
Standard ECMA-334
December 2001

S tandard iz ing In fo rmat ion and Communica t ion Sys tems

Phone: +41 22 849.60 .00 - Fax: +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

C# Language Specification

.

iii

1

Brief history2

3

This ECMA Standard is based on a submission from Hewlett-Packard, Intel, and Microsoft, that describes a4

language called C#, which was developed within Microsoft. The principal inventors of this language were5

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed implementation of C# was6

released by Microsoft in July 2000, as part of its .NET Framework initiative.7

ECMA Technical Committee 39 (TC39) Task Group 2 (TG2) was formed in September 2000, to produce a8

standard for C#. Another Task Group, TG3, was also formed at that time to produce a standard for a library9

and execution environment called Common Language Infrastructure (CLI). (CLI is based on a subset of the10

.NET Framework.) Although Microsoft’s implementation of C# relies on CLI for library and runtime11

support, other implementations of C# need not, provided they support an alternate way of getting at the12

minimum CLI features required by this C# standard.13

As the definition of C# evolved, the goals used in its design were as follows:14

• C# is intended to be a simple, modern, general-purpose, object-oriented programming language.15

• The language, and implementations thereof, should provide support for software engineering principles16

such as strong type checking, array bounds checking, detection of attempts to use uninitialized variables, and17

automatic garbage collection. Software robustness, durability, and programmer productivity are important.18

• The language is intended for use in developing software components suitable for deployment in19

distributed environments.20

• Source code portability is very important, as is programmer portability, especially for those21

programmers already familiar with C and C++.22

• Support for internationalization is very important.23

• C# is intended to be suitable for writing applications for both hosted and embedded systems, ranging24

from the very large that use sophisticated operating systems, down to the very small having dedicated25

functions.26

• Although C# applications are intended to be economical with regards to memory and processing power27

requirements, the language was not intended to compete directly on performance and size with C or28

assembly language.29

The development of this standard started in November 2000.30

It is intended that the final version of this ECMA Standard will be submitted to ISO/IEC JTC 1 for adoption31

under its fast-track procedure.32

It is expected there will be future revisions to this Standard, primarily to add new functionality.33

34

35

36

37

38

39

Adopted as an ECMA Standard by the General Assembly of December 2001.40

Table of Contents

v

1

Table of Contents2

1. Scope ... 13

2. Conformance.. 34

3. References .. 55

4. Definitions .. 76

5. Notational conventions .. 97

6. Acronyms and abbreviations.. 118

7. General description ... 139

8. Language Overview... 1510

8.1 Getting started.. 1511

8.2 Types.. 1612

8.2.1 Predefined types ..1713

8.2.2 Conversions...1914

8.2.3 Array types ..2015

8.2.4 Type system unification ..2116

8.3 Variables and parameters... 2217

8.4 Automatic memory management ... 2518

8.5 Expressions .. 2719

8.6 Statements.. 2820

8.7 Classes ... 3121

8.7.1 Constants ...3222

8.7.2 Fields ...3323

8.7.3 Methods...3424

8.7.4 Properties...3525

8.7.5 Events..3626

8.7.6 Operators ...3727

8.7.7 Indexers ...3828

8.7.8 Instance constructors ...3929

8.7.9 Destructors ..3930

8.7.10 Static constructors ...4031

8.7.11 Inheritance...4032

8.8 Structs .. 4133

8.9 Interfaces.. 4234

8.10 Delegates.. 4335

8.11 Enums .. 4436

8.12 Namespaces and assemblies .. 4537

8.13 Versioning.. 4638

8.14 Attributes ... 4839

9. Lexical structure .. 5140

9.1 Programs .. 5141

9.2 Grammars... 5142

9.2.1 Lexical grammar ...5143

9.2.2 Syntactic grammar...5144

9.3 Lexical analysis.. 5245

9.3.1 Line terminators ..5246

9.3.2 Comments ...5247

C# LANGUAGE SPECIFICATION

vi

9.3.3 White space ...541

9.4 Tokens.. 542

9.4.1 Unicode escape sequences ..543

9.4.2 Identifiers ..554

9.4.3 Keywords ..565

9.4.4 Literals...576

9.4.5 Operators and punctuators...627

9.5 Pre-processing directives ... 628

9.5.1 Conditional compilation symbols..639

9.5.2 Pre-processing expressions ...6310

9.5.3 Declaration directives..6411

9.5.4 Conditional compilation directives ...6512

9.5.5 Diagnostic directives ...6713

9.5.6 Region control ...6714

9.5.7 Line directives...6815

10. Basic concepts .. 6916

10.1 Application startup... 6917

10.2 Application termination ... 6918

10.3 Declarations ... 7019

10.4 Members .. 7220

10.4.1 Namespace members...7221

10.4.2 Struct members..7222

10.4.3 Enumeration members...7323

10.4.4 Class members...7324

10.4.5 Interface members ...7325

10.4.6 Array members..7326

10.4.7 Delegate members ...7327

10.5 Member access... 7328

10.5.1 Declaredaccessibility..7429

10.5.2 Accessibility domains ...7430

10.5.3 Protected access for instance members ...7731

10.5.4 Accessibility constraints..7732

10.6 Signatures and overloading.. 7833

10.7 Scopes .. 7934

10.7.1 Name hiding ..8135

10.8 Namespace and type names ... 8336

10.8.1 Fully qualified names..8437

10.9 Automatic memory management ... 8538

10.10 Execution order.. 8739

11. Types... 8940

11.1 Value types .. 8941

11.1.1 Default constructors ..9042

11.1.2 Struct types..9043

11.1.3 Simple types ..9144

11.1.4 Integral types...9145

11.1.5 Floating point types...9246

11.1.6 Thedecimal type ..9347

11.1.7 Thebool type...9448

11.1.8 Enumeration types...9449

11.2 Reference types.. 9450

11.2.1 Class types...9551

11.2.2 Theobject type...9552

11.2.3 Thestring type...9553

Table of Contents

vii

11.2.4 Interface types ...951

11.2.5 Array types ..962

11.2.6 Delegate types ...963

11.3 Boxing and unboxing... 964

11.3.1 Boxing conversions...965

11.3.2 Unboxing conversions...976

12. Variables... 997

12.1 Variable categories... 998

12.1.1 Static variables ..999

12.1.2 Instance variables ..9910

12.1.3 Array elements ..10011

12.1.4 Value parameters...10012

12.1.5 Reference parameters ..10013

12.1.6 Output parameters ...10014

12.1.7 Local variables ..10115

12.2 Default values .. 10116

12.3 Definite assignment ... 10217

12.3.1 Initially assigned variables ..10218

12.3.2 Initially unassigned variables ..10319

12.3.3 Precise rules for determining definite assignment ..10320

12.4 Variable references .. 11121

12.5 Atomicity of variable references.. 11122

13. Conversions .. 11323

13.1 Implicit conversions... 11324

13.1.1 Identity conversion..11325

13.1.2 Implicit numeric conversions ..11326

13.1.3 Implicit enumeration conversions ...11427

13.1.4 Implicit reference conversions ..11428

13.1.5 Boxing conversions...11529

13.1.6 Implicit constant expression conversions..11530

13.1.7 User-defined implicit conversions...11531

13.2 Explicit conversions... 11532

13.2.1 Explicit numeric conversions ..11533

13.2.2 Explicit enumeration conversions ...11734

13.2.3 Explicit reference conversions ..11735

13.2.4 Unboxing conversions...11836

13.2.5 User-defined explicit conversions...11837

13.3 Standard conversions ... 11838

13.3.1 Standard implicit conversions ...11839

13.3.2 Standard explicit conversions..11840

13.4 User-defined conversions... 11941

13.4.1 Permitted user-defined conversions ..11942

13.4.2 Evaluation of user-defined conversions ..11943

13.4.3 User-defined implicit conversions...12044

13.4.4 User-defined explicit conversions...12045

14. Expressions... 12346

14.1 Expression classifications .. 12347

14.1.1 Values of expressions..12448

14.2 Operators.. 12449

14.2.1 Operator precedence and associativity ..12450

14.2.2 Operator overloading...12551

14.2.3 Unary operator overload resolution...12652

14.2.4 Binary operator overload resolution..12753

C# LANGUAGE SPECIFICATION

viii

14.2.5 Candidate user-defined operators..1271

14.2.6 Numeric promotions..1272

14.3 Member lookup.. 1293

14.3.1 Base types..1294

14.4 Function members.. 1305

14.4.1 Argument lists ...1326

14.4.2 Overload resolution ...1347

14.4.3 Function member invocation...1368

14.5 Primary expressions... 1389

14.5.1 Literals...13810

14.5.2 Simple names ..13811

14.5.3 Parenthesized expressions ...14012

14.5.4 Member access ..14013

14.5.5 Invocation expressions ..14214

14.5.6 Element access ..14315

14.5.7 This access ..14516

14.5.8 Base access..14517

14.5.9 Postfix increment and decrement operators ..14618

14.5.10 Thenew operator...14719

14.5.11 Thetypeof operator ..15120

14.5.12 Thechecked andunchecked operators ...15221

14.6 Unary expressions.. 15422

14.6.1 Unary plus operator...15423

14.6.2 Unary minus operator..15424

14.6.3 Logical negation operator..15525

14.6.4 Bitwise complement operator..15526

14.6.5 Prefix increment and decrement operators..15527

14.6.6 Cast expressions ..15628

14.7 Arithmetic operators .. 15729

14.7.1 Multiplication operator..15730

14.7.2 Division operator...15831

14.7.3 Remainder operator ...15932

14.7.4 Addition operator ..16033

14.7.5 Subtraction operator ..16234

14.8 Shift operators.. 16335

14.9 Relational and type-testing operators... 16436

14.9.1 Integer comparison operators ..16537

14.9.2 Floating-point comparison operators...16638

14.9.3 Decimal comparison operators..16639

14.9.4 Boolean equality operators..16640

14.9.5 Enumeration comparison operators...16741

14.9.6 Reference type equality operators ...16742

14.9.7 String equality operators ...16843

14.9.8 Delegate equality operators...16844

14.9.9 Theis operator...16945

14.9.10 Theas operator...16946

14.10 Logical operators ... 17047

14.10.1 Integer logical operators..17048

14.10.2 Enumeration logical operators ..17049

14.10.3 Boolean logical operators..17150

14.11 Conditional logical operators... 17151

14.11.1 Boolean conditional logical operators...17152

14.11.2 User-defined conditional logical operators ...17253

14.12 Conditional operator .. 17254

14.13 Assignment operators... 17355

Table of Contents

ix

14.13.1 Simple assignment...1731

14.13.2 Compound assignment ..1752

14.13.3 Event assignment...1763

14.14 Expression.. 1764

14.15 Constant expressions.. 1765

14.16 Boolean expressions... 1776

15. Statements .. 1797

15.1 End points and reachability.. 1798

15.2 Blocks .. 1819

15.2.1 Statement lists ...18110

15.3 The empty statement .. 18111

15.4 Labeled statements... 18212

15.5 Declaration statements ... 18213

15.5.1 Local variable declarations..18214

15.5.2 Local constant declarations ...18315

15.6 Expression statements.. 18416

15.7 Selection statements... 18417

15.7.1 Theif statement ...18418

15.7.2 Theswitch statement ..18519

15.8 Iteration statements .. 18820

15.8.1 Thewhile statement ..18821

15.8.2 Thedo statement ...18922

15.8.3 Thefor statement...18923

15.8.4 Theforeach statement ..19024

15.9 Jump statements ... 19225

15.9.1 Thebreak statement ..19326

15.9.2 Thecontinue statement..19427

15.9.3 Thegoto statement...19428

15.9.4 Thereturn statement ..19529

15.9.5 Thethrow statement ..19630

15.10 Thetry statement ... 19731

15.11 Thechecked andunchecked statements.. 19932

15.12 Thelock statement ... 20033

15.13 Theusing statement ... 20034

16. Namespaces .. 20335

16.1 Compilation units... 20336

16.2 Namespace declarations... 20337

16.3 Using directives ... 20438

16.3.1 Using alias directives ..20539

16.3.2 Using namespace directives ..20740

16.4 Namespace members ... 20841

16.5 Type declarations... 20942

17. Classes... 21143

17.1 Class declarations .. 21144

17.1.1 Class modifiers..21145

17.1.2 Class base specification...21246

17.1.3 Class body ...21447

17.2 Class members ... 21448

17.2.1 Inheritance...21549

17.2.2 Thenew modifier ..21550

17.2.3 Access modifiers ...21651

17.2.4 Constituent types...21652

17.2.5 Static and instance members ...21653

C# LANGUAGE SPECIFICATION

x

17.2.6 Nested types ..2171

17.2.7 Reserved member names...2202

17.3 Constants.. 2213

17.4 Fields.. 2234

17.4.1 Static and instance fields ...2245

17.4.2 Readonly fields..2246

17.4.3 Volatile fields ..2257

17.4.4 Field initialization ...2268

17.4.5 Variable initializers ...2279

17.5 Methods ... 22910

17.5.1 Method parameters..23011

17.5.2 Static and instance methods ..23512

17.5.3 Virtual methods...23613

17.5.4 Override methods ..23814

17.5.5 Sealed methods..23915

17.5.6 Abstract methods...24016

17.5.7 External methods...24117

17.5.8 Method body ...24118

17.5.9 Method overloading ..24219

17.6 Properties ... 24220

17.6.1 Static and instance properties..24321

17.6.2 Accessors...24422

17.6.3 Virtual, sealed, override, and abstract accessors ...24823

17.7 Events... 24924

17.7.1 Field-like events ..25125

17.7.2 Event accessors ...25226

17.7.3 Static and instance events..25327

17.7.4 Virtual, sealed, override, and abstract accessors ...25328

17.8 Indexers.. 25429

17.8.1 Indexer overloading...25730

17.9 Operators.. 25731

17.9.1 Unary operators ...25832

17.9.2 Binary operators ..25933

17.9.3 Conversion operators...26034

17.10 Instance constructors.. 26135

17.10.1 Constructor initializers ..26236

17.10.2 Instance variable initializers..26337

17.10.3 Constructor execution ...26338

17.10.4 Default constructors ..26439

17.10.5 Private constructors ...26540

17.10.6 Optional instance constructor parameters ...26541

17.11 Static constructors.. 26642

17.12 Destructors ... 26743

18. Structs... 27144

18.1 Struct declarations.. 27145

18.1.1 Struct modifiers ...27146

18.1.2 Struct interfaces...27147

18.1.3 Struct body ..27248

18.2 Struct members .. 27249

18.3 Class and struct differences ... 27250

18.3.1 Value semantics...27251

18.3.2 Inheritance...27352

18.3.3 Assignment..27353

18.3.4 Default values..27354

Table of Contents

xi

18.3.5 Boxing and unboxing ..2741

18.3.6 Meaning ofthis...2742

18.3.7 Field initializers...2743

18.3.8 Constructors ..2744

18.3.9 Destructors ..2755

18.4 Struct examples.. 2756

18.4.1 Database integer type ..2757

18.4.2 Database boolean type...2778

19. Arrays ... 2799

19.1 Array types... 27910

19.1.1 TheSystem.Array type..28011

19.2 Array creation .. 28012

19.3 Array element access ... 28013

19.4 Array members .. 28014

19.5 Array covariance.. 28015

19.6 Array initializers .. 28116

20. Interfaces .. 28317

20.1 Interface declarations ... 28318

20.1.1 Interface modifiers ..28319

20.1.2 Base interfaces...28320

20.1.3 Interface body..28421

20.2 Interface members.. 28422

20.2.1 Interface methods ..28523

20.2.2 Interface properties..28524

20.2.3 Interface events ...28625

20.2.4 Interface indexers ..28626

20.2.5 Interface member access ...28627

20.3 Fully qualified interface member names.. 28828

20.4 Interface implementations.. 28829

20.4.1 Explicit interface member implementations..28930

20.4.2 Interface mapping..29131

20.4.3 Interface implementation inheritance..29332

20.4.4 Interface re-implementation ..29433

20.4.5 Abstract classes and interfaces..29634

21. Enums ... 29735

21.1 Enum declarations.. 29736

21.2 Enum modifiers.. 29737

21.3 Enum members .. 29838

21.4 Enum values and operations .. 30039

22. Delegates... 30140

22.1 Delegate declarations ... 30141

22.2 Delegate instantiation... 30342

22.3 Delegate invocation ... 30343

23. Exceptions .. 30744

23.1 Causes of exceptions.. 30745

23.2 TheSystem.Exception class... 30746

23.3 How exceptions are handled .. 30747

23.4 Common Exception Classes .. 30848

24. Attributes.. 30949

24.1 Attribute classes... 30950

C# LANGUAGE SPECIFICATION

xii

24.1.1 Attribute usage ..3091

24.1.2 Positional and named parameters ..3102

24.1.3 Attribute parameter types ..3113

24.2 Attribute specification.. 3114

24.3 Attribute instances ... 3155

24.3.1 Compilation of an attribute ...3156

24.3.2 Run-time retrieval of an attribute instance ..3157

24.4 Reserved attributes... 3168

24.4.1 TheAttributeUsage attribute...3169

24.4.2 TheConditional attribute ...31610

24.4.3 TheObsolete attribute..31811

25. Unsafe code... 32112

25.1 Unsafe contexts.. 32113

25.2 Pointer types .. 32314

25.3 Fixed and moveable variables.. 32615

25.4 Pointer conversions.. 32616

25.5 Pointers in expressions... 32717

25.5.1 Pointer indirection...32818

25.5.2 Pointer member access ..32819

25.5.3 Pointer element access ..32920

25.5.4 The address-of operator...33021

25.5.5 Pointer increment and decrement ..33022

25.5.6 Pointer arithmetic ..33123

25.5.7 Pointer comparison..33224

25.5.8 Thesizeof operator ..33225

25.6 Thefixed statement ... 33226

25.7 Stack allocation.. 33627

25.8 Dynamic memory allocation.. 33628

A. Grammar... 33929

A.1 Lexicalgrammar ... 33930

A.1.1 Line terminators ...33931

A.1.2 White space ..33932

A.1.3 Comments...33933

A.1.4 Tokens ..34034

A.1.5 Unicode character escape sequences ..34035

A.1.6 Identifiers ...34036

A.1.7 Keywords ...34137

A.1.8 Literals..34238

A.1.9 Operators and punctuators..34339

A.1.10 Pre-processing directives..34440

A.2 Syntactic grammar .. 34541

A.2.1 Basic concepts ..34542

A.2.2 Types ..34643

A.2.3 Variables...34744

A.2.4 Expressions...34745

A.2.5 Statements ..35046

A.2.6 Classes..35447

A.2.7 Structs...35948

A.2.8 Arrays ...36049

A.2.9 Interfaces ..36050

A.2.10 Enums...36151

A.2.11 Delegates ..36252

A.2.12 Attributes..36253

Table of Contents

xiii

A.3 Grammar extensions for unsafe code.. 3631

B. Portability issues ... 3652

B.1 Undefined behavior ... 3653

B.2 Implementation-defined behavior ... 3654

B.3 Unspecified behavior... 3665

B.4 Other Issues... 3666

C. Naming guidelines... 3677

C.1 Capitalization styles .. 3678

C.1.1 Pascalcasing...3679

C.1.2 Camel casing...36710

C.1.3 All uppercase ..36711

C.1.4 Capitalization summary..36712

C.2 Word choice .. 36813

C.3 Namespaces... 36814

C.4 Classes... 36915

C.5 Interfaces ... 36916

C.6 Enums.. 37017

C.7 Static fields.. 37118

C.8 Parameters ... 37119

C.9 Methods... 37120

C.10 Properties... 37121

C.11 Events.. 37222

C.12 Case sensitivity.. 37223

C.13 Avoiding type name confusion ... 37324

D. Standard Library.. 37525

E. Documentation Comments... 43926

E.1 Introduction ... 43927

E.2 Recommended tags.. 44028

E.2.1 <c> ..44029

E.2.2 <code> ..44130

E.2.3 <example> ..44131

E.2.4 <exception> ..44132

E.2.5 <list>...44233

E.2.6 <para>...44334

E.2.7 <param>..44335

E.2.8 <paramref> ...44436

E.2.9 <permission> ..44437

E.2.10 <remarks>...44438

E.2.11 <returns>...44539

E.2.12 <see>...44540

E.2.13 <seealso> ..44541

E.2.14 <summary>...44642

E.2.15 <value> ...44643

E.3 Processing the documentation file... 44644

E.3.1 ID string format ..44745

E.3.2 ID string examples ..44746

E.4 An example.. 45047

E.4.1 C# source code..45048

E.4.2 Resulting XML ...45349

F. Index... 45750

51

Chapter 1 Scope

1

1. Scope1

This clause is informative.2

This ECMA Standard specifies the form and establishes the interpretation of programs written in the3

C# programming language. It specifies4

• The representation of C# programs;5

• The syntax and constraints of the C# language;6

• The semantic rules for interpreting C# programs;7

• The restrictions and limits imposed by a conforming implementation of C#.8

This ECMA Standard does not specify9

• The mechanism by which C# programs are transformed for use by a data-processing system;10

• The mechanism by which C# applications are invoked for use by a data-processing system;11

• The mechanism by which input data are transformed for use by a C# application;12

• The mechanism by which output data are transformed after being produced by a C# application;13

• The size or complexity of a program and its data that will exceed the capacity of any specific data-14

processing system or the capacity of a particular processor;15

• All minimal requirements of a data-processing system that is capable of supporting a conforming16

implementation.17

End of informative text.18

Chapter 2 Conformance

3

2. Conformance1

Conformance is of interest to the following audiences:2

• Those designing, implementing, or maintaining C# implementations.3

• Governmental or commercial entities wishing to procure C# implementations.4

• Testing organizations wishing to provide a C# conformance test suite.5

• Programmers wishing to port code from one C# implementation to another.6

• Educators wishing to teach Standard C#.7

• Authors wanting to write about Standard C#.8

As such, conformance is most important, and the bulk of this ECMA Standard is aimed at specifying the9

characteristics that make C# implementations and C# programs conforming ones.10

11

The text in this ECMA Standard that specifies requirements is considerednormative. All other text in this12

specification isinformative; that is, for information purposes only. Unless stated otherwise, all text is13

normative. Normative text is further broken intorequired andconditional categories.Conditionally14

normative text specifies requirements for a feature such that if that feature is provided, its syntax and15

semantics must be exactly as specified.16

If any requirement of this ECMA Standard is violated, the behavior is undefined. Undefined behavior is17

otherwise indicated in this ECMA Standard by the words ‘‘undefined behavior’’ or by the omission of any18

explicit definition of behavior. There is no difference in emphasis among these three; they all describe19

‘‘behavior that is undefined.’’20

A strictly conforming program shall use only those features of the language specified in this ECMA21

Standard as being required. (This means that a strictly conforming program cannot use any conditionally22

normative feature.) It shall not produce output dependent on any unspecified, undefined, or implementation-23

defined behavior.24

A conforming implementation of C# must accept any strictly conforming program.25

A conforming implementation of C# must provide and support all the types, values, objects, properties,26

methods, and program syntax and semantics described in this ECMA Standard.27

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard,28

Version 3.0 or later, and ISO/IEC 10646-1. Conformingimplementations must accept Unicode source files29

encoded with the UTF-8 encoding form.30

A conforming implementation of C# shall not successfully translate source containing a#error31

preprocessing directive unless it is part of a group skipped by conditional compilation.32

A conforming implementation of C# shall produce at least one diagnostic message if the source program33

violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or34

“warning” requirement), unless that requirement ismarked with the words “no diagnostic is required”.35

A conforming implementation of C# is permitted to provide additional types, values, objects, properties, and36

methods beyond those described in this ECMA Standard, provided they do not alter the behavior of any37

strictly conforming program. Conforming implementations are required to diagnose programs that use38

extensions that are ill formed according to this ECMA Standard. Having done so, however; they can compile39

and execute such programs. (The ability to have extensions implies that a conforming implementation40

reserves no identifiers other than those explicitly reserved in this ECMA Standard.)41

C# LANGUAGE SPECIFICATION

4

A conforming implementation of C# shall be accompanied by a document that defines all implementation-1

defined characteristics, and all extensions.2

A conforming implementation of C# shall support the class library documented in §D. This library is3

included by reference in this ECMA Standard.4

A conforming program is one that is acceptable to a conforming implementation. (Such a program may5

contain extensions or conditionally normative features.)6

Chapter 3 References

5

3. References1

The following normative documents contain provisions, which, through reference in this text, constitute2

provisions of this ECMA Standard. For dated references, subsequent amendments to, or revisions of, any of3

these publications do not apply. However, parties to agreements based on this ECMA Standard are4

encouraged to investigate the possibility of applying the most recent editions of the normative documents5

indicated below. For undated references, the latestedition of the normative document referred to applies.6

Members of ISO and IEC maintain registers of currently valid ECMA Standards.7

8

ECMA-335, 1st Edition, December 2001,Common Language Infrastructure (CLI), Partition IV: Base Class9

Library (BCL), Extended Numerics Library, and Extended Array Library.10

ISO 31.11:1992,Quantities and units — Part 11: Mathematical signs and symbols for use in the physical11

sciences and technology.12

ISO/IEC 2382.1:1993,Information technology — Vocabulary — Part 1: Fundamental terms.13

ISO/IEC 10646 (all parts),Information technology — Universal Multiple-Octet Coded Character Set (UCS).14

IEC 60559:1989,Binary floating-point arithmetic for microprocessor systems (previously designated IEC15

559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,16

IEEE Standard for Binary Floating-Point Arithmetic.) Due to the extremely widespread recognition ofIEEE17

as the name of a form of floating-point representation and arithmetic, this ECMA Standard uses that term18

instead of its IEC equivalent.19

The Unicode Consortium. The UnicodeStandard, Version 3.0, defined by:The Unicode Standard, Version20

3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), and Unicode Technical Report #15:21

Unicode Normalization Forms.22

23

24

The following references are informative:25

26

ISO/IEC 9899:1999,Programming languages — C.27

ISO/IEC 14882:1998,Programming languages — C++.28

ANSI X3.274-1996,Programming Language REXX. (This document is useful in understanding floating-29

point decimal arithmetic rules.)30

31

End of informative references32

Chapter 4 Definitions

7

4. Definitions1

For the purposes of this ECMA Standard, the followingdefinitions apply. Other terms are defined where2

they appear initalic type or on the left side of a syntax rule. Terms explicitly defined in this ECMA Standard3

are not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this4

ECMA Standard are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in5

this ECMA Standard are to be interpreted according to ISO 31.11.6

7

Application — refers to an assembly that has an entry point (§10.1). When an application is run, a new8

application domain is created. Several different instantiations of an application may exist on the same9

machine at the same time, and each has its own application domain.10

Application domain — an entity that enables application isolation by acting as a container for application11

state. An application domain acts as a container and boundary for the types defined in the application and the12

class libraries it uses. Types loaded into one application domain are distinct from the same type loaded into13

another application domain, and instances of objects are not directly shared between application domains.14

For instance, each application domain has its own copy of static variables for these types, and a static15

constructor for a type is run at most once per application domain. Implementations are free to provide16

implementation-specific policy or mechanisms for thecreation and destruction of application domains.17

Argument — an expression in the comma-separated list bounded by the parentheses in a method or instance18

constructor call expression. It is also known as anactual argument.19

Assembly — refers to one or more files that are output by the compiler as a result of program compilation.20

An assembly is a configured set of loadable code modules and other resources that together implement a unit21

of functionality. An assembly may contain types, the executable code used to implement these types, and22

references to other assemblies. The physical representation of an assembly is not defined by this23

specification. Essentially, an assembly is the output of the compiler.24

Behavior — external appearance or action.25

Behavior, implementation-defined — unspecified behavior where each implementation documents how26

the choice is made.27

Behavior, undefined — behavior, upon use of a nonportable or erroneous construct or of erroneous data,28

for which this ECMA Standard imposes no requirements.[Possible handling of undefined behavior ranges29

from ignoring the situation completely with unpredictable results, to behaving during translation or30

execution in a documented manner characteristic of the environment (with or without the issuance of a31

diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message)].32

Behavior, unspecified — behavior where this ECMA Standard provides two or more possibilities and33

imposes no further requirements on which is chosen in any instance.34

Class library — refers to an assembly that can be used by other assemblies. Use of a class library does not35

cause the creation of a new application domain. Instead, aclass library is loaded into the application domain36

that uses it. For instance, when an application uses aclass library, that class library is loaded into the37

application domain for that application. If an application uses a class libraryA that itself uses a class38

library B, then bothA andB are loaded into the application domain for the application.39

Diagnostic message — a message belonging to an implementation-defined subset of the implementation’s40

output messages.41

Error, compile-time — an error reported during program translation.42

Exception — an error condition that is outside the ordinary expected behavior.43

C# LANGUAGE SPECIFICATION

8

Implementation — particular set of software (running in a particular translation environment under1

particular control options) that performs translation of programs for, and supports execution of methods in, a2

particular execution environment.3

Namespace — a logical organizational system that provides away of presenting program elements that are4

exposed to other programs.5

Parameter — a variable declared as part of a method, instance constructor, or indexer definition, which6

acquires a value on entry to that method. It is also known asformal parameter.7

Program — refers to one or more source files that are presented to the compiler. Essentially, a program is8

the input to the compiler.9

Program, valid — a C# program constructed according to the syntax rules and diagnosable semantic rules.10

Program instantiation — the execution of an application.11

Recommended practice — specification that is strongly recommended as being aligned with the intent of12

the standard, but that may be impractical for some implementations13

Source file — an ordered sequence of Unicode characters. Source files typically have a one-to-one14

correspondence with files in a file system, but this correspondence is not required.15

Unsafe code — code that is permitted to perform such lower-level operations as declaring and operating on16

pointers, performing conversions between pointers andintegral types, and taking the address of variables.17

Such operations provide functionality such as permittinginterfacing with the underlying operating system,18

accessing a memory-mapped device, or implementing a time-critical algorithm.19

Warning, compile-time — an informational message reported during program translation, that is intended20

to identify a potentially questionable usage of a program element.21

Chapter 5 Notational conventions

9

5. Notational conventions1

Lexical and syntactic grammars for C# are interspersedthroughout this specification. The lexical grammar2

defines how characters can be combined to formtokens (§9.4), the minimal lexical elements of the language.3

The syntactic grammar defines how tokens can be combined to make valid C# programs.4

Grammar productions include both non-terminal and terminal symbols. In grammar productions,non-5

terminal symbols are shown in italic type, andterminal symbols are shown in a fixed-width font. Each6

non-terminal is defined by a set of productions. The first line of a set of productions is the name of the non-7

terminal, followed by a colon. Each successive indented line contains the right-hand side for a production8

that has the non-terminal symbol as the left-hand side. For example:9

class-modifier:10

new11

public 12

protected 13

internal14

private15

abstract16

sealed17

defines theclass-modifier non-terminal as having seven productions.18

Alternatives are normally listed on separate lines, as shown above, though in cases where there are many19

alternatives, the phrase “one of” precedes a list of theoptions. This is simply shorthand for listing each of20

the alternatives on a separate line. For example:21

decimal-digit: one of22

0 1 2 3 4 5 6 7 8 9 23

is equivalent to:24

decimal-digit:25

0 26

1 27

2 28

3 29

4 30

5 31

6 32

7 33

8 34

9 35

A subscripted suffix “opt”, as in identifieropt, is used as shorthand to indicate an optional symbol. The36

example:37

for-statement:38

for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement39

is equivalent to:40

C# LANGUAGE SPECIFICATION

10

for-statement:1

for (; ;) embedded-statement2

for (for-initializer ; ;) embedded-statement3

for (; for-condition ;) embedded-statement4

for (; ; for-iterator) embedded-statement5

for (for-initializer ; for-condition ;) embedded-statement6

for (; for-condition ; for-iterator) embedded-statement7

for (for-initializer ; ; for-iterator) embedded-statement8

for (for-initializer ; for-condition ; for-iterator) embedded-statement9

10

All terminal characters are to be understood as the appropriate Unicode character from the ASCII range, as11

opposed to any similar-looking characters from other Unicode ranges.12

Chapter 6 Acronyms and abbreviations

11

6. Acronyms and abbreviations1

This clause is informative.2

The following acronyms and abbreviations are used throughout this ECMA Standard:3

4

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file5

access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.6

CLI — Common Language Infrastructure7

CLS — Common Language Specification8

IEC — the International Electrotechnical Commission9

IEEE — the Institute of Electrical and Electronics Engineers10

ISO — the International Organization for Standardization11

12

13

The name C# is pronounced “C Sharp”.14

The name C# is written as theLATIN CAPITAL LETTER C (U+0043) followed by theNUMBER SIGN# 15

(U+000D).16

End of informative text.17

Chapter 7 General description

13

7. General description1

This clause is informative.2

This ECMA Standard is intended to be used by implementers, academics, and application programmers. As3

such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in a4

formal language specification.5

This standard is divided into the following subdivisions:6

1. Front matter (clauses 1–7);7

2. Language overview (clause 8);8

3. The language syntax, constraints, and semantics (clauses 9–25);9

4. Annexes10

Examples are provided to illustrate possible forms ofthe constructions described. References are used to11

refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.12

Annexes provide additional information and summarize the information contained in this ECMA Standard.13

Clauses 2–5, 9–24, the beginning of 25, and the beginning of D form a normative part of this standard; all of14

clause 25 with the exception of the beginning is conditionally normative; and Brief history, clauses 1, 6–8,15

annexes A, B, C, and most of D, notes, examples, and the index are informative.16

Except for whole clauses or annexes that are identified as being informative, informative text that is17

contained within normative text is indicated in two ways:18

1. [Example: The following example … code fragment, possibly with some narrative …end example]19

2. [Note: narrative …end note]20

End of informative text.21

Chapter 8 Language Overview

15

8. Language Overview1

This clause is informative.2

C# (pronounced “C Sharp”) is a simple, modern, objectoriented, and type-safe programming language. It3

will immediately be familiar to C and C++ programmers. C# combines the high productivity of Rapid4

Application Development (RAD) languages and the raw power of C++.5

The rest of this chapter describes the essential features of the language. While later chapters describe rules6

and exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and7

brevity at the expense of completeness. The intent is to provide the reader with an introduction to the8

language that will facilitate the writing of earlyprograms and the reading of later chapters.9

8.1 Getting started10

The canonical “hello, world” program can be written as follows:11

using System; 12

class Hello 13
{ 14
 static void Main() { 15
 Console.WriteLine("hello, world"); 16
 } 17
} 18

The source code for a C# program is typically stored in one or more text files with a file extension of.cs, as19

in hello.cs. Using a command-line compiler, such a program can be compiled with a command line like20

csc hello.cs 21

which produces an application namedhello.exe. The output produced by this application when it is run22

is:23

hello, world 24

Close examination of this program is illuminating:25

• Theusing System; directive references a namespace calledSystem that is provided by the Common26

Language Infrastructure (CLI) class library. This namespace contains theConsole class referred to in the27

Main method. Namespaces provide a hierarchical means of organizing the elements of one or more28

programs. A using-directive enables unqualified use of the types that are members of the namespace. The29

“hello, world” program usesConsole.WriteLine as shorthand forSystem.Console.WriteLine.30

• TheMain method is a member of the classHello. It has thestatic modifier, and so it is a method on31

the classHello rather than on instances of this class.32

• The entry point for an application—the method that is called to begin execution—is always a static33

method namedMain.34

• The “hello, world” output is produced using a class library. This standard does not include a class35

library. Instead, it references the class library provided by CLI.36

For C and C++ developers, it is interesting to note a few things that donot appear in the “hello, world”37

program.38

C# LANGUAGE SPECIFICATION

16

• The program does not use a global method forMain. Methods and variables are not supported at the1

global level; such elements are always contained within type declarations (e.g., class and struct2

declarations).3

• The program does not use either “::” or “->” operators. The “::” is not an operator at all, and the4

“->” operator is used in only a small fraction of programs (which involve unsafe code). The separator “.” is5

used in compound names such asConsole.WriteLine.6

• The program does not contain forward declarations. Forward declarations are never needed, as7

declaration order is not significant.8

• The program does not use#include to import program text. Dependencies among programs are9

handled symbolically rather than textually. This approach eliminates barriers between applications written10

using multiple languages. For example, theConsole class need not be written in C#.11

8.2 Types12

C# supports two kinds of types:value types andreference types. Value types include simple types (e.g.,13

char, int, andfloat), enum types, and struct types. Reference types include class types, interface types,14

delegate types, and array types.15

Value types differ from reference types in that variables of the value types directly contain their data,16

whereas variables of the reference types store references to objects. With reference types, it is possible for17

two variables to reference the same object, and thus possible for operations on one variable to affect the18

object referenced by the other variable. With value types, the variables each have their own copy of the data,19

and it is not possible for operations on one to affect the other.20

The example21

using System; 22

class Class1 23
{ 24
 public int Value = 0; 25
} 26

class Test 27
{ 28
 static void Main() { 29
 int val1 = 0; 30
 int val2 = val1; 31
 val2 = 123; 32

 Class1 ref1 = new Class1(); 33
 Class1 ref2 = ref1; 34
 ref2.Value = 123; 35

 Console.WriteLine("Values: {0}, {1}", val1, val2); 36
 Console.WriteLine("Refs: {0}, {1}", ref1.Value, ref2.Value); 37
 } 38
} 39

shows this difference. The output produced is40

Values: 0, 123 41
Refs: 123, 123 42

The assignment to the local variableval1 does not impact the local variableval2 because both local43

variables are of a value type (the typeint) and each local variable of a value type has its own storage. In44

contrast, the assignmentref2.Value = 123; affects the object that bothref1 andref2 reference.45

The lines46

Console.WriteLine("Values: {0}, {1}", val1, val2); 47
Console.WriteLine("Refs: {0}, {1}", ref1.Value, ref2.Value); 48

deserve further comment, as they demonstrate some of the string formatting behavior of49

Console.WriteLine, which, in fact, takes a variable number of arguments. The first argument is a string,50

Chapter 8 Language Overview

17

which may contain numbered placeholders like{0} and{1}. Each placeholder refers to a trailing argument1

with {0} referring to the second argument,{1} referring to the third argument, and so on. Before the output2

is sent to the console, each placeholder is replaced with the formatted value of its corresponding argument.3

Developers can define new value types through enum and struct declarations, and can define new reference4

types via class, interface, and delegate declarations. The example5

using System; 6

public enum Color 7
{ 8
 Red, Blue, Green 9
} 10

public struct Point 11
{ 12
 public int x, y; 13
} 14

public interface IBase 15
{ 16
 void F(); 17
} 18

public interface IDerived: IBase 19
{ 20
 void G(); 21
} 22

public class A 23
{ 24
 protected virtual void H() { 25
 Console.WriteLine("A.H"); 26
 } 27
} 28

public class B: A, IDerived 29
{ 30
 public void F() { 31
 Console.WriteLine("B.F, implementation of IDerived.F"); 32
 } 33

 public void G() { 34
 Console.WriteLine("B.G, implementation of IDerived.G"); 35
 } 36

 override protected void H() { 37
 Console.WriteLine("B.H, override of A.H"); 38
 } 39
} 40

public delegate void EmptyDelegate(); 41

shows an example of each kind of type declaration. Later sections describe type declarations in detail.42

8.2.1 Predefined types43

C# provides a set of predefined types, most of which will be familiar to C and C++ developers.44

The predefined reference types areobject andstring. The typeobject is the ultimate base type of all45

other types. The typestring is used to represent Unicode string values. Values of typestring are46

immutable.47

The predefined value types include signed and unsigned integral types, floating-point types, and the types48

bool, char, anddecimal. The signed integral types aresbyte, short, int, andlong; the unsigned49

integral types arebyte, ushort, uint, andulong; and the floating-point types arefloat anddouble.50

Thebool type is used to represent boolean values: values that are either true or false. The inclusion ofbool51

makes it easier to write self-documenting code, andalso helps eliminate the all-too-common C++ coding52

error in which a developer mistakenly uses “=” when “==” should have been used. In C#, the example53

C# LANGUAGE SPECIFICATION

18

int i = �; 1
F(i); 2
if (i = 0) // Bug: the test should be (i == 0) 3
 G(); 4

results in a compile-time error because the expressioni = 0 is of typeint, andif statements require an5

expression of typebool.6

Thechar type is used to represent Unicode characters. A variable of typechar represents a single 16-bit7

Unicode character.8

Thedecimal type is appropriate for calculations in which rounding errors caused by floating point9

representations are unacceptable. Common examples include financial calculations such as tax computations10

and currency conversions. Thedecimal type provides 28 significant digits.11

The table below lists the predefined types, andshows how to write literal values for each of them.12

13

Type Description Example

object The ultimate base type of all other types object o = null;

string String type; a string is a sequence of Unicode
characters

string s = "hello";

sbyte 8-bit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-bit signed integral type int val = 12;

long 64-bit signed integral type long val1 = 12;
long val2 = 34L;

byte 8-bit unsigned integral type byte val1 = 12;

ushort 16-bit unsigned integral type ushort val1 = 12;

uint 32-bit unsigned integral type uint val1 = 12;
uint val2 = 34U;

ulong 64-bit unsigned integral type ulong val1 = 12;
ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;

float Single-precision floating point type float val = 1.23F;

double Double-precision floating point type double val1 = 1.23;
double val2 = 4.56D;

bool Boolean type; abool value is either true or false bool val1 = true;
bool val2 = false;

char Character type; achar value is a Unicode character char val = 'h';

decimal Precise decimal type with 28 significant digits decimal val = 1.23M;

14

Each of the predefined types is shorthand for a system-provided type. For example, the keywordint refers15

to the structSystem.Int32. As a matter of style, use of the keyword is favored over use of the complete16

system type name.17

Predefined value types such asint are treated specially in a few ways but are for the most part treated18

exactly like other structs. Operator overloading enables developers to define new struct types that behave19

much like the predefined value types. For instance, aDigit struct can support the same mathematical20

operations as the predefined integral types, and can define conversions betweenDigit and predefined21

types.22

Chapter 8 Language Overview

19

The predefined types employ operator overloading themselves. For example, the comparison operators==1

and!= have different semantics for different predefined types:2

• Two expressions of typeint are considered equal if they represent the same integer value.3

• Two expressions of typeobject are considered equal if both refer to the same object, or if both are4

null.5

• Two expressions of typestring are considered equal if the string instances have identical lengths and6

identical characters in each character position, or if both arenull.7

The example8

using System; 9
class Test 10
{ 11
 static void Main() { 12
 string s = "Test"; 13
 string t = string.Copy(s); 14
 Console.WriteLine(s == t); 15
 Console.WriteLine((object)s == (object)t); 16
 } 17
} 18

produces the output19

True 20
False 21

because the first comparison compares two expressions of typestring, and the second comparison22

compares two expressions of typeobject.23

8.2.2 Conversions24

The predefined types also have predefined conversions. For instance, conversions exist between the25

predefined typesint andlong. C# differentiates between two kinds of conversions:implicit conversions26

andexplicit conversions. Implicit conversions are supplied for conversions that can safely be performed27

without careful scrutiny. For instance, the conversion fromint to long is an implicit conversion. This28

conversion always succeeds, and never results in a loss of information. The following example29

using System; 30
class Test 31
{ 32
 static void Main() { 33
 int intValue = 123; 34
 long longValue = intValue; 35
 Console.WriteLine("{0}, {1}", intValue, longValue); 36
 } 37
} 38

implicitly converts anint to along.39

In contrast, explicit conversions are performed with a cast expression. The example40

using System; 41
class Test 42
{ 43
 static void Main() { 44
 long longValue = Int64.MaxValue; 45
 int intValue = (int) longValue; 46
 Console.WriteLine("(int) {0} = {1}", longValue, intValue); 47
 } 48
} 49

uses an explicit conversion to convert along to anint. The output is:50

(int) 9223372036854775807 = -1 51

because an overflow occurs. Cast expressions permitthe use of both implicit and explicit conversions.52

C# LANGUAGE SPECIFICATION

20

8.2.3 Array types1

Arrays may be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are2

supported.3

Single-dimensional arrays are the most common type. The example4

using System; 5

class Test 6
{ 7
 static void Main() { 8
 int[] arr = new int[5]; 9

 for (int i = 0; i < arr.Length; i++) 10
 arr[i] = i * i; 11

 for (int i = 0; i < arr.Length; i++) 12
 Console.WriteLine("arr[{0}] = {1}", i, arr[i]); 13
 } 14
} 15

creates a single-dimensional array ofint values, initializes the array elements, and then prints each of them16

out. The output produced is:17

arr[0] = 0 18
arr[1] = 1 19
arr[2] = 4 20
arr[3] = 9 21
arr[4] = 16 22

The typeint[] used in the previous example is an array type. Array types are written using a non-array-23

type followed by one or more rank specifiers. The example24

class Test 25
{ 26
 static void Main() { 27
 int[] a1; // single-dimensional array of int 28
 int[,] a2; // 2-dimensional array of int 29
 int[,,] a3; // 3-dimensional array of int 30

 int[][] j2; // "jagged" array: array of (array of int) 31
 int[][][] j3; // array of (array of (array of int)) 32
 } 33
} 34

shows a variety of local variable declarations that use array types withint as the element type.35

Array types are reference types, and so the declaration of an array variable merely sets aside space for the36

reference to the array. Array instances are actually created via array initializers and array creation37

expressions. The example38

class Test 39
{ 40
 static void Main() { 41
 int[] a1 = new int[] {1, 2, 3}; 42
 int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}}; 43
 int[,,] a3 = new int[10, 20, 30]; 44

 int[][] j2 = new int[3][]; 45
 j2[0] = new int[] {1, 2, 3}; 46
 j2[1] = new int[] {1, 2, 3, 4, 5, 6}; 47
 j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9}; 48
 } 49
} 50

shows a variety of array creation expressions. The variablesa1, a2 anda3 denoterectangular arrays, and51

the variablej2 denotes ajagged array. It should be no surprise that these terms are based on the shapes of52

the arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the53

array, its rectangular shape is clear. For example, the lengths ofa3’s three dimensions are 10, 20, and 30,54

respectively, and it is easy to see that this array contains10*20*30 elements.55

Chapter 8 Language Overview

21

In contrast, the variablej2 denotes a “jagged” array, or an “array of arrays”. Specifically,j2 denotes an1

array of an array ofint, or a single-dimensional array of typeint[]. Each of theseint[] variables can be2

initialized individually, and this allows the array to take on a jagged shape. The example gives each of the3

int[] arrays a different length. Specifically, the length ofj2[0] is 3, the length ofj2[1] is 6, and the4

length ofj2[2] is 9.5

[Note: In C++, an array declared asint x[3][5][7] would be considered a three dimensional rectangular6

array, while in C#, the declarationint[][][] declares a jagged array type.end note]7

The element type and shape of an array—including whether it is jagged or rectangular, and the number of8

dimensions it has—are part of its type. On the other hand, the size of the array—as represented by the length9

of each of its dimensions—is not part of an array’s type. This split is made clear in the language syntax, as10

the length of each dimension is specified in the array creation expression rather than in the array type. For11

instance the declaration12

int[,,] a3 = new int[10, 20, 30]; 13

has an array type ofint[,,] and an array creation expression ofnew int[10, 20, 30].14

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state15

the array type. For instance, the example16

int[] a1 = new int[] {1, 2, 3}; 17

can be shortened to18

int[] a1 = {1, 2, 3}; 19

without any change in program semantics.20

The context in which an array initializer such as{1, 2, 3} is used determines the type of the array being21

initialized. The example22

class Test 23
{ 24
 static void Main() { 25
 short[] a = {1, 2, 3}; 26
 int[] b = {1, 2, 3}; 27
 long[] c = {1, 2, 3}; 28

 } 29
} 30

shows that the same array initializer syntax can be usedfor several different array types. Because context is31

required to determine the type of an array initializer, it is not possible to use an array initializer in an32

expression context without explicitly stating the type of the array.33

8.2.4 Type system unification34

C# provides a “unified type system”. All types—including value types—derive from the typeobject. It is35

possible to call object methods on any value, even values of “primitive” types such asint. The example36

using System; 37
class Test 38
{ 39
 static void Main() { 40
 Console.WriteLine(3.ToString()); 41
 } 42
} 43

calls theobject-definedToString method on an integer literal, resulting in the output “3”.44

The example45

C# LANGUAGE SPECIFICATION

22

class Test 1
{ 2
 static void Main() { 3
 int i = 123; 4
 object o = i; // boxing 5
 int j = (int) o; // unboxing 6
 } 7
} 8

is more interesting. Anint value can be converted toobject and back again toint. This example shows9

bothboxing andunboxing. When a variable of a value type needs to be converted to a reference type, an10

objectbox is allocated to hold the value, and the value is copied into the box.Unboxing is just the opposite.11

When an object box is cast back to its original value type, the value is copied out of the box and into the12

appropriate storage location.13

This type system unification provides value types with the benefits of object-ness without introducing14

unnecessary overhead. For programs that don’t needint values to act like objects,int values are simply15

32-bit values. For programs that needint values to behave like objects, this capability is available on16

demand. This ability to treat value types as objects bridges the gap between value types and reference types17

that exists in most languages. For example, aStack class can providePush andPop methods that take and18

returnobject values.19

public class Stack 20
{ 21
 public object Pop() {�} 22

 public void Push(object o) {�} 23
} 24

Because C# has a unified type system, theStack class can be used with elements of any type, including25

value types likeint.26

8.3 Variables and parameters27

Variables represent storage locations. Every variable has atype that determines what values can be stored in28

the variable.Local variables are variables that are declared in methods, properties, or indexers. A local29

variable is defined by specifying a type name and a declarator that specifies the variable name and an30

optional initial value, as in:31

int a; 32
int b = 1; 33

but it is also possible for a local variable declaration to include multiple declarators. The declarations ofa34

andb can be rewritten as:35

int a, b = 1; 36

A variable must be assigned before its value can be obtained. The example37

class Test 38
{ 39
 static void Main() { 40
 int a; 41
 int b = 1; 42
 int c = a + b; // error, a not yet assigned 43
 � 44
 } 45
} 46

results in a compile-time error because it attempts to use the variablea before it is assigned a value. The47

rules governing definite assignment are defined in §12.3.48

A field (§17.4) is a variable that is associated with a class or struct, or an instance of a class or struct. A field49

declared with thestatic modifier defines astatic variable, and a field declared without this modifier50

defines aninstance variable. A static field is associated with a type, whereas an instance variable is51

associated with an instance. The example52

Chapter 8 Language Overview

23

using Personnel.Data; 1
class Employee 2
{ 3
 private static DataSet ds; 4

 public string Name; 5
 public decimal Salary; 6

 � 7
} 8

shows anEmployee class that has a private static variable and two public instance variables.9

Formal parameter declarations also define variables.There are four kinds of parameters: value parameters,10

reference parameters, output parameters, and parameter arrays.11

A value parameter is used for “in” parameter passing, in which the value of an argument is passed into a12

method, and modifications of the parameter do not impactthe original argument. A value parameter refers to13

its own variable, one that is distinct from the corresponding argument. This variable is initialized by copying14

the value of the corresponding argument. The example15

using System; 16
class Test { 17
 static void F(int p) { 18
 Console.WriteLine("p = {0}", p); 19
 p++; 20
 } 21

 static void Main() { 22
 int a = 1; 23
 Console.WriteLine("pre: a = {0}", a); 24
 F(a); 25
 Console.WriteLine("post: a = {0}", a); 26
 } 27
} 28

shows a methodF that has a value parameter namedp. The example produces the output:29

pre: a = 1 30
p = 1 31
post: a = 1 32

even though the value parameterp is modified.33

A reference parameter is used for “by reference” parameter passing, in which the parameter acts as an alias34

for a caller-provided argument. A reference parameter does not itself define a variable, but rather refers to35

the variable of the corresponding argument. Modifications of a reference parameter impact the36

corresponding argument. A reference parameter is declared with aref modifier. The example37

using System; 38
class Test { 39
 static void Swap(ref int a, ref int b) { 40
 int t = a; 41
 a = b; 42
 b = t; 43
 } 44

 static void Main() { 45
 int x = 1; 46
 int y = 2; 47
 48
 Console.WriteLine("pre: x = {0}, y = {1}", x, y); 49
 Swap(ref x, ref y); 50
 Console.WriteLine("post: x = {0}, y = {1}", x, y); 51
 } 52
} 53

shows aSwap method that has two reference parameters. The output produced is:54

pre: x = 1, y = 2 55
post: x = 2, y = 1 56

C# LANGUAGE SPECIFICATION

24

Theref keyword must be used in both the declaration of the formal parameter and in uses of it. The use of1

ref at the call site calls special attention to the parameter, so that a developer reading the code will2

understand that the value of the argument could change as a result of the call.3

An output parameter is similar to a reference parameter, except that the initial value of the caller-provided4

argument is unimportant. An output parameter is declared with anout modifier. The example5

using System; 6
class Test { 7
 static void Divide(int a, int b, out int result, out int remainder) { 8
 result = a / b; 9
 remainder = a % b; 10
 } 11

 static void Main() { 12
 for (int i = 1; i < 10; i++) 13
 for (int j = 1; j < 10; j++) { 14
 int ans, r; 15
 Divide(i, j, out ans, out r); 16
 Console.WriteLine("{0} / {1} = {2}r{3}", i, j, ans, r); 17
 } 18
 } 19
} 20

shows aDivide method that includes two output parameters—one for the result of the division and another21

for the remainder.22

For value, reference, and output parameters, there isa one-to-one correspondence between caller-provided23

arguments and the parameters used to represent them. Aparameter array enables a many-to-one24

relationship: many arguments can be represented by asingle parameter array. In other words, parameter25

arrays enable variable length argument lists.26

A parameter array is declared with aparams modifier. There can be only one parameter array for a given27

method, and it must always be the last parameter specified. The type of a parameter array is always a single28

dimensional array type. A caller can either pass a single argument of this array type, or any number of29

arguments of the element type of this array type. For instance, the example30

using System; 31
class Test 32
{ 33
 static void F(params int[] args) { 34
 Console.WriteLine("# of arguments: {0}", args.Length); 35
 for (int i = 0; i < args.Length; i++) 36
 Console.WriteLine("\targs[{0}] = {1}", i, args[i]); 37
 } 38

 static void Main() { 39
 F(); 40
 F(1); 41
 F(1, 2); 42
 F(1, 2, 3); 43
 F(new int[] {1, 2, 3, 4}); 44
 } 45
} 46

shows a methodF that takes a variable number ofint arguments, and several invocations of this method.47

The output is:48

Chapter 8 Language Overview

25

of arguments: 0 1
of arguments: 1 2
 args[0] = 1 3
of arguments: 2 4
 args[0] = 1 5
 args[1] = 2 6
of arguments: 3 7
 args[0] = 1 8
 args[1] = 2 9
 args[2] = 3 10
of arguments: 4 11
 args[0] = 1 12
 args[1] = 2 13
 args[2] = 3 14
 args[3] = 4 15

Most of the examples presented in this introduction use theWriteLine method of theConsole class. The16

argument substitution behavior of this method, as exhibited in the example17

int a = 1, b = 2; 18
Console.WriteLine("a = {0}, b = {1}", a, b); 19

is accomplished using a parameter array. TheWriteLine method provides several overloaded methods for20

the common cases in which a small number of arguments are passed, and one method that uses a parameter21

array.22

namespace System 23
{ 24
 public class Console 25
 { 26
 public static void WriteLine(string s) {�} 27
 public static void WriteLine(string s, object a) {�} 28
 public static void WriteLine(string s, object a, object b) {�} 29
 � 30
 public static void WriteLine(string s, params object[] args) {�} 31
 } 32
} 33

8.4 Automatic memory management34

Manual memory management requires developers to manage the allocation and de-allocation of blocks of35

memory. Manual memory management can be both time-consuming and difficult. In C#,automatic memory36

management is provided so that developers are freed from this burdensome task. In the vast majority of37

cases, automatic memory management increases codequality and enhances developer productivity without38

negatively impacting either expressiveness or performance.39

The example40

using System; 41
public class Stack 42
{ 43
 private Node first = null; 44

 public bool Empty { 45
 get { 46
 return (first == null); 47
 } 48
 } 49

 public object Pop() { 50
 if (first == null) 51
 throw new Exception("Can't Pop from an empty Stack."); 52
 else { 53
 object temp = first.Value; 54
 first = first.Next; 55
 return temp; 56
 } 57
 } 58

C# LANGUAGE SPECIFICATION

26

 public void Push(object o) { 1
 first = new Node(o, first); 2
 } 3

 class Node 4
 { 5
 public Node Next; 6
 public object Value; 7
 public Node(object value): this(value, null) {} 8
 public Node(object value, Node next) { 9
 Next = next; 10
 Value = value; 11
 } 12
 } 13
} 14

shows aStack class implemented as a linked list ofNode instances. Node instances are created in thePush15

method and are garbage collected when no longer needed. ANode instance becomes eligible for garbage16

collection when it is no longer possible for any code to access it. For instance, when an item is removed17

from theStack, the associatedNode instance becomes eligible for garbage collection.18

The example19

class Test 20
{ 21
 static void Main() { 22
 Stack s = new Stack(); 23
 for (int i = 0; i < 10; i++) 24
 s.Push(i); 25
 s = null; 26
 } 27
} 28

shows code that uses theStack class. AStack is created and initialized with 10 elements, and then29

assigned the valuenull. Once the variables is assigned null, theStack and the associated 10Node30

instances become eligible for garbage collection. The garbage collector is permitted to clean up immediately,31

but is not required to do so.32

The garbage collector underlying C# may work by moving objects around in memory, but this motion is33

invisible to most C# developers. For developers who are generally content with automatic memory34

management but sometimes need fine-grained control or that extra bit of performance, C# provides the35

ability to write “unsafe” code. Such code can deal directly with pointer types and object addresses, however,36

C# requires the programmer tofix objects to temporarily prevent the garbage collector from moving them.37

This “unsafe” code feature is in fact a “safe” feature from the perspective of both developers and users.38

Unsafe code must be clearly marked in the code with the modifierunsafe, so developers can't possibly use39

unsafe language features accidentally, and the compiler and the execution engine work together to ensure40

that unsafe code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations41

in which the code is trusted.42

The example43

using System; 44
class Test 45
{ 46
 static void WriteLocations(byte[] arr) { 47
 unsafe { 48
 fixed (byte* pArray = arr) { 49
 byte* pElem = pArray; 50
 for (int i = 0; i < arr.Length; i++) { 51
 byte value = *pElem; 52
 Console.WriteLine("arr[{0}] at 0x{1:X} is {2}", 53
 i, (uint)pElem, value); 54
 pElem++; 55
 } 56
 } 57
 } 58
 } 59

Chapter 8 Language Overview

27

 static void Main() { 1
 byte[] arr = new byte[] {1, 2, 3, 4, 5}; 2
 WriteLocations(arr); 3
 } 4
} 5

shows an unsafe block in a method namedWriteLocations that fixes an array instance and uses pointer6

manipulation to iterate over the elements. The index, value, and location of each array element are written to7

the console. One possible example of output is:8

arr[0] at 0x8E0360 is 1 9
arr[1] at 0x8E0361 is 2 10
arr[2] at 0x8E0362 is 3 11
arr[3] at 0x8E0363 is 4 12
arr[4] at 0x8E0364 is 5 13

but, of course, the exact memory locations may be different in different executions of the application.14

8.5 Expressions15

C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the16

operators, listing them in order of precedence from highest to lowest:17

18

Section Category Operators

14.5 Primary x.y f(x) a[x] x++ x-- new

typeof checked unchecked

0 Unary + - ! ~ ++x --x (T)x

14.7 Multiplicative * / %

14.7 Additive + -

0 Shift << >>

14.9 Relational and
type-testing

< > <= >= is as

14.9 Equality == !=

14.10 Logical AND &

14.10 Logical XOR ^

14.10 Logical OR |

14.11 Conditional AND &&

14.11 Conditional OR ||

14.12 Conditional ?:

14.13 Assignment = *= /= %= += -= <<= >>= &= ^= |=

19

When an expression contains multiple operators, theprecedence of the operators controls the order in which20

the individual operators are evaluated. For example, the expressionx + y * z is evaluated as21

x + (y * z) because the* operator has higher precedence than the+ operator.22

When an operand occurs between two operators with the same precedence, theassociativity of the operators23

controls the order in which the operations are performed:24

C# LANGUAGE SPECIFICATION

28

• Except for the assignment operators, all binary operators areleft-associative, meaning that operations1

are performed from left to right. For example,x + y + z is evaluated as(x + y) + z.2

• The assignment operators and the conditional operator (?:) areright-associative, meaning that3

operations are performed from right to left. For example,x = y = z is evaluated asx = (y = z).4

Precedence and associativity can be controlled using parentheses. For example,x + y * z first multiplies5

y by z and then adds the result tox, but(x + y) * z first addsx andy and then multiplies the result byz.6

8.6 Statements7

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and8

modifications. The table below lists the kinds of statements that can be used, and provides an example for9

each.10

11

Chapter 8 Language Overview

29

Statement Example

Statement lists and block
statements

static void Main() {
 F();
 G();
 {
 H();
 I();
 }
}

Labeled statements andgoto
statements

static void Main(string[] args) {
 if (args.Length == 0)
 goto done;
 Console.WriteLine(args.Length);

done:
 Console.WriteLine("Done");
}

Local constant declarations static void Main() {
 const float pi = 3.14f;
 const int r = 123;
 Console.WriteLine(pi * r * r);
}

Local variable declarations static void Main() {
 int a;
 int b = 2, c = 3;
 a = 1;
 Console.WriteLine(a + b + c);
}

Expression statements static int F(int a, int b) {
 return a + b;
}

static void Main() {
 F(1, 2); // Expression statement
}

if statements static void Main(string[] args) {
 if (args.Length == 0)
 Console.WriteLine("No args");
 else
 Console.WriteLine("Args");
}

switch statements static void Main(string[] args) {
 switch (args.Length) {
 case 0:
 Console.WriteLine("No args");
 break;
 case 1:
 Console.WriteLine("One arg ");
 break;
 default:
 int n = args.Length;
 Console.WriteLine("{0} args", n);
 break;
 }
}

while statements static void Main(string[] args) {
 int i = 0;
 while (i < args.Length) {
 Console.WriteLine(args[i]);
 i++;
 }
}

C# LANGUAGE SPECIFICATION

30

do statements static void Main() {
 string s;
 do { s = Console.ReadLine(); }
 while (s != "Exit");
}

for statements static void Main(string[] args) {
 for (int i = 0; i < args.Length; i++)
 Console.WriteLine(args[i]);
}

foreach statements static void Main(string[] args) {
 foreach (string s in args)
 Console.WriteLine(s);
}

break statements static void Main(string[] args) {
 int i = 0;
 while (true) {
 if (i == args.Length)
 break;
 Console.WriteLine(args[i++]);
 }
}

continue statements static void Main(string[] args) {
 int i = 0;
 while (true) {
 Console.WriteLine(args[i++]);
 if (i < args.Length)
 continue;
 break;
 }
}

return statements static int F(int a, int b) {
 return a + b;
}

static void Main() {
 Console.WriteLine(F(1, 2));
 return;
}

throw statements andtry
statements

static int F(int a, int b) {
 if (b == 0)
 throw new Exception("Divide by zero");
 return a / b;
}

static void Main() {
 try {
 Console.WriteLine(F(5, 0));
 }
 catch(Exception e) {
 Console.WriteLine("Error");
 }
}

checked andunchecked
statements

static void Main() {
 int x = Int32.MaxValue;
 Console.WriteLine(x + 1); // Overflow
 checked {
 Console.WriteLine(x + 1); // Exception
 }
 unchecked {
 Console.WriteLine(x + 1); // Overflow
 }
}

Chapter 8 Language Overview

31

lock statements static void Main() {
 A a = �;
 lock(a) {
 a.P = a.P + 1;
 }
}

using statements static void Main() {
 using (Resource r = new Resource()) {
 r.F();
 }
}

1

8.7 Classes2

Class declarations define new reference types. A class can inherit from another class, and can implement3

interfaces.4

Class members can include constants, fields, methods, properties, events, indexers, operators, instance5

constructors, destructors, static constructors, and nested type declarations. Each member has an associated6

accessibility (§10.5), which controls the regions of program text that are able to access the member. There7

are five possible forms of accessibility. These are summarized in the table below.8

9

Form Intuitive meaning

public Access not limited

protected Access limited to the containing class or types derived from the containing class

internal Access limited to this program

protected
internal

Access limited to this program or types derived from the containing class

private Access limited to the containing type

10

The example11

using System; 12
class MyClass 13
{ 14
 public MyClass() { 15
 Console.WriteLine("Instance constructor"); 16
 } 17

 public MyClass(int value) { 18
 MyField = value; 19
 Console.WriteLine("Instance constructor"); 20
 } 21

 ~MyClass() { 22
 Console.WriteLine("Destructor"); 23
 } 24

 public const int MyConst = 12; 25

 public int MyField = 34; 26

 public void MyMethod(){ 27
 Console.WriteLine("MyClass.MyMethod"); 28
 } 29

 public int MyProperty { 30
 get { 31
 return MyField; 32
 } 33

C# LANGUAGE SPECIFICATION

32

 set { 1
 MyField = value; 2
 } 3
 } 4

 public int this[int index] { 5
 get { 6
 return 0; 7
 } 8

 set { 9
 Console.WriteLine("this[{0}] = {1}", index, value); 10
 } 11
 } 12

 public event EventHandler MyEvent; 13

 public static MyClass operator+(MyClass a, MyClass b) { 14
 return new MyClass(a.MyField + b.MyField); 15
 } 16

 internal class MyNestedClass 17
 {} 18
} 19

shows a class that contains each kind of member. The example20

class Test 21
{ 22
 static void Main() { 23
 // Instance constructor usage 24
 MyClass a = new MyClass(); 25
 MyClass b = new MyClass(123); 26

 // Constant usage 27
 Console.WriteLine("MyConst = {0}", MyClass.MyConst); 28

 // Field usage 29
 a.MyField++; 30
 Console.WriteLine("a.MyField = {0}", a.MyField); 31

 // Method usage 32
 a.MyMethod(); 33

 // Property usage 34
 a.MyProperty++; 35
 Console.WriteLine("a.MyProperty = {0}", a.MyProperty); 36

 // Indexer usage 37
 a[3] = a[1] = a[2]; 38
 Console.WriteLine("a[3] = {0}", a[3]); 39

 // Event usage 40
 a.MyEvent += new EventHandler(MyHandler); 41

 // Overloaded operator usage 42
 MyClass c = a + b; 43
 } 44

 static void MyHandler(object sender, EventArgs e) { 45
 Console.WriteLine("Test.MyHandler"); 46
 } 47

 internal class MyNestedClass 48
 {} 49
} 50

shows uses of these members.51

8.7.1 Constants52

A constant is a class member that represents a constant value: a value that can be computed at compile-time.53

Constants are permitted to depend on other constants within the same program as long as there are no54

circular dependencies. The rules governing constantexpressions are defined in §14.15. The example55

Chapter 8 Language Overview

33

class Constants 1
{ 2
 public const int A = 1; 3
 public const int B = A + 1; 4
} 5

shows a class namedConstants that has two public constants.6

Even though constants are considered static members,a constant declaration neither requires nor allows the7

modifierstatic. Constants can be accessed through the class, as in8

using System; 9
class Test 10
{ 11
 static void Main() { 12
 Console.WriteLine("{0}, {1}", Constants.A, Constants.B); 13
 } 14
} 15

which prints out the values ofConstants.A andConstants.B, respectively.16

8.7.2 Fields17

A field is a member that represents a variable associated with an object or class. The example18

class Color 19
{ 20
 internal ushort redPart; 21
 internal ushort bluePart; 22
 internal ushort greenPart; 23

 public Color(ushort red, ushort blue, ushort green) { 24
 redPart = red; 25
 bluePart = blue; 26
 greenPart = green; 27
 } 28

 public static Color Red = new Color(0xFF, 0, 0); 29
 public static Color Blue = new Color(0, 0xFF, 0); 30
 public static Color Green = new Color(0, 0, 0xFF); 31
 public static Color White = new Color(0xFF, 0xFF, 0xFF); 32
} 33

shows aColor class that has internal instance fields namedredPart, bluePart, andgreenPart, and34

static fields namedRed, Blue, Green, andWhite35

The use of static fields in this manner is not ideal. The fields are initialized at some point before they are36

used, but after this initialization there is nothing tostop a client from changing them. Such a modification37

could cause unpredictable errors in other programs that useColor and assume that the values do not38

change.Readonly fields can be used to prevent such problems. Assignments to a readonly field can only39

occur as part of the declaration, or in an instance constructor or static constructor in the same class. A static40

readonly field can be assigned in a static constructor,and a non-static readonly field can be assigned in an41

instance constructor. Thus, theColor class can be enhanced by adding the modifierreadonly to the static42

fields:43

class Color 44
{ 45
 internal ushort redPart; 46
 internal ushort bluePart; 47
 internal ushort greenPart; 48

 public Color(ushort red, ushort blue, ushort green) { 49
 redPart = red; 50
 bluePart = blue; 51
 greenPart = green; 52
 } 53

C# LANGUAGE SPECIFICATION

34

 public static readonly Color Red = new Color(0xFF, 0, 0); 1
 public static readonly Color Blue = new Color(0, 0xFF, 0); 2
 public static readonly Color Green = new Color(0, 0, 0xFF); 3
 public static readonly Color White = new Color(0xFF, 0xFF, 0xFF); 4
} 5

8.7.3 Methods6

A method is a member that implements a computation or action that can be performed by an object or class.7

Methods have a (possibly empty) list of formal parameters, a return value (unless the method’sreturn-type is8

void), and are either static or non-static.Static methods are accessed through the class.Non-static methods,9

which are also calledinstance methods, are accessed through instances of the class. The example10

using System; 11
public class Stack 12
{ 13
 public static Stack Clone(Stack s) {�} 14

 public static Stack Flip(Stack s) {�} 15

 public object Pop() {�} 16

 public void Push(object o) {�} 17

 public override string ToString() {�} 18
 � 19
} 20

class Test 21
{ 22
 static void Main() { 23
 Stack s = new Stack(); 24
 for (int i = 1; i < 10; i++) 25
 s.Push(i); 26

 Stack flipped = Stack.Flip(s); 27

 Stack cloned = Stack.Clone(s); 28

 Console.WriteLine("Original stack: " + s.ToString()); 29
 Console.WriteLine("Flipped stack: " + flipped.ToString()); 30
 Console.WriteLine("Cloned stack: " + cloned.ToString()); 31
 } 32
} 33

shows aStack that has several static methods (Clone andFlip) and several instance methods (Pop, Push,34

andToString).35

Methods can be overloaded, which means that multiple methods may have the same name so long as they36

have unique signatures. The signature of a methodconsists of the name of the method and the number,37

modifiers, and types of its formal parameters. The signature of a method does not include the return type.38

The example39

using System; 40
class Test 41
{ 42
 static void F() { 43
 Console.WriteLine("F()"); 44
 } 45

 static void F(object o) { 46
 Console.WriteLine("F(object)"); 47
 } 48

 static void F(int value) { 49
 Console.WriteLine("F(int)"); 50
 } 51

 static void F(ref int value) { 52
 Console.WriteLine("F(ref int)"); 53
 } 54

Chapter 8 Language Overview

35

 static void F(int a, int b) { 1
 Console.WriteLine("F(int, int)"); 2
 } 3

 static void F(int[] values) { 4
 Console.WriteLine("F(int[])"); 5
 } 6

 static void Main() { 7
 F(); 8
 F(1); 9
 int i = 10; 10
 F(ref i); 11
 F((object)1); 12
 F(1, 2); 13
 F(new int[] {1, 2, 3}); 14
 } 15
} 16

shows a class with a number of methods calledF. The output produced is17

F() 18
F(int) 19
F(ref int) 20
F(object) 21
F(int, int) 22
F(int[]) 23

8.7.4 Properties24

A property is a member that provides access to a characteristic of an object or a class. Examples of25

properties include the length of a string, the size of afont, the caption of a window, the name of a customer,26

and so on. Properties are a natural extension of fields. Both are named members with associated types, and27

the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote28

storage locations. Instead, properties have accessorsthat specify the statements to be executed when their29

values are read or written.30

Properties are defined with property declarations. Thefirst part of a property declaration looks quite similar31

to a field declaration. The second part includes a get accessor and/or a set accessor. In the example below,32

theButton class defines aCaption property.33

public class Button 34
{ 35
 private string caption; 36

 public string Caption { 37
 get { 38
 return caption; 39
 } 40

 set { 41
 caption = value; 42
 Repaint(); 43
 } 44
 } 45
} 46

Properties that can be both read and written, such asCaption, include both get and set accessors. The get47

accessor is called when the property’s value is read; theset accessor is called when the property’s value is48

written. In a set accessor, the new value for the property is made available via an implicit parameter named49

value.50

The declaration of properties is relatively straightforward, but the real value of properties is seen when they51

are used. For example, theCaption property can be read and written in the same way that fields can be read52

and written:53

C# LANGUAGE SPECIFICATION

36

Button b = new Button(); 1
b.Caption = "ABC"; // set; causes repaint 2
string s = b.Caption; // get 3
b.Caption += "DEF"; // get & set; causes repaint 4

8.7.5 Events5

An event is a member that enables an object or class to provide notifications. A class defines an event by6

providing an event declaration (which resembles a field declaration, though with an addedevent keyword)7

and an optional set of event accessors. The typeof this declaration must be a delegate type.8

An instance of a delegate type encapsulates one or more callable entities. For instance methods, a callable9

entity consists of an instance and a method on that instance. For static methods, a callable entity consists of10

just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that11

delegate instance’s methods with that set of arguments.12

In the example13

public delegate void EventHandler(object sender, System.EventArgs e); 14

public class Button 15
{ 16
 public event EventHandler Click; 17
 public void Reset() { 18
 Click = null; 19
 } 20
} 21

theButton class defines aClick event of typeEventHandler. Inside theButton class, theClick22

member is exactly like a private field of typeEventHandler. However, outside theButton class, the23

Click member can only be used on the left-hand side of the+= and�= operators. The+= operator adds a24

handler for the event, and the-= operator removes a handler for the event. The example25

using System; 26

public class Form1 27
{ 28
 public Form1() { 29
 // Add Button1_Click as an event handler for Button1�s Click event 30
 Button1.Click += new EventHandler(Button1_Click); 31
 } 32

 Button Button1 = new Button(); 33

 void Button1_Click(object sender, EventArgs e) { 34
 Console.WriteLine("Button1 was clicked!"); 35
 } 36

 public void Disconnect() { 37
 Button1.Click -= new EventHandler(Button1_Click); 38
 } 39
} 40

shows aForm1 class that addsButton1_Click as an event handler forButton1’s Click event. In the41

Disconnect method, that event handler is removed.42

For a simple event declaration such as43

public event EventHandler Click; 44

the compiler automatically provides the implementation underlying the+= and-= operators.45

An implementer who wants more control can get it by explicitly providing add and remove accessors. For46

example, theButton class could be rewritten as follows:47

public class Button 48
{ 49
 private EventHandler handler; 50
 public event EventHandler Click { 51
 add { handler += value; } 52
 53

Chapter 8 Language Overview

37

 remove { handler -= value; } 1
 } 2
} 3

This change has no effect on client code, but allows theButton class more implementation flexibility. For4

example, the event handler forClick need not be represented by a field.5

8.7.6 Operators6

An operator is a member that defines the meaning of an expression operator that can be applied to instances7

of the class. There are three kinds of operators thatcan be defined: unary operators, binary operators, and8

conversion operators.9

The following example defines aDigit type that represents decimal digits—integral values between010

and 9.11

using System; 12
public struct Digit 13
{ 14
 byte value; 15

 public Digit(byte value) { 16
 if (value < 0 || value > 9) throw new ArgumentException(); 17
 this.value = value; 18
 } 19

 public Digit(int value): this((byte) value) {} 20

 public static implicit operator byte(Digit d) { 21
 return d.value; 22
 } 23

 public static explicit operator Digit(byte b) { 24
 return new Digit(b); 25
 } 26

 public static Digit operator+(Digit a, Digit b) { 27
 return new Digit(a.value + b.value); 28
 } 29

 public static Digit operator-(Digit a, Digit b) { 30
 return new Digit(a.value - b.value); 31
 } 32

 public static bool operator==(Digit a, Digit b) { 33
 return a.value == b.value; 34
 } 35

 public static bool operator!=(Digit a, Digit b) { 36
 return a.value != b.value; 37
 } 38

 public override bool Equals(object value) { 39
 if (value == null) return false; 40
 if (GetType() == value.GetType()) return this == (Digit)value; 41
 return false; } 42

 public override int GetHashCode() { 43
 return value.GetHashCode(); 44
 } 45

 public override string ToString() { 46
 return value.ToString(); 47
 } 48
} 49

C# LANGUAGE SPECIFICATION

38

class Test 1
{ 2
 static void Main() { 3
 Digit a = (Digit) 5; 4
 Digit b = (Digit) 3; 5
 Digit plus = a + b; 6
 Digit minus = a - b; 7
 bool equals = (a == b); 8
 Console.WriteLine("{0} + {1} = {2}", a, b, plus); 9
 Console.WriteLine("{0} - {1} = {2}", a, b, minus); 10
 Console.WriteLine("{0} == {1} = {2}", a, b, equals); 11
 } 12
} 13

TheDigit type defines the following operators:14

• An implicit conversion operator fromDigit to byte.15

• An explicit conversion operator frombyte to Digit.16

• An addition operator that adds twoDigit values and returns aDigit value.17

• A subtraction operator that subtracts oneDigit value from another, and returns aDigit value.18

• The equality (==) and inequality (!=) operators, which compare twoDigit values.19

8.7.7 Indexers20

An indexer is a member that enables an object to be indexed in the same way as an array. Whereas21

properties enable field-like access, indexers enable array-like access.22

As an example, consider theStack class presented earlier. The designer of this class might want to expose23

array-like access so that it is possible to inspect or alter the items on the stack without performing24

unnecessaryPush andPop operations. That is, classStack is implemented as a linked list, but it also25

provides the convenience of array access.26

Indexer declarations are similar to property declarations, with the main differences being that indexers are27

nameless (the “name” used in the declaration isthis, sincethis is being indexed) and that indexers28

include indexing parameters. The indexing parameters are provided between square brackets. The example29

using System; 30
public class Stack 31
{ 32
 private Node GetNode(int index) { 33
 Node temp = first; 34
 while (index > 0) { 35
 temp = temp.Next; 36
 index--; 37
 } 38
 return temp; 39
 } 40

 public object this[int index] { 41
 get { 42
 if (!ValidIndex(index)) 43
 throw new Exception("Index out of range."); 44
 else 45
 return GetNode(index).Value; 46
 } 47

 set { 48
 if (!ValidIndex(index)) 49
 throw new Exception("Index out of range."); 50
 else 51
 GetNode(index).Value = value; 52
 } 53
 } 54

 � 55
} 56

Chapter 8 Language Overview

39

class Test 1
{ 2
 static void Main() { 3
 Stack s = new Stack(); 4

 s.Push(1); 5
 s.Push(2); 6
 s.Push(3); 7

 s[0] = 33; // Changes the top item from 3 to 33 8
 s[1] = 22; // Changes the middle item from 2 to 22 9
 s[2] = 11; // Changes the bottom item from 1 to 11 10
 } 11
} 12

shows an indexer for theStack class.13

8.7.8 Instance constructors14

An instance constructor is a member that implements the actions required to initialize an instance of a class.15

The example16

using System; 17
class Point 18
{ 19
 public double x, y; 20

 public Point() { 21
 this.x = 0; 22
 this.y = 0; 23
 } 24

 public Point(double x, double y) { 25
 this.x = x; 26
 this.y = y; 27
 } 28

 public static double Distance(Point a, Point b) { 29
 double xdiff = a.x - b.x; 30
 double ydiff = a.y - b.y; 31
 return Math.Sqrt(xdiff * xdiff + ydiff * ydiff); 32
 } 33

 public override string ToString() { 34
 return string.Format("({0}, {1})", x, y); 35
 } 36
} 37

class Test 38
{ 39
 static void Main() { 40
 Point a = new Point(); 41
 Point b = new Point(3, 4); 42
 double d = Point.Distance(a, b); 43
 Console.WriteLine("Distance from {0} to {1} is {2}", a, b, d); 44
 } 45
} 46

shows aPoint class that provides two public instance constructors, one of which takes no arguments, while47

the other takes twodouble arguments.48

If no instance constructor is supplied for a class, then an empty one with no parameters is automatically49

provided.50

8.7.9 Destructors51

A destructor is a member that implements the actions required to destruct an instance of a class. Destructors52

cannot have parameters, they cannot have accessibility modifiers, and they cannot be called explicitly. The53

destructor for an instance is called automatically during garbage collection.54

C# LANGUAGE SPECIFICATION

40

The example1

using System; 2
class Point 3
{ 4
 public double x, y; 5

 public Point(double x, double y) { 6
 this.x = x; 7
 this.y = y; 8
 } 9

 ~Point() { 10
 Console.WriteLine("Destructed {0}", this); 11
 } 12

 public override string ToString() { 13
 return string.Format("({0}, {1})", x, y); 14
 } 15
} 16

shows aPoint class with a destructor.17

8.7.10 Static constructors18

A static constructor is a member that implements the actions required to initialize a class. Static constructors19

cannot have parameters, they cannot have accessibility modifiers, and they cannot be called explicitly. The20

static constructor for a class is called automatically.21

The example22

using Personnel.Data; 23
class Employee 24
{ 25
 private static DataSet ds; 26

 static Employee() { 27
 ds = new DataSet(�); 28
 } 29

 public string Name; 30
 public decimal Salary; 31
 � 32
} 33

shows anEmployee class with a static constructor that initializes a static field.34

8.7.11 Inheritance35

Classes support single inheritance, and the typeobject is the ultimate base class for all classes.36

The classes shown in earlier examples all implicitly derive fromobject. The example37

using System; 38
class A 39
{ 40
 public void F() { Console.WriteLine("A.F"); } 41
} 42

shows a classA that implicitly derives fromobject. The example43

class B: A 44
{ 45
 public void G() { Console.WriteLine("B.G"); } 46
} 47

class Test 48
{ 49
 static void Main() { 50
 B b = new B(); 51
 b.F(); // Inherited from A 52
 b.G(); // Introduced in B 53
 54

Chapter 8 Language Overview

41

 A a = b; // Treat a B as an A 1
 a.F(); 2
 } 3
} 4

shows a classB that derives fromA. The classB inheritsA’s F method, and introduces aG method of its own.5

Methods, properties, and indexers can bevirtual, which means that their implementation can be overridden6

in derived classes. The example7

using System; 8
class A 9
{ 10
 public virtual void F() { Console.WriteLine("A.F"); } 11
} 12

class B: A 13
{ 14
 public override void F() { 15
 base.F(); 16
 Console.WriteLine("B.F"); 17
 } 18
} 19

class Test 20
{ 21
 static void Main() { 22
 B b = new B(); 23
 b.F(); 24

 A a = b; 25
 a.F(); 26
 } 27
} 28

shows a classA with a virtual methodF, and a classB that overridesF. The overriding method inB contains29

a call,base.F(), which calls the overridden method inA.30

A class can indicate that it is incomplete, and is intended only as a base class for other classes, by including31

the modifierabstract. Such a class is called anabstract class. An abstract class can specifyabstract32

members—members that a non-abstract derived class must implement. The example33

using System; 34
abstract class A 35
{ 36
 public abstract void F(); 37
} 38

class B: A 39
{ 40
 public override void F() { Console.WriteLine("B.F"); } 41
} 42

class Test 43
{ 44
 static void Main() { 45
 B b = new B(); 46
 b.F(); 47

 A a = b; 48
 a.F(); 49
 } 50
} 51

introduces an abstract methodF in the abstract classA. The non-abstract classB provides an implementation52

for this method.53

8.8 Structs54

The list of similarities between classes and structs is long—structs can implement interfaces, and can have55

the same kinds of members as classes. Structs differfrom classes in several important ways, however:56

C# LANGUAGE SPECIFICATION

42

structs are value types rather than reference types, andinheritance is not supported for structs. Struct values1

are stored “on the stack” or “in-line”. Careful programmers can sometimes enhance performance through2

judicious use of structs.3

For example, the use of a struct rather than a class for aPoint can make a large difference in the number of4

memory allocations performed at run time. The program below creates and initializes an array of 100 points.5

With Point implemented as a class, 101 separate objects are instantiated—one for the array and one each6

for the 100 elements.7

class Point 8
{ 9
 public int x, y; 10

 public Point(int x, int y) { 11
 this.x = x; 12
 this.y = y; 13
 } 14
} 15

class Test 16
{ 17
 static void Main() { 18
 Point[] points = new Point[100]; 19
 for (int i = 0; i < 100; i++) 20
 points[i] = new Point(i, i*i); 21
 } 22
} 23

If Point is instead implemented as a struct, as in24

struct Point 25
{ 26
 public int x, y; 27

 public Point(int x, int y) { 28
 this.x = x; 29
 this.y = y; 30
 } 31
} 32

only one object is instantiated—the one for the array. ThePoint instances are allocated in-line within the33

array. This optimization can be misused. Using structs instead of classes can also make an application run34

slower or take up more memory, as passing a struct instance by value causes a copy of that struct to be35

created.36

8.9 Interfaces37

An interface defines a contract. A class or struct that implements an interface must adhere to its contract.38

Interfaces can contain methods, properties, events, and indexers as members.39

The example40

interface IExample 41
{ 42
 string this[int index] { get; set; } 43
 event EventHandler E; 44
 void F(int value); 45
 string P { get; set; } 46
} 47

public delegate void EventHandler(object sender, EventArgs e); 48

shows an interface that contains an indexer, an eventE, a methodF, and a property P.49

Interfaces may employ multiple inheritance. In the example50

interface IControl 51
{ 52
 void Paint(); 53
} 54

Chapter 8 Language Overview

43

interface ITextBox: IControl 1
{ 2
 void SetText(string text); 3
} 4

interface IListBox: IControl 5
{ 6
 void SetItems(string[] items); 7
} 8

interface IComboBox: ITextBox, IListBox {} 9

the interfaceIComboBox inherits from bothITextBox andIListBox.10

Classes and structs can implement multiple interfaces. In the example11

interface IDataBound 12
{ 13
 void Bind(Binder b); 14
} 15

public class EditBox: Control, IControl, IDataBound 16
{ 17
 public void Paint() {�} 18
 public void Bind(Binder b) {�} 19
} 20

the classEditBox derives from the classControl and implements bothIControl andIDataBound.21

In the previous example, thePaint method from theIControl interface and theBind method from22

IDataBound interface are implemented using public members on theEditBox class. C# provides an23

alternative way of implementing these methods that allows the implementing class to avoid having these24

members be public. Interface members can be implemented using a qualified name. For example, the25

EditBox class could instead be implemented by providingIControl.Paint andIDataBound.Bind26

methods.27

public class EditBox: IControl, IDataBound 28
{ 29
 void IControl.Paint() {�} 30
 void IDataBound.Bind(Binder b) {�} 31
} 32

Interface members implemented in this way are calledexplicit interface members because each member33

explicitly designates the interface member being implemented. Explicit interface members can only be34

called via the interface. For example, theEditBox’s implementation of thePaint method can be called35

only by casting to theIControl interface.36

class Test 37
{ 38
 static void Main() { 39
 EditBox editbox = new EditBox(); 40
 editbox.Paint(); // error: no such method 41
 IControl control = editbox; 42
 control.Paint(); // calls EditBox�s Paint implementation 43
 } 44
} 45

8.10 Delegates46

Delegates enable scenarios that some other languages have addressed with function pointers. However,47

unlike function pointers, delegates are object-oriented and type-safe.48

A delegate declaration defines a class that is derived from the classSystem.Delegate. A delegate instance49

encapsulates one or more methods, each of which is referred to as acallable entity. For instance methods, a50

callable entity consists of an instance and a methodon that instance. For static methods, a callable entity51

consists of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all52

of that delegate instance’s methods with that set of arguments.53

C# LANGUAGE SPECIFICATION

44

An interesting and useful property of a delegate instance is that it does not know or care about the classes of1

the methods it encapsulates; all that matters is that those methods be compatible (§22.1) with the delegate’s2

type. This makes delegates perfectly suited for“anonymous” invocation. This is a powerful capability.3

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates4

are declared using delegate declaration syntax. The example5

delegate void SimpleDelegate(); 6

declares a delegate namedSimpleDelegate that takes no arguments and returns no result.7

The example8

class Test 9
{ 10
 static void F() { 11
 System.Console.WriteLine("Test.F"); 12
 } 13

 static void Main() { 14
 SimpleDelegate d = new SimpleDelegate(F); 15
 d(); 16
 } 17
} 18

creates aSimpleDelegate instance and then immediately calls it.19

There is not much point in instantiating a delegate for a method and then immediately calling that method20

via the delegate, as it would be simpler to call the methoddirectly. Delegates really show their usefulness21

when their anonymity is used. The example22

void MultiCall(SimpleDelegate d, int count) { 23
 for (int i = 0; i < count; i++) 24
 d(); 25
 } 26
} 27

shows aMultiCall method that repeatedly calls aSimpleDelegate. TheMultiCall method doesn’t28

know or care about the type of the target method for theSimpleDelegate, what accessibility that method29

has, or whether or not that method is static. All thatmatters is that the target method is compatible (§22.1)30

with SimpleDelegate.31

8.11 Enums32

An enum type declaration defines a type name for a related group of symbolic constants. Enums are used for33

“multiple choice” scenarios, in which a runtime decision is made from a fixed number of choices that are34

known at compile-time.35

The example36

enum Color 37
{ 38
 Red, 39
 Blue, 40
 Green 41
} 42

class Shape 43
{ 44
 public void Fill(Color color) { 45
 switch(color) { 46
 case Color.Red: 47
 � 48
 break; 49

 case Color.Blue: 50
 � 51
 break; 52

Chapter 8 Language Overview

45

 case Color.Green: 1
 � 2
 break; 3

 default: 4
 break; 5
 } 6
 } 7
} 8

shows aColor enum and a method that uses this enum. The signature of theFill method makes it clear9

that the shape can be filled with one of the given colors.10

The use of enums is superior to the use of integer constants—as is common in languages without enums—11

because the use of enums makes the code more readableand self-documenting. The self-documenting nature12

of the code also makes it possible for the development tool to assist with code writing and other “designer”13

activities. For example, the use ofColor rather thanint for a parameter type enables smart code editors to14

suggestColor values.15

8.12 Namespaces and assemblies16

The programs presented so far have stood on their own except for dependence on a few system-provided17

classes such asSystem.Console. It is far more common, however, for real-world applications to consist of18

several different pieces, each compiled separately.For example, a corporate application might depend on19

several different components, including some developed internally and some purchased from independent20

software vendors.21

Namespaces andassemblies enable this component-based system. Namespaces provide a logical22

organizational system. Namespaces are used both as an “internal” organization system for a program, and as23

an “external” organization system—a way of presenting program elements that are exposed to other24

programs.25

Assemblies are used for physical packaging and deployment. An assembly may contain types, the executable26

code used to implement these types, and references to other assemblies.27

To demonstrate the use of namespaces and assemblies,this section revisits the “hello, world” program28

presented earlier, and splits it into two pieces: a class library that provides messages and a console29

application that displays them.30

The class library will contain a single class namedHelloMessage. The example31

// HelloLibrary.cs 32

namespace CSharp.Introduction 33
{ 34
 public class HelloMessage 35
 { 36
 public string Message { 37
 get { 38
 return "hello, world"; 39
 } 40
 } 41
 } 42
} 43

shows theHelloMessage class in a namespace namedCSharp.Introduction. TheHelloMessage44

class provides a read-only property namedMessage. Namespaces can nest, and the declaration45

namespace CSharp.Introduction 46
{�} 47

is shorthand for two levels of namespace nesting:48

namespace CSharp 49
{ 50
 namespace Introduction 51
 {�} 52
} 53

C# LANGUAGE SPECIFICATION

46

The next step in the componentization of “hello, world” is to write a console application that uses the1

HelloMessage class. The fully qualified name for the class—2

CSharp.Introduction.HelloMessage—could be used, but this name is quite long and unwieldy. An3

easier way is to use ausing namespace directive, which makes it possible to use all of the types in a4

namespace without qualification. The example5

// HelloApp.cs 6

using CSharp.Introduction; 7

class HelloApp 8
{ 9
 static void Main() { 10
 HelloMessage m = new HelloMessage(); 11
 System.Console.WriteLine(m.Message); 12
 } 13
} 14

shows a using namespace directive that refers to theCSharp.Introduction namespace. The occurrences15

of HelloMessage are shorthand forCSharp.Introduction.HelloMessage.16

C# also enables the definition and use of aliases. Ausing alias directive defines an alias for a type. Such17

aliases can be useful in situation in which name collisions occur between two class libraries, or when a small18

number of types from a much larger namespace are being used. The example19

using MessageSource = CSharp.Introduction.HelloMessage; 20

shows a using alias directive that definesMessageSource as an alias for theHelloMessage class.21

The code we have written can be compiled into a class library containing the classHelloMessage and an22

application containing the classHelloApp. The details of this compilation step might differ based on the23

compiler or tool being used. A command-line compiler might enable compilation of a class library and an24

application that uses that library withthe following command-line invocations:25

csc /target:library HelloLibrary.cs 26

csc /reference:HelloLibrary.dll HelloApp.cs 27

which produce a class library namedHelloLibrary.dll and an application namedHelloApp.exe.28

8.13 Versioning29

Versioning is the process of evolving a component over time in a compatible manner. A new version of a30

component issource compatible with a previous version if code that depends on the previous version can,31

when recompiled, work with the new version. In contrast, a new version of a component isbinary32

compatible if an application that depended on the old version can, without recompilation, work with the new33

version.34

Most languages do not support binary compatibilityat all, and many do little to facilitate source35

compatibility. In fact, some languages contain flaws that make it impossible, in general, to evolve a class36

over time without breaking at least some client code.37

As an example, consider the situation of a base class author who ships a class namedBase. In the first38

version,Base contains no methodF. A component namedDerived derives fromBase, and introduces39

anF. ThisDerived class, along with the classBase on which it depends, is released to customers, who40

deploy to numerous clients and servers.41

// Author A 42
namespace A 43
{ 44
 public class Base // version 1 45
 { 46
 } 47
} 48

Chapter 8 Language Overview

47

// Author B 1
namespace B 2
{ 3
 class Derived: A.Base 4
 { 5
 public virtual void F() { 6
 System.Console.WriteLine("Derived.F"); 7
 } 8
 } 9
} 10

So far, so good, but now the versioning trouble begins. The author ofBase produces a new version, giving it11

its own methodF.12

// Author A 13
namespace A 14
{ 15
 public class Base // version 2 16
 { 17
 public virtual void F() { // added in version 2 18
 System.Console.WriteLine("Base.F"); 19
 } 20
 } 21
} 22

This new version ofBase should be both source and binary compatible with the initial version. (If it weren’t23

possible to simply add a method then a base classcould never evolve.) Unfortunately, the newF in Base24

makes the meaning ofDerived’s F unclear. DidDerived mean to overrideBase’s F? This seems unlikely,25

since whenDerived was compiled,Base did not even have anF! Further, ifDerived’s F does override26

Base’s F, then it must adhere to the contract specified byBase—a contract that was unspecified when27

Derived was written. In some cases, this is impossible. For example,Base’s F might require that overrides28

of it always call the base.Derived’s F could not possibly adhere to such a contract.29

C# addresses this versioning problem by requiring developers to state their intent clearly. In the original30

code example, the code was clear, sinceBase did not even have anF. Clearly,Derived’s F is intended as a31

new method rather than an override of a base method, since no base method namedF exists.32

If Base adds anF and ships a new version, then the intent of a binary version ofDerived is still clear—33

Derived’s F is semantically unrelated, and should not be treated as an override.34

However, whenDerived is recompiled, the meaning is unclear—the author ofDerived may intend itsF to35

overrideBase’s F, or to hide it. Since the intent is unclear, the compiler produces a warning, and by default36

makesDerived’s F hideBase’s F. This course of action duplicates the semantics for the case in which37

Derived is not recompiled. The warning that is generated alertsDerived’s author to the presence of the38

F method inBase.39

If Derived’s F is semantically unrelated toBase’s F, thenDerived’s author can express this intent—and,40

in effect, turn off the warning—by using thenew keyword in the declaration ofF.41

// Author A 42
namespace A 43
{ 44
 public class Base // version 2 45
 { 46
 public virtual void F() { // added in version 2 47
 System.Console.WriteLine("Base.F"); 48
 } 49
 } 50
} 51

C# LANGUAGE SPECIFICATION

48

// Author B 1
namespace B 2
{ 3
 class Derived: A.Base // version 2a: new 4
 { 5
 new public virtual void F() { 6
 System.Console.WriteLine("Derived.F"); 7
 } 8
 } 9
} 10

On the other hand,Derived’s author might investigate further, and decide thatDerived’s F should11

overrideBase’s F. This intent can be specified by using theoverride keyword, as shown below.12

// Author A 13
namespace A 14
{ 15
 public class Base // version 2 16
 { 17
 public virtual void F() { // added in version 2 18
 System.Console.WriteLine("Base.F"); 19
 } 20
 } 21
} 22

// Author B 23
namespace B 24
{ 25
 class Derived: A.Base // version 2b: override 26
 { 27
 public override void F() { 28
 base.F(); 29
 System.Console.WriteLine("Derived.F"); 30
 } 31
 } 32
} 33

The author ofDerived has one other option, and that is to change the name ofF, thus completely avoiding34

the name collision. Although this change would break source and binary compatibility forDerived, the35

importance of this compatibility varies depending on the scenario. IfDerived is not exposed to other36

programs, then changing the name ofF is likely a good idea, as it would improve the readability of the37

program—there would no longer be any confusion about the meaning ofF.38

8.14 Attributes39

C# is an imperative language, but like all imperative languages it does have some declarative elements. For40

example, the accessibility of a method in a class is specified by declaring itpublic, protected,41

internal, protected internal, orprivate. C# generalizes this capability, so that programmers can42

invent new kinds of declarative information, attach this declarative information to various program entities,43

and retrieve this declarative information at run-time. Programs specify this additional declarative44

information by defining and using attributes (§24).45

For instance, a framework might define aHelpAttribute attribute that can be placed on program elements46

such as classes and methods, enabling developers to provide a mapping from program elements to47

documentation for them. The example48

using System; 49
[AttributeUsage(AttributeTargets.All)] 50
public class HelpAttribute: Attribute 51
{ 52
 public HelpAttribute(string url) { 53
 this.url = url; 54
 } 55

 public string Topic = null; 56

 private string url; 57

Chapter 8 Language Overview

49

 public string Url { 1
 get { return url; } 2
 } 3
} 4

defines an attribute class namedHelpAttribute, or Help for short, that has one positional parameter5

(string url) and one named parameter (string Topic). Positional parameters are defined by the6

formal parameters for public instance constructors ofthe attribute class, and named parameters are defined7

by public non-static read-write fields and properties of the attribute class.8

The example9

[Help("http://www.mycompany.com/�/Class1.htm")] 10
public class Class1 11
{ 12
 [Help("http://www.mycompany.com/�/Class1.htm", Topic = "F")] 13
 public void F() {} 14
} 15

shows several uses of the attributeHelp.16

Attribute information for a given program element canbe retrieved at run-time by using reflection support.17

The example18

using System; 19
class Test 20
{ 21
 static void Main() { 22
 Type type = typeof(Class1); 23
 object[] arr = type.GetCustomAttributes(typeof(HelpAttribute), 24
true); 25
 if (arr.Length == 0) 26
 Console.WriteLine("Class1 has no Help attribute."); 27
 else { 28
 HelpAttribute ha = (HelpAttribute) arr[0]; 29
 Console.WriteLine("Url = {0}, Topic = {1}", ha.Url, ha.Topic); 30
 } 31
 } 32
} 33

checks to see ifClass1 has aHelp attribute, and writes out the associatedTopic andUrl values if the34

attribute is present.35

End of informative text.36

37

Chapter 9 Lexical structure

51

9. Lexical structure1

9.1 Programs2

A C# program consists of one or more source files, known formally ascompilation units (§16.1). A source3

file is an ordered sequence of Unicode characters. Source files typically have a one-to-one correspondence4

with files in a file system, but this correspondence is not required.5

Conceptually speaking, a program is compiled using three steps:6

1. Transformation, which converts a file from a particular character repertoire and encoding scheme7

into a sequence of Unicode characters.8

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.9

3. Syntactic analysis, which translates the stream of tokens into executable code.10

Conforming implementations must accept Unicode source files encoded with the UTF-8 encoding form (as11

defined by the Unicode standard), and transform them into a sequence of Unicode characters.12

Implementations may choose to accept and transform additional character encoding schemes (such as UTF-13

16, UTF-32, or non-Unicode character mappings).14

[Note: It is beyond the scope of this standard to define how a file using a character representation other than15

Unicode might be transformed into a sequence of Unicode characters. During such transformation, however,16

it is recommended that the usual line-separating character (or sequence) in the other character set be17

translated to the two-character sequence consisting of the Unicode carriage-return character followed by18

Unicode line-feed character. For the most part this transformation will have no visible effects; however, it19

will affect the interpretation of verbatim string literal tokens (§9.4.4.5). Thepurpose of this recommendation20

is to allow a verbatim string literal to produce the same character sequence when its source file is moved21

between systems that support differing non-Unicode character sets, in particular, those using differing22

character sequences for line-separation.end note]23

9.2 Grammars24

This specification presents the syntax of the C# programming language using two grammars. Thelexical25

grammar (§9.2.1) defines how Unicode characters are combined to form line terminators, white space,26

comments, tokens, and pre-processing directives. Thesyntactic grammar (§9.2.2) defines how the tokens27

resulting from the lexical grammar are combined to form C# programs.28

9.2.1 Lexical grammar29

The lexical grammar of C# is presented in §9.3, §9.4, and §9.5. The terminal symbols of the lexical grammar30

are the characters of the Unicode character set, and the lexical grammar specifies how characters are31

combined to form tokens (§9.4), white space (§9.3.3), comments (§9.3.2), and pre-processing directives32

(§9.5).33

Every source file in a C# program must conform to theinput production of the lexical grammar (§9.3).34

9.2.2 Syntactic grammar35

The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The36

terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic37

grammar specifies how tokens are combined to form C# programs.38

Every source file in a C# program must conform to thecompilation-unit production (§16.1) of the syntactic39

grammar.40

C# LANGUAGE SPECIFICATION

52

9.3 Lexical analysis1

Theinput production defines the lexical structure of a C# source file. Each source file in a C# program must2

conform to this lexical grammar production.3

input::4

input-sectionopt5

input-section::6

input-section-part7

input-section input-section-part8

input-section-part::9

input-elementsopt new-line10

pp-directive11

input-elements::12

input-element13

input-elements input-element14

input-element::15

whitespace16

comment17

token18

Five basic elements make up the lexical structure of a C#source file: Line terminators (§9.3.1), white space19

(§9.3.3), comments (§9.3.2), tokens (§9.4), and pre-processing directives (§9.5). Of these basic elements,20

only tokens are significant in the syntactic grammar of a C# program (§9.2.2).21

The lexical processing of a C# source file consistsof reducing the file into a sequence of tokens which22

becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to23

separate tokens, and pre-processing directivescan cause sections of the source file to be skipped, but24

otherwise these lexical elements have no impact on the syntactic structure of a C# program.25

When several lexical grammar productions match a sequence of characters in a source file, the lexical26

processing always forms the longest possible lexical element. For example, the character sequence// is27

processed as the beginning of a single-line comment because that lexical element is longer than a single/28

token.29

9.3.1 Line terminators30

Line terminators divide the characters of a C# source file into lines.31

new-line::32

Carriage return character (U+000D)33

Line feed character (U+000A)34

Carriage return character (U+000D) followed by line feed character (U+000A)35

Line separator character (U+2028)36

Paragraph separator character (U+2029)37

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to38

be viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to39

every source file in a C# program:40

• If the last character of the source file is a Control-Z character (U+001A), this character is deleted.41

• A carriage-return character (U+000D) is added to the end of the source file if that source file is non-42

empty and if the last character of the source file is not a carriage return (U+000D), a line feed (U+000A), a43

line separator (U+2028), or a paragraph separator (U+2029).44

9.3.2 Comments45

Two forms of comments are supported: delimited comments and single-line comments.46

Chapter 9 Lexical structure

53

A delimited comment begins with the characters/* and ends with the characters*/. Delimited comments1

can occupy a portion of a line, a single line, or multiple lines. [Example: The example2

/* Hello, world program 3
 This program writes �hello, world� to the console 4
*/ 5
class Hello 6
{ 7
 static void Main() { 8
 System.Console.WriteLine("hello, world"); 9
 } 10
} 11

includes a delimited comment.end example]12

A single-line comment begins with the characters// and extends to the end of the line. [Example: The13

example14

// Hello, world program 15
// This program writes �hello, world� to the console 16
// 17
class Hello // any name will do for this class 18
{ 19
 static void Main() { // this method must be named "Main" 20
 System.Console.WriteLine("hello, world"); 21
 } 22
} 23

shows several single-line comments.end example]24

comment::25

single-line-comment26

delimited-comment27

single-line-comment::28

// input-charactersopt29

input-characters::30

input-character31

input-characters input-character32

input-character::33

Any Unicode character except anew-line-character34

new-line-character::35

Carriage return character (U+000D)36

Line feed character (U+000A)37

Line separator character (U+2028)38

Paragraph separator character (U+2029)39

delimited-comment::40

/* delimited-comment-charactersopt */41

delimited-comment-characters::42

delimited-comment-character43

delimited-comment-characters delimited-comment-character44

delimited-comment-character::45

not-asterisk46

* not-slash47

not-asterisk::48

Any Unicode character except*49

not-slash::50

Any Unicode character except/51

C# LANGUAGE SPECIFICATION

54

Comments do not nest. The character sequences/* and*/ have no special meaning within a single-line1

comment, and the character sequences// and/* have no special meaning within a delimited comment.2

Comments are not processed within character and string literals.3

9.3.3 White space4

White space is defined as any character with Unicode class Zs (which includes the space character) as well5

as the horizontal tab character, the vertical tab character, and the form feed character.6

whitespace::7

Any character with Unicode class Zs8

Horizontal tab character (U+0009)9

Vertical tab character (U+000B)10

Form feed character (U+000C)11

9.4 Tokens12

There are several kinds oftokens: identifiers, keywords, literals, operators, and punctuators. White space13

and comments are not tokens, though they act as separators for tokens.14

token::15

identifier16

keyword17

integer-literal18

real-literal19

character-literal20

string-literal21

operator-or-punctuator22

9.4.1 Unicode escape sequences23

A Unicode escape sequence represents a Unicode character. Unicode escape sequences are processed in24

identifiers (§9.4.2), regular string literals (§9.4.4.5), and character literals (§9.4.4.4). A Unicode character25

escape is not processed in any other location (for example, to form an operator, punctuator, or keyword).26

unicode-escape-sequence::27

\u hex-digit hex-digit hex-digit hex-digit28

\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit29

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number30

following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode characters in characters31

and string values, a Unicode character in the rangeU+10000 to U+10FFFF is represented using two Unicode32

surrogate characters. Unicode characters with code points above0x10FFFF are not supported.33

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to34

“\u005C” rather than “\”. [Note: The Unicode value\u005C is the character “\”. end note]35

[Example: The example36

class Class1 37
{ 38
 static void Test(bool \u0066) { 39
 char c = '\u0066'; 40
 if (\u0066) 41
 System.Console.WriteLine(c.ToString()); 42
 } 43
} 44

shows several uses of\u0066, which is the escape sequence for the letter “f”. The program is equivalent to45

Chapter 9 Lexical structure

55

class Class1 1
{ 2
 static void Test(bool f) { 3
 char c = 'f'; 4
 if (f) 5
 System.Console.WriteLine(c.ToString()); 6
 } 7
} 8

end example]9

9.4.2 Identifiers10

The rules for identifiers rules given in this section correspond exactly to those recommended by the Unicode11

Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the12

C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is13

allowed as a prefix to enable keywords to be used as identifiers.14

identifier::15

available-identifier16

@ identifier-or-keyword17

available-identifier::18

An identifier-or-keyword that is not akeyword19

identifier-or-keyword::20

identifier-start-character identifier-part-charactersopt21

identifier-start-character::22

letter-character23

_ (the underscore character U+005F)24

identifier-part-characters::25

identifier-part-character26

identifier-part-characters identifier-part-character27

identifier-part-character::28

letter-character29

decimal-digit-character30

connecting-character31

combining-character32

formatting-character33

letter-character::34

A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl35

A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl36

combining-character::37

A Unicode character of classes Mn or Mc38

A unicode-escape-sequence representing a character of classes Mn or Mc39

decimal-digit-character::40

A Unicode character of the class Nd41

A unicode-escape-sequence representing a character of the class Nd42

connecting-character::43

A Unicode character of the class Pc44

A unicode-escape-sequence representing a character of the class Pc45

formatting-character::46

A Unicode character of the class Cf47

A unicode-escape-sequence representing a character of the class Cf48

C# LANGUAGE SPECIFICATION

56

[Note: For information on the Unicode character classes mentioned above, seeThe Unicode Standard,1

Verson 3.0, §4.5.)end note]2

[Example: Examples of valid identifiers include “identifier1”, “ _identifier2”, and “@if”. end3

example]4

An identifier in a conforming program must be in thecanonical format defined by Unicode Normalization5

Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in6

Normalization Form C is implementation-defined; however, a diagnostic is not required.7

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other8

programming languages. The character@ is not actually part of the identifier, so the identifier might be seen9

in other languages as a normal identifier,without the prefix. An identifier with an@ prefix is called a10

verbatim identifier. [Note: Use of the@ prefix for identifiers that are not keywords is permitted, but strongly11

discouraged as a matter of style.end note]12

[Example: The example:13

class @class 14
{ 15
 public static void @static(bool @bool) { 16
 if (@bool) 17
 System.Console.WriteLine("true"); 18
 else 19
 System.Console.WriteLine("false"); 20
 } 21
} 22

class Class1 23
{ 24
 static void M() { 25
 cl\u0061ss.st\u0061tic(true); 26
 } 27
} 28

defines a class named “class” with a static method named “static” that takes a parameter named29

“bool”. Note that since Unicode escapes are not permitted in keywords, the token “cl\u0061ss” is an30

identifier, and is the same identifier as “@class”. end example]31

Two identifiers are considered the same if they are identical after the following transformations are applied,32

in order:33

• The prefix “@”, if used, is removed.34

• Eachunicode-escape-sequence is transformed into its corresponding Unicode character.35

• Any formatting-characters are removed.36

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the37

implementation; however, no diagnostic is required if such an identifier is defined. [Note: For example, an38

implementation might provide extended keywords that begin with two underscores.end note]39

9.4.3 Keywords40

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier41

except when prefaced by the@ character.42

Chapter 9 Lexical structure

57

keyword:: one of1

abstract as base bool break 2

byte case catch char checked 3

class const continue decimal default 4

delegate do double else enum 5

event explicit extern false finally 6

fixed float for foreach goto 7

if implicit in int interface 8

internal is lock long namespace 9

new null object operator out 10

override params private protected public 11

readonly ref return sbyte sealed 12

short sizeof stackalloc static string 13

struct switch this throw true 14

try typeof uint ulong unchecked 15

unsafe ushort using virtual void 16

volatile while 17

In some places in the grammar, specific identifiers have special meaning, but are not keywords. [Note: For18

example, within a property declaration, the “get” and “set” identifiers have special meaning (§17.6.2). An19

identifier other thanget or set is never permitted in these locations, so this use does not conflict with a use20

of these words as identifiers.end note]21

9.4.4 Literals22

A literal is a source code representation of a value.23

literal::24

boolean-literal25

integer-literal26

real-literal27

character-literal28

string-literal29

null-literal30

9.4.4.1 Boolean literals31

There are two boolean literal values:true andfalse.32

boolean-literal::33

true 34

false 35

The type of aboolean-literal is bool.36

9.4.4.2 Integer literals37

Integer literals are used to write values of typesint, uint, long, andulong. Integer literals have two38

possible forms: decimal and hexadecimal.39

integer-literal::40

decimal-integer-literal41

hexadecimal-integer-literal42

decimal-integer-literal::43

decimal-digits integer-type-suffixopt44

decimal-digits::45

decimal-digit46

decimal-digits decimal-digit47

C# LANGUAGE SPECIFICATION

58

decimal-digit:: one of1

0 1 2 3 4 5 6 7 8 9 2

integer-type-suffix:: one of3

U u L l UL Ul uL ul LU Lu lU lu 4

hexadecimal-integer-literal::5

0x hex-digits integer-type-suffixopt6

0X hex-digits integer-type-suffixopt7

hex-digits::8

hex-digit9

hex-digits hex-digit10

hex-digit:: one of11

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f 12

The type of an integer literal is determined as follows:13

• If the literal has no suffix, it has the first of these types in which its value can be represented:int, uint,14

long, ulong.15

• If the literal is suffixed byU or u, it has the first of these types in which its value can be represented:16

uint, ulong.17

• If the literal is suffixed byL or l, it has the first of these types in which its value can be represented:18

long, ulong.19

• If the literal is suffixed byUL, Ul, uL, ul, LU, Lu, lU, or lu, it is of typeulong.20

If the value represented by an integer literal is outside the range of theulong type, a compile-time error21

occurs.22

[Note: As a matter of style, it is suggested that “L” be used instead of “l” when writing literals of typelong,23

since it is easy to confuse the letter “l” with the digit “1”. end note]24

To permit the smallest possibleint andlong values to be written as decimal integer literals, the following25

two rules exist:26

• When adecimal-integer-literal with the value 2147483648 (231) and nointeger-type-suffix appears as27

the token immediately following a unary minus operator token (§14.6.2), the result is a constant of typeint28

with the value −2147483648 (−231). In all other situations, such adecimal-integer-literal is of typeuint.29

• When adecimal-integer-literal with the value 9223372036854775808 (263) and nointeger-type-suffix or30

theinteger-type-suffix L or l appears as the token immediately following a unary minus operator token31

(§14.6.2), the result is a constant of typelong with the value −9223372036854775808 (−263). In all other32

situations, such adecimal-integer-literal is of typeulong.33

9.4.4.3 Real literals34

Real literals are used to write values of typesfloat, double, anddecimal.35

real-literal::36

decimal-digits . decimal-digits exponent-partopt real-type-suffixopt37

. decimal-digits exponent-partopt real-type-suffixopt38

decimal-digits exponent-part real-type-suffixopt39

decimal-digits real-type-suffix40

exponent-part::41

e signopt decimal-digits42

E signopt decimal-digits43

sign:: one of44

+ - 45

Chapter 9 Lexical structure

59

real-type-suffix:: one of1

F f D d M m2

If no real-type-suffix is specified, the type of the real literal isdouble. Otherwise, thereal-type-suffix3

determines the type of the real literal, as follows:4

• A real literal suffixed byF or f is of typefloat. [Example: For example, the literals1f, 1.5f, 1e10f,5

and123.456F are all of typefloat. end example]6

• A real literal suffixed byD or d is of typedouble. [Example: For example, the literals1d, 1.5d,7

1e10d, and123.456D are all of typedouble. end example]8

• A real literal suffixed byM or m is of typedecimal. [Example: For example, the literals1m, 1.5m,9

1e10m, and123.456M are all of typedecimal. end example] This literal is converted to adecimal10

value by taking the exact value, and, if necessary, rounding to the nearest representable value using banker's11

rounding (§11.1.6). Any scale apparent in the literal is preserved unless the value is rounded or the value is12

zero (in which latter case the sign and scale will be 0). [Note: Hence, the literal2.900m will be parsed to13

form thedecimal with sign 0, coefficient 2900, and scale 3.end note]14

If the specified literal cannot be represented in the indicated type, a compile-time error occurs.15

The value of a real literal having typefloat or double is determined by using the IEEE “round to nearest”16

mode.17

9.4.4.4 Character literals18

A character literal represents a single character, and usually consists of a character in quotes, as in'a'.19

character-literal::20

' character '21

character::22

single-character23

simple-escape-sequence24

hexadecimal-escape-sequence25

unicode-escape-sequence26

single-character::27

Any character except' (U+0027), \ (U+005C), andnew-line-character28

simple-escape-sequence:: one of29

\' \" \\ \0 \a \b \f \n \r \t \v 30

hexadecimal-escape-sequence::31

\x hex-digit hex-digitopt hex-digitopt hex-digitopt 32

[Note: A character that follows a backslash character (\) in a character must be one of the following33

characters:', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.end note]34

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the35

hexadecimal number following “\x”.36

If the value represented by a character literal is greater thanU+FFFF, a compile-time error occurs.37

A Unicode character escape sequence (§9.4.1) in a character literal must be in the rangeU+0000 to U+FFFF.38

A simple escape sequence represents a Unicode character encoding, as described in the table below.39

40

C# LANGUAGE SPECIFICATION

60

Escape
sequence

Character
name

Unicode
encoding

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

1

The type of acharacter-literal is char.2

9.4.4.5 String literals3

C# supports two forms of string literals:regular string literals andverbatim string literals. A regular string4

literal consists of zero or more characters enclosed in double quotes, as in"hello, world", and may5

include both simple escape sequences (such as\t for the tab character), and hexadecimal and Unicode6

escape sequences.7

A verbatim string literal consists of an@ character followed by a double-quote character, zero or more8

characters, and a closing double-quote character. A simple example is@"hello, world". In a verbatim9

string literal, the characters between the delimiters areinterpreted verbatim, with the only exception being a10

quote-escape-sequence. In particular, simple escape sequences, and hexadecimal and Unicode escape11

sequences are not processed in verbatim string literals. A verbatim string literal may span multiple lines.12

string-literal::13

regular-string-literal14

verbatim-string-literal15

regular-string-literal::16

" regular-string-literal-charactersopt " 17

regular-string-literal-characters::18

regular-string-literal-character19

regular-string-literal-characters regular-string-literal-character20

regular-string-literal-character::21

single-regular-string-literal-character22

simple-escape-sequence23

hexadecimal-escape-sequence24

unicode-escape-sequence25

single-regular-string-literal-character::26

Any character except" (U+0022), \ (U+005C), andnew-line-character27

verbatim-string-literal::28

@" verbatim -string-literal-charactersopt "29

Chapter 9 Lexical structure

61

verbatim-string-literal-characters::1

verbatim-string-literal-character2

verbatim-string-literal-characters verbatim-string-literal-character3

verbatim-string-literal-character::4

single-verbatim-string-literal-character5

quote-escape-sequence6

single-verbatim-string-literal-character::7

any character except"8

quote-escape-sequence::9

""10

[Note: A character that follows a backslash character (\) in a regular-string-literal-character must be one of11

the following characters:', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.end12

note]13

[Example: The example14

string a = "Happy birthday, Joel"; // Happy birthday, Joel 15
string b = @"Happy birthday, Joel"; // Happy birthday, Joel 16

string c = "hello \t world"; // hello world 17
string d = @"hello \t world"; // hello \t world 18

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me 19
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me 20

string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt 21
string h = @"\\server\share\file.txt"; // \\server\share\file.txt 22

string i = "one\r\ntwo\r\nthree"; 23
string j = @"one 24
two 25
three"; 26

shows a variety of string literals. The last string literal,j, is a verbatim string literal that spans multiple lines.27

The characters between the quotation marks, including white space such as new line characters, are28

preserved verbatim.end example]29

[Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal30

"\x123" contains a single character with hex value 123. To create a string containing the character with hex31

value 12 followed by the character 3, one could write"\x00123" or "\x12" + "3" instead.end note]32

The type of astring-literal is string.33

Each string literal does not necessarily result in a new string instance. When two or more string literals that34

are equivalent according to the string equality operator (§14.9.7), appear in the same assembly, these string35

literals refer to the same string instance. [Example: For instance, the output produced by36

class Test 37
{ 38
 static void Main() { 39
 object a = "hello"; 40
 object b = "hello"; 41
 System.Console.WriteLine(a == b); 42
 } 43
} 44

is True because the two literals refer to the same string instance.end example]45

9.4.4.6 The null literal46

null-literal::47

null 48

The type of anull-literal is the null type.49

C# LANGUAGE SPECIFICATION

62

9.4.5 Operators and punctuators1

There are several kinds of operators and punctuators. Operators are used in expressions to describe2

operations involving one or more operands. [Example: For example, the expressiona + b uses the3

+ operator to add the two operandsa andb. end example] Punctuators are for grouping and separating.4

operator-or-punctuator:: one of5

{ } [] () . , : ; 6

+ - * / % & | ^ ! ~ 7

= < > ? ++ -- && || << >> 8

== != <= >= += -= *= /= %= &= 9

|= ^= <<= >>= -> 10

9.5 Pre-processing directives11

The pre-processing directives provide the ability to conditionally skip sections of source files, to report error12

and warning conditions, and to delineate distinct regions of source code. [Note: The term “pre-processing13

directives” is used only for consistency with the C and C++ programming languages. In C#, there is no14

separate pre-processing step; pre-processing directives are processed as part of the lexical analysis phase.15

end note]16

pp-directive::17

pp-declaration18

pp-conditional19

pp-line20

pp-diagnostic21

pp-region22

The following pre-processing directives are available:23

• #define and#undef, which are used to define and undefine, respectively, conditional compilation24

symbols (§9.5.3).25

• #if, #elif, #else, and#endif, which are used to conditionally skip sections of source code (§9.5.1).26

• #line, which is used to control line numbers emitted for errors and warnings (§9.5.7).27

• #error and#warning, which are used to issue errors and warnings, respectively (§9.5.5).28

• #region and#endregion, which are used to explicitly mark sections of source code (§9.5.6).29

A pre-processing directive always occupies a separate line of source code and always begins with a30

character and a pre-processing directive name. White space may occur before the# character and between31

the# character and the directive name.32

A source line containing a#define, #undef, #if, #elif, #else, #endif, or#line directive may end33

with a single-line comment. Delimited comments (the/* */ style of comments) are not permitted on source34

lines containing pre-processing directives.35

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-36

processing directives can be used to include or exclude sequences of tokens and can in that way affect the37

meaning of a C# program. For example, when compiled, the program38

#define A 39
#undef B 40

class C 41
{ 42
#if A 43
 void F() {} 44
#else 45
 void G() {} 46
#endif 47

Chapter 9 Lexical structure

63

#if B 1
 void H() {} 2
#else 3
 void I() {} 4
#endif 5
} 6

results in the exact same sequence of tokens as the program7

class C 8
{ 9
 void F() {} 10
 void I() {} 11
} 12

Thus, whereas lexically, the two programs are quitedifferent, syntactically, they are identical.13

9.5.1 Conditional compilation symbols14

The conditional compilation functionality provided by the#if, #elif, #else, and#endif directives is15

controlled through pre-processing expressions (§9.5.2) and conditional compilation symbols.16

conditional-symbol::17

Any identifier-or-keyword excepttrue or false18

A conditional compilation symbol has two possible states:defined or undefined. At the beginning of the19

lexical processing of a source file, a conditional compilation symbol is undefined unless it has been20

explicitly defined by an external mechanism (such as a command-line compiler option). When a#define21

directive is processed, the conditional compilation symbol named in that directive becomes defined in that22

source file. The symbol remains defined until an#undef directive for that same symbol is processed, or23

until the end of the source file is reached. An implication of this is that#define and#undef directives in24

one source file have no effect on other source files in the same program.25

The name space for conditional compilation symbols is distinct and separate from all other named entities in26

a C# program. Conditional compilation symbols can only be referenced in#define and#undef directives27

and in pre-processing expressions.28

9.5.2 Pre-processing expressions29

Pre-processing expressions can occur in#if and#elif directives. The operators!, ==, !=, && and|| are30

permitted in pre-processing expressions, and parentheses may be used for grouping.31

pp-expression::32

whitespaceopt pp-or-expression whitespaceopt33

pp-or-expression::34

pp-and-expression35

pp-or-expression whitespaceopt || whitespaceopt pp-and-expression36

pp-and-expression::37

pp-equality-expression38

pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression39

pp-equality-expression::40

pp-unary-expression41

pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression42

pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression43

pp-unary-expression::44

pp-primary-expression45

! whitespaceopt pp-unary-expression46

C# LANGUAGE SPECIFICATION

64

pp-primary-expression::1

true2

false3

conditional-symbol4

(whitespaceopt pp-expression whitespaceopt)5

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean6

valuetrue, and an undefined conditional compilation symbol has the boolean valuefalse.7

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre-8

processing expression are the same as those for a constant expression (§14.15), except that the only user-9

defined entities that can be referenced are conditional compilation symbols.10

9.5.3 Declaration directives11

The declaration directives are used to define or undefine conditional compilation symbols.12

pp-declaration::13

whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line14

whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line15

pp-new-line::16

whitespaceopt single-line-commentopt new-line17

The processing of a#define directive causes the given conditional compilation symbol to become defined,18

starting with the source line that follows the directive. Likewise, the processing of an#undef directive19

causes the given conditional compilation symbol to become undefined, starting with the source line that20

follows the directive.21

Any #define and#undef directives in a source file must occur before the firsttoken (§9.4) in the source22

file; otherwise a compile-time error occurs. In intuitive terms,#define and#undef directives must23

precede any “real code” in the source file.24

[Example: The example:25

#define Enterprise 26

#if Professional || Enterprise 27
 #define Advanced 28
#endif 29

namespace Megacorp.Data 30
{ 31
 #if Advanced 32
 class PivotTable {...} 33
 #endif 34
} 35

is valid because the#define directives precede the first token (thenamespace keyword) in the source file.36

end example]37

[Example: The following example results in a compile-time error because a#define follows real code:38

#define A 39
namespace N 40
{ 41
 #define B 42
 #if B 43
 class Class1 {} 44
 #endif 45
} 46

end example]47

A #define may define a conditional compilation symbol that is already defined, without there being any48

intervening#undef for that symbol. [Example: The example below defines a conditional compilation49

symbolA and then defines it again.50

Chapter 9 Lexical structure

65

#define A 1
#define A 2

For compilers that allow conditional compilation symbols to be defined as compilation options, an3

alternative way for such redefinition to occur is to define the symbol as a compiler option as well as in the4

source.end example]5

A #undef may “undefine” a conditional compilation symbol that is not defined. [Example: The example6

below defines a conditional compilation symbolA and then undefines it twice; although the second#undef7

has no effect, it is still valid.8

#define A 9
#undef A 10
#undef A 11

end example]12

9.5.4 Conditional compilation directives13

The conditional compilation directives are used to conditionally include or exclude portions of a source file.14

pp-conditional::15

pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif16

pp-if-section::17

whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line conditional-18

sectionopt19

pp-elif-sections::20

pp-elif-section21

pp-elif-sections pp-elif-section22

pp-elif-section::23

whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line conditional-24

sectionopt25

pp-else-section::26

whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt27

pp-endif::28

whitespaceopt # whitespaceopt endif pp-new-line29

conditional-section::30

input-section31

skipped-section32

skipped-section::33

skipped-section-part34

skipped-section skipped-section-part35

skipped-section-part::36

skipped-charactersopt new-line37

pp-directive38

skipped-characters::39

whitespaceopt not-number-sign input-charactersopt40

not-number-sign::41

Any input-character except#42

[Note: As indicated by the syntax, conditional compilation directives must be written as sets consisting of, in43

order, an#if directive, zero or more#elif directives, zero or one#else directive, and an#endif44

directive. Between the directives are conditional sections of source code. Each section is controlled by the45

immediately preceding directive. A conditional section may itself contain nested conditional compilation46

directives provided these directives form complete sets.end note]47

C# LANGUAGE SPECIFICATION

66

A pp-conditional selects at most one of the containedconditional-sections for normal lexical processing:1

• Thepp-expressions of the#if and#elif directives are evaluated in order until one yieldstrue. If an2

expression yieldstrue, theconditional-section of the corresponding directive is selected.3

• If all pp-expressions yieldfalse, and if an#else directive is present, theconditional-section of the4

#else directive is selected.5

• Otherwise, noconditional-section is selected.6

The selectedconditional-section, if any, is processed as a normalinput-section: the source code contained in7

the section must adhere to the lexical grammar; tokensare generated from the source code in the section; and8

pre-processing directives in the section have the prescribed effects.9

The remainingconditional-sections, if any, are processed asskipped-sections: except for pre-processing10

directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated11

from the source code in the section; and pre-processing directives in the section must be lexically correct but12

are not otherwise processed. Within aconditional-section that is being processed as askipped-section, any13

nestedconditional-sections (contained in nested#if...#endif and#region...#endregion constructs) are14

also processed asskipped-sections.15

[Example: The following example illustrates how conditional compilation directives can nest:16

#define Debug // Debugging on 17
#undef Trace // Tracing off 18

class PurchaseTransaction 19
{ 20
 void Commit() { 21
 #if Debug 22
 CheckConsistency(); 23
 #if Trace 24
 WriteToLog(this.ToString()); 25
 #endif 26
 #endif 27
 CommitHelper(); 28
 } 29
} 30

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the31

following is valid despite the unterminated comment in the#else section:32

#define Debug // Debugging on 33

class PurchaseTransaction 34
{ 35
 void Commit() { 36
 #if Debug 37
 CheckConsistency(); 38
 #else 39
 /* Do something else 40
 #endif 41
 } 42
} 43

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of44

source code.45

Pre-processing directives are not processed when they appear inside multi-line input elements. For example,46

the program:47

Chapter 9 Lexical structure

67

class Hello 1
{ 2
 static void Main() { 3
 System.Console.WriteLine(@"hello, 4
#if Debug 5
 world 6
#else 7
 Nebraska 8
#endif 9
 "); 10
 } 11
} 12

results in the output:13

hello, 14
#if Debug 15
 world 16
#else 17
 Nebraska 18
#endif 19

In peculiar cases, the set of pre-processing directivesthat is processed might depend on the evaluation of the20

pp-expression. The example:21

#if X 22
 /* 23
#else 24
 /* */ class Q { } 25
#endif 26

always produces the same token stream (class Q { }), regardless of whether or notX is defined. IfX is27

defined, the only processed directives are#if and#endif, due to the multi-line comment. IfX is28

undefined, then three directives (#if, #else, #endif) are part of the directive set.end example]29

9.5.5 Diagnostic directives30

The diagnostic directives are used to explicitly generateerror and warning messages that are reported in the31

same way as other compile-time errors and warnings.32

pp-diagnostic::33

whitespaceopt # whitespaceopt error pp-message34

whitespaceopt # whitespaceopt warning pp-message35

pp-message::36

new-line37

whitespace input-charactersopt new-line38

[Example: The example39

#warning Code review needed before check-in 40

#if Debug && Retail 41
 #error A build can't be both debug and retail 42
#endif 43

class Test {�} 44

always produces a warning (“Code review needed before check-in”), and produces a compile-time45

error if the pre-processing identifiersDebug andRetail are both defined. Note that app-message can46

contain arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single quote in47

the wordcan�t. end example]48

9.5.6 Region control49

The region directives are used to explicitly mark regions of source code.50

pp-region::51

pp-start-region conditional-sectionopt pp-end-region52

C# LANGUAGE SPECIFICATION

68

pp-start-region::1

whitespaceopt # whitespaceopt region pp-message2

pp-end-region::3

whitespaceopt # whitespaceopt endregion pp-message4

No semantic meaning is attached to a region; regions are intended for use by the programmer or by5

automated tools to mark a section of source code. The message specified in a#region or #endregion6

directive likewise has no semantic meaning; itmerely serves to identify the region. Matching#region and7

#endregion directives may have differentpp-messages.8

The lexical processing of a region:9

#region 10
... 11
#endregion 12

corresponds exactly to the lexical processing of a conditional compilation directive of the form:13

#if true 14
... 15
#endif 16

9.5.7 Line directives17

Line directives may be used to alter the line numbers and source file names that are reported by the compiler18

in output such as warnings and errors.19

[Note: Line directives are most commonly used in meta-programming tools that generate C# source code20

from some other text input.end note]21

pp-line::22

whitespaceopt # whitespaceopt line whitespace line-indicator pp-new-line23

line-indicator::24

decimal-digits whitespace file-name25

decimal-digits26

default27

file-name::28

" file-name-characters " 29

file-name-characters::30

file-name-character31

file-name-characters file-name-character32

file-name-character::33

Any character except" (U+0022), andnew-line34

When no#line directives are present, the compiler reports true line numbers and source file names in its35

output. When processing a#line directive that includes aline-indicator that is notdefault, the compiler36

treats the lineafter the directive as having the given line number (and file name, if specified).37

A #line default directive reverses the effect of all preceding#line directives. The compiler reports38

true line information for subsequent lines, precisely as if no#line directives had been processed.39

[Note: Note that afile-name differs from a regular string literal in that escape characters are not processed;40

the ‘\’ character simply designates an ordinary back-slash character within afile-name. end note]41

Chapter 10 Basic concepts

69

10. Basic concepts1

10.1 Application startup2

Application startup occurs when the execution environment callsa designated method, which is referred to3

as the application'sentry point. This entry point method is always namedMain, and shall have one of the4

following signatures:5

static void Main() {�} 6
static void Main(string[] args) {�} 7
static int Main() {�} 8
static int Main(string[] args) {�} 9

As shown, the entry point may optionally return anint value. This return value is used in application10

termination (§10.2).11

The entry point may optionally have one formal parameter, and this formal parameter may have any name. If12

such a parameter is declared, it must obey the following constraints:13

• The implementation shall ensure that the value of this parameter is notnull.14

• Let args be the name of the parameter. If the length of the array designated byargs is greater than15

zero, the array membersargs[0] throughargs[args.Length-1], inclusive, must refer to strings, called16

application parameters, which are given implementation-defined values by the host environment prior to17

application startup. The intent is to supply to the application information determined prior to application18

startup from elsewhere in the hosted environment. If the host environment is not capable of supplying strings19

with letters in both uppercase and lowercase, the implementation shall ensure that the strings are received in20

lowercase. [Note: On systems supporting a command line, application parameters correspond to what are21

generally known as command-line arguments.end note]22

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,23

provided each has a different signature. However, within a single program, no class or struct shall contain24

more than one method calledMain whose definition qualifies it to be used as an application entry point.25

Other overloaded versions ofMain are permitted, however, provided they have more than one parameter, or26

their only parameter is other than typestring[].27

An application can be made up of multiple classes or structs. It is possible for more than one of these classes28

or structs to contain a method calledMain whose definition qualifies it to be used as an application entry29

point. In such cases, one of theseMain methods must be chosen as the entry point so that application startup30

can occur. This choice of an entry point is beyond the scope of this specification—no mechanism for31

specifying or determining an entry point is provided.32

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility33

(§10.5.1) of a method is determined by the access modifiers (§17.2.3) specified in its declaration, and34

similarly the declared accessibility of a type is determined by the access modifiers specified in its35

declaration. In order for a given method of a given type to be callable, both the type and the member must be36

accessible. However, the application entry point is a special case. Specifically, the execution environment37

can access the application's entry point regardless of itsdeclared accessibility and regardless of the declared38

accessibility of its enclosing type declarations.39

In all other respects, entry point methods behave like those that are not entry points.40

10.2 Application termination41

Application termination returns control to the execution environment.42

C# LANGUAGE SPECIFICATION

70

If the return type of the application’s entry point method isint, the value returned serves as the1

application'stermination status code. The purpose of this code is to allow communication of success or2

failure to the execution environment.3

If the return type of the entry point method isvoid, reaching the right brace (}) which terminates that4

method, or executing areturn statement that has no expression, results in a termination status code of0.5

Prior to an application’s termination, destructors for all of its objects that have not yet been garbage6

collected are called, unless such cleanup has been suppressed (by a call to the library method7

GC.SuppressFinalize, for example).8

10.3 Declarations9

Declarations in a C# program define the constituent elements of the program. C# programs are organized10

using namespaces (§16), which can contain type declarations and nested namespace declarations. Type11

declarations (§16.5) are used to define classes (§17), structs (§18), interfaces (§20), enums (§21), and12

delegates (§22). The kinds of members permitted in a type declaration depend on the form of the type13

declaration. For instance, class declarations can contain declarations for constants (§17.3), fields (§17.4),14

methods (§17.5), properties (§17.6), events (§17.7), indexers (§17.8), operators (§17.9), instance15

constructors (§17.10), destructors (§17.12), static constructors (§17.11), and nested types.16

A declaration defines a name in thedeclaration space to which the declaration belongs. Except for17

overloaded members (§10.6), it is a compile-time error to have two or more declarations that introduce18

members with the same name in a declaration space. However, no diagnostic is required if the declaration19

space is a namespace for the global declaration space and the conflicting declarations are in separate20

programs. It is never possible for a declaration space to contain different kinds of members with the same21

name. For example, a declaration space can never contain a field and a method by the same name.22

There are several different types of declaration spaces, as described in the following.23

• Within all source files of a program,namespace-member-declarations with no enclosingnamespace-24

declaration are members of a single combined declaration space called theglobal declaration space.25

• Within all source files of a program,namespace-member-declarations within namespace-declarations26

that have the same fully qualified namespace name are members of a single combined declaration space.27

• Each class, struct, or interface declaration creates a new declaration space. Names are introduced into28

this declaration space throughclass-member-declarations,struct-member-declarations, orinterface-29

member-declarations. Except for overloaded instance constructor declarations and static constructor30

declarations, a class or struct member declarationcannot introduce a member by the same name as the class31

or struct. A class, struct, or interface permits the declaration of overloaded methods and indexers.32

Furthermore, a class or struct permits the declaration of overloaded instance constructors and operators. For33

example, a class, struct, or interface may contain multiple method declarations with the same name,34

provided these method declarations differ in their signature (§10.6). Note that base classes do not contribute35

to the declaration space of a class, and base interfaces do not contribute to the declaration space of an36

interface. Thus, a derived class or interface is allowed to declare a member with the same name as an37

inherited member. Such a member is said tohide the inherited member.38

• Each enumeration declaration creates a new declaration space. Names are introduced into this39

declaration space throughenum-member-declarations.40

• Eachblock or switch-block creates a different declaration space for local variables. Names are41

introduced into this declaration space throughlocal-variable-declarations. If a block is the body of an42

instance constructor, method, or operator declaration,or a get or set accessor for an indexer declaration, the43

parameters declared in such a declaration are members of the block’slocal variable declaration space. The44

local variable declaration space of a block includes any nested blocks. Thus, within a nested block it is not45

possible to declare a local variable with the same name as a local variable in an enclosing block.46

• Eachblock or switch-block creates a separate declaration spacefor labels. Names are introduced into47

this declaration space throughlabeled-statements, and the names are referenced throughgoto-statements.48

Chapter 10 Basic concepts

71

Thelabel declaration space of a block includes any nested blocks. Thus, within a nested block it is not1

possible to declare a label with the same name as a label in an enclosing block.2

The textual order in which names are declared is generally of no significance. In particular, textual order is3

not significant for the declaration and use of namespaces, constants, methods, properties, events, indexers,4

operators, instance constructors, destructors, static constructors, and types. Declaration order is significant in5

the following ways:6

• Declaration order for field declarations and local variable declarations determines the order in which7

their initializers (if any) are executed.8

• Local variables must be defined before they are used (§10.7).9

• Declaration order for enum member declarations (§21.3) is significant whenconstant-expression values10

are omitted.11

[Example: The declaration space of a namespace is “open ended”, and two namespace declarations with the12

same fully qualified name contribute to the same declaration space. For example13

namespace Megacorp.Data 14
{ 15
 class Customer 16
 { 17
 � 18
 } 19
} 20

namespace Megacorp.Data 21
{ 22
 class Order 23
 { 24
 � 25
 } 26
} 27

The two namespace declarations above contribute to the same declaration space, in this case declaring two28

classes with the fully qualified namesMegacorp.Data.Customer andMegacorp.Data.Order. Because29

the two declarations contribute to the same declaration space, it would have caused a compile-time error if30

each contained a declaration of a class with the same name.end example]31

[Note: As specified above, the declaration space of a block includes any nested blocks. Thus, in the32

following example, theF andG methods result in a compile-time error because the namei is declared in the33

outer block and cannot be redeclared in the inner block. However, theH andI methods are valid since the34

two i’s are declared in separate non-nested blocks.35

class A 36
{ 37
 void F() { 38
 int i = 0; 39
 if (true) { 40
 int i = 1; 41
 } 42
 } 43

void G() { 44
 if (true) { 45
 int i = 0; 46
 } 47
 int i = 1; 48
 } 49

C# LANGUAGE SPECIFICATION

72

void H() { 1
 if (true) { 2
 int i = 0; 3
 } 4
 if (true) { 5
 int i = 1; 6
 } 7
 } 8

void I() { 9
 for (int i = 0; i < 10; i++) 10
 H(); 11
 for (int i = 0; i < 10; i++) 12
 H(); 13
 } 14
} 15

end note]16

10.4 Members17

Namespaces and types havemembers. [Note: The members of an entity are generally available through the18

use of a qualified name that starts with a reference to the entity, followed by a “.” token, followed by the19

name of the member.end note]20

Members of a type are either declared in the type orinherited from the base class of the type. When a type21

inherits from a base class, all members of the base class,except instance constructors, destructors, and static22

constructors become members of the derived type.The declared accessibility ofa base class member does23

not control whether the member is inherited—inheritance extends to any member that isn’t an instance24

constructor, static constructor, or destructor. However, an inherited member may not be accessible in a25

derived type, either because of its declared accessibility(§10.5.1) or because it is hidden by a declaration in26

the type itself (§10.7.1.2).27

10.4.1 Namespace members28

Namespaces and types that have no enclosing namespace are members of theglobal namespace. This29

corresponds directly to the names declared in the global declaration space.30

Namespaces and types declared within a namespace are members of that namespace. This corresponds31

directly to the names declared in the declaration space of the namespace.32

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal33

namespaces, and namespace names are always publicly accessible.34

10.4.2 Struct members35

The members of a struct are the members declared inthe struct and the members inherited from class36

object.37

The members of a simple type correspond directly to the members of the struct type aliased by the simple38

type:39

Chapter 10 Basic concepts

73

• The members ofsbyte are the members of theSystem.SByte struct.1

• The members ofbyte are the members of theSystem.Byte struct.2

• The members ofshort are the members of theSystem.Int16 struct.3

• The members ofushort are the members of theSystem.UInt16 struct.4

• The members ofint are the members of theSystem.Int32 struct.5

• The members ofuint are the members of theSystem.UInt32 struct.6

• The members oflong are the members of theSystem.Int64 struct.7

• The members ofulong are the members of theSystem.UInt64 struct.8

• The members ofchar are the members of theSystem.Char struct.9

• The members offloat are the members of theSystem.Single struct.10

• The members ofdouble are the members of theSystem.Double struct.11

• The members ofdecimal are the members of theSystem.Decimal struct.12

• The members ofbool are the members of theSystem.Boolean struct.13

10.4.3 Enumeration members14

The members of an enumeration are the constants declared in the enumeration and the members inherited15

from classobject.16

10.4.4 Class members17

The members of a class are the members declared in the class and the members inherited from the base class18

(except for classobject which has no base class). The members inherited from the base class include the19

constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the20

instance constructors, destructors, and static constructors of the base class. Base class members are inherited21

without regard to their accessibility.22

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,23

operators, instance constructors, destructors, static constructors, and types.24

The members ofobject andstring correspond directly to the members of the class types they alias:25

• The members ofobject are the members of theSystem.Object class.26

• The members ofstring are the members of theSystem.String class.27

10.4.5 Interface members28

The members of an interface are the members declared in the interface and in all base interfaces of the29

interface, and the members inherited from classobject.30

10.4.6 Array members31

The members of an array are the members inherited from classSystem.Array.32

10.4.7 Delegate members33

The members of a delegate are the members inherited from classSystem.Delegate.34

10.5 Member access35

Declarations of members allow control over member access. The accessibility of a member is established by36

the declared accessibility (§10.5.1) of the member combined with the accessibility of the immediately37

containing type, if any.38

C# LANGUAGE SPECIFICATION

74

When access to a particular member is allowed, the member is said to beaccessible. Conversely, when1

access to a particular member is disallowed, the member is said to beinaccessible. Access to a member is2

permitted when the textual location in which the access takes place is included in the accessibility domain3

(§10.5.2) of the member.4

10.5.1 Declared accessibility5

Thedeclared accessibility of a member can be one of the following:6

• Public, which is selected by including apublic modifier in the member declaration. The intuitive7

meaning ofpublic is “access not limited”.8

• Protected, which is selected by including aprotected modifier in the member declaration. The9

intuitive meaning ofprotected is “access limited to the containing class or types derived from the10

containing class”.11

• Internal, which is selected by including aninternal modifier in the member declaration. The intuitive12

meaning ofinternal is “access limited to this program”.13

• Protected internal, which is selected by including both aprotected and aninternal modifier in the14

member declaration. The intuitive meaning ofprotected internal is “access limited to this program or15

types derived from the containing class”.16

• Private, which is selected by including aprivate modifier in the member declaration. The intuitive17

meaning ofprivate is “access limited to the containing type”.18

Depending on the context in which a member declaration takes place, only certain types of declared19

accessibility are permitted. Furthermore, when a member declaration does not include any access modifiers,20

the context in which the declaration takes placedetermines the default declared accessibility.21

• Namespaces implicitly havepublic declared accessibility. No access modifiers are allowed on22

namespace declarations.23

• Types declared in compilation units or namespaces can havepublic or internal declared24

accessibility and default tointernal declared accessibility.25

• Class members can have any of the five kinds of declared accessibility and default toprivate declared26

accessibility. (Note that a type declared as a member of a class can have any of the five kinds of declared27

accessibility, whereas a type declared as a member of a namespace can have onlypublic or internal28

declared accessibility.)29

• Struct members can havepublic, internal, orprivate declared accessibility and default to30

private declared accessibility because structs are implicitly sealed. Struct members introduced in a struct31

(that is, not inherited by that struct) cannot haveprotected or protected internal declared32

accessibility. (Note that a type declared as a member of a struct can havepublic, internal, orprivate33

declared accessibility, whereas a type declared as a member of a namespace can have onlypublic or34

internal declared accessibility.)35

• Interface members implicitly havepublic declared accessibility. No access modifiers are allowed on36

interface member declarations.37

• Enumeration members implicitly havepublic declared accessibility. No access modifiers are allowed38

on enumeration member declarations.39

10.5.2 Accessibility domains40

Theaccessibility domain of a member consists of the (possibly disjoint) sections of program text in which41

access to the member is permitted. For purposes of defining the accessibility domain of a member, a member42

is said to betop-level if it is not declared within a type, and a member is said to benested if it is declared43

within another type. Furthermore, the text of an assembly is defined as all source text contained in all source44

files of that assembly, and the source text of a type is defined as all source text contained between the45

Chapter 10 Basic concepts

75

opening and closing “{” and “}” tokens in theclass-body, struct-body, interface-body, or enum-body of the1

type (including, possibly, types that are nested within the type).2

The accessibility domain of a predefined type (such asobject, int, ordouble) is unlimited.3

The accessibility domain of a top-level typeT that is declared in a programP is defined as follows:4

• If the declared accessibility ofT is public, the accessibility domain ofT is the program text ofP and5

any program that references P.6

• If the declared accessibility ofT is internal, the accessibility domain ofT is the program text ofP.7

[Note: From these definitions it follows that the accessibility domain of a top-level type is always at least the8

program text of the program in which that type is declared.end note]9

The accessibility domain of a nested memberM declared in a typeT within a programP, is defined as10

follows (noting that M itself may possibly be a type):11

• If the declared accessibility ofM is public, the accessibility domain ofM is the accessibility domain12

of T.13

• If the declared accessibility ofM is protected internal, letD be the union of the program text ofP14

and the program text of any type derived fromT, which is declared outsideP. The accessibility domain ofM15

is the intersection of the accessibility domain ofT with D.16

• If the declared accessibility ofM is protected, letD be the union of the program text ofT and the17

program text of any type derived fromT. The accessibility domain ofM is the intersection of the accessibility18

domain ofT with D.19

• If the declared accessibility ofM is internal, the accessibility domain ofM is the intersection of the20

accessibility domain ofT with the program text ofP.21

• If the declared accessibility ofM is private, the accessibility domain ofM is the program text ofT.22

[Note: From these definitions it follows that the accessibility domain of a nested member is always at least23

the program text of the type in which the member is declared. Furthermore, it follows that the accessibility24

domain of a member is never more inclusive than the accessibility domain of the type in which the member25

is declared.end note]26

[Note: In intuitive terms, when a type or memberM is accessed, the following steps are evaluated to ensure27

that the access is permitted:28

• First, if M is declared within a type (as opposed to a compilation unit or a namespace), a compile-time29

error occurs if that type is not accessible.30

• Then, ifM is public, the access is permitted.31

• Otherwise, ifM is protected internal, the access is permitted if it occurs within the program in32

whichM is declared, or if it occurs within a class derived from the class in whichM is declared and takes33

place through the derived class type (§10.5.3).34

• Otherwise, ifM is protected, the access is permitted if it occurs within the class in whichM is declared,35

or if it occurs within a class derived from the class in whichM is declared and takes place through the36

derived class type (§10.5.3).37

• Otherwise, ifM is internal, the access is permitted if it occurs within the program in whichM is38

declared.39

• Otherwise, ifM is private, the access is permitted if it occurs within the type in whichM is declared.40

• Otherwise, the type or member is inaccessible, and a compile-time error occurs.41

end note]42

[Example: In the example43

C# LANGUAGE SPECIFICATION

76

public class A 1
{ 2
 public static int X; 3
 internal static int Y; 4
 private static int Z; 5
} 6

internal class B 7
{ 8
 public static int X; 9
 internal static int Y; 10
 private static int Z; 11

 public class C 12
 { 13
 public static int X; 14
 internal static int Y; 15
 private static int Z; 16
 } 17

 private class D 18
 { 19
 public static int X; 20
 internal static int Y; 21
 private static int Z; 22
 } 23
} 24

the classes and members have the following accessibility domains:25

• The accessibility domain ofA andA.X is unlimited.26

• The accessibility domain ofA.Y, B, B.X, B.Y, B.C, B.C.X, andB.C.Y is the program text of the27

containing program.28

• The accessibility domain ofA.Z is the program text ofA.29

• The accessibility domain ofB.Z andB.D is the program text ofB, including the program text ofB.C30

andB.D.31

• The accessibility domain ofB.C.Z is the program text ofB.C.32

• The accessibility domain ofB.D.X, B.D.Y, andB.D.Z is the program text ofB.D.33

As the example illustrates, the accessibility domain of a member is never larger than that of a containing34

type. For example, even though allX members have public declared accessibility, all butA.X have35

accessibility domains that are constrained by a containing type.end example]36

As described in §10.4, all members of a base class, except for instance constructors, destructors, and static37

constructors are inherited by derived types. This includes even private members of a base class. However,38

the accessibility domain of a private member includes only the program text of the type in which the39

member is declared. [Example: In the example40

class A 41
{ 42
 int x; 43
 static void F(B b) { 44
 b.x = 1; // Ok 45
 } 46
} 47

class B: A 48
{ 49
 static void F(B b) { 50
 b.x = 1; // Error, x not accessible 51
 } 52
} 53

Chapter 10 Basic concepts

77

theB class inherits the private memberx from theA class. Because the member is private, it is only1

accessible within theclass-body of A. Thus, the access tob.x succeeds in theA.F method, but fails in the2

B.F method.end example]3

10.5.3 Protected access for instance members4

When aprotected instance member is accessed outside the program text of the class in which it is5

declared, and when aprotected internal instance member is accessed outside the program text of the6

program in which it is declared, the access is required to take placethrough an instance of the derived class7

type in which the access occurs. LetB be a base class that declares a protected instance memberM, and letD8

be a class that derives fromB. Within theclass-body of D, access toM can take one of the following forms:9

• An unqualifiedtype-name or primary-expression of the formM.10

• A primary-expression of the formE.M, provided the type ofE is D or a class derived fromD.11

• A primary-expression of the formbase.M.12

In addition to these forms of access, a derived class can access a protected instance constructor of a base13

class in aconstructor-initializer (§17.10.1).14

[Example: In the example15

public class A 16
{ 17
 protected int x; 18

 static void F(A a, B b) { 19
 a.x = 1; // Ok 20
 b.x = 1; // Ok 21
 } 22
} 23

public class B: A 24
{ 25
 static void F(A a, B b) { 26
 a.x = 1; // Error, must access through instance of B 27
 b.x = 1; // Ok 28
 } 29
} 30

within A, it is possible to accessx through instances of bothA andB, since in either case the access takes31

placethrough an instance ofA or a class derived fromA. However, withinB, it is not possible to accessx32

through an instance ofA, sinceA does not derive fromB. end example]33

10.5.4 Accessibility constraints34

Several constructs in the C# language require a type to beat least as accessible as a member or another type.35

A typeT is said to be at least as accessible as a member or typeM if the accessibility domain ofT is a36

superset of the accessibility domain ofM. In other words,T is at least as accessible asM if T is accessible in37

all contexts in whichM is accessible.38

The following accessibility constraints exist:39

C# LANGUAGE SPECIFICATION

78

• The direct base class of a class type must be at least as accessible as the class type itself.1

• The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.2

• The return type and parameter types of a delegate typemust be at least as accessible as the delegate type3

itself.4

• The type of a constant must be at least as accessible as the constant itself.5

• The type of a field must be at least as accessible as the field itself.6

• The return type and parameter types of a method must be at least as accessible as the method itself.7

• The type of a property must be at least as accessible as the property itself.8

• The type of an event must be at least as accessible as the event itself.9

• The type and parameter types of an indexer must be at least as accessible as the indexer itself.10

• The return type and parameter types of an operator must be at least as accessible as the operator itself.11

• The parameter types of an instance constructor must be at least as accessible as the instance constructor12

itself.13

[Example: In the example14

class A {�} 15

public class B: A {�} 16

theB class results in a compile-time error becauseA is not at least as accessible asB. end example]17

[Example: Likewise, in the example18

class A {�} 19

public class B 20
{ 21
 A F() {�} 22

 internal A G() {�} 23

 public A H() {�} 24
} 25

theH method inB results in a compile-time error because the return typeA is not at least as accessible as the26

method.end example]27

10.6 Signatures and overloading28

Methods, instance constructors, indexers, and operators are characterized by theirsignatures:29

• The signature of a method consists of the name of themethod and the type and kind (value, reference, or30

output) of each of its formal parameters, considered in the order left to right. The signature of a method31

specifically does not include the return type, nor does it include theparams modifier that may be specified32

for the right-most parameter.33

• The signature of an instance constructor consistsof the type and kind (value, reference, or output) of34

each of its formal parameters, considered in the order left to right. The signature of an instance constructor35

specifically does not include theparams modifier that may be specified for the right-most parameter.36

• The signature of an indexer consists of the type of eachof its formal parameters, considered in the order37

left to right. The signature of an indexer specifically does not include the element type.38

• The signature of an operator consists of the name of the operator and the type of each of its formal39

parameters, considered in the order left to right. Thesignature of an operator specifically does not include40

the result type.41

Signatures are the enabling mechanism foroverloading of members in classes, structs, and interfaces:42

Chapter 10 Basic concepts

79

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the same1

name, provided their signatures are unique within that class, struct, or interface.2

• Overloading of instance constructors permits a class orstruct to declare multiple instance constructors,3

provided their signatures are unique within that class or struct.4

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their5

signatures are unique within that class, struct, or interface.6

• Overloading of operators permits a class or structto declare multiple operators with the same name,7

provided their signatures are unique within that class or struct.8

[Example: The following example shows a set of overloaded method declarations along with their9

signatures.10

interface ITest 11
{ 12
 void F(); // F() 13

 void F(int x); // F(int) 14

 void F(ref int x); // F(ref int) 15

 void F(out int x); // F(out int) 16

 void F(int x, int y); // F(int, int) 17

 int F(string s); // F(string) 18

 int F(int x); // F(int) error 19

 void F(string[] a); // F(string[]) 20

 void F(params string[] a); // F(string[]) error 21
} 22

Note that anyref andout parameter modifiers (§17.5.1) are part of a signature. Thus,F(int), F(ref23

int), andF(out int) are all unique signatures. Also, note that the return type and theparams modifier24

are not part of a signature, so it is not possible to overload solely based on return type or on the inclusion or25

exclusion of theparams modifier. As such, the declarations of the methodsF(int) andF(params 26

string[]) identified above, result in a compile-time error.end example]27

10.7 Scopes28

Thescope of a name is the region of program text within which it is possible to refer to the entity declared29

by the name without qualification of the name. Scopes can benested, and an inner scope may redeclare the30

meaning of a name from an outer scope. [Note: This does not, however, remove the restriction imposed by31

§10.3 that within a nested block it is not possible to declare a local variable with the same name as a local32

variable in an enclosing block.end note] The name from the outer scope is then said to behidden in the33

region of program text covered by the inner scope, and access to the outer name is only possible by34

qualifying the name.35

C# LANGUAGE SPECIFICATION

80

• The scope of a namespace member declared by anamespace-member-declaration (§16.4) with no1

enclosingnamespace-declaration is the entire program text.2

• The scope of a namespace member declared by anamespace-member-declaration within a namespace-3

declaration whose fully qualified name isN, is thenamespace-body of everynamespace-declaration whose4

fully qualified name isN or starts withN, followed by a period.5

• The scope of a name defined or imported by ausing-directive (§16.3) extends over thenamespace-6

member-declarations of thecompilation-unit or namespace-body in which theusing-directive occurs. A7

using-directive may make zero or more namespace or type names available within a particularcompilation-8

unit or namespace-body, but does not contribute any new members to the underlying declaration space. In9

other words, ausing-directive is not transitive, but, rather, affects only thecompilation-unit or namespace-10

body in which it occurs.11

• The scope of a member declared by aclass-member-declaration (§17.2) is theclass-body in which the12

declaration occurs. In addition, the scope of a class member extends to theclass-body of those derived13

classes that are included in the accessibility domain (§10.5.2) of the member.14

• The scope of a member declared by astruct-member-declaration (§18.2) is thestruct-body in which the15

declaration occurs.16

• The scope of a member declared by anenum-member-declaration (§21.3) is theenum-body in which the17

declaration occurs.18

• The scope of a parameter declared in amethod-declaration (§17.5) is themethod-body of thatmethod-19

declaration.20

• The scope of a parameter declared in anindexer-declaration (§17.8) is theaccessor-declarations of that21

indexer-declaration.22

• The scope of a parameter declared in anoperator-declaration (§17.9) is theblock of thatoperator-23

declaration.24

• The scope of a parameter declared in aconstructor-declaration (§17.10) is theconstructor-initializer25

andblock of thatconstructor-declaration.26

• The scope of a label declared in alabeled-statement (§15.4) is theblock in which the declaration occurs.27

• The scope of a local variable declared in alocal-variable-declaration (§15.5.1) is the block in which the28

declaration occurs.29

• The scope of a local variable declared in aswitch-block of aswitch statement (§15.7.2) is theswitch-30

block.31

• The scope of a local variable declared in afor-initializer of afor statement (§15.8.3) is thefor-32

initializer, thefor-condition, thefor-iterator, and the containedstatement of thefor statement.33

• The scope of a local constant declared in alocal-constant-declaration (§15.5.2) is the block in which the34

declaration occurs. It is a compile-time error to refer toa local constant in a textual position that precedes its35

constant-declarator.36

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member37

in a textual position that precedes the declaration of the member. [Example: For example38

class A 39
{ 40
 void F() { 41
 i = 1; 42
 } 43
 int i = 0; 44
} 45

Here, it is valid forF to refer toi before it is declared.end example]46

Chapter 10 Basic concepts

81

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual1

position that precedes thelocal-variable-declarator of the local variable. [Example: For example2

class A 3
{ 4
 int i = 0; 5

 void F() { 6
 i = 1; // Error, use precedes declaration 7
 int i; 8
 i = 2; 9
 } 10

 void G() { 11
 int j = (j = 1); // Valid 12
 } 13

 void H() { 14
 int a = 1, b = ++a; // Valid 15
 } 16
} 17

In theF method above, the first assignment toi specifically does not refer to the field declared in the outer18

scope. Rather, it refers to the local variable and it results in a compile-time error because it textually19

precedes the declaration of the variable. In theG method, the use ofj in the initializer for the declaration of20

j is valid because the use does not precede thelocal-variable-declarator. In theH method, a subsequent21

local-variable-declarator correctly refers to a local variable declared in an earlierlocal-variable-declarator22

within the samelocal-variable-declaration. end example]23

[Note: The scoping rules for local variables are designed to guarantee that the meaning of a name used in an24

expression context is always the same within a block. If the scope of a local variable were to extend only25

from its declaration to the end of the block, then in the example above, the first assignment would assign to26

the instance variable and the second assignment would assign to the local variable, possibly leading to27

compile-time errors if the statements of the block were later to be rearranged.28

The meaning of a name within a block may differ based on the context in which the name is used. In the29

example30

using System; 31
class A {} 32

class Test 33
{ 34
 static void Main() { 35
 string A = "hello, world"; 36
 string s = A; // expression context 37

 Type t = typeof(A); // type context 38

 Console.WriteLine(s); // writes "hello, world" 39
 Console.WriteLine(t.ToString()); // writes "Type: A" 40
 } 41
} 42

the nameA is used in an expression context to refer to the local variableA and in a type context to refer to43

the classA. end note]44

10.7.1 Name hiding45

The scope of an entity typically encompasses more program text than the declaration space of the entity. In46

particular, the scope of an entity may include declarations that introduce new declaration spaces containing47

entities of the same name. Such declarations cause the original entity to becomehidden. Conversely, an48

entity is said to bevisible when it is not hidden.49

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The50

characteristics of the two types of hiding are described in the following sections.51

C# LANGUAGE SPECIFICATION

82

10.7.1.1 Hiding through nesting1

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a2

result of nesting types within classes or structs, and as a result of parameter and local variable declarations.3

[Example: In the example4

class A 5
{ 6
 int i = 0; 7

 void F() { 8
 int i = 1; 9
 } 10

 void G() { 11
 i = 1; 12
 } 13
} 14

within theF method, the instance variablei is hidden by the local variablei, but within theG method,i still15

refers to the instance variable.end example]16

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that17

name. [Example: In the example18

class Outer 19
{ 20
 static void F(int i) {} 21

 static void F(string s) {} 22

 class Inner 23
 { 24
 void G() { 25
 F(1); // Invokes Outer.Inner.F 26
 F("Hello"); // Error 27
 } 28

 static void F(long l) {} 29
 } 30
} 31

the callF(1) invokes theF declared inInner because all outer occurrences ofF are hidden by the inner32

declaration. For the same reason, the callF("Hello") results in a compile-time error.end example]33

10.7.1.2 Hiding through inheritance34

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from35

base classes. This type of name hiding takes one of the following forms:36

• A constant, field, property, event, or type introduced in a class or struct hides all base class members37

with the same name.38

• A method introduced in a class or struct hides all non-method base class members with the same name,39

and all base class methods with the same signature (method name and parameter count, modifiers, and40

types).41

• An indexer introduced in a class or struct hides all base class indexers with the same signature42

(parameter count and types).43

The rules governing operator declarations (§17.9) make it impossible for a derived class to declare an44

operator with the same signature as an operator in a base class. Thus, operators never hide one another.45

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a46

warning to be reported. [Example: In the example47

class Base 48
{ 49
 public void F() {} 50
} 51

Chapter 10 Basic concepts

83

class Derived: Base 1
{ 2
 public void F() {} // Warning, hiding an inherited name 3
} 4

the declaration ofF in Derived causes a warning to be reported. Hiding an inherited name is specifically5

not an error, since that would preclude separate evolution of base classes. For example, the above situation6

might have come about because a later version ofBase introduced anF method that wasn’t present in an7

earlier version of the class. Had the above situation been an error, thenany change made to a base class in a8

separately versioned class library could potentially cause derived classes to become invalid.end example]9

The warning caused by hiding an inherited name can be eliminated through use of thenew modifier:10

[Example:11

class Base 12
{ 13
 public void F() {} 14
} 15

class Derived: Base 16
{ 17
 new public void F() {} 18
} 19

Thenew modifier indicates that theF in Derived is “new”, and that it is indeed intended to hide the20

inherited member.end example]21

A declaration of a new member hides an inherited member only within the scope of the new member.22

[Example:23

class Base 24
{ 25
 public static void F() {} 26
} 27

class Derived: Base 28
{ 29
 new private static void F() {} // Hides Base.F in Derived only 30
} 31

class MoreDerived: Derived 32
{ 33
 static void G() { F(); } // Invokes Base.F 34
} 35

In the example above, the declaration ofF in Derived hides theF that was inherited fromBase, but since36

the newF in Derived has private access, its scope does not extend toMoreDerived. Thus, the callF() in37

MoreDerived.G is valid and will invokeBase.F. end example]38

10.8 Namespace and type names39

Several contexts in a C# program require anamespace-name or atype-name to be specified. Either form of40

name is written as one or more identifiers separated by “.” tokens.41

namespace-name:42

namespace-or-type-name43

type-name:44

namespace-or-type-name45

namespace-or-type-name:46

identifier47

namespace-or-type-name . identifier48

A type-name is anamespace-or-type-name that refers to a type. Following resolution as described below, the49

namespace-or-type-name of a type-name must refer to a type, or otherwise a compile-time error occurs.50

C# LANGUAGE SPECIFICATION

84

A namespace-name is anamespace-or-type-name that refers to a namespace. Following resolution as1

described below, thenamespace-or-type-name of a namespace-name must refer to a namespace, or2

otherwise a compile-time error occurs.3

The meaning of anamespace-or-type-name is determined as follows:4

• If the namespace-or-type-name consists of a single identifier:5

o If the namespace-or-type-name appears within the body of a class or struct declaration, then starting6

with that class or struct declaration and continuingwith each enclosing class or struct declaration (if7

any), if a member with the given name exists, is accessible, and denotes a type, then thenamespace-8

or-type-name refers to that member. Note that non-type members (constants, fields, methods,9

properties, indexers, operators, instance constructors, destructors, and static constructors) are10

ignored when determining the meaning of anamespace-or-type-name.11

o Otherwise, starting with the namespace in which thenamespace-or-type-name occurs, continuing12

with each enclosing namespace (if any), and endingwith the global namespace, the following steps13

are evaluated until an entity is located:14

• If the namespace contains a namespace member with the given name, then thenamespace-or-15

type-name refers to that member and, depending on the member, is classified as a namespace or16

a type.17

• Otherwise, if the namespace has a corresponding namespace declaration enclosing the location18

where thenamespace-or-type-name occurs, then:19

o If the namespace declaration contains a using-alias-directive that associates the given name20

with an imported namespace or type, then the namespace-or-type-name refers to that21

namespace or type.22

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace23

declaration contain exactly one type with the given name, then the namespace-or-type-name24

refers to that type.25

o Otherwise, if the namespaces imported by the using-namespace-directives of the namespace26

declaration contain more than one type withthe given name, then the namespace-or-type-27

name is ambiguous and an error occurs.28

o Otherwise, thenamespace-or-type-name is undefined and a compile-time error occurs.29

• Otherwise, thenamespace-or-type-name is of the formN.I, whereN is anamespace-or-type-name30

consisting of all identifiers but the rightmost one, andI is the rightmost identifier.N is first resolved as a31

namespace-or-type-name. If the resolution ofN is not successful, a compile-time error occurs. Otherwise,32

N.I is resolved as follows:33

o If N is a namespace andI is the name of an accessible member of that namespace, thenN.I refers to34

that member and, depending on the member, is classified as a namespace or a type.35

o If N is a class or struct type andI is the name of an accessible type inN, thenN.I refers to that type.36

o Otherwise,N.I is aninvalid namespace-or-type-name, and a compile-time error occurs.37

10.8.1 Fully qualified names38

Every namespace and type has afully qualified name, which uniquely identifies the namespace or type39

amongst all others. The fully qualified name of a namespace or typeN is determined as follows:40

Chapter 10 Basic concepts

85

• If N is a member of the global namespace, its fully qualified name isN.1

• Otherwise, its fully qualified name isS.N, whereS is the fully qualified name of the namespace or type2

in whichN is declared.3

In other words, the fully qualified name ofN is the complete hierarchical path of identifiers that lead toN,4

starting from the global namespace. Because everymember of a namespace or type must have a unique5

name, it follows that the fully qualified name of a namespace or type is always unique.6

[Example: The example below shows several namespace and type declarations along with their associated7

fully qualified names.8

class A {} // A 9

namespace X // X 10
{ 11
 class B // X.B 12
 { 13
 class C {} // X.B.C 14
 } 15

 namespace Y // X.Y 16
 { 17
 class D {} // X.Y.D 18
 } 19
} 20

namespace X.Y // X.Y 21
{ 22
 class E {} // X.Y.E 23
} 24

end example]25

10.9 Automatic memory management26

C# employs automatic memory management, which frees developers from manually allocating and freeing27

the memory occupied by objects. Automatic memory management policies are implemented by a garbage28

collector. The memory management life cycle of an object is as follows:29

1. When the object is created, memory is allocated for it, the constructor is run, and the object is30

consideredlive.31

2. If the object, or any part of it, cannot be accessed by any possible continuation of execution, other than32

the running of destructors, the object is consideredno longer in use, and it becomes eligible for33

destruction. [Note: Implementations may choose to analyze code to determine which references to an34

object may be used in the future. For instance, if a local variable that is in scope is the only existing35

reference to an object, but that local variable is never referred to in any possible continuation of36

execution from the current execution point in the procedure, an implementation may (but is not required37

to) treat the object as no longer in use.end note]38

3. Once the object is eligible for destruction, at some unspecified later time the destructor (§17.12) (if any)39

for the object is run. Unless overridden by explicit calls, the destructor for the object is run once only.40

4. Once the destructor for an object is run, if that object, or any part of it, cannot be accessed by any41

possible continuation of execution, including the running of destructors, the object is considered42

inaccessible and the object becomes eligible for collection.43

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the44

memory associated with that object.45

The garbage collector maintains information about object usage, and uses this information to make memory46

management decisions, such as where in memory to locate a newly created object, when to relocate an47

object, and when an object is no longer in use or inaccessible.48

C# LANGUAGE SPECIFICATION

86

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage1

collector may implement a wide range of memory management policies. For instance, C# does not require2

that destructors be run or that objects be collected as soon as they are eligible, or that destructors be run in3

any particular order, or on any particular thread.4

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class5

System.GC. This class can be used to request a collection to occur, destructors to be run (or not run), and so6

forth.7

[Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and run8

destructors, a conforming implementation may produce output that differs from that shown by the following9

code. The program10

using System; 11
class A 12
{ 13
 ~A() { 14
 Console.WriteLine("Destruct instance of A"); 15
 } 16
} 17

class B 18
{ 19
 object Ref; 20
 public B(object o) { 21
 Ref = o; 22
 } 23
 ~B() { 24
 Console.WriteLine("Destruct instance of B"); 25
 } 26
} 27

class Test 28
{ 29
 static void Main() { 30
 B b = new B(new A()); 31
 b = null; 32
 GC.Collect(); 33
 GC.WaitForPendingFinalizers(); 34
 } 35
} 36

creates an instance of classA and an instance of classB. These objects become eligible for garbage37

collection when the variableb is assigned the valuenull, since after this time it is impossible for any user-38

written code to access them. The output could be either39

Destruct instance of A 40
Destruct instance of B 41

or42

Destruct instance of B 43
Destruct instance of A 44

because the language imposes no constraints on the order in which objects are garbage collected.45

In subtle cases, the distinction between “eligible for destruction” and “eligible for collection” can be46

important. For example,47

using System; 48
class A 49
{ 50
 ~A() { 51
 Console.WriteLine("Destruct instance of A"); 52
 } 53
 public void F() { 54
 Console.WriteLine("A.F"); 55
 Test.RefA = this; 56
 } 57
} 58

Chapter 10 Basic concepts

87

class B 1
{ 2
 public A Ref; 3
 ~B() { 4
 Console.WriteLine("Destruct instance of B"); 5
 Ref.F(); 6
 } 7
} 8

class Test 9
{ 10
 public static A RefA; 11
 public static B RefB; 12
 static void Main() { 13
 RefB = new B(); 14
 RefA = new A(); 15
 RefB.Ref = RefA; 16
 RefB = null; 17
 RefA = null; 18

 // A and B now eligible for destruction 19
 GC.Collect(); 20
 GC.WaitForPendingFinalizers(); 21
 // B now eligible for collection, but A is not 22
 if (RefA != null) 23
 Console.WriteLine("RefA is not null"); 24
 } 25
} 26

In the above program, if the garbage collector chooses to run the destructor ofB before the destructor ofA,27

then the output of this program might be:28

Destruct instance of A 29
Destruct instance of B 30
A.F 31
RefA is not null 32

Note that although the instance ofA was not in use andA's destructor was run, it is still possible for methods33

of A (in this case,F) to be called from another destructor. Also, note that running of a destructor may cause34

an object to become usable from the mainline program again. In this case, the running ofB's destructor35

caused an instance ofA that was previously not in use to become accessible from the live referenceRefA.36

After the call toWaitForPendingFinalizers, the instance ofB is eligible for collection, but the instance37

of A is not, because of the referenceRefA.38

To avoid confusion and unexpected behavior, it is generally a good idea for destructors to only perform39

cleanup on data stored in their object's own fields, and not to perform any actions on referenced objects or40

static fields.end example]41

10.10 Execution order42

Execution shall proceed such that the side effects of each executing thread are preserved at critical execution43

points. Aside effect is defined as a read or write of a volatile field, a write to a non-volatile variable, a write44

to an external resource, and the throwing of an exception. The critical execution points at which the order of45

these side effects must be preserved are references to volatile fields (§17.4.3),lock statements (§15.12), and46

thread creation and termination. An implementation is free to change the order of execution of a47

C# program, subject to the following constraints:48

• Data dependence is preserved within a thread of execution. That is, the value of each variable is49

computed as if all statements in the thread were executed in original program order.50

• Initialization ordering rules are preserved (§17.4.4 and §17.4.5).51

• The ordering of side effects is preserved with respect to volatile reads and writes (§17.4.3). Additionally,52

an implementation need not evaluate part of an expression if it can deduce that that expression’s value is not53

used and that no needed side effects are produced (including any caused by calling a method or accessing a54

volatile field). When program execution is interrupted by an asynchronous event (such as an exception55

C# LANGUAGE SPECIFICATION

88

thrown by another thread), it is not guaranteed that the observable side effects are visible in the original1

program order.2

3

Chapter 11 Types

89

11. Types1

The types of the C# language are divided into two main categories: Value types and reference types.2

type:3

value-type4

reference-type5

A third category of types, pointers, is available only in unsafe code. This is discussed further in §25.2.6

Value types differ from reference types in that variables of the value types directly contain their data,7

whereas variables of the reference types storereferences to their data, the latter being known asobjects.8

With reference types, it is possible for two variables to reference the same object, and thus possible for9

operations on one variable to affect the object referenced by the other variable. With value types, the10

variables each have their own copy of the data, and it is not possible for operations on one to affect the other.11

C#’s type system is unified such thata value of any type can be treated as an object. Every type in C#12

directly or indirectly derives from theobject class type, andobject is the ultimate base class of all types.13

Values of reference types are treated as objects simply by viewing the values as typeobject. Values of14

value types are treated as objects by performing boxing and unboxing operations (§11.3).15

11.1 Value types16

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types17

called thesimple types. The simple types are identified through reserved words.18

value-type:19

struct-type20

enum-type21

struct-type:22

type-name23

simple-type24

simple-type:25

numeric-type26

bool27

numeric-type:28

integral-type29

floating-point-type30

decimal31

integral-type:32

sbyte 33

byte 34

short 35

ushort 36

int 37

uint 38

long 39

ulong 40

char41

C# LANGUAGE SPECIFICATION

90

floating-point-type:1

float 2

double3

enum-type:4

type-name5

All value types implicitly inherit from classobject. It is not possible for any type to derive from a value6

type, and value types are thus implicitly sealed (§17.1.1.2).7

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for8

a value of a value type to benull, or to reference an object of a more derived type.9

Assignment to a variable of a value type creates acopy of the value being assigned. This differs from10

assignment to a variable of a reference type, which copies the reference but not the object identified by the11

reference.12

11.1.1 Default constructors13

All value types implicitly declare a public parameterless instance constructor called thedefault constructor.14

The default constructor returns a zero-initialized instance known as thedefault value for the value type:15

• For all simple-types, the default value is the value produced by a bit pattern of all zeros:16

o Forsbyte, byte, short, ushort, int, uint, long, andulong, the default value is 0.17

o Forchar, the default value is'\x0000'.18

o Forfloat, the default value is0.0f.19

o Fordouble, the default value is0.0d.20

o Fordecimal, the default value is0.0m.21

o Forbool, the default value isfalse.22

• For anenum-type E, the default value is 0.23

• For astruct-type, the default value is the value produced by setting all value type fields to their default24

value and all reference type fields tonull.25

Like any other instance constructor, the defaultconstructor of a value type is invoked using thenew26

operator. [Note: For efficiency reasons, this requirement is not intended to actually have the implementation27

generate a constructor call.end note] In the example below, variablesi andj are both initialized to zero.28

class A 29
{ 30
 void F() { 31
 int i = 0; 32
 int j = new int(); 33
 } 34
} 35

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a36

struct type to contain an explicit declaration of a parameterless constructor. A struct type is however37

permitted to declare parameterized instance constructors (§18.3.8).38

11.1.2 Struct types39

A struct type is a value type that can declare constants,fields, methods, properties, indexers, operators,40

instance constructors, static constructors, andnested types. Struct types are described in §18.41

Chapter 11 Types

91

11.1.3 Simple types1

C# provides a set of predefined struct types called thesimple types. The simple types are identified through2

reserved words, but these reserved words are simply aliases for predefined struct types in theSystem3

namespace, as described in the table below.4

5

Reserved word Aliased type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

6

Because a simple type aliases a struct type, every simple type has members. For example,int has the7

members declared inSystem.Int32 and the members inherited fromSystem.Object, and the following8

statements are permitted:9

int i = int.MaxValue; // System.Int32.MaxValue constant 10
string s = i.ToString(); // System.Int32.ToString() instance method 11
string t = 123.ToString(); // System.Int32.ToString() instance method 12

The simple types differ from other struct types in that they permit certain additional operations:13

• Most simple types permit values to be created by writingliterals (§9.4.4). For example,123 is a literal14

of typeint and'a' is a literal of typechar. C# makes no provision for literals of struct types in general,15

and non-default values of other struct types are ultimately always created through instance constructors of16

those struct types.17

• When the operands of an expression are all simple type constants, it is possible for the compiler to18

evaluate the expression at compile-time. Such an expression is known as aconstant-expression (§14.15).19

Expressions involving operators defined by other structtypes are not considered to be constant expressions.20

• Throughconst declarations, it is possible to declare constants of the simple types (§17.3). It is not21

possible to have constants of other struct types, but a similar effect is provided bystatic readonly fields.22

• Conversions involving simple types can participate in evaluation of conversion operators defined by23

other struct types, but a user-defined conversion operator can never participate in evaluation of another user-24

defined operator (§13.4.2).25

11.1.4 Integral types26

C# supports nine integral types:sbyte, byte, short, ushort, int, uint, long, ulong, andchar. The27

integral types have the following sizes and ranges of values:28

C# LANGUAGE SPECIFICATION

92

• Thesbyte type represents signed 8-bit integers with values between –128 and 127.1

• Thebyte type represents unsigned 8-bit integers with values between 0 and 255.2

• Theshort type represents signed 16-bit integers with values between –32768 and 32767.3

• Theushort type represents unsigned 16-bit integers with values between 0 and 65535.4

• Theint type represents signed 32-bit integers withvalues between –2147483648 and 2147483647.5

• Theuint type represents unsigned 32-bit integers with values between 0 and 4294967295.6

• Thelong type represents signed 64-bit integers with values between –9223372036854775808 and7

9223372036854775807.8

• Theulong type represents unsigned 64-bit integers with values between 0 and9

18446744073709551615.10

• Thechar type represents unsigned 16-bit integers with values between 0 and 65535. The set of possible11

values for thechar type corresponds to the Unicode character set. [Note: Althoughchar has the same12

representation asushort, not all operations permitted on one type are permitted on the other.end note]13

The integral-type unary and binary operators alwaysoperate with signed 32-bit precision, unsigned 32-bit14

precision, signed 64-bit precision, or unsigned 64-bit precision:15

• For the unary+ and ~ operators, the operand is converted to typeT, whereT is the first ofint, uint,16

long, andulong that can fully represent all possible values of the operand. The operation is then performed17

using the precision of typeT, and the type of the result isT.18

• For the unary� operator, the operand is converted to typeT, whereT is the first ofint andlong that19

can fully represent all possible values of the operand.The operation is then performed using the precision of20

typeT, and the type of the result isT. The unary� operator cannot be applied to operands of typeulong.21

• For the binary+, �, *, /, %, &, ^, |, ==, !=, >, <, >=, and<= operators, the operands are converted to22

typeT, whereT is the first ofint, uint, long, andulong that can fully represent all possible values of23

both operands. The operation is then performed using the precision of typeT, and the type of the result isT24

(or bool for the relational operators). It is notpermitted for one operand to be of typelong and the other to25

be of typeulong with the binary operators.26

• For the binary<< and>> operators, the left operand is converted to typeT, whereT is the first ofint,27

uint, long, andulong that can fully represent all possible values of the operand. The operation is then28

performed using the precision of typeT, and the type of the result isT.29

Thechar type is classified as an integral type, but it differs from the other integral types in two ways:30

• There are no implicit conversions from other types to thechar type. In particular, even though the31

sbyte, byte, andushort types have ranges of values that are fully representable using thechar type,32

implicit conversions fromsbyte, byte, or ushort to char do not exist.33

• Constants of thechar type must be written ascharacter-literals or asinteger-literals in combination34

with a cast to typechar. For example,(char)10 is the same as'\x000A'.35

Thechecked andunchecked operators and statements are used to control overflow checking for integral-36

type arithmetic operations and conversions (§14.5.12). In achecked context, an overflow produces a37

compile-time error or causes anSystem.OverflowException to be thrown. In anunchecked context,38

overflows are ignored and any high-order bits that do not fit in the destination type are discarded.39

11.1.5 Floating point types40

C# supports two floating-point types:float anddouble. Thefloat anddouble types are represented41

using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following42

sets of values:43

Chapter 11 Types

93

• Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as1

the simple value zero, but certain operations distinguish between the two (§14.7.2).2

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero3

number by zero. For example,1.0 / 0.0 yields positive infinity, and�1.0 / 0.0 yields negative infinity.4

• TheNot-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point5

operations, such as dividing zero by zero.6

• The finite set of non-zero values of the forms × m × 2e, wheres is 1 or −1, andm ande are determined7

by the particular floating-point type: Forfloat, 0 < m < 224 and −149≤ e ≤ 104, and fordouble,8

0 < m < 253 and −1075≤ e ≤ 970. Denormalized floating-point numbers are considered valid non-zero9

values.10

Thefloat type can represent values ranging from approximately 1.5 × 10−45 to 3.4 × 1038 with a precision11

of 7 digits.12

Thedouble type can represent values ranging from approximately 5.0 × 10−324 to 1.7 × 10308 with a13

precision of 15–16 digits.14

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an15

integral type or a floating-point type, and the operation is evaluated as follows:16

• If one of the operands is of an integral type, then thatoperand is converted to the floating-point type of17

the other operand.18

• Then, if either of the operands is of typedouble, the other operand is converted todouble, the19

operation is performed using at leastdouble range and precision, and the type of the result isdouble (or20

bool for the relational operators).21

• Otherwise, the operation is performed using at leastfloat range and precision, and the type of the22

result isfloat (or bool for the relational operators).23

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in24

exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:25

• If the result of a floating-point operation is too small for the destination format, the result of the26

operation becomes positive zero or negative zero.27

• If the result of a floating-point operation is too large for the destination format, the result of the28

operation becomes positive infinity or negative infinity.29

• If a floating-point operation is invalid, the result of the operation becomes NaN.30

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.31

Floating-point operations may be performed with higher precision than the result type of the operation. For32

example, some hardware architectures support an “extended” or “long double” floating-point type with33

greater range and precision than thedouble type, and implicitly perform all floating-point operations using34

this higher precision type. Only at excessive cost in performance can such hardware architectures be made to35

perform floating-point operations withless precision, and rather than require an implementation to forfeit36

both performance and precision, C# allows a higher precision type to be used for all floating-point37

operations. Other than delivering more precise results, this rarely has any measurable effects. However, in38

expressions of the formx * y / z, where the multiplication produces a result that is outside thedouble39

range, but the subsequent division brings the temporary result back into thedouble range, the fact that the40

expression is evaluated in a higher range format may cause a finite result to be produced instead of an41

infinity.42

11.1.6 The decimal type43

Thedecimal type is a 128-bit data type suitable for financial and monetary calculations. Thedecimal type44

can represent values ranging from 1.0 × 10−28 to approximately 7.9 × 1028 with 28–29 significant digits.45

C# LANGUAGE SPECIFICATION

94

The finite set of values of typedecimal are of the form –1s× c × 10-e, where the signs is 0 or 1, the1

coefficientc is given by 0≤ c < 296, and the scalee is such that 0≤ e≤ 28. Thedecimal type does not2

support signed zeros, infinities, or NaN's.3

A decimal is represented as a 96-bit integer scaled by a power of ten. Fordecimals with an absolute value4

less than1.0m, the value is exact to the 28th decimal place, but no further. Fordecimals with an absolute5

value greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Contrary to thefloat anddouble6

data types, decimal fractional numbers such as 0.1 can be represented exactly in thedecimal7

representation. In thefloat anddouble representations, such numbers are often infinite fractions, making8

those representations more prone to round-off errors.9

If one of the operands of a binary operator is of typedecimal, then the other operand must be of an integral10

type or of typedecimal. If an integral type operand is present, it is converted todecimal before the11

operation is performed.12

The result of an operation on values of typedecimal is that which would result from calculating an exact13

result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results are14

rounded to the nearest representable value, and, when a result is equally close to two representable values, to15

the value that has an even number in the least significant digit position (this is known as “banker’s16

rounding”). That is, results are exact to 28 or 29 digits, but to no more than 28 decimal places. A zero result17

always has a sign of 0 and a scale of 0.18

If a decimal arithmetic operation produces a value that is too small for the decimal format after rounding, the19

result of the operation becomes zero. If adecimal arithmetic operation produces a result that is too large20

for thedecimal format, aSystem.OverflowException is thrown.21

Thedecimal type has greater precision but smaller range than the floating-point types. Thus, conversions22

from the floating-point types todecimal might produce overflow exceptions, and conversions from23

decimal to the floating-point types might cause loss of precision. For these reasons, no implicit conversions24

exist between the floating-point types anddecimal, and without explicit casts, it is not possible to mix25

floating-point anddecimal operands in the same expression.26

11.1.7 The bool type27

Thebool type represents boolean logical quantities. The possible values of typebool aretrue andfalse.28

No standard conversions exist betweenbool and other types. In particular, thebool type is distinct and29

separate from the integral types, and abool value cannot be used in place of an integral value, and vice30

versa.31

[Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted32

to the boolean valuefalse, and a non-zero integral or floating-point value, or a non-null pointer can be33

converted to the boolean valuetrue. In C#, such conversions are accomplished by explicitly comparing an34

integral or floating-point value to zero, or by explicitly comparing an object reference tonull. end note]35

11.1.8 Enumeration types36

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying37

type, which must bebyte, sbyte, short, ushort, int, uint, long or ulong. Enumeration types are38

defined through enumeration declarations (§21.1).39

11.2 Reference types40

A reference type is a class type, an interface type, an array type, or a delegate type.41

reference-type:42

class-type43

interface-type44

array-type45

delegate-type46

Chapter 11 Types

95

class-type:1

type-name2

object3

string 4

interface-type:5

type-name6

array-type:7

non-array-type rank-specifiers8

non-array-type:9

type10

rank-specifiers:11

rank-specifier12

rank-specifiers rank-specifier13

rank-specifier:14

[dim-separatorsopt] 15

dim-separators:16

,17

dim-separators ,18

delegate-type:19

type-name20

A reference type value is a reference to aninstance of the type, the latter known as anobject. The special21

valuenull is compatible with all reference types and indicates the absence of an instance.22

11.2.1 Class types23

A class type defines a data structure that contains data members (constants and fields), function members24

(methods, properties, events, indexers, operators, instance constructors, destructors, and static constructors),25

and nested types. Class types support inheritance, a mechanism whereby derived classes can extend and26

specialize base classes. Instances of class types are created usingobject-creation-expressions (§14.5.10.1).27

Class types are described in §17.28

11.2.2 The object type29

Theobject class type is the ultimate base class of all other types. Every type in C# directly or indirectly30

derives from theobject class type.31

The keywordobject is simply an alias for the predefined classSystem.Object.32

11.2.3 The string type33

Thestring type is a sealed class type that inherits directly fromobject. Instances of thestring class34

represent Unicode character strings.35

Values of thestring type can be written as string literals (§9.4.4).36

The keywordstring is simply an alias for the predefined classSystem.String.37

11.2.4 Interface types38

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An39

interface may inherit from multiple base interfaces, anda class or struct may implement multiple interfaces.40

Interface types are described in §20.41

C# LANGUAGE SPECIFICATION

96

11.2.5 Array types1

An array is a data structure that contains zero or more variables which are accessed through computed2

indices. The variables contained in an array, also called the elements of the array, are all of the same type,3

and this type is called the element type of the array.4

Array types are described in §19.5

11.2.6 Delegate types6

A delegate is a data structure that refers to one or more methods, and for instance methods, it also refers to7

their corresponding object instances.8

[Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer9

can only reference static functions, a delegate can reference both static and instance methods. In the latter10

case, the delegate stores not only a reference to the method’s entry point, but also a reference to the object11

instance on which to invoke the method.end note]12

Delegate types are described in §22.13

11.3 Boxing and unboxing14

The concept of boxing and unboxing is central to C#’s type system. It provides a bridge betweenvalue-types15

andreference-types by permitting any value of avalue-type to be converted to and from typeobject.16

Boxing and unboxing enables a unified view of the type system wherein a value of any type can ultimately17

be treated as an object.18

11.3.1 Boxing conversions19

A boxing conversion permits anyvalue-type to be implicitly converted to the typeobject or to any20

interface-type implemented by thevalue-type. Boxing a value of avalue-type consists of allocating an object21

instance and copying thevalue-type value into that instance.22

The actual process of boxing a value of avalue-type is best explained by imagining the existence of aboxing23

class for that type. [Example: For anyvalue-type T, the boxing class behaves as if it were declared as24

follows:25

sealed class T_Box 26
{ 27
 T value; 28

 public T_Box(T t) { 29
 value = t; 30
 } 31
} 32

Boxing of a valuev of typeT now consists of executing the expressionnew T_Box(v), and returning the33

resulting instance as a value of typeobject. Thus, the statements34

int i = 123; 35
object box = i; 36

conceptually correspond to37

int i = 123; 38
object box = new int_Box(i); 39

end example]40

Boxing classes likeT_Box andint_Box above don’t actually exist and the dynamic type of a boxed value41

isn’t actually a class type. Instead, a boxed value of typeT has the dynamic typeT, and a dynamic type42

check using theis operator can simply reference typeT. [Example: For example,43

Chapter 11 Types

97

int i = 123; 1
object box = i; 2
if (box is int) { 3
 Console.Write("Box contains an int"); 4
} 5

will output the string “Box contains an int” on the console.end example]6

A boxing conversion impliesmaking a copy of the value being boxed. This is different from a conversion of7

a reference-type to typeobject, in which the value continues to reference the same instance and simply is8

regarded as the less derived typeobject. [Example: For example, given the declaration9

struct Point 10
{ 11
 public int x, y; 12

 public Point(int x, int y) { 13
 this.x = x; 14
 this.y = y; 15
 } 16
} 17

the following statements18

Point p = new Point(10, 10); 19
object box = p; 20
p.x = 20; 21
Console.Write(((Point)box).x); 22

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment23

of p to box causes the value ofp to be copied. HadPoint been declared aclass instead, the value 2024

would be output becausep andbox would reference the same instance.end example]25

11.3.2 Unboxing conversions26

An unboxing conversion permits an explicit conversion from typeobject to anyvalue-type or from any27

interface-type to anyvalue-type that implements theinterface-type. An unboxing operation consists of first28

checking that the object instance is a boxed value of the givenvalue-type, and then copying the value out of29

the instance.30

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an31

objectbox to avalue-type T consists of executing the expression((T_Box)box).value. [Example: Thus,32

the statements33

object box = 123; 34
int i = (int)box; 35

conceptually correspond to36

object box = new int_Box(123); 37
int i = ((int_Box)box).value; 38

end example]39

For an unboxing conversion to a givenvalue-type to succeed at run-time, the value of the source operand40

must be a reference to an object that was previously created by boxing a value of thatvalue-type. If the41

source operand isnull or a reference to an incompatible object, aSystem.InvalidCastException is42

thrown.43

Chapter 12 Variables

99

12. Variables1

Variables represent storage locations. Every variablehas a type that determines what values can be stored in2

the variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are3

always of the appropriate type. The value of a variable can be changed through assignment or through use of4

the++ and-- operators.5

A variable must bedefinitely assigned (§12.3) before its value can be obtained.6

As described in the following sections, variables are eitherinitially assigned or initially unassigned. An7

initially assigned variable has a well-defined initial value and is always considered definitely assigned. An8

initially unassigned variable has no initial value. For an initially unassigned variable to be considered9

definitely assigned at a certain location, an assignmentto the variable must occur in every possible execution10

path leading to that location.11

12.1 Variable categories12

C# defines seven categories of variables: static variables, instance variables, array elements, value13

parameters, reference parameters, output parameters,and local variables. The sections that follow describe14

each of these categories.15

[Example: In the example16

class A 17
{ 18
 public static int x; 19
 int y; 20

 void F(int[] v, int a, ref int b, out int c) { 21
 int i = 1; 22
 c = a + b++; 23
 } 24
} 25

x is a static variable,y is an instance variable,v[0] is an array element,a is a value parameter,b is a26

reference parameter,c is an output parameter, andi is a local variable.end example]27

12.1.1 Static variables28

A field declared with thestatic modifier is called astatic variable. A static variable comes into existence29

before execution of the static constructor (§17.11) for its containing type, and ceases to exist when the30

associated application domain ceases to exist..31

The initial value of a static variable is the default value (§12.2) of the variable’s type.32

For the purposes of definite assignment checking,a static variable is considered initially assigned.33

12.1.2 Instance variables34

A field declared without thestatic modifier is called aninstance variable.35

12.1.2.1 Instance variables in classes36

An instance variable of a class comes into existencewhen a new instance of that class is created, and ceases37

to exist when there are no references to that instance and the instance’s destructor (if any) has executed.38

The initial value of an instance variable of a classis the default value (§12.2) of the variable’s type.39

For the purpose of definite assignment checking, aninstance variable is considered initially assigned.40

C# LANGUAGE SPECIFICATION

100

12.1.2.2 Instance variables in structs1

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In2

other words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance3

variables of the struct.4

The initial assignment state of an instance variable ofa struct is the same as that of the containing struct5

variable. In other words, when a struct variable is considered initially assigned, so too are its instance6

variables, and when a struct variable is considered initially unassigned, its instance variables are likewise7

unassigned.8

12.1.3 Array elements9

The elements of an array come into existence when an array instance is created, and cease to exist when10

there are no references to that array instance.11

The initial value of each of the elements of an array is the default value (§12.2) of the type of the array12

elements.13

For the purpose of definite assignment checking,an array element is considered initially assigned.14

12.1.4 Value parameters15

A parameter declared without aref or out modifier is avalue parameter.16

A value parameter comes into existence upon invocation of the function member (method, instance17

constructor, accessor, or operator) to which the parameter belongs, and is initialized with the value of the18

argument given in the invocation. A value parameter ceases to exist upon return of the function member.19

For the purpose of definite assignment checking,a value parameter is considered initially assigned.20

12.1.5 Reference parameters21

A parameter declared with aref modifier is areference parameter.22

A reference parameter does not create a new storage location. Instead, a reference parameter represents the23

same storage location as the variable given as theargument in the function member invocation. Thus, the24

value of a reference parameter is always the same as the underlying variable.25

The following definite assignment rules apply to reference parameters. Note the different rules for output26

parameters described in §12.1.6.27

• A variable must be definitely assigned (§12.3) before it can be passed as a reference parameter in a28

function member invocation.29

• Within a function member, a reference parameter is considered initially assigned.30

Within an instance method or instance accessor of a struct type, thethis keyword behaves exactly as a31

reference parameter of the struct type (§14.5.7).32

12.1.6 Output parameters33

A parameter declared with anout modifier is anoutput parameter.34

An output parameter does not create a new storage location. Instead, an output parameter represents the35

same storage location as the variable given as theargument in the function member invocation. Thus, the36

value of an output parameter is always the same as the underlying variable.37

The following definite assignment rules apply to output parameters. Note the different rules for reference38

parameters described in §12.1.5.39

Chapter 12 Variables

101

• A variable need not be definitely assigned before it can be passed as an output parameter in a function1

member invocation.2

• Following the normal completion of a function member invocation, each variable that was passed as an3

output parameter is considered assigned in that execution path.4

• Within a function member, an output parameter is considered initially unassigned.5

• Every output parameter of a function member must be definitely assigned (§12.3) before the function6

member returns normally.7

Within an instance constructor of a struct type, thethis keyword behaves exactly as an output parameter of8

the struct type (§14.5.7).9

12.1.7 Local variables10

A local variable is declared by alocal-variable-declaration, which may occur in ablock, a for-statement, a11

switch-statement, or ausing-statement.12

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to be13

reserved for it. This lifetime extends from entry into theblock, for-statement, switch-statement, or using-14

statement with which it is associated, until execution of thatblock, for-statement, switch-statement, or using-15

statement ends in any way. (Entering an enclosedblock or calling a method suspends, but does not end,16

execution of the currentblock, for-statement, switch-statement, or using-statement.) If the parentblock, for-17

statement, switch-statement, or using-statement is entered recursively, a new instance of the local variable is18

created each time, and itslocal-variable-initializer, if any, is evaluated each time.19

A local variable is not automatically initialized and thus has no default value. For the purpose of definite20

assignment checking, a local variable is considered initially unassigned. Alocal-variable-declaration may21

include alocal-variable-initializer, in which case the variable is considered definitely assigned in its entire22

scope, except within the expression provided in thelocal-variable-initializer.23

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a textual24

position that precedes itslocal-variable-declarator.25

[Note: The actual lifetime of a local variable is implementation-dependent. For example, a compiler might26

statically determine that a local variable in a blockis only used for a small portion of that block. Using this27

analysis, the compiler could generate code that results in the variable’s storage having a shorter lifetime than28

its containing block.29

The storage referred to by a local reference variable is reclaimed independently of the lifetime of that local30

reference variable (§10.9).end note]31

A local variable is also declared by aforeach-statement and by aspecific-catch-clause for a try-statement.32

For aforeach-statement, the local variable is an iteration variable (§15.8.4). For aspecific-catch-clause, the33

local variable is an exception variable (§15.10). A local variable declared by aforeach-statement or specific-34

catch-clause is considered definitely assigned in its entire scope.35

12.2 Default values36

The following categories of variables are automatically initialized to their default values:37

• Static variables.38

• Instance variables of class instances.39

• Array elements.40

The default value of a variable depends on the typeof the variable and is determined as follows:41

C# LANGUAGE SPECIFICATION

102

• For a variable of avalue-type, the default value is the same as the value computed by thevalue-type’s1

default constructor (§11.1.1).2

• For a variable of areference-type, the default value isnull.3

[Note: Initialization to default values is typically done byhaving the memory manager or garbage collector4

initialize memory to all-bits-zero before it is allocated for use. For this reason, it is convenient to use all-bits-5

zero to represent the null reference.end note]6

12.3 Definite assignment7

At a given location in the executable code of a function member, a variable is said to bedefinitely assigned8

if the compiler can prove, by static flow analysis, that the variable has been automatically initialized or has9

been the target of at least one assignment. The rules of definite assignment are:10

• An initially assigned variable (§12.3.1) is always considered definitely assigned.11

• An initially unassigned variable (§12.3.2) is considered definitely assigned at a given location if all12

possible execution paths leading to that location contain at least one of the following:13

o A simple assignment (§14.13.1) in which the variable is the left operand.14

o An invocation expression (§14.5.5) or object creation expression (§14.5.10.1) that passes the15

variable as an output parameter.16

o For a local variable, a local variable declaration (§15.5) that includes a variable initializer.17

The definite assignment states of instance variables of astruct-type variable are tracked individually as well18

as collectively. In additional to the rules above, the following rules apply tostruct-type variables and their19

instance variables:20

• An instance variable is considered definitely assigned if its containingstruct-type variable is considered21

definitely assigned.22

• A struct-type variable is considered definitely assigned if each of its instance variables is considered23

definitely assigned.24

Definite assignment is a requirement in the following contexts:25

• A variable must be definitely assigned at each location where its value is obtained. [Note: This ensures26

that undefined values never occur.end note] The occurrence of a variable in an expression is considered to27

obtain the value of the variable, except when28

o the variable is the left operand of a simple assignment,29

o the variable is passed as an output parameter, or30

o the variable is astruct-type variable and occurs as the left operand of a member access.31

• A variable must be definitely assigned at each location where it is passed as a reference parameter.32

[Note: This ensures that the function member being invoked can consider the reference parameter initially33

assigned.end note]34

• All output parameters of a function member must be definitely assigned at each location where the35

function member returns (through areturn statement or through execution reaching the end of the function36

member body). [Note: This ensures that function members donot return undefined values in output37

parameters, thus enabling the compiler to consider a function member invocation that takes a variable as an38

output parameter equivalent to an assignment to the variable.end note]39

• Thethis variable of astruct-type instance constructor must be definitely assigned at each location40

where that instance constructor returns.41

12.3.1 Initially assigned variables42

The following categories of variables are classified as initially assigned:43

Chapter 12 Variables

103

• Static variables.1

• Instance variables of class instances.2

• Instance variables of initially assigned struct variables.3

• Array elements.4

• Value parameters.5

• Reference parameters.6

• Variables declared in acatch clause or aforeach statement.7

12.3.2 Initially unassigned variables8

The following categories of variables are classified as initially unassigned:9

• Instance variables of initially unassigned struct variables.10

• Output parameters, including thethis variable of struct instance constructors.11

• Local variables, except those declared in acatch clause or aforeach statement.12

12.3.3 Precise rules for determining definite assignment13

In order to determine that each used variable is definitely assigned, the compiler must use a process that is14

equivalent to the one described in this section.15

The compiler processes the body of each function member that has one or more initially unassigned16

variables. For each initially unassigned variablev, the compiler determines adefinite assignment state for v17

at each of the following points in the function member:18

• At the beginning of each statement19

• At the end point (§15.1) of each statement20

• On each arc which transfers control to another statement or to the end point of a statement21

• At the beginning of each expression22

• At the end of each expression23

The definite assignment state ofv can be either:24

• Definitely assigned. This indicates that on all possible control flows to this point,v has been25

assigned a value.26

• Not definitely assigned. For the state of a variable at the end of an expression of typebool, the state27

of a variable the isn’t definitely assigned may (but doesn’t necessarily) fall into one of the following28

sub-states:29

o Definitely assigned after true expression. This state indicates thatv is definitely assigned if30

the boolean expression evaluated as true, but is not necessarily assigned if the boolean31

expression evaluated as false.32

o Definitely assigned after false expression. This state indicates thatv is definitely assigned if33

the boolean expression evaluated as false,but is not necessarily assigned if the boolean34

expression evaluated as true.35

The following rules govern how the state of a variablev is determined at each location.36

12.3.3.1 General rules for statements37

• v is not definitely assigned at the beginning of a function member body.38

• v is definitely assigned at the beginning of any unreachable statement.39

C# LANGUAGE SPECIFICATION

104

• The definite assignment state ofv at the beginning of any other statement is determined by checking1

the definite assignment state ofv on all control flow transfers that target the beginning of that2

statement. If (and only if)v is definitely assigned on all such control flow transfers, thenv is3

definitely assigned at the beginning of the statement. The set of possible control flow transfers is4

determined in the same way as for checking statement reachability (§15.1).5

• The definite assignment state ofv at the end point of a block,checked, unchecked, if, while,6

do, for, foreach, lock, using, or switch statement is determined by checking the definite7

assignment state ofv on all control flow transfers that target the end point of that statement. Ifv is8

definitely assigned on all such control flow transfers, thenv is definitely assigned at the end point of9

the statement. Otherwise,v is not definitely assigned at the end point of the statement. The set of10

possible control flow transfers is determined in the same way as for checking statement reachability11

(§15.1).12

12.3.3.2 Block statements, checked, and unchecked statements13

The definite assignment state ofv on the control transfer to the first statement of the statement list in the14

block (or to the end point of the block, if the statement list is empty) is the same as the definite assignment15

statement ofv before the block,checked, orunchecked statement.16

12.3.3.3 Expression statements17

For an expression statementstmt that consists of the expressionexpr:18

• v has the same definite assignment state at the beginning ofexpr as at the beginning ofstmt.19

• If v if definitely assigned at the end ofexpr, it is definitely assigned at the end point ofstmt;20

otherwise; it is not definitely assigned at the end point ofstmt.21

12.3.3.4 Declaration statements22

• If stmt is a declaration statement without initializers, thenv has the same definite assignment state at23

the end point ofstmt as at the beginning ofstmt.24

• If stmt is a declaration statement with initializers, then the definite assignment state forv is25

determined as ifstmt were a statement list, with one assignment statement for each declaration with26

an initializer (in the order of declaration).27

12.3.3.5 If statements28

For anif statementstmt of the form:29

if (expr) then-stmt else else-stmt 30

• v has the same definite assignment state at the beginning ofexpr as at the beginning ofstmt.31

• If v is definitely assigned at the end ofexpr, then it is definitely assigned on the control flow transfer32

to then-stmt and to eitherelse-stmt or to the end-point ofstmt if there is no else clause.33

• If v has the state “definitely assigned after true expression” at the end ofexpr, then it is definitely34

assigned on the control flow transfer tothen-stmt, and not definitely assigned on the control flow35

transfer to eitherelse-stmt or to the end-point ofstmt if there is no else clause.36

• If v has the state “definitely assigned after false expression” at the end ofexpr, then it is definitely37

assigned on the control flow transfer toelse-stmt, and not definitely assigned on the control flow38

transfer tothen-stmt. It is definitely assigned at the end-point ofstmt if and only if it is definitely39

assigned at the end-point ofthen-stmt.40

• Otherwise,v is considered not definitely assigned on the control flow transfer to either thethen-stmt41

or else-stmt, or to the end-point ofstmt if there is no else clause.42

Chapter 12 Variables

105

12.3.3.6 Switch statements1

In aswitch statementstmt with controlling expressionexpr:2

• The definite assignment state ofv at the beginning ofexpr is the same as the state ofv at the3

beginning ofstmt.4

• The definite assignment state ofv on the control flow transfer to a reachable switch block statement5

list is the same as the definite assignment state ofv at the end ofexpr.6

12.3.3.7 While statements7

For awhile statementstmt of the form:8

while (expr) while-body 9

• v has the same definite assignment state at the beginning ofexpr as at the beginning ofstmt.10

• If v is definitely assigned at the end ofexpr, then it is definitely assigned on the control flow transfer11

to while-body and to the end point ofstmt.12

• If v has the state “definitely assigned after true expression” at the end ofexpr, then it is definitely13

assigned on the control flow transfer towhile-body, but not definitely assigned at the end-point of14

stmt.15

• If v has the state “definitely assigned after false expression” at the end ofexpr, then it is definitely16

assigned on the control flow transfer to the end point ofstmt.17

12.3.3.8 Do statements18

For ado statementstmt of the form:19

do do-body while (expr); 20

• v has the same definite assignment state on the control flow transfer from the beginning ofstmt to21

do-body as at the beginning ofstmt.22

• v has the same definite assignment state at the beginning ofexpr as at the end point ofdo-body.23

• If v is definitely assigned at the end ofexpr, then it is definitely assigned on the end point ofstmt.24

• If v has the state “definitely assigned after false expression” at the end ofexpr, then it is definitely25

assigned on the control flow transfer to the end point ofstmt.26

12.3.3.9 For statements27

Definite assignment checking for afor statement of the form:28

for (for-initializer; for-condition; for-iterator) embedded-statement29

is done as if the statement were written:30

{ 31

 for-initializer; 32

 while (for-condition) { 33

 embedded-statement; 34

 for-iterator; 35
 } 36
} 37

If the for-condition is omitted from thefor statement, then evaluation of definite assignment proceeds as if38

for-condition were replaced withtrue in the above expansion.39

C# LANGUAGE SPECIFICATION

106

12.3.3.10 Break, continue, and goto statements1

The definite assignment state ofv on the control flow transfer caused by abreak, continue, or goto2

statement is the same as the definite assignment state ofv at the beginning of the statement.3

12.3.3.11 Throw statements4

For a statementstmt of the form5

throw expr ; 6

The definite assignment state ofv at the beginning ofexpr is the same as the definite assignment state ofv at7

the beginning ofstmt.8

12.3.3.12 Return statements9

For a statementstmt of the form10

return expr ; 11

• The definite assignment state ofv at the beginning ofexpr is the same as the definite assignment12

state ofv at the beginning ofstmt.13

• If v is an output parameter, then it must be definitely assigned either:14

o afterexpr15

o or at the end of thefinally block of atry-finally or try-catch-finally that16

encloses thereturn statement.17

12.3.3.13 Try-catch statements18

For a statementstmt of the form:19

try try-block 20

catch(�) catch-block-1 21
� 22

catch(�) catch-block-n 23
 24

• The definite assignment state ofv at the beginning oftry-block is the same as the definite25

assignment state ofv at the beginning ofstmt.26

• The definite assignment state ofv at the beginning ofcatch-block-i (for any i) is the same as the27

definite assignment state ofv at the beginning ofstmt.28

• The definite assignment state ofv at the end-point ofstmt is definitely assigned if (and only if)v is29

definitely assigned at the end-point oftry-block and everycatch-block-i (for everyi from 1 ton).30

12.3.3.14 Try-finally statements31

For atry statementstmt of the form:32

try try-block finally finally-block 33

• The definite assignment state ofv at the beginning oftry-block is the same as the definite34

assignment state ofv at the beginning ofstmt.35

• The definite assignment state ofv at the beginning offinally-block is the same as the definite36

assignment state ofv at the beginning ofstmt.37

• The definite assignment state ofv at the end-point ofstmt is definitely assigned if (and only if)38

either:39

o v is definitely assigned at the end-point oftry-block40

o v is definitely assigned at the end-point offinally-block41

Chapter 12 Variables

107

If a control flow transfer (for example, agoto statement) is made that begins withintry-block, and ends1

outside oftry-block, thenv is also considered definitely assigned on that control flow transfer ifv is2

definitely assigned at the end-point offinally-block. (This is not an only if—ifv is definitely assigned for3

another reason on this control flow transfer, then it is still considered definitely assigned.)4

12.3.3.15 Try-catch-finally statements5

Definite assignment analysis for atry-catch-finally statement of the form:6

try try-block 7

catch(�) catch-block-1 8
� 9

catch(�) catch-block-n 10

finally finally-block 11

is done as if the statement were atry-finally statement enclosing atry-catch statement:12

try { 13

 try try-block 14

 catch(�) catch-block-1 15
 � 16

 catch(�) catch-block-n 17
} 18

finally finally-block 19

[Example: The following example demonstrates how the different blocks of atry statement (§15.10) affect20

definite assignment.21

class A 22
{ 23
 static void F() { 24
 int i, j; 25
 try { 26
 goto LABEL: 27
 // neither i nor j definitely assigned 28
 i = 1; 29
 // i definitely assigned 30
 } 31

 catch { 32
 // neither i nor j definitely assigned 33
 i = 3; 34
 // i definitely assigned 35
 } 36

 finally { 37
 // neither i nor j definitely assigned 38
 j = 5; 39
 // j definitely assigned 40
 } 41
 // i and j definitely assigned 42
 LABEL: 43
 // j definitely assigned 44
 45
 } 46
} 47

end example]48

12.3.3.16 Foreach statements49

For aforeach statementstmt of the form:50

foreach (type identifier in expr) embedded-statement51

• The definite assignment state ofv at the beginning ofexpr is the same as the state ofv at the52

beginning ofstmt.53

C# LANGUAGE SPECIFICATION

108

• The definite assignment state ofv on the control flow transfer toembedded-statement or to the end1

point of stmt is the same as the state ofv at the end ofexpr.2

12.3.3.17 Using statements3

For ausing statementstmt of the form:4

using (resource-acquisition) embedded-statement 5

• The definite assignment state ofv at the beginning ofresource-acquisition is the same as the state of6

v at the beginning ofstmt.7

• The definite assignment state ofv on the control flow transfer toembedded-statement is the same as8

the state ofv at the end ofresource-acquisition.9

12.3.3.18 Lock statements10

For alock statementstmt of the form:11

lock (expr) embedded-statement 12

• The definite assignment state ofv at the beginning ofexpr is the same as the state ofv at the13

beginning ofstmt.14

• The definite assignment state ofv on the control flow transfer toembedded-statement is the same as15

the state ofv at the end ofexpr.16

12.3.3.19 General rules for simple expressions17

The following rule applies to these kinds of expressions: literals (§14.5.1), simple names (§14.5.2), member18

access expressions (§14.5.4), non-indexed base access expressions (§14.5.8), andtypeof expressions19

(§14.5.11).20

• The definite assignment state ofv at the end of such an expression is the same as the definite21

assignment state ofv at the beginning of the expression.22

12.3.3.20 General rules for expressions with embedded expressions23

The following rules apply to these kinds of expressions: parenthesized expressions (§14.5.3), element access24

expressions (§14.5.6), base access expressions withindexing (§14.5.8), increment and decrement25

expressions (§14.5.9, §14.6.5), cast expressions (§14.6.6), unary+, -, ~, * expressions, binary+, -, *, /, %,26

<<, >>, <, <=, >, >=, ==, !=, is, as, &, |, ^ expressions (§14.7, §14.8, §14.9, §14.10), compound27

assignment expressions (§14.13.2),checked andunchecked expressions (§14.5.12), array and delegate28

creation expressions (§14.5.10).29

Each of these expressions has one or more sub-expressions that are unconditionally evaluated in a fixed30

order. For example, the binary% operator evaluates the left hand side of the operator, then the right hand31

side. An indexing operation evaluates the indexed expression, and then evaluates each of the index32

expressions, in order from left to right. For an expressionexpr, which has sub-expressionsexpr1, expr2, ...,33

exprn, evaluated in that order:34

• The definite assignment state ofv at the beginning ofexpr1 is the same as the definite assignment35

state at the beginning ofexpr.36

• The definite assignment state ofv at the beginning ofexpri (i greater than one) is the same as the37

definite assignment state at the end ofexpri-1.38

• The definite assignment state ofv at the end ofexpr is the same as the definite assignment state at39

the end ofexprn.40

12.3.3.21 Invocation expressions and object creation expressions41

For an invocation expressionexpr of the form:42

Chapter 12 Variables

109

primary-expression (arg1, arg2, …, argn) 1

or an object creation expression of the form:2

new type (arg1, arg2, …, argn)3

• For an invocation expression, the definite assignment state ofv beforeprimary-expression is the4

same as the state ofv beforeexpr.5

• For an invocation expression, the definite assignment state ofv beforearg1 is the same as the state of6

v afterprimary-expression.7

• For an object creation expression, the definite assignment state ofv beforearg1 is the same as the8

state ofv beforeexpr.9

• For each argumentargi, the definite assignment state ofv afterargi is determined by the normal10

expression rules, ignoring anyref or out modifiers.11

• For each argumentargi for any i greater than one, the definite assignment state ofv beforeargi is the12

same as the state ofv afterargi-1.13

• If the variablev is passed as anout argument (i.e., an argument of the form “out v”) in any of the14

arguments, then the state ofv afterexpr is definitely assigned. Otherwise; the state ofv afterexpr is15

the same as the state ofv afterargn.16

12.3.3.22 Simple assignment expressions17

For an expressionexpr of the formw = expr-rhs:18

• The definite assignment state ofv beforeexpr-rhs is the same as the definite assignment state ofv19

beforeexpr.20

• If w is the same variable asv, then the definite assignment state ofv afterexpr is definitely assigned.21

Otherwise, the definite assignment state ofv afterexpr is the same as the definite assignment state of22

v afterexpr-rhs.23

12.3.3.23 && expressions24

For an expressionexpr of the formexpr-first && expr-second:25

• The definite assignment state ofv beforeexpr-first is the same as the definite assignment state ofv26

beforeexpr.27

• The definite assignment state ofv beforeexpr-second is definitely assigned if the state ofv after28

expr-first is either definitely assigned or “definitely assigned after true expression”. Otherwise, it is29

not definitely assigned.30

• The definite assignment statement ofv afterexpr is determined by:31

o If the state ofv afterexpr-first is definitely assigned, then the state ofv afterexpr is32

definitely assigned.33

o Otherwise, if the state ofv afterexpr-second is definitely assigned, and the state ofv after34

expr-first is “definitely assigned after false expression”, then the state ofv afterexpr is35

definitely assigned.36

o Otherwise, if the state ofv afterexpr-second is definitely assigned or “definitely assigned37

after true expression”, then the state ofv afterexpr is “definitely assigned after true38

expression”.39

o Otherwise, if the state ofv afterexpr-first is “definitely assigned after false expression”, and40

the state ofv afterexpr-second is “definitely assigned after false expression”, then the state41

of v afterexpr is “definitely assigned after false expression”.42

o Otherwise, the state ofv afterexpr is not definitely assigned.43

C# LANGUAGE SPECIFICATION

110

[Example: In the example1

class A 2
{ 3
 static void F(int x, int y) { 4
 int i; 5
 if (x >= 0 && (i = y) >= 0) { 6
 // i definitely assigned 7
 } 8
 else { 9
 // i not definitely assigned 10
 } 11
 // i not definitely assigned 12
 } 13
} 14

the variablei is considered definitely assigned in one of the embedded statements of anif statement but not15

in the other. In theif statement in methodF, the variablei is definitely assigned in the first embedded16

statement because execution of the expression(i = y) always precedes execution of this embedded17

statement. In contrast, the variablei is not definitely assigned in the second embedded statement, since18

x >= 0 might have tested false, resulting in the variablei's being unassigned.end example]19

12.3.3.24 || expressions20

For an expressionexpr of the formexpr-first || expr-second:21

• The definite assignment state ofv beforeexpr-first is the same as the definite assignment state ofv22

beforeexpr.23

• The definite assignment state ofv beforeexpr-second is definitely assigned if the state ofv after24

expr-first is either definitely assigned or “definitely assigned after false expression”. Otherwise, it is25

not definitely assigned.26

• The definite assignment statement ofv afterexpr is determined by:27

o If the state ofv afterexpr-first is definitely assigned, then the state ofv afterexpr is28

definitely assigned.29

o Otherwise, if the state ofv afterexpr-second is definitely assigned, and the state ofv after30

expr-first is “definitely assigned after true expression”, then the state ofv afterexpr is31

definitely assigned.32

o Otherwise, if the state ofv afterexpr-second is definitely assigned or “definitely assigned33

after false expression”, then the state ofv afterexpr is “definitely assigned after false34

expression”.35

o Otherwise, if the state ofv afterexpr-first is “definitely assigned after true expression”, and36

the state ofv afterexpr-second is “definitely assigned after true expression”, then the state37

of v afterexpr is “definitely assigned after true expression”.38

o Otherwise, the state ofv afterexpr is not definitely assigned.39

[Example: In the example40

class A 41
{ 42
 static void G(int x, int y) { 43
 int i; 44
 if (x >= 0 || (i = y) >= 0) { 45
 // i not definitely assigned 46
 } 47
 else { 48
 // i definitely assigned 49
 } 50
 // i not definitely assigned 51
 } 52
} 53

Chapter 12 Variables

111

the variablei is considered definitely assigned in one of the embedded statements of anif statement but not1

in the other. In theif statement in methodG, the variablei is definitely assigned in the second embedded2

statement because execution of the expression(i = y) always precedes execution of this embedded3

statement. In contrast, the variablei is not definitely assigned in the first embedded statement, since4

x >= 0 might have tested false, resulting in the variablei's being unassigned.end example]5

12.3.3.25 ! expressions6

For an expressionexpr of the form !expr-operand:7

• The definite assignment state ofv beforeexpr-operand is the same as the definite assignment state8

of v beforeexpr.9

• The definite assignment state ofv afterexpr is determined by:10

o If the state ofv afterexpr-operand is definitely assigned, then the state ofv afterexpr is11

definitely assigned.12

o If the state ofv afterexpr-operand is not definitely assigned, then the state ofv afterexpr is13

not definitely assigned.14

o If the state ofv afterexpr-operand is “definitely assigned after false expression”, then the15

state ofv afterexpr is “definitely assigned after true expression”.16

o If the state ofv afterexpr-operand is “definitely assigned after true expression”, then the17

state ofv afterexpr is “definitely assigned after false expression”.18

12.3.3.26 ?: expressions19

For an expressionexpr of the formexpr-cond ? expr-true : expr-false:20

• The definite assignment state ofv beforeexpr-cond is the same as the state ofv beforeexpr.21

• The definite assignment state ofv beforeexpr-true is definitely assigned if and only if the state ofv22

afterexpr-cond is definitely assigned or “definitely assigned after true expression”.23

• The definite assignment state ofv beforeexpr-false is definitely assigned if and only if the state ofv24

afterexpr-cond is definitely assigned or “definitely assigned after false expression”.25

12.4 Variable references26

A variable-reference is anexpression that is classified as a variable. Avariable-reference denotes a storage27

location that can be accessed both to fetch the current value and to store a new value.28

variable-reference:29

expression 30

[Note: In C and C++, avariable-reference is known as anlvalue. end note]31

12.5 Atomicity of variable references32

Reads and writes of the following data types shall be atomic:bool, char, byte, sbyte, short, ushort,33

uint, int, float, and reference types. In addition, reads andwrites of enum types with an underlying type34

in the previous list shall also be atomic. Reads and writes of other types, includinglong, ulong, double,35

anddecimal, as well as user-defined types, need not be atomic. Aside from the library functions designed36

for that purpose, there is no guarantee of atomic read-modify-write, such as in the case of increment or37

decrement.38

39

Chapter 13 Conversions

113

13. Conversions1

A conversion enables an expression of one type to be treated as another type. Conversions can beimplicit or2

explicit, and this determines whether an explicit cast is required. [Example: For instance, the conversion3

from typeint to typelong is implicit, so expressions of typeint can implicitly be treated as typelong.4

The opposite conversion, from typelong to typeint, is explicit and so an explicit cast is required.5

int a = 123; 6
long b = a; // implicit conversion from int to long 7
int c = (int) b; // explicit conversion from long to int 8

end example] Some conversions are defined by the language. Programs may also define their own9

conversions (§13.4).10

13.1 Implicit conversions11

The following conversions are classified as implicit conversions:12

• Identity conversions13

• Implicit numeric conversions14

• Implicit enumeration conversions.15

• Implicit reference conversions16

• Boxing conversions17

• Implicit constant expression conversions18

• User-defined implicit conversions19

Implicit conversions can occur in a variety of situations, including function member invocations (§14.4.3),20

cast expressions (§14.6.6), and assignments (§14.13).21

The pre-defined implicit conversions alwayssucceed and never cause exceptions to be thrown. [Note:22

Properly designed user-defined implicit conversions should exhibit these characteristics as well.end note]23

13.1.1 Identity conversion24

An identity conversion converts from any type to the same type. This conversion exists only such that an25

entity that already has a required type can be said to be convertible to that type.26

13.1.2 Implicit numeric conversions27

The implicit numeric conversions are:28

C# LANGUAGE SPECIFICATION

114

• Fromsbyte to short, int, long, float, double, or decimal.1

• Frombyte to short, ushort, int, uint, long, ulong, float, double, ordecimal.2

• Fromshort to int, long, float, double, ordecimal.3

• Fromushort to int, uint, long, ulong, float, double, ordecimal.4

• Fromint to long, float, double, ordecimal.5

• Fromuint to long, ulong, float, double, or decimal.6

• Fromlong to float, double, ordecimal.7

• Fromulong to float, double, ordecimal.8

• Fromchar to ushort, int, uint, long, ulong, float, double, ordecimal.9

• Fromfloat to double.10

Conversions fromint, uint, orlong to float and fromlong to double may cause a loss of precision,11

but will never cause a loss of magnitude. The other implicit numeric conversions never lose any information.12

There are no implicit conversions to thechar type, so values of the other integral types do not automatically13

convert to thechar type.14

13.1.3 Implicit enumeration conversions15

An implicit enumeration conversion permits thedecimal-integer-literal 0 to be converted to anyenum-type.16

13.1.4 Implicit reference conversions17

The implicit reference conversions are:18

• From anyreference-type to object.19

• From anyclass-type S to anyclass-type T, providedS is derived fromT.20

• From anyclass-type S to anyinterface-type T, providedS implementsT.21

• From anyinterface-type S to anyinterface-type T, providedS is derived fromT.22

• From anarray-type S with an element typeSE to anarray-type T with an element typeTE, provided all23

of the following are true:24

o S andT differ only in element type. In other words,S andT have the same number of dimensions.25

o BothSE andTE arereference-types.26

o An implicit reference conversion exists fromSE to TE.27

• From anyarray-type to System.Array.28

• From anydelegate-type to System.Delegate.29

• From anyarray-type or delegate-type to System.ICloneable.30

• From the null type to anyreference-type.31

The implicit reference conversions are those conversions betweenreference-types that can be proven to32

always succeed, and therefore require no checks at run-time.33

Reference conversions, implicit or explicit, never change the referential identity of the object being34

converted. [Note: In other words, while a reference conversion may change the type of the reference, it never35

changes the type or value of the object being referred to.end note]36

Chapter 13 Conversions

115

13.1.5 Boxing conversions1

A boxing conversion permits anyvalue-type to be implicitly converted to the typeobject or to any2

interface-type implemented by thevalue-type. Boxing a value of avalue-type consists of allocating an object3

instance and copying thevalue-type value into that instance.4

Boxing conversions are described further in §11.3.1.5

13.1.6 Implicit constant expression conversions6

An implicit constant expression conversion permits the following conversions:7

• A constant-expression (§14.15) of typeint can be converted to typesbyte, byte, short, ushort,8

uint, orulong, provided the value of theconstant-expression is within the range of the destination type.9

• A constant-expression of typelong can be converted to typeulong, provided the value of theconstant-10

expression is not negative.11

13.1.7 User-defined implicit conversions12

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by13

execution of a user-defined implicit conversion operator, followed by another optional standard implicit14

conversion. The exact rules for evaluating user-defined conversions are described in §13.4.3.15

13.2 Explicit conversions16

The following conversions are classified as explicit conversions:17

• All implicit conversions.18

• Explