong, andchar. The
integral types have the following sizes and ranges of values:

91

10

11
12
13

14
15

16
17
18

19
20
21

22
23
24
25
26

27
28
29

30

31
32
33

34
35

36
37
38
39

40

41
42
43

C#LANGUAGE SPECIFICATION

» Thesbyte type represents signed 8-bit integevith values between —128 and 127.

» Thebyte type represents unsigned 8-bit integers with values between 0 and 255.

» Theshort type represents signed 16-bit integers with values between —32768 and 32767.

» Theushort type represents unsigned 16-bitdgers with values between 0 and 65535.

» Theint type represents signed 32-bit integers witthues between —2147483648 and 2147483647.
» Theuint type represents unsigned 32-bit integers with values between 0 and 4294967295.

* Thelong type represents signed 64-bit integetithwalues between —9223372036854775808 and
9223372036854775807.

* Theulong type represents unsigned 64-bit integers with values between 0 and
18446744073709551615.

» Thechar type represents unsigned 16-bit integers with values between 0 and 65535. The set of possible
values for thechar type corresponds to the Unicode character dite, Althoughchar has the same
representation asshort, not all operations permitted on one type are permitted on the afiebnote]

The integral-type unary and binary operators alwaysrate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

* For the unary and ~ operators, the operand is converted to typehereT is the first ofint, uint,
Tong, andulong that can fully represent all possible valuddte operand. The operation is then performed
using the precision of type, and the type of the result s

» For the unary- operator, the operand is converted to typevhereT is the first ofint andlong that
can fully represent all possible values of the operdiek operation is then performed using the precision of
typeT, and the type of the result ’& The unary- operator cannot be applied to operands of typeng.

e Forthe binary, -, *, /,%, & A, |, ==, I=, >, <, >=, and<= operators, the operands are converted to
typeT, whereT is the first ofint, uint, Tong, anduTlong that can fully represent all possible values of
both operands. The operation is thesrfprmed using the precision of typeand the type of the result s
(or booT for the relational operators). It is npermitted for one operand to be of typeng and the other to
be of typeulong with the binary operators.

» Forthe binaryk< and>> operators, the left operand is converted to typerhereT is the first ofint,
uint, Tong, andulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of typeand the type of the result &

Thechar type is classified as an integral type, but it differs from the other integral types in two ways:

» There are no implicit conversions from other types todhar type. In particular, even though the
sbyte, byte, andushort types have ranges of values that are fully representable usirgthetype,
implicit conversions fronsbyte, byte, orushort to char do not exist.

» Constants of thehar type must be written asharacter-literals or asinteger-literals in combination
with a cast to typehar. For example{char) 10 is the same a5\x000A".

Thechecked andunchecked operators and statements are used to control overflow checking for integral-
type arithmetic operations and conversions (814.5.12) dmexked context, an overflow produces a
compile-time error or causes agstem.overflowException to be thrown. In amunchecked context,
overflows are ignored and any high-order bits that do not fit in the destination type are discarded.

11.1.5 Floating point types

C# supports two floating-point type<:loat anddouble. Thefloat anddoubTe types are represented
using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following
sets of values:

92

N -

10

11
12

13
14

15
16

17
18

19
20
21

22
23

24
25

26
27

28
29

30

31

32
33
34
35
36
37
38
39
40
41
42

43

44
45

Chapter 11 Types

» Positive zero and negative zero. In most situationsijtive zero and negative zero behave identically as
the simple value zero, but certain operations distinguish between the two (814.7.2).

» Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For examplg, 0 / 0.0 yields positive infinity, and-1.0 / 0.0 yields negative infinity.

» TheNot-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

« The finite set of non-zero values of the fosw m x 2°, wheresis 1 or —1, andn ande are determined
by the particular floating-point type: Fdfloat, 0 <m< 2**and —-149% e< 104, and fordoube,

0 <m< 2*2and -1075% e< 970. Denormalized floating-point numbers are considered valid non-zero
values.

The float type can represent values ranging from approximately 1.5 % &®3.4 x 1G® with a precision
of 7 digits.

ThedoubTe type can represent values ranging from approximately 5.0%“0 1.7 x 16°®with a
precision of 15-16 digits.

If one of the operands of a binary operator is of afilog-point type, then the other operand must be of an
integral type or a floating-point type, and the operation is evaluated as follows:

» If one of the operands is of an integral type, then tha#rand is converted to the floating-point type of
the other operand.

» Then, if either of the operands is of tydeuble, the other operand is converteddouble, the
operation is performed using at leastubTe range and precision, and the type of the resuioisb1e (or
boo1 for the relational operators).

+ Otherwise, the operation is performed using at Iédstat range and precision, and the type of the
resultisfloat (or bool for the relational operators).

The floating-point operators, including the assigmtn@perators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

» Ifthe result of a floating-point operation is too small for the destination format, the result of the
operation becomes positive zero or negative zero.

» Ifthe result of a floating-point operation is too large for the destination format, the result of the
operation becomes positive infinity or negative infinity.

» If afloating-point operation is invalid, the result of the operation becomes NaN.
» If one or both operands of a floating-point operatisiNiaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higbeecision than the result type of the operation. For
example, some hardware architectures support an “extended” or “long double” floating-point type with
greater range and precision than tleeib1e type, and implicitly perform all floating-point operations using
this higher precision type. Only at excessive cost iriggenance can such hardware architectures be made to
perform floating-point operations witless precision, and rather than require an implementation to forfeit
both performance and precision, C# allows a higher precision type to be used for all floating-point
operations. Other than delivering more precise results, this rarely has any measurable effects. However, in
expressions of the form * y / z, where the multiplication produces a result that is outsideltheb1e

range, but the subsequent divisionngs the temporary result back into tieub1e range, the fact that the
expression is evaluated in a higher range format may cause a finite result to be produced instead of an
infinity.

11.1.6 The decimal type

Thedecimal type is a 128-bit data type suitable fonéincial and monetary calculations. Tdhecimal type
can represent values ranging from 1.0 x4 approximately 7.9 x ¥ with 28—29 significant digits.

93

w N -

© 00 N o U b

10
11
12

13
14
15
16
17
18

19
20
21

22
23
24
25
26

27
28

29
30
31

32
33
34
35

36

37
38
39

40
4

42
43
44
45
46

C#LANGUAGE SPECIFICATION

The finite set of values of typgecimal are of the form —1x ¢ x 10°, where the sigisis 0 or 1, the
coefficientc is given by 0< ¢ < 2%, and the scaleis such that G< e < 28. Thedecimal type does not
support signed zeros, infinities, or NaN's.

A decimal is represented as a 96-bit integer scaled by a power of tenddedmals with an absolute value
less tharl . Om, the value is exact to the ?&lecimal place, but no further. Fdecimals with an absolute
value greater than or equal tdh, the value is exact to 28 or 29 digits. Contrary to fli@at anddouble

data types, decimal fractional numberglsas 0.1 can be represented exactly indaeimal

representation. In th€loat anddouble representations, such numbers are often infinite fractions, making
those representations more prone to round-off errors.

If one of the operands of a binary operator is of tgeeimal, then the other operand must be of an integral
type or of typedecimal. If an integral type operand is present, it is converteddoimal before the
operation is performed.

The result of an operation on values of typecimal is that which would result from calculating an exact
result (preserving scale, as defined for each operatar}fan rounding to fit the representation. Results are
rounded to the nearest representable value, and, whesul is equally close to two representable values, to
the value that has an even number in the least fogmit digit position (this is known as “banker’s

rounding”). That is, results are exact to 28 or 29 digits, but to no more than 28 decimal places. A zero result
always has a sign of 0 and a scale of 0.

If a decimal arithmetic operation produces a value that is too small for the decimal format after rounding, the
result of the operation becomes zero. Hecimal arithmetic operation produces a result that is too large
for thedecimal format, asystem.OverflowException is thrown.

Thedecimal type has greater precision but smaller rangetthe floating-point types. Thus, conversions
from the floating-point types tdecimal might produce overflow exceptions, and conversions from
decimal to the floating-point types might cause loss ofgision. For these reasons, no implicit conversions
exist between the floating-point types athelcimal, and without explicit casts, it is not possible to mix
floating-point anddecimal operands in the same expression.

11.1.7 The boo1 type
Thebool type represents boolean logical quantities. The possible values dftygdearetrue andfalse.

No standard conversions exist betwédmo1 and other types. In particular, theo1 type is distinct and
separate from the integral types, anble1 value cannot be used in place of an integral value, and vice
versa.

[Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted
to the boolean valuéalse, and a non-zero integral or floating-point value, or a non-null pointer can be
converted to the boolean valueue. In C#, such conversions are accomplished by explicitly comparing an
integral or floating-point value to zero, or by explicitly comparing an object referengeltd. end note]

11.1.8 Enumeration types

An enumeration type is a distinct type with named stants. Every enumeration type has an underlying
type, which must béyte, sbyte, short, ushort, int, uint, Tong or ulong. Enumeration types are
defined through enumeration declarations (§21.1).

11.2 Reference types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

94

A W N PP

(&)]

10

11
12
13

14
15

16
17
18

19
20

21
22

23

24
25
26
27

28

29

30
31

32

33

34
35

36

37

38

39
40

41

Chapter 11 Types

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsyy: 1]

dim-separators:

dim-separators ,

delegate-type:
type-name

A reference type value is a reference toiastance of the type, the latter known as abject. The special
valuenul1 is compatible with all reference typesaindicates the absence of an instance.

11.2.1 Class types

A class type defines a data structure that contaites eleembers (constants and fields), function members
(methods, properties, events, indexepgmtors, instance constructors, tiestors, and static constructors),
and nested types. Class types support inheritancechamism whereby derived classes can extend and
specialize base classes. Instances of class types are createdbjeitigreation-expressions (§14.5.10.1).

Class types are described in 817.

11.2.2 The object type

Theobject class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from theobject class type.

The keywordobject is simply an alias for the predefined clasgstem.0Object.

11.2.3 The string type

Thestring type is a sealed class type that inherits directly fraiject. Instances of thetring class
represent Unicode character strings.

Values of thestring type can be written as string literals (§9.4.4).

The keywordstring is simply an alias for the predefined clasgstem. String.

11.2.4 Interface types

An interface defines a contract. A class or struct thgilements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, ardass or struct may implement multiple interfaces.

Interface types are described in §20.

95

A WDN

10
11
12

13

14

15
16
17
18

19

20
21
22

23
24
25
26

27
28

29
30
31
32

33
34

35
36

37

38
39

40

41
42
43

C#LANGUAGE SPECIFICATION

11.2.5 Array types

An array is a data structure that contains zero oran@riables which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in 819.

11.2.6 Delegate types

A delegate is a data structure that refers to one or more methods, and for instance methods, it also refers to
their corresponding object instances.

[Note: The closest equivalent of a delegate in C or Cs-& function pointer, but whereas a function pointer

can only reference static functions, a delegate camerée both static and instance methods. In the latter
case, the delegate stores not only a reference to the method’s entry point, but also a reference to the object
instance on which to invoke the methaid note]

Delegate types are described in §22.

11.3 Boxing and unboxing

The concept of boxing and unboxing is central to C#'s type system. It provides a bridge beblgstypes
andreference-types by permitting any value of @alue-typeto be converted to and from typdject.

Boxing and unboxing enables a unified view of the type system wherein a value of any type can ultimately
be treated as an object.

11.3.1 Boxing conversions

A boxing conversion permits ansalue-type to be implicitly converted to the typebject or to any
interface-type implemented by thealue-type. Boxing a value of aalue-type consists of allocating an object
instance and copying thelue-type value into that instance.

The actual process of boxing a value ofadue-type is best explained by imagining the existence tbaing
classfor that type. Example: For anyvalue-type T, the boxing class behaves as if it were declared as
follows:

sealed class T_Box

T value;
public T_Box(T t) {
value = t;

}

Boxing of a valuev of type T now consists of executing the expressimw T_Box(v), and returning the
resulting instance as a value of typkeject. Thus, the statements

int i = 123;
object box = 1i;

conceptually correspond to

int i = 123;
object box = new int_Box(i);

end exampl €]

Boxing classes likg_Box andint_Box above don't actually exist and the dynamic type of a boxed value
isn't actually a class type. Instead, a boxed value of typas the dynamic typg, and a dynamic type
check using the s operator can simply reference type[Example: For example,

96

a b wN ek

[«2]

10
11
12

13
14
15
16
17

18

19
20
21
22

23
24
25

26

27
28
29
30

31
32
33

34
35

36

37
38

39

40
41
42
43

Chapter 11 Types

int i = 123;
object box = 1i;
if (box is int) {
console.write("Box contains an int");

will output the string Box contains an int” on the consoleend example]

A boxing conversion impliemaking a copy of the value being boxed. This is different from a conversion of
areference-type to typeobject, in which the value continues to reference the same instance and simply is
regarded as the less derived tygigject. [Example: For example, given the declaration

struct Point

pubTlic int x, y;

public Point(int x, int y) {
this.x X;
this.y = vy;

3

the following statements

Point p = new Point(10, 10);

object box = p;

p.x = 20;

console.write(((Point)box).x);
will output the value 10 on the console because thdigitfpoxing operation that occurs in the assignment
of p to box causes the value @fto be copied. Ha®oint been declared alass instead, the value 20
would be output becaugeandbox would reference the same instanesd example]

11.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from tgpgect to anyvalue-type or from any
interface-type to anyvalue-type that implements thinterface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the gigkrme-type, and then copying the value out of
the instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an
objectbox to avalue-type T consists of executing the expressiofir_Box) box) . vaTlue. [Example: Thus,
the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new int_Box(123);
int i = ((int_Box)box).value;

end example]

For an unboxing conversion to a givealue-type to succeed at run-time, the value of the source operand
must be a reference to an object that was previously created by boxing a valueval tkatpe. If the
source operand isul1 or a reference to an incompatible objectSyastem.InvalidCastExceptionis
thrown.

97

a b~ WODN

10
11

12

13
14
15
16

17
18
19
20

21
22
23
24
25

26
27

28

29
30
31

32

33

34
35

36

37
38

39

40

Chapter 12 Variables

12. Variables

Variables represent storage locations. Every varibbtea type that determines what values can be stored in
the variable. C# is a type-safe language, and the C#pdenguarantees that values stored in variables are
always of the appropriate type. The value of a vagaian be changed through assignment or through use of
the ++ and-- operators.

A variable must belefinitely assigned (812.3) before its value can be obtained.

As described in the following sections, variables are eithigrally assigned or initially unassigned. An

initially assigned variable has a well-defined initi@lue and is always considered definitely assigned. An
initially unassigned variable has no initial value riam initially unassigned variable to be considered
definitely assigned at a certain location, an assignrteetite variable must occur in every possible execution
path leading to that location.

12.1 Variable categories

C# defines seven categories of variables: static variables, instance variables, array elements, value
parameters, reference parameters, output paramatet$ocal variables. The sections that follow describe
each of these categories.

[Example: In the example
class A

public static int x;
int y;
void F(int[] v, int a, ref int b, out int c) {
int i = 1;
C = a + b++;
}
3

x is a static variabley is an instance variable,[0] is an array elemeng is a value parameteb,is a
reference parametec,is an output parameter, arids a local variableend exampl €]

12.1.1 Static variables

A field declared with thestatic modifier is called astatic variable. A static variable comes into existence
before execution of the static constructor (817.11)tcontaining type, and ceases to exist when the
associated application domain ceases to exist..

The initial value of a static variable is the default value (812.2) of the variable’s type.

For the purposes of definite assignment checkansfatic variable is considered initially assigned.

12.1.2 Instance variables
A field declared without thetatic modifier is called annstance variable.

12.1.2.1 Instance variables in classes

An instance variable of a class comes into existameen a new instance of that class is created, and ceases
to exist when there are no references to that instandetee instance’s destructor (if any) has executed.

The initial value of an instance variable of a clastghe default value (812.2) of the variable’s type.

For the purpose of definite assignment checkingnatance variable is considered initially assigned.

99

A WDN

o N o »

10
11

12
13

14

15
16

17
18
19

20

21
22

23
24
25

26
27

28
29

30

31
32

33
34
35

36
37

38
39

C#LANGUAGE SPECIFICATION

12.1.2.2 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comés @éxistence or ceases to exist, so too do the instance
variables of the struct.

The initial assignment state of an instance variabla sfruct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance
variables, and when a struct variable is considerdtlly unassigned, its instance variables are likewise
unassigned.

12.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initial value of each of the elements of an arrayhis default value (812.2) of the type of the array
elements.

For the purpose of definite assignment checkargarray element is considered initially assigned.

12.1.4 Value parameters
A parameter declared withoutraf or out modifier is avalue parameter.

A value parameter comes into existence upomdaation of the function member (method, instance
constructor, accessor, or operator) to which the patanbelongs, and is initialized with the value of the
argument given in the invocation. A value paramegases to exist upon return of the function member.

For the purpose of definite assignment checkagalue parameter is considered initially assigned.

12.1.5 Reference parameters
A parameter declared withreef modifier is areference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the

same storage location as the variable given asitgament in the function member invocation. Thus, the
value of a reference parameter is ajwdhe same as the underlying variable.

The following definite assignment rules apply to refiece parameters. Note the different rules for output
parameters described in §12.1.6.

» Avariable must be definitely assigned (812.3) vefit can be passed as a reference parameter in a
function member invocation.

* Within a function member, a reference parameter is considered initially assigned.

Within an instance method or irstce accessor of a struct type, ttei s keyword behaves exactly as a
reference parameter of the struct type (814.5.7).

12.1.6 Output parameters
A parameter declared with arut modifier is anoutput parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given asitgement in the function member invocation. Thus, the
value of an output parameter is always the same as the underlying variable.

The following definite assignment rules apply to outparameters. Note the different rules for reference
parameters described in §12.1.5.

100

N -

10

11
12

13
14
15
16
17
18
19

20
21
22
23

24
25

26
27
28
29

30
31

32
33
34
35

36
37

38

39

40

41

Chapter 12 Variables

» Avariable need not be definitely assigned befameain be passed as an output parameter in a function
member invocation.

* Following the normal completion of a function mesr invocation, each variable that was passed as an
output parameter is considered assigned in that execution path.

* Within a function member, an output parameter is considered initially unassigned.

» Every output parameter of a function member must &iinitely assigned (812.3) before the function
member returns normally.

Within an instance constructor of a struct type, tihe s keyword behaves exactly as an output parameter of
the struct type (814.5.7).

12.1.7 Local variables

A local variableis declared by docal-variable-declaration, which may occur in dlock, afor-statement, a
switch-statement, or ausing-statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to be
reserved for it. This lifetime extends from entry into thleck, for-statement, switch-statement, or using-

statement with which it is associated, until execution of thzbck, for-statement, switch-statement, or using-
statement ends in any way. (Entering an enclodgdck or calling a method suspends, but does not end,
execution of the currer ock, for-statement, switch-statement, or using-statement.) If the parentlock, for-
statement, switch-statement, or using-statement is entered recursively, a new instance of the local variable is
created each time, and iiscal-variable-initializer, if any, is evaluated each time.

A local variable is not automatically initialized and thus has no default value. For the purpose of definite
assignment checking, a local variable is considered initially unassignktalAvariable-declaration may
include alocal-variable-initializer, in which case the variable is considered definitely assigned in its entire
scope, except within the expression provided inltwal-variable-initializer.

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a textual
position that precedes itecal-variable-declarator.

[Note: The actual lifetime of a local variable is implentation-dependent. For example, a compiler might
statically determine that a local variable in a bleslonly used for a small portion of that block. Using this
analysis, the compiler could generate code that results in the variable’s storage having a shorter lifetime than
its containing block.

The storage referred to by a local reference variabteclaimed independently of the lifetime of that local
reference variable (§10.9nd note]

A local variable is also declared byfereach-statement and by aspecific-catch-clause for a try-statement.
For aforeach-statement, the local variable is an iteration variable (815.8.4). Fepexific-catch-clause, the
local variable is an exception variablel&10). A local variable declared byfereach-statement or specific-
catch-clause is considered definitely assigned in its entire scope.

12.2 Default values
The following categories of variables are autdinally initialized to their default values:

e Static variables.
* Instance variables of class instances.
» Array elements.

The default value of a variable depends on the tyjthe variable and is determined as follows:

101

10

11

12
13

14

15
16

17

18
19
20

21
22

23
24

25

26
27
28

29

30

31

32
33
34

35
36
37
38
39

40
41

42
43

C#LANGUAGE SPECIFICATION

» For avariable of aalue-type, the default value is the same as the value computed byathe-type's
default constructor (§11.1.1).

» For avariable of aeference-type, the default value igul1.

[Note: Initialization to default values is typically done lmaving the memory manager or garbage collector

initialize memory to all-bits-zero before it is allocated for use. For this reason, it is convenient to use all-bits-

zero to represent the null referencand note]

12.3 Definite assignment

At a given location in the executable code of a function member, a variable is saidiéfimi¢ely assigned
if the compiler can prove, by static flow analysis, tHa¢ ariable has been automatically initialized or has
been the target of at least one assignment. The rules of definite assignment are:

* Aninitially assigned variable (812.3.1) isnsys considered definitely assigned.

* Aninitially unassigned variable (812.3.2) is consil@definitely assigned at a given location if all
possible execution paths leading to that location contain at least one of the following:

0 A simple assignment (814.13.1) in which the variable is the left operand.

0 Aninvocation expression (814.5.5) or objectation expression (814.5.10.1) that passes the
variable as an output parameter.

o Foralocal variable, a local variable declarati®15.5) that includes a variable initializer.

The definite assignment states of instance variablesstriiat-type variable are tracked individually as well
as collectively. In additional to the rules above, the following rules app$rtat-type variables and their
instance variables:

* Aninstance variable is considered definitely assigned if its contastiigt-type variable is considered
definitely assigned.

* A struct-type variable is considered definitely assignééach of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

» Avariable must be definitely assigned at each location where its value is obtdiotel. This ensures
that undefined values never occand note] The occurrence of a variable in an expression is considered to
obtain the value of the variable, except when

o the variable is the left operand of a simple assignment,
o the variable is passed as an output parameter, or
o the variable is &truct-type variable and occurs as the left operand of a member access.

» Avariable must be definitely assigned at each location where it is passed as a reference parameter.
[Note: This ensures that the function member being inwb&an consider the reference parameter initially
assignedend note]

» All output parameters of a function member must be definitely assigned at each location where the
function member returns (throughraturn statement or through execution reaching the end of the function
member body).Nlote: This ensures that function membersruu return undefined values in output
parameters, thus enabling the compiler to considenatfon member invocation that takes a variable as an
output parameter equivalent to an assignment to the variadanote]

» Thethis variable of astruct-type instance constructor must be definitely assigned at each location
where that instance constructor returns.

12.3.1 Initially assignhed variables
The following categories of variables are classified as initially assigned:

102

10

11

12

13

14
15

16
17
18

19

20

21

22

23

24

25
26

27
28
29

30
31
32

33
34
35

36

37

38

39

Chapter 12 Variables

e Static variables.

* Instance variables of class instances.

* Instance variables of initially assigned struct variables.

» Array elements.

e Value parameters.

« Reference parameters.

» Variables declared in @aatch clause or &oreach statement.

12.3.2 Initially unassigned variables

The following categories of variables are classified as initially unassigned:

* Instance variables of initially unassigned struct variables.

» Output parameters, including thiéi s variable of struct instance constructors.

» Local variables, except those declared itazch clause or &oreach statement.

12.3.3 Precise rules for determining definite assignment

In order to determine that each used variable is definassigned, the compiler must use a process that is
equivalent to the one described in this section.

The compiler processes the body of each functi@miner that has one or more initially unassigned
variables. For each initially unassigned variabléhe compiler determinesdgfinite assignment state for v
at each of the following points in the function member:

At the beginning of each statement

At the end point (815.1) of each statement

On each arc which transfers control to another statement or to the end point of a statement
At the beginning of each expression

At the end of each expression

The definite assignment statewotan be either:

Definitely assigned. This indicates that on all possible control flows to this poias been
assigned a value.

Not definitely assigned. For the state of a variable at the end of an expression bbtypehe state
of a variable the isn't definitely assigned may (but doesn’t necessarily) fall into one of the following
sub-states:

o Definitely assigned after true expression. This state indicatey ihatefinitely assigned if
the boolean expression evaluated as true, but is not necessarily assigned if the boolean
expression evaluated as false.

o Definitely assigned after false expression. This state indicates thakefinitely assigned if
the boolean expression evaluated as fdisi¢js not necessarily assigned if the boolean
expression evaluated as true.

The following rules govern how the state of a variabie determined at each location.

12.3.3.1 General rules for statements

vis not definitely assigned at the beginning of a function member body.

v is definitely assigned at the begingi of any unreachable statement.

103

a W N P

© 00 N O

10
11
12

13

14
15
16

17
18

19

20
21

22

23
24

25
26
27

28
29

30

31

32
33

34
35
36

37
38
39
40

41
42

C#LANGUAGE SPECIFICATION

» The definite assignment stateoét the beginning of any other statement is determined by checking
the definite assignment statewdn all control flow transfers that target the beginning of that
statement. If (and only ify is definitely assigned on all such control flow transfers, thién
definitely assigned at the beginning of the statetn&€he set of possible control flow transfers is
determined in the same way as for checking statement reachability (815.1).

* The definite assignment stateat the end point of a bloclchecked, unchecked, if, whiTe,
do, for, foreach, Tock, using, or switch statement is determined by checking the definite
assignment state @fon all control flow transfers that target the end point of that statementsif
definitely assigned on all such control flow transfers, thiéndefinitely assigned at the end point of
the statement. Otherwisejs not definitely assigned at the end point of the statement. The set of
possible control flow transfers is determined ie game way as for checking statement reachability
(815.1).

12.3.3.2 Block statements, checked, and unchecked statements

The definite assignment statewbn the control transfer to the firstadement of the statement list in the
block (or to the end point of the block, if the statement list is empty) is the same as the definite assignment
statement ot before the blockchecked, orunchecked statement.

12.3.3.3 Expression statements
For an expression statemestrnt that consists of the expressiexpr:

» v has the same definite assignment state at the beginniegioés at the beginning atnt.

« If vif definitely assigned at the end ekpr, it is definitely assigned at the end pointsbifrt;
otherwise; it is not definitely assigned at the end poirgtot.

12.3.3.4 Declaration statements

» If stmt is a declaration statement without initializers, themas the same definite assignment state at
the end point oktmt as at the beginning atmt.

« If stmt is a declaration statement with initializers, then the definite assignment statesfor
determined as iftmt were a statement list, with one assignment statement for each declaration with
an initializer (in the order of declaration).

12.3.3.5 If statements
For ani f statemenstmt of the form:

if (expr) then-stmt else else-stmt
» vhas the same definite assignment state at the beginniegoés at the beginning atmt.

» If vis definitely assigned at the end @dpr, then it is definitely assigned on the control flow transfer
to then-stmt and to eitheelse-stmt or to the end-point oftmt if there is no else clause.

» If vhas the state “definitely assigned after true expression” at the emgmfthen it is definitely
assigned on the control flow transfertteen-stmt, and not definitely assigned on the control flow
transfer to eitheelse-stnt or to the end-point oftnt if there is no else clause.

» If vhas the state “definitely assigned after false expression” at the esxgrothen it is definitely
assigned on the control flow transferdise-stmt, and not definitely assigned on the control flow
transfer tothen-stmt. It is definitely assigned at the end-pointsbiit if and only if it is definitely
assigned at the end-point iblen-stmt.

» Otherwisey is considered not definitely assigned & tcontrol flow transfer to either thtben-stmt
or else-stmt, or to the end-point aétmt if there is no else clause.

104

10

11
12

13
14
15

16
17

18
19

20

21
22

23

24

25
26

27
28

29

30

31
32
33
34

35
36
37

38
39

Chapter 12 Variables

12.3.3.6 Switch statements
In a switch statemenstmt with controlling expressioexpr:

The definite assignment statewét the beginning oéxpr is the same as the statewét the
beginning ofstmt.

The definite assignment statewbn the control flow transfer to a reachable switch block statement
list is the same as the definite assignment stateatfthe end o&xpr.

12.3.3.7 While statements
For awhi1e statemenstmt of the form:

while (expr) while-body
v has the same definite assignment state at the beginniegoés at the beginning atmt.

If vis definitely assigned at the end ®fpr, then it is definitely assigned on the control flow transfer
to while-body and to the end point ctmt.

If v has the state “definitely assigned after true expression” at the eagbiofthen it is definitely
assigned on the control flow transferidile-body, but not definitely assigned at the end-point of
stt.

If v has the state “definitely assigned after false expression” at the esxprothen it is definitely
assigned on the control flow transfer to the end poirgiot.

12.3.3.8 Do statements
For ado statemenstmt of the form:

do do-body while (expr);

v has the same definite assignment state erctintrol flow transfer from the beginning stimt to
do-body as at the beginning atnt.

v has the same definite assignment state at the beginnegoés at the end point afo-body.
If vis definitely assigned at the end @fpr, then it is definitely assigned on the end poinsift.

If v has the state “definitely assigned after false expression” at the esxgrothen it is definitely
assigned on the control flow transfer to the end poirstiof.

12.3.3.9 For statements
Definite assignment checking forfar statement of the form:

for (for-initializer; for-condition; for-iterator) embedded-statement

is done as if the statement were written:

{
for-initializer ;
whiTle (for-condition) {
embedded-statement ;
for-iterator ;
}
3

If the for-condition is omitted from thefor statement, then evaluation of definite assignment proceeds as if

for-condition were replaced withtrue in the above expansion.

105

10

11

12
13

14

15

16
17

18
19

20

21
22

23
24

25
26

27
28

29
30

31
32

33

34
35

36
37

38
39

40

41

C#LANGUAGE SPECIFICATION

12.3.3.10 Break, continue, and goto statements

The definite assignment statewbn the control flow transfer caused by aeak, continue, or goto
statement is the same as the definite assignment statetdiie beginning of the statement.

12.3.3.11 Throw statements
For a statemerdtmt of the form

throw expr ;

The definite assignment statewét the beginning oéxpr is the same as the definite assignment stateadf
the beginning o&tnt.

12.3.3.12 Return statements
For a statemerdgtmt of the form

return expr ;

» The definite assignment stateét the beginning oéxpr is the same as the definite assignment
state ofv at the beginning o$tmt.

« If vis an output parameter, then it must be definitely assigned either:
o afterexpr

o oratthe end of th€inally block of atry-finally or try-catch-finally that
encloses theeturn statement.

12.3.3.13 Try-catch statements
For a statemerdtmt of the form:

try try-block
catch(..) catch-block-1

catch(.) catch-block-n

» The definite assignment stateoét the beginning ofry-block is the same as the definite
assignment state ofat the beginning oftmt.

» The definite assignment stateoét the beginning oatch-block-i (for anyi) is the same as the
definite assignment state wfat the beginning oftn.

» The definite assignment stateoét the end-point oftmt is definitely assigned if (and only i) is
definitely assigned at the end-pointto§-block and everycatch-block-i (for everyi from 1 ton).

12.3.3.14 Try-finally statements
For atry statemenstmt of the form:

try try-block finally finally-block

» The definite assignment statewét the beginning ofry-block is the same as the definite
assignment state ofat the beginning oftmt.

» The definite assignment stateoét the beginning ofinally-block is the same as the definite
assignment state ofat the beginning oftmt.

» The definite assignment stateoét the end-point oftmt is definitely assigned if (and only if)
either:

o vis definitely assigned at the end-pointtof-block
o vis definitely assigned at the end-pointfofally-block

106

A W N P

[é)]

12

13
14

15
16

17
18

19

20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

37
38
39
40
4
42
43
44
45
46
47

48

49
50

51

52
53

Chapter 12 Variables

If a control flow transfer (for example, @oto statement) is made that begins withig-block, and ends
outside oftry-block, thenv is also considered definitely assigned on that control flow transfeisif
definitely assigned at the end-pointfafially-block. (This is not an only if—ifv is definitely assigned for
another reason on this control flow transfeerttit is still considered definitely assigned.)

12.3.3.15 Try-catch-finally statements
Definite assignment analysis fortary-catch-finally statement of the form:
try try-block
catch(..) catch-block-1
Eatch(...) catch-block-n
finally finally-block
is done as if the statement wereay-finally statement enclosingtary-catch statement:

try {
try try-block
catch(.) catch-block-1

Eatch(...) catch-block-n

finally finally-block

[Example: The following example demonstrates how the different blockstafyastatement (§15.10) affect
definite assignment.

class A

static void FO {
int i, j;
try {
goto LABEL:
// neither i nor j definitely assigned

1;
// i def1n1te1y assigned

catch {
// neither i nor j definitely assigned

3;
// i def1n1te1y assigned

finally {
// ne1ther i nor j definitely assigned

// j def1n1te1y assigned
// 1 and j definitely assigned

LABEL :
// j definitely assigned

}
}

end example]

12.3.3.16 Foreach statements
For aforeach statemenstmt of the form:

foreach (type identifier in expr) embedded-statement

» The definite assignment statewét the beginning oéxpr is the same as the statewoat the
beginning ofstn.

107

10
11

12

13
14

15
16

17

18
19
20

21
22

23

24
25
26
27
28
29

30
31
32
33
34

35
36

37
38

39
40

41
42

C#LANGUAGE SPECIFICATION

» The definite assignment statexobn the control flow transfer tembedded-statement or to the end
point of stnt is the same as the statewoét the end oxpr.

12.3.3.17 Using statements
For ausing statemenstmt of the form:

using (resource-acquisition) embedded-statement

» The definite assignment stateét the beginning ofesource-acquisition is the same as the state of
v at the beginning otmt.

* The definite assignment statewdn the control flow transfer tembedded-statement is the same as
the state of/ at the end ofesource-acquisition.

12.3.3.18 Lock statements
For alock statemenstmt of the form:

Tock (expr) embedded-statement

» The definite assignment statewét the beginning oéxpr is the same as the statewoat the
beginning ofstn.

» The definite assignment statexobn the control flow transfer tembedded-statement is the same as
the state ot at the end o&xpr.

12.3.3.19 General rules for simple expressions

The following rule applies to these kinds of expressiditsrals (814.5.1), simple names (814.5.2), member
access expressions (§14.5.4), non-indexase access expressions (814.5.8),amaeof expressions
(814.5.11).

* The definite assignment stateoét the end of such an expression is the same as the definite
assignment state @fat the beginning of the expression.

12.3.3.20 General rules for expressions with embedded expressions

The following rules apply to these kinds of expressiorepthesized expressions (§14.5.3), element access
expressions (814.5.6), base access expressiongngiRing (814.5.8), increment and decrement
expressions (814.5.9, 814.6.5), cast expressions (814.6.6),tinary, * expressions, binary, -, *, /, %,

<<, >>, <, <=, >, >=, ==, |=,15s,as, & |, A expressions (814.7, §14.8, §14.9, §14.10), compound
assignment expressions (814.13@)ecked andunchecked expressions (§14.5.12), array and delegate
creation expressions (814.5.10).

Each of these expressions has one or more sub-gsipres that are unconditionally evaluated in a fixed
order. For example, the bina%y operator evaluates the left hand side of the operator, then the right hand
side. An indexing operation evaluates the indkggpression, and then evaluates each of the index
expressions, in order from left to right. For an expressixpr, which has sub-expressioaspr,, expr, ...,
expry, evaluated in that order:

» The definite assignment stateoét the beginning oéxpr, is the same as the definite assignment
state at the beginning akpr.

» The definite assignment stateét the beginning oéxpr; (i greater than one) is the same as the
definite assignment state at the endexfr; ;.

» The definite assignment stateét the end ofxpr is the same as the definite assignment state at
the end ofexpr.

12.3.3.21 Invocation expressions and object creation expressions
For an invocation expressiaxpr of the form:

108

10
11

12
13

14
15
16

17

18

19
20

21
22
23

24
25

26
27

28
29
30

31

32
33

34
35
36

37
38
39

40
41
42

43

Chapter 12 Variables

primary-expression (arg;, arg, ..., arg,)

or an object creation expression of the form:

new type (argi argy, ..., argn)

For an invocation expression, the definite assignment statdéeforeprimary-expression is the
same as the state wbeforeexpr.

For an invocation expression, the definite assignment statdeforearg;, is the same as the state of
v afterprimary-expression.

For an object creation expression, the definite assignment statieedbrearg; is the same as the
state ofv beforeexpr.

For each argumeratrg;, the definite assignment stateoéfterarg; is determined by the normal
expression rules, ignoring amef or out modifiers.

For each argumeratrg; for anyi greater than one, the definite assignment statebefforearg; is the
same as the state vifterarg.;.

If the variablev is passed as asut argument (i.e., an argument of the forou't v’) in any of the
arguments, then the statewoafterexpr is definitely assigned. Otherwise; the statevaffterexpr is
the same as the stateoéfterarg,.

12.3.3.22 Simple assignment expressions
For an expressioaxpr of the formw = expr-rhs:

The definite assignment statewobeforeexpr-rhsis the same as the definite assignment state of
beforeexpr.

If wis the same variable asthen the definite assignment statevafterexpr is definitely assigned.
Otherwise, the definite assignment stater afterexpr is the same as the definite assignment state of
v afterexpr-rhs.

12.3.3.23 && expressions
For an expressioaxpr of the formexpr-first && expr-second:

The definite assignment statewbeforeexpr-first is the same as the definite assignment staie of
beforeexpr.

The definite assignment statewbeforeexpr-second is definitely assigned if the state vfafter
expr-first is either definitely assigned or “definitely signed after true expression”. Otherwise, it is
not definitely assigned.

The definite assignment statementadfterexpr is determined by:

o Ifthe state ofv afterexpr-first is definitely assigned, then the statevadfterexpr is
definitely assigned.

o Otherwise, if the state of afterexpr-second is definitely assigned, and the statevadfter
expr-first is “definitely assigned after false expression”, then the stateafterexpr is
definitely assigned.

o Otherwise, if the state of afterexpr-second is definitely assigned or “definitely assigned
after true expression”, then the statevafterexpr is “definitely assigned after true
expression”.

o Otherwise, if the state of afterexpr-first is “definitely assigned after false expression”, and
the state ofr afterexpr-second is “definitely assigned after false expression”, then the state
of v afterexpr is “definitely assigned after false expression”.

o0 Otherwise, the state afafterexpr is not definitely assigned.

109

20
21

22
23

24
25
26

27

28
29

30
31
32

33
34
35

36
37
38

39

40

4
42
43
44
45
46
47
48
49
50
51
52
53

C#LANGUAGE SPECIFICATION

[Example: In the example
class A

static void F(int x, int y) {
int 1;
if X>08&8 (G =y) >=0) {
// i definitely assigned

else {
// i not definitely assigned

; // i not definitely assigned
}

the variablei is considered definitely assigned in one of the embedded statements Bitatement but not
in the other. In the f statement in methos, the variablei is definitely assigned in the first embedded
statement because execution of the expres§ios y) always precedes execution of this embedded
statement. In contrast, the variahilés not definitely assigned in thesond embedded statement, since

x >= 0 might have tested false, resulting in the variabla being unassignee@nd exampl €]

12.3.3.24 || expressions
For an expressioaexpr of the formexpr-first | | expr-second:

» The definite assignment stateobeforeexpr-first is the same as the definite assignment state of
beforeexpr.

» The definite assignment stateobeforeexpr-second is definitely assigned if the state vffter
expr-first is either definitely assigned or “definitely signed after false expression”. Otherwise, it is
not definitely assigned.

» The definite assignment statementvafterexpr is determined by:

0 Ifthe state olv afterexpr-first is definitely assigned, then the statevadfterexpr is
definitely assigned.

o Otherwise, if the state of afterexpr-second is definitely assigned, and the statevadfter
expr-first is “definitely assigned after true expression”, then the stateadferexpr is
definitely assigned.

o Otherwise, if the state of afterexpr-second is definitely assigned or “definitely assigned
after false expression”, then the stateva@ffterexpr is “definitely assigned after false
expression”.

o Otherwise, if the state of afterexpr-first is “definitely assigned after true expression”, and
the state ofr afterexpr-second is “definitely assigned after true expression”, then the state
of v afterexpr is “definitely assigned after true expression”.

o Otherwise, the state afafterexpr is not definitely assigned.
[Example: In the example

class A

static void G(int x, int y) {
int 1i;
if x>0 1] (HA=y)>=0) {
// i not definitely assigned

else {
// i definitely assigned

// i not definitely assigned

110

g A W N P

[e)]

10

11
12

13
14

15
16

17
18

19
20

21

22
23

24
25

26

27
28

29
30

31

32

33
34
35
36
37
38

39

Chapter 12 Variables

the variablei is considered definitely assigned in one of the embedded statements Bitatement but not
in the other. In the f statement in method, the variablei is definitely assigned in the second embedded
statement because execution of the expresgios y) always precedes execution of this embedded
statement. In contrast, the variakilés not definitely assigned in the first embedded statement, since

x >= 0 might have tested false, resulting in the variabla being unassigne@nd example]

12.3.3.25 ! expressions
For an expressioaxpr of the form !expr-operand:

» The definite assignment stateobeforeexpr-operand is the same as the definite assignment state
of v beforeexpr.

» The definite assignment stateoéfterexpr is determined by:

o0 If the state olv afterexpr-operand is definitely assigned, then the statevadfterexpr is
definitely assigned.

o If the state ofv afterexpr-operand is not definitely assigned, then the statevaffterexpr is
not definitely assigned.

o0 If the state olv afterexpr-operand is “definitely assigned after false expression”, then the
state ofv afterexpr is “definitely assigned after true expression”.

o If the state ofv afterexpr-operand is “definitely assigned after true expression”, then the
state ofv afterexpr is “definitely assigned after false expression”.

12.3.3.26 ?: expressions
For an expressioaxpr of the formexpr-cond ? expr-true : expr-false:

» The definite assignment stateobeforeexpr-cond is the same as the statevolbeforeexpr.

» The definite assignment stateobeforeexpr-trueis definitely assigned if and only if the stateof
afterexpr-cond is definitely assigned or “definitely assigned after true expression”.

» The definite assignment stateobeforeexpr-falseis definitely assigned if and only if the stateof
afterexpr-cond is definitely assigned or “definitely assigned after false expression”.

12.4 Variable references

A variable-reference is anexpression that is classified as a variable.\ariable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value.

variable-reference:
expression

[Note: In C and C++, avariable-reference is known as artvalue. end note]

12.5 Atomicity of variable references

Reads and writes of the following data types shall be atohtol, char, byte, sbyte, short, ushort,
uint, int, float, and reference types. In addition, reads amites of enum types with an underlying type
in the previous list shall also be atomic. Reads and writes of other types, inclusiiggulong, doubTe,
anddecimal, as well as user-defined types, need not be aoAside from the library functions designed
for that purpose, there is no guarantee of atomadrmodify-write, such as in the case of increment or
decrement.

111

o~NOO O WDN

10

11
12

13

14

15

16

17

18

19

20
21

22
23

24

25
26

27
28

Chapter 13 Conversions

13. Conversions

A conversion enables an expression of one type to be treated as another type. Conversionswaicier
explicit, and this determines whether an explicit cast is requitedarpple: For instance, the conversion
from typeint to typelong is implicit, So expressions of typent can implicitly be treated as typkong.
The opposite conversion, from tyfeng to typeint, is explicit and so an explicit cast is required.

int a = 123;
long b = a; // implicit conversion from int to Tong
int ¢ = (int) b; // explicit conversion from long to int

end example] Some conversions are defined by the language. Programs may also define their own
conversions (813.4).

13.1 Implicit conversions
The following conversions are dsified as implicit conversions:

» Identity conversions

* Implicit numeric conversions

* Implicit enumeration conversions.

* Implicit reference conversions

» Boxing conversions

* Implicit constant &pression conversions
» User-defined implicit conversions

Implicit conversions can occur in a variety of situais including function metver invocations (§14.4.3),
cast expressions (814.6.6), and assignments (814.13).

The pre-defined implicit conversions alwaggcceed and never cause exceptions to be thravate:|
Properly designed user-defined implicit convers should exhibit these characteristics as veatl. note]

13.1.1 Identity conversion

An identity conversion converts from any type to tlaers type. This conversion exists only such that an
entity that already has a required type can be said to be convertible to that type.

13.1.2 Implicit numeric conversions
The implicit numeric conversions are:

113

10

11
12

13
14

15
16

17
18

19

20

21

22

23
24

25

26

27

28

29

30

31

32
33

34
35
36

C#LANGUAGE SPECIFICATION

Fromsbyte to short, int, Tong, float, double, ordecimal.

Frombyte to short, ushort, int, uint, Tong, ulong, float, double, ordecimal.
Fromshorttoint, long, float, double, ordecimal.

Fromushorttoint, uint, Tong, ulong, float, double, ordecimal.

Fromint to Tong, float, double, ordecimal.

Fromuint to Tong, ulong, float, double, ordecimal.

FromTongto float, double, ordecimal.

Fromulongto float, double, ordecimal.

Fromchar toushort, int, uint, Tong, ulong, float, double, ordecimal.

Fromfloat to double.

Conversions fromint, uint, or Tong to float and fromTong to doub1e may cause a loss of precision,
but will never cause a loss of magnitude. The otherlioitmumeric conversions ner lose any information.

There are no implicit conversions to thiear type, so values of the other integral types do not automatically

convert to thechar type.

13.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits ttecimal-integer-literal 0 to be converted to angnum-type.

13.1.4 Implicit reference conversions
The implicit reference conversions are:

From anyreference-type to object.

From anyclass-type S to anyclass-type T, provideds is derived fromr.

From anyclass-type S to anyinterface-type T, provideds implementsT.

From anyinterface-type s to anyinterface-type T, provideds is derived fron.

From anarray-type S with an element typse to anarray-type T with an element typ&e, provided all

of the following are true:

0 S andT differ only in element type. In other words,andT have the same number of dimensions.
0 Bothse andTe arereference-types.

o An implicit reference conversion exists frosa to Te.

From anyarray-typeto System.Array.

From anydelegate-typeto System.Delegate.

From anyarray-type or delegate-typeto System.ICloneabTe.

From the null type to anyeference-type.

The implicit reference conversis are those conversions betweefierence-types that can be proven to
always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, newhange the referential identity of the object being

converted. INote: In other words, while a reference conversioaynthange the type of the reference, it never

changes the type or value of the object being referreentnote]

114

A WDN

10
11

12

13
14
15

16
17

18

19

20

21

22

23

24

25

26
27

28
29
30

31

32
33

Chapter 13 Conversions

13.1.5 Boxing conversions

A boxing conversion permits ansalue-type to be implicitly converted to the typebject or to any
interface-type implemented by thealue-type. Boxing a value of aalue-type consists of allocating an object
instance and copying thelue-type value into that instance.

Boxing conversions are described further in 811.3.1.

13.1.6 Implicit constant expression conversions
An implicit constant expression conves permits the following conversions:

* A constant-expression (814.15) of typeint can be converted to typsbyte, byte, short, ushort,
uint, orulong, provided the value of theonstant-expression is within the range of the destination type.

» A constant-expression of type Tong can be converted to typ€l ong, provided the value of theonstant-
expression is not negative.

13.1.7 User-defined implicit conversions

A user-defined implicit conversion consists of aniopal standard implicit conversion, followed by
execution of a user-defined implicit conversion operafollowed by another optional standard implicit
conversion. The exact rules for evaluating usefirted conversions are described in §13.4.3.

13.2 Explicit conversions
The following conversions are dsified as explicit conversions:

e Allimplicit conversions.

» Explicit numeric conversions.

» Explicit enumeration conversions.

» Explicit reference conversions.

» Explicit interface conversions.

* Unboxing conversions.

» User-defined explicit conversions.

Explicit conversions can occur in cast expressions (§14.6.6).

The set of explicit conversionsdtudes all implicit conversionsNote: This means that redundant cast
expressions are alloweehd note]

The explicit conversions that are not implicit consiens are conversions that cannot be proven to always
succeed, conversions that are known to possibly lafgrmation, and conversions across domains of types
sufficiently different to merit explicit notation.

13.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions fromnaeric-type to anothemumeric-type for
which an implicit numeric conversion (813.1.2) does not already exist:

115

10

11

12

13
14

15
16

17
18

19
20
21

22

23
24
25

26
27
28
29

30
31

32
33
34

35
36

37

38
39
40

41

C#LANGUAGE SPECIFICATION

e Fromsbytetobyte, ushort, uint, ulong, orchar.

e Frombyte to sbyte andchar.

e Fromshort to sbyte, byte, ushort, uint, ulong, or char.

e Fromushorttosbyte, byte, short, orchar.

e Frominttosbyte, byte, short, ushort, uint, ulong, or char.

e Fromuintto sbyte, byte, short, ushort, int, orchar.

e FromTlongto sbyte, byte, short, ushort, int, uint, ulong, or char.

e Fromulongto sbyte, byte, short, ushort, int, uint, Tong, or char.

e Fromchar to sbyte, byte, orshort.

e Fromfloattosbyte, byte, short, ushort, int, uint, Tong, ulong, char, ordecimal.

e Fromdoubleto sbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, ordecimal.
e Fromdecimal to sbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, ordoubTe.

Because the explicit conversions include all implicitlaxplicit numeric conversions, it is always possible
to convert from anyhnumeric-type to any othemumeric-type using a cast expression (§14.6.6).

The explicit numeric conversions possibly lose imi@tion or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

» For aconversion from an integral type to anotheegmal type, the processing depends on the overflow
checking context (814.5.12) in which the conversion takes place:

0 In achecked context, the conversion succeeds if the eabd the source operand is within the range
of the destination type, but throwssgstem.overflowException if the value of the source
operand is outside the range of the destination type.

o0 Inanunchecked context, the conversion alwayscceeds, and proceeds as follows.

» Ifthe source type is larger than the destination type, then the source value is truncated by
discarding its “extra” most significant bits. The result is then treated as a value of the destination

type.
» Ifthe source type is smaller than the dedtioia type, then the source value is either sign-
extended or zero-extended so that it is the saze &s the destination type. Sign-extension is

used if the source type is signed; zero-extenssamsied if the source type is unsigned. The result
is then treated as a value of the destination type.

» Ifthe source type is the same size as the destination type, then the source value is treated as a
value of the destination type

* Foraconversion frodecimal to an integral type, the source value is rounded towards zero to the
nearest integral value, and this integral value beothe result of the conversion. If the resulting integral
value is outside the range of the destination typgysitem.overflowException is thrown.

* For a conversion fronffloator double to an integral type, the processing depends on the overflow-
checking context (814.5.12) in which the conversion takes place:

0 Inachecked context, the conversion proceeds as follows:

» If the value of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and this integral value is the
result of the conversion.

e Otherwise, ssystem.0overflowException is thrown.

116

© 00 N O

10
11
12
13

14
15
16

17
18

19
20

21
22

23

24
25
26
27
28

29
30

31

32

33
34

35

36

37
38

39

40

41

Chapter 13 Conversions

0 Inanunchecked context, the conversion alwayscceeds, and proceeds as follows.

» If the value of the source operand is within the range of the destination type, then it is rounded
towards zero to the nearest integral value of the destination type, and this integral value is the
result of the conversion.

» Otherwise, the result of the conversion iswarspecified value of the destination type.

» For a conversion fromouble to float, thedouble value is rounded to the neareStoat value. If
thedoubTe value is too small to represent a toat, the result becomes positive zero or negative zero. If
thedouble value is too large to represent ag boat, the result becomes positive infinity or negative
infinity. If the double value is NaN, the result is also NaN.

* [For a conversion fronfloat or double to decimal, the source value is converteddecimal
representation and rounded to the nearest number after frie@Bnal place if required (§11.1.6). If the
source value is too small to represent akeaimal, the result becomes zero. If the source value is NaN,
infinity, or too large to represent asdacimal, asystem.OverflowException is thrown.

 [For a conversion fromecimal to float or double, thedecimal value is rounded to the nearest
doubTe or fToat value. While this conversion may lose precision, it never causes an exception to be
thrown.

13.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

e Fromsbyte, byte, short, ushort, int, uint, Tong, ulong, char, float, double, ordecimal to
any enum-type.

* From anyenum-typeto sbyte, byte, short, ushort, int, uint, Tong, ulong, char, float,
doubTle, ordecimal.

« From anyenum-type to any othelenum-type.

An explicit enumeration conversion between twodgps processed by treating any participagngm-type
as the underlying type of thehum-type, and then performing an implicit or explicit numeric conversion
between the resulting types. For example, giveeramtype E with and underlying type ofnt, a
conversion fronE to byte is processed as an explicit numeric conversion (813.2.1) fhotrio byte, and
a conversion fronbyte to E is processed as an implicit numeric conversion (§13.1.2) tsgire to int.

13.2.3 Explicit reference conversions
The explicit reference conversions are:

* Fromobject to anyreference-type.
» From anyclass-type S to anyclass-type T, provideds is a base class af.

* From anyclass-type S to anyinterface-type T, provideds is not sealed and providexidoes not
implementT.

* From anyinterface-type s to anyclass-type T, providedT is not sealed or providedimplementss.
* From anyinterface-type s to anyinterface-type T, provideds is not derived fronT.

* From anarray-type s with an element typse to anarray-type T with an element typ&e, provided all
of the following are true:

0 S andT differ only in element type. (In other words,andT have the same number of dimensions.)
0 Bothsg andTe arereference-types.

0 An explicit reference conversion exists fr@nto Te.

117

N

0w N o »

10
11

12

13
14
15
16

17

18

19
20
21

22

23
24

25
26

27

28

29

30

31

32

33

34
35
36
37

C#LANGUAGE SPECIFICATION

 Fromsystem.Array and the interfaces it implements, to asryay-type.
 Fromsystem.Delegate and the interfaces it implements, to agfegate-type.

The explicit reference conversioase those conversions between refieeetypes that require run-time
checks to ensure they are correct.

For an explicit reference conversion to succeediattime, the value of the source operand mushibel,

or theactual type of the object referenced by the source opénaust be a type that can be converted to the
destination type by an implicit reference conversigh3.1.4). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Reference conversions, implicit or explicit, newhange the referential identity of the object being
converted. [Note: In other words, while a reference conversioayrthange the type of the reference, it never
changes the type or value of the object being referreentbnote]

13.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from tgpgect to anyvalue-type or from any
interface-type to anyvalue-type that implements thinterface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the gigkme-type, and then copying the value out of
the instance.

Unboxing conversions are described further in §11.3.2.

13.2.5 User-defined explicit conversions

A user-defined explicit conversion consists ofastional standard explicit conversion, followed by
execution of a user-defined implicit or explicit cargion operator, followed by another optional standard
explicit conversion. The exact rules for evalugtimser-defined conversions are described in §13.4.4.

13.3 Standard conversions

The standard conversions are those pre-defioagd@rsions that can occur as part of a user-defined
conversion.

13.3.1 Standard implicit conversions
The following implicit conversions are daified as standard implicit conversions:

* Identity conversions (§13.1.1)

» Implicit numeric conversions (§13.1.2)

» Implicit reference onversions (813.1.4)

* Boxing conversions (813.1.5)

* Implicit constant expresion conversions (813.1.6)

The standard implicit conversions specificadtyclude user-defined implicit conversions.

13.3.2 Standard explicit conversions

The standard explicit conversions are all standamglicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exidtée[In other words, if a standard
implicit conversion exists from a typeto a typeB, then a standard explicit conversion exists from tyde
typeB and from types to typeA. end note]

118

A WODN

0o N o O

10

11

12

13

14

15
16
17
18

19
20
21
22

23
24
25
26

27
28
29
30

31
32

33
34

35

36
37

38
39
40

41
42

Chapter 13 Conversions

13.4 User-defined conversions

C# allows the pre-defined implicit and explicit conversions to be augmenteddpydefined conversions.
User-defined conversions are introduced by deotpcionversion operators (817.9.3) in class and struct

types.

13.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine
an already existing implicit or explicit conversion. Aass or struct is permitted to declare a conversion from
a source typs to a target typa only if all of the following are true:

e S andT are different types.

» Eithers orTis the class or struct type in which the operator declaration takes place.
* Neithers norTis object or aninterface-type.

* Tisnot a base class sf ands is not a base class ot

The restrictions that apply to user-defined conversions are discussed further in §17.9.3.

13.4.2 Evaluation of user-defined conversions

A user-defined conversion convertsa@ue from its type, called theource type, to another type, called the
target type. Evaluation of a user-defined conversion centers on findingrtbe specific user-defined
conversion operator for the particular source and taygees. This determination is broken into several
steps:

* Finding the set of classes and structs from which-aefned conversion operators will be considered.
This set consists of the source type and its base dagsithe target type and its base classes (with the
implicit assumptions that only classes and structsdssoiare user-defined operators, and that non-class
types have no base classes).

* From that set of types, determining which useritked conversion operators are applicable. For a
conversion operator to be applicable, it must be pgadedd perform a standard conversion (813.3) from the
source type to the operand type of the operator, armist be possible to perform a standard conversion
from the result type of the operator to the target type.

» From the set of applicable user-defined operatdesermining which operator is unambiguously the
most specific. In general terms, the most specificraf® is the operator whose operand type is “closest” to
the source type and whose result type is “closest” todhget type. The exact rules for establishing the most
specific user-defined conversion operadee defined in the following sections.

Once a most specific user-defined conversion operasieen identified, the actual execution of the user-
defined conversion involves up to three steps:

» First, if required, performing a standard conversiiam the source type to the operand type of the user-
defined conversion operator.

* Next, invoking the user-defined convermsioperator to perform the conversion.

» Finally, if required, performing a standardroversion from the result type of the user-defined
conversion operator to the target type.

Evaluation of a user-defined conversion never invslg®re than one user-defined conversion operator. In
other words, a conversion from typgeo typeT will never first execute a user-defined conversion freno
X and then execute a user-defined conversion fxamT.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

119

o o b~ W N

~

10

11
12

13
14
15

16
17
18

19

20

21
22
23

24

25

26
27
28

29
30
31
32

33

34

35

36
37

C#LANGUAGE SPECIFICATION

» If a standard implicit conversion (813.3.1) exists from a tyge a typeB, and if neithera norB are
interface-types, thena is said to beencompassed by B, andB is said toencompass A.

» Themost encompassing type in a set of types is the one type that encompasses all other types in the set.

If no single type encompasses all other types, then the set has no most encompassing type. In more intuitive
terms, the most encompassing type is the “largest” type in the set—the one type to which each of the other
types can be implicitly converted.

» Themost encompassed type in a set of types is the one type that is encompassed by all other types in the
set. If no single type is encompassed by all other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can be
implicitly converted to each of the other types.

13.4.3 User-defined implicit conversions
A user-defined implicit conversion from tyeto typeT is processed as follows:

* Find the set of type®, from which user-defined conversion operators will be considered. This set
consists ofs (if s is a class or struct), the base classes §f s is a class)T (if T is a class or struct), and
the base classes of(if T is a class).

* Find the set of applicable user-defined conversiparators, U. This set consists of the user-defined
implicit conversion operators declared by the classes or strubtghat convert from a type encompassig
to a type encompassed by TUfs empty, the conversion is undefined and a compile-time error occurs.

» Find the most specific source typ®, of the operators iw:
o If any of the operators in convert froms, thensy is S.

o Otherwise Sx is the most encompassed type in the camebiset of source types of the operators
in U. If no most encompassed type can be found, then the conversion is ambiguous and a compile-
time error occurs.

» Find the most specific target typey, of the operators in:
o If any of the operators in convert toT, thenTy is T.

o OtherwiseTx is the most encompassing type in the combined set of target types of the operators
in U. If no most encompassing type can be found, then the conversion is ambiguous and a compile-
time error occurs.

» If U contains exactly one user-defined conversion operator that converts{raiy, then this is the

most specific conversion operator. If no such operator exists, or if more than one such operator exists, then
the conversion is ambiguous and a compile-time erooucs. Otherwise, the user-defined conversion is
applied:

0 If sis notSx, then a standard implicit conversion frario Sx is performed.
o0 The most specific user-defined conviersoperator is invoked to convert frogx to Tx.

o If Txis notT, then a standard implicit conversion framto T is performed.

13.4.4 User-defined explicit conversions
A user-defined explicit conversion from typgeo typeT is processed as follows:

120

w N -

~N o 0o b

10
11
12

13
14
15

16

17

18
19
20

21
22
23

24
25
26
27

28

29

30

Chapter 13 Conversions

* Find the set of type®, from which user-defined conversion operators will be considered. This set
consists ofs (if s is a class or struct), the base classes €f s is a class)T (if T is a class or struct), and
the base classes of(if T is a class).

* Find the set of applicable user-defined convergiparators, U. This set consists of the user-defined
implicit or explicit conversion operate declared by the classes or structs itnat convert from a type
encompassing or encompassedshp a type encompassing or encompassed.bf/u is empty, the
conversion is undefined and a compile-time error occurs.

» Find the most specific source typ®, of the operators in:

o

o

If any of the operators in convert from S, thesy is S.

Otherwise, if any of the operators inconvert from types that encompass S, tBeis the most
encompassed type in the combined set of sowyes of those operators. If no most encompassed
type can be found, then the conversion is ambiguous and a compile-time error occurs.

Otherwise Sx is the most encompassing type in the coneli set of source types of the operators
in U. If no most encompassing type can be found, then the conversion is ambiguous and a compile-
time error occurs.

» Find the most specific target typey, of the operators iw:

o

o

If any of the operators in convert toT, thenTx IS T.

Otherwise, if any of the operators inconvert to types that are encompassed bhenTy is the
most encompassing type in the combined set of source types of those operators. If no most
encompassing type can be found, then the conuweisiambiguous and a compile-time error occurs.

Otherwise Tk is the most encompassed type in the combined set of target types of the operators in
If no most encompassed type can be found, then the conversion is ambiguous and a compile-time
error occurs.

» If U contains exactly one user-defined conversion operator that converts{ray, then this is the

most specific conversion operator. If no such operator exists, or if more than one such operator exists, then
the conversion is ambiguous and a compile-time erooucs. Otherwise, the user-defined conversion is
applied:

o

o

o

If S is notsy, then a standard explicit conversion frao Sx is performed.
The most specific user-defined conviersoperator is invoked to convert frog to Ty.
If Txis notT, then a standard explicit conversion framto T is performed.

121

10
11
12

13
14
15
16
17

18
19
20
21

22
23
24
25

26
27
28
29
30

31
32

33
34

35
36
37
38

Chapter 14 Expressions

14. Expressions

An expression is a sequence of ofera and operands. This chapter defines the syntax, order of evaluation
of operands and operators, and meaning of expressions.

14.1 Expression classifications
An expression is classified as one of the following:

* Avalue. Every value has an associated type.
» Avariable. Every variable has an associated type, namely the declared type of the variable.

A namespace. An expression with this classification can only appear as the left-hand sidenifes-
access (814.5.4). In any other context, an expression classified as a hamespace causes a compile-time error.

+ Atype. An expression with this classification can only appear as the left-hand sideenfi@er-access
(814.5.4), or as an operand for the operator (814.9.10), thies operator (814.9.9), or theypeot operator
(814.5.11). In any other context, an expression classified as a type causes a compile-time error.

* A method group, which is a set of overloadedthods resulting from a member lookup (§14.3). A
method group may have an associated instance esipredVhen an instance method is invoked, the result
of evaluating the instance expression becomes the instance representeid§§14.5.7). A method group
is only permitted in amnvocation-expression (814.5.5) or alelegate-creation-expression (814.5.10.3). In

any other context, an expression classified as a method group causes a compile-time error.

» A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an acagssor (the
set block) of an instance property access is invoked, the result of evaluating the instance expression
becomes the instance representedhbys (§14.5.7).

 Aneventaccess. Every event access has an associated type, namely the type of the event. Furthermore,
an event access may have an associated instanaessign. An event access may appear as the left-hand
operand of the= and-= operators (§814.13.3). In any other context, an expression classified as an event
access causes a compile-time error.

* Anindexer access. Everyindexer access has an associated type, namely the element type of the
indexer. Furthermore, an indexer access has an ateddhstance expression and an associated argument
list. When an accessor (thgt or set block) of an indexer access is invoked, the result of evaluating the
instance expression becomes the instance representdd by(814.5.7), and the result of evaluating the
argument list becomes the parameter list of the invocation.

* Nothing. This occurs when the expression is an invocation of a method with a return typeédfAn
expression classified as nothing is only valid in the contextsi&iment-expression (815.6).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediaseracts that are only permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocatigetef the
accessor or theset-accessor. The particular accessor is determined by the context of the property or indexer
access: If the access is the target of an assignmenrdetttaecessor is invoked to assign a new value
(814.13.1). Otherwise, thget-accessor is invoked to obtain the current value (814.1.1).

123

a b~ WODN

0 N O

10
11

12
13
14
15

16

17
18
19

20

21
22

23

24
25

26
27

28
29
30
31
32
33

34

35
36
37
38
39
40

41
42

C#LANGUAGE SPECIFICATION

14.1.1 Values of expressions

Most of the constructs that involve an expressultimately require the expression to denotalae. In such

cases, if the actual expression denotes a namespagee,atmethod group, or nothing, a compile-time error
occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of
the property, indexer, or variable is implicitly substituted:

» The value of a variable is simply the value cutigrstored in the storage location identified by the
variable. A variable must be considered definitagsigned (812.3) before its value can be obtained, or
otherwise a compile-time error occurs.

» The value of a property access exgsi®n is obtained by invoking thget-accessor of the property. If the
property has nget-accessor, a compile-time error occurs. Otherwise, a function member invocation
(814.4.3) is performed, and the result of the inw@rabecomes the value of the property access expression.

» The value of an indexer access expression is obtained by invokirggtfaecessor of the indexer. If the

indexer has nget-accessor, a compile-time error occurs. Otherwise, a function member invocation

(814.4.3) is performed with the argument list associated with the indexer access expression, and the result of
the invocation becomes the value of the indexer access expression.

14.2 Operators

Expressions are constructed framperands andoperators. The operators of an expression indicate which
operations to apply to the operan@samples of operators include -, *, /, andnew. Examples of
operands include literals, fields, local variables, and expressions.

There are three kinds of operators:

* Unary operators. The unary operators take oneaqkand use either prefix notation (such-a$ or
postfix notation (such as++).

» Binary operators. The binary operators take wperands and all use infix notation (suchxas y).

» Ternary operator. Only one ternary operafbr, exists; it takes three operands and uses infix notation
(c?x :y).

The order of evaluation of operators in an expression is determined lpydbeglence andassociativity of
the operators (814.2.1).

The order in which operands in an expression are evaluated, is left to Eghimple: For example, in

F(i) + G(i++) * H(i), methodF is called using the old value df, then methodk is called with the old
value of1, and, finally, methodi is called with the new value of. This is separate from and unrelated to
operator precedencend example] Certain operators can lmwerloaded. Operator overloading permits user-
defined operator implementations to be specifietbjgerations where one or both of the operands are of a
user-defined class or struct type (814.2.2).

14.2.1 Operator precedence and associativity

When an expression contains multiple operatorsptieeedence of the operators controls the order in which

the individual operators are evaluateNofe: For example, the expressian+ y * zis evaluated as

x + (y * z) because the operator has higher precedence than the bimapperatorend note] The

precedence of an operator is established by thaitief of its associated grammar productioNofe: For

example, aradditive-expression consists of a sequence miiltiplicative-expressions separated by or -
operators, thus giving theand- operators lower precedence than the¢, and% operatorsend note]

The following table summarizes all operators in order of precedence from highest to lowest:

124

10
11
12

13

14
15
16
17
18

19

20

21
22
23

24
25

Chapter 14 Expressions

Section | Category Operators

14.5 Primary x.y f(x) a[x] x++ x-- new
typeof checked unchecked

14.6 | Unary oo b~ e e (DX

14.7 Multiplicative /0%

14.7 Additive + -

14.8 Shift < >>

14.9 Relational and < > <= >= 15 as

type-testing

14.9 Equality == =

14.10 | Logical AND &

14.10 | Logical XOR A

14.10 | Logical OR |

14.11 | Conditional AND | &&

14.11 | Conditional OR | ||

14.12 | Conditional 7t

14.13 | Assignment = F= /= %= 4= -= <<= >>= & A= |=

When an operand occurs between two operators with the same precedeiassgdiativity of the operators
controls the order in which the operations are performed:

» Except for the assignment operators, all binary operatoriefirassociative, meaning that operations
are performed from left to rightExample: For examplex + y + zisevaluated agx + y) + z.end
example]

» The assignment operators and the conditional operatgrareright-associative, meaning that
operations are performed from right to lefExample: For examplex = y = z is evaluated as
x = (y = z).end exampl€]

Precedence and associativity can be controlled using parenthesasple: For examplex + y * zfirst
multipliesy by z and then adds the resultxobut (x + y) * zfirst addsx andy and then multiplies the
result byz. end example]

14.2.2 Operator overloading

All unary and binary operators have predefined iempéntations that are automatically available in any
expression. In addition to the predefined implemégate, user-defined implementations can be introduced
by includingoperator declarations in classes and structs (81 A®er-defined operator implementations
always take precedence over predefined operator imgaiéations: Only when no applicable user-defined
operator implementations exist will the predefi operator implementations be considered.
Theoverloadable unary operators are:

false

+ - ! ~ ++ -- true

[Note: Althoughtrue andfalse are not used explicitly in expressions, they are considered operators
because they are invoked in several expressioregtgitboolean expressions (814.16) and expressions
involving the conditional (814.12), and conditional logical operators (814ehil)note]

Theoverloadable binary operators are:

+ - * /% & | A << > == = > < >= <=

125

w N -

~N o o b

10

11
12
13
14
15
16
17

18
19
20
21

22
23
24

25
26
27
28

29
30
31
32

33

34
35

C#LANGUAGE SPECIFICATION

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the&&, | |, ?:, checked, unchecked, new, typeof, as, and
is operators.

When a binary operator is overloaded, the cqrogsling assignment operator, if any, is also implicitly
overloaded. For examplenaverload of operator is also an overload of operatde. This is described
further in 814.13. Note that the assignment operator itsglE&nnot be overloaded. An assignment always
performs a simple bit-wise copy of a value into a variable.

Cast operations, such &%) x, are overloaded by providing usdefined conversions (813.4).

Element access, such afx], is not considered an overloadable operalnstead, user-defined indexing is
supported through indexers (§17.8).

In expressions, operators are referenced using operatation, and in declarations, operators are referenced
using functional notation. The following table shewhe relationship between operator and functional
notations for unary and binary operators. In the first eripsienotes any overloadable unary prefix

operator. In the second entigp denotes the unary postfic- and-- operators. In the third entrpp

denotes any overloadable binary operathotg: For an example of overloading the and-- operators see
817.9.1.end note]

Operator notation | Functional notation
op x operator op(x)
X 0p operator op(x)
X 0py operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct

type that contains the operator declaratidfotg: Thus, it is not possible for a user-defined operator to have
the same signature as a predefined operatarnote]

User-defined operator declarations cannot modify thrgasx, precedence, or associativity of an operator.
[Example: For example, the operator is always a binary operator, always has the precedence level
specified in 814.2.1, and is always left-associatarel exampl €]

[Note:While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than thusedre intuitively expected are strongly discouraged.
For example, an implementationeperator == should compare the two operands for equality and return
an appropriat®oo result.end note]

The descriptions of individual operators in 814.50tlngh 814.13 specify the predefined implementations of
the operators and any additional rules that applyaitheoperator. The descriptions make use of the terms
unary operator overload resolution, binary operator overload resolution, andnumeric promotion,

definitions of which are found in the following sections.

14.2.3 Unary operator overload resolution

An operation of the fornop x or x op, whereop is an overloadable unary operator, ani$ an expression of
typeX, is processed as follows:

126

N -

o 0 b~ W

~

10

11
12

13
14
15
16
17

18
19
20
21

22
23
24

25

26
27
28

29
30
31

32

33
34

35
36

37
38
39
40
4

42

Chapter 14 Expressions

» The set of candidate user-defined operators providexfoy the operatioroperator op(x) is
determined using the rules of §14.2.5.

» If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otése, the predefined unapperator op implementations become the set

of candidate operators for the opeaati The predefined implementations of a given operator are specified in
the description of the operator (814.5 and §14.6).

» The overload resolution rules of §14.4.2 are applaethe set of candidate operators to select the best
operator with respect to the argument lig) , and this operator becomes the result of the overload
resolution process. If overload resolution fails toestla single best operator, a compile-time error occurs.

14.2.4 Binary operator overload resolution

An operation of the fornx op y, whereop is an overloadable binary operataris an expression of type,
andy is an expression of type, is processed as follows:

» The set of candidate user-defined operators providexidnydy for the operatioroperator op(x, y)
is determined. The set consists of theamof the candidate operators providedgnd the candidate
operators provided by, each determined using the rules of §14.2.X% #ndy are the same type, orxfand
Y are derived from a common base type, then shasediidate operators only occur in the combined set
once.

» If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otiwése, the predefined binagperator op implementations become the set

of candidate operators for the opecatti The predefined implementations of a given operator are specified in
the description of the operator (814.7 through §14.13).

e The overload resolution rules of 814.4.2 are appl@éthe set of candidate operators to select the best
operator with respect to the argument ligt, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails toesgla single best operator, a compile-time error occurs.

14.2.5 Candidate user-defined operators

Given a typer and an operationperator op(A), whereop is an overloadable operator ands an
argument list, the set of candidate user-defined operators provideddoyperator op(A) is determined
as follows:

» For alloperator op declarations i, if at least one operator is applicable (814.4.2.1) with respect to
the argument lish, then the set of candidate operators consists of all applieg@eator op declarations
inT.

» Otherwise, ifT isobject, the set of candidate operators is empty.

» Otherwise, the set of candidate operators provided Isythe set of candidate operators provided by the
direct base class af.

14.2.6 Numeric promotions

This clause isinformative.

Numeric promotion consists of automatically perforgirertain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather
an effect of applying overload resolution to the praeded operators. Numeric promotion specifically does

not affect evaluation of user-defined operatordyaligh user-defined operators can be implemented to
exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the bioaeyator:

127

~NOoO b~ WNPE

(0]

10
11
12
13

14

15
16

17
18
19
20

21

22
23

24
25
26
27

28
29

30

31

32
33

34

35
36

37

38

39
40
41

42
43
44

C#LANGUAGE SPECIFICATION

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, 1on? y);
ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (814.4.2) are applied to this set of operators, the effect is to select the first of

the operators for which implicit convgons exist from the operand typeExample: For example, for the
operationb * s, whereb is abyte ands is ashort, overload resolution selectperator *(int, int)
as the best operator. Thus, the effect is thahds are converted tant, and the type of the result imt.
Likewise, for the operationi * d, wherei is anint andd is adouble, overload resolution selects
operator *(doubTe, double) as the best operatamnd example]

End of infor mative text.

14.2.6.1 Unary numeric promotions
Thisclauseisinformative.

Unary numeric promotion occurs for the operands of the predefinedand~ unary operators. Unary
numeric promotion simply congsof converting operands of typdyte, byte, short, ushort, or char
to typeint. Additionally, for the unary- operator, unary numeric promotion converts operands of type
uint to typelong.

End of informative text.

14.2.6.2 Binary numeric promotions
This clause isinformative.

Binary numeric promotion occurs for the operands of the predefined*, /, %, &, |, A, ==, =, >, <, >=,
and<= binary operators. Binary numeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also bexpthe result type of the operation. Binary numeric
promotion consists of applying the following rules, in the order they appear here:

» If either operand is of typdecimal, the other operand is converted to typecimal, or a compile-
time error occurs if the other operand is of typpkoat or double.

» Otherwise, if either operand is of typleubTe, the other operand is converted to tygmuble.
» Otherwise, if either operand is of tydd oat, the other operand is converted to typkoat.

» Otherwise, if either operand is of typd ong, the other operand is converted to typkong, or a
compile-time error occurs if the other operand is of tgpgte, short, int, or Tong.

» Otherwise, if either operand is of tydeng, the other operand is converted to tylmng.

» Otherwise, if either operand is of typd nt and the other operand is of tygeyte, short, orint,
both operands are converted to tyjmng.

» Otherwise, if either operand is of type nt, the other operand is converted to typnt.
» Otherwise, both operands are converted to tipe.

[Note: Note that the first rule disallows any operations that mixdkeimal type with thedouble and
float types. The rule follows from the fact that there are no implicit conversions betweele timal
type and thelouble andfloat types.end note]

[Note: Also note that it is not possible for an operand to be of typeng when the other operand is of a
signed integral type. The reason is that no integral type exists that can represent the full nahgegads
well as the signed integral typesd note]

128

N

[o2 &) NN w

10
11

12

13

14

15
16
17

18

19
20
21
22

23
24

25
26

27
28
29

30

31

32

33
34

35
36
37
38
39

40
41

Chapter 14 Expressions

In both of the above cases, a cast expression can baaseaglicitly convert one operand to a type that is
compatible with the other operand.

[Example: In the example

decimal Addpercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);

a compile-time error occurs becauséeximal cannot be multiplied by doubTe. The error is resolved by
explicitly converting the second operanddecimal, as follows:

decimal Addpercent(decimal x, double percent) {
return x * (decimal) (1.0 + percent / 100.0);

end exampl €]

End of informative text.

14.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup may occur as part of evaluatirginaple-name (814.5.2) or anember-access (§14.5.4) in an
expression.

A member lookup of a namein a typeT is processed as follows:

» First, the set of all accessible (810.5) members namaekclared int and the base types (814.3.1)1of
is constructed. Declarations that includece rride modifier are excluded from the set. If no members
namedN exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

* Next, members that are hidden by other members are removed from the set. For every swamber
the set, whers is the type in which the memberis declared, the following rules are applied:

o If mis a constant, field, property, event, type, or enumeration member, then all members declared in
a base type of are removed from the set.

o If mis a method, then all non-method members declared in a base tgpmefremoved from the
set, and all methods with the same signatur@ declared in a base type sfare removed from the
set.

» Finally, having removed hidden membegttse result of the lookup is determined:
o0 Ifthe set consists of a single non-method member, then this member is the result of the lookup.
o Otherwise, if the set contains only methods, th&e group of methods is the result of the lookup.

o Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur
for a member lookup in an interface that has multiple direct base interfaces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-
inheritance (each interface in the inheritance chaméxactly zero or one direct base interface), the effect of
the lookup rules is simply that derived members hidedomembers with the same name or signature. Such
single-inheritance lookups are never ambiguous. arnbiguities that can possibly arise from member

lookups in multiple-inheritance iatfaces are described in §20.2.5.

14.3.1 Base types
For purposes of member lookup, a types considered to have the following base types:

129

10

11

12

13

14

15

16

17

18
19
20

21
22

23
24

25
26

27
28
29
30
31

C#LANGUAGE SPECIFICATION

e If Tisobject, thenT has no base type.

« If Tis avalue-type, the base type of is the class typebject.

» If Tis aclasstype, the base types af are the base classes of T, including the class tipiect.
» If Tis aninterface-type, the base types af are the base interfacesofand the class typebject.
« If Tis anarray-type, the base types af are the class typesystem.Array andobject.

» If Tis adelegate-type, the base types af are the class typesystem.Delegate andobject.

14.4 Function members

Function members are members that contain exeaisthtements. Function members are always members
of types and cannot be members of namespaces. O#eddfie following categories of function members:

* Methods

» Properties

 Events

* Indexers

» User-defined operators
* Instance constructors

» Static constructors

* Destructors

Except for static constructors and destructors (wicihnot be invoked explicitly), the statements contained
in function members are executed through functia@mber invocations. The actual syntax for writing a
function member invocation depends oe farticular function member category.

The argument list (814.4.1) of a function member invoaapeoovides actual values or variable references
for the parameters of the function member.

Invocations of methods, indexers, operators, anéire constructors employ overload resolution to
determine which of a candidate set of function merslie invoke. This process is described in §14.4.2.

Once a particular function member has been identified at compile-time, possibly through overload
resolution, the actual run-time process of invakihe function member is described in §14.4.3.

[Note: The following table summarizes the processing that takes place in constructs involving the six
categories of function members that can be explicitly invoked. In the taple,y, andvalue indicate
expressions classified as variables or valaaadicates an expression classified as a typis,the simple
name of a method, arrlis the simple nhame of a property.

Construct Example Description
Method F(x, ¥) Overload resolution is applied to select the best methadthe
invocation containing class or struct. The method is invoked with the

argument list(x, y). If the method is nostatic, the
instance expression ihis.

T.F(x, y) Overload resolution is applied to select the best methadthe
class or struct T. A compile-time error occurs if the method is
notstatic. The method is invoked with the argument list
x, y).

130

Chapter 14 Expressions

Construct

Example

Description

e.F(x, y)

Overload resolution is applied to select the best method F in
class, struct, or interface given by the typesoA compile-time
error occurs if the method istatic. The method is invoked
with the instance expressi@and the argument ligtx, y).

the

Property
access

Theget accessor of the propertyin the containing class or
struct is invoked. A compile-time error occurspiiis write-
only. If Pis notstatic, the instance expressiontgis.

P=value

Theset accessor of the propertyin the containing class or
struct is invoked with the argument livalue). A compile-
time error occurs iP is read-only. IfP is notstatic, the
instance expression ihis.

Theget accessor of the propertyin the class or struct is
invoked. A compile-time error occurs#fis notstatic orif P
is write-only.

T.P=value

Theset accessor of the propertyin the class or struct is
invoked with the argument listvalue). A compile-time error
occurs ifP is notstatic or if P is read-only.

Theget accessor of the propertyin the class, struct, or
interface given by the type @fis invoked with the instance
expressiore. A compile-time error occurs # is static or if
P is write-only.

e.P=value

Theset accessor of the propertyin the class, struct, or
interface given by the type @fis invoked with the instance
expressiore and the argument ligtvalue). A compile-time
error occurs ifP is static or if P is read-only.

Event access

E += value

Theadd accessor of the eveatin the containing class or stru
is invoked. IfE is notstatic, the instance expressiont&is.

Ct

E -=value

The remove accessor of the eveatin the containing class or
struct is invoked. IfE is notstatic, the instance expression i
this.

72

T.E += value

Theadd accessor of the eventin the class or struct is
invoked. A compile-time error occursiis notstatic.

T.E -=value

Theremove accessor of the eveatin the class or struct is
invoked. A compile-time error occursifis notstatic.

e.E+=value

Theadd accessor of the eveatin the class, struct, or interfac
given by the type oé is invoked with the instance expression
e. A compile-time error occurs € is static.

D

e.E -=value

The remove accessor of the eveastin the class, struct, or
interface given by the type @&f is invoked with the instance
expressiore. A compile-time error occurs # is static.

Indexer
access

e[x, yl

Overload resolution is applied to select the best indexer in ti
class, struct, or interface given by the type of e. ghe
accessor of the indexer is invoked with the instance express
e and the argument ligtx, y). A compile-time error occurs i

ne

5ion

the indexer is write-only.

131

a b~ W0 N

[e)]

10
11

12
13
14

15
16

17
18
19

20

21
22
23

24
25
26
27

28
29

C#LANGUAGE SPECIFICATION

Construct Example Description

e[x, yl =value | Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the typesofTheset
accessor of the indexer is invoked with the instance expression
e and the argument ligtx, y, value). A compile-time error
occurs if the indexer is read-only.

Operator -X Overload resolution is applied to select the best unary operator
invocation in the class or struct given by the typexafThe selected
operator is invoked with the argument ligt) .

X+y Overload resolution is applied to select the best binary opergator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument(ist y).

Instance new T(x, y) Overload resolution is applied to select the best instance
constructor constructor in the class or struct T. The instance constructor is
invocation invoked with the argument lisix, y).

end note]

14.4.1 Argument lists

Every function member invocation includes an argutiish which provides actual values or variable
references for the parameters of the function member. The syntax for specifying the argument list of a
function member invocation depends on the function member category:

» Forinstance constructors, methods, and gkgles, the arguments are specified aargument-list, as
described below.

» For properties, the argument list is empty when invokinggée accessor, and consists of the
expression specified as the right operand of the assignment operator when invokirg Hxessor.

» For events, the argument list consists of the expression specified as the right operang=afithe
operator.

» Forindexers, the argument list consists of the expions specified between the square brackets in the
indexer access. When invoking tket accessor, the argument list additally includes the expression
specified as the right operand of the assignment operator.

» For user-defined operators, the argument list cassithe single operand of the unary operator or the
two operands of the binary operator.

The arguments of properties (§817.6), events (817.7) xieide(817.8), and user-defined operators (817.9) are
always passed as value parameters (817.5.1.1). Re&=ag output parameters are not supported for these
categories of function members.

The arguments of an instance constructor,lrodt or delegate invocation are specified asayument-list:

argument-list:
argument
argument-list , argument
argument:
expression
ref variable-reference
out variable-reference

An argument-list consists of one or morar guments, separated by commas. Each argument can take one of
the following forms:

132

A wWN

o N o »

10

11
12
13

14
15
16
17
18

19
20
21

22
23
24

25
26
27
28
29
30

31
32
33
34
35

36
37

38
39
40
41
42

43
44

45

46
47
48

Chapter 14 Expressions

» An expression, indicating that the argument is passed as a value parameter (817.5.1.1).

» The keywordref followed by avariable-reference (§12.3.3), indicating that the argument is passed as a
reference parameter (817.5.1.2). A variable must iimitiely assigned (812.3) before it can be passed as a
reference parameter. A volatile field (817.4c@nnot be passed as a reference parameter.

» The keywordout followed by avariable-reference (§12.3.3), indicating that the argument is passed as
an output parameter (817.5.1.3). A variable is consid@efinitely assigned (812.3) following a function
member invocation in which the variable is passedraswtput parameter. A volatile field (§17.4.3) cannot
be passed as an output parameter.

During the run-time processing of a function member invocation (814.4.3), the expressions or variable
references of an argument list are evaluated in order, from left to right, as follows:

» For avalue parameter, the argument expressionakiated and an implicit conversion (813.1) to the
corresponding parameter type is performed. Theltiegwalue becomes the initial value of the value
parameter in the function member invocation.

» For areference or output parameter, the variable eefr is evaluated and the resulting storage location
becomes the storage location represented by the gaeain the function member invocation. If the variable
reference given as a reference or output parameter is an array elemeetapéiace-type, a run-time check

is performed to ensure that the element type of the array is identical to the type of the parameter. If this
check fails, asystem.ArrayTypeMismatchException is thrown

Methods, indexers, and instance constructors may detieir right-most parameter to be a parameter array
(817.5.1.4). Such function members are invoked either in their normal form or in their expanded form
depending on which is applicable (8§14.4.2.1):

* When a function member with a parameter array is invoked in its normal form, the argument given for
the parameter array must be a single expressiantgpe that is implicitly convertible (§13.1) to the
parameter array type. In this case, the parameter array acts precisely like a value parameter.

* When a function member with a parameter arinvoked in its expanded form, the invocation must

specify zero or more arguments for the parameter array, where each argument is an expression of a type that

is implicitly convertible (§13.1) to the element typéthe parameter array. In this case, the invocation
creates an instance of the parameter array type with a length corresponding to the number of arguments,
initializes the elements of the array instance with the given argument values, and uses the newly created
array instance as the actual argument.

The expressions of an argument list are alwayaluated in the order they are writteBxample: Thus, the
example

class Test

static void F(int x, int y, int z

) {
System.cConsole.writeLine("x = {0}

, y = {1}, z = {2}", x, y, 2);

static void Main() {

int i = 0;
FCit+, i++, i++);

}
produces the output
x=0,y=1, z =2
end exampl €]

The array covariance rules (819.5) permit a value of an arrayAypedo be a reference to an instance of an
array types[], provided an implicit reference conversion exists freno A. Because of these rules, when
an array element of eeference-type is passed as a reference or outpatameter, a run-time check is

133

15
16
17

18

19

20
21
22

23

24
25
26

27
28

29

30
31
32

33

34

35

36

37
38
39

C#LANGUAGE SPECIFICATION

required to ensure that the actual element type of the ariiggriical to that of the parameterEkample: In
the example

class Test

static void F(ref object x) {.}

static void Main() {
object[] a = new object[10];

object[] b = new string[10];
F(ref a[0]); // ok
F(ref b[1]); // ArrayTypeMismatchException

}

the second invocation &f causes aystem.ArrayTypeMismatchException to be thrown because the
actual element type df is string and notobject. end example]

When a function member with a parameter arinvoked in its expanded form, the invocation is
processed exactly as if an array creation expressitmam array initializer (814.5.10.2) was inserted around
the expanded parameterExpmple: For example, given the declaration

void F(int x, int y, params object[] args);
the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

F(10, 20, new object[] {});
F(10, 20, new object[] {30, 40});
F(10, 20, new object[] {1, "hello", 3.0});

end exampl€] In particular, note that an empty array is created when there are zero arguments given for the
parameter array.

14.4.2 Overload resolution

Overload resolution is a compile-time mechanism fdestng the best function member to invoke given an
argument list and a set of candidate function membeveri®ad resolution selects the function member to
invoke in the following distinct contexts within C#:

* Invocation of a method named in amvocation-expression (§14.5.5).

» Invocation of an instance constructor named irobject-creation-expression (§14.5.10.1).

* Invocation of an indexer accessor throughebament-access (§14.5.6).

» Invocation of a predefined or user-defined operator referenced in an expression (§14.2.3 and §14.2.4).

Each of these contexts defines the set of candifletetion members and the list of arguments in its own
unique way. However, once the candidate function membard the argument list have been identified, the
selection of the best function member is the same in all cases:

134

N

© 00 N O U~ W

10
11

12

13
14

15
16

17
18

19
20

21
22

23
24
25

26
27
28
29
30

31
32
33

34
35

36
37

38
39

40

41
42
43

Chapter 14 Expressions

» First, the set of candidate function members is rediuo those function members that are applicable
with respect to the given argument list (814.4.2.1). If this reduced set is empty, a compile-time error occurs.

* Then, given the set of applicable candidate funttitembers, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member isothe function member that is better than all other

function members with respect to the given arguntishitprovided that each function member is compared

to all other function members using the rules in 814.4.2.2. If there is not exactly one function member that is
better than all other function memisethen the function member invocation is ambiguous and a compile-
time error occurs.

The following sections define the exact meanings of the teqpplcable function member andbetter
function member.

14.4.2.1 Applicable function member

A function member is said to be applicable function member with respect to an argument listwhen all
of the following are true:

» The number of arguments iis identical to the number of parameters in the function member
declaration.

* For each argument in A, the parameter passing mode of the argument (i.e. nefluer out) is
identical to the parameter passing mode of the corresponding parameter, and

o for avalue parameter or a parameter array, arigitgonversion (813.1) exists from the type of the
argument to the type of the corresponding parameter, or

o foraref orout parameter, the type of the argument is identical to the type of the corresponding
parameter.Note: After all, aref or out parameter is an alias for the argument pasaadinote]

For a function member that includes a parametexyaiif the function member is applicable by the above
rules, it is said to be applicable in it®rmal form. If a function member that inedes a parameter array is
not applicable in its normal form, the function member may instead be applicable=kpéisded form:

* The expanded form is constructed by replacing theimater array in the function member declaration
with zero or more value parameters of the elemgpétof the parameter array such that the number of
arguments in the argument listmatches the total number of parametera ifas fewer arguments than the
number of fixed parameters in the function membecldration, the expanded form of the function member
cannot be constructed and is thus not applicable.

» Ifthe class, struct, or interface in which the function member is declared already contains another
applicable function member with the same sima as the expanded form, the expanded form is not
applicable.

» Otherwise, the expanded form is applicable if for each argumextlie parameter passing mode of the
argument is identical to the parameter pagsnode of the corresponding parameter, and

o for afixed value parameter or a value parameteat#d by the expansion, an implicit conversion
(813.1) exists from the type of the argument to the type of the corresponding parameter, or

o foraref orout parameter, the type of the argument is identical to the type of the corresponding
parameter.

14.4.2.2 Better function member

Given an argument list with a set of argument types, A., ..., Ay and two applicable function membevs
andmq with parameter typeBs, P, ..., Py andQi, Q, ..., Qx, Mp is defined to be &etter function member
thanMg if

135

10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28
29
30

31

32
33

34
35
36
37

38
39

C#LANGUAGE SPECIFICATION

» for each argument, the implicit conversion framto Py is not worse than the implicit conversion from
Ax t0 Qx, and

» for at least one argument, the conversion frento Px is better than the conversion from to Qx.
When performing this evaluation, N or Mq is applicable in its expanded form, thexor Qx refers to a
parameter in the expandearin of the parameter list.

14.4.2.3 Better conversion

Given an implicit conversio; that converts from a typg to a typeTi, and an implicit conversioaq; that
converts from a typs to a typeT;, thebetter conversion of the two conversions is determined as follows:

» If Ty andT; are the same type, neither conversion is better.
 |f SisTy, C1is the better conversion.
 |f Sis Ty, C;is the better conversion.

« If an implicit conversion fron; to T exists, and no implicit conversion from to T; exists,C; is the
better conversion.

» If an implicit conversion fronm, to T; exists, and no implicit conversion from to T, exists,C; is the
better conversion.

e If T1issbyte andT;is byte, ushort, uint, orulong, C; is the better conversion.

 If T,issbyte andTiis byte, ushort, uint, orulong, C; is the better conversion.

e If T1isshort andT;isushort, uint, orulong, C; is the better conversion.

e If T;isshort andTiisushort, uint, orulong, C; is the better conversion.

« If TiisintandT:isuint, orulong, C; is the better conversion.

e If T;isintandTiisuint, orulong, C; is the better conversion.

* If T1is Tong andT; isulong, C; is the better conversion.

* If TisTong andTy isulong, C; is the better conversion.

* Otherwise, neither conversion is better.

If an implicit conversionc; is defined by these rules to be a bettengersion than an implicit conversian,

then it is also the case thai is aworse conversion thancs.

14.4.3 Function member invocation

This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has already determined the particular member to invoke, possibly by
applying overload resolution to atsaf candidate function members.

For purposes of describing the invocation procéssction members are divided into two categories:

» Static function members. These are static methads$ance constructors, static property accessors, and
user-defined operators. Static function members are always non-virtual.

* Instance function members. These are instanethaus, instance property accessors, and indexer
accessors. Instance function members are eithewviraral or virtual, and are always invoked on a

particular instance. The instance is computed by atairt® expression, and it becomes accessible within the
function member ashis (814.5.7).

The run-time processing of a function member invocation consists of the following steps,mmibehe
function member and, ifi is an instance membet,is the instance expression:

136

© 00 N O

10

11

12

13

14

15
16
17

18
19

20

21
22
23
24

25
26
27
28

29

30
31

32

33
34

35
36

37
38

39

40
4
42
43

Chapter 14 Expressions

» If Mmis a static function member:
0 The argument list is evaluated as described in §14.4.1.
0 Misinvoked.
* If Mis an instance function member declared wahue-type:
0 Eis evaluated. If this evaluation causes anaption, then no further steps are executed.

o If Eis not classified as a variable, then a temporary local variabtesdlype is created and the value
of E is assigned to that variable.is then reclassified as a reference to that temporary local variable.
The temporary variable is accessibleths s within M, but not in any other way. Thus, only whe&n
is a true variable is it possible for the caller to observe the change® thakes tothis.

0 The argument list is evaluated as described in §14.4.1.
0 Misinvoked. The variable referenced byecomes the variable referencedtbyis.
« If Mis an instance function member declared nefarence-type:
0 Eis evaluated. If this evaluation causes anaption, then no further steps are executed.
0 The argument list is evaluated as described in §14.4.1.

o Ifthe type ofE is avalue-type, a boxing conversion (811.3.1) is performed to congdu type
object, andE is considered to be of typgbject in the following steps.Note: In this caseM
could only be a member afystem.0object. end note]

o The value oft is checked to be valid. If the value Bfisnull, a
System.Nul1ReferenceException is thrown and no further steps are executed.

o The function member implementation to invoke is determined:

» If the compile-time type of is an interface, the function member to invoke is the
implementation o provided by the run-time type of the instance referenced.byhis
function member is determined by applying theerface mapping rules (820.4.2) to determine
the implementation afi provided by the run-time type of the instance referenced.by

» Otherwise, i is a virtual function member, the function member to invoke is the
implementation o provided by the run-time type of the instance referenced.byhis
function member is determined by applyirigetrules for determining the most derived
implementation (817.5.3) of with respect to the run-time type of the instance referencegl by

« OtherwiseM is a non-virtual function member, and the function member to invokatself.

o The function member implementation determined in the step above is invoked. The object
referenced b§ becomes the object referencedtlyis.

14.4.3.1 Invocations on boxed instances
A function member implemented inval ue-type can be invoked through a boxed instance of tlate-type
in the following situations:

* When the function member is averride of a method inherited from typebject and is invoked
through an instance expression of tyjigject.

* When the function member is an implementatidmo interface function member and is invoked
through an instance expression ofiaterface-type.

* When the function member is invoked through a delegate.

In these situations, the boxed instansednsidered to contain a variable of treue-type, and this variable
becomes the variable referencedtbyi s within the function member invocationNpte: In particular, this
means that when a function membeginvoked on a boxed instance, it is possible for the function member to
modify the value contained in the boxed instare® note]

137

62N

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25

26
27
28

29
30

31
32

33
34

35

36
37
38

39
40
41

42
43

44
45

C#LANGUAGE SPECIFICATION

14.5 Primary expressions
Primary expressions include thieplest forms of expressions.

primary-expression:
array-creation-expression
primary-no-array-creation-expression

primary-no-array-creati on-expression:
literal
simple-name
parenthesi zed-expression
member -access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
typeof-expression
Sizeof-expression
checked-expression
unchecked-expression

Primary expressions are divided betwegnray-creation-expressions andprimary-no-array-creation-
expressions. Treatingarray-creation-expression in this way, rather than listing it along with the other simple
expression forms, enables the grammar to disallow potentially confusing code such as

object o = new int[3][1];
which would otherwise be interpreted as
object o = (new int[3])[1];

14.5.1 Literals
A primary-expression that consists of &teral (89.4.4) is classified as a value.

14.5.2 Simple names
A simple-name consists of a single identifier.
simple-name:
identifier
A simple-name is evaluated and classified as follows:

» If the simple-name appears within &lock and if theblock's (or an enclosing block’s) local variable
declaration space (810.3) contains a local variable or parameter with the given name, giepléasame
refers to that local variable or parameter and is classified as a variable.

» Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration
declaration and continuing with each enclosing outer class or struct declaration (if any), if a member lookup
of thesimple-name in T produces a match:

o If Tisthe immediately enclosing class or struct type and the lookup identifies one or more methods,
the result is a method group with an associated instance expressibm sf

o If Tisthe immediately enclosing class or struct tyip¢éhe lookup identifies an instance member,
and if the reference occurs within thick of an instance constructor, an instance method, or an

138

0 N O

10

11
12

13
14

15
16
17

18
19
20

21

22

23
24
25
26

27

28
29
30

31
32
33
34
35
36
37

38
39

40
4
42

43
44
45
46
47
48
49
50
51

Chapter 14 Expressions

instance accessor, the result is the sama member access (§14.5.4) of the fahm s . E, whereE
is thesimple-name.

0 Otherwise, the result is the same as a member access (814.5.4) of the.®rmherek is the
simple-name. In this case, it is a compile-time error for thenple-name to refer to an instance
member.

» Otherwise, starting with the namespace in whichdingple-name occurs, continuing with each
enclosing namespace (if any), and ending with the dlnhmespace, the following steps are evaluated until
an entity is located:

o Ifthe namespace contains a namespace member with the given name, tsempte@ame refers to
that member and, depending on the member, is classified as a namespace or a type.

o Otherwise, if the namespace has a correspondintespace declaration dosing the location
where thesimple-name occurs, then:

» If the namespace declaration containssiang-alias-directive that associates the given name with
an imported namespace or type, thendimaple-name refers to that namespace or type.

» Otherwise, if the namespaces imported byudeg-namespace-directives of the namespace
declaration contain exactly one type with the given name, thea thgte-name refers to that

type.

» Otherwise, if the namespaces imported byudag-namespace-directives of the namespace
declaration contain more than one type with the given name, thesirtipke-name is ambiguous
and a compile-time error occurs.

» Otherwise, the name given by thienple-name is undefined and a compile-time error occurs.

14.5.2.1 Invariant meaning in blocks

For each occurrence of a given identifier a8raple-namein an expression, every other occurrence of the
same identifier as ample-namein an expression within the immediately enclosbigck (815.2) orswitch-

block (815.7.2) must refer to the same entity. This rule ensures that the meaning of a name in the context of
an expression is always the same within a block.

The example
class Test

double x;
void F(bool b) {
x = 1.0;
if (b) {
int x = 1;

}
}

results in a compile-time error becauseefers to different entities within the outer block (the extent of
which includes the nested block in thé statement). In contrast, the example

class Test

double x;

void F(bool b) {

if (b) {
x = 1.0;

else {
int x = 1;

139

16
17

18
19

20
21
22
23

24

25
26

27
28
29

30
31
32

33
34

35
36

37
38

39

40
41

42
43

44

C#LANGUAGE SPECIFICATION

is permitted because the namés never used in the outer block.

Note that the rule of invariant meaning applies omysimple names. It is perfectly valid for the same
identifier to have one meaning as a simple name and another meaning as right operand of a member access
(814.5.4). Example: For example:

struct Point

int x, vy;

public Point(int x, int y) {
this.x = X;
this.y = vy;

}

The example above illustrates a common pattern imfguhe names of fields as parameter names in an
instance constructor. In¢example, the simple namesindy refer to the parameters, but that does not
prevent the member access expressidniss . x andthis.y from accessing the fieldend exampl €]

14.5.3 Parenthesized expressions
A parenthesized-expression consists of arexpression enclosed in parentheses.

par enthesi zed-expression:
(expression)

A parenthesized-expression is evaluated by evaluating tkezpression within the parentheses. If the
expression within the parentheses denotes a namespace, tymeethod group, a compile-time error occurs.
Otherwise, the result of thearenthesized-expression is the result of the evaluation of the contained
expression.

14.5.4 Member access

A member-access consists of gorimary-expression or apredefined-type, followed by a “.” token, followed
by anidentifier.

member -access:
primary-expression . identifier
predefined-type . identifier

predefined-type: one of
bool byte char decimal double float int Tong
object shyte short string uint ulong ushort

A member-access of the formE. I, wherek is aprimary-expression or apredefined-type andI is an
identifier, is evaluated and classified as follows:

* If Eis a namespace aris the name of an accessible member of that namespace, then the result is that
member and, depending on the membec]assified as a namespace or a type.

» If E is apredefined-type or aprimary-expression classified as a type, and a member lookup (814.3) of
in E produces a match, then I is evaluated and classified as follows:

o If I identifies a type, then the result is that type.

o If 1 identifies one or more methods, then the result is a method group with no associated instance
expression.

o If 1 identifies astatic property, then the result is a propedccess with no associated instance
expression.

o If I identifies astatic field:

140

10

11
12

13

14
15

16
17

18
19

20
21

22

23

24
25
26

27

28

29
30
31

32

33

34
35
36

37

38

39

40
4
42

Chapter 14 Expressions

» Ifthe field is readonTy and the reference occurs outside the static constructor of the class or
struct in which the field is declared, then the result is a value, namely the value of the static field
IinE.

» Otherwise, the result is a variable, namely the static fieild E.
o If I identifies astatic event:

« Ifthe reference occurs within the class or strin which the event is declared, and the event
was declared withouvent-accessor-declarations (817.7), therk . I is processed exactly asif
was a static field.

» Otherwise, the result is an event access with no associated instance expression.
o If I identifies a constant, then the result isaue, namely the value of that constant.

o If 1 identifies an enumeration member, then the result is a value, namely the value of that
enumeration member.

o Otherwiseg. I is aninvalid member reference, and a compile-time error occurs.

» If Eis a property access, indexer access, variable, or value, the type of which is T, and a member lookup
(814.3) of1 in T produces a match, then I is evaluated and classified as follows:

o First, if E is a property or indexer access, then the valiine property or indexer access is obtained
(814.1.1) and: is reclassified as a value.

o If 1 identifies one or more methods, then the result is a method group with an associated instance
expression of E.

o If I identifies an instance property, then the resih property access with an associated instance
expression of E.

o If Tis aclasstype andI identifies an instance field of thatass-type:
e Ifthe value ofE isnulT, then asystem.Nul1ReferenceException is thrown.

» Otherwise, if the field igreadonTy and the reference occurs outside an instance constructor of
the class in which the field is declared, then the result is a value, namely the value of the field
in the object referenced by E.

» Otherwise, the result is a variable, namely the fieid the object referenced by E.
o If Tis astruct-type andI identifies an instance field of thatruct-type:

« If Eisavalue, or if the field is’eadonTy and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value, namely the
value of the fieldr in the struct instance given by E.

» Otherwise, the result is a variable, namely the fieid the struct instance given by E.
o If I identifies an instance event:

« |f the reference occurs within the class or strin which the event is declared, and the event
was declared withouvent-accessor-declarations (817.7), therk . I is processed exactly asif
was an instance field.

» Otherwise, the result is an event access with an associated instance expression of E.

» OtherwiseEg.I is an invalid member reference, and a compile-time error occurs.

14.5.4.1 Identical simple names and type names

In a member access of the fomn 1, if E is a single identifier, and if the meaning bfas asimple-name
(814.5.2) is a constant, field, property, local variable, or parameter with the same type as the mearisg of
atype-name (8§10.8), then both possible meaningsddre permitted. The two possible meaninggof are

141

© ~No o b w N -

©

26
27

28
29

30
31
32
33
34

35

36

37
38
39

40

41

42
43
44
45

46
47

48
49

C#LANGUAGE SPECIFICATION

never ambiguous, sinaemust necessarily be a member of the typea both cases. In other words, the rule
simply permits access to the static members wihere a compile-time error would otherwise have occurred.
[Example: For example:

struct color

new Color(.);
new Color(..);

pubTlic static readonly Color white
public static readonly Color Black

public Color complement() {.}

class A
pubTic Color Color; // Field color of type Color
void FQO {
Ccolor = color.Black; // References Color.Black static
member
field Color = Color.Complement(); // Invokes Complement() on Color
ie
3
static void GO {
Color c = Color.white; // References Color.white static
member

3

Within theA class, those occurrences of thel or identifier that reference theolor type are underlined,
and those that reference thelor field are not underlinedend example]

14.5.5 Invocation expressions
An invocation-expression is used to invoke a method.
invocation-expression:
primary-expression (argument-listos:)

The primary-expression of aninvocation-expression must be a method group or a value adehegate-type.

If the primary-expression is a method group, thi@vocation-expression is a method invocation (§14.5.5.1). If
theprimary-expression is a value of adelegate-type, theinvocation-expression is a delegate invocation
(814.5.5.2). If theorimary-expression is neither a method group nor a value adelegate-type, a compile-
time error occurs.

The optionalargument-list (§14.4.1) provides values or variabldergences for the parameters of the method.
The result of evaluating aimvocation-expression is classified as follows:

» If the invocation-expression invokes a method or delegate that retuns d, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of astatement-expression (§15.6).

» Otherwise, the result is a value of thge returned by the method or delegate.

14.5.5.1 Method invocations

For a method invocation, theimary-expression of the invocation-expression must be a method group. The
method group identifies the one method to invokéhar set of overloaded methods from which to choose a
specific method to invoke. In the latter case, deteation of the specific method to invoke is based on the
context provided by the types of the arguments inaiftgument-list.

The compile-time processing of a method invocation of the fa(m), wherem is a method group analis
an optionalargument-list, consists of the following steps:

» The set of candidate methods for the method invocation is constructed. Starting with the set of methods
associated with M, which were found by a previousmher lookup (814.3), the set is reduced to those

142

[S2 N

© 00 N O

10
11
12

13
14
15
16
17

18
19

20
21
22
23
24

25

26
27
28
29

30
31

32

33
34

35
36
37

38

39
40
41

42
43

Chapter 14 Expressions

methods that are applicable with respect to the argument.liBie set reduction consists of applying the
following rules to each method. N in the set, where is the type in which the methadis declared:

o If Nis not applicable with respect 10(814.4.2.1), them is removed from the set.

o If Nis applicable with respect w(814.4.2.1), then all methods declared in a base typeasé
removed from the set.

» If the resulting set of candidate methods is empty, then no applicable methods exist, and a compile-time
error occurs. If the candidate methods are not all declared in the same type, the method invocation is
ambiguous, and a compile-time error occurs (thielssituation can only occur for an invocation of a

method in an interface that has multiple direct base interfaces, as described in §20.2.5).

* The best method of the set of candidate methodseistified using the overload resolution rules of
814.4.2. If a single best method cannot be identifted,method invocation is ambiguous, and a compile-
time error occurs.

» Given a best method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted $rowi @name or amember-
accessthrough a type. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through a variable or value, orase-access. If neither of these requirements

are true, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rulesuoiction member invocation described in §14.4.3.

[Note: The intuitive effect of the resolution rules described above is as follows: To locate the particular
method invoked by a method invocation, start with the type indicated by the method invocation and proceed
up the inheritance chain until at least one applicadteessible, non-override method declaration is found.
Then perform overload resolution on the set of applieakccessible, non-override methods declared in that
type and invoke the method thus selectdl note]

14.5.5.2 Delegate invocations

For a delegate invocation, tlpeimary-expression of theinvocation-expression must be a value of a
delegate-type. Furthermore, considering thielegate-type to be a function member with the same parameter
list as thedel egate-type, the delegate-type must be applicable (§14.4.2.1) with respect todahgument-list of
theinvocation-expression.

The run-time processing of a delegate invocation of the fo(m), whereD is aprimary-expression of a
delegate-type andA is an optionabrgument-list, consists of the following steps:

» Dis evaluated. If this evaluation causes an exception, no further steps are executed.

* The value ob is checked to be valid. If the value pbfis nul1, a
System.NulTReferenceexception is thrown and no further steps are executed.

» Otherwisep is a reference to a delegate instance. A function member invocation (814.4.3) is performed
on the method referenced by the delegate. If the meithad instance method, the instance of the invocation
becomes the instance referenced by the delegate.

14.5.6 Element access

An element-access consists of grimary-no-array-creation-expression, followed by a ‘[“ token, followed
by anexpression-list, followed by a “1” token. Theexpression-list consists of one or morexpressions,
separated by commas.

element-access:
primary-no-array-creation-expression [expression-list]

143

w N

~N o o b

o)

10
11
12

13
14

15
16

17

18
19
20
21
22
23
24

25
26

27
28
29

30
31

32

33
34
35

36
37
38

39
40

41
42

43

44
45

C#LANGUAGE SPECIFICATION

expression-list:
expression
expression-list , expression

If the primary-no-array-creation-expression of anelement-accessis a value of ararray-type, the element-

accessis an array access (814.5.6.1). Otherwise pitimary-no-array-creation-expression must be a

variable or value of a class, struct, or interface type that has one or more indexer members, in which case the
element-accessis an indexer access (§14.5.6.2).

14.5.6.1 Array access

For an array access, tlpeimary-no-array-creation-expression of the el ement-access must be a value of an
array-type. The number of expressions in tbgression-list must be the same as the rank of éneay-type,
and each expression must be of tyipet, uint, Tong, ulong, or of a type that can be implicitly converted
to one or more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array
element selected by the value(s) of the expression(s) iexitression-list.

The run-time processing of an array access of the fofiil, wherep is aprimary-no-array-creation-
expression of anarray-type anda is anexpression-list, consists of the following steps:

* Pisevaluated. If this evaluation causes an exception, no further steps are executed.

» The index expressions of tle@pression-list are evaluated in order, from left to right. Following
evaluation of each index expression, an implicheersion (813.1) to one of the following types is
performed:int, uint, Tong, uTong. The first type in this list for which an implicit conversion exists is
chosen. For instance, if the index expression is of sipert then an implicit conversion tdnt is

performed, since implicit conversions frashort to int and fromshort to Tong are possible. If

evaluation of an index expression or the subsequenidihponversion causes an exception, then no further
index expressions are evaluated and no further steps are executed.

 The value off is checked to be valid. If the value Bfisnull, a
System.Nul1ReferenceException is thrown and no further steps are executed.

» The value of each expression in tg@ression-list is checked against the actual bounds of each
dimension of the array instance refereth@y P. If one or more values are out of range, a
System.IndexoutOofRangeException is thrown and no further steps are executed.

» The location of the array element given by the index expression(s) is computed, and this location
becomes the result of the array access.

14.5.6.2 Indexer access

For an indexer access, tpamary-no-array-creation-expression of the element-access must be a variable
or value of a class, struct, or interface type, and this type must implement one or more indexers that are
applicable with respect to thexpression-list of the element-access.

The compile-time processing of an indexer access of the fdral, wherep is aprimary-no-array-
creation-expression of a class, struct, or interface typeandA is anexpression-list, consists of the
following steps:

» The set of indexers provided hyis constructed. The set consists of all indexers declargdina base
type of T that are nobverride declarations and are accessible in the current context (§10.5).

» The setis reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each index®rI in the set, whers is the type in which the indexaris declared:

o If 1is not applicable with respect 10(814.4.2.1), themx is removed from the set.

o If 1 is applicable with respect ©(814.4.2.1), then all indexers declared in a base typeare
removed from the set.

144

A W N P

~N o O

10
11

12
13
14
15

16
17

18
19

20
21

22
23
24

25
26
27

28
29
30
31
32

33
34
35
36

37
38
39

40

41
42

43
44
45

Chapter 14 Expressions

» If the resulting set of candidate indexers is emptgntho applicable indexers exist, and a compile-time

error occurs. If the candidate indexers are not all declared in the same type, the indexer access is ambiguous,
and a compile-time error occurs (this latter situatéan only occur for an indexer access on an instance of

an interface that has multiple direct base interfaces).

» The best indexer of the set of candidate indexeiddatified using the overload resolution rules of
814.4.2. If a single best indexer cannot be identiftbd,indexer access is ambiguous, and a compile-time
error occurs.

* Theindex expressions of tlezpression-list are evaluated in order, from left to right. The result of

processing the indexer access is an expression classified as an indexer access. The indexer access expression
references the indexer determined in the stegva, and has an associated instance expressipamd an

associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of eigjeeateessor

or theset-accessor of the indexer. If the indexer access is the target of an assignmeisetthecessor is
invoked to assign a new value (814.13.1). In all other casegjeth@ccessor is invoked to obtain the current
value (814.1.1).

14.5.7 This access
A this-access consists of the reserved wotthis.

this-access:
this

A this-accessis permitted only in théslock of an instance constructor, an instance method, or an instance
accessor. It has one of the following meanings:

* Whenthis is used in grimary-expression within an instance constructor of a class, it is classified as a
value. The type of the value is the class within whibh tisage occurs, and the value is a reference to the
object being constructed.

* Whenthis is used in grimary-expression within an instance method or instance accessor of a class, it
is classified as a value. The type of the value is the class within which the usage occurs, and the value is a
reference to the object for which the method or accessor was invoked.

Whenthis is used in grimary-expression within an instance constructor of a struct, it is classified as a
variable. The type of the variable is the struct withihich the usage occurs, and the variable represents the
struct being constructed. Thehi s variable of an instance constructor of a struct behaves exactly the same
as anout parameter of the struct type—in particular, thisans that the variable must be definitely assigned
in every execution path of the instance constructor.

* Whenthis is used in grimary-expression within an instance method or instance accessor of a struct, it
is classified as a variable. The type of the variable is the struct within which the usage occurs, and the
variable represents the struct for which the method or accessor was invokechil$eariable of an

instance method of a struct behaves exactly the same af parameter of the struct type.

Use ofth1is in aprimary-expression in a context other than the ones listed above is a compile-time error. In
particular, it is not possible to refer tdhis in a static method, a static property accessor, oniareable-
initializer of a field declaration.

14.5.8 Base access

A base-access consists of the reserved wobdse followed by either a " token and an identifier or an
expression-list enclosed in square brackets:

base-access;
base . identifier
base [expression-list]

145

g A W N P

© 00 N O

10
11
12
13
14
15
16

17

18
19

20
21

22
23

24
25

26
27
28
29
30

31
32

33

34

35

36

37

38

39

40
41
42

43

44

45

C#LANGUAGE SPECIFICATION

A base-accessis used to access base class members that are hidden by similarly named members in the
current class or struct. Base-accessis permitted only in thélock of an instance constructor, an instance
method, or an instance accessor. Whage . I occurs in a class or struct,must denote a member of the
base class of that class or struct. Likewise, whese[E] occurs in a class, an applicable indexer must
exist in the base class.

At compile-time,base-access expressions of the forimase.I andbase[E] are evaluated exactly as if they
were written((B) this) .I and ((B) this) [E], whereB is the base class of the class or struct in which
the construct occurs. Thusase.I andbase[E] correspond tahis.I andthis[E], exceptthis is
viewed as an instance of the base class.

When abase-access references a virtual function menti@ method, property, or indexer), the
determination of which function member to invoke at run-ti(g8®4.4.3 is changed. The function member
that is invoked is determined by finding the most dedvmplementation (817.5.3) of the function member
with respect ta (instead of with respect to the run-time typetdfis, as would be usual in a non-base
access). Thus, within asverride of avirtual function member, dase-access can be used to invoke the
inherited implementation of the functionember. If the function member referenced byage-accessis
abstract, a compile-time error occurs.

14.5.9 Postfix increment and decrement operators

post-increment-expression:
primary-expression ++

post-decr ement-expression:
primary-expression --

The operand of a postfix increment or decrement dmranust be an expression classified as a variable, a

property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrementrafien is a property or indexer access, the property or
indexer must have bothget and aset accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (814.2.3) is &gpto select a specific operator implementation.
Predefinedr+ and-- operators exist for the following typesbyte, byte, short, ushort, int, uint,
Tong, ulong, char, float, double, decimal, and any enum type. The predefined operators return the
value produced by adding 1 to the operand, and the predefinegerators return the value produced by
subtracting 1 from the operand.

The run-time processing of a postfix increment or decrement operation of thediesior x-- consists of
the following steps:

» If xis classified as a variable:
0 xis evaluated to produce the variable.
0 The value ofx is saved.
o0 The selected operator is invoked with the saved valueas its argument.
0 The value returned by the operator is stbire the location given by the evaluation xf
0 The saved value of becomes the result of the operation.
» If x is classified as a property or indexer access:

0 The instance expression fis notstatic) and the argument list (¥ is an indexer access)
associated witlx are evaluated, and the results are used in the subsegpieandset accessor
invocations.

0 Theget accessor ok is invoked and the returned value is saved.
0 The selected operator is invoked with the saved valueas its argument.

0 Theset accessor ok is invoked with the value returned by the operator asd$ue argument.

146

10

11

12

13
14
15
16

17
18

19
20

21
22

23

24
25

26

27
28

29

30

31
32
33
34

35
36

37

38
39

Chapter 14 Express

0 The saved value of becomes the result of the operation.
The++ and-- operators also support prefix notation (§814.6.5). The resut-efor x-- is the value ok

ons

before the operation, whereas the resulttedx or --x is the value ok after the operation. In either case,

itself has the same value after the operation.

An operator ++ Oroperator --implementation can be invoked using either postfix or prefix notation.

It is not possible to have separate operator implementations for the two notations.

14.5.10 The new operator
Thenew operator is used to create new instances of types.

There are three forms afew expressions:

» Object creation expressions are used to create new instances of class types and value types.
» Array creation expressions are used to create new instances of array types.

» Delegate creation expressions are used to create new instances of delegate types.

Thenew operator implies creation of an instance dfpe, but does not necessarily imply dynamic

allocation of memory. In particular, instancesvalue types require no additional memory beyond the

variables in which they reside, and no dynamic allocations occur wheris used to create instances
value types.

14.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance alass-type or avalue-type.

obj ect-creation-expression:
new type (argument-listyy)

Thetype of anobject-creation-expression must be alass-type or avalue-type. Thetype cannot be an
abstract class-type.

The optionalargument-list (§14.4.1) is permitted only if thiype is aclass-type or astruct-type.

of

The compile-time processing of @bject-creation-expression of the formnew T(A), whereT is aclass-type

or avalue-type andA is an optionabrgument-list, consists of the following steps:

» If Tis avalue-type andA is not present:

0 Theobject-creation-expression is a default constructor invocation. The result of tigect-creation-

expression is a value of typer, namely the default value faras defined in 811.1.1.
» Otherwise, ifT is aclass-type or astruct-type:
0 If Tisanabstract classtype, a compile-time error occurs.

0 The instance constructor to invoke is determineidgighe overload resolution rules of §14.4.2. The
set of candidate instance constructors consists of all accessible instance constructors declared in T. If
not be

the set of candidate instance constructors is gngptif a single best instance constructor can
identified, a compile-time error occurs.

0 The result of thebject-creation-expression is a value of typer, namely the value produced by

invoking the instance constructdetermined in the step above.
» Otherwise, thebject-creation-expression is invalid, and a compile-time error occurs.

The run-time processing of aiject-creation-expression of the formnew T(A), whereT is class-type or
struct-type andA is an optionalrgument-list, consists of the following steps:

a

147

10
11

12
13
14

15
16

17
18
19

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34

35
36
37

38

39
40
41

C#LANGUAGE SPECIFICATION

» If Tis aclasstype:

0 A new instance of clasgis allocated. If there is not enough memory available to allocate the new
instance, &ystem.outofMemoryException is thrown and no further steps are executed.

o Allfields of the new instance are initialized to their default values (812.2).

0 The instance constructor is invoked according tortiies of function member invocation (814.4.3).
A reference to the newly allocated instance is aatcally passed to the instance constructor and
the instance can be accessed from within that constructchi s

e If Tis astruct-type:

0 Aninstance of typq is created by allocating a temporary local variable. Since an instance
constructor of atruct-type is required to definitely assign a value to each field of the instance being
created, no initialization of the temporary variable is necessary.

0 The instance constructor is invoked according torties of function member invocation (§14.4.3).
A reference to the newly allocated instance is audtically passed to the instance constructor and
the instance can be accessed from within that constructchi&s

14.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance ofaaray-type.

array-creation-expression:
new non-array-type [expression-list] rank-specifiers,, array-initializerqy
new array-type array-initializer

An array creation expression of the first form allocates an array instance of the type that results from
deleting each of the individual expressions from thpression list. For example, the array creation
expressiomew int[10,20] produces an array instance of typet [,], and the array creation expression
new int[10] [,] produces an array of typent[] [,]. Each expression in the expression list must be of
typeint, uint, Tong, orulong, or of a type that can be implicitly converted to one or more of these types.
The value of each expression determines the lenfgtiieocorresponding dimension in the newly allocated
array instance. Since the length of an array dinmmsiust be nonnegative, it is a compile-time error to

have a constant expression with a atbége value, in the expression list.

Except in an unsafe context (§25.1), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the
expression list must be a constant and the rank anémkion lengths specified by the expression list must
match those of the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of
the array initializer. The individual dimension lehgtare inferred from the number of elements in each of
the corresponding nesting levels of teay initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}}
exactly corresponds to

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}}
Array initializers are described further in §19.6.

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly

allocated array instance. The run-time processing @reay creation expression consists of the following
steps:

148

Chapter 14 Expressions

» The dimension length expressions of #xeression-list are evaluated in order, from left to right.
Following evaluation of each expression, an impladnversion (813.1) to one of the following types is
performed:int, uint, Tong, uTong. The first type in this list for which an implicit conversion exists is
chosen. If evaluation of an expression or the subseijoglicit conversion causes an exception, then no
further expressions are evaluated and no further steps are executed.

a W N P

[e)]

» The computed values for the dimension lengths are validated, as follows: If one or more of the values
7 arelessthan zero,system.overflowException is thrown and no further steps are executed.

8 <+ An array instance with the given dimension lengthallocated. If there is not enough memory available
9 to allocate the new instancesgstem.outofMemoryException is thrown and no further steps are
10 executed.

11+ All elements of the new array instance are initialized to their default values (812.2).

12« Ifthe array creation expression contains an array initializer, then each expression in the array initializer
13 is evaluated and assigned to its corresponding arraezlie The evaluations and assignments are performed
14 inthe order the expressions are written in the array initializer—in other words, elements are initialized in

15 increasing index order, with the rightmost dimensionréasing first. If evaluation of a given expression or

16 the subsequent assignment to the corresponding arnagptecauses an exception, then no further elements
17 areinitialized (and the remaining elements will thus have their default values).

18 An array creation expression permits instantiation of an array with elements of an array type, but the
19 elements of such an array must be manually initializEdafple: For example, the statement

20 int[][] a = new int[100][];

21 creates a single-dimensional array with 100 elements ofiype]. The initial value of each element is

22 null. end example] It is not possible for the same array creation expression to also instantiate the sub-
23 arrays, and the statement

24 int[][] a = new int[100][5]; // Error

25 results in a compile-time error. Instantiation of the sub-arrays must instead be performed manually, as in
26 int[][] a = new int[100][];

27 for (int i = 0; i < 100; i++) a[i] = new int[5];

28 When an array of arrays has a “rectangular” shape, shahin the sub-arrays are all of the same length, it is
29 more efficient to use a multi-dimensional array. le #xample above, instantiation of the array of arrays
30 creates 101 objects—one outer array and 100 sub-arrays. In contrast,

31 int[,] = new int[100, 5];
32 creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.

33 14.5.10.3 Delegate creation expressions
34 A delegate-creation-expression is used to create a new instance aiebegate-type.

35 del egate-creation-expression:
36 new delegate-type (expression)

37 The argument of a delegate creation expression must be a method group (814.1) or a vakiegafex

38 type. If the argument is a method group, it identifies thethod and, for an instance method, the object for
39 which to create a delegate. If the argument is a valuedsfegate-type, it identifies a delegate instance of
40 which to create a copy.

41 The compile-time processing ofdel egate-creation-expression of the formnew D(E), whereD is a
42 delegate-type andE is anexpression, consists of the following steps:

43+ |If Eis a method group:

44 o0 The set of methods identified lymust include exactly one method that is compatible (822.1)
45 with D, and this method becomes the one to which the newly created delegate refers. If no matching

149

w N -

0 N o o b

10

11

12

13
14

15

16
17

18

19
20
21

22
23

24
25
26

27
28

29
30
31

32
33

34

35

36
37

38
39
40

41
42

43
44
45

C#LANGUAGE SPECIFICATION

method exists, or if more than one matchingtheel exists, a compile-time error occurs. If the
selected method is an instance method, the instance expression associatedetgtimines the
target object of the delegate.

0 Asin a method invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted ¢yl e@name or
a member-access through a type. If the method is an instance method, the method group must have
resulted from aimple-name or amember-access through a variable or value. If the selected method
does not match the context of the method group, a compile-time error occurs.

0 Theresultis a value of type, namely a newly created delegate that refers to the selected method
and target object.

» Otherwise, ifE is a value of alelegate-type:
0 D andEe must be compatible (822.1); otherwise, a compile-time error occurs.

0 Theresultis a value of type, namely a newly created delegate that refers to the same invocation
list asE.

» Otherwise, the delegate creation expression is invalid, and a compile-time error occurs.

The run-time processing ofdel egate-creation-expression of the formnew D(E), whereD is adelegate-type
andE is anexpression, consists of the following steps:

» If Eis a method group:

o If the method selected at compile-time is a static method, the target object of the delegale.is
Otherwise, the selected method is an instance method, and the target object of the delegate is
determined from the instance expression associatedewith

» The instance expression is evaluated. If this eaibn causes an exception, no further steps are
executed.

» Ifthe instance expression is of eference-type, the value computed by the instance expression
becomes the target object. If the target objecii3 1, asystem.NulTReferenceException
is thrown and no further steps are executed.

» If the instance expression is ofvalue-type, a boxing operation (811.3.1) is performed to
convert the value to an object, and this object becomes the target object.

0 A new instance of the delegate typés allocated. If there is not enough memory available to
allocate the new instance Sgstem.outofMemoryException is thrown and no further steps are
executed.

o The new delegate instance is initialized with a reference to the method that was determined at
compile-time and a reference to the target object computed above.

» If Eis avalue of alelegate-type:
0 Eis evaluated. If this evaluation causes an exception, no further steps are executed.

o Ifthe value ofE isnull1, asystem.Nul1ReferenceException is thrown and no further steps
are executed.

0 A new instance of the delegate typés allocated. If there is not enough memory available to
allocate the new instance Sgstem.out0ofMemoryException is thrown and no further steps are
executed.

0 The new delegate instance is initialized with refeces to the same invocation list as the delegate
instance given by E.

The method and object to which a delegate refers aerméed when the delegate is instantiated and then
remain constant for the entire lifetime of the deleg#teother words, it is not possible to change the target
method or object of a delegate once it has been credtiete:[Remember, when two delegates are

150

N

o N o o

11
12
13

14
15
16
17

18
19
20

21
22

23
24
25

26
27
28
29

30
31
32
33
34
35

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50

52

Chapter 14 Expressions

combined or one is removed from another, a new deéegesults; no existing delegate has its content
changedend note]

It is not possible to create a delegate that refers tmpgrty, indexer, user-defined operator, instance
constructor, destructor, or static constructor.

[Example: As described above, when a delegate is crefited a method group, the formal parameter list
and return type of the delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);
class A

DoubTeFunc f = new DoubleFunc(Square);

static float Square(float x) {
return x * X;

static double Square(double x) {
return x * X;

}

theA. f field is initialized with a delegate that refers to the secendare method because that method
exactly matches the formal parameter list and return tymoab1eFunc. Had the secondquare method
not been present, a compile-time error would have occuerebexampl e]

14.5.11 The typeof operator
The typeof operator is used to obtain tisgstem. Type object for a type.

typeof-expression:
typeof (type)
typeof (void)

The first form oftypeof-expression consists of ecypeof keyword followed by a parenthesizégbe. The
result of an expression of this form is tBgstem. Type object for the indicated type. There is only one
System.Type object for any given type Note: This means that for type, typeof (T) == typeof(T)
is always trueend note]

The second form dfypeof-expression consists of e&cypeof keyword followed by a parenthesizedid

keyword. The result of an expression of this form is slystem. Type object that represents the absence of
atype. The type object returned hypeof (void) is distinct from the type object returned for any type.

[Note: This special type object is useful in class libraries that allow reflection onto methods in the language,
where those methods wish to have a way to represent the return type of any method, including void methods,
with an instance ofystem. Type. end note]

[Example: The example

using System;
E]ass Test
static void Main() {
Typel[] t = {
typeof(int),
typeof(System.Int32),
typeof(string),
typeof(double[]),
typeof(void) };
for (int i = 0; i < t.Length; i++) {
console.writeLine(t[i].FullName);

}
}

produces the following output:

151

a b wN ek

[«2]

10
11

12
13

14
15
16
17

18
19

20
21

22
23

24

25

26

27
28

29
30

31
32

33
34
35
36

37
38
39
40

41
42
43

44

C#LANGUAGE SPECIFICATION

System.Int32
System.Int32
System.String
System.DoubTe[]
System.void

Note thatint andsystem.Int32 are the same typend example]

14.5.12 The checked and unchecked operators

Thechecked andunchecked operators are used to control theerflow checking context for integral-type
arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

Thechecked operator evaluates the contained expression in a checked context, amct tleeked

operator evaluates the contained expression in an unchecked contietkad-expression or unchecked-
expression corresponds exactly togarenthesized-expression (§14.5.3), except that the contained expression
is evaluated in the given overflow checking context.

The overflow checking context can also be controlled througlthezked andunchecked statements
(815.11).

The following operations are affected by the overflow checking context established byehked and
unchecked operators and statements:

* The predefined+ and-- unary operators (814.5.9 and §14.6.5), when the operand is of an integral
type.

» The predefined unary operator (§14.6.2), when the operand is of an integral type.
» The predefined, -, *, and/ binary operators (814.7), when batperands are of integral types.
» Explicit numeric conversions (813.2.1) from one integral type to another integral type.

When one of the above operations produce a result thabikatge to represent in the destination type, the
context in which the operation is perfoed controls the resulting behavior:

* In achecked context, if the operation is a constant exgsi®n (814.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-tingy sttem.overflowException is thrown.

* Inanunchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

For non-constant expressions (expressions thatvaleaed at run-time) that are not enclosed by any
checked or unchecked operators or statements, the default overflow checking contextdbecked,
unless external factors (such as compiler switches and execution environment configuration) call for
checked evaluation.

For constant expressions (expressions that can bedu#liuated at compile-time), the default overflow
checking context is alwayshecked. Unless a constant expression is explicitly placed imachecked

context, overflows that occur during the compile-time evaluation of the expression always cause compile-
time errors.

[Note: Developers may benefit if they exercise their code using checked mode (as well as unchecked mode).

It also seems reasonable that, unless otherwise seeflighe default overflow checking context is set to
checked when debugging is enablead note]

[Example: In the example

152

© ~N o g A WNBE

Chapter 14 Expressions

class Test

static readonly int x = 1000000;
static readonly int y = 1000000;
static int FO {
return checked(x * y); // Throws OverflowException

static int GO {
return unchecked(x * y); // Returns -727379968

static int HO {
return x * y; // Depends on default

3

no compile-time errors are reported since neithaghefexpressions can be evaluated at compile-time. At
run-time, ther method throws system.overflowException, and thec method returns —727379968
(the lower 32 bits of the out-of-range result). The behavior olth@ethod depends on the default overflow
checking context for the compilation, but it is either the same asthe same as. end example€]

[Example: In the example
class Test

const int x 1000000;
const int y 1000000;

static int FO {
return checked(x * y); // Compile error, overflow

static int GO {
return unchecked(x * y); // Returns -727379968

static int HO { _
return x * y; // Compile error, overflow

}

the overflows that occur when evaliing the constant expressionsAmndH cause compile-time errors to
be reported because the expressions are evaluatechiecked context. An overflow also occurs when
evaluating the constant expressiorGirbut since the evaluation takes place inumchecked context, the
overflow is not reportedend example]

Thechecked andunchecked operators only affect the overflow checking context for those operations that

are textually contained within the(" and “)” tokens. The operators have no effect on function members
that are invoked as a result of evaluating the contained expresExamyple: In the example

class Test

static int Multiply(int x, int y) {
return x * y;

static int FQ {
return checked(Multiply(1000000, 1000000));

}

the use okthecked in F does not affect the evaluation®f* yinMultiply, sox * yis evaluatedin
the default overflow checking contexdnd example]

Theunchecked operator is convenient when writing constantshe signed integral types in hexadecimal
notation. Example: For example:

153

[S2 N WN P

[«2]

10
11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36
37
38

39
40

41

42

43
44
45

46

47
48

49
50

C#LANGUAGE SPECIFICATION

class Test

unchecked ((int)OxFFFFFFFF) ;
unchecked ((int)0x80000000) ;

pubTlic const int AT1Bits

public const int HighBit

Both of the hexadecimal constants above are of tyjpet. Because the constants are outsideitime range,
without theunchecked operator, the casts tont would produce compile-time errorand exampl €]

[Note: Thechecked andunchecked operators and statements allow programmers to control certain
aspects of some numeric calculations. Howeverpttgavior of some numeric operators depends on their
operands’ data types. For example, multiplying two decimals always results in an exception on overflow
even within an explicitlyunchecked construct. Similarly, multiplying two floats never results in an

exception on overfloveven within an explicitly checked construct. In addition, other operators asver

affected by the mode of checking, whether default or explicit. As a service to programmers, it is
recommended that the compiler issue a warning wheretisean arithmetic expression within an explicitly
checked or unchecked context (by operator or statement) that cannot possibly be affected by the specified
mode of checking. Since such a warning is not required, the compiler has flexibility in determining the
circumstances that merit the issuance of such warnamgknote]

14.6 Unary expressions

unary-expression:
primary-expression
+ unary-expression
- unary-expression
I unary-expression
~ unary-expression
* unary-expression
& unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

14.6.1 Unary plus operator

For an operation of the formx, unary operator overload resolution (814.2.3) is applied to select a specific
operator implementation. The operand is convertetiégparameter type of the selected operator, and the
type of the result is the return type of the opgeraThe predefined unary plus operators are:

int operator +(int x);

uint operator +(uint x);

long operator +(long x);

ulong operator +(ulong x);

float operator +(float x);

double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the tesusimply the value of the operand.

14.6.2 Unary minus operator

For an operation of the formx, unary operator overload resolution (814.2.3) is applied to select a specific
operator implementation. The operand is convertetiégparameter type of the selected operator, and the
type of the result is the return type of the ogeraThe predefined negation operators are:

* Integer negation:

int operator -(int x);
Tong operator -(long x);

The result is computed by subtractirdgrom zero. In achecked context, if the value ok is the
maximum negativeé nt or Tong, aSystem.oOverflowException is thrown. In arunchecked

154

10
11

12

13
14

15

16

17

18
19
20

21

22
23

24

25
26
27

28
29
30
31

32

33

34

35
36

37

38
39

40
41

42
43

Chapter 14 Expressions

context, if the value ok is the maximum negativént or Tong, the result is that same value and the
overflow is not reported.

If the operand of the negation operator is of typient, it is converted to typ@ong, and the type of the
result isTong. An exception is the rule that permits thet value —2147483648 (<9 to be written as a
decimal integer literal (89.4.4.2).

If the operand of the negation operator is of tyg@ng, a compile-time error occurs. An exception is
the rule that permits theong value —9223372036854775808 {320 be written as a decimal integer
literal (89.4.4.2).

* Floating-point negation:

float operator -(float x);
double operator -(double x);

The result is the value of with its sign inverted. I is NaN, the result is also NaN.

* Decimal negation:
decimal operator -(decimal x);

The result is computed by subtractirdgrom zero.

Decimal negation is equivalent to using the unary minus operator oftypeem.Dbecimal.

14.6.3 Logical negation operator

For an operation of the forrhx, unary operator overload resolution (814.2.3) is applied to select a specific
operator implementation. The operand is convertatiégparameter type of the selected operator, and the
type of the result is the return type of the operat@nly one predefined logical negation operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operandes the result isfalse. If
the operand ifalse, the resultistrue.

14.6.4 Bitwise complement operator

For an operation of the formx, unary operator overload resolution (814.2.3) is applied to select a specific
operator implementation. The operand is convertetiégparameter type of the selected operator, and the
type of the result is the return type of the operaidre predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong Xx);

For each of these operators, the result efdperation is the bitwise complementof
Every enumeration type implicitly provides the following bitwise complement operator:
E operator ~(E x);

The result of evaluatingx; wherex is an expression of an enumeration typwith an underlying type, is
exactly the same as evaluatirg) (~ (U) x).

14.6.5 Prefix increment and decrement operators

pre-increment-expression:
++ Unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement djj@manust be an expression classified as a variable, a

property access, or an indexer access. The result of the operation is a value of the same type as the operand.

155

~N o o b~ wN

o]

10

11

12

13

14

15

16
17
18

19

20

21

22

23
24
25

26
27

28
29

30
31

32
33
34
35

36
37
38

39
40
41

C#LANGUAGE SPECIFICATION

If the operand of a prefix increment or decrementragien is a property or indexer access, the property or
indexer must have bothget and aset accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (814.2.3) is &gapto select a specific operator implementation.
Predefinedr+ and-- operators exist for the following typesbyte, byte, short, ushort, int, uint,
Tong, ulong, char, float, double, decimal, and any enum type. The predefined operators return
the value produced by adding 1 to the operand, and the predefinexperators return the value produced
by subtracting 1 from the operand.

The run-time processing of a prefix incnent or decrement operation of the fo#mx or --x consists of the
following steps:

* If x is classified as a variable:
0 xis evaluated to produce the variable.
0 The selected operator is invoked with the value @fs its argument.
0 The value returned by the operator is stbie the location given by the evaluation xf
o The value returned by the operator becomes the result of the operation.
» If x is classified as a property or indexer access:

0 The instance expression ifis notstatic) and the argument list (i is an indexer access)
associated witlx are evaluated, and the results are used in the subsegpieandset accessor
invocations.

Theget accessor ok is invoked.

The selected operator is invoked with the value returned bgéhieaccessor as its argument.

o O O

Theset accessor ok is invoked with the value returned by the operator asd$ue argument.
0 The value returned by the operator becomes the result of the operation.

The++ and-- operators also support postfix notation (§14.5.9). The result-efor x-- is the value ok
before the operation, whereas the resulttaix or --x is the value ok after the operation. In either case,
itself has the same value after the operation.

An operator ++0Oroperator --implementation can be invoked using either postfix or prefix notation.
It is not possible to have separate operator implementations for the two notations.

14.6.6 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of the form (T) E, whereT is atype andE is aunary-expression, performs an explicit
conversion (813.2) of the value &fto typeT. If no explicit conversion exists from the type bpto T, a
compile-time error occurs. Otherwise, the result ss¥alue produced by the explicit conversion. The result
is always classified as a value, evelr iflenotes a variable.

The grammar for @ast-expression leads to certain syntactic ambiguities. For example, the expreésion
y could either be interpreted axast-expression (a cast of-y to typex) or as amadditive-expression
combined with goarenthesized-expression (which computes the value - y).

To resolvecast-expression ambiguities, the following rule exists: A sequence of one or nakens (89.4)
enclosed in parentheses is considered the startadtaexpression only if at least one of the following are
true:

156

w N

10

11
12
13
14

15
16

17
18
19
20
21

22
23
24
25

26

27
28
29

30

31

32
33
34
35

36
37
38

39

40
41

42
43
44
45
46

Chapter 14 Expressions

» The sequence of tokens is correct grammar fiypa, but not for anexpression.

» The sequence of tokens is correct grammar fiype, and the token immediately following the closing
parentheses is the toker™ the token “1”, the token “(”, anidentifier (89.4.1), diteral (89.4.4), or any
keyword (89.4.3) excepés andiis.

[Note: The above rule means that only life construct is unambiguouslycast-expression is it considered a
cast-expression. end note]

The term “correct grammar” above means only thatdbguence of tokens must conform to the particular
grammatical production. It specifically does not consittheractual meaning of any constituent identifiers.
For example, ifx andy are identifiers, the .y is correct grammar for a type, everxify doesn’t actually
denote a type.

[Note: From the disambiguation rule, it follows thatxfandy are identifiers,(x)y, (x) (y), and(x) (-y)
arecast-expressions, but(x) -y is not, even ifx identifies a type. However, it is a keyword that identifies

a predefined type (such aat), then all four forms areast-expressions (because such a keyword could not
possibly be an expression by itselhd note]

14.7 Arithmetic operators
The*, /, %, +, and- operators are called the arithmetic operators.

multiplicative-expression:
unary-expression
multiplicative-expression unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

e
=

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

14.7.1 Multiplication operator

For an operation of the form * y, binary operator overload resolution (§14.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the proxiacicyf.

* Integer multiplication:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, 1on? y);
ulong operator *(ulong x, ulong y);
In achecked context, if the product is outside the range of the result type, a
System.overflowException is thrown. In arunchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

* Floating-point multiplication:

float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finitdues, zeros, infinities, and NaN'’s. In the table,
andy are positive finite values is the result ok * vy. If the result is too large for the destination type,
z is infinity. If the result is too small for the destination typeis zero.

157

10
11

12

13

14
15
16
17

18

19
20
21
22

23
24
25

26

27
28

29
30
31
32
33

C#LANGUAGE SPECIFICATION

+y -y +0 -0 +00 —00 NaN
+X +z -z +0 -0 +00 —00 NaN
-X -z +z -0 +0 —00 +00 NaN
+0 +0 -0 +0 -0 NaN NaN NaN
-0 -0 +0 -0 +0 NaN NaN NaN
+00 +00 —00 NaN NaN +00 —00 NaN
—00 —00 +00 NaN NaN —00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

» Decimal multiplication:
decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in tleeimal format, aSystem.OverflowException
is thrown. If the result value is too small to represent indheimal format, the result is zero. The scale
of the result, before any rounding, is the sum of the scales of the two operands.

Decimal multiplication is equivalent to using the multiplication operator of typstem.Decimal.

14.7.2 Division operator

For an operation of the form / vy, binary operator overload resolution (§14.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined division operators are lgstselow. The operators all compute the quotient ahdy.

* Integer division:

int operator /(int x, int y);

uint operator /(uint x, uint y);
long operator /(long x, 1on? v);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zerosgstem.D1ivideByzeroException is thrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value ofghetient of the two operands. The result is zero or
positive when the two operands have the same sigizaro or negative when the two operands have
opposite signs.

If the left operand is the maximum negativet or Tong value and the right operand+4, an overflow
occurs. In achecked context, this causessystem.0OverflowException to be thrown. In an
unchecked context, the overflow is not reported and theuless instead the value of the left operand.

* Floating-point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finigdues, zeros, infinities, and NaN'’s. In the tabte,
andy are positive finite values is the result ok / y. If the result is too large for the destination type,
z is infinity. If the result is too small for the destination typeis zero.

158

w

0 N o U b

10

11
12
13

14
15

16

17
18
19
20

21
22

23

24
25

26
27
28
29
30
31

Chapter 14 Expressions

+y -y +0 -0 +00 —00 NaN
+X +z -z +00 —00 +0 -0 NaN
-X -z +z —00 +00 -0 +0 NaN
+0 +0 -0 NaN NaN +0 -0 NaN
-0 -0 +0 NaN NaN -0 +0 NaN
+00 +00 —00 +00 —00 NaN NaN NaN
—00 —00 +00 —00 +00 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

» Decimal division:
decimal operator /(decimal x, decimal y);

If the value of the right operand is zerosgstem.DivideByzZeroException is thrown. If the

resulting value is too large to represent in tleeimal format, aSystem.OverflowExceptionis
thrown. If the result value is too small to represent indleeimal format, the result is zero. The scale
of the result, before any rounding, is the smallest scale that will preserve a result equal to the exact
result.

Decimal division is equivalent to using the division operator of tggetem.Decimal.

14.7.3 Remainder operator

For an operation of the form % y, binary operator overload resolution (814.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listedwel he operators all compute the remainder of the
division betweerx andy.

* Integer remainder:

int operator %(int x, int y);

uint operator %(uint x, uint y);
Tong operator %(long x, Tong y);
ulong operator %(ulong x, ulong y);

The result ofx % y is the value produced by - (x / y) * y.If yiszero,a
System.DivideByzeroException is thrown. The remainder operator never causes an overflow.

* Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros,
infinities, and NaN's. In the table andy are positive finite values is the result ok % y and is
computed ax - n *y, wheren is the largest possible integer that is less than or equal foy. This
method of computing the remainder is analogouth&t used for integer operands, but differs from the
IEEE 754 definition (in which is the integer closestto /).

159

w

0 N o U b

10

11
12
13

14
15
16

17

18
19
20
21

22
23
24

25

26
27

28
29
30
31
32
33
34

C#LANGUAGE SPECIFICATION

+y -y +0 -0 +00 —00 NaN
+X +z +z NaN NaN X X NaN
-X -z -z NaN NaN -X -X NaN
+0 +0 +0 NaN NaN +0 +0 NaN
-0 -0 -0 NaN NaN -0 -0 NaN
+00 NaN NaN NaN NaN NaN NaN NaN
—00 NaN NaN NaN NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN

Decimal remainder:
decimal operator %(decimal x, decimal y);

If the value of the right operand is zerosgstem.DivideByzZeroException is thrown. If the
resulting value is too large to represent in tleeimal format, aSystem.OverflowExceptionis
thrown. If the result value is too small to represent indleeimal format, the result is zero. The scale
of the result, before any rounding, is the same as the scaleawid the sign of the result, if non-zero, is
the same as that of

Decimal remainder is equivalent toing the remainder operator of tysgstem.Decimal.

14.7.4 Addition operator

For an operation of the form + y, binary operator overload resolution (§14.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed belear numeric and enumeration types, the predefined
addition operators compute the sum of the wperands. When one or both operands are of $yps ng,

the

160

predefined addition operators concatenhe string representation of the operands.

Integer addition:

int operator +(int x, int y);

uint operator +(uint x, uint y);
long operator +(long x, 1on? y);
ulong operator +(ulong x, ulong y);

In achecked context, if the sum is outside the range of the result type, a

System.overflowException is thrown. In arunchecked context, overflows are not reported and
any significant high-order bits outside the range of the result type are discarded.

Floating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEEE &B#hmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the tedotely

are nonzero finite values, amds the result ok + y. If x andy have the same magnitude but opposite
signs,z is positive zero. I + vy is too large to represent in the destination typées an infinity with

the same sign as + y. If x + yistoo small to represent in the destination typés a zero with the
same sign ag + .

11

12

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38

39
40

41

42
43

Chapter 14 Expressions

y +0 -0 +00 —00 NaN

X z X X +00 —00 NaN
+0 y +0 +0 +00 —00 NaN
-0 y +0 -0 +00 —00 NaN
+00 +00 +00 +00 +00 NaN NaN
-0 —00 —00 —00 NaN —00 NaN
NaN NaN NaN NaN NaN NaN NaN

Decimal addition:
decimal operator +(decimal x, decimal y);

If the resulting value is too large to represent in tleeimal format, asystem.overflowException
is thrown. The scale of the result, before any roagdis the larger of the scales of the two operands.

Decimal addition is equivalent to using the addition operator of §yoetem.Decimal.

Enumeration addition. Every enumeration type imigifgorovides the following predefined operators,

whereE is the enum type, and is the underlying type of:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly(&83 ((U) x + (V) y).

String concatenation:
string operator +(string x, string y);

string operator +(string x, object y);
string operator +(object x, string y);

The binary+ operator performs string concatenatiwhen one or both operands are of tyyreing. If
an operand of string concatenatiomisl 1, an empty string is substituted. Otherwise, any non-string
argument is converted to its string representation by invoking the viragt ring method inherited
from typeobject. If ToString returnsnull, an empty string is substitutedfample:

using System;

class Test

{
static void Main() {
strin? s = null;
e.w

conso riteLine("s = >" + s + "<"); // displays s = ><
int i = 1;
Cconsole.writeLine("i =" + 1); // displays i =1
float f = 1.2300E+15F;
console.writeLine("f =" + f); // displays f = 1.23E+15
decimal d = 2.900m;
) console.writeLine("d = " + d); // displays d = 2.900
ks
end example]

The result of the string concatenation operator is a string that consists of the characters of the left
operand followed by the characters of the right operaie. String concatenation operator never returns
anull value. Asystem.outOofMemoryException may be thrown if there is not enough memory
available to allocate the resulting string.

Delegate combination. Every delegate type implidittpvides the following predefined operator, where

D is the delegate type:

D operator +(D x, D y);

The binary+ operator performs delegate combination wibeth operands are of some delegate type D.
(If the operands have different dgkgte types, a compile-time error occurs.) If the first operamaiis],

161

C#LANGUAGE SPECIFICATION

the result of the operation is the value of the second operand (even if that iudl$p Otherwise, if the
second operand isu11, then the result of the operation is thduaof the first operand. Otherwise, the
result of the operation is a new delegate instance titaen invoked, invokes the first operand and then
invokes the second operandidte: For examples of delegate combination, see §14.7.5 and §22.3. Since
System.Delegate is not a delegate typeperator + is not defined for itend note]

g A W N P

14.7.5 Subtraction operator

For an operation of the form - y, binary operator overload resolution (§14.2.4) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

© 00 N O

10 The predefined subtraction operators hsted below. The operators all subtrgdrom x.

11 Integer subtraction:
12 int operator -(int x, int y);
13 uint operator -(uint x, uint y);
14 long operator -(long x, 1on? y);
15 ulong operator -(ulong x, ulong y);
16 In achecked context, if the difference is outside the range of the result type, a
17 System.overflowException is thrown. In anunchecked context, overflows are not reported and
18 any significant high-order bits outside the range of the result type are discarded.
19 ¢ Floating-point subtraction:
20 float operator -(float x, float y);
21 double operator —-(double x, double y);
22 The difference is computed according to the rulesslEE 754 arithmetic. The flowing table lists the
23 results of all possible combinations of honzero finitdues, zeros, infinities, and NaNs. In the talxe,
24 andy are nonzero finite values, amxds the result ok - y. If x andy are equalz is positive zero. If
25 X - yistoo large to represent in the destination typés an infinity with the same signas - . If
26 x - yistoo small to represent in the destination typés a zero with the same sign as- .
27
+0 -0 +00 -0 NaN
X z X X —00 +00 NaN
+0 -y +0 +0 —00 +00 NaN
-0 -y -0 +0 —00 +00 NaN
+00 +00 +00 +00 NaN +00 NaN
-0 —00 -0 -0 —00 NaN NaN
NaN NaN NaN NaN NaN NaN NaN
28
29 + Decimal subtraction:
30 decimal operator -(decimal x, decimal y);
31 If the resulting value is too large to represent in tleeimal format, aSystem.OverflowException
32 is thrown. The scale of the result, before any roaggdis the larger of the scales of the two operands.
33 Decimal subtraction is equivalent toing the subtraction operator of tyggstem.Decimal.
34« Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,
35 wherek is the enum type, and is the underlying type of:
36 U operator -(E x, E y);
37 This operator is evaluated exactly @) ((U)x - (U)y). In other words, the operator computes the
38 difference between the ordinal valuesxondy, and the type of the result is the underlying type of the
39 enumeration.

162

w N

[S2 BN

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

30
31

32
33

34
35

36
37

38
39
40
41

42

43
44

45
46
47
48

49
50
51

Chapter 14 Expressions

E operator -(E x, U y);

This operator is evaluated exactly @) ((U)x - y). In other words, the operator subtracts a value
from the underlying type of the enumeration, yielding a value of the enumeration.

» Delegate removal. Every delegate type implicitly provides the following predefined operator, visere
the delegate type:

D operator -(D x, D y);

The binary- operator performs delegate removal when both operands are of some delegatgliype
the operands have different delegate types, apilertime error occurs.) If the first operandrig11, the
result of the operation isul1. Otherwise, if the second operanchis] 1, then the result of the operation
is the value of the first operand. Otherwise, bothrapes represent invocation lists (822.1) having one
or more entries, and the result is a new invocation list consisting of the first operand’s list with the
second operand’s entries removed from it, predidhe second operand’s list is a proper contiguous
subset of the first's. (For determining subsquaelity, corresponding entries are compared as for the
delegate equality operator (§14.9)8ptherwise, the result is the value of the left operand. Neither of the
operands’ lists is changed in the process. If theomid operand’s list matches multiple subsets of
contiguous entries in the first operand’s list, tight-most matching subset of contiguous entries is
removed. If removal results in an empty list, the resutud 1. [Example: For example:

using System;

delegate void D(int x);
class Test

public static void M1(int i) { /* .. */
pubTic static void M2(int i) { /* .. */

(SeuTeey)

class Demo

static void Main() {

D cdl = new D(Test.M1l);
D cd2 = new D(Test.M2);
D cd3 = cdl + cd2 + cd2 + cdl; // M1 + M2 + M2 + M1
cd3 -= cdl; // => ML + M2 + M2
cd3 = cdl + cd2 + cd2 + cdi; // ML + M2 + M2 + M1
cd3 -= cdl + cd?; // => M2 + M1
cd3 = cdl + cd2 + cd2 + cdl; // ML + M2 + M2 + M1
cd3 -= cd2 + cd?; // => M1 + M1
cd3 = cdl + cd2 + cd2 + cdi; // M1 + M2 + M2 + M1
cd3 -= cd2 + cdl; // => M1 + M2
cd3 = cdl + cd2 + cd2 + cdi; // ML + M2 + M2 + M1
) cd3 -= cdl + cdi; // => ML + M2 + M2 + M1
ks
end exampl €]

14.8 Shift operators
The<< and>> operators are used to perform bit shifting operations.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

For an operation of the form << count orx >> count, binary operator overload resolution (814.2.4) is
applied to select a specific operator implemewtatiT he operands are converted to the parameter types of
the selected operator, and the type of the result is the return type of the operator.

163

0 ~N O O S

10
11

12

13
14
15
16

17

18
19
20

21
22

23

24
25

26
27

28

29

30
31
32
33
34
35
36

37
38

39
40
41
42
43
44
45
46

C#LANGUAGE SPECIFICATION

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, ahé type of the second operand must always foe

The predefined shift operators are listed below.

e Shift left:

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The<< operator shiftx left by a number of bits computed as described below.

The high-order bits outside the range of the result type afe discarded, the remaining bits are shifted
left, and the low-order empty bit positions are set to zero.

e Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The>> operator shiftx right by a number of bits computed as described below.

Whenx is of typeint or Tong, the low-order bits ok are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zexasfnon-negative and set to onexifs
negative.

Whenx is of typeuint or ulong, the low-order bits ok are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

* When the type ok is int or uint, the shift count is given by the low-order five bitsodunt. In other
words, the shift count is computed fromount & Ox1F.

* When the type ok is Tong or uTong, the shift count is given by the low-order six bitsadunt. In
other words, the shift count is computed frawunt & O0x3F.

If the resulting shift count is zero, the shift operators simply return the value of
Shift operations never cause overfloand produce the same resultshecked andunchecked contexts.

When the left operand of the> operator is of a signed integral type, the operator perfornasidinmetic

shift right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the
high-order empty bit positions. When the left operand ofstheoperator is of an unsigned integral type, the
operator performs bogical shift right wherein high-order empty bit positions are always set to zero. To
perform the opposite operation of that inferredifrthe operand type, explicit casts can be used. For
example, ifx is a variable of type nt, the operatiorunchecked ((int) ((uint)x >> y)) performs a
logical shift right ofx.

14.9 Relational and type-testing operators
The==, I=, <, >, <=, >=,is andas operators are called the relatidaad type-testing operators.

relational -expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

164

ga A W NP

© 00 N O

10
11
12

13

14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
4

Chapter 14 Expressions

eguality-expression:
relational-expression

equality-expression == relational-expression
equality-expression != relational-expression
Theis operator is described in 814.9.9 and #tseoperator is described in §14.9.10.
The==, I=, <, >, <= and>= operators areomparison operators. For an operation of the form opy,

whereop is a comparison operator, overload resoluti®h4.2.4) is applied to select a specific operator
implementation. The operands are converted to the peteartypes of the selected operator, and the type of
the result is the return type of the operator.

The predefined comparison operators are describ#teifollowing sections. All predefined comparison
operators return a result of typeol, as described in the following table.

Operation | Result

X ==Y true if x is equal toy, false otherwise

xl=y true if x is not equal toy, false otherwise

X<y true if x is less thary, false otherwise

x>y true if x is greater thayy, false otherwise

X<=y true if x is less than or equal tp, false otherwise

X>=Yy true if x is greater than or equal tg false otherwise

14.9.1 Integer comparison operators
The predefined integer comparison operators are:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, Tong y);
bool operator ==(ulong x, ulong y);

bool operator !=(Cint x, int y);
bool operator !=(Cuint x, uint y);
bool operator !=(long x, Tong y);
bool operator !=(Culong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, Tong y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, Tong y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, Tong y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, Tong y);
bool operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and betitnséue
that indicates whether the particular relatiortisie or false.

165

[N

0 ~ o Ul A~ w N

11
12

13
14

15

16
17
18
19
20

21
22
23

24
25

26

27

28

29
30

31
32
33

34
35
36

37
38
39

40
41

42
43

44
45

C#LANGUAGE SPECIFICATION

14.9.2 Floating-point comparison operators
The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:

» If either operand is NaN, the resultfalse for all operators excepit=, for which the result ixrue.

For any two operands, != y always produces the same result&s == y). However, when one or both
operands are NaN, the >, <=, and>= operatorsio not produce the same results as the logical negation of
the opposite operatorEkample: For example, if either ok andy is NaN, therx < yis false, but

I (x >= y) is true. end example]

* When neither operand is NaN, the operators comgeealues of the two floating-point operands with
respect to the ordering
-0 < -max < .. < -min < -0.0 == +0.0 < +min < .. < +Max < +»

wheremin andmax are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

o Negative and positive zeros are considered equal.
0 A negative infinity is considered less than all ettvalues, but equal to another negative infinity.

0 A positive infinity is considered greater than all other values, but equal to another positive infinity.

14.9.3 Decimal comparison operators
The predefined decimal comparison operators are:

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);

bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compares the numeric values of the two decimal operands and betwitns a
value that indicates whether the particular relationrige or false. Each decimal comparison is
equivalent to using the correspondindptéonal or equality operator of typgystem.Decimal.

14.9.4 Boolean equality operators
The predefined boolean equality operators are:

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

The result o= is true if both x andy aretrue or if bothx andy arefalse. Otherwise, the result is
false.

166

N -

o © ~N o g N w

=

12
13
14

15
16

17
18

19

20
21
22

23
24
25
26

27
28
29
30
31

32
33
34

35
36
37

38

39
40
41
42

Chapter 14 Expressions

The result ofl = is false if both x andy aretrue or if bothx andy arefalse. Otherwise, the result is
true. When the operands are of typeoT, the ! = operator produces the same result as\theperator.

14.9.5 Enumeration comparison operators
Every enumeration type implicitly provides thellbwing predefined comparison operators:

bool operator ==(E x, E y);
bool operator !=(E x, E y);
bool operator <(E x, E y);

bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E X, E y);

The result of evaluating op y, wherex andy are expressions of an enumeration tgp&ith an underlying
typeu, andop is one of the comparison operators, is exactly the same as eval#ting) op ((U)y). In
other words, the enumeration typengparison operators simply compare the underlying integral values of
the two operands.

14.9.6 Reference type equality operators
The predefined reference type equality operators are:

bool operator ==(object x, object y);
bool operator !=(object x, object y);

The operators return the result of comparihg two references for equality or non-equality.

Since the predefined reference tympiality operators accept operands of tyfhg ect, they apply to all
types that do not declare applicalblperator ==andoperator !=members. Conversely, any
applicable user-defined equality apéors effectively hide the predeéd reference type equality operators.

The predefined reference type equatiperators require the operands torbierence-type values or the
valuenul1; furthermore, they require that a standard implicit conversion (813.3.1) exists from the type of
either operand to the type of the other operand. Urtbedls of these conditions are true, a compile-time error
occurs. Note: Notable implications of these rules are:

» Itis a compile-time error to use the predefined reference type equality operators to compare two
references that are known to be different at compiitee. For example, if the compile-time types of the
operands are two class typesndB, and if neither nor B derives from the other, then it would be
impossible for the two operands to reference the salnject. Thus, the operation is considered a compile-
time error.

» The predefined reference type equality operatiargot permit value type operands to be compared.

Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of that

struct type.

» The predefined reference type equality opemateever cause boxing operations to occur for their
operands. It would be meaningless to perform duzking operations, since references to the newly
allocated boxed instances would necessarily differ from all other references.

end note]

For an operation of the form == y orx != vy, if any applicableoperator == oroperator !=exists,
the operator overload resolution (§14.2.4) rules wiléstthat operator instead of the predefined reference
type equality operator. However, it is always pbaésito select the predefined reference type equality
operator by explicitly casting one or both of the operands to tjpgect. [Example: The example

167

O~NOOhAWNBE

33
34

35
36

37

38

39
40

41
42
43
44

45
46

47
48

49

C#LANGUAGE SPECIFICATION

Using System;
class Test

{
static void Main() {
string s = "Test";
strin = string. Copy(s),
Cconsole. WF1teL1ne(s ==
Console. Wr1teL1ne((ob]ect)s = t);
Console.writeLine(s == (object)t);
) Console.writeLine((object)s == (object)t);
ks
produces the output
True
False
False
False

The s andt variables refer to two distinattring instances containing the same characters. The first
comparison outputsrue because the predefined string equaliperator (§14.9.7) is selected when both
operands are of typetring. The remaining comparisons all outgd1se because the predefined
reference type equality operator is seégttvhen one or both of the operands are of typgect.

Note that the above technique is not meaningful for value types. The example
class Test

static vo1'd Main() {

int i = 123;
int j = 123;
System. Conso1e.WriteLine((object)i == (object)j);

}

outputsFalse because the casts create references to two separate instances ofboxatlies.end
example]

14.9.7 String equality operators
The predefined string equality operators are: :

bool operator ==(string x, string y);
bool operator !=(string x, string y);

Two string values are considered equal when one of the following is true:
* Both values araul1.

» Both values are non-null references to stringangses that have identical lengths and identical
characters in each character position.

The string equality operators compare striatpes rather than stringeferences. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the

references are differeniNpte: As described in §14.9.6, the reference type equality operators can be used to

compare string references instead of string valaed note]

14.9.8 Delegate equality operators
Every delegate type implicitly provides thelliowing predefined comparison operators: :

bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal as follows:

168

w N

10

11

12
13
14
15

16
17

18

19

20
21

22

23
24
25

26

27
28

29
30

31

32
33
34

35
36

37

38
39

40
41

42

Chapter 14 Expressions

» If either of the delegate instancesig11, they are equal if and only if both arai11.

» If either of the delegate instances has an invocation list (§22.1) containing one entry, they are equal if
and only if the other also has an invocation list containing one entry, and either:

» Both refer to the same static method, or
» Both refer to the same non-static method on the same target object.

» If either of the delegate instances has an invocation list containing two or more entries, those instances
are equal if and only if their invocation lists are thergalength, and each entry in one’s invocation list is
equal to the corresponding entry, in order, in the other’s invocation list.

Note that delegates of different types can be careid equal by the above definition, as long as they have
the same return type and parameter types.

14.9.9 The 1is operator

Theis operator is used to dynamically check if the run-time type of an object is compatible with a given
type. The result of the operati@ni s T, wheree is an expression andis a type, is a boolean value
indicating whetheer can successfully be converted to typby a reference conversion, a boxing conversion,
or an unboxing conversion. The operation is evaluated as follows:

» If the compile-time type ot is the same ag, or if an implicit reference @nversion (§813.1.4) or boxing
conversion (813.1.5) exists from the compile-time type ¢ T:

o If eis of areference type, the result of the operation is equivalent to evaluatirg null.
o If eis of avalue type, the result of the operatiortisue.

« Otherwise, if an explicit reference conversion 81.3) or unboxing conversion (813.2.4) exists from
the compile-time type of to T, a dynamic type check is performed:

o Ifthe value ofe isnull, the resultisfalse.

o0 Otherwise, ler be the run-time type of the instance reference@bly R andT are the same type, if
R is a reference type and an implicit reference conversion RaoiT exists, or ifR is a value type
andT is an interface type that is implementedythe result istrue.

o Otherwise, the result iBalse.

» Otherwise, no reference or boxing conversiore @b typeT is possible, and the result of the operation is
false.

Note that thei s operator only considers reference coniars, boxing conversions, and unboxing
conversions. Other conversions, such as uséndd conversions, are not considered byikeperator.

14.9.10 The as operator

Theas operator is used to explicitly convert a value to aggiveference type using a reference conversion
or a boxing conversion. Unlike a cast expression (814.6.6) ¢heperator never throws an exception.
Instead, if the indicated conversion is not possible, the resulting vahu€lis.

In an operation of the form as T, e must be an expression amdnust be a reference type. The type of the
result isT, and the result is always classified as a value. The operation is evaluated as follows:

» If the compile-time type oé is the same &, the result is simply the value ef

» Otherwise, if an implicit reference conversion (§1L3) or boxing conversion (813.1.5) exists from the
compile-time type of e ta, this conversion is performed and becomes the result of the operation.

» Otherwise, if an explicit reference conversi@18.2.3) exists from the compile-time typeefo T, a
dynamic type check is performed:

0 Ifthe value of e imu11, the result is the valueu11 with the compile-time type.

169

A W N P

10
11

12
13
14

15
16
17

18
19
20

21
22
23

24

25
26

27
28
29
30

31
32
33
34

35
36
37
38

39
40
41

42
43

44
45
46

C#LANGUAGE SPECIFICATION

o Otherwise, ler be the run-time type of the instance referencea@bly R andT are the same type, if
R is a reference type and an implicit reference conversion RaoiT exists, or ifR is a value type
andT is an interface type that is implemented mythe result is the reference given byvith the
compile-time typer.

0 Otherwise, the result is the valme11 with the compile-time type.
» Otherwise, the indicated conversion is negessible, and a comittime error occurs.

Note that theas operator only performs reference conversiand boxing conversions. Other conversions,
such as user defined conversions, are not possible withstlogerator and should instead be performed
using cast expressions.

14.10 Logical operators
Theg&, A, and| operators are called the logical operators.

and-expression:
eguality-expression
and-expression & equality-expression

exclusive-or-expression:;
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

For an operation of the form op y, whereop is one of the logical operators, overload resolution (814.2.4) is
applied to select a specific operator implemewtatiThe operands are converted to the parameter types of
the selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

14.10.1 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);

uint operator &(uint x, uint y);
long operator &(long x, 1on? y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);

uint operator |(uint x, uint y);
Tong operator |(long x, Tong y);
ulong operator |(ulong x, ulong y);

int operator A(int x, int y);

uint operator A(uint x, uint y);
Tong operator A(long x, Tong y);
ulong operator A(ulong x, ulong y);

The& operator computes the bitwise logigaD of the two operands, theoperator computes the bitwise
logical OR of the two operands, and the operator computes the bitwise logical exclusbreof the two
operands. No overflows are possible from these operations.

14.10.2 Enumeration logical operators
Every enumeration type implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator AC(E x, E y);

170

A W N P

© 00~ [« a1

10

11

12
13

14

15
16

17
18
19

20
21
22

23

24

25
26

27
28

29
30

31
32

33
34

35
36
37
38

39

40
41
42

Chapter 14 Expressions

The result of evaluating op y, wherex andy are expressions of an enumeration tgp&ith an underlying

typeu, andop is one of the logical operators, is exactly the same as evaluatirf@{fx op (U)y). In other

words, the enumeration type logical operators simply perform the logical operation on the underlying type of
the two operands.

14.10.3 Boolean logical operators
The predefined boolean logical operators are:

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator A(bool x, bool y);

Theresult ofx & yis true if both x andy aretrue. Otherwise, the result ifalse.
Theresultofx | yistrue if eitherx ory is true. Otherwise, the result ifalse.

Theresultofx A yistrueif xistrue andyis false, orxis false andy is true. Otherwise, the result
is false. When the operands are of typeo1, theA operator computes the same result as!theoperator.

14.11 Conditional logical operators

The&& and| | operators are called the conditional logiogkrators. They are also called the “short-
circuiting” logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression
conditional -or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression
The&& and| | operators are conditional versions of thand| operators:
* The operatiorx && y corresponds to the operatian& y, except thay is evaluated only ik is true.

» The operatiorx || y corresponds to the operatian| y, except thay is evaluated only ik is
false.

An operation of the fornrx & y orx || yis processed by applying overload resolution (§14.2.4) as if the
operation was writtes & y orx | y. Then,

» If overload resolution fails to find a single best oator, or if overload resolution selects one of the
predefined integer logical operators, a compile-time error occurs.

» Otherwise, if the selected operator is one of the predefined boolean logical operators (§14.10.2), the
operation is processed as described in §14.11.1.

» Otherwise, the selected operator is a user-defined operator, and the operation is processed as described
in 814.11.2.

It is not possible to directly overload the conditionadjical operators. However, because the conditional
logical operators are evaluated in terms of the redolgical operators, overloads of the regular logical
operators are, with certain restrictions, also consideverloads of the conditional logical operators. This is
described further in §14.11.2.

14.11.1 Boolean conditional logical operators

When the operands @& or | | are of typebool, or when the operands are of types that do not define an
applicableoperator & oroperator |, butdo define implicit conversions tmo1, the operation is
processed as follows:

171

10

11
12
13

14

15
16
17

18
19
20
21
22
23

24
25
26
27
28
29

30
31

32

33
34

35
36
37

38
39
40

41
42

43
44
45

C#LANGUAGE SPECIFICATION

» The operatiorx && yisevaluated ag ? y : false. In other wordsx is first evaluated and
converted to typeool. Then, ifx is true, y is evaluated and converted to typeo1, and this becomes the
result of the operation. Otherwise, the result of the operatidalise.

* Theoperatiorx || yisevaluated ags ? true :y.In other wordsx is first evaluated and converted
to typebool. Then, ifx is true, the result of the operation isrue. Otherwisey is evaluated and
converted to typdool, and this becomes the result of the operation.

14.11.2 User-defined conditional logical operators

When the operands @& or | | are of types that declare an applicable user-defoyettator & or
operator |, both of the following must be true, wherteas the type in which the selected operator is
declared:

» The return type and the type of each parameter of the selected operator must béher words, the
operator must compute the logigedD or the logicalor of two operands of typ&, and must return a result
of typeT.

e T must contain declarations operator true andoperator false.

A compile-time error occurs if either of these requirements is not satisfied. OtherwiSe; trd |
operation is evaluated by combining the user-defiopelrator true oroperator false with the
selected user-defined operator:

e The operatiorx && vy is evaluated a¥.false(x) ? x : T.&(x, y),whereT.false(x) isan
invocation of theoperator false declared inr, andT.&(x, y) is an invocation of the selected
operator &. In other wordsx is first evaluated andperator false is invoked on the result to
determine ifx is definitely false. Then, ik is definitely false, the result of the operation is the value
previously computed fox. Otherwisey is evaluated, and the selecteglerator &isinvoked on the value
previously computed fox and the value computed fgrto produce the result of the operation.

» Theoperatiorx || yisevaluated as.true(x) ? x : T.|(x, y),whereT.true(x) is an
invocation of theoperator true declared inr, andT. | (x, y) is an invocation of the selected

operator |.In other wordsx is first evaluated andperator true is invoked on the result to determine
if x is definitely true. Then, ik is definitely true, the result of the operation is the value previously
computed fox. Otherwisey is evaluated, and the selecteglerator | is invoked on the value previously
computed forx and the value computed fgrto produce the result of the operation.

In either of these operations, the expression giver Isyonly evaluated once, and the expression givegn by
is either not evaluated or evaluated exactly once.

For an example of a type that implementserator true andoperator false, see §18.4.2.

14.12 Conditional operator
The?: operator is called the conditional operator. It is at times also called the ternary operator.

conditional-expression:
conditional-or-expression
conditional-or-expression ? expression : expression

A conditional expression of the forim ? x : Yy first evaluates the conditiom Then, ifb is true, x is

evaluated and becomes the result of the operation. Othemisevaluated and becomes the result of the
operation. A conditional expression never evaluates kathdy.

The conditional operator is right-associative, megritmat operations are grouped from right to left. For
example, an expression of thefoem? b : ¢ ? d : eisevaluatedaa ? b : (c ? d : e).

The first operand of th@: operator must be an expression of a type that can be implicitly converted to
booT, or an expression of a type that implemeogp& rator true. If neither of these requirements is
satisfied, a compile-time error occurs.

172

10

11
12

13

14
15

16
17

18
19

20
21

22
23

24
25

26
27
28
29

30
31
32
33

34
35
36

37
38

39

40
41
42

Chapter 14 Expressions

The second and third operands of the operator control the type of the conditional expression X abdy
be the types of the second and third operands. Then,

» If X andy are the same type, then this is the type of the conditional expression.

» Otherwise, if an implicit conversion (813.1) exists fromo Y, but not fromy to X, theny is the type of
the conditional expression.

» Otherwise, if an implicit conversion (813.1) exists franto X, but not fromx to v, thenx is the type of
the conditional expression.

» Otherwise, no expression type can be deiaed, and a compile-time error occurs.
The run-time processing of a conditional expression of the torfh x : y consists of the following steps:
» First, b is evaluated, and theoo1 value ofb is determined:

o If an implicit conversion from the type df to boo1 exists, then this implicit conversion is
performed to producelaool value.

o0 Otherwise, theperator true defined by the type df is invoked to produce bhooT value.

» Ifthe boo1 value produced by the step abovetie, thenx is evaluated and converted to the type of
the conditional expression, and this becomes the result of the conditional expression.

» Otherwisey is evaluated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

14.13 Assignment operators
The assignment operators assign a new value to ablaria property, event, or an indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator: one of
= += —-_= = /= %: &: | = A= <<L= >>=

The left operand of an assignment must be an expression classified as a variable, a property access, an
indexer access, or an event access.

The= operator is called the mple assignment operator. It assigns the value of the right operand to the
variable, property, or indexer element given by li¢ operand. The left operand of the simple assignment
operator may not be an event access (except as described in 817.7.1). The simple assignment operator is
described in §14.13.1.

The operators formed by prefixing a binary operator with-aimaracter are called tteempound

assignment operators. These operators perform the indicated operation on the two operands, and then
assign the resulting value to the variable, propest indexer element giveby the left operand. The
compound assignment operators are described in §14.13.2.

The+= and-= operators with an event access expression as the left operand are caéieshthe
assignment operators. No other assignment operator is valid with an event access as the left operand. The
event assignment operators are described in §14.13.3.

The assignment operators are right-associative, ingdhat operations are grouped from right to left. For
example, an expression of the foam= b = cisevaluatedas = (b = ¢).

14.13.1 Simple assignment

The= operator is called the simple assignment operdtoa simple assignment, the right operand must be
an expression of a type that is implicitly convertiblethe type of the left operand. The operation assigns the
value of the right operand to the variable, prapgor indexer element given by the left operand.

173

10
11
12
13

14
15

16

17
18

19

20

21
22
23
24

25
26

27
28
29

30
31

32
33
34
35

36

37
38
39

40
41
42
43

44
45
46
47

C#LANGUAGE SPECIFICATION

The result of a simple assignment expression is theevassigned to the left operand. The result has the
same type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must haveiacessor. If this is
not the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form y consists of the following steps:
» If xis classified as a variable:
0 x is evaluated to produce the variable.
0 yisevaluated and, if required, converted to the type tifrough an implicit conversion (813.1).

o Ifthe variable given by is an array element of r&ference-type, a run-time check is performed to
ensure that the value computed fois compatible with the array instance of whigls an element.
The check succeedsyfis nul1, or if an implicit reference convsion (813.1.4) exists from the

actual type of the instance referencedyblp the actual element type of the array instance containing

x. Otherwise, a&ystem.ArrayTypeMismatchException is thrown.

o0 The value resulting from the evaluation and conversiown isfstored into the location given by the
evaluation ofx.

» If xis classified as a property or indexer access:

0 The instance expression §ifis notstatic) and the argument list (i is an indexer access)
associated witlx are evaluated, and the results are used in the subsespreatcessor invocation.

0 yisevaluated and, if required, converted to the type tifrough an implicit conversion (813.1).
0 Theset accessor ok is invoked with the value computed fgras itsvalue argument.

[Note: The array covariance rules (§819.5) permit a value of an arrayAypeo be a reference to an
instance of an array type[], provided an implicit reference conversion exists freito A. Because of
these rules, assignment to an array elementrefeaence-type requires a run-time check to ensure that the
value being assigned is compatible with the array instance. In the example

string[] sa = new string[10];

object[] oa = sa;

oal[0] = null; // ok

oa[l] = "Hello"; // Ok

oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causeSystem.ArrayTypeMismatchException to be thrown because an instance
of ArrayList cannot be stored in an element ofaring[]. end note]

When a property or indexer declared isteuct-type is the target of an assignment, the instance expression

associated with the property or indexer access must be classified as a variable. If the instance expression is

classified as a value, a compile-time error occuxet§: Because of §14.5.4, the same rule also applies to
fields. end note]
[Example: Given the declarations:

struct Point

int x, y;

public Point(int x, int y) {
this.x X;
this.y = vy;

pubTic int X {
get { return x; }
set { x = value; }

174

0 ~N O a b wN ek

11
12

13
14
15
16

17
18
19
20

22

23
24
25
26
27
28

29
30
31
32
33

34
35

36

37

38
39

40
41

42
43
44

45

46
47
48
49

50
51
52

Chapter 14 Expressions

public int Y {
get { return y; }
set { y = value; }

}
struct Rectangle
Point a, b;
public Rectangle(Point a, Point b) {
this.a = a;
this.b = b;

public Point A {
get { return a; }
set { a = value; }

}

public Point B {
get { return b; }
) set { b = value; }
ks

in the example

Point p = new Point(Q);

p.X = 100;

p.Y = 100;

Rectangle r = new Rectangle();
r.A = new Point(10, 10);

r.B = p;

the assignments §0.X, p.Y, r.A, andr.B are permitted becaugeandr are variables. However, in the
example

Rectangle r = new Rectangle();

r.A.X = 10;
r.A.y = 10;
r.B.X = 100;
r.B.Yy = 100;

the assignments are all invalid, sinceA andr . B are not variablesend exampl €]

14.13.2 Compound assignment

An operation of the fornx op= y is processed by applying binary operator overload resolution (§14.2.4) as
if the operation was writter opy. Then,

» Ifthe return type of the selected operatomwglicitly convertible to the type of, the operation is
evaluated ag = x opy, except thak is evaluated only once.

» Otherwise, if the selected operator is a predefinedatpe, if the return type of the selected operator is
explicitly convertible to the type of, and ify is implicitly convertible to the type of, then the operation is
evaluated ag = (T) (x opy), whereT is the type ofx, except thak is evaluated only once.

» Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term “evaluated only once” means that in the evaluation op y, the results of any constituent
expressions ok are temporarily saved and then reused when performing the assignnxefExample: For
example, in the assignment) [B()] += c(), wherea is a method returningnt[], andB andc are
methods returningnt, the methods are invoked only once, in the orales, C. end example]

When the left operand of a compound assignment is a property access or indexer access, the property or
indexer must have bothget accessor and set accessor. If this is not the case, a compile-time error
occurs.

175

g A W N P

o N o

11
12
13
14

15
16

17
18

19

20
21

22

23
24

25
26
27

28
29

30
31

32
33
34

35
36

37
38

39
40
41

C#LANGUAGE SPECIFICATION

The second rule above permisop= y to be evaluated as = (T) (x opy) in certain contexts. The rule

exists such that the predefined operators can be used as compound operators when the left operand is of type
sbyte, byte, short, ushort, or char. Even when both arguments are of one of those types, the

predefined operators produce a result of type&, as described in §14.2.6.2. Thus, without a cast it would

not be possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operators is simply thaip= y is permitted if both of
x opyandx = y are permitted.Example: In the example

byte b = 0;

char ch = "\0"';

int i = 0;

b += 1; // ok

b += 1000; // Error, b = 1000 not permitted
b += 1; // Error, b = i not permitted

b += (byte)i; // Ok

ch += // Error, ch = 1 not permitted

1;
ch += (char)1; // Ok

the intuitive reason for each error is that a cop@wding simple assignment would also have been an error.
end example]

14.13.3 Event assignhment

If the left operand of &= or -= operator is classified as an event access, then the expression is evaluated as
follows:

» The instance expression, if any, of the event access is evaluated.

» Theright operand of the= or -= operator is evaluated, and, if required, converted to the type of the left
operand through an implicit conversion (813.1).

* An event accessor of the event is invoked, with argument list consisting of the right operand, after
evaluation and, if necessary, conversion. If the operatora#atheadd accessor is invoked; if the operator
was-=, theremove accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only
in the context of atatement-expression (§15.6).

14.14 Expression
An expression is either aconditional-expression or anassignment.

expression:
conditional-expression
assignment

14.15 Constant expressions
A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of a constant expression can be one of the folloveibgte, byte, short, ushort, int, uint,
Tong, ulong, char, float, double, decimal, bool, string, any enumeration type, or the null type.
The following constructs are permitted in constant expressions:

176

10
11
12

13
14
15

16
17
18

19
20

21

22

23

24

25

26

27
28
29

30
31

32
33

34
35
36
37

38
39
40
41

Chapter 14 Expressions

» Literals (including thenu11 literal).

» References taonst members of class and struct types.

» References to members of enumeration types.

» Parenthesized sub-expressions, wiohthemselves constant expressions.
e Cast expressions, provided the tirgype is one of the types listed above.

e The predefined, -, !, and~ unary operators.

» The predefined, -, *, /,%, <<,>>, &, |, A &&, | |, ==, !=, <, >, <=, and>= binary operators, provided
each operand is of a type listed above.

» The?: conditional operator.

Whenever an expression is of one of the types listea/a and contains only the constructs listed above, the
expression is evaluated at compile-time. This is guen if the expression is a sub-expression of a larger
expression that contains m@onstant constructs.

The compile-time evaluation of constant expressiuses the same rules as run-time evaluation of non-
constant expressions, except thdare run-time evaluation would have thrown an exception, compile-time
evaluation causes a compile-time error to occur.

Unless a constant expression is explicitly placed imachecked context, overflows that occur in integral-
type arithmetic operations and conversions duringctirapile-time evaluation of the expression always
cause compile-time errors (814.5.12).

Constant expressions occur in the contexts listedveeln these contexts, a compile-time error occurs if an
expression cannot be fully evaluated at compile-time.

» Constant declarations (817.3).

* Enumeration member declarations (821.30).

* case labels of aswi tch statement (815.7.2).

* goto case statements (§15.9.3).

* Dimension lengths in an array creation expresgi814.5.10.2) that includes an initializer.
» Attributes (824).

An implicit constant expression conversidil.1.6) permits a constant expression of type to be
converted tsbyte, byte, short, ushort, uint, orulong, provided the value of the constant expression
is within the range of the destination type.

14.16 Boolean expressions
A boolean-expression is an expression that yields a result of tyjeo1.

bool ean-expression:
expression

The controlling conditional expression of drstatement (815.7.1) while-statement (815.8.1) do-statement
(815.8.2), offor-statement (815.8.3) is aoolean-expression. The controlling conditional expression of the

?7: operator (814.12) follows the same rules dmalean-expression, but for reasons of operator precedence
is classified as aonditional -or-expression.

A boolean-expression is required to be of a type that can be implicitly convertetddo1 or of a type that
implementsoperator true. [Note: As required by §17.9.1, any type that implemenmterator true

must also implemenbperator false. end note] If neither requirement is satisfied, a compile-time error
occurs.

177

C#LANGUAGE SPECIFICATION

When a boolean expression is of a type that cannot be implicitly convertsgbfobut does implement
operator true, then following evaluation of the expression, thyigerator true implementation
provided by that type is invoked to producéeol value.

[Note: TheDBBoo1 struct type in §18.4.2 provides an example of a type that implenogrisator true
andoperator false. end note]

178

w N

~N o o1 b

o)

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

25
26

27
28
29
30

31

32
33
34
35
36

37
38

39

40
4
42
43
44
45
46

Chapter 15 Statements

15. Statements

C# provides a variety of statementblofe: Most of these statements will be familiar to developers who have
programmed in C and C++&nd note]

statement:
| abel ed-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
| ock-statement
using-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather tharstatement excludes the use of declaration statements and labeled statements
in these contextsBxample: The code

void F(bool b) {
if (b)
int 1 = 44;
3
results in a compile-time error becauseignstatement requires ambedded-statement rather than a
statement for its if branch. If this code were permitted, then the variablgould be declared, but it could

never be used. (Note, however, that by placifgydeclaration in a block, the example is validid
example]

15.1 End points and reachability

Every statement has &nd point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rit@somposite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches thgemd of a statement in a block, control is transferred

to the next statement in the block.

If a statement can possibly be reached by execution, the statement is saiegacHzble. Conversely, if
there is no possibility that a statemenitllwe executed, the statement is said toumeeachable.

[Example: In the example

void FO {
console.writeLine("reachable");
goto Label;
console.writeLine("unreachable");
Label:
console.writeLine("reachable");

179

N

© 00 N o O»

10

12
13
14

15
16
17
18
19
20

21
22

23
24

25
26

27

28
29
30
31

32

33
34

35
36

37
38

39
40

41

42

C#LANGUAGE SPECIFICATION

the second invocation @onsole.writeLine is unreachable because there is no possibility that the
statement will be executednd exampl €]

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an
error for a statement to be unreachable.

[Note: To determine whether a particular statementrat point is reachable, the compiler performs flow
analysis according to the reachability rules definedefach statement. The flow analysis takes into account
the values of constant expressions (814.15) that corfitedbéhavior of statements, but the possible values of
non-constant expressions are not considered. In @tbeds, for purposes of control flow analysis, a non-
constant expression of a given type is considered to have any possible value of that type.

In the example

void FQ {
const int i = 1;
if (i == 2) Console.writeLine("unreachable");

the boolean expression of thé€ statement is a constant expression because both operands of the
== operator are constants. As the constant expressievaluated at compile-time, producing the value
false, theConsole.writeLine invocation is considered unreachable. Howevet,if changed to be a
local variable
void FO {
int i = 1;
if (i == 2) console.wWriteLine("reachable");

theConsole.writeL1ine invocation is considered reachable, even though, in reality, it will never be
executedend note]

Theblock of a function member is always considered reachable. By successively evaluating the reachability

rules of each statement in a block, the reachalidlitgny given statement can be determined.

[Example: In the example
void F(int x) {
console.writeLine("start");
if (x < 0) Console.writeLine("negative");
the reachability of the secor@bnsoTle.writeL1ine is determined as follows:

» ThefirstConsole.writeLine expression statement is reachable because the block bf thethod is
reachable (§15.2).

* The end point of the firstonsole.writeLine expression statement is reachable15.2 because that
statement is reachable (815.6 and §15.2).

» Theif statement is reachable because the end point of theéirstole.writeLine expression
statement is reachable (815.6 and 8§15.2).

 The secondonsole.writeLine expression statement is reachable because the boolean expression of
the i f statement does not have the constant v&hikse.

end example]

There are two situations in which it is a compile-time error for the end point of a statement to be reachable:

180

N -

10
11

12
13

14

15

16

17
18

19

20
21

22

23
24

25
26
27

28
29
30

31

32

33

34

35

36
37

38
39

40
41

Chapter 15 Statements

» Because thawitch statement does not permit a switch section to “fall through” to the next switch
section, it is a compile-time error for the end pointloé statement list of a switch section to be reachable. If
this error occurs, it is typically an indication thabaeak statement is missing.

» Itis a compile-time error for the end point of the block of a function member that computes a value to be
reachable. If this error occurs, it typically is an indication thae&urn statement is missing.

15.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listox }

A block consists of an optionatatement-list (815.2.1), enclosed in braces. If the statement list is omitted,
the block is said to be empty.

A block may contain declaration statements (815.5). The scope of a local variable or constant declared in a
block is the block.

Within a block, the meaning of a name used in an expression context must always be the same (814.5.2.1).
A block is executed as follows:
» Ifthe block is empty, control is transferred to the end point of the block.

» Ifthe block is not empty, control is transferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is
reachable.

15.2.1 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists daogkén
(815.2) and irswitch-blocks (815.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control is transferred to the rgatement. When and if control reaches the end point of
the last statement, control is transfefte the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

* The statement is the first statement dine statement list itself is reachable.

* The end point of the preceding statement is reachable.

» The statement is a labeled statement and the label is referenced by a regohaldtatement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

15.3 The empty statement
An empty-statement does nothing.
empty-statement:

An empty statement is used when there are no dgip@to perform in a context where a statement is
required.

181

N

0 ~N O O S w

10
11

12
13

14
15

16

17

18
19

20
21

22
23
24

25
26

27

28
29
30
31
32

33

34

35
36
37
38

39

40
4

42
43
44

45
46

C#LANGUAGE SPECIFICATION

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end
point of an empty statement is reachable if the empty statement is reachable.

[Example: An empty statement can be used when writinghaTe statement with a null body:
bool ProcessMessage() {..}

void ProcessMessages() {
while (ProcessMessage())

}
Also, an empty statement can be used to declare a label just before the clBsoi@block:
void FO {

if (done) goto exit;
exit: ;
end exampl €]

15.4 Labeled statements

A labeled-statement permits a statement to be prefixed by bdh Labeled statements are permitted in
blocks, but are not permitted as embedded statements.

| abel ed-statement:
identifier : statement

A labeled statement declaresadél with the name given by thidentifier. The scope of a label is the whole
block in which the label is declared, including any nested blocks. It is a compile-time error for two labels
with the same name to have overlapping scopes.

A label can be referenced frogoto statements (815.9.3) within the scope of the labébt¢: This means
thatgoto statements can transfer control within lke@nd out of blocks, but never into bloclesd note]

Labels have their own declaration space and do not interfere with other identifieamgle: The example

int F(int x) {
if (x >= 0) goto Xx;
X = -X;
X: return x;

is valid and uses the nanxeas both a parameter and a labeid exampl €]

Execution of a labeled statement corresponds exactyegution of the statement following the label.

In addition to the reachability provided by normal flowadntrol, a labeled statement is reachable if the
label is referenced by a reachaleto statement. (Exception: If goto statement is inside &ry that
includes afinalTly block, and the labeled statement is outsidetthg, and the end point of th&inally
block is unreachable, then the labeled statement is not reachable frogo tiestatement.)

15.5 Declaration statements

A declaration-statement declares a local variable or constant. Declaration statements are permitted in blocks,

but are not permitted as embedded statements.

declar ation-statement:
|ocal-variable-declaration ;
|ocal-constant-declaration ;

15.5.1 Local variable declarations
A local-variable-declaration declares one or more local variables.

182

10
11

12
13
14
15

16
17
18

19
20
21
22

23
24
25

26

27
28
29

30

31
32
33
34
35

36

37
38

39
40

41
42
43

44
45

46
47

Chapter 15 Statements

local-variable-declaration:
type local-variable-declarators

|ocal-variable-declarators:
|ocal-variable-declarator

|local-variable-declarators , local-variable-declarator
|ocal-variable-declarator:

identifier

identifier = local-variable-initializer

local-variable-initializer:
expression
array-initializer

Thetype of alocal-variable-declaration specifies the type of the variables introduced by the declaration.
The type is followed by a list dfocal-variable-declarators, each of which introduces a new variable. A
local-variable-declarator consists of andentifier that names the variable, optionally followed by an
“="token and docal-variable-initializer that gives the initial value of the variable.

The value of a local variable is obtained in an expression ussig@e-name (814.5.2), and the value of a
local variable is modified using amssignment (814.13). A local variable must be definitely assigned (812.3)
at each location where its value is obtained.

The scope of a local variable declared itoeal-variable-declaration is the block in which the declaration
occurs. Itis an error to refer to a local valoie in a textual position that precedes tbeal-variable-
declarator of the local variable. Within the scope of a losariable, it is a compile-time error to declare
another local variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variabtalizer in a local variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

[Example: The example

void FO {
int x =1, vy, z = x * 2;

corresponds exactly to

void FQ {
int x; x = 1;
int y;
int z; z = X 2;
end exampl €]

15.5.2 Local constant declarations
A local-constant-declaration declares one or more local constants.

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

Thetype of alocal-constant-declaration specifies the type of the constants introduced by the declaration.
The type is followed by a list ofonstant-declarators, each of which introduces a new constantofstant-

183

10

11

12
13

14
15

16
17
18
19
20
21
22
23

24
25

26
27
28

29

30
31

32
33
34

35
36

37
38
39

40
41

42
43

44

C#LANGUAGE SPECIFICATION

declarator consists of andentifier that names the constant, followed by a1 token, followed by a
constant-expression (814.15) that gives the value of the constant.

Thetype andconstant-expression of a local constant declaration must follow the same rules as those of a
constant member declaration (§17.3).

The value of a local constant is obtained in an expression ussingpbe-name (814.5.2).

The scope of a local constant is the block in whichdkeelaration occurs. It is an error to refer to a local
constant in a textual position that precedegdtsstant-declarator. Within the scope of a local constant, it is
a compile-time error to declare another logatiable or constant with the same name.

A local constant declaration that declares multiple tamis is equivalent to multiple declarations of single
constants with the same type.

15.6 Expression statements

An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression

statement-expression:
invocation-expression
obj ect-creation-expression
assignment
post-increment-expression
post-decr ement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statemenistef In particular, expressions suchxas+ y and
x == 1, that merely compute a value (which will be discarded), are not permitted as stateendmiste]

Execution of an expression statement evaluates the contained expression and then transfers control to the

end point of the expression statement. The end point ekgiression-statement is reachable if that
expression-statement is reachable.

15.7 Selection statements

Selection statements select one of a number of possible statements for execution based on the value of some

expression.

sel ection-statement:
if-statement
switch-statement

15.7.1 The if statement
The1if statement selects a statement for execution based on the value of a boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

bool ean-expression:
expression

An else part is associated with the lexically nearest precedifighat is allowed by the syntaxEkample:
Thus, armi f statement of the form

if (xX) if (y) FQ; else GQ;

184

=

©CoOo~NOOR~WN

=
o

=
[N

12

13
14

15
16
17

18
19

20
21

22
23

24
25
26

27

28
29

30
31

32
33

34
35
36

37
38

39
40
41

42
43
44

45
46

Chapter 15 Statements

is equivalent to
if OO {
it (y)
FO
}
else {
GO;

{

}
end example]
An i f statement is executed as follows:
* Theboolean-expression (§14.16) is evaluated.

* Ifthe boolean expression yieldsue, control is transferred to the firembedded statement. When and
if control reaches the end point of that statemeantrol is transferred to the end point of thé statement.

» Ifthe boolean expression yields1se and if anelse part is present, control is transferred to the
second embedded statement. When and if control reaches the end point of that statement, control is
transferred to the end point of thé statement.

» Ifthe boolean expression yieldalse and if anelse part is not present, control is transferred to the
end point of thei f statement.

The first embedded statement of & statement is reachable if the& statement is reachable and the
boolean expression does not have the constant allise.

The second embedded statement of &rstatement, if present, is reachable if thfestatement is reachable
and the boolean expression does not have the constantalee

The end point of ari f statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of &f statement with n@1se part is reachable if théf statement is
reachable and the boolean expression does not have the constantruadue

15.7.2 The switch statement

The switch statement selects for execution a statéfig¢maving an associated switch label that corresponds
to the value of the switch expression.

switch-statement:
switch (expression) switch-block

switch-block:

{ switch-sectionsyy }
switch-sections:

switch-section

switch-sections switch-section
switch-section:

switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label
switch-label:
case constant-expression
default

A switch-statement consists of the keywordw1i tch, followed by a parenthesized expression (called the
switch expression), followed bysaitch-block. Theswitch-block consists of zero or moravitch-sections,

185

N

0 N O 0O b~ W

10
11

12

13

14

15
16

17
18
19

20
21
22

23
24

25
26
27
28
29
30
31
32
33
34
35

36
37

38
39
40
41
42
43
44
45

46
47

C#LANGUAGE SPECIFICATION

enclosed in braces. Eashitch-section consists of one or mormwitch-labels followed by astatement-list
(815.2.1).

Thegoverning type of a swi tch statement is established by the switch expression. If the type of the switch
expression isbyte, byte, short, ushort, int, uint, Tong, ulong, char, string, or anenum-type,

then that is the governing type of tee1i tch statement. Otherwise, exactly one user-defined implicit
conversion (813.4) must exist from the type of the switch expression to one of the following possible
governing typessbyte, byte, short, ushort, int, uint, Tong, ulong, char, string. If no such

implicit conversion exists, or if more than one suclplitit conversion exists, a compile-time error occurs.

The constant expression of eacdise label must denote a value of a type that is implicitly convertible
(813.1) to the governing type of tlevitch statement. A compile-time error occurs if two or makese
labels in the samswi tch statement specify the same constant value.

There can be at most omefault label in a switch statement.
A swi tch statement is executed as follows:
» The switch expression is evaluated and converted to the governing type.

» If one of the constants specified incase label in the samawi tch statement is equal to the value of
the switch expression, control is transferredhe statement list following the matchedse label.

» If none of the constants specified@ase labels in the samswi tch statement is equal to the value of
the switch expression, and ifdefault label is present, control is transfed to the statement list following
thedefault label.

» If none of the constants specifieddase labels in the samewitch statement is equal to the value of
the switch expression, and if miefault label is present, control is transferred to the end point of the
switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is
known as the “no fall through” ruleExample: The example

switch (i) {

case O:
Casezero();
break;

case 1:
Caseone();
break;

default:
CaseOthers(Q);
break;

is valid because no switch section has a reachaldgemt. Unlike C and C++, execution of a switch
section is not permitted to “fall through” to the next switch section, and the example

switch (i) {
case O:
Casezero();
case 1:
Casezeroorone();
default:
CaseAny();

results in a compile-time error. When execution of aslwsection is to be followed by execution of another
switch section, an explicdoto case or goto default statement must be used:

186

PO OWOOO~NOUDWNLE

o

=
N

13

14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30
31

32
33
34
35
36
37
38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54

55
56

57

58

Chapter 15 Statements

switch (i) {
case O:
Casezero();
goto case 1;
case 1:
Casezeroorone();
goto default;
default:
CaseAny();
break;

end exampl €]

Multiple labels are permitted in awitch-section. [Example: The example

switch (i) {
case O:
Casezero();
break;
case 1:
Caseone();
break;
case 2:
default:
caseTwo();
break;

is valid. The example does not violate tm® fall through” rule because the labedase 2: anddefault:
are part of the samavitch-section. end exampl €]

[Note: The “no fall through” rule prevents a common class of bugs that occur in C and C++hvieak
statements are accidentally omitted. In additibecause of this rule, the switch sections efvatch
statement can be arbitrarily rearranged without diffigcthe behavior of the statement. For example, the
sections of thawitch statement above can be reversed withowgdafhg the behavior of the statement:

switch (i) {
default:
CaseAny();
break;
case 1:
Casezeroorone();
goto default;
case O:
Casezero();
goto case 1;

end note]

[Note: The statement list of a switch section typically ends braak, goto case, orgoto default
statement, but any construct that renders the enat pbthe statement list unreachable is permitted. For
example, avhiTe statement controlled by the boolean expressiome is known to never reach its end

point. Likewise, athrow or return statement always transfers control elsewhere and never reaches its end

point. Thus, the following example is valid:

switch (i) {
case O:
while (true) FQ;
case 1:
throw new ArgumentException();
case 2:
return;

end note]

[Example: The governing type of awi tch statement may be the typ&ring. For example:

187

O~NOOhAWNBE

20
21

22
23

24
25

26
27

28

29

30
31

32
33

34

35

36
37

38
39

40
41

42
43
44
45
46

47
48

C#LANGUAGE SPECIFICATION

void DoCommand(string command) {
switch (command.ToLower()) {
case "run":

DoRun();
break;

case "save'":
DoSave();
break;

case "quit":
poQuit();
break;

default:
Invalidcommand(command) ;
break;

ks

3
end example]

[Note: Like the string equality operators (814.9.7), 8vei tch statement is case sensitive and will execute a

given switch section only if the switch expression string exactly matchesa label constantend note]

When the governing type ofswi tch statement istring, the valuenul1 is permitted as a case label
constant.

The statement-lists of aswitch-block may contain declaration statements (§815.5). The scope of a local
variable or constant declared in a switch block is the switch block.

Within a switch block, the meaning of a name ugedn expression context must always be the same
(814.5.2.1).

The statement list of a given switch section is reachable ibthiecch statement is reachable and at least
one of the following is true:

* The switch expression is a hon-constant value.
* The switch expression is a constant value that matclrasa label in the switch section.

» The switch expression is a constaalue that doesn’t match ampase label, and the switch section
contains thelefault label.

» A switch label of the switch section is referenced by a reachadt® case or goto default
statement.

The end point of &w1i tch statement is reachable if at least one of the following is true:
» Theswitch statement contains a reachableeak statement that exits thevi tch statement.

» Theswitch statement is reachable, the switch expi@s is a non-constant value, and default
label is present.

» Theswitch statement is reachable, the switch expression is a constant value that doesn’t match any

case label, and nalefault label is present.

15.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

15.8.1 The while statement
Thewhi Te statement conditionally executes an embedded statement zero or more times.

188

10
11
12

13
14

15

16

17

18
19

20
21

22

23

24
25
26
27

28
29
30
31

32

33

34

35
36

37

38
39

40
4

Chapter 15 Statements

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:
» Theboolean-expression (§14.16) is evaluated.

» Ifthe boolean expression yieldsue, control is transferred to the embedded statement. When and if
control reaches the end point of the embetisi&tement (possibly from execution ofantinue
statement), control is transferred to the beginning o€l e statement.

» Ifthe boolean expression yields1se, control is transferred to the end point of thiei 1e statement.

Within the embedded statement oflai 1e statement, &reak statement (§15.9.1) may be used to transfer
control to the end point of theh1i Te statement (thus ending iteration of the embedded statement), and a
continue statement (815.9.2) may be used to transferrobit the end point of the embedded statement
(thus performing another iteration of thveai1e statement).

The embedded statement oflai 1e statement is reachable if théri 1e statement is reachable and the
boolean expression does not have the constant fallise.

The end point of avhi1e statement is reachable if at least one of the following is true:
» Thewhile statement contains a reachablaeak statement that exits thehi Te statement.

» Thewhile statement is reachable and the boolean expression does not have the constamualue

15.8.2 The do statement
Thedo statement conditionally executes an embedded statement one or more times.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:
e Control is transferred to the embedded statement.

* When and if control reaches the end point of the edded statement (possibly from execution of a
continue statement), thboolean-expression (814.16) is evaluated. If the boolean expression yieldse,
control is transferred to the beginning of tthe statement. Otherwise, control is transferred to the end point
of thedo statement.

Within the embedded statement ofia statement, &reak statement (815.9.1) may be used to transfer
control to the end point of theo statement (thus ending iteratiohtbhe embedded statement), and a
continue statement (815.9.2) may be used to transferrobia the end point of the embedded statement
(thus performing another iteration of tde statement).

The embedded statement ofla statement is reachable if tlie statement is reachable.
The end point of alo statement is reachable if at least one of the following is true:
 Thedo statement contains a reachableeak statement that exits thao statement.

* The end point of the embedded statement is redelainl the boolean expression does not have the
constant valuerue.

15.8.3 The for statement

The for statement evaluates a sequence of initialiragigpressions and then, while a condition is true,
repeatedly executes an embedded statementwatdages a sequence of iteration expressions.

for-statement:
for (for-initializerox ; for-conditionyy: ; for-iteratoryy) embedded-statement

189

10

11
12
13
14

15

16

17

18
19

20

21
22
23
24

25
26

27
28
29
30

31

32

33
34

35

36

37
38

39

40
41

42
43

C#LANGUAGE SPECIFICATION

for-initializer:
|ocal-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

Thefor-initializer, if present, consists of eitheracal-variable-declaration (815.5.1) or a list obtatement-
expressions (815.6) separated by commas. The scope of a local variable declarddriayiéializer starts at
thelocal-variable-declarator for the variable and extends to the end of the embedded statement. The scope
includes thedor-condition and thefor-iterator.

Thefor-condition, if present, must be lboolean-expression (814.16).
Thefor-iterator, if present, consists of a list afatement-expressions (815.6) separated by commas.
A for statement is executed as follows:

» Ifafor-initializer is present, the variable initializers or statement expressions are executed in the order
they are written. This step is only performed once.

» If afor-conditionis present, it is evaluated.

» If the for-condition is not present or if the evaluation yieldsue, control is transferred to the embedded
statement. When and if control reaches the end poittimémbedded statement (possibly from execution of
acontinue statement), the expressions of the-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation offtnecondition in the step above.

» Ifthe for-condition is present and the evaluation yielfis1se, control is transferred to the end point of
the for statement.

Within the embedded statement ofar statement, dreak statement (815.9.1) may be used to transfer
control to the end point of théor statement (thus ending iteration of the embedded statement), and a
continue statement (815.9.2) may be used to transferrobid the end point of the embedded statement
(thus executing another iteration of ther statement).

The embedded statement of ar statement is reachable if one of the following is true:
» Thefor statement is reachable and foo-condition is present.

» Thefor statement is reachable andba-condition is present and does not have the constant value
false.

The end point of &or statement is reachable if at least one of the following is true:
* Thefor statement contains a reachableak statement that exits thor statement.
» Thefor statement is reachable andoa-condition is present and does not have the constant value

true.

15.8.4 The foreach statement

The foreach statement enumerates the elements of a collection, executing an embedded statement for each

element of the collection.

foreach-statement:
foreach (type identifier in expresson) embedded-statement

190

o 0o W N PP

© 0

10
11

12
13

14

15
16

17
18

19
20
21
22
23
24
25

26

27

28
29
30
31
32
33
34
35
36

38
39
40

41
42
43
44
45
46
47

Chapter 15 Statements

Thetype andidentifier of a foreach statement declare theeration variable of the statement. The iteration
variable corresponds to a read-only local variabiha scope that extends over the embedded statement.
During execution of &oreach statement, the iteration variable represents the collection element for which
an iteration is currently being performed. A comgpiiiee error occurs if the embedded statement attempts to
modify the iteration variable (via assignment or theand-- operators) or pass the iteration variable as a
ref orout parameter.

The type of theexpression of a foreach statement must be a collection type (as defined below), and an
explicit conversion (813.2) must exist from the ekmhtype of the collection to the type of the iteration
variable. Ifexpression has the valuaul1, asystem.Nul1ReferenceException is thrown.

A type C is said to be @ollection type if it implements thesystem. IEnumerable interface or implements
thecollection pattern by meeting all of the following criteria:

e Ccontains gublic instance method with the signatuwetEnumerator (), that returns atruct-type,
class-type, or interface-type, which is callece in the following text.

* E contains gublic instance method with the signatwmeveNext () and the return typbool.

* E contains gublic instance property nametirrent that permits reading the current value. The type
of this property is said to be thebement type of the collection type.

A type that implementZEnumerable is also a collection type, even if it doesn't satisfy the conditions
above. (This is possible if it implement&numerable via private interface implementation.)

Thesystem.Array type (819.1.1) is a collection type, and since all array types derive from
System.Array, any array type expression is permitted ificreach statement. The order in which
foreach traverses the elements of an array is as follows: For single-dimensional arrays elements are
traversed in increasing index order, starting with in@exnd ending with indexength - 1. For multi-
dimensional arrays, elements are traversed sucdhhbandices of the rightmost dimension are increased
first, then the next left dimension, and so on to the left.

A foreach statement of the form:

foreach (ElementType element in collection) statement
corresponds to one of two possible expansions:

» Ifthe collection expression is of a type that implements the collection pattern (as defined above), the
expansion of th&oreach statement is:

Enumerator enumerator = (collection).GetEnumerator();

try {
while (enumerator.MoveNext()) {
ElementType element = (ElementType)enumerator.Current;
statement;

}
finally {

IDisposable disposable = enumerator as System.IDisposable;
) if (disposable != null) disposable.Dispose();

[Note: Significant optimizations of the above are often easily available. If the Byipgolements
System.IDisposable, then the expressiofenumerator as System.IDisposable) will always
be non-null and the implementation can safely s$itite a simple conversion for a possibly more
expensive type test. Conversely, if the typis sealed and does not implement
System.IDisposable, then the expressiofenumerator as System.IDisposable) will
always evaluate to null. In this case, the implenaéiph can safely optimize away the entire finally
clauseend note]

191

o~NOO O~ W N -

=
o ©

11
12
13
14

15
16

17

18
19
20
21
22
23
24
25

26

27
28
29
30
31

32
33

34

35
36

37
38
39
40
41
42

43

44
45
46

47
48
49
50
51
52
53

C#LANGUAGE SPECIFICATION

e Otherwise; thecollection expression is of a type that implemestgstem. IEnumerable, and the
expansion of theforeach statement is:

IEnumerator enumerator =]
((Sy?tem.IEnumerab1e)(co11ect1on)).GetEnumerator();
try
while (enumerator.MoveNext()) {
ElementType element = (ElementType)enumerator.Current;
statement;

}

finally {
IDisposable disposable = enumerator as System.IDisposable;
if (disposable != null) disposable.Dispose();

In either expansion, thenumerator variable is a temporary variable that is inaccessible in, and invisible
to, the embeddedtatement, and theelement variable is read-only in the embeddsdatement.

[Example: The following example prints out each value itwe-dimensional array, in element order:

using System;
%1ass Test
static void Main() {
double[,] values = {
{1.2, 2.3, 3.4, 4.5}
) {5.6, 6.7, 7.8, 8.9}

foreach (double elementvalue in values)
console.write("{0} ", elementvalue);
console.writeLine(Q);

}
The output produced is as follows:
1.2 2.3 3.4 4.55.66.7 7.8 8.9

end exampl €]

15.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
retur n-statement
throw-statement

The location to which a jump statement transfers control is callethtiget of the jump statement.

When a jump statement occurs within a block, and thgetiaof that jump statement is outside that block, the
jump statement is said &xit the block. While a jump statement may transfer control out of a block, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervenyngtatements. In the absence

of suchtry statements, a jump statement unconditionaiysfers control from the jump statement to its
target. In the presence of such interveniny statements, execution is more complex. If the jump statement
exits one or morery blocks with associateflinally blocks, control is initially transferred to the

finally block of the innermostry statement. When and if control reaches the end pointfdfreal1y

block, control is transferred to theinal 1y block of the next enclosingry statement. This process is
repeated until théinalTy blocks of all intervening:ry statements have been executed.

192

25

26
27
28
29

30

31
32

33
34

35
36
37

38
39
40

41
42
43

44

45
46
47
48
49

50

51
52

Chapter 15 Statements

[Example: In the example

using System;
class Test

static void Main() {
while (true) {
try {

try {
console.writeLine("Before break");
break;

3
finally {
Console.writeLine("Innermost finally block™);

s
finally {
Console.writeLine("outermost finally block™);

console.writeLine("After break');

}

the finally blocks associated with two try statemeaits executed before control is transferred to the target
of the jump statement.

The output produced is as follows:

Before break
Innermost finally block
outermost finally block
After break

end exampl €]

15.9.1 The break statement
Thebreak statement exits the nearest enclosimg tch, while, do, for, or foreach statement.

break-statement:
break ;

The target of dreak statement is the end point of the nearest enclosinictch, while, do, for, or
foreach statement. If dreak statement is not enclosed by@&itch, while, do, for, or foreach
statement, a compile-time error occurs.

When multipleswi tch, while, do, for, or foreach statements are nested within each othén;eak
statement applies only to the innermost statememtrdnsfer control across multiple nesting levelgpao
statement (815.9.3) must be used.

A break statement cannot exitfainalTy block (§15.10). When areak statement occurs within a
finally block, the target of thereak statement must be within the sarfienal1y block; otherwise a
compile-time error occurs.

A break statement is executed as follows:

» Ifthe break statement exits one or motey blocks with associateflinally blocks, control is

initially transferred to thefinally block of the innermostry statement. When and if control reaches the
end point of afinally block, control is transferred to théinal1y block of the next enclosingry
statement. This process is repeated untilftiheal1y blocks of all intervening:ry statements have been
executed.

» Control is transferred to the target of theeak statement.

Because &reak statement unconditionally transfers control elsewhere, the end poirirafak statement
is never reachable.

193

10
11

12
13
14

15

16
17
18
19
20

21

22
23

24
25

26
27
28
29

30
31
32
33

34
35
36
37
38
39
40
41

42
43
44
45
46
47

C#LANGUAGE SPECIFICATION

15.9.2 The continue statement

The continue statement starts a new iteration of the nearest encleginge, do, for, or foreach
statement.

continue-statement:
continue ;

The target of aontinue statement is the end point of the embedded statement of the nearest enclosing
while, do, for, or foreach statement. If aontinue statement is not enclosed bwhile, do, for, or
foreach statement, a compile-time error occurs.

When multiplewhiTe, do, for, or foreach statements are nested within each othem@tinue
statement applies only to the innermost statememtradnsfer control across multiple nesting levelgpao
statement (815.9.3) must be used.

A continue statement cannot exitfainally block (§15.10). When aontinue statement occurs within
afinally block, the target of theontinue statement must be within the sarfienal 1y block;
otherwise a compile-time error occurs.

A continue statement is executed as follows:

» Ifthe continue statement exits one or motey blocks with associateflinally blocks, control is
initially transferred to thefinally block of the innermost ry statement. When and if control reaches the
end point of afinally block, control is transferred to thféinal1y block of the next enclosingry
statement. This process is repeated untilftieal 1y blocks of all interveningry statements have been
executed.

» Control is transferred to the target of thentinue statement.

Because @ontinue statement unconditionally transfersntrol elsewhere, the end point otantinue
statement is never reachable.

15.9.3 The goto statement
Thegoto statement transfers control to a statement that is marked by a label.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of @oto identifier statement is the labeled statement with the given label. If a label with the
given name does not exist in the current function member, or i§th® statement is not within the scope of
the label, a compile-time error occursldte: This rule permits the use ofgoto statement to transfer
controlout of a nested scope, but nioto a nested scope. In the example

using System;
class Test

static void Main(string[] args) {
string[,] table = {
{Ilredll’ llb'Iuell’ llgr‘eenll}’
{"Monday", "wednesday", "Friday"}
foreach (string str in args) {
int row, colm;
for (row = 0; row <= 1; ++row)
for (colm = 0; colm <= 2; ++colm)
if (str == table[row,colm])
goto done;

194

~NOoO b~ WNPE

10
11
12
13

14
15
16
17

18
19
20

21

22
23
24
25

26

27
28

29

30
31

32
33

34
35
36

37
38
39
40

41

42

43
44
45

46
47

Chapter 15 Statements

console.writeLine("{0} not found", str);
continue;
done:
console.writeLine("Found {0} at [{1}]1[{2}]", str, row, colm);

}
}

agoto statement is used to transfer control out of a nested sengeote]

The target of ggoto case statement is the statement list in the immediately enclosing switch statement
(815.7.2) which contains @ase label with the given constant value. If tketo case statement is not
enclosed by awi tch statement, if theonstant-expression is not implicitly convertible (§13.1) to the
governing type of the nearest encloskwji tch statement, or if the nearest enclosswji tch statement
does not contain aase label with the given constant value, a compile-time error occurs.

The target of oto default statement is the statement list in the immediately enclosing switch statement
(815.7.2), which containséefault label. If thegoto default statement is not enclosed byaitch
statement, or if the nearest encloswji tch statement does not containlafault label, a compile-time

error occurs.

A goto statement cannot exitfanally block (815.10). When agoto statement occurs within a
finally block, the target of thgoto statement must be within the sarfienal1y block, or otherwise a
compile-time error occurs.

A goto statement is executed as follows:

» Ifthe goto statement exits one or motey blocks with associateflinally blocks, control is initially
transferred to théinally block of the innermost ry statement. When and if control reaches the end point
of afinally block, control is transferred to thfeinalTy block of the next enclosingry statement. This
process is repeated until tfiénal1y blocks of all intervening:ry statements have been executed.

» Control is transferred to the target of theto statement.

Because goto statement unconditionally transfersmtrol elsewhere, the end point ofjato statement is
never reachable.

15.9.4 The return statement

The return statement returns control to the caller of the function member in whichdhern statement
appears.

retur n-statement:
return expressiong: ;

A return statement with no expression can be used only in a function member that does not compute a
value; that is, a method with the return typeid, theset accessor of a property or indexer, the add and
remove accessors of an event, an instance constructor, static constructor, or a destructor.

A return statement with an expression can only be used in a function member that computes a value, that
is, a method with a non-void return type, thet accessor of a property or indexer, or a user-defined

operator. An implicit conversion (813.1) must existrfréhe type of the expression to the return type of the
containing function member.

It is a compile-time error for @eturn statement to appear infanally block (815.10).
A return statement is executed as follows:

» Ifthe return statement specifies an expression, the expression is evaluated and the resulting value is
converted to the return type of the containing funetioember by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

» Ifthe return statement is enclosed by one or marey blocks with associateflinally blocks,
control is initially transferred to th€&inalTy block of the innermost ry statement. When and if control

195

10

11
12
13
14

15
16

17
18

19
20
21
22
23
24

25
26
27

28
29
30
31
32
33

34
35
36
37

C#LANGUAGE SPECIFICATION

reaches the end point offa nally block, control is transferred to thfeinal1y block of the next enclosing
try statement. This process is repeated untilftiheal 1y blocks of all enclosing ry statements have been
executed.

» Control is returned to the caller of the containing function member.

Because areturn statement unconditionally transfersidrol elsewhere, the end point ofaturn
statement is never reachable.

15.9.5 The throw statement
The throw statement throws an exception.

throw-statement:
throw expressiong: ;

A throw statement with an expression throws the value produced by evaluating the expression. The
expression must denote a value of the class Byxtem. Exception or of a class type that derives from
System.Exception. If evaluation of the expression producesl 1, a
System.Nul1ReferenceException is thrown instead.

A throw statement with no expression can be used onlydatach block, in which case, that statement re-
throws the exception that is mently being handled by thatatch block.

Because ahrow statement unconditionally transfers control elsewhere, the end pointtofaw statement
is never reachable.

When an exception is thrown, control is transferred to the &iasich clause in an enclosingry statement
that can handle the exception. The process that falleee from the point of the exception being thrown to
the point of transferring control to a suitable exception handler is knovesaption propagation.
Propagation of an exception consists of repdBt evaluating the following steps untilatch clause that
matches the exception is found. In this description tkinew point is initially the location at which the
exception is thrown.

* Inthe current function member, eathy statement that encloses the throw point is examined. For each
statemens, starting with the innermogtry statement and ending with the outermosy statement, the
following steps are evaluated:

o Ifthe try block of s encloses the throw point andsfhas one or moreatch clauses, theatch
clauses are examined in order of appearancedatéoa suitable handler for the exception. The first
catch clause that specifies the exception type or sebigpe of the exception type is considered a

match. A generatatch (815.10) clause is considered a match for any exception type. If a matching
catch clause is located, the exception propagation is completed by transferring control to the block

of thatcatch clause.

o Otherwise, if thetry block or acatch block of s encloses the throw point anddthas afinally
block, control is transferred to thieinal1y block. If thefinally block throws another exception,
processing of the current exception is termida@®therwise, when control reaches the end point of
thefinally block, processing of the current exception is continued.

196

N -

10

11
12
13
14

15
16
17

18
19
20

21
22

23
24

25
26

27

28

29

30

31
32

33
34
35
36
37

38
39

40
41
42

43
44
45

Chapter 15 Statements

» If an exception handler was not located in the curfanttion member invocation, the function member
invocation is terminated. The steps above are tepeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

» If the exception processing terminates all function rheminvocations in the current thread, indicating
that the thread has no handler for the exception, therhread is itself terminated. The impact of such
termination is implementation-defined.

15.10 The try statement

The try statement provides a mechanism for catching exceptions that occur during execution of a block.
Furthermore, th&ry statement provides the ability to specify a block of code that is always executed when
control leaves thery statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseg
specific-catch-clauses,,: general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (classtype identifiersy) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible formstofy statements:

* A try block followed by one or moreatch blocks.

* A try block followed by afinally block.

* A try block followed by one or moreatch blocks followed by afinally block.

When acatch clause specifies eass-type, the type must beystem.Exception or a type that derives
from System.Exception.

When acatch clause specifies bothcass-type and anidentifier, anexception variable of the given name
and type is declared. The exception variable cquesls to a local variable with a scope that extends over
the catch block. During execution of theatch block, the exception variable represents the exception
currently being handled. For purposes of definite assgmtrohecking, the exception variable is considered
definitely assigned in its entire scope.

Unless acatch clause includes an exception variable names iinpossible to access the exception object
in the catch block.

A catch clause that specifies neither an exception typeamoexception variable name is called a general
catch clause. Atry statement can only have one generatch clause, and if one is present it must be the
lastcatch clause.

[Note: Some environments, especially those supportingfipie languages, may support exceptions that are
not representable as an object derived fi®ystem. Exception, although such an exception could never
be generated by C# code. In such an environment, a general catch clause might be used to catch such an

197

o 0o WN

0

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29
30
31
32
33
34

36
37
38

39
40

41
42

43
44

45

46
47
48

49

50

51

52

53

C#LANGUAGE SPECIFICATION

exception. Thus, a general catch clause is semantically different from one that specifies the type
System.Exception, in that the former may also catch exceptions from other languagésiote]

In order to locate a handler for an exceptiaaitch clauses are examined in lexical order. A compile-time
error occurs if acatch clause specifies a type that is the same as, or is derived from, a type that was
specified in an earliecatch clause for the samery. [Note: Without this restriction, it would be possible to
write unreachableatch clausesend note]

Within acatch block, athrow statement (815.9.5) with no expression can be used to re-throw the
exception that was caught by thetch block. Assignments to an exception variable do not alter the
exception that is re-thrown.

[Example: In the example

using System;
E]ass Test
static void FO {
try {
GQ;

catch (Exception e) {
Console.wWriteLine("Exception in F:
e = new Exception("F");
throw; // re-throw

+ e.Message);

}

static void GO {
throw new Exception("G");

static void Main() {
try {
FO;

catch (Exception e) {]))
Console.WriteLine("Exception in Main:

+ e.Message);

}
}

the method- catches an exception, writes some diagnostic in&tiom to the console, alters the exception
variable, and re-throws the exception. The exceptiohitha-thrown is the original exception, so the output
produced is:

Exception in F: G
Exception in Main: G

If the first catch block had throwa instead of rethrowing the current exception, the output produced would
be as follows:

Exception in F: G
Exception in Main: F

end example]

It is a compile-time error for &reak, continue, orgoto statement to transfer control out ofénally
block. When areak, continue, or goto statement occurs infiinally block, the target of the statement
must be within the sam&inally block, or otherwise a compile-time error occurs.

It is a compile-time error for @eturn statement to occur in&inally block.
A try statement is executed as follows:

e Control is transferred to thery block.

* When and if control reaches the end point of they block:

o Ifthe try statement has finally block, thefinalTly block is executed.

198

[o2006) B SNV}

~

10

11

12

13

14

15

16

17

18

19
20
21

22
23
24
25

26

27

28

29

30

31

32

33
34

35
36

37
38

39
40

Chapter 15 Statements

o Control is transferred to the end point of they statement.
» If an exception is propagated to they statement during execution of they block:

0 Thecatch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. The firstatch clause that specifies the exceptigpé or a base type of the exception
type is considered a match. A genetaltch clause is considered a match for any exception type. If
a matchingcatch clause is located:

» If the matchingcatch clause declares an exception varelthe exception object is assigned to
the exception variable.

e Control is transferred to the matchirmgtch block.
* When and if control reaches the end point of ttaech block:
o Ifthe try statement has finally block, thefinally block is executed.
o Control is transferred to the end point of they statement.
* If an exception is propagated to they statement during execution of tkatch block:
o Ifthe try statement has fiinally block, thefinally block is executed.
0 The exception is propagated to the next encloging statement.
o Ifthe try statement has nocatch clauses or if na@atch clause matches the exception:
» Ifthe try statement has fiinally block, thefinally block is executed.
» The exception is propagated to the next encloging statement.

The statements of i nal11y block are always executed when control leavesa statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of exetutezk a
continue, goto, or return statement, or as a result of propagating an exception out afrtheatatement.

If an exception is thrown during execution ofanally block, the exception is propagated to the next
enclosingtry statement. If another exception was in theqass of being propagated, that exception is lost.
The process of propagating an exceptionigedssed further in the description of thierow statement
(815.9.5).

Thetry block of atry statement is reachable if the'y statement is reachable.

A catch block of atry statement is reachable if they statement is reachable.

Thefinally block of atry statement is reachable if they statement is reachable.

The end point of &ry statement is reachable if both of the following are true:

» The end point of thery block is reachable or the end point of at least aaech block is reachable.

» Ifafinally blockis present, the end point of tfiénally block is reachable.

15.11 The checked and unchecked statements

Thechecked andunchecked statements are used to control twerflow checking context for integral-
type arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions indtoek to be evaluated in a checked context, and the
unchecked statement causes all expressions inltoek to be evaluated in an unchecked context.

199

10

11
12

13

14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

37

38
39

40
41

42
43
44

45
46
47
48

C#LANGUAGE SPECIFICATION

Thechecked andunchecked statements are precisely equivalent to¢hecked andunchecked
operators (814.5.12), except that thgpemte on blocks instead of expressions.

15.12 The 1ock statement

The Tock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
Tock (expresson) embedded-statement

The expression of dock statement must denote a value akerence-type. No implicit boxing conversion
(813.1.5) is ever performed for the expression dbak statement, and thus it is a compile-time error for the
expression to denote a value ofaue-type.

A Tock statement of the form
Tock (x) ..
wherex is an expression of aeference-type, is precisely equivalent to

System.Threading.Monitor.Enter(x);
try {

3
finally {
System.Threading.Monitor.Exit(x);

except thak is only evaluated once.

[Example: TheSystem. Type object of a class can conveniently be used as the mutual-exclusion lock for
static methods of the class. For example:
class Cache

public static void Add(object x) {
lock (typeof(cache)) {

}
}

public static void Remove(object x) {
lock (typeof(cache)) {

}
}
}

end example]

15.13 The using statement
Theusing statement obtains one or more resources, exeeustatement, and then disposes of the resource.

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

A resourceis a class or struct that implemersigstem. IDisposable, which includes a single
parameterless method nanetspose. Code that is using a resource can célspose to indicate that the
resource is no longer neededblispose is not called, then automatic disposal eventually occurs as a
consequence of garbage collection.

200

A W N P

~N o O

10

11

12
13
14

15

16
17
18
19
20
21
22

23
24

25
26
27
28

29

30
31
32
33
34

35

36
37
38
39
40
41
42
43
44
45
46
47
48
49

Chapter 15 Statements

If the form of resource-acquisition is local-variable-declaration then the type of théocal-variable-
declaration must besystem. IDisposable or a type that can be implicitly converted to
System.IDisposable. If the form ofresource-acquisition is expression then this expression must be
System.IDisposable or atype that can be implicitly convertedsgstem.IDisposable.

Local variables declared inr&source-acquisition are read-only, and must include an initializer. A compile-
time error occurs if the embedded statnt attempts to modify these local variables (via assignment or the
++ and-- operators) or pass them asf or out parameters.

A using statement is translated into three parts: adtjois usage, and disposal. Usage of the resource is
implicitly enclosed in atry statement that includesfanally clause. Thisfinally clause disposes of the
resource. If amu11 resource is acquired, then no calltbspose is made, and no exception is thrown.

A using statement of the form

using (R rl = new RQ) {
rl.rQ;

is precisely equivalent to

R rl = new R();
try {
rl.rQ;

finally {
if (rl != null) ((IDisposable)rl).Dispose();

A resource-acquisition may acquire multiple resources of a given type. This is equivalent to nestied
statements. A using statement of the form

using (R rl = new RQ), r2 = new RQ) {
rl.rQ;
r2.rQ;

is precisely equivalent to:

using (R rl = new RQ))
using (R r2 = new RQ) {
rl.rQ;
r2.rQ;

which is, by expansion, precisely equivalent to:
R rl = new RQ);

try {
R r2 = new R();
try {
rl.rQ;
r2.rQ;
finally {
; if (r2 != null) ((IDisposable)r2).Dispose();
19
finally {
) if (rl != null) ((IDisposable)rl).Dispose();

201

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24

25
26
27
28

29

30
31

32
33

34
35
36

37
38

Chapter 16 Namespaces

16. Namespaces

C# programs are organized using namespaces. Nawespre used both as an “internal” organization
system for a program, and as an “external” organizesigstem—a way of presenting program elements that
are exposed to other programs.

Using-directive (816.3) are provided to facilitate the use of namespaces.

16.1 Compilation units

A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more
using-directives followed by zero or morglobal-attributes followed by zero or mor@amespace-member-
declarations.

compilation-unit:
using-directivesy, global-attributes,; namespace-member-declarationsyy

A C# program consists of one or more compilation ureech contained in a separate source file. When a
C# program is compiled, all of the compilation units are processed together. Thus, compilation units can
depend on each other, possibly in a circular fashion.

Theusing-directives of a compilation unit affect thglobal-attributes andnamespace-member-declarations
of that compilation unit, but have no effect on other compilation units.

Theglobal-attributes (824) of a compilation unit permit the specification of attributes for the target
assembly. Assemblies act as physical containers for types.

The namespace-member -declarations of each compilation unit of a program contribute members to a single
declaration space called the global namespd@mnple: For example:

FileA.cs:
class A {}

FileB.cs:
class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with

the fully qualified name# andB. Because the two compilation units contribute to the same declaration
space, it would have been an error if each contained a declaration of a member with the sanemchame.
example]

16.2 Namespace declarations

A namespace-declaration consists of the keywordamespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:

namespace qualified-identifier namespace-body ;o
qualified-identifier:

identifier

qgualified-identifier . identifier
namespace-body:

{ using-directives, namespace-member-declarationsy, }

203

o 0o W N PP

10
11

12
13
14
15

16
17

18
19

20

21
22
23
24
25

26
27
28

29

30
31
32
33

34
35

36
37
38
39

40
41
42
43

44

45
46
47
48

49
50
51

C#LANGUAGE SPECIFICATION

A namespace-declaration may occur as a top-level declaration isa@mnpilation-unit or as a member
declaration within anotharamespace-declaration. When anamespace-declaration occurs as a top-level
declaration in a&ompilation-unit, the namespace becomes a member of the global namespace. When a
namespace-declaration occurs within anothemamespace-declaration, the inner namespace becomes a
member of the outer namespace. In either case, the name of a namespace must be unique within the
containing namespace.

Namespaces are implicitiub11 c and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optionalusing-directivesimport the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optaonetbace-
member-declarations contribute members to the declaration space of the namespace. Note tisatcgll
directives must appear before any member declarations.

Thequalified-identifier of a namespace-declaration may be a single identifier or a sequence of identifiers
separated by .” tokens. The latter form permits a programdefine a nested namespace without lexically
nesting several namespace declaratidbsarpple: For example,

namespace N1.N2

class A {}
class B {}

is semantically equivalent to
namespace N1

namespace N2

class A {}
class B {}

}
end exampl €]

Namespaces are open-ended, and two namespaceatieclamwith the same fully qualified name contribute
to the same declaration space (810.Bxgmple: In the example

namespace N1.N2

class A {}

namespace N1.N2

class B {}

the two namespace declarations above contributesd@ame declaration space, in this case declaring two
classes with the fully qualified name&d . N2 .A andN1.N2.B. Because the two declarations contribute to
the same declaration space, it would have been an éeach contained a declaration of a member with the
same nameend exampl €]

16.3 Using directives

Using-directives facilitate the use of namespaces and types defined in other namedpsiogsdirectives

impact the name resolution processamespace-or-type-names (810.8) andimple-names (§14.5.2), but

unlike declarationsysing-directives do not contribute new members to the underlying declaration spaces of
the compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

204

© 00 N O

10

11
12

13
14

15
16
17
18
19

20
21

22
23
24

25
26

27
28
29
30

31
32

33
34

35

36
37
38
39

40
4

42
43
44
45

46
47
48

49
50

Chapter 16 Namespaces

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (816.3.1) introduces an alias for a namespace or type.
A using-namespace-directive (§16.3.2) imports the type members of a namespace.

The scope of aising-directive extends over theamespace-member-declarations of its immediately

containing compilation unit or namespace body. The scopeusiing-directive specifically does not include

its peerusing-directives. Thus, peeusing-directives do not affect each other, and the order in which they are
written is insignificant.

16.3.1 Using alias directives

A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contasimgjaalias-directive,
the identifier introduced by thesing-alias-directive can be used to reference the given namespace or type.
[Example: For example:

namespace N1.N2

class A {}

namespace N3

using A = N1.N2.A;
class B: A {}

Above, within member declarations in tN8 namespace is an alias foN1.N2.A, and thus class3.B
derives from clas81.N2.A. The same effect can be obtained by creating an Rlfas N1.N2 and then
referencingr . A:

namespace N3
using R = N1.N2;
class B: R.A {}

end exampl €]

Theidentifier of ausing-alias-directive must be unique within the declaration space of the compilation unit
or namespace that immediately containsusieg-alias-directive. [Example: For example:

namespace N3

class A {}

namespace N3

using A = N1.N2.A; // Error, A already exists

Above,N3 already contains a member A, so it is a compile-time error fasilag-alias-directive to use that
identifier. end example] Likewise, it is a compile-time error for two or moreing-alias-directives in the
same compilation unit or namespace baadyleclare aliases by the same name.

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but
it does not contribute any new members to the underlying declaration space. In other werdg;atias-

205

o © 00N o0~ W N -

=

12
13
14

15

16
17
18
19

20
21
22
23

24

25
26

27

28
29
30

31
32

33
34

35
36
37
38
39

40

41
42
43

44

45
46

a7
48

49
50

C#LANGUAGE SPECIFICATION

directiveis not transitive, but, rather, affects only the compilation unit or namespace body in which it occurs.

[Example: In the example
namespace N3

using R = N1.N2;

namespace N3

class B: R.A {} // Error, R unknown

the scope of thesing-alias-directive that introduce® only extends to member declarations in the
namespace body in which it is contained Rsie unknown in the second namespace declaration. However,
placing theusing-alias-directive in the containing compilation unit causes the alias to become available
within both namespace declarations:

using R = N1.N2;
namespace N3

class B: R.A {}

namespace N3

class C: R.A {}

end exampl €]
Just like regular members, names introducedidgg-alias-directives are hidden by similarly named
members in nested scopeBxgmple: In the example

using R = N1.N2;

namespace N3

class R {}
class B: R.A {} // Error, R has no member A

the reference ta. A in the declaration oB causes a compile-time error becaasefers toN3 . R, not
N1.N2. end example]

The order in whiclusing-alias-directives are written has no significance, and resolution ofrilr@espace-
or-type-name referenced by asing-alias-directive is not affected by thesing-alias-directive itself or by
otherusing-directives in the immediately containing compilation unit or namespace body. In other words,
the namespace-or-type-name of a using-alias-directive is resolved as if the immediately containing
compilation unit or namespace body hadusmng-directives. [Example: In the example

namespace N1.N2 {}
namespace N3

using R1 = N1; // OK
using R2 = N1.N2; // OK
using R3 = R1.N2; // Error, R1 unknown

the lastusing-alias-directive results in a compile-time error because it is not affected by theurag-alias-
directive. end example]

A using-alias-directive can create an alias for any namespace or type, including the namespace within which

it appears and any namespace or type nested within that namespace.

206

o N o0~ W N -

11
12
13
14
15
16
17

18
19

20

21
22

23
24

25
26
27
28

29
30

31
32
33

34
35

36
37

38
39
40
41

42
43

44
45
46

47
48

49
50
51

52
53

Chapter 16 Namespaces

Accessing a namespace or type through an alias yields exactly the same result as accessing that namespace
or type through its declared namé&xpmple: For example, given

namespace N1.N2

class A {}

namespace N3

using R1 = N1;
using R2 = N1.N2;
class B
N1.N2.A a; // refers to N1.N2.A
R1.N2.A b; // refers to N1.N2.A
) R2.A C; // refers to N1.N2.A

3

the namesi1.N2.A, R1.N2.A, andR2.A are equivalent and all refer to the class whose fully qualified
name isN1.N2.A. end example]

16.3.2 Using namespace directives

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:
using hamespace-name ;

Within member declarations in a compilation unit or namespace body that contasimg-anamespace-
directive, the types contained in the given namespace can be referenced ditexdlyple: For example:

namespace N1.N2

class A {}

namespace N3

using N1.N2;
class B: A {}

Above, within member declarations in tN8 namespace, the type memberaai N2 are directly
available, and thus class . B derives from class1.N2.A. end exampl€]

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaceBxample: In the example

namespace N1.N2

class A {}

namespace N3

using N1;
class B: N2.A {} // Error, N2 unknown

the using-namespace-directive imports the types contained i1, but not the namespaces nestedin Thus,
the reference tai2. A in the declaration oB results in a compile-time error because no members narded
are in scopeend example€]

Unlike ausing-alias-directive, a using-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit samespace body. In effect, names imported bgiag-

207

@ ~N o g b w N -

©

11
12

13

14
15
16
17
18

19
20

21
22
23
24

25
26
27

28

29
30

31
32
33

34
35
36

37
38
39

41

42
43
44

45
46
a7

48
49

C#LANGUAGE SPECIFICATION

namespace-directive are hidden by similarly named members in the enclosing compilation unit or
namespace bodyEkample: For example:

namespace N1.N2

class A {}
class B {}

namespace N3

using N1.N2;
class A {}

Here, within member declarations in tk@ namespacey refers toN3. A rather tharN1.N2 . A. end example]

When more than one namespace importedddgg-namespace-directives in the same compilation unit or
namespace body contain types by the same naneerefes to that name are considered ambiguous.
[Example: In the example

namespace N1

class A {}

namespace N2

class A {}

namespace N3

using N1;
using N2;
class B: A {} // Error, A is ambiguous

bothN1 andN2 contain a membex, and because3 imports both, referencing in N3 is a compile-time

error.end exampl€] In this situation, the conflict can be resolved either through qualification of references

to A, or by introducing aising-alias-directive that picks a particulas. [Example: For example:
namespace N3

using N1;
using N2;
using A = N1.A;
) class B: A {} // A means N1.A
end example]

Like ausing-alias-directive, a using-namespace-directive does not contribute any new members to the

underlying declaration space of the compilation unihamespace, but, rather, affects only the compilation

unit or namespace body in which it appears.

The namespace-name referenced by asing-namespace-directive is resolved in the same way as the
namespace-or -type-name referenced by asing-alias-directive. Thus,using-namespace-directives in the
same compilation unit or namespace body do not affect each other and can be written in any order.

16.4 Namespace members
A namespace-member-declaration is either anamespace-declaration (816.2) or atype-declaration (816.5).

208

10

11
12

13
14
15
16
17
18

19
20

21
22
23
24

25

26
27

28
29

30
31

32
33

Chapter 16 Namespaces

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member -decl ar ation:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contamespace-member-declarations, and such
declarations contribute new members to the underldimgjaration space of the containing compilation unit
or namespace body.

16.5 Type declarations

A type-declaration is aclass-declaration (817.1), astruct-declaration (818.1), arinterface-declaration
(820.1), arenum-declaration (821.1), or adelegate-declaration (§22.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration
within a namespace, class, or struct.

When a type declaration for a typeoccurs as a top-level declaration in a compilation unit, the fully
gualified name of the newly declared type is simplywWhen a type declaration for a typeoccurs within a
namespace, class, or struct, the fully qualified name of the newly declared type, iwhereN is the fully
gualified name of the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (§17.2.6).

The permitted access modifiers and the default accesstigpe declaration depend on the context in which
the declaration takes place (§10.5.1):

» Types declared in compilation units or namespaces canfaykic or internal access. The default
isinternal access.

e Types declared in classes can haudlic, protected internal, protected, internal, or
private access. The default ivate access.

» Types declared in structs can hgueb1ic, internal, orprivate access. The default jgivate
access.

209

a b~ WODN

10
11
12
13

14
15

16
17
18

19
20
21
22
23
24
25
26

27

28
29
30

31
32
33

34

35

36
37

Chapter 17 Classes

17. Classes

A class is a data structure that may contain daganipers (constants and fields), function members
(methods, properties, events, indexeggmtors, instance constructors, tlestors, and static constructors),
and nested types. Class types support inheritance, a mechanism wheeetveaclass can extend and
specialize dase class.

17.1 Class declarations
A class-declaration is atype-declaration (816.5) that declares a new class.

class-declaration:
attributes,,y class-modifiers,: class identifier class-basey, class-body ;o

A class-declaration consists of an optional set aftributes (824), followed by an optional set ofass-
modifiers (§17.1.1), followed by the keywordlass and andentifier that names the class, followed by an
optionalclass-base specification (817.1.2), followed bydaass-body (§17.1.3), optionally followed by a
semicolon.

17.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
pubTic
protected
internal
private
abstract
sealed

It is a compile-time error for the same modifier to appear multiple times in a class declaration.

Thenew modifier is permitted on nested classes. It sfiesithat the class hides an inherited member by the
same name, as described in §10.2.2. It is a compile-time error forethenodifier to appear on a class
declaration that is not a nested class declaration.

Thepublic, protected, internal, andprivate modifiers control the accessibility of the class.
Depending on the context in which the class detian occurs, some of these modifiers may not be
permitted (§810.5.1).

Theabstract andsealed modifiers are discussed in the following sections.

17.1.1.1 Abstract classes

Theabstract modifier is used to indicate that a class is incomplete and that it is intended to be used only

as a base class. Aabstract class differs from anon-abstract classin the following ways:

211

C#LANGUAGE SPECIFICATION

» An abstract class cannot be instantiated directly, and it is a compile-time error to ussvtbperator on
an abstract class. While it is possible to have variables and values whose compile-time types are abstract,
such variables and values will necessarily eithenb&l] or contain references to instances of non-abstract

A W N P

10
11
12
13

14
15
16
17

18
19
20
21
22
23

24
25
26
27

28

29
30

31

32
33
34
35

36

37
38

39
40
41
42

43
44
45

classes derived from the abstract types.

When a non-abstract class is derived from an abstiast, the non-abstract class must include actual
implementations of all inherited abstract membénereby overriding those abstract membeEsample: In

the

the abstract classintroduces an abstract methsdClassB introduces an additional methaxl but since it
doesn't provide an implementation BfB must also be declared abstract. ClassserridesrF and provides
an actual implementation. Since there are no abstract membeys is permitted (but not required) to be

An abstract class is permitted (but not required) to contain abstract members.

An abstract class cannot be sealed.

example
abstract class A

public abstract void FQ;

abstract class B: A

public void GO {}

class C: B

public override void F() {

// actual implementation of F

3

non-abstractend example]

17.1.1.2 Sealed classes

The sealed modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed
class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

[Note: Thesealed modifier is primarily used to prevent unintended derivation, but it also enables certain
run-time optimizations. In particular, because a sealed class is known to never have any derived classes, it is
possible to transform virtual function member invboas on sealed class instances into non-virtual

invocations end note]

17.1.2 Class base specification

A class declaration may includeckass-base specification, which defines the direct base class of the class
and the interfaces (820) implemented by the class.

212

class-base:
class-type

interface-type-list

class-type ,

interface-type-list:
interface-type
interface-type-list

interface-type-list

interface-type

A WDN

[¢)]

10
11

12
13

14
15
16

17
18

19
20
21
22
23
24
25
26

27

28

29
30
31
32

33
34
35

36
37
38
39

40
41
42

43
44
45

46

Chapter 17 Classes

17.1.2.1 Base classes

When aclass-typeis included in theclass-base, it specifies the direct base class of the class being declared.
If a class declaration has mbass-base, or if the class-base lists only interface types, the direct base class is
assumed to bebject. A class inherits members from its direct base class, as described in 817.2.1.

[Example: In the example
class A {}
class B: A {}

classaA is said to be the direct base classpandB is said to be derived from. SinceA does not explicitly
specify a direct base class, its direct base class is impligitiect. end example]

The direct base class of a class type must be at least as accessible as the class type itself (§10.5.4). For
example, it is a compile-time error forpaub11 c class to derive from arivate or internal class.

The direct base class of a class type must not be any of the following typesem. Array,
System.Delegate, System.Enum, Or System.valueType.

The base classes of a class are the direct base class and its base classes. In other words, the set of base
classes is the transitive closure of the direct base class relationdbip. Referring to the example above,
the base classes BfareA andobject. end note]

Except for clas®bject, every class has exactly one direct base classoblject class has no direct base
class and is the ultimate base class of all other classes.

When a class derives from a class, it is a compile-time error foa to depend ors. A classdirectly

depends on its direct base class (if any) anlitectly depends on the class within which it is immediately
nested (if any). Given this definition, the complete sketlasses upon which a class depends is the transitive
closure of thadirectly depends on relationship.

[Example: The example
class A: B {}
class B: C {}
class c: A {}
is in error because the classes circularly depend on themselves. Likewise, the example
class A: B.C {}
class B: A

pubTic class C {}

results in a compile-time error becausdepends oB. C (its direct base class), which dependssofits
immediately enclosing class), which circularly depends oenfi.example]

Note that a class does not depend on the classes that are nested wilxaniplg: In the example

class A

class B: A {}

B depends om (becausa is both its direct base class and its immediately enclosing class), dngs not
depend orB (sinceB is neither a base class nor an enclosing clagg.ofhus, the example is valignd
example]

It is not possible to derive from sealed class. Example: In the example
sealed class A {}
class B: A {} // Error, cannot derive from a sealed class

classB results in a compile-time error because it attempts to derive froradhéed class A.end example]

213

10

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

26

27

28

29

30
31

32

33

34

35

36
37

38

39

40
41
42

C#LANGUAGE SPECIFICATION

17.1.2.2 Interface implementations

A class-base specification may include a list of interface types, in which case the class is said to implement

the given interface types. Interface implentations are discussed further in §20.4.

17.1.3 Class body
Theclass-body of a class defines the members of that class.

class-body:
{ class-member-declarationsy, }

17.2 Class members

The members of a class consist of the members introduced tpssmember-declarations and the
members inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:
» Constants, which represent constaritiea associated with that class (817.3).

* Fields, which are the variables of that class (817.4).

Methods, which implement the computations and actions that can be performed by that class (817.5).

Properties, which define named characteristics aadttions associated with reading and writing those

characteristics (817.6).

Events, which define notifications that can be generated by that class (817.7).

Indexers, which permit instances of that class to be indexed in the same way as arrays (817.8).
Operators, which define the expression operatasdhn be applied to instances of that class (§17.9).
Instance constructors, which implement the acti@wgiired to initialize instances of that class (§817.10)

Destructors, which implement the actions to be pented before instances of that class are permanently

discarded (817.12).

Static constructors, which implement the actioeguired to initialize that class itself (§17.11).

Types, which represent the types that are local to that class (§16.5).

Members that can contain executable code are collectively known &attieon members of the class. The
function members of a class are the hwats, properties, events, indexayperators, instance constructors,
destructors, and static constructors of that class.

214

10
11

12
13

14
15

16
17

18
19
20

21

22
23
24

25
26

27
28

29
30
31

32
33
34

35
36
37
38

39
40
4
42

43

44
45

Chapter 17 Classes

A class-declaration creates a new declaration space (810.3), and|#ss-member-declarations
immediately contained by thetass-declaration introduce new members into this declaration space. The
following rules apply toclass-member-declarations:

» Instance constructors, destructors, and statictooct®rs must have the same name as the immediately
enclosing class. All other members must have namegsdiffer from the name of the immediately enclosing
class.

» The name of a constant, field, property, eventtype must differ from the names of all other members
declared in the same class.

« The name of a method must differ from the names of all other non-methods declared in the same class.
In addition, the signature (810.6) of a method muffedifrom the signatures of all other methods declared
in the same class.

» The signature of an instance constructor must difiem the signatures of all other instance constructors
declared in the same class.

» The signature of an indexer must differ from thgretures of all other indexers declared in the same
class.

e The signature of an operator must differ from the stgnes of all other operators declared in the same
class.

The inherited members of a class (817.2.1)ravepart of the declaration space of a claditg: Thus, a
derived class is allowed to declare a member with the same name or signature as an inherited member
(which in effect hides the inherited membeai)d note]

17.2.1 Inheritance

A classinheritsthe members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the instaogstructors, destructqrand static constructors of
the base class. Some importaspects of inheritance are:

* |nheritance is transitive. if is derived from B, and@ is derived from A, thert inherits the members
declared irB as well as the members declared in A.

 Aderived clasextendsits direct base class. A derived class can add new members to those it inherits,
but it cannot remove the definition of an inherited member.

* Instance constructors, destructors, and statictoacters are not inherited, but all other members are,
regardless of their declared accessibility (§10.5). ideer, depending on their declared accessibility,
inherited members might not be accessible in a derived class.

» Aderived class cahide (§10.7.1.2) inherited members by declaring new members with the same name
or signature. Note however that hiding an inheriteghmber does not remove that member—it merely makes
that member inaccessible in the derived class.

* Aninstance of a class contains a set of all instance fields declared in the class and its base classes, and
an implicit conversion (813.1.4) exists from a derived class type to any of its base class types. Thus, a

reference to an instance of some derived class can be treated as a reference to an instance of any of its base

classes.

» Aclass can declare virtual methods, propertée®] indexers, and derived classes can override the
implementation of these function members. This eeslblasses to exhibit polymorphic behavior wherein
the actions performed by a function member int@ravaries depending on the run-time type of the
instance through which that function member is invoked.

17.2.2 The new modifier

A class-member-declaration is permitted to declare a member with the same name or signature as an
inherited member. When this occurs, the derived class member is daidetthe base class member. Hiding

215

(&)]

© 00 N O

10

11

12
13
14
15

16

17
18
19

20
21
22

23
24

25
26

27
28

29
30
31

32
33

34

35
36

37

38
39
40
41

42
43
44
45

C#LANGUAGE SPECIFICATION

an inherited member is not considered an error, but it does cause the compiler to issue a warning. To
suppress the warning, the declaration of the derived class member can inelesenadifier to indicate
that the derived member is intended to hide the base member. This topic is discussed further in 810.7.1.2.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning to that effect
is issued. This warning is suppressed by removinghtvemodifier.

17.2.3 Access modifiers

A class-member-declaration can have any one of the five possible kinds of declared accessibility (810.5.1):
public, protected internal, protected, internal, orprivate. Except for theprotected

internal combination, it is a compile-time error to specify more than one access modifier. Wihass-a
member-declaration does not include any access modifigrs; vate is assumed.

17.2.4 Constituent types

Types that are used in the declaration of a member are calleiisgtuent types of that member. Possible
constituent types are the type of a constant, field, ptypevent, or indexer, the return type of a method or
operator, and the parameter types of a method, indeperator, or instance constructor. The constituent
types of a member must be at least as accessible as that member itself (§10.5.4).

17.2.5 Static and instance members

Members of a class are eithgatic members or instance members. [Note: Generally speaking, it is useful
to think of static members as belonging to classes and instance members as belonging to objects (instances
of classes)end note]

When a field, method, property, event, operator, or constructor declaration incledas ac modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member.
Static members have the following characteristics:

* When a static member is referenced imamber-access (814.5.4) of the fornk .M, E must denote a type
that has a membey. It is a compile-time error foE to denote an instance.

» Astatic field identifies exactly one storage location. No matter how many instances of a class are
created, there is only ever one copy of a static field.

» A static function member (method, property, eyergerator, or constructor) does not operate on a
specific instance, and it is a compile-time error to refethid s in such a function member.

When a field, method, property, event, indexer, cargtr, or destructor declaration does not include a
static modifier, it declares an instance member. (Astance member is sometimes called a non-static
member.) Instance members have the following characteristics:

* When an instance member is referenced meeber-access (814.5.4) of the fornk . ™, E must denote
an instance of a type that has a membédt is a compile-time error foE to denote a type.

» Every instance of a class contains a separate set of all instance fields of the class.

* Aninstance function member (method, property, indeketance constructor, or destructor) operates
on a given instance of the class, and this instance can be acceadek4814.5.7).

[Example: The following example illustrates the rsléor accessing static and instance members:
class Test

int x;
static int y;
void FO {
X = 1; // Ok, same as this.x =1
) y = 1; // Ok, same as Test.y = 1

216

0 ~N O O A WNBE

e el =
WNPO®

14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31

32
33

34

35
36

37

38
39
40

4
42
43

44
45

46

Chapter 17 Classes

static void GO {)
X 1; // Error, cannot access this.x
y 1; // Ok, same as Test.y =1

}

static void Main() {
Test t = new Test();
X

t.x = 1; // 0ok

t.y = 1; // Error, cannot access static member through
instance

Test.x = 1; // Error, cannot access instance member through type

Test.y = 1; // ok

}

The F method shows that in an it@ce function member,smple-name (814.5.2) can be used to access
both instance members and static members.Gl'tmethod shows that in a static function member, it is a
compile-time error to access an instance member throsghphe-name. TheMain method shows that in a

member-access (814.5.4), instance members must be accessed through instances, and static members must

be accessed through typead example]

17.2.6 Nested types

A type declared within a class or struct is calledested type. A type that is declared within a compilation
unit or namespace is callechan-nested type. [Example: In the following example:

using System;
class A

{

class B

static void FQ {.
console.writeLine("A.B.F");

}
}

classB is a nested type because it is declared within chassd clasa is a non-nested type because it is
declared within a compilation uniend example]

17.2.6.1 Fully qualified name

The fully qualified name (810.8.1) for a nested typs i& wheres is the fully qualified name of the type in
which typeN is declared.

17.2.6.2 Declared accessibility

Non-nested types can have public or internal dedarccessibility and they internal declared accessibility
by default. Nested types can have these forms of declared accessibility too, plus one or more additional
forms of declared accessibility, depending on whether the containing type is a class or struct:

* Anested type that is declared in a class can have any of five forms of declared accessibility (public,
protected internal, protected, internal, or private)l dike other class members, defaults to private declared
accessibility.

* Anested type that is declared in a struct can have any of three forms of declared accessibility (public,
internal, or private) and, like other struct meenb, defaults to private declared accessibility.

[Example: The example

217

O~NOOhAWNBE

23

24
25

26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47

48

49

50
51
52
53
54

C#LANGUAGE SPECIFICATION

public class List

// Private data structure
private class Node

public object Data;

public Node Next;

public Node(object data, Node next) {
this.Data = data;
this.Next = next;

}

private Node first = null;
private Node Tlast = null;

// Public interface
public void AddToFront(object o) {.}
public void AddToBack(object o) {..}
public object RemoveFromFront() {..}
public object AddToFront() {.}

) public int Count { get {.} }

declares a private nested clagsle. end example]

17.2.6.3 Hiding

A nested type may hide (810.7.1.1) a base membern&wemodifier is permitted on nested type
declarations so that hiding can be expressed explicEyarple: The example

using System;
class Base

public static void M() {
console.writeLine("Base.M");

3

class Derived: Base
new public class M

public static void F() {
Console.writeLine("Derived.M.F");

}
}

class Test

static void Main() {
Derived.M.F(Q);

}
}

shows a nested clagghat hides the methaddefined inBase. end example]

17.2.6.4 this access

A nested type and its containing type do not have a special relationship with reghisldocess (814.5.7).
Specifically,this within a nested type cannot be used to refeinstance members of the containing type.

In cases where a nested type needs access to the instance members of its containing type, access can be
provided by providing thehis for the instance of the containing type as a constructor argument for the
nested type.Bxample: The following example

218

O~NOOhAWNBE

11
12
13
14
15
16
17
18

19
20
21
22
23

25
26

27

28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48

49
50

51
52

53
54
55
56
57
58
59

Chapter 17 Classes

using System;
class C

t . .
int 1 = 123;

public void FQ {
Nested n = new Nested(this);

n.cQ;
pubTic class Nested {
C this_c;
public Nested(C c) {
this_c = c;

3
public void GO {
console.writeLine(this_c.1i);

}
}

class Test {
static void Main() {
C c =new CQ;
c.FQO;

}

shows this technique. An instance®treates an instance Bésted, and passes its owthis to Nested's
constructor in order to provide subsequent accessstmstance memberand exampl]

17.2.6.5 Access to private and protected members of the containing type

A nested type has access to all of the members that aessibee to its containing type, including members
of the containing type that have private and protected declared accessiBi#yngle: The example

using System;

class C

{
private static void FQ) {
Console.writeLine("C.F");
pubTic class Nested

public static void GO {

FO;
}
}
class Test
static void Main() {
C.Nested.GQ);
}

shows a class that contains a nested classsted. Within Nested, the methods calls the static method
defined inC, andF has private declared accessibilignd exampl €]

A nested type also may access protected members defined in a base type of its containifgadympte] In
the example

using System;

class Base

{
protected void F() {
console.writeLine('"Base.F");

219

O~NOOhAWNBE

=
o ©

RPRRR R R R
NOoO UM WN PR

Il
© ©

20

21
22
23
24
25

26
27
28

29

30
31

32
33

34
35

36

37

38
39

40
41

42
43

44
45
46
47
48
49

C#LANGUAGE SPECIFICATION

class Derived: Base
pubTic class Nested

public void GO {
Derived d = new Derived();

d.FO; // ok

}
}

class Test

static void Main() {]
Derived.Nested n = new Derived.Nested();
n.cQ;

3

the nested clagserived.Nested accesses the protected methrodefined inDerived's base clas®ase,
by calling through an instance perived. end exampl €]

17.2.7 Reserved member names

To facilitate the underlying C# runtime implementation, for each source member declaration that is a
property, event, or indexer, the implementation tmaserve two method signatures based on the kind of the
member declaration, its name, and its type (817.2.7.1, 817.2.7.2, §17.2.7.3). It is a compile-time error for a
program to declare a member whose signature matches one of these reserved signatures, even if the
underlying runtime implementation d®aot make use of these reservations.

The reserved names do not introduce declarations,ttiey do not participate in member lookup. However,
a declaration’s associated reserved method sigesitlo participate in inheritance (817.2.1), and can be
hidden with the new modifier (§17.2.2).

[Note: The reservation of these names serves three purposes:

1. To allow the underlying implementation to use adinary identifier as a method name for get or set
access to the C# language feature.

2. To allow other languages to interoperate usingramary identifier as a method name for get or set
access to the C# language feature.

3. To help ensure that the source acceptedr®yanforming compiler is accepted by another, by
making the specifics of reserved member names consistent across all C# implementations.

end note]

The declaration of a destructor (817.12) also causes a signature to be reserved (817.2.7.4).

17.2.7.1 Member Names Reserved for Properties
For a propertyr (817.6) of typer, the following signatures are reserved:

T get_PQ);
void set_P(T value);

Both signatures are reserved, everhé property is read-only or write-only.
[Example: In the example

using System;

class A {

public int P {
get { return 123; }

220

© ~NOoO b~ WNPE

PR RR R R R
NO UM WNERO®

18
19

20
21
22

23

24
25

26
27

28
29

30
31

32

33
34
35

36

37
38

39
40

41
42
43

44
45
46
47
48
49

Chapter 17 Classes

class B: A {
new public int get_P(Q) {
return 456;

new public void set_P(int value) {

}

class Test

static void Main() {
B b =new BQ;
A a = b;
console.writeLine(a.P);
console.writeLine(b.P);
) Console.writeLine(b.get_P(Q));
3

a classA defines a read-only propery thus reserving signatures fget_pP andset_P methods. A class
derives froma and hides both of these reserved signatures. The example produces the output:

123
123
456

end example]

17.2.7.2 Member Names Reserved for Events
For an event (817.7) of delegate typg, the following signatures are reserved:

void add_E(T handler);
void remove_E(T handler);

17.2.7.3 Member Names Reserved for Indexers

For an indexer (817.8) of typewith parameter-list, the following signatures are reserved:

T get_Item(L);
void set_Item(L, T value);

Both signatures are reserved, even if the indexer is read-only or write-only.

17.2.7.4 Member Names Reserved for Destructors
For a class containing a destructor (817.12), the following signature is reserved:
void Finalize();

17.3 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time.

A constant-declaration introduces one or more constants of a given type.

constant-declaration:
attributes,,y constant-modifiers,x const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
pubTic
protected
internal
private

221

(&)]

© 00 N O

10

11
12
13
14

15
16
17
18

19

20
21

22
23
24

25
26
27
28

29
30
31
32

33
34
35
36

37
38

39

40
41
42
43
44
45

46

47
48
49

C#LANGUAGE SPECIFICATION

constant-declarators:
constant-decl arator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

A constant-declaration may include a set ddttributes (824), anew modifier (817.2.2), and a valid

combination of the four access modifiers (§17.2.3). The attributes and modifiers apply to all of the members
declared by theonstant-declaration. Even though constants are considered static membeossiant-

declaration neither requires nor allowsstatic modifier. It is an error for the same modifier to appear
multiple times in a constant declaration.

Thetype of a constant-declaration specifies the type of the members introduced by the declaration. The type
is followed by a list ofconstant-declarators, each of which introduces a new membeicoistant-declarator
consists of andentifier that names the member, followed by a#f token, followed by aconstant-

expression (814.15) that gives the value of the member.

Thetype specified in a constant declaration mustdbgte, byte, short, ushort, int, uint, long,

ulong, char, float, double, decimal, bool, string, anenum-type, or areference-type. Eachconstant-
expression must yield a value of the target type or of a type that can be converted to the target type by an
implicit conversion (813.1).

Thetype of a constant must be at least as accessible as the constant itself (810.5.4).

The value of a constant is obtained in an expression usitge-name (§14.5.2) or anember-access
(814.5.4).

A constant can itself participate incanstant-expression. Thus, a constant may be used in any construct that
requires aconstant-expression. [Note: Examples of such constructs includase labels,goto case
statementsenum member declarations, attributes, and other constant declaratiwhsote]

[Note: As described in §14.15, @nstant-expression is an expression that can be fully evaluated at compile-
time. Since the only way to create a non-null value offarence-type other thanstring is to apply the

new operator, and since theew operator is not permitted in@nstant-expression, the only possible value

for constants of eference-types other thanstring isnul1. end note]

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a
constant declaration, or when the value cannot be computed at compile-tinmihstamnt-expression, a

readonTy field (§817.4.2) may be used insteabliofe: The versioning semantics abnst andreadonly

differ (817.4.2.2)end-note]

A constant declaration that declares multiple comistés equivalent to multiple declarations of single
constants with the same attributes, modifiers, and typarfiple: For example

class A

pubTic const double X 1.0, Y = 2.0, z = 3.0;

is equivalent to
class A
pubTic const double X

pubTlic const double Y
public const double z

I
WN =
[elele)

end exampl €]

Constants are permitted to depend on other constattiiBmhe same program as long as the dependencies
are not of a circular nature. The compiler automaticatyanges to evaluate the constant declarations in the
appropriate order Hxample: In the example

222

© 0 ~NO® a b wN ek

10
11
12
13
14

15

16
17

18
19

20
21
22

23
24
25
26
27
28
29
30
31

32
33
34

35
36
37

38
39
40

41
42
43
44
45
46

a7
48
49
50

Chapter 17 Classes

class A
public const int X = B.Z + 1;
public const int Y = 10;

class B

public const int Zz = A.Y + 1;

the compiler first evaluates. Y, then evaluateB. z, and finally evaluates. X, producing the value$0, 11,
and12. end example] Constant declarations may depend on constants from other programs, but such
dependencies are only possible in one directiBraple: Referring to the example above AfandB were
declared in separate programs, it would be possibla farto depend om. z, butB. z could then not
simultaneously depend an Y. end example]

17.4 Fields

A field is a member that represents a variable associated with an object or cfasd-declaration
introduces one or more fields of a given type.

field-declaration:
attributesy,y field-modifiers,, type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected
internal
private
static
readonly
volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:

identifier

identifier = variable-initializer
variable-initializer:

expression

array-initializer

A field-declaration may include a set ddttributes (§24), anew modifier (§17.2.2), a valid combination of

the four access modifiers (817.2.3), ansitatic modifier (§17.4.1). In addition, field-declaration may
include areadonTy modifier (817.4.2) or aolatile modifier (§17.4.3), but not both The attributes and
modifiers apply to all of the members declared by filekd-declaration. It is an error for the same modifier

to appear multiple times inféeld declaration. It is an error for the same modifier to appear multiple times in
a field declaration.

Thetype of afield-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list ofvariable-declarators, each of which introduces a new membewrahiable-declarator
consists of andentifier that names that member, optionally followed by a#itoken and avariable-

initializer (817.4.5) that gives the initial value of that member.

223

a b~ WON

= O © 0 ~N O

o

13
14
15
16
17
18

19

20

21
22
23
24

25
26
27

28
29

30
31

32

33

34
35
36
37
38

39
40

41
42
43

44
45

C#LANGUAGE SPECIFICATION

Thetype of a field must be at least as accessible as the field itself (§10.5.4).

The value of a field is obtained in an expression usisggle-name (814.5.2) or anember-access
(814.5.4). The value of a non-readonly field is modified usingsagnment (814.13). The value of a non-

readonly field can be both obtained and modified ugingtfix increment and decrement operators (§14.5.9)

and prefix increment and decrement operators (§814.6.5).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the

same attributes, modifiers, and typExgmple: For example
class A

pubTlic static int X = 1, Y, z = 100;

is equivalent to
class A
public static int X

public static 1int Y;
public static int z = 100;

Il
=

end exampl €]

17.4.1 Static and instance fields

When a field declaration includessaatic modifier, the fields introduced by the declaration siagic
fields. When nostatic modifier is present, the fields introduced by the declarationirastance fields.
Static fields and instance fields are two of the sal/kinds of variables (§12) supported by C#, and at times
they are referred to asatic variables andinstance variables, respectively.

A static field is not part of a specific instance; instead, it identifies exactly one storage location. No matter

how many instances of a class are created, there ysemalr one copy of a static field for the associated
application domain.

An instance field belongs to an instance. Specifically yguestance of a class contains a separate set of all
the instance fields of that class.

When a field is referenced inreember-access (814.5.4) of the fornk . M, if M is a static field g must denote
a type that has a field, and ifm is an instance fieldg must denote an instance of a type that has a field

The differences between static and instanesnbers are discussed further in §17.2.5.

17.4.2 Readonly fields

When afield-declaration includes areadon1y modifier, the fields introduced by the declaration are
readonly fields. Direct assignments to readonly fields can only occur as part of that declaration or in an
instance constructor or static constructor in th@mea&lass. (A readonly field can be assigned to multiple
times in these contexts.) Specifically, direct assignmentsteagonly field are permitted only in the
following contexts:

* Inthevariable-declarator that introduces the field (by includingvariable-initializer in the
declaration).

» For an instance field, in the instance constructorthefclass that contains the field declaration; for a
static field, in the static constructor of the class thaitains the field declaration. These are also the only
contexts in which it is valid to passr@adony field as anout or ref parameter.

Attempting to assign to aeadonly field or pass it as anut or ref parameter in any other context is a
compile-time error.

224

22

23
24
25
26

27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50

51

52
53
54

Chapter 17 Classes

17.4.2.1 Using static readonly fields for constants

A static readonTy field is useful when a symbolic name for a constant value is desired, but when the
type of the value is not permitted in@nst declaration, or when the value cannot be computed at compile-
time. [Example: In the example

pubTlic class Color

public static readonly Color Black = new Color(0, 0, 0);
pubTlic static readonly Color white = new Color(255, 255, 255);
pubTlic static readonly Color Red = new Color(255, 0, 0);
public static readonly Color Green = new Color(0, 255, 0);
pubTic static readonly Color Blue = new Color(0, 0, 255);

private byte red, green, blue;
public color(byte r, byte g, byte b) {
red = r;
green = g;
bTue = b;
}
}

theBTack, white, Red, Green, andBlue members cannot be declaredasmst members because their

values cannot be computed at compile-time. However, declaring sttenti c readonly instead has much
the same effecend example]

17.4.2.2 Versioning of constants and static readonly fields

Constants and readonly fields have different binamgioming semantics. When an expression references a
constant, the value of the constémbbtained at compile-time, but when an expression references a readonly
field, the value of the field is not obtained until run-timé&xpmple: Consider an application that consists of
two separate programs:

using System;
namespace Programl

pubTic class Utils
public static readonly int X = 1;
}

namespace Program?2
class Test

static void Main() { _
Console.wWriteLine(Programl.utils.X);

}
}

ThepPrograml andProgram2 namespaces denote two programs that are compiled separately. Because
Programl.Utils.Xis declared as a static readonly field, the value output by tinsoTe.writeLine
statement is not known at compile-time, but etfs obtained at run-time. Thus, if the valuexao changed
andprograml is recompiled, th&€onsole.writeL1ine statement will output the new value even if
Program2 isn't recompiled. However, hadbeen a constant, the valuexfvould have been obtained at
the timeProgram2 was compiled, and would remain unaffected by changesagraml until Program2

is recompiledend example]

17.4.3 Volatile fields

When afield-declaration includes avolatile modifier, the fields introduced by that declaration are
volatile fields. For non-volatile fields, optimization teaiques that reorder instructions can lead to
unexpected and unpredictable results in multi-thregatedrams that access fields without synchronization

225

10

11

12

13

14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37

39
40

4
42
43
44
45
46
47

48

49
50
51

C#LANGUAGE SPECIFICATION

such as that provided by tteck-statement (§15.12). These optimizations can be performed by the compiler,
by the runtime system, or by hardware. For volatiled#lsuch reordering optimizations are restricted:

» Aread of avolatile field is called golatile read. A volatile read has “acquire semantics”; that is, it is
guaranteed to occur prior to any references to merttayoccur after it in the instruction sequence.

» Awrite of a volatile field is called aolatile write. A volatile write has “release semantics”; that is, it is
guaranteed to happen after any memory references prior to the write instruction in the instruction sequence.

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the
order in which they were performed. A conforming irapientation is not required to provide a single total
ordering of volatile writes as seen from all threadiexecution. The type of a volatile field must be one of
the following:

* A reference-type.
* Thetypebyte, sbyte, short, ushort, int, uint, char, float, orbooT.
* An enum-type having an enum base typeloyte, sbyte, short, ushort, int, oruint.

[Example: The example

using System;]
using System.Threading;
class Test

{
public static int result;
public static volatile bool finished;
static void Thread2() {
result = 143;
finished = true;
static void Main() {
finished = false;
// Run Thread2() in a new thread
new Thread(new Threadstart(Thread2)).start(Q);
// wait for Thread2 to signal that it has a result by setting
// finished to true.
for (;;) {
if (finished) {
Console.writeLine("result = {0}", result);
return;
ks
3
3
produces the output:
result = 143

In this example, the methadain starts a new thread that runs the methtb#tead2. This method stores a
value into a non-volatile field calledesult, then storesrue in the volatile fieldfinished. The main
thread waits for the fieldinished to be set tatrue, then reads the fieldesult. Sinceresult has been
declaredvolatile, the main thread must read the value 143 from the firelslul t. If the field finished
had not been declarad1atile, then it would be permissible for the storertesult to be visible to the
main threadafter the store tofinished, and hence for the main thread to read the value 0 from the field
result. Declaringfinished as avolatile field prevents any such inconsisteneyid example]

17.4.4 Field initialization

The initial value of a field, whether it be a static fieldan instance field, is the default value (§12.2) of the
field’s type. It is not possible to observe the value ofedd before this default initialization has occurred,
and a field is thus never “uninitialized’"Ekample: The example

226

O © 0o ~NO a b wN ek

=

12

13

14

15
16
17

18

19
20
21
22
23
24

25
26
27
28
29

30
31

32
33

34
35
36
37
38

39
40

41
42
43
44
45

46
47
48
49

50
51

Chapter 17 Classes

using System;
class Test

static bool b;
int i;
static void Main() {

Test t = new Test();
console.writeLine("b = {0}, i = {1}", b, t.i);

}

produces the output
b = False, i =0
becausd andi are both automatically initialized to default valuesd example]

17.4.5 Variable initializers

Field declarations may includeriable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed during clitiséization. For instance fields, variable initializers
correspond to assignment statements that szewdg®gd when an instance of the class is created.

[Example: The example

using System;
class Test

{
static double x = Math.sqrt(2.0);
int i = 100;
string s = "Hello";
static void Main() {

Test a = new Test(
console.writeLine(

)3
"x = {0}, i = {1}, s = {2}", x, a.i, a.s);

}
produces the output
x = 1.4142135623731, i = 100, s = Hello

because an assignmentd@ccurs when static field initializers execute and assignmenitstals occur
when the instance field initializers execugad exampl €]

The default value initialization described in §17.4.3 asdor all fields, including fields that have variable
initializers. Thus, when a class is initialized, all stat&ldis in that class are first initialized to their default
values, and then the static field initializers are exeduh textual order. Likewise, when an instance of a
class is created, all instance fields in that instanedfiest initialized to their default values, and then the
instance field initializers are executed in textual order.

It is possible for static fields with variable initializers to be observed in their default value sasengjle:
However, this is strongly discouraged as a matter of style. The example

using System;
class Test

{

static int a = b + 1;

static int b = a + 1;

static void Main() {

Console.writeLine("a = {0}, b = {1}", a, b);
}
exhibits this behavior. Despite the circular definitionsaandb, the program is valid. It results in the output

a=1, b =2

227

w N -

C#LANGUAGE SPECIFICATION

because the static fieldsandb are initialized to0 (the default value foii nt) before their initializers are
executed. When the initializer farruns, the value db is zero, and sa is initialized to 1. When the
initializer for b runs, the value o4 is already 1, and sb is initialized to 2.end example]

17.4.5.1 Static field initialization

The static field variable initializers of a class capend to a sequence of assignments that are executed in
the textual order in which they appeaarthe class declaration. If a static constructor (817.11) exists in the
class, execution of the static field initializers occursriediately prior to executing that static constructor.

0 N o o b

11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27

29

30
31
32

33

34
35
36

37
38

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53

Otherwise, the static field initializers are executed at an implementation-dependent time prior to the first use

of a static field of that classExample: The example

using System;
class Test

{
static void Main() {
console.writeLine("{0} {1}", B.Y, A.X);
public static int f(string s) {
console.writeLine(s);
return 1;
3
class A
public static int X =
class B

public static int v

might produce either the output:

Init A
Init B
11

or the output:

Init B
Init A
11

because the execution % initializer andy's initializer could occur in either order; they are only
constrained to occur before the referenethose fields. However, in the example:

using System;
class Test {

static void Main() {
console.writeLine("{0} {1}", B.Y, A.X);

Test.f("Init A");

Test.f("Init B");

3
public static int f(string s) {
console.writeLine(s);

return 1;
}
}

class A

static AQ {} |
pubTic static int X

228

Test.f("Init A™);

a b wN ek

© 0~ [«2]

10
11

12

13
14
15
16

17
18
19
20
21
22

23
24

25
26

27

28
29

30
31

32
33

34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

Chapter 17 Classes

class B

static B {}
public static int Y = Test.f("Init B");

the output must be:

Init B
Init A
11

because the rules for when static constructors execute providg'stsaatic constructor (and hengs static
field initializers) must run befora's static constructor and field initializermnd example]

17.4.5.2 Instance field initialization

The instance field variable initializers of a classrespond to a sequence of assignments that are executed
immediately upon entry to any one of the instancestarctors (§17.10.2) of that class. The variable
initializers are executed in the textual order in whichytappear in the class declaration. The class instance
creation and initialization process described further in §17.10.

A variable initializer for an instance field cannot refiece the instance being created. Thus, it is a compile-
time error to referencehis in a variable initializer, as it is a compile-time error for a variable initializer to
reference any instance member througinaple-name. [Example: In the example

class A

jnt X
int y

X + 1; // Error, reference to instance member of this

the variable initializer foly results in a compile-time error because it references a member of the instance
being createdend example]

17.5 Methods

A method is a member that implements a computation or action that can be performed by an object or class.

Methods are declared usimgethod-declarations:

method-declaration:
method-header method-body

method-header:
attributes,y method-modifiers,,: return-type member-name (formal-parameter-listo,:)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new
pubTic
protected
internal
private
static
virtual
sealed
override
abstract
extern

229

0

10
11
12

13

14

15

16

17

18
19

20
21

22
23

24
25

26
27
28

29

30
31

32
33
34

35
36
37

38
39
40

41
42

C#LANGUAGE SPECIFICATION

return-type:

type
void
member-name:
identifier
interface-type . identifier

method-body:
block

A method-declaration may include a set ddttributes (§24) and a valid combination of the four access
modifiers (817.2.3), thaew (817.2.2),static (817.5.2)virtual (817.5.3)override (817.5.4),
sealed (817.5.5),abstract (817.5.6), ancgxtern (§17.5.7) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

» The declaration includes a valid combination of access modifiers (§17.2.3).

* The declaration does not include the same modifier multiple times.

» The declaration includes at most one of the following modifistsitic, virtual, andoverride.
* The declaration includes at most one of the following modifieest andoverride.

» If the declaration includes thebstract modifier, then the declaration does not include any of the
following modifiers:static, virtual, orextern.

» Ifthe declaration includes therivate modifier, then the declaration does not include any of the
following modifiers:virtual, override, orabstract.

« Ifthe declaration includes theealed modifier, then the declaration also includes thverride
modifier.

Thereturn-type of a method declaration specifies the type of the value computed and returned by the
method. Theeturn-typeis void if the method does not return a value.

Themember-name specifies the name of the method. Unless the method is an explicit interface member
implementation (820.4.1), theember-name is simply anidentifier. For an explicit interface member
implementation, thenember-name consists of amnterface-type followed by a “.” and anidentifier.

The optionaformal-parameter-list specifies the parameters of the method (§17.5.1).

Thereturn-type and each of the types referenced in thremal-parameter-list of a method must be at least as
accessible as the method itself (810.5.4).

Forabstract andextern methods, thenethod-body consists simply of a semicolon. For all other
methods, thenethod-body consists of @lock, which specifies the statements to execute when the method is
invoked.

The name and the formal parameter list of a method define the signature (810.6) of the method. Specifically,
the signature of a method consists of its name and thérymmodifiers, and types of its formal parameters.
The return type is not part of a method'’s signajurar are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of all other methods declared in the same
class.

17.5.1 Method parameters
The parameters of a method, if any, are declared by the metfavdial-parameter-list.

230

A W N PP

o

10
11
12

13
14

15
16

17
18

19
20
21
22
23
24

25
26
27
28
29

30
31
32
33

34

35

36

37

38

39

40

41

42
43

44
45

Chapter 17 Classes

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributes,,: parameter-modifieroy type identifier

parameter-modifier:
ref
out

parameter-array:
attributes,y params array-type identifier

The formal parameter list consists of one or more corsyearated parameters of which only the last may
be aparameter-array.

A fixed-parameter consists of an optional set aftributes (824), an optionatef or out modifier, atype,
and anidentifier. Eachfixed-parameter declares a parameter of the given type with the given name.

A parameter-array consists of an optional set aftributes (824), aparams modifier, anarray-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The
array-type of a parameter array must be a single-dimenal array type (819.1). In a method invocation, a
parameter array permits either a single argumerh@fgiven array type to be specified, or it permits zero or
more arguments of the array element type to be specified. Parameter arrays are described further in
817.5.1.4.

A method declaration creates a separate declargpiacesfor parameters and local variables. Names are
introduced into this declaration space by the farpaameter list of the method and by local variable
declarations in thelock of the method. All names in the declaration space of a method must be unique.

Thus, it is a compile-time error for a parameter or local variable to have the same name as another parameter
or local variable.

A method invocation (§14.5.5.1) creates a copy, specific to that invocation, of the formal parameters and
local variables of the method, and the argument lishefihvocation assigns values or variable references to
the newly created formal parameters. Within khack of a method, formal parameters can be referenced by
their identifiers insimple-name expressions (§14.5.2).

There are four kinds of formal parameters:

» Value parameters, which are declared without any modifiers.

» Reference parameters, which are declared withrifemodifier.

* Output parameters, which are declared withdb& modifier.

» Parameter arrays, which are declared withgdheams modifier.

[Note: As described in §10.6, theef andout modifiers are part of a method’s signature, butpaeams
modifier is not.end note]

17.5.1.1 Value parameters

A parameter declared with no modifiers is a valaggmeter. A value parameter corresponds to a local
variable that gets its initial value from the conpesding argument supplied in the method invocation.

When a formal parameter is a value parameter, émeesponding argument in a method invocation must be
an expression of a type that is implicitly contible (813.1) to the formal parameter type.

231

~N o o b w N -

o]

10

11

12

13
14
15
16
17
18
19
20

21
22
23
24
25
26

27
28

29
30

31
32
33

34
35

36
37
38
39
40

41
42
43
44

45
46
47

48

49
50
51

C#LANGUAGE SPECIFICATION

A method is permitted to assign new values to a value parameter. Such assignments only affect the local
storage location represented by the value paramdtey-have no effect on the actual argument given in the
method invocation.

17.5.1.2 Reference parameters

A parameter declared withraef modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Insteaterence parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parametercahresponding argument in a method invocation must
consist of the keywordaef followed by avariable-reference (§12.3.3) of the same type as the formal
parameter. A variable must be definitely assignetbke it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

[Example: The example

using System;
class Test

{
static void Swap(ref int x, ref int y) {
int temp = Xx;
X =Y,
y = temp;
}
static void Main() {
inti=1, j = 2;
swap(ref i, ref j);
console.writeLine("i = {0}, j = {1}", i, 1);
}
produces the output
i=2,3j=1

For the invocation ofwap in Main, x represents andy representg. Thus, the invocation has the effect of
swapping the values dfandj. end exampl€]

In a method that takes reference parameters, itssipte for multiple names to represent the same storage
location. Example: In the example
class A

string s;

void F(Hef §tring a, ref string b) {
S
a
b

}

void GO {
F(ref s, ref s);

}

the invocation of in G passes a reference ¢dor botha andb. Thus, for that invocation, the namesa,
andb all refer to the same storage location, and threghassignments all modify the instance fielend
example]

17.5.1.3 Output parameters

A parameter declared with anut modifier is an output parameter. Similar to a reference parameter, an
output parameter does not create a new storage ¢ocdtistead, an output parameter represents the same
storage location as the variable given as the argument in the method invocation.

232

g A W N P

[«

10

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30

31

32
33

34
35

36

37
38
39
40
41

42

43
44
45

46
a7
48
49
50

51
52

Chapter 17 Classes

When a formal parameter is an output parameter, dineesponding argument in a method invocation must
consist of the keywordut followed by avariable-reference (§12.3.3) of the same type as the formal
parameter. A variable need not be definitely assignefore it can be passed as an output parameter, but
following an invocation where a variable was passed as an output parameter, the variable is considered
definitely assigned.

Within a method, just like a local variable, an outparameter is initially considered unassigned and must
be definitely assigned before its value is used.

Every output parameter of a method must berdedly assigned before the method returns.

Output parameters are typically used inthals that produce multiple return valueSxample: For
example:

using System;

class Test

{
static void splitPath(string path, out string dir, out string name) {
int i = path.Length;
while (i > 0) {
char ch = path[i - 1];
if (ch == "\\" [| ch == "/" || ch == ":") break;
i--;

hy
dir = path.Substring(0, i);
name = path.Substring(i);

static void Main() {
string dir, name;
SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
console.writeLine(dir);
console.writeLine(name);

3

The example produces the output:
c:\Windows\System\
hello.txt

Note that thedi r andname variables can be unassigned before they are passgal ticcPath, and that they
are considered definitely assigned following the caitl example]

17.5.1.4 Parameter arrays

A parameter declared with@arams modifier is a parameter array. If a formal parameter list includes a
parameter array, it must be the last parameter iishand it must be of a single-dimensional array type.
[Example: For example, the typestring[] andstring[][] can be used as the type of a parameter array,
but the typestring[,] can notend example] It is not possible to combine thearams modifier with the
modifiersref andout.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

» The argument given for a parameter array can be a single expression of a type that is implicitly
convertible (813.1) to the parameter array type. Is tdase, the parameter ayracts precisely like a value
parameter.

» Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression of a type that is implicitly cotilate (813.1) to the element type of the parameter
array. In this case, the invocation creates an instahtee parameter array type with a length corresponding
to the number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely
equivalent to a value parameter (817.5.1.1) of the same type.

233

=

o~NO O~ WN

11
12
13
14
15
16
17

18

19
20
21

22
23
24
25

26
27

28

29
30
31
32

33

34
35
36
37
38
39

40
41
42

43
44
45

46
47
48
49
50
51
52
53

54

C#LANGUAGE SPECIFICATION

[Example: The example

using System;
class Test

static void F(params int[] args) {
Console.write("Array contains {0} elements:", args.Length);
foreach (int i in args)
console.write(" {0}", 1i);
Console.writeLine();

static void Main() {
int[] arr = {1, 2, 3};
F(arr);
F(10, 20, 30, 40);
FO;

}
produces the output

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of simply passes the arrayas a value parameter. The second invocation of
automatically creates a four-elememtt [] with the given element values and passes that array instance as a
value parameter. Likewise, the third invocationratreates a zero-elememt[] and passes that instance

as a value parameter. The second and thirddations are precisely equivalent to writing:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

end exampl €]

When performing overload resolution, a method with a parameter array may be applicable either in its
normal form or in its expanded form (814.4.2.1). Thanded form of a method is available only if the
normal form of the method is not applicable and orflg method with the same signature as the expanded
form is not already declared in the same type.

[Example: The example

using System;
class Test

{
static void F(params object[] a)
Console.writeLine("F(object[]1)");
static void FO {
console.writeLine("FQO");
static void F(object a0, object al) {
Console.writeLine("F(object,object)");
static void Main() {
FO;
F(1);
F(1, 2);
F(1, 2, 3);
F(1, 2, 3, 4);
3
3

produces the output

234

a b wN ek

© 00 N O

10
11

12
13
14
15

16

17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

36

37
38
39
40

41
42
43
44
45
46
47
48

49

50
51

52
53

Chapter 17 Classes

FO;
F(object[]);
F(object,object);
F(object[]);
F(object[]);

In the example, two of the possible expanded forms of the method with a parameter array are already
included in the class as regular methods. Thepaeded forms are therefore not considered when
performing overload resolution, and the first anddhinethod invocations thus select the regular methods.
When a class declares a method with a parameter array, it is not uncommon to also include some of the
expanded forms as regular methods. By doing so it §sitbe to avoid the allocation of an array instance
that occurs when an expanded form of a method with a parameter array is inenéesampl €]

When the type of a parameter arraylsject[], a potential ambiguity arises between the normal form of
the method and the expended form for a sirallg¢ ect parameter. The reason for the ambiguity is that an
object[] is itself implicitly convertible to typebject. The ambiguity presents no problem, however,
since it can be resolved by inserting a cast if needed.

[Example: The example

using System;
class Test

{
static void F(params object[] args) {
foreach (object o 1in args) {
Console.write(o.GetType().FullName) ;
console.write(" ");

console.writeLine(Q);

static void Main() {
object[] a = {1, "Hello", 123.456};
object o = a;
F(a);
F((object)a);

F(o);
) F((object[])0);
}

produces the output

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In the first and last invocations of F, the normal formrois applicable because an implicit conversion exists
from the argument type to the parameter type (both are ofdpgect[]). Thus, overload resolution selects
the normal form of F, and the argument is passed as a regular value parameter. In the second and third
invocations, the normal form af is not applicable because no implicit conversion exists from the argument
type to the parameter type (typdject cannot be implicitly converted to typsbject[]). However, the
expanded form of is applicable, so it is selected by overload resolution. As a result, a one-element
object[] is created by the invocation, and the single element of the array is initialized with the given
argument value (which itself is a reference tocdject[]). end example]

17.5.2 Static and instance methods

When a method declaration includestatic modifier, that method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to téfes io a
static method.

235

10
11
12
13

14
15
16
17
18

19
20

21

22

23
24
25

26
27

28

29

30

31
32
33
34
35
36

37
38
39
40
41

C#LANGUAGE SPECIFICATION

An instance method operates on a given instance of a class, and that instance can be actk$sed as
(814.5.7).

When a method is referenced immember-access (814.5.4) of the fornke . M, if M is a static methods must
denote a type that has a methgdand ifM is an instance method,must denote an instance of a type that
has a method.

The differences between static and instaneenbers are discussed further in §17.2.5.

17.5.3 Virtual methods

When an instance method declaration includes etual modifier, that method is said to bevatual
method. When novi rtual modifier is present, the method is said to beoa-virtual method.

The implementation of a non-virtual method is inizat: The implementation is the same whether the

method is invoked on an instance of the class in which it is declared or an instance of a derived class. In

contrast, the implementation of a virtual method barsuperseded by derived classes. The process of
superseding the implementation of an inherited virtual method is knowweasding that method (817.5.4).

In a virtual method invocation, thain-time type of the instance for which that invocation takes place
determines the actual method implementatmimtoke. In a non-virtual method invocation, tbempile-
time type of the instance is the determining factor. In precise terms, when a method nasenoked with
an argument lisk on an instance with a compile-time tygeand a run-time typ& (wherer is eitherc or a
class derived frona), the invocation is processed as follows:

» First, overload resolution is applied to C, N, and A, to select a specific metiiain the set of methods
declared in and inherited iy, This is described in §14.5.5.1.

e Then, ifMmis a non-virtual methodv is invoked.
e OtherwiseM s a virtual method, and the most derived implementatiom wfth respect tR is invoked.

For every virtual method declared in or inherited by a class, there existstalerived implementation of
the method with respect to that class. The most derived implementation of a virtual muedlithcrespect to
a clasR is determined as follows:

» If R contains the introducingi rtual declaration oM, then this is the most derived implementation
of m.

» Otherwise, ifR contains aroverride of M, then this is the most derived implementatiorvmof
» Otherwise, the most derived implementatiorma$ the same as that of the direct base clags of

[Example: The following example illustrates the diffarees between virtual and non-virtual methods:

using System;
class A

public void F() { Console.writeLine("A.F"); }
pubTic virtual void G() { Console. Wr1teL1ne("A G"); }

class B: A

new public void F() { Console.writeLine("B.F"); }
public override void G() { Console.writeLine("B.G

DHE

236

PO OWOOO~NOUDWNLE

L =
o0 M W N

=
® ~

19
20
21

22
23
24

25
26
27
28
29

30
31
32
33

34
35
36
37

38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58

Chapter 17 Classes

class Test

static void Main() {
B = new B(Q);
A a = b;
a.FQ);
b.F(Q);
a.GQ);
b.GQO;

}
}

In the examplea introduces a non-virtual methadand a virtual method. The class introduces anew
non-virtual method F, thulsiding the inherited F, and alsoverrides the inherited method. The example
produces the output:

A.F
B.F
B.G
B.G

Notice that the statemeat G() invokesB.G, notA.G. This is because the run-time type of the instance
(which isB), not the compile-time type of the instance (whicl)sdetermines the actual method
implementation to invokeend example]

Because methods are allowed to hide inherited methodspdassible for a class to contain several virtual
methods with the same signature. This does not pteseambiguity problem, since all but the most derived
method are hiddenExample: In the example

using System;
class A

public virtual void FQ { Console.writeLine("A.F"); }

class B: A

public override void F() { Console.writeLine("B.F"); }

class C: B

new public virtual void F() { Console.writeLine("C.F"); }

class D: C

public override void F() { Console.writeLine("D.F"); }

class Test

static void Main() {
D d= new DO;
A a=d;
B b =d;
Cc=d;
a.FQ;
b.FQ;
c.FQO;
d.FO;
}

3

theC andb classes contain two virtual methods with the same signature: The one introduseshtiythe
one introduced by. The method introduced by hides the method inherited from Thus, the override
declaration irb overrides the method introduced byand it is not possible fap to override the method
introduced bya. The example produces the output:

237

A WNBE

o O

10
11

12
13
14
15
16
17

18

19

20
21

22

23
24

25
26
27

28
29

30
31
32
33

34
35
36

37
38
39
40
41

42
43
44
45
46

47
48
49

C#LANGUAGE SPECIFICATION

O
mmm

D.

Note that it is possible to invoke the hidden virtual method by accessing an instamtlerotigh a less
derived type in which the method is not hiddend example]

17.5.4 Override methods

When an instance method declaration includeswarride modifier, the method is said to be awerride

method. An override method overrides an inherited vatmethod with the same signature. Whereas a
virtual method declaratiomtroduces a new method, an override method declaraoializes an existing
inherited virtual method by providing a new implementation of that method.

The method overridden by arverride declaration is known as thaverridden base method. For an

override methoah declared in a class C, the overridden base method is determined by examining each base
class of C, starting with the direct base clasg a@ihd continuing with each successive direct base class, until
an accessible method with the same signatunreiasocated. For the purposes of locating the overridden

base method, a method is considered accessible ipithdic, if itis protected, ifitis protected

internal, orifitis internal and declared in the same program as C.

A compile-time error occurs unless all of the following are true for an override declaration:
* An overridden base method can be located as described above.

« The overridden base method is a virtual, abstracbverride method. In other words, the overridden
base method cannot be static or non-virtual.

« The overridden base method is not a sealed method.

» The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method usasg access (§14.5.8). Example: In
the example
class A
int Xx;

pubTic virtual void PrintFields() {
Cconsole.writeLine("x = {0}", x);

}

class B: A
int y;

public override void PrintFields() {
base.PrintFields();
Cconsole.writeLine("y = {0}", y);

3

thebase.PrintFields() invocation inB invokes thePrintFields method declared ia. A base-

access disables the virtual invocation mechanism and dintipeats the base method as a non-virtual method.
Had the invocation iB been written((A) this) .PrintFields (), it would recursively invoke the
PrintFields method declared in B, not the one declared in A, sicéntFields is virtual and the run-
time type of ((A) this) is B. end exampl€]

Only by including aroverride modifier can a method override another method. In all other cases, a
method with the same signature as an inhdniteethod simply hides the inherited methdgxdample: In the
example

238

0 ~N O O A WNBE

10
11

12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27

28

29
30
31
32

33

34
35
36
37
38
39

40
41
42
43

44
45
46
47
48

49
50
51
52

Chapter 17 Classes

class A

public virtual void FQ {}

class B: A

public virtual void FO {} // warning, hiding inherited FQ

theF method inB does not include aaverride modifier and therefore does not override thanethod
in A. Rather, thee method inB hides the method in, and a warning is reported because the declaration does
not include anew modifier. end example]

[Example: In the example
class A

public virtual void FQO {}

class B: A

new private void FQ {} // Hides A.F within B

class C: B

public override void FQ {} // Ok, overrides A.F

the F method inB hides the virtuaF method inherited from. Since the new in B has private access, its
scope only includes the class bodyso&ind does not extend to C. Therefore, the declaratiahinfc is
permitted to override the inherited fromA. end exampl €]

17.5.5 Sealed methods

When an instance method declaration includegal ed modifier, that method is said to besealed

method. A sealed method overrides an inherited virtuatmoel with the same signature. An override method
can also be marked with theealed modifier. Use of this modifier prevents a derived class from further
overriding the method.

[Example: The example

using System;
class A

pubTic virtual void FQ) {
Console.writeLine("A.F");

public virtual void G() {
console.writeLine("A.G");
}
class B: A

sealed override public void FO {
Console.writeLine("B.F");

override public void G() {
Console.writeLine("B.G");

239

O Ul WN P

~

10
11
12

13
14
15
16

17

18

19
20
21
22

23
24
25
26
27
28

29
30
31
32
33
34

35
36
37
38

39
40

41
42
43
44

45
46
47
48
49
50

51
52

C#LANGUAGE SPECIFICATION

class C: B

override public void G() {
console.writeLine("C.G");

}

the classs provides two override methods: amethod that has theealed modifier and aG method that
does notB’s use of the sealedodi fier preventst from further overriding-. end example]

17.5.6 Abstract methods

When an instance method declaration includeal®sitract modifier, that method is said to be ahstract
method. Although an abstract method is implicitly also a virtual method, it cannot have the modifier
virtual.

An abstract method declaration introduces a new virtual method but does not provide an implementation of
that method. Instead, non-abstract derived classes are required to provide their own implementation by
overriding that method. Because an abstract method provides no actual implementatissthtaebody of

an abstract method simply consists of a semicolon.

Abstract method declarations are onrmitted in abstract classes (817.1.1.1).
[Example: In the example

pubTic abstract class Shape

public abstract void Paint(Graphics g, Rectangle r);

public class Ellipse: Shape

public override void Paint(Graphics g, Rectangle r) {
g.DrawElTipse(r);

}

public class Box: Shape

public override void Paint(Graphics g, Rectangle r) {
g.DrawRect(r);

}

theshape class defines the abstract notion of a geainat shape object that can paint itself. Tibeint

method is abstract because there is no meaningful default implementatiop] These andBox classes

are concretshape implementations. Because these classes are non-abstract, they are required to override
thePaint method and provide an actual implementatiemd example]

It is a compile-time error for Aase-access (814.5.8) to reference an abstract meth&tample: In the
example

abstract class A

public abstract void FQ;

class B: A

pubTic override void F(Q) {
base.F(); // Error, base.F is abstract

}

a compile-time error is reported for tihease . F() invocation because it references an abstract metmod.
example]

240

0 ~NO Ol A w N -

=
o ©

Nl o
2 WN R

N R PR
o wwm~N OO

NN
N

23

24
25
26
27

28

29
30
31
32
33
34
35
36
37

38
39

40
41

42
43
44

45

46
47
48

49
50

Chapter 17 Classes

An abstract method declaration is permitted to owria virtual method. This allows an abstract class to
force re-implementation of the method in derivedsskes, and makes the original implementation of the
method unavailable Example: In the example

using System;

class A

public virtual void

I void FO {
console.writeLine("A.F

")
}

abstract class B: A

public abstract override void FQ;

class C: B

public override void F() {
Console.writeLine("C.F");

3

classA declares a virtual method, claB®verrides this method with an abstract method, and ecass
overrides that abstract method to provide its own implementagiwhexampl €]

17.5.7 External methods

When a method declaration includeseattern modifier, the method is said to be arternal method.

External methods are implemented externally, tylbjaasing a language other than C#. Because an external
method declaration provides no actual implementationirisieod-body of an external method simply
consists of a semicolon.

The mechanism by which linkage to an externatimoe is achieved, is implementation-defined.
[Example: The following example demonstrates the use ofdkeern modifier in combination with a
D11Import attribute that specifies the name of the external library in which the method is implemented:

using System.Text;

using System.Security.Permissions;
using System.Runtime.InteropServices;
class Path

[D11Import("kernel32", SetLastError=true)]]]
static extern bool CreateDirectory(string name, SecurityAttribute sa);

[D11Import(“kernel32", SetLastError=true)]
static extern bool RemoveDirectory(string name);

[D1T1Import("kernel32", SetLastError=true)]))]
static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

[D11Import("kernel32", SetLastError=true)]
static extern bool SetCurrentDirectory(string name);

3
end example]

17.5.8 Method body
The method-body of a method declaration consists of eithdslack or a semicolon.

Abstract and external method declarations do not provide a method implementation, so their method bodies
simply consist of a semicolon. For any other methbd, method body is a block (815.2) that contains the
statements to execute when that method is invoked.

241

w N -

~N o o b

10
11

12
13
14

15
16
17
18
19
20
21
22
23

24
25
26

27
28

29

30
31
32
33
34
35
36

37

38
39

40
41
42

C#LANGUAGE SPECIFICATION

When the return type of a methodvsid, return statements (§15.9.4) in that method’s body are not
permitted to specify an expression. If execution of the method body of a void method completes normally
(that is, control flows off the end of the method body), that method simply returns to its caller.

When the return type of a method is natid, eachreturn statement in that method body must specify an
expression of a type that is implicitly convertible to the return type. The endpoint of the method body of a
value-returning method must not be reachable. Irotords, in a value-returning method, control is not
permitted to flow off the end of the method body.

[Example: In the example

class A

public int FO {} // Error, return value required

public int GO {
return 1;

public int H(bool b) {
if (b) {
return 1;

else {
return O;

}
}

the value-returningg method results in a compile-time error because control can flow off the end of the
method body. The& andH methods are correct because all possible execution paths end in a return
statement that specifies a return valemd example]

17.5.9 Method overloading
The method overload resolution rules are described in 814.4.2.

17.6 Properties

A property is a member that provides access to an attribute of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields—both are named members with associated types, and the syntax
for accessing fields and properties is the same. However, unlike fields, properties do not denote storage
locations. Instead, properties haaazessors that specify the statements to be executed when their values are
read or written. Properties thus provide a mechanisna$spciating actions with the reading and writing of

an object’s attributes; furthermore, they permit such attributes to be computed.

Properties are declared usipigpperty-declarations:

property-declaration:

attributes,y property-modifiers,: type member-name { accessor-declarations }
property-modifiers:

property-modifier

property-modifiers property-modifier

242

© 00 N O U~ WN PP

e
N B O

T
o b w

16
17
18

19
20

21
22
23
24

25

26
27
28

29
30

31
32
33

34

35
36

37
38

39
40

41
42
43

44

Chapter 17 Classes

property-modifier:
new
pubTic
protected
internal
private
static
virtual
sealed
override
abstract
extern

member-name:
identifier
interface-type . identifier
A property-declaration may include a set dadttributes (824) and a valid combination of the four access
modifiers (817.2.3), theew (§17.2.2),static (817.6.1),virtual (817.5.3, 817.6.3pverride (817.5.4,
§17.6.3),sealed (817.5.5),abstract (817.5.6, 817.6.3), aneixtern modifiers.

Property declarations are subject to the same rulesadisod declarations (817.5) with regard to valid
combinations of modifiers.

Thetype of a property declaration specifies the typetw property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, thenember-name is simply anidentifier. For an explicit interface member implementation

“w n

(820.4.1), themember-name consists of amnterface-type followed by a “.” and anidentifier.
Thetype of a property must be at least as accessible as the property itself (810.5.4).

The accessor-declarations, which must be enclosed i{* and “}” tokens, declare the accessors (§17.6.2) of

the property. The accessors specify the executdlteraents associated with reading and writing the

property.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as
a variable. Thus, it is not possible to pass a property @sfeor out argument.

When a property declaration includesextern modifier, the property is said to be arternal property.
Because an external property declaration provides no actual implementation, eactadstsr -
declarations consists of a semicolon.

17.6.1 Static and instance properties

When a property declaration includes®atic modifier, the property is said to bestatic property. When
no static modifier is present, the property is said to beastance property.

A static property is not associated with a specific instance, and it is a compile-time error to refigistom
the accessors of a static property.

An instance property is associated with a givenanse of a class, and that instance can be accessed as
this (814.5.7) in the accessors of that property.

When a property is referenced im@mber-access (814.5.4) of the fornk. M, if M is a static propertyg must
denote a type that has a propevtyand ifM is an instance property, E must denote an instance having a
propertym.

The differences between static and instanesnibers are discussed further in §17.2.5.

243

10

11
12
13

14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30
31
32

33

34

35
36

37
38
39
40

41

42
43
44

C#LANGUAGE SPECIFICATION

17.6.2 Accessors

The accessor-declarations of a property specify the executable statements associated with reading and
writing that property.

accessor-declarations:
get-accessor-declaration set-accessor-declar ati ongp
set-accessor-declaration get-accessor-declarati ongy

get-accessor-declaration:
attributes,y get accessor-body

set-accessor -declar ation:
attributes,y set accessor-body

accessor-body:
block

3

The accessor declarations consist geaaccessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of the togem or set followed by anaccessor-body. Forabstract and
extern properties, theccessor-body for each accessor specified is simply a semicolon. For the accessors
of any non-abstract, non-extern property, #eeessor-body is ablock which specifies the statements to be
executed when the corresponding accessor is invoked.

A get accessor corresponds to a parameterless methodwatturn value of the property type. Except as

the target of an assignment, when a property is referenced in an expressiget thecessor of the property

is invoked to compute the value of the property (814.1.1). The bodyeftaaccessor must conform to the

rules for value-returning methods debed in §17.5.8. In particular, alleturn statements in the body of a

get accessor must specify an expression that is implicitly convertible to the property type. Furthermore, the
endpoint of aget accessor must not be reachable.

A set accessor corresponds to a method with a singlue parameter of the property type andbad

return type. The implicit parameter ofsat accessor is always namedlue. When a property is

referenced as the target of an assignment (§14.13), or as the operandrof- (814.5.9, 14.6.5), theet
accessor is invoked with an argument (whose value is that of the right-hand side of the assignment or the
operand of the-+ or —- operator) that provides the new value (§14.13.1). The bodyseftaaccessor must
conform to the rules foroid methods described in §17.5.8. In particulegturn statements in theet
accessor body are not permitted to specify an expression. Sexeaccessor implicitly has a parameter
namedvalue, it is a compile-time error for a local variable declaration isieec accessor to have that name.

Based on the presence or absence ofjtheandset accessors, a property is classified as follows:
» A property that includes both@et accessor and set accessor is said to beread-write property.

» A property that has only get accessor is said to beread-only property. It is a compile-time error for
a read-only property to be the target of an assignment.

» A property that has only aet accessor is said to bemite-only property. Except as the target of an
assignment, it is a compile-time error to reference a write-only property in an expredsita. The pre-

and postfix++ and-- operators cannot be applied to write-onlpperties, since these operators read the old
value of their operand before they write the new asmnel note]

[Example: In the example
pubTlic class Button: Control

private string caption;

244

O~NOOhAWNBE

o
= O ©

=R e
abhwN

16
17
18
19
20
21

22

23
24
25

26
27

28
29
30

31
32
33

34
35
36

37
38
39
40

41
42
43

44
45

46
47
48
49
50

52
53
54
55
56
57

Chapter 17 Classes

public string Caption {
get {)
return caption;

set {
if (caption != value) {
caption = value;
Repaint();
3

}

public override void Paint(Graphics g, Rectangle r) {
// Painting code goes here

}

theButton control declares a publicaption property. Theget accessor of theaption property returns

the string stored in the privateaption field. Theset accessor checks if the new value is different from the
current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern
shown above: Thget accessor simply returns a value stored in a private field, andeh@accessor

modifies that private field and then performs any diddial actions required to fully update the state of the
object.

Given theButton class above, the following is an example of use of¢hption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, theset accessor is invoked by assigning a value to the property, angethaccessor is invoked by
referencing the property in an expressiemnd example]

Theget andset accessors of a property are not distinct members, and it is not possible to declare the
accessors of a property separateNote: As such, it is not possible for the two accessors of a read-write
property to have different accessibilignd note] [Example: The example

class A

private string name;

public string Name { // Error, duplicate member name
get { return name;

public string Name { // Error, duplicate member name
set { name = value; }

}

does not declare a single read-write property. Rather, it declares two properties with the same name, one
read-only and one write-only. Since two members ded in the same class cannot have the same name, the
example causes a compile-time error to ocend example]

When a derived class declares a property by the same name as an inherited property, the derived property
hides the inherited property with respect to both reading and writthgnjiple: In the example

class A

public int P {
set {.}

}

class B: A

new public int P {
get {.}

245

g b w N -

o N O

10

11
12
13
14

15
16
17
18
19

20
21
22

23
24
25

26
27
28

29
30
31
32

33
34
35
36

37
38
39
40

41
42
43
44

45
46
47

48
49
50

51
52
53

54
55
56
57

C#LANGUAGE SPECIFICATION

theP property inB hides theP property inA with respect to both reading and writing. Thus, in the
statements

B b

b.p =

((A)b)
the assignment tb. P causes a compile-time error to be reported, since the readroplyperty inB hides

the write-onlyP property in A. Note, however, that a cast can be used to access the Iridoieperty.end
example]

new B();
1; // Error, B.P is read-only
.P=1; // ok, reference to A.P

Unlike public fields, properties provide a separation between an object’s internal state and its public
interface. Example: Consider the example:

class Label

private int x, y;
private string caption;

public Label(int x, int y, string caption) {
this.x = X;
this.y = y;
this.caption = caption;

public int X {
get { return x; }

public int Y {
get { return y; }

public Point Location {
get { return new Point(x, y); }

public string Caption {
get { return caption; }

}

Here, theLabel class uses twdnt fields, x andy, to store its location. The location is publicly exposed
both as arx and ay property and as Bocation property of typePoint. If, in a future version of.abeT,
it becomes more convenient to store the location Bsiat internally, the change can be made without
affecting the public interface of the class:

class Label

private Point location;
private string caption;

public Label(int x, int y, string caption) {
this.location = new Point(x, y);
this.caption = caption;

public int X {]
get { return location.x; }

public int v {
get { return location.y; }

public Point Location {
get { return location; }

public string Caption {
get { return caption; }

246

N

~N o o b~ W

10
11
12

13
14
15
16

17
18
19

20
21
22
23

24
25

26

27
28
29
30
31

32
33
34
35
36
37
38
39

40
4
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56

Chapter 17 Classes

Hadx andy instead beepub1ic readonTy fields, it would have been impossible to make such a change
to theLabel class.end example]

[Note: Exposing state through properties is not necessanlyless efficient than exposing fields directly. In
particular, when a property is non-virtual anahtains only a small amount of code, the execution

environment may replace calls to accessors with the actual code of the accessors. This process is known as
inlining, and it makes property access as efficient as faglcess, yet preserves timetieased flexibility of
propertiesend note]

[Example: Since invoking aget accessor is conceptually equivalent to reading the value of a field, it is
considered bad programming style ftprt accessors to have observable side-effects. In the example
class Counter

private int next;

pubTic int Next {
get { return next++; }

}

the value of thelext property depends on the number of times the property has previously been accessed.
Thus, accessing the property produces an observable side effect, and the property should be implemented as
a method insteaand exampl €]

[Note: The “no side-effects” convention fafet accessors doesn’t mean thgtt accessors should always
be written to simply return values stored in fields. Indegel; accessors often compute the value of a
property by accessing multiple fields or invoking methods. However, a properly designextcessor
performs no actions that cause observable changes in the state of theesljecte]

Properties can be used to delay initialization of sorgce until the moment it is first referenceBxample:
For example:

using System.IO;

public class Console

private static TextReader reader;
private static TextWriter writer;
private static Textwriter error;

pubTic static TextReader In {
get {
if (reader == null) {
reader = new StreamReader(Console.OpenStandardInput());

return reader;

3
public static TextWriter out {
get {
if (writer == null) {]
writer = new Streamwriter(Console.OpenStandardoutput());
return writer;
ks
public static Textwriter Error {
get {
if (error == null) {)
error = new Streamwriter(Console.OpenStandarderror());
return error;
}

247

A W N P

10

11
12
13
14
15

16
17

18
19
20
21
22

23
24
25
26
27

28
29

30
31
32

33
34

35
36

37

38
39
40

41
42
43

44
45
46
47

48
49

C#LANGUAGE SPECIFICATION

Theconsole class contains three propertigs, out, anderror, that represent the standard input, output,
and error devices, respectively. By exposing these members as propertiesy $lod e class can delay their
initialization until they are actually used. For example, upon first referencinguheroperty, as in

console.out.writeLine("hello, world");

the underlyingrextwri ter for the output device is created. But if the application makes no reference to the
InandError properties, then no objects are created for those devend®example]

17.6.3 Virtual, sealed, override, and abstract accessors

A virtual property declaration specifies that the essors of the property are virtual. Thértual
modifier applies to both accessors of a read-write property—it is not possible for only one accessor of a
read-write property to be virtual.

An abstract property declaration specifies that the accessors of the property are virtual, but does not
provide an actual implementation of the accessorseatstnon-abstract derived classes are required to
provide their own implementation for the accessors by overriding the property. Because an accessor for an
abstract property declaration provides no actual implementatioagdéessor-body simply consists of a
semicolon.

A property declaration that includes both thiestract andoverride modifiers specifies that the property
is abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (§17.1.1.1). The accessors of an
inherited virtual property can be overridden in a derived class by including a property declaration that
specifies aroverride directive. This is known as aoverriding property declaration. An overriding
property declaration does not declare a new propersteld, it simply specializes the implementations of
the accessors of an existing virtual property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as
the inherited property. If the inherdigoroperty has only a single accessae.(if the inherited property is
read-only or write-only), the overding property must include only thatcessor. If the inherited property
includes both accessors (i.e., if the inherited propisrtead-write), the overriding property can include

either a single accessor or both accessors.

An overriding property declaration may include thealed modifier. Use of this modifier prevents a
derived class from further overriding the propeifjne accessors of a sealed property are also sealed.

Except for differences in declaration and invocation aynvirtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in
817.5.3,817.5.4,817.5.5, and §3.B apply as if accessors were methods of a corresponding form:

* A get accessor corresponds to a parameterless mettibéiweturn value of the property type and the
same modifiers as the containing property.

* A set accessor corresponds to a method with a singlue parameter of the property typeaid
return type, and the same modifiers as the containing property.
[Example: In the example
abstract class A
int y;

pubTic virtual int X {
get { return 0; }

pubTic virtual int Y {
get { return y;
set { y = value; }

}
public abstract int z { get; set; }

248

N -

© N [o2 &) NN w

11
12

13
14
15
16

18
19
20
21
22

23

24
25

26

27
28
29
30

31
32
33

34
35
36
37
38
39
40
41
42
43
44
45

46
47
48

49
50

Chapter 17 Classes

X is a virtual read-only property; is a virtual read-write property, arglis an abstract read-write property.
Because is abstract, the containing classnust also be declared abstract.

A class that derives from is show below:
class B: A

int z;

public override int X {
get { return base.X + 1; }

public override int Y {
set { base.Y = value < 0? 0: value; }

public override int z {
get { return z;
set { z = value; }
3
3

Here, the declarations of Y, andz are overriding property declarations. Each property declaration exactly
matches the accessibility modifiers, type, antheaof the corresponding inherited property. e

accessor ok and theset accessor oY use thebase keyword to access the inherited accessors. The
declaration oz overrides both abstract accessors—thus, there are no outstanding abstract function members
in B, andB is permitted to be a non-abstract claasd exampl €]

17.7 Events

An event is a member that enables an object or class to provide notifications. Clients can attach executable
code for events by supplyingyent handlers.

Events are declared usiegent-declarations:

event-declaration:
attributes,y event-modifiers,x event type variable-declarators ;
attributes,y event-modifiers,x event type member-name { event-accessor-declarations

3

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new
pubTic
protected
internal
private
static
virtual
sealed
override
abstract
extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributes,y add block

249

10
11
12

13
14
15

16
17

18
19
20

21
22
23

24
25
26

27
28
29
30

31
32

33
34
35
36

37
38
39
40

41
42
43
44
45
46

47
48
49

C#LANGUAGE SPECIFICATION

r emove-accessor -declar ation:
attributes,y remove block

An event-declaration may include a set ddttributes (§24) and a valid combination of the four access
modifiers (817.2.3), theew (§17.2.2),static (817.5.2, 817.7.3)1irtual (817.5.3, 817.7.4pverride
(817.5.4,817.7.4xealed (817.5.5),abstract (817.5.6, 817.7.4), anelxtern modifiers.

Event declarations are subject to the same rules as method declarations (817.5) with regard to valid
combinations of modifiers.

Thetype of an event declaration must beleegate-type (§11.2), and thadlelegate-type must be at least as
accessible as the event itself (810.5.4).

An event declaration may includwent-accessor-declarations. However, if it does not, for non-extern, non-
abstract events, the compiler shall supply them autwaldy (817.7.1); for extern events, the accessors are
provided externally.

An event declaration that omieyent-accessor-declarations defines one or more events—one for each of the
variable-declarators. The attributes and modifiers apply to all of the members declared by sushrdn
declaration.

It is a compile-time error for aavent-declaration to include both thebstract modifier and brace-
delimitedevent-accessor-declarations.

When an event declaration includesextern modifier, the event is said to be arternal event. Because
an external event declaration provides no actual implementation, it is an error for it to include both the
extern modifier andevent-accessor-declarations.

An event can be used as the left-hand operand ofth&nd-= operators (§14.13.3). These operators are
used, respectively, to attach event handlers to, or to remove event handlers from an event, and the access
modifiers of the event control the contexts in which such operations are permitted.

Since+= and-= are the only operations that are permitted on an event outside the type that declares the
event, external code can add and remove handlers for an event, but cannot in any other way obtain or modify
the underlying list of event handlers.

In an operation of the form += y orx —-= y, whenx is an event and the reference takes place outside the
type that contains the declarationxgfthe result of the operation has typeid (as opposed to having the
type ofx, with the value ofx after the assignment). This rule prohibits external code from indirectly
examining the underlying delegate of an event.
[Example: The following example shows how event handlers are attached to instancesaftten class:
public delegate void EventHandler(object sender, EventArgs e);
pubTlic class Button: Control

pubTic event EventHandler Click;

public class LoginbDialog: Form

Button OkButton;
Button CancelButton;

public LoginDialog() {
OkButton = new Button(..);
okButton.Click += new EventHandler(okButtonClick);
CancelButton = new Button(.);
CancelButton.Click += new EventHandler(CancelButtonClick);

void OkButtonClick(object sender, EventArgs e) {
// Handle oOkButton.Click event

250

A WNBE

o O

10
11
12

13
14

15
16
17

18
19
20

21
22
23
24

25
26
27
28
29

30
31
32

33
34

35

36
37
38
39

40

41
42
43

44

45
46

47
48
49
50

Chapter 17 Classes

void CancelButtonClick(object sender, EventArgs e) {
// Handle CancelButton.Click event

}

Here, theLoginDialog instance constructor creates t®otton instances and attaches event handlers to
theC11ick eventsend example]

17.7.1 Field-like events

Within the program text of the class or struct that contains the declaration of an event, certain events can be
used like fields. To be used in this way, an event must natidst ract or extern, and must not explicitly
includeevent-accessor-declarations. Such an event can be used in any context that permits a field. The field
contains a delegate (822), which refers to the listvafreg handlers that have been added to the event. If no
event handlers have been added, the field contauis.
[Example: In the example

public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control

public event EventHandler Click;

protected void onClick(EventArgs e) {
if (Click != null) Click(this, e);

public void Reset() {
Click = null;

3

Click is used as a field within theutton class. As the example demonstrates, the field can be examined,
modified, and used in delegate invocation expressionsohkéick method in theButton class “raises”
theCT11ck event. The notion of raising an event is precisely equivalent to invoking the delegate represented
by the event—thus, there are no special languagetiearts for raising events. Note that the delegate
invocation is preceded by a check that ensures the delegate is non-null.

Outside the declaration of tleutton class, thec1ick member can only be used on the left-hand side of
the+= and-= operators, as in

b.Click += new EventHandler(..);
which appends a delegatettee invocation list of the 11 ck event, and
b.Click -= new EventHandler(..);

which removes a delegate from the invocation list of¢fié ck event.end example]

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and
creates accessors for the event that add or remove eapdldrs to the delegate field. In order to be thread-
safe, the addition or removal operations are done wiolding the lock (§815.12) on the containing object
for an instance event, or the type object (814.5.11) for a static event.

[Note: Thus, an instance event declaration of the form:

class X {
pubTlic event D Ev;

could be compiled to something equivalent to:

class X {
private D __Ev; // field to hold the delegate

pubTic event D Ev {
add {
Jock(this) { _Ev = __Ev + value; }

251

a b wN ek

[«2]

10
11

12

13
14

15
16
17
18

19
20
21
22
23

24

25

26
27
28
29
30

31
32

33
34
35
36
37

38
39
40
41
42
43
44
45

46
47

48

C#LANGUAGE SPECIFICATION

remove {
Jock(this) { _Ev = __Ev - value; }

}
}

Within the class, references t@v are compiled to reference the hidden fieldev instead. The name
“__EVv”is arbitrary; the hidden field could have any name or no name at all.

Similarly, a static event declaration of the form:

class X {)
public static event D Ev;

could be compiled to something equivalent to:

class X {
private static D __Ev; // field to hold the delegate

pubTic static event D Ev {
add {

lock(typeof(X)) { _Ev = _Ev + value; }

remove {

lock(typeof(X)) { _Ev = __Ev - value; }

}
}

end note]

17.7.2 Event accessors

[Note: Event declarations typically omévent-accessor-declarations, as in theButton example above. One
situation for doing so involves the case in which the storage cost of one field per event is not acceptable. In
such cases, a class can inclustent-accessor-declarations and use a private mechanism for storing the list

of event handlers. Similarly, in cases where the handling of an event requires access to external resources,
event accessors may be used to manage these resanctaste]

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist ohdd-accessor-declaration and aremove-accessor-declaration. Each
accessor declaration consists of the tokdd or remove followed by ablock. Theblock associated with an
add-accessor-declaration specifies the statements to executeewlan event handler is added, and lraek
associated with eemove-accessor-declaration specifies the statements to execute when an event handler is
removed.

Eachadd-accessor-declaration andremove-accessor-declaration corresponds to a method with a single

value parameter of the event type, andod d return type. The implicit parameter of an event accessor is
namedvalue. When an event is used in an event assignment, the appropriate event accessor is used.
Specifically, if the assignment operatoris then the add accessor is used, and if the assignment operator is
-= then the remove accessor is used. In either case, the right-hand operand of the assignment operator is
used as the argument to the event accessor. The blockanidaaccessor -declaration or aremove-accessor-
declaration must conform to the rules faroid methods described in 817.5.8. In particulegturn

statements in such a block are not permitted to specify an expression.

Since an event accessor implicitly has a parameter natakdle, it is a compile-time error for a local
variable declared in an event accessor to have that name.

[Example: In the example

252

© ~N o a b wN ek

35

36
37

38
39

40
4

42
43

44

45

46
a7

48
49
50
51

Chapter 17 Classes

class Control: Component

// Unique keys for events _
static readonly object mouseDownEventKey = new object();
static readonly object mouseUpEventKey = new object();

// Return event handler associated with key
protected Delegate GetEventHandler(object key) {..}

// Add event handler associated with key
protected void AddEventHandler(object key, Delegate handler) {..}

// Remove event handler associated with key
protected void RemoveEventHandler(object key, Delegate handler) {.}

// MouseDown event

public event MouseEventHandler MouseDown {
add { AddeventHandler(mouseDownEventKey, value); }
remove { RemoveEventHandler(mouseDownEventKey, value); }

// MouseUp event

pubTic event MouseEventHandler MouseUp {
add { AddeventHandler(mouseUpEventKey, value); }
remove { RemoveEventHandler(mouseUpEventKey, value); }

// Invoke the MouseUp event
protected void OnMouseUp(MouseEventArgs args) {
MouseEventHandler handler;
handler = (MouseEventHandler)GetEventHandler (mouseUpEventKey) ;
if (handler != null)
; handler(this, args);
3

thecontrol class implements an internal storage mechanism for eventasdd®rentHand1er method
associates a delegate value with a key,@abeeEventHandler method returns the delegate currently
associated with a key, and tRemoveEventHand1er method removes a delegate as an event handler for
the specified event. Presumably, the underlyingaggermechanism is designed such that there is no cost for
associating aul1 delegate value with a key, and thus undied events consume no storaged example]

17.7.3 Static and instance events

When an event declaration includesiatic modifier, the event is said to bestatic event. When no
static modifier is present, the event is said to beiastance event.

A static event is not associated with a specific instance, and it is a compile-time error to refiéstn the
accessors of a static event.

An instance event is associated with a given instanf a class, and this instance can be accessehlias
(814.5.7) in the accessors of that event.

When an event is referenced imember-access (814.5.4) of the fornk . M, if M is a static evente must
denote a type, and if is an instance event, E must denote an instance.

The differences between static and instanesnipers are discussed further in 817.2.5.

17.7.4 Virtual, sealed, override, and abstract accessors

A virtual event declaration specifies that thecessors of that event are virtual. Rhie~tual modifier
applies to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, nomaabsterived classes are required to provide their

own implementation for the accessors by overridirg¢lient. Because an accessor for an abstract event
declaration provides no actual implementationaitsessor-body simply consists of a semicolon.

253

~N o o b

o]

10
11

12

13
14
15
16
17

18

19
20

21
22

23
24
25

26
27
28
29
30
31
32
33
34
35
36

37
38
39

40
41
42

43
44
45

C#LANGUAGE SPECIFICATION

An event declaration that includes both tigstract andoverride modifiers specifies that the event is
abstract and overrides a base event. Thessms of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (817.1.1.1).

The accessors of an inherited virtual event can be overridden in a derived class by including an event
declaration that specifies averride modifier. This is known as aaverriding event declaration. An

overriding event declaration does not declare a new event. Instead, it simply specializes the implementations
of the accessors of an existing virtual event.

An overriding event declaration must specify the exsashe accessibility modifiers, type, and name as the
overridden event.

An overriding event declaration may include thealed modifier. Use of this modifier prevents a derived
class from further overriding the event. The accessors of a sealed event are also sealed.

It is a compile-time error for an overriding event declaration to includevamodifier.

Except for differences in declaration and invocation ayntirtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in
817.5.3,817.5.4,817.5.5, and §3.B apply as if accessors were methods of a corresponding form. Each
accessor corresponds to a method with a single value parameter of the eventtype raturn type, and

the same modifiers as the containing event.

17.8 Indexers

An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are
declared usingndexer-declarations:

indexer-declaration:
attributes,y indexer-modifiersyy indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new
pubTic
protected
internal
private
virtual
sealed
override
abstract
extern

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

An indexer-declaration may include a set ddttributes (824) and a valid combination of the four access
modifiers (817.2.3), theew (817.2.2)virtual (817.5.3)override (817.5.4),sealed (§17.5.5),
abstract (817.5.6), andxtern (817.5.7) modifiers.

Indexer declarations are subject to the same ruleseibod declarations (817.5) with regard to valid
combinations of maodifiers, with the one exception being that the static modifier is not permitted on an
indexer declaration.

254

w N -

~N o o b

o]

10

11
12

13
14
15

16
17
18

19
20
21

22

23

24

25
26

27

28
29

30
31
32

33
34

35
36
37

38
39

40
41
42

43
44

Chapter 17 Classes

The modifiersvirtual, override, andabstract are mutually exclusive except in one case. The
abstract andoverride modifiers may be used together so that an abstract indexer can override a virtual
one.

Thetype of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementatiortypleés followed by the keyword

this. For an explicit interface member implementation, typ is followed by aninterface-type, a “.”, and

the keywordthis. Unlike other members, indexers do not have user-defined names.

Theformal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer

corresponds to that of a method (817.5.1), except that at least one parameter must be specified, and that the

ref andout parameter modifiers are not permitted.

Thetype of an indexer and each of the types referenced irfahmeal -parameter-list must be at least as
accessible as the indexer itself (810.5.4).

Theaccessor-declarations (817.6.2), which must be enclosed ifi"“and “}” tokens, declare the accessors
of the indexer. The accessors specify the executabienseants associated with reading and writing indexer
elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer

element is not classified as a variable. Thus, it is not possible to pass an indexer elemeaf as aut
argument.

Theformal-parameter-list of an indexer defines the signature (810.6) of the indexer. Specifically, the
signature of an indexer consists of the number and types of its formal parameters. The element type and
names of the formal parameters aw part of an indexer’s signature.

The signature of an indexer must differ from the signeswof all other indexers declared in the same class.
Indexers and properties are very similar in concept, but differ in the following ways:
» A property is identified by its name, whereas an indexer is identified by its signature.

» A property is accessed througlsianple-name (814.5.2) or anember-access (814.5.4), whereas an
indexer element is accessed througlel@ement-access (§14.5.6.2).

e A property can be atatic member, whereas an indexer is always an instance member.

» A get accessor of a property corresponds to a method with no parameters, whegesaacgessor of an
indexer corresponds to a method with the edormal parameter list as the indexer.

* A set accessor of a property corresponds to a method with a single parameter viahaedwhereas a
set accessor of an indexer corresponds to a method withaime $ormal parameter list as the indexer, plus
an additional parameter namedlue.

» Itis a compile-time error for an indexer accessor to declare a local variable with the same name as an
indexer parameter.

* Inan overriding property declaration, the imiied property is accessed using the syriaxe . P, where
P is the property name. In an overriding indexer deati@n, the inherited indexer is accessed using the
syntaxbase[E], whereE is a comma-separated list of expressions.

Aside from these differences, all rules defined in 127 and §17.6.3 apply to indexer accessors as well as to
property accessors.

When an indexer declaration includeseattern modifier, the indexer is said to be arternal indexer.
Because an external indexer declaration provides no actual implementation, eacttadsgsr -
declarations consists of a semicolon.

[Example: The example below declaresatArray class that implements an indexer for accessing the
individual bits in the bit array.

255

0 ~N O a b wN ek

=
o ©

=R
W NP

WWWWRRNNNNRNNNNNE R PR R R
WNPRPOOONOUBRWNRLROOODNO® U A

34
35
36

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

59
60

C#LANGUAGE SPECIFICATION

using System;
class BitArray

int[] bits;

int Tength;

public BitArray(int Tength) {
if (Tength < 0) throw new ArgumentException();
bits = new int[((Tength - 1) >> 5) + 1];
this.length = length;

public int Length {
get { return length; }

public bool this[int index] {
get {
if (index < 0 || index >= length) {
throw new IndexOutOfRangeException();

return (bits[index >> 5] & 1 << index) != 0;

set {
if (index < 0 || index >= length) {
throw new IndexOutOfRangeException();

3
if (value) {
bits[index >> 5] |= 1 << index;

else {
bits[index >> 5] &= ~(1 << index);

}
}
}

An instance of th&1itArray class consumes substantially less memory than a correspdsatirig]
(since each value of the former occupies only one bieiag of the latter’s one byte), but it permits the same
operations as hool[].

The followingCountPrimes class uses BitArray and the classical “sieve” algorithm to compute the
number of primes between 1 and a given maximum:

class CountPrimes

static int Count(int max) {
BitArray flags = new BitArray(max + 1);
int count = 1;
for (int i = 2; i <= max; i++) {
if (!flags[i]) {
for (int j =1 * 2; j <= max; j += i) flags[j] = true;
count++;

}

return count;

static void Main(string[] args) {
int max = int.Parse(args[0]);
int count = Count(max);
; console.writeLine("Found {0} primes between 1 and {1}", count,
max) ;

}

Note that the syntax for accessing elements oBthearray is precisely the same as fobao1[]. end
exampl el

256

o ~NO O w N -

©

NNNRRRRRERRRRR
NP OO©WOWNOUNMWNERO

WWWWWNNNDNDNDNDDN
P WNPOOONOOGIA~W

w
[&)]

36
37

38

39
40

41
42

43
44
45

46
a7
48
49

50
51
52
53

Chapter 17 Classes

[Example: The following example shows a 60 grid class that has an indexer with two parameters. The
first parameter is required to be an upper- or lowesdatter in the range A-Z, and the second is required to
be an integer in the range 0-9.

using System;

%1ass Grid
const int NumRows = 26;
const int NumCols = 10;

int[,] cells = new int[NumRows, NumCols];

pubTlic int this[char c, int colm]

get {
c = Char.Toupper(c);
if (c < 'A" || c> "z2") {
throw new ArgumentException();

if (colm < 0 || colm >= NumCols) {
throw new IndexOutOfRangeException();

return cells[c - "A', colm];

}

set {
c = Char.Toupper(c);
if (c < 'A" || c> '2") {
throw new ArgumentException();

if (colm < 0 || colm >= NumCols) {
throw new IndexOutOfRangeException();

) cells[c - 'A'", colm] = value;
3
ks

end exampl €]

17.8.1 Indexer overloading
The indexer overload resolution rules are described in §14.4.2.

17.9 Operators

An operator is a member that defines the meaning of an esgitn operator that can be applied to instances
of the class. Operators are declared ugipgrator-declarations:

operator-declaration:
attributes,y operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public
static
extern

operator-declarator:
unary-oper ator-declarator
binary-operator-declarator
conver sion-oper ator-declarator

257

10
11

12
13
14

15
16

17
18
19
20
21

22

23

24
25

26
27

28
29

30

31

32
33
34
35
36

37

38

39

40
41

C#LANGUAGE SPECIFICATION

unary-oper ator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - '~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of

oo

+ - * / % & | A << >> == = > < >= <=

conver sion-oper ator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)
operator-body:
block

There are three categories of ovedahle operators: Unary operators (81.T), binary operators (817.9.2),
and conversion operators (817.9.3).

When an operator declaration includesexrtern modifier, the operator is said to be axternal operator.
Because an external operator provides no actual implementatiopeitator-body consists of a semi-colon.
For all other operators, thaperator-body consists of dlock, which specifies the statements to execute
when the operator is invoked. Théock of an operator must conform to the rules for value-returning
methods described in §17.5.8.

The following rules apply to all operator declarations:
* An operator declaration must include botpwab11ic and astatic modifier.

» The parameter(s) of an operator must be value parameters. It is a compile-time error for an operator
declaration to specifyef or out parameters.

» The signature of an operator (8§17.9.1, 817.9.2, 817.9.3) must differ from the signatures of all other
operators declared in the same class.

» Alltypes referenced in an operator declaration must be at least as accessible as the operator itself
(810.5.4).

e ltis an error for the same modifier to appear multiple times in an operator declaration.
Each operator category imposes additional restnis, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in Wil operator is declared to participate in the signature

of the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a
base class. Thus, tmew modifier is never required, and therefore never permitted, in an operator

declaration.

Additional information on unary and binary operators can be found in §14.2.

Additional information on conversion operators can be found in §13.4.

17.9.1 Unary operators

The following rules apply to unary operator declarations, whiedenotes the class or struct type that
contains the operator declaration:

258

10
11

12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

33
34
35
36

37

38
39

40
41
42

43
44
45
46

Chapter 17 Classes

 Aunary+, -, !, or~ operator must take a single parameter of ty@ad can return any type.
e Aunary++ or -- operator must take a single parameter of ty@ad must return type.
 Aunarytrue or false operator must take a single parameter of ty@and must return typbool.

The signature of a unary operatmwnsists of the operator token, (-, !, ~, ++, --, true, or false) and the
type of the single formal parameter. The return tigoeot part of a unary operator’s signature, nor is the
name of the formal parameter.

Thetrue andfalse unary operators require pair-wise declaration. A compile-time error occurs if a class
declares one of these operators without also declaring the othet.rlieeandfalse operators are
described further in §14.16.

[Example: The following example shows an implementation and subsequent usagedtor++ for an
integer vector class:

pubTlic class IntVector

public int Length { .. } // read-only property
pubTic int this[int index] { .. } // read-write indexer
public Intvector(int vectorLength) { .. }
public static IntVector operator++(Intvector iv) {

IntVector temp = new IntVector(iv.Length);

for (int i 0; i < iv.Length; ++i)

temp[i] iv[i]l + 1;
return temp;

}

class Test

static void Main() {
Intvector ivl = new IntVector(4); // vector of 4x0
Intvector 1iv2;

iv2 = ivl++; // iv2 contains 4x0, ivl contains 4x1
iv2 = ++ivl; // iv2 contains 4x2, ivl contains 4x2

}

Note how the operator method returns the valumpced by adding 1 to the operand, just like the postfix
increment and decrement operators(814.5.9), angréfex increment and decrement operators (814.6.5).
Unlike in C++, this method need not, and, in fact, must not, modify the value of its operand dieaditly.
example]

17.9.2 Binary operators

A binary operator must take two parameters, at least one of which must have the class or struct type in which
the operator is declared. A binary operator can return any type.

The signature of a binary operator consists of the operator taken ¢, /, %, &, |, A, <<, >>, ==, =, >, <,
>=, Or <=) and the types of the two formal parametérke return type and the names of the formal
parameters are not part of a binary operator’s signature.

Certain binary operators require pair-wise declaratFor every declaration of either operator of a pair,

there must be a matching declaration of the other dpedd the pair. Two operator declarations match when
they have the same return type and the same type for each parameter. The following operators require pair-
wise declaration:

259

10
11

12
13
14
15

16

17

18

19

20
21
22

23
24
25
26

27
28
29
30

31
32
33
34

35
36
37
38

39

40
4

43

C#LANGUAGE SPECIFICATION

e operator == andoperator !=
e operator > andoperator <

e operator >=andoperator <=

17.9.3 Conversion operators

A conversion operator declaration introducasser-defined conversion (813.4), which augments the pre-
defined implicit and explicit conversions.

A conversion operator declaration that includesthp1icit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a varigtgituations, including function member invocations,
cast expressions, and assignments. This is described further in 813.1.

A conversion operator declaration that includesdkp1i cit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cagiressions, and are described further in §13.2.

A conversion operator converts from a source typdidated by the parameter type of the conversion
operator, to a target type, indicated by the return type of the conversion operator. A class or struct is
permitted to declare a conversion from a source typea target typa provided all of the following are
true:

* S andT are different types.

» Eithers or T is the class or struct type in which the operator declaration takes place.
* Neithers norTisobject or aninterface-type.

e Tisnotabase class of S, aAds not a base class of T.

From the second rule it follows that a conversion opmrenust convert either to or from the class or struct
type in which the operator is declare@xpmple: For example, it is possible for a class or struct tgpte
define a conversion from to int and fromint to C, but not fromint to boo1. end example]

It is not possible to redefine a pre-defined conversikius, conversion operators are not allowed to convert
from or toobject because implicit and explicit conversions already exist betwbdgrct and all other

types. Likewise, neither the source nor the target types of a conversion can be a base type of the other, since
a conversion would then already exist.

User-defined conversions are not allowed to convert from amtevface-types. In particular, this restriction
ensures that no user-defined transformations occur when convertingriteidace-type, and that a

conversion to amterface-type succeeds only if the object being converted actually implements the specified
interface-type.

The signature of a conversion operator consists of tliece type and the target type. (Note that this is the
only form of member for which the return type participates in the signature.)ifipgicit orexplicit

classification of a conversion operator is not part & tiperator’s signature. Thus, a class or struct cannot
declare both anmp1icit and anexp1icit conversion operator with the same source and target types.

[Note: In general, user-defined implicit conversion®sld be designed to never throw exceptions and never
lose information. If a user-defined conversion cavegiise to exceptions (for example, because the source
argument is out of range) or loss of information (sucldiasarding high-order bits), then that conversion
should be defined as an explicit conversiemd note]

[Example: In the example

using System;
public struct Digit

byte value;

260

= O © 0 ~N o g A WNBE

R
N

=R
N

15

16
17

18
19

20
21
22

23
24
25
26
27
28

29
30

31
32
33

34
35
36

37
38
39

40
4

42
43
44
45

46
47

48
49

Chapter 17 Classes

public Digit(byte value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = value;

public static implicit operator byte(bigit d) {
return d.value;

public static explicit operator Digit(byte b) {
return new Digit(b);

3

the conversion fronbigi t to byte is implicit because it never throws exceptions or loses information, but
the conversion fronbyte to Digit is explicit sincedigit can only represent a subset of the possible
values of ebyte. end example]

17.10 Instance constructors

An instance constructor is a member that implements the actionguieed to initialize an instance of a class.
Instance constructors are declared usiogstr uctor-declarations:

constructor-declaration:
attributes,,: constructor-modifiers,, constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected
internal
private
extern

constructor-declarator:
identifier (formal-parameter-listy,y) constructor-initializer oy

constructor-initializer:
base (argument-listyy)
this (argument-listyy)

constructor-body:
block

A constructor-declaration may include a set ddttributes (§824), a valid combination of the four access
modifiers (817.2.3), and aextern (817.5.7) modifier. A constructor declaration is not permitted to include
the same modifier multiple times.

Theidentifier of a constructor-declarator must name the class in which the instance constructor is declared.
If any other name is specified, a compile-time error occurs.

The optionalformal-parameter-list of an instance constructor is subject to the same rules dertimal -
parameter-list of a method (817.5). The formal parameter list defines the signature (810.6) of an instance
constructor and governs the process whereby oadnfesolution (814.4.2) selects a particular instance
constructor in an invocation.

Each of the types referenced in tleemal-parameter-list of an instance constructor must be at least as
accessible as the constructor itself (§10.5.4).

The optionalonstructor-initializer specifies another instance constructor to invoke before executing the
statements given in thenstructor-body of this instance constructor. This is described further in 817.10.1.

261

o 0o WN

0

10
11

12

13
14
15

16
17
18
19
20

21
22
23
24
25
26

27
28

29

30
31

32

33
34
35
36
37

38
39

40
41
42
43

44

45
46
47

C#LANGUAGE SPECIFICATION

When a constructor declaration includesextern modifier, the constructor is said to be external
constructor.

Because an external constructor declaration provides no actual implementationstitactor-body consists
of a semicolon. For all other constructors, toastructor-body consists of dlock, which specifies the
statements to initialize a new instance of the class. This corresponds exactlypltodtef an instance
method with avoid return type (817.5.8).

Instance constructors are not inherited. Thus, asdi@s no instance constructors other than those actually
declared in the class. If a class contains no instancemrmgr declarations, a default instance constructor is
automatically provided (817.10.4).

Instance constructors are invoked diyect-creation-expressions (814.5.10.1) and througionstructor-
initializers.

17.10.1 Constructor initializers

All instance constructors (except those for clabgect) implicitly include an invocation of another
instance constructor immediately before toastructor-body. The constructor to implicitly invoke is
determined by theonstructor-initializer:

* Aninstance constructor initializer of the forbase (argument-list,,) causes an instance constructor
from the direct base class to be invoked. That constructor is selectedangurgent-list and the overload
resolution rules of 814.4.2. The set of candidate insta@oostructors consists of all accessible instance
constructors declared in the direct base class. Ifgbiss empty, or if a single best instance constructor
cannot be identified, a compile-time error occurs.

* Aninstance constructor initializer of the forohi s (argument-list,,) causes an instance constructor
from the class itself to be invoked. The constructor is selected asmgnent-list and the overload

resolution rules of §14.4.2. The set of candidate inst@oostructors consists of all accessible instance
constructors declared in the class itself. If that setmpty, or if a single best instance constructor cannot be
identified, a compile-time error occurs. If an instareonstructor declaration¢ludes a constructor

initializer that invokes the constructor itself, a compile-time error occurs.

If an instance constructor has no constructdtializer, a constructor initializer of the forbmase () is
implicitly provided. [Note: Thus, an instance constructor declaration of the form

cC.) {.}
is exactly equivalent to
C(.): base() {.}
end note]

The scope of the parameters given by fibrenal-parameter-list of an instance constructor declaration
includes the constructor initializer of that declaoati Thus, a constructor initializer is permitted to access
the parameters of the constructdexgmple: For example:

class A

pubTic A(int x, int y) {}
class B: A

pubTlic B(int x, int y): base(x + vy, x - vy) {}

end exampl €]

An instance constructor initializer cannot access th&mse being created. Therefore it is a compile-time
error to referencehis in an argument expression of the constructor initializer, as it is a compile-time error
for an argument expression to reference any instance member thraugbl &name.

262

N O o W N

©

10
11
12

13
14
15
16
17
18

19
20

21
22
23
24

25
26
27

28
29
30

32
33

34
35
36

37
38

39
40

4
42
43

44
45
46

47
48
49
50

Chapter 17 Classes

17.10.2 Instance variable initializers

When an instance constructor has no constructorligér, or it has a constructor initializer of the form
base(..), that constructor implicitly perform#e initializations specified by theariable-initializers of the
instance fields declared in its class. This cop@sls to a sequence of assignments that are executed
immediately upon entry to the constructor and befihe implicit invocation of the direct base class
constructor. The variable initializers are executethie textual order in which they appear in the class
declaration.

17.10.3 Constructor execution

Variable initializers are transformed into assignment statements, and these assignment statements are
executedefore the invocation of the base class instance constru@his ordering ensures that all instance
fields are initialized by their variable initializers befaary statements that have access to that instance are
executed.Example: For example:

using System;
class A

public AQ {
PrintFields();

public virtual void PrintFields() {}

class B: A

int x = 1;
int y;
public BQ) {
! y = -1;

public override void PrintFields() {
console.writeLine("x = {0}, y = {1}", x, ¥);

3
Whennew B() is used to create an instance of B, the following output is produced:
x=1,y=0

The value ofx is 1 because the variable initializer is executeddoefthe base class instance constructor is
invoked. However, the value ¢fis 0 (the default value of annt) because the assignmentytas not
executed until after the base class constructor returns.

It is useful to think of instance variable initializeand constructor initializers as statements that are
automatically inserted before tlgenstructor-body. [Example: The example

using System;]
using System.Collections;

class A

int x =1, y = -1, count;

public AQ {
count = 0;

public A(int n) {
count = n;

263

0 ~N O a b wN ek

51

52
53
54
55
56
57

C#LANGUAGE SPECIFICATION

class B: A

double sqrt2 = Math.sqrt(2.0);

ArrayList items = new ArrayList(100);

int max;

public B(): this(100) {
jtems.Add("default");

pubTic B(int n): base(n - 1) {

max = n;

}

contains several variable initializers; it alsontains constructor initializers of both formsase andthis).
The example corresponds to the code shown below, wdaarle comment indicates an automatically inserted
statement (the syntax used for the automaticallyrieskeconstructor invocations isn’t valid, but merely

serves to illustrate the mechanism).
using System.Collections;
class A

int x, y, count;
pubTic AQ {
X = 1;

y = -1;
object();
count = 0;

pubTic A(int n) {
X = 1;
y = -1;
object();
count = n;

}

class B: A

double sqrt2;
ArrayList items;
int max;

public BQO: this(100) {

B(100);
items.Add("default");

pubTlic B(int n): base(n - 1) {
sqrt2 = Math.sqrt(2.0);
items = new ArrayList(100);

A(n - 1;
max = n;
}
}

end example]

17.10.4 Default constructors

If a class contains no instance constructor declanatia default instance cdnsctor is automatically

provided. That default constructangply invokes the parameterless constructor of the direct base class. If

the direct base class does not have an accessible parameterless instance constructor, a compile-time error
occurs. If the class is abstract then the declared aduitty for the default constructor is protected.

// variable initializer
// Vvariable initializer
// Invoke object() constructor

// variable initializer
// Vvariable initializer
// Invoke object() constructor

// Invoke B(int) constructor

// variable initializer
// Vvariable initializer
// Invoke A(int) constructor

Otherwise, the declared accessibility for the default constructor is pultite:[Thus, the default

constructor is always of the form

264

20

21
22
23
24

25
26

27

28
29
30
31

32
33
34

35

36
37

38
39
40
41
42
43
44
45

46
47
48
49

50
51

Chapter 17 Classes

protected C(): base() {}
or

public c(Q: base() {}
wherec is the name of the clasend note]

[Example: In the example
class Message

object sender;
string text;

a default constructor is provided because the classagwmho instance constructor declarations. Thus, the
example is precisely equivalent to

class Message

object sender;
string text;

public Message(): base() {}

end exampl €]

17.10.5 Private constructors

When a class declares only private instance constructors, it is not possible for other classes to derive from
that class or to create instances of that class (aemion being classes nested within that clagSaifnple:
Private instance constructors are commonly usedeisses that contain only static members. For example:

public class Trig

private Trig() {} // Prevent instantiation
public const double PI = 3.14159265358979323846;

pubTlic static double Sin(double x) {.}
public static double Cos(double x) {..}
) public static double Tan(double x) {..}

TheTrig class groups related methods and constants, but istemded to be instantiated. Therefore, it
declares a single empty private instance construetorexample] At least one instance constructor must be
declared to suppress the automatic generation of a default constructor.

17.10.6 Optional instance constructor parameters

[Note: Thethis(...) form of constructor initializer is commonly used in conjunction with overloading to
implement optional instance consttor parameters. In the example

class Text

public Text(): this(0, 0, null) {}
public Text(int x, int y): this(x, y, null) {}
public Text(int x, int y, string s) {

// Actual constructor implementation

}

the first two instance constructonserely provide the default values for the missing arguments. Both use a
this(..) constructor initializer to invoke the third instee constructor, which actually does the work of
initializing the new instance. The effect is that of optional constructor parameters:

Text tl = new Text(Q); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

265

10
11
12

13

14
15

16
17
18
19
20
21

22

23
24

25

26

27
28
29

30

31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47

C#LANGUAGE SPECIFICATION

end note]

17.11 Static constructors

A static constructor is a member that implements the actioaquired to initialize a class. Static
constructors are declared usisigtic-constructor-declarations:

static-constructor-declaration:
attributes,, static-constructor-modifiers identifier () static-constructor-body

static-constructor-modifiers:
externy, static
static externg

static-constructor-body:
block

A static-constructor-declaration may include a set ddttributes (824) and arextern modifier (817.5.7).

Theidentifier of a static-constructor-declaration must name the class in which the static constructor is
declared. If any other name is specified, a compile-time error occurs.

When a static constructor declaration includegane rn modifier, the static constructor is said to be an
external static constructor. Because an external static constructor declaration provides no actual
implementation, itstatic-constructor-body consists of a semicolon. For all other static constructor
declarations, thetatic-constructor-body consists of dlock, which specifies the statements to execute in
order to initialize the class. This corresponds exactly tanbnod-body of a static method with &oid
return type (817.5.8).

Static constructors are not inlitexd, and cannot be called directly.

The static constructor for a class executes at rapse in a given application domain. The execution of a
static constructor is triggered by the first of théidaving events to occur within an application domain:

* Aninstance of the class is created.

» Any of the static members of the class are referenced.

If a class contains theain method (810.1) in which execution begins, the static constructor for that class

executes before theain method is called. If a class contains any static fields with initializers, those
initializers are executed in textual order immedlg prior to executing the static constructor.

[Example: The example
using System;

%1ass Test
static void Main() {
A.FO;
B.FQ;
}
class A
static AQ {
) console.writeLine("Init A");
pubTlic static void F() {
console.writeLine("A.F");
}

266

©CoO~NOOA~WNEPRE

10

11
12
13
14

15
16

17
18

19

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35

36
37
38
39
40
41

42

43
44

45
46

47
48
49

50

51
52

Chapter 17 Classes

class B

static BO) { .))
console.writeLine("Init B");

public static void F() {
console.writeLine("B.F");

}

must produce the output:
Init A

because the execution &% static constructor is triggered by the calltor, and the execution d's static
constructor is triggered by the call Ba F. end example]

It is possible to construct circular dependencies #flaw static fields with variable initializers to be
observed in their default value state.
[Example: The example

using System;

class A

public static int X;
static AQQ { X = B.Y + 1;}

class B

pubTic static int Y = A.X + 1;
static B {}
static void Main() {
console.writeLine("X = {0}, Y = {1}", A.X, B.Y);

}

produces the output
X=1, Y=2

To execute thelain method, the system first runs the initializer fory, prior to classs's static constructor.
Y's initializer causea's static constructor to be run because the value. &fis referenced. The static
constructor ofA in turn proceeds to compute the valuexpfand in doing so fetches the default valuerof
which is zeroA. X is thus initialized to 1. The process of running static field initializers and static
constructor then completes, returning to the calculation of the initial valwetbe result of which
becomes 2end exampl €]

17.12 Destructors

A destructor is a member that implements the actions reggito destruct an instance of a class. A
destructor is declared usingdastructor-declaration:

destructor-declaration:
attributes,y externg: ~ identifier () destructor-body

destructor-body:
block

A destructor-declaration may include a set ddttributes (824).

Theidentifier of adestructor-declarator must name the class in which the destructor is declared. If any other

name is specified, a compile-time error occurs.

267

g A W N P

[«

10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27

28
29
30
31
32
33
34
35
36

37

38
39

40

4
42
43
44
45
46
47
48

49
50

51

52
53

C#LANGUAGE SPECIFICATION

When a destructor declaration includesexrte rn modifier, the destructor is said to be external
destructor. Because an external destructor declaration provides no actual implementatiesty ustor -
body consists of a semicolon. Foll ather destructors, thdestructor-body consists of dlock, which
specifies the statements to execute in order to destruct an instance of the aastsuétor-body
corresponds exactly to thmethod-body of an instance method withwaid return type (817.5.8).

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in
that class.

[Note: Since a destructor is required to have no parameters, it cannot be overloaded, so a class can have, at
most, one destructoend note]

Destructors are invoked automatically, and canndhlieked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use that instance. Execution of the destructor for the
instance may occur at any time after the instareeoimes eligible for destruction. When an instance is
destructed, the destructors in that instance’s inharégachain are called, in order, from most derived to least
derived Example: The output of the example

using System;

class A
NA() { - - m n
console.writeLine("A's destructor");
3
class B: A
NB() { - - m n
console.writeLine("B's destructor™);
3

class Test

static void Main() {
B b= new BQ;
b = null;
GC.Collect();
) GC.waitForPendingFinalizers();
}

B’s destructor
A’s destructor

since destructors in an inheritance chain are called in order, from most derived to least dedea@dmpl €]

Destructors may be implemented by overriding the virtual methioch1ize onSystem.0Object. In any
event, C# programs are not permitted to override this method or call it (or overrides of it) directly.
[Example: For instance, the program

class A

override protected void Finalize() {} // error
pubTlic void FQ {
this.Finalize(); // error

}
contains two errorsend example]

The compiler behaves as if this method, and overrides of it, does not exist &xathyjle: Thus, this
program:

268

A WNBE

Chapter 17 Classes

class A

void Finalize() {} // permitted

is valid and the method shown hidegstem.0Object’s Finalize method.end example]

For a discussion of the behavior when an exception is thrown from a destructor, see §23.3.

269

a b~ WODN

© 00 N O

10

11
12
13
14

15
16

17
18

19
20
21
22

23
24

25
26
27

28
29
30
31
32
33

34

35

36

37
38

39
40

Chapter 18 Structs

18. Structs

Structs are similar to classes in that they represent data structures that can contain data members and
function members. However, unlike classes, struasvalue types and do not require heap allocation. A
variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a
reference to the data, the latter known as an object.

[Note: Structs are particularly useful for small data stures that have value semantics. Complex numbers,
points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to
these data structures is that they have few data members, that they do not require use of inheritance or
referential identity, and that they can be convenigeimtiplemented using value semantics where assignment
copies the value instead of the refererael note]

As described in 811.1.3, the simple types provided by C#, sudlhiasdouble, andbooT, are, in fact, all
struct types. Just as these predefined types are structs, it is also possible to use structs and operator
overloading to implement new “primitive” types ihe C# language. Two examples of such types are given
at the end of this chapter (§18.4).

18.1 Struct declarations
A struct-declaration is atype-declaration (816.5) that declares a new struct:

struct-declaration:
attributesy,: struct-modifiers,y struct identifier struct-interfaces,, struct-body ;o

A struct-declaration consists of an optional set aftributes (§24), followed by an optional set sfruct-
modifiers (818.1.1), followed by the keyworsit ruct and anidentifier that names the struct, followed by an
optionalstruct-interfaces specification (818.1.2), followed byséruct-body (§18.1.3), optionally followed

by a semicolon.

18.1.1 Struct modifiers
A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
pubTic
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the sane&aning as those of a class declaration (817.1.1).

18.1.2 Struct interfaces

A struct declaration may includesiruct-interfaces specification, in which case the struct is said to
implement the given interface types.

struct-interfaces:
interface-type-list

271

10
11

12
13
14
15
16
17
18
19
20
21
22

23
24

25

26

27
28

29
30

31
32
33
34

35

36
37
38

39
40
41
42
43

44

C#LANGUAGE SPECIFICATION

Interface implementations are discussed further in §20.4.

18.1.3 Struct body
Thestruct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarations,y: }

18.2 Struct members

The members of a struct consist of the members introduced By ts-member-declarations and the
members inherited from the tysgstem.valueType.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

Except for the differences noted in §18.3, the descriptions of class members provided in §17.2 through
817.11 apply to struct members as well.

18.3 Class and struct differences

18.3.1 Value semantics
Structs are value types (§811.1) and are said to have galwmantics. Classes, on the other hand, are reference
types (811.2) and are saidt@ve reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains
a reference to the data, the latter known as an object.

With classes, it is possible for two variables to reference the same object, and thus possible for operations on
one variable to affect the object referenced by the otaeable. With structs, the variables each have their

own copy of the data, and it is not possible for operations on one to affect the other. Furthermore, because
structs are not reference types, it is not possible for values of a struct typentd be

[Example: Given the declaration
struct Point

pubTic int x, y;

pubTic Point(int x, int y) {
this.x X;
this.y = vy;

}

the code fragment

272

A WNBE

~N o O

10
11

12
13

14
15

16
17

18

19
20
21

22
23
24

25
26
27

28

29
30
31
32

33
34

35

36
37
38
39

40

41
42
43
44
45

Chapter 18 Structs

Point a = new Point(10, 10);
Point b = a;
a.x = 100;

System.cConsole.WriteLine(b.x);

outputs the valua@0. The assignment af to b creates a copy of the value, abds thus unaffected by the
assignment ta.x. HadPoint instead been declared as a class, the output wouldddecausea andb
would reference the same objeed example]

18.3.2 Inheritance

All struct types implicitly inherit fromsystem.valueType, which, in turn, inherits from classbject. A
struct declaration may specify a list of implemented interfaces, but it is not possible for a struct declaration
to specify a base class.

Struct types are never abstract and are always implicitly sealecald$ieract andsealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn’t supported for structs, dleelared accessibility of a struct member cannot be
protected or protected internal.

Function members in a struct cannotdiesstract or virtual, and theoverride modifier is allowed
only to override methods inherited from the typgstem.valueType.

18.3.3 Assighment

Assignment to a variable of a struct type createsgy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the
reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function

member, a copy of the struct is created. A struct may be passed by reference to a function member using a
ref or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated with

the property or indexer access must be classified asiablar If the instance expression is classified as a
value, a compile-time error occurs. This is described in further detail in §14.13.1.

18.3.4 Default values

As described in 812.2, several kinds of variablesaar@matically initialized to their default value when
they are created. For variables of class types and other reference types, this defaultrualde idowever,
since structs are value types that cannothbél, the default value of a struct is the value produced by
setting all value type fields to their default value and all reference type fieldstd.

[Example: Referring to thePoint struct declared above, the example

Point[] a = new Point[100];
initializes eaclPoint in the array to the value produced by setting trendy fields to zeroend example]

The default value of a struct corresponds to the vadierned by the default constructor of the struct
(811.1.1). Unlike a class, a struct is not permitted to alech parameterless instance constructor. Instead,
every struct implicitly has a parameterless instancestantor, which always returns the value that results
from setting all value type fields to their fZilt value and all reference type fieldsria11.

[Note: Structs should be designed to consider the defaititilization state a valid state. In the example

using System;]
struct KeyvaluePair

string key;
string value;

273

O Ul WN P

© 0

10

11
12
13
14

15
16
17
18
19
20
21

22

23

24
25
26

27
28
29
30

31

32
33
34
35
36
37
38

39
40

41

42
43

44

45
46
47
48

C#LANGUAGE SPECIFICATION

public KeyvaluePair(string key, string value) {
if (key == null || value == null) throw new ArgumentException();
this.key = key;
this.value = value;

}
}

the user-defined instance constructor protects agamll values only where it is explicitly called. In cases
where akeyvaluePair variable is subject to default value initialization, they andvalue fields will be
null, and the struct must be prepared to handle this statbnote]

18.3.5 Boxing and unboxing

A value of a class type can be converted to tgpgect or to an interface type that is implemented by the
class simply by treating the reference as anotyyge at compile-time. Likewise, a value of typbject or

a value of an interface type can be converted back to a class type without changing the reference (but of
course a run-time type check is required in this case).

Since structs are not reference tgpthese operations are implemented differently for struct types. When a
value of a struct type is converted to typleject or to an interface type that is implemented by the struct, a
boxing operation takes place. Likewise, when a value of tipiect or a value of an interface type is
converted back to a struct type, an unboxing operation takes place. A key difference from the same
operations on class types is that boxing and unbogapges the struct value either into or out of the boxed
instance. Note: Thus, following a boxing or unboxing operati, changes made to the unboxed struct are not
reflected in the boxed struand note]

For further details on boxing and unboxing, see 811.3.

18.3.6 Meaning of this

Within an instance constructor or instance function member of a diass, is classified as a value. Thus,
while this can be used to refer to the instance for which the function member was invoked, it is not
possible to assign tohi s in a function member of a class.

Within an instance constructor of a struthis corresponds to aout parameter of the struct type, and
within an instance function member of a strudh;i s corresponds to aef parameter of the struct type. In
both casesthis is classified as a variable, and it is possible to modify the entire struct for which the
function member was invoked by assigningttoi s or by passingchis as aref or out parameter.

18.3.7 Field initializers

As described in 818.3.4, the default value of a stractsists of the value that results from setting all value
type fields to their default value and all reference type fieldsu®1. For this reason, a struct does not
permit instance field declarations to include variable initializeegafnple: As such, the following example
results in one or more compile-time errors:

struct Point

public int x
pubTic int y

1; // Error, initializer not permitted
1; // Error, initializer not permitted

end example]

This restriction applies only to instance fields. t8tdields of a struct are permitted to include variable
initializers.

18.3.8 Constructors

Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct

implicitly has a parameterless instance constructoickvhlways returns the value that results from setting
all value type fields to their default value and all reference type fieldsifiol (§11.1.1). A struct can declare
instance constructors having parametefgafnple: For example

274

0 ~NO O A WN P

10
11

12

13

14
15
16
17

18
19

20
21
22

23
24
25

26
27
28
29
30

31
32
33

34

35
36

37
38

39

40
41
42
43
44

45
46

47

Chapter 18 Structs

struct Point

int x, y;

public Point(int x, int y) {
this.x = Xx;
this.y = vy;

}
Given the above declaration, the statements

Point pl
Point p2

new Point();
new Point(0, 0);

both create ®o1int with x andy initialized to zeroend exampl€]
A struct instance constructas not permitted to include a constructor initializer of the fdrase(...).

Thethis variable of a struct instance constructor corresponds tauarparameter of the struct type, and
similar to anout parameterthis must be definitely assigned (812.3) at every location where the
constructor returnsBxample: Consider the instance consttocimplementation below:

struct Point

int x, vy;
public int X {
set { x = value; }

public int Y {
set { y = value; }

public Point(int x, int y) {
X = X; // error, this is not yet definitely assigned
A // error, this is not yet definitely assigned

Y

}
}

No instance member function (including the set accessors for the propediety) can be called until all
fields of the struct being constructed have bdefinitely assigned. Note, however, thapdint were a
class instead of a struct, the instancestarctor implementation would be permitted.

end exampl €]

18.3.9 Destructors
A struct is not permitted to declare a destructor.

18.4 Struct examples
Thiswhole clause isinformative.

18.4.1 Database integer type

TheDBInt struct below implements an integer type that can represent the complete set of valueanaf the
type, plus an additional state that indicates an unknowmeva type with these characteristics is commonly
used in databases.

using System;
pubTic struct DBInt

// The Null member represents an unknown DBInt value.
public static readonly DBInt Null = new DBInt(Q);

275

© ~ [e20N¢)] A WNBE

C#LANGUAGE SPECIFICATION

276

// When the defined field is true, this DBInt represents a known value
// which is stored in the value field. when the defined field is

false,

// this DBInt represents an unknown value, and the value field 1is O.

int value;
boo1l defined;

// Private instance constructor. Creates a DBInt with a known value.

DBInt(int value) {
this.value = value;
this.defined = true;

// The IsNull property is true if this DBInt represents an unknown

value.

public bool IsNull { get { return !defined; } }

// The value property is the known value of this DBInt, or 0 if this
// DBInt represents an unknown value.

public int value { get { return value; } }
// Implicit conversion from int to DBInt.

public static implicit operator DBInt(int x) {
return new DBInt(x);

// Explicit conversion from DBInt to int. Throws an exception if the
// given DBInt represents an unknown value.

public static explicit operator int(DBInt x) {)
if (!x.defined) throw new InvalidoperationException();
return x.value;

public static DBInt operator +(DBInt x) {
return x;

public static DBInt operator -(DBInt x) {
return x.defined? -x.value: Null;

public static DBInt operator +(DBInt x, DBInt y) {
return x.defined && y.defined? x.value + y.value: Null;

public static DBInt operator -(DBInt x, DBInt y) {
return x.defined && y.defined? x.value - y.value: Null;

public static DBInt operator *(DBInt x, DBInt y) {

return x.defined && y.defined? x.value * y.value: Null;

public static DBInt operator /(DBInt x, DBInt y) {
return x.defined && y.defined? x.value / y.value: Null;

public static DBInt operator %(DBInt x, DBInt y) {
return x.defined && y.defined? x.value % y.value: Null;

public static DBBool operator ==(DBInt x, DBInt y) {
return x.defined && y.defined? x.value == y.value: DBBool.Null;

public static DBBool operator !=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value != y.value: DBBool.Null;

public static DBBool operator >(DBInt x, DBInt y) {
return x.defined && y.defined? x.value > y.value: DBBool.Null;

o © 00~ o U1 b WN P

=

12
13
14

15
16

18

19
20
21

22
23

24
25

26
27
28

29
30

31
32
33

34
35
36

37
38
39

40
41

42
43
44
45

46
a7
48

49
50
51
52

53
54
55

}

Chapter 18 Structs

public static DBBool operator <(DBInt x, DBInt y) {
return x.defined && y.defined? x.value < y.value: DBBool.Null;

public static DBBool operator >=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value >= y.value: DBBool.Null;

public static DBBool operator <=(DBInt x, DBInt y) {
return x.defined && y.defined? x.value <= y.value: DBBool.Null;

18.4.2 Database boolean type
TheDBBoo1 struct below implements a three-valued logical type. The possible values of this type are

DBBoo1.True, DBBoo1.False, andDBBoo1.Nul1, where theNu11 member indicates an unknown value.

Such three-valued logical types are commonly used in databases.

using System;
pubTic struct DBBool

// The three possible DBBool values.

pub-l'ic stat‘iC readon'ly DBBOO-I Nu-l-l = hew DBBOO-I (0)1
public static readonly DBBool False = new DBBool(-1);
public static readonly DBBool True = new DBBool(1);

// Private field that stores -1, 0, 1 for False, Null, True.
sbyte value;
// Private instance constructor. The value parameter must be -1, 0, or

1.
DBBool1(int_value) {
this.value = (sbyte)value;
// Properties to examine the value of a DBBool. Return true if this
// DBBool has the given value, false otherwise.
public bool IsNull { get { return value == 0; } }
public bool IsFalse { get { return value < 0; } }
public bool IsTrue { get { return value > 0; } }
d// Implicit conversion from bool to DBBool. Maps true to DBBool.True
an
// false to DBBool.False.
pubTic static implicit operator DBBool(bool x) {
return x? True: False;
// Explicit conversion from DBBool to bool. Throws an_exception if the
// given DBBool is Null, otherwise returns true or false.
pubTlic static explicit operator bool(DBBool x) {
if (x.value == 0) throw new InvalidOperationException();
return x.value > 0;
// Equality operator. Returns Null if either operand is Null,
otherwise
// returns True or False.
public static DBBool operator ==(DBBool x, DBBool y) {
if (x.value == 0 || y.value == 0) return Null;
return x.value == y.value? True: False;
// Inequality operator. Returns Null if either operand is Null,
otherwise

// returns True or False.

277

© ~N o g A WNBE

C#LANGUAGE SPECIFICATION

public static DBBool operator !=(DBBool x, DBBool y) {
if (x.value == || y.value == 0) return Null;
return x.value != y.value? True: False;

// Logical negation operator. Returns True if the operand is False,
Null
// if the operand is Null, or False if the operand is True.

public static DBBool operator !(DBBool x) {
return new DBBool(-x.value);

// Logical AND operator. Returns False if_either operand is False,
// otherwise Null if either operand is Null, otherwise True.

public static DBBool operator &(DBBool x, DBBool y) {
return new DBBool(x.value < y.value? x.value: y.value);

// Logical OR operator. Returns True if either operand is True,
otherwise)])
// Null if either operand is Null, otherwise False.

public static DBBool operator |(DBBool x, DBBool y) {
return new DBBool(x.value > y.value? x.value: y.value);

// Definitely true operator. Returns true if the operand 1is True,
false]
// otherwise.

public static bool operator true(bDBBool x) {
return x.value > 0;

f 1// Definitely false operator. Returns true if the operand is False,
alse
// otherwise.

public static bool operator false(DBBool x) {
return x.value < 0;

}

End of informative text.

278

A WON

© 00 N o u

10
11
12
13
14

15

16
17

18
19

20
21

22
23
24

25
26

27
28
29

30

31
32

33

34

35

36
37
38

39

Chapter 19 Arrays

19. Arrays

An array is a data structure that contains a number of variables which are accessed through computed
indices. The variables contained in an array, also calleél#meents of the array, are all of the same type, |
and this type is called thetement type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of
an array is also referred to as the dimensions of the array. An array with a rank of one is caligid-a

dimensional array. An array with a rank greater than one is calleshati-dimensional array. Specific sized
multi-dimensional arrays are often referred to as two-dimensional arrays, three-dimensional arrays, and so
on. Each dimension of an array has an associated length which is an integral number greater than or equal to
zero. The dimension lengths are not part of the typdefdrray, but rather are established when an instance

of the array type is created at run-time. The length of a dimension determines the valid range of indices for
that dimension: For a dimension of length N, indices can range @réorN - 1 inclusive. The total number

of elements in an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

19.1 Array types
An array type is written as aon-array-type followed by one or moreank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsyy: 1]

dim-separators:

dim-separators ,
A non-array-typeis anytype that is not itself ararray-type.

The rank of an array type is given by the leftmoank-specifier in thearray-type: A rank-specifier indicates
that the array is an array with a rank of one plus the number 'dfdkens in therank-specifier.

The element type of an array type is the type that results from deleting the lefiam&sdpecifier:
* An array type of the fornT [R] is an array with ranR and a non-array element type
* An array type of the fornT[R] [R1]..[Rx] iS an array with ranR and an element type[R1]...[Ry].

In effect, therank-specifiers are read from left to righiefore the final non-array element typeefample:
The typeint[]1[,,]1[,] is asingle-dimensional array of three-dimensional arrays of two-dimensional
arrays ofint. end exampl€]

At run-time, a value of an array type caniel 1 or a reference to an instance of that array type.

279

a b~ WODN

10
11
12

13
14

15
16

17

18
19
20
21

22

23
24

25

26
27
28
29
30
31

32
33
34

35
36
37
38
39

40
41
42
43
44
45
46

C#LANGUAGE SPECIFICATION

19.1.1 The System.Array type

The typesystem.Array is the abstract base type of all array tgpAn implicit reference conversion
(813.1.4) exists from any array typesgstem.Array, and an explicit reference conversion (813.2.3) exists
from System.Array to any array type. Note thalystem.Array is not itself anarray-type. Rather, it is a
class-type from which allarray-types are derived.

At run-time, a value of typsystem.Array can benul1 or a reference to an instance of any array type.

19.2 Array creation

Array instances are created byray-creation-expressions (814.5.10.2) or by field or local variable
declarations that include amray-initializer (819.6).

When an array instance is created, the rank and teoigtach dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an
existing array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. Byatem.Array type is an abstract type that cannot be
instantiated.

Elements of arrays created byray-creation-expressions are always initialized to their default value
(812.2).

19.3 Array element access

Array elements are accessed usahgnent-access expressions (814.5.6.1) of the fomfi1., Iz, .., In],

whereA is an expression of an array type and eagis an expression of typent, uint, Tong, ulong, or

of a type that can be implicitly converted to one or more of these types. The result of an array element access
is a variable, namely the array element selected by the indices.

The elements of an array can be enumerated usfrgraach statement (815.8.4).

19.4 Array members
Every array type inherits the members declared bysgetem. Array type.

19.5 Array covariance

For any tworeference-types A andB, if an implicit reference conversio®{3.1.4) or explicit reference
conversion (813.2.3) exists fromto B, then the same reference convensadso exists from the array type
A[R] to the array type® [R], wherer is any giverrank-specifier (but the same for both array types). This
relationship is known aarray covariance. Array covariance, in particular, means that a value of an array
typeA[R] may actually be a reference to an instance of an arraygype, provided an implicit reference
conversion exists frors to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check
which ensures that the value being assigned to the array element is actually of a permitted type (814.13.1).
[Example: For example:

class Test

static void Fill(object[] array, int index, int count, object value) {
for (int i = index; i < index + count; 1i++) array[i] = value;

static void Main() {
string[] strings = new string[100];
Fill(strings, 0, 100, "undefined");
Fill(strings, 0, 10, null);
) Fill(strings, 90, 10, 0);
3

280

g A W N P

[«

10

11
12
13

14
15
16

17
18
19

20
21
22

23
24
25
26

27

28
29

30

31
32
33
34
35

36

37

38
39
40
41
42
43

44

45
46

The assignment tarray[i] in theFi11 method implicitly includes a run-time check, which ensures that

Chapter 19 Arrays

the object referenced byalue is eithernul1 or an instance of a type that is compatible with the actual

element type ofirray. In Main, the first two invocations ofi11 succeed, but the third invocation causes a

System.ArrayTypeMismatchException to be thrown upon executing the first assignment to
array[i]. The exception occurs because a boxed cannot be stored insitring array.end example]

Array covariance specifically does not extend to arraygbife-types. For example, no conversion exists
that permits anint[] to be treated as asbject[].

19.6 Array initializers

Array initializers may be specified in field declarations (817.4), local variable declarations (815.5.1), and

array creation expressions (§14.5.10.2):

array-initializer:
{ variable-initializer-listoy
{ variable-initializer-list ,

variable-initializer-list:
variable-initializer

}
}

variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed”and “}” tokens and

separated by,” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional

array, a nested array initializer.

The context in which an array initializer is used detamas the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initializer. In a field or variable declaration, the

array type is the type of the field or variable beirgcthred. When an array initializer is used in a field or

variable declaration Hxample: such as:
int[] a = {0, 2, 4, 6, 8

3

end exampl€] it is simply shorthand for an equilent array creation expressiofE{ample;
int[] a = new int[] {0, 2, 4, 6, 8};

end exampl €]

For a single-dimensional array, the array inizeli must consist of a sequence of expressions that are
assignment compatible with the element type efdinray. The expressions initialize array elements in
increasing order, starting with the element at indesoz The number of expressions in the array initializer
determines the length of the array instance being credisdniple: For example, the array initializer above
creates arint[] instance of length 5 and then initializes the instance with the following values:

af0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

end exampl €]

For a multi-dimensional array, the array initializaust have as many levels of nesting as there are
dimensions in the array. The outermost nesting level corresponds to the leftmost dimension and the

innermost nesting level corresponds to the rightmost dimension. The length of each dimension of the array is

determined by the number of elements at the cpading nesting level in the array initializer. For each
nested array initializer, the number of elements mesthe same as the other array initializers at the same

level. [Example: The example:
int[,] b = {{0, 1}, {2,

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the

rightmost dimension:

3}’ {4’

5}, {6, 7}, {8, 9}1};

281

~No 0o~ w N

10
11
12
13

14
15

16
17
18

C#LANGUAGE SPECIFICATION

int[,] b = new int[5, 2];
and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;

b[1, 0] = 2; b[1, 1] = 3;

b[2, 0] = 4; b[2, 1] = 5;

b[3, 0] = 6; b[3, 1] = 7;

b[4, 0] = &; b[4, 1] = 9;
end example]

When an array creation expression includes both explicit dimension lengths and an array initializer, the
lengths must be constant expressions and the nuafleements at each nesting level must match the
corresponding dimension lengttiefample: Here are some examples:

int i = 3;

int[] x = new int[3] {0, 1, 2}; // OK

int[] y = new int[i] {0, 1, 2}; // Error, i not a constant

int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer foly results in a compile-time error because the dimension length expression is not a
constant, and the initializer far results in a compile-time error because the length and the number of
elements in the initializer do not agresad exampl €]

282

10
11

12
13
14
15

16
17

18
19
20

21
22
23
24
25
26

27

28
29

30
31
32

33

34
35
36

37
38

Chapter 20 Interfaces

20. Interfaces

An interface defines a contract. A class or struct thgilements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, ardass or struct may implement multiple interfaces.

Interfaces can contain methods, properties, eyamid indexers. The interface itself does not provide
implementations for the members that it defines. The interface merely specifies the members that must be
supplied by classes or interfaces that implement the interface.

20.1 Interface declarations
An interface-declaration is atype-declaration (§16.5) that declares a new interface type.

interface-declaration:
attributes,y interface-modifiers,, interface identifier interface-base,y interface-body
s opt
An interface-declaration consists of an optional set aftributes (§24), followed by an optional set of
interface-modifiers (§20.1.1), followed by the keywortinterface and anidentifier that names the
interface, optionally followed by an optionatterface-base specification (§20.1.2), followed byiaterface-
body (820.1.3), optionally followed by a semicolon.

20.1.1 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.

Thenew modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited
member by the same name, as described in §17.2.2.

Thepublic, protected, internal, andprivate modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (§10.5.1).

20.1.2 Base interfaces

An interface can inherit from zero or more interfaces, which are calleexqblécit base interfaces of the
interface. When an interface has one or more explicit b#ieefaces, then in the declaration of that interface,
the interface identifier is followed by a colon and@ma-separated list of base interface identifiers.

interface-base:
interface-type-list

283

23
24

25
26

27
28

29

30
31

32
33
34

35
36
37
38
39

40
41
42

43
44
45

46
47

C#LANGUAGE SPECIFICATION

The explicit base interfaces of an interface must beast as accessible as the interface itself (§10.5.4).
[Note: For example, it is a compile-time error to specifp@i vate or internal interface in thenterface-
base of apubli c interface.end note]

It is a compile-time error for an interface to directly or indirectly inherit from itself.

Thebase interfaces of an interface are the explicit base interfaces and their base interfaces. In other words,
the set of base interfaces is the complete transitiveurkof the explicit base interfaces, their explicit base
interfaces, and so on. An interface inherits all members of its base interfezasigle: In the example

interface IControl

void Paint();

nterface ITextBox: IControl

void SetText(string text);

3
.i
{
3
interface IListBox: IControl

{

void SetItems(string[] items);
ks
interface IComboBox: ITextBox, IListBox {}

the base interfaces afcomboBox areIControl, ITextBox, andIListBox. In other words, the
IcomboBox interface above inherits membe¥stText andSetItems as well aPaint. end example]

A class or struct that implements an interface also implicitly implements all of the interface’s base
interfaces.

20.1.3 Interface body
Theinterface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarations,, 3}

20.2 Interface members

The members of an interface are the members inherited from the base interfaces and the members declared

by the interface itself.

interface-member -declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

i nterface-member -declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,

properties, events, or indexers. An interface camootain constants, fields, operators, instance
constructors, destructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public accedsis a compile-time error for interface member
declarations to include any modifiers. In particular, interface members cannot be declared with the modifiers
abstract, public, protected, internal, private, virtual, override, orstatic.

[Example: The example
public delegate void StringListEvent(IStringList sender);

284

~N o (&) S WN P

(0]

10
11
12

13
14
15

16
17

18
19

20
21
22
23
24
25

26
27

28
29

30
31

32
33
34

35
36

37
38

39
40
41
42
43

44
4

;]

Chapter 20 Interfaces

public interface IStringList

void Add(string s);

int Count { get; }

event StringListEvent Changed;
string this[int index] { get; set; }

declares an interface that contains one each of the possible kinds of members: A method, a property, an
event, and an indexeend example€]

An interface-declaration creates a new declaration space (810.3), anéhtieeface-member-declarations
immediately contained by tHeterface-declaration introduce new members into this declaration space. The
following rules apply tdnterface-member-declarations:

» The name of a method must differ from the names of all properties and events declared in the same
interface. In addition, the signature (810.6) of a method must differ from the signatures of all other methods
declared in the same interface.

» The name of a property or event must differ from tfaenes of all other members declared in the same
interface.

» The signature of an indexer must differ from thgretures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface.
Thus, an interface is allowed to declare a member thighsame name or signature as an inherited member.
When this occurs, the derived interface member is salidethe base interface member. Hiding an

inherited member is not considered an error, but it does cause the compiler to issue a warning. To suppress
the warning, the declaration of the derived interface member must inclade modifier to indicate that the
derived member is intended to hide the base nmenribhis topic is discussed further in 810.7.1.2.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to
that effect. This warning is suppressed by removingnttnwe modifier.

20.2.1 Interface methods
Interface methods are declared usinigrface-method-declarations:

interface-method-declaration:
attributes,y newy return-type identifier (formal-parameter-listos)

Theattributes, return-type, identifier, andformal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in a class (817.5). An interface method declaration is not
permitted to specify a method body, and the deatlan therefore always ends with a semicolon.

20.2.2 Interface properties
Interface properties are declared usinggrface-property-declarations:

interface-property-declaration:
attributes,y newqy type identifier { interface-accessors }

interface-accessors:
attributes,y get ;
attributes,y set ;
attributes,y get ; attributes,y set ;
attributes,y set ; attributes, get ;

Theattributes, type, andidentifier of an interface property declaration have the same meaning as those of a
property declaration in a class (§817.6).

285

10
11

12
13

14
15

16
17
18

19

20
21
22

23
24
25
26
27
28
29

30

31
32
33
34

35
36
37
38

39

40
41
42
43
44
45
46
47
48

C#LANGUAGE SPECIFICATION

The accessors of an interface property declaration spord to the accessors of a class property declaration
(817.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the property is read-write, read-only, or write-only.

20.2.3 Interface events
Interface events are declared usintgrface-event-declarations:

interface-event-declaration:
attributes,,: newgy event type identifier ;

Theattributes, type, andidentifier of an interface event declaration have the same meaning as those of an
event declaration in a class (817.7).

20.2.4 Interface indexers
Interface indexers are declared usintgrface-indexer-declarations:

interface-indexer-declaration:
attributes,,: newgy type this [formal-parameter-list] { interface-accessors }

Theattributes, type, andformal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in a class (§17.8).

The accessors of an interface indexer declaration sporad to the accessors of a class indexer declaration
(817.8), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the indexer is read-write, read-only, or write-only.

20.2.5 Interface member access

Interface members are accessed through membersa(&rs5.4) and indexer access (§814.5.6.2) expressions
of the formI.MandI[A], wherel is an instance of an interface typeis a method, property, or event of
that interface type, andis an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effects of the mentdmup (814.3), method irocation (814.5.5.1), and

indexer access (814.5.6.2) rules are exactly the sanw atakses and structs: More derived members hide

less derived members with the same name or sigeaklowever, for multiple-inheritance interfaces,

ambiguities can occur when two or more unrelated base interfaces declare members with the same name or
signature. This section shows several examples of siligations. In all cases, explicit casts can be used to
resolve the ambiguities.

[Example: In the example
interface IList

int Count { get; set; }

interface ICounter

void Count(int 1i);

interface IListCounter: IList, ICounter {}

class C
void Test(IListCounter x) {
X.Count(1); // Error
x.Count = 1; // Error
((IList)x).Count = 1; // 0Ok, invokes IList.Count.set
((Icounter)x).count(l); // Ok, invokes ICounter.Count

286

A W N P

0 ~N O (&)

11
12
13

14

15
16
17
18
19
20
21
22
23

24
25
26
27

28

29
30
31
32

33
34
35
36

37
38
39
40

41

42
43
44
45
46
47
48
49
50

51
52

53
54
55
56

Chapter 20 Interfaces

the first two statements cause compile-time errors because the member lookup (8€418)toin
IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by castintne
appropriate base interface type. Such casts havamtime costs—they merely consist of viewing the
instance as a less derived type at compile-tiend.example]

[Example: In the example
interface IInteger

void Add(int 1i);

interface IDouble

void Add(double d);

interface INumber: IInteger, IDouble {}

class C
void Test(INumber n) {
n.Add(1); // Error, both Add methods are applicable
n.Add(1.0); // 0k, only IDouble.Add 1is applicable
((I1Integer)n) .Add(1); // 0Ok, only IInteger.Add is a candidate
((Ipouble)n) .Add(1); // Ok, only IDouble.Add is a candidate

3

the invocatiom.Add (1) is ambiguous because a method invocat®ilv(5.5.1) requires all overloaded
candidate methods to be declared in the same type. However, the invacatiddi(1.0) is permitted
because onlybouble.Add is applicable. When explicit casts are inserted, there is only one candidate
method, and thus no ambiguitgnd example]

[Example: In the example
interface IBase

void F(int 1);

}
interface ILeft: IBase
{

new void F(int 1i);
}

interface IRight: IBase

-~

void GO ;

interface IDerived: ILeft, IRight {}

class A
void Test(IDerived d) {
d.F(1); // Invokes ILeft.F
((1Base)d) .F(1); // Invokes IBase.F
((TLeft)d).F(1); // Invokes ILeft.F
((AIRight)d) .F(1); // Invokes IBase.F

}

theIBase.F member is hidden by theLeft.F member. The invocatiod. F(1) thus selectgLeft.F,
even thougltBase.F appears to not be hidden in the access path that leads thredght.

The intuitive rule for hiding in multiple-inheritancaterfaces is simply this: If a member is hidden in any
access path, itis hidden in all access paths. Because the access patbdroimed to ILeft to IBase
hidesiBase.F, the member is also hidden in the access path ftorrived to IRight to IBase. end
example]

287

27

28
29
30

31
32
33
34

35
36
37
38

39
40
4

42
43

44

45
46
47
48
49

50
51

C#LANGUAGE SPECIFICATION

20.3 Fully qualified interface member names

An interface member is sometimes referred to byuty qualified name. The fully qualified name of an
interface member consists of the name of the interfaeehich the member is declared, followed by a dot,
followed by the name of the member. The fully qualified name of a member references the interface in
which the member is declared{ample: For example, given the declarations

interface IControl

void Paint();

interface ITextBox: IControl

void SetText(string text);

the fully qualified name oPaint is IControl.Paint and the fully qualified name getText is
ITextBox.SetText. In the example above, it is not possible to refepédnt asITextBox.Paint. end
example]

When an interface is part of a namespace, the fully qualified name of an interface member includes the
namespace name=fample: For example

namespace System
public interface ICloneable
object Clone();
}

Here, the fully qualified name of thelone method isSystem.ICToneable.Clone. end example]

20.4 Interface implementations

Interfaces may be implemented by classes and striictindicate that a class or struct implements an
interface, the interface identifier is included in the base class list of the class or dbatple: For
example:

interface ICloneable

object Clone();

interface IComparable

int CompareTo(object other);

class ListEntry: ICloneable, IComparable

public object Clone() {..}
public int CompareTo(object other) {.}

end exampl €]

A class or struct that implements an interface also implicitly implements all of the interface’s base
interfaces. This is true even if the class or struct diesplicitly list all base interfaces in the base class
list. [Example: For example:

interface IControl

void Paint();

288

© ~N o g A WNBE

=
o

11

12
13
14
15
16

17
18

19
20
21
22

23
24
25

26
27

28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48
49
50

51
52

53
54

Chapter 20 Interfaces

interface ITextBox: IControl

void SetText(string text);

class TextBox: ITextBox

public void Paint() {.}
public void SetText(string text) {.}

Here, clasgextBox implements botltControl andITextBox. end example]

20.4.1 Explicit interface member implementations
For purposes of implementing interfaces, a class or struct may deglareit interface member

implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member ndanjple: For example

interface ICloneable

object Clone();

interface IComparable

) int CompareTo(object other);

class ListEntry: ICloneable, IComparable

object ICloneable.Clone() {..}
int IComparable.CompareTo(object other) {.}

Here,ICToneable.Clone andIComparable.CompareTo are explicit interface member
implementationsend exampl €]

[Example: In some cases, the name of an interface member may not be appropriate for the implementing
class, in which case the interface member may be implemented using explicit interface member
implementation. A class implementing a file abstraction, for example, would likely implen&rdse

member function that has the effect of releasing the file resource, and implemeritsihese method of
theIDisposable interface using explicit interface member implementation:

interface IDisposable {
void Dispose();

class MyFile: IDisposable {
void IDisposable.Dispose() {
Close();

public void Close() {
// Do what's necessary to close the file
System.GC.SuppressFinalize(this);

}
}

end example]

It is not possible to access an explicit interface mennog@lementation through its fully qualified name in a
method invocation, property access, or indexer acéasgxplicit interface member implementation can
only be accessed through an interface instance, and is in that case referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include access modifiers, and it
is a compile-time error to include the modifieabstract, virtual, override, orstatic.

Explicit interface member implementations have diéfet accessibility characteristics than other members.
Because explicit interface member implementatiomesremver accessible through their fully qualified name

289

~N o o b

o)

10
11
12

13
14
15
16

17
18

19
20

21
22
23
24
25

26
27

28
29
30
31

32
33

34
35

36
37
38
39

40
41
42
43

44
45
46

47

49
50

C#LANGUAGE SPECIFICATION

in a method invocation or a property access, they aresiernse private. However, since they can be accessed
through an interface instance, they are in a sense also public.

Explicit interface member implementations serve two primary purposes:

» Because explicit interface member implementatiomesrat accessible through class or struct instances,
they allow interface implementations to be excludieadn the public interface of a class or struct. This is
particularly useful when a class or struct implemeantsnternal interface that is of no interest to a consumer
of that class or struct.

» Explicit interface member implementations allowsa@mbiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface membeits the same signature and return type, as would it be
impossible for a class or struct to have any implementation at all of interface members with the same
signature but with different return types.

For an explicit interface member implementation to bé&d; the class or struct must name an interface in its
base class list that contains a member whose fulljifipghname, type, and parameter types exactly match
those of the explicit interface member implementatidgxajmple: Thus, in the following class

class Shape: ICloneable

object ICloneable.Clone() {..}
int IComparable.CompareTo(object other) {.} // invalid

the declaration ofComparable.CompareTo results in a compile-time error becauseomparable is not
listed in the base class list shape and is not a base interface D Toneab1e. Likewise, in the
declarations

class Shape: ICloneable

object ICloneable.Clone() {..}

class Ellipse: Shape
object ICloneable.Clone() {..} // invalid

the declaration ofCloneable.Clone in ET1T1ipse results in a compile-time error becaus€loneable is
not explicitly listed in the base class list b1 14 pse. end exampl €]

The fully qualified name of an interface member must reference the interface in which the member was
declared. [Example: Thus, in the declarations

interface IControl

void Paint(Q);

interface ITextBox: IControl

void SetText(string text);

class TextBox: ITextBox

void IControl.rPaint() {..}
void ITextBox.SetText(string text) {.}

the explicit interface member implementationrafi nt must be written agControl.Paint. end
example]

290

A WDN

o N o »

10

11
12

13
14
15

16

17

18
19

20

21
22
23

24

25
26

27

28

29
30
31
32

33
34
35

36
37

38
39

40
4
42
43

44
45

Chapter 20 Interfaces

20.4.2 Interface mapping

A class or struct must provide implementations of all members of the interfaces that are listed in the base
class list of the class or struct. The process of locating implementations of interface members in an
implementing class or struct is knowniaserface mapping.

Interface mapping for a class or structocates an implementation for each member of each interface
specified in the base class listof The implementation of a particular interface membem, whereI is the
interface in which the memberis declared, is determined by examining each class or srtarting with
C and repeating for each successive base classuritil a match is located:

» If s contains a declaration of an explicit interface member implementation that matetmeis, then
this member is the implementation Dfw.

» Otherwise, ifs contains a declaration of a non-static public member that matghtasn this member is
the implementation of . m.

A compile-time error occurs if implementations cannetlbcated for all members of all interfaces specified
in the base class list @f. Note that the members of an interface include those members that are inherited
from base interfaces.

For purposes of interface mapping, a class membeatches an interface memtewhen:
* A andB are methods, and the name, type, and formal parameter liatartdB are identical.

* A ands are properties, the name and typeaandB are identical, and has the same accessorsga
is permitted to have additional accessors if it is noeaplicit interface member implementation).

e A andB are events, and the name and typa aihdB are identical.

* A andB are indexers, the type and formal parameter lists afdB are identical, and has the same
accessors a (A is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface-mapping algorithm are:

» Explicit interface member implementations takegedence over other members in the same class or
struct when determining the class or struct member that implements an interface member.

* Neither non-public nor static members participate in interface mapping.
[Example: In the example

interface ICloneable

object Clone();

class C: ICloneable

object ICloneable.Clone() {..}
public object Clone() {..}

theICloneable.Clone member ofc becomes the implementation ©fone in ICloneable because
explicit interface member implementations take precedence over other meerobezsampl €]

If a class or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of thosefaxte members onto a single class or struct member.
[Example: For example

interface IControl

void Paint();

291

0 ~N O O A WNBE

10
11

12
13

14
15
16
17

18
19
20
21

22
23

24
25
26

27
28

29
30
31

32
33

34
35
36

37
38

39

40
4

42
43
44
45

46
47
48
49

50
51
52
53

54
55
56

C#LANGUAGE SPECIFICATION

interface IForm

void Paint();

class Page: IControl, IForm

public void Paint() {.}

Here, thepaint methods of botltControl andIForm are mapped onto theaint method inPage. It is
of course also possible to have separate explitérface member implementations for the two methedd.
example]

If a class or struct implements an interface tbattains hidden memberthen some members must
necessarily be implemented through explicit interface member implementatioasyjle; For example

interface IBase

int P { get; }

interface IDerived: IBase

new int PQ;

An implementation of this interface would require at least one explicit interface member implementation,
and would take one of the following forms

class C: IDerived

int IBase.P { get {.} }
int IDerived.P() {..}

class C: IDerived

public int P { get {..} }
int IDerived.P() {..}

class C: IDerived

int IBase.P { get {.} }
pubTic int PO {.}

end exampl €]

When a class implements multiple interfaces thatehthe same base interface, there can be only one
implementation of the base interfacExample: In the example

interface IControl

void Paint(Q);

nterface ITextBox: IControl

void SetText(string text);

I S s L TR et

interface IListBox: IControl

void setItems(string[] items);

Tass ComboBox: IControl, ITextBox, IListBox

N R)

void IControl.Paint() {.}

292

w N

o N o 0o

10
11
12
13

14
15
16

17
18

19
20
21
22

23

24
25

26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42

43
44
45
46
47
48
49
50

51

Chapter 20 Interfaces

void ITextBox.SetText(string text) {.}
void IListBox.SetItems(string[] items) {..}

it is not possible to have separate implementations fortdmntrol named in the base class list, the
IControl inherited byITextBox, and thezControl inherited byIListBox. Indeed, there is no notion of
a separate identity for these interfaces. Rather, the implementatiamexfBox andIListBox share the
same implementation afcontrol, andComboBox is simply considered to implement three interfaces,
IControl, ITextBox, andIListBox. end example]

The members of a base class patrticipate in interface maprgmple: In the example
interface Interfacel

void FQ;

class Classl

public void FQ {}
public void GO {}

class Class2: Classl, Interfacel

new public void GQ) {}
the methodr in Classlis used inclass?2's implementation ofnterfacel. end example]

20.4.3 Interface implementation inheritance
A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface
mappings it inherits from its base classé&xdmple: For example, in the declarations

interface IControl

void Paint(Q);

class control: IControl

pubTic void Paint() {..}

class TextBox: Control

new public void Paint() {.}

thePaint method inTextBox hides thePaint method inControT, but it does not alter the mapping of
Control.Paint ontoIControl.Paint, and calls taPaint through class instances and interface
instances will have the following effects

control c = new Control();
TextBox t = new TextBox();

IControl 1ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(Q); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(Q; // invokes Control.Paint(Q);

end example]

293

© ~No o b w N -

25

26
27
28
29
30
31

32
33

34
35
36

37
38

39
40
41
42

43
44

45

46
47

48
49
50
51

C#LANGUAGE SPECIFICATION

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived
classes to override the virtual method and alter the implementation of the inteBaaep[e: For example,
rewriting the declarations above to

interface IControl

void Paint();

class control: IControl

public virtual void Paint() {..}

class TextBox: Control

public override void Paint() {..}

the following effects will now be observed

new control();
new TextBox();

control c
TextBox t

IControl 1ic = c;
IControl it = t;
c.Paint(); // invokes cControl.Paint(Q);
t.Paint(); // invokes TextBox.Paint();
ic.Paint(Q; // invokes control.Paint(Q);
it.Paint(); // invokes TextBox.Paint();

end exampl €]

Since explicit interface member implementations catmeotleclared virtual, it is not possible to override an
explicit interface member implementation. Howe\uers perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived
classes to override itExample: For example

interface IControl

void Paint(Q);

class Control: IControl

void IControl.Paint() { PaintControl(); }
protected virtual void PaintControl() {.}

class TextBox: Control

protected override void PaintControl() {.}

Here, classes derived froaontrol can specialize the implementationdfontrol. Paint by overriding
thePaintControl method.end example]

20.4.4 Interface re-implementation

A class that inherits an interface implementation is permittagionplement the interface by including it in
the base class list.

A re-implementation of an interface follows exgahe same interface mapping rules as an initial
implementation of an interface. Thus, the inhatiteterface mapping has no effect whatsoever on the
interface mapping established for the re-implementation of the interfaxample: For example, in the
declarations

294

0 ~N O O A WNBE

(o]

11
12

13
14

15
16

17
18
19
20
21
22

24
25
26
27
28
29
30

31
32
33
34
35

36
37

38
39
40

41
42
43
44

45
46
47
48

49
50
51

52
53

54
55
56

57
58

Chapter 20 Interfaces

interface IControl

void Paint();

class control: IControl

void IControl.Paint() {.}

class MyControl: Control, IControl

public void Paint() {}

the fact thattontrol mapsIControl.Paint ontoControl.IControl.Paint doesn’t affect the re-
implementation iMyControl, which mapsIControl.Paint ontoMyControl.Paint. end example]

Inherited public member declarations and inheritedieitpnterface member declarations participate in the
interface mapping process for re-implemented interfaéesple: For example

interface IMethods

void FQ);
void GQO);
void HQO;
) void I(Q);

class Base: IMethods

void IMethods.F(
void IMethods.G(
pubTic void H(
public void 1(

) {}
) {}
{
{

I\

}
}
class Derived: Base, IMethods

public void FQ {}
void IMethods.H(Q) {}

Here, the implementation aMethods in Derived maps the interface methods omerived.F,
Base.IMethods.G, Derived.IMethods.H, andBase.I. end example]

When a class implements an interface, it implicitly alsplements all of that interface’s base interfaces.
Likewise, a re-implementation of an interface is alsplicitly a re-implementation of all of the interface’s
base interfacesExample: For example

interface IBase

void FQ;

interface IDerived: IBase

void GO ;

class C: IDerived

void IBase.F() {.}
void IDerived.G() {..}

class D: C, IDerived

public void FO {.}
public void GO {.}

295

N -

o~N O U~ W

11

12
13
14
15
16

17
18

19
20

21
22
23
24
25

26
27
28
29
30
31
32

33
34

C#LANGUAGE SPECIFICATION

Here, the re-implementation @aberived also re-implementsBase, mappingIBase.F ontoD. F. end
example]

20.4.5 Abstract classes and interfaces

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces
that are listed in the base class list of the class. However, an abstract class is permitted to map interface
methods onto abstract methodsxgmple: For example

interface IMethods

void FQ);
void G(Q);

abstract class C: IMethods

public abstract void FQ);
public abstract void GQ);

Here, the implementation aMethods mapsF andG onto abstract methods, which must be overridden in
non-abstract classes that derive franend example]

Note that explicit interface member implementais cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methixEmple: For example

interface IMethods

void FQ;
void GQO);

abstract class C: IMethods

void IMethods.F() { FF(Q); }
void IMethods.G() { GG(Q); }
protected abstract void FFE

s
protected abstract void GG(Q);

Here, non-abstract classes that derive flomould be required to overrider andGg, thus providing the
actual implementation afMethods. end example]

296

co~NO O W N

10

11
12

13
14

15
16

17
18
19

20
21
22
23
24

25

26
27
28
29
30
31

32
33
34

35
36
37

38
39

Chapter 21 Enums

21. Enums

An enum typeis a distinct type that declares a set of named constditarrple: The example
enum Color

Red,
Green,
Blue

declares an enum type namedl or with memberRed, Green, andBTue. end example]

21.1 Enum declarations

An enum declaration declares a new enum type. An enum declaration begins with the keywordnd
defines the name, accessibility, unigigng type, and members of the enum.

enum-declaration:
attributes,y enum-modifiersy,: enum identifier enum-base,: enum-body ;o

enum-base:
integral-type

enum-body:
{ enum-member-declarations,y }
{ enum-member-declarations , }

Each enum type has a corresponding integral type calledrttierlying type of the enum type. This
underlying type must be able to represent all the eznattor values defined in the enumeration. An enum
declaration may explicitly declare an underlying typégte, sbyte, short, ushort, int, uint, Tong
oruTlong. [Note: char cannot be used as an underlying tyemd note] An enum declaration that does not
explicitly declare an underlying type has an underlying typéraof.

[Example: The example
enum Color: Tlong

Red,
Green,
Blue

declares an enum with an underlying typelohg. end example] [Note: A developer might choose to use an
underlying type oflong, as in the example, to enable the use of values that are in the raihgegbut not
in the range ofint, or to preserve this option for the futuend note]

21.2 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

297

o O~ WN B

10

11

12
13

14
15
16

17
18
19

20
21
22
23
24
25
26

27
28

29
30

31

32
33
34
35
36
37
38
39

40
41

42
43
44
45

C#LANGUAGE SPECIFICATION

enum-modifier:
new
pubTic
protected
internal
private

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the sareanming as those of a class declaration (817.1.1). Note,
however, that thabstract andsealed modifiers are not permitted in an enum declaration. Enums cannot
be abstract and do not permit derivation.

21.3 Enum members

The body of an enum type declaration defines zero or more enum members, which are the named constants
of the enum type. No two enum members can have the same name.

enum-member -declarations:
enum-member -declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesy, identifier
attributes, identifier = constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the

containing enum. The constant value for each enutrmb@z must be in the range of the underlying type for
the enum. Example: The example

enum Color: uint
Red = -1,

Green = -2,
Blue = -3

results in a compile-time error because the constant vallies2, and-3 are not in the range of the
underlying integral typeint. end example]

Multiple enum members may shaletsame associated valuExgmple: The example
enum Color

Red,
Green,
Blue,

Max = Blue

}

shows an enum that has two enum membes3ue andMax—that have the same associated vagngl.
example]

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has@nstant-expression initializer, the value of that constant expression, implicitly

converted to the underlying type of the enum, is the associated value of the enum member. If the declaration
of the enum member has no initializer, its associated value is set implicitly, as follows:

298

A wWN

37

38
39

40

4
42

43

44
45
46
47
48

49

Chapter 21 Enums

» If the enum member is the first enum member declared in the enum type, its associated value is zero.

» Otherwise, the associated value of the enum member is obtained by increasing the associated value of
the textually preceding enum member by one. Thisgased value must be within the range of values that
can be represented by the underlying type.

[Example: The example
using System;
enum Color

Red,
Green = 10,
Blue

class Test

static void Main() {
Console.WriteLine(SstringFromColor(Color.rRed));
Console.WriteLine(StringFromColor(Color.Green));
Console.wWriteLine(StringFromColor(Color.Blue));

static string StringFromColor(Color c) {
switch (c) {
case Color.Red:
return String.Format("Red = {0}", (int) c);

case Color.Green:]
return string.Format("Green = {0}", (int) ©);

case Color.Blue: _
return Sstring.Format("Blue = {0}", (int) ©);

default:
; return "Invalid color";
}
h

prints out the enum member names and their associated values. The output is:

Red = 0
Green = 10
Blue = 11

for the following reasons:

* the enum membered is automatically assigned the value zero (since it has no initializer and is the first
enum member);

* the enum membeagreen is explicitly given the valud.0;

« and the enum memberfl ue is automatically assigned the value one greater than the member that
textually precedes it.

end example]

The associated value of an enum member may not,ttirecindirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer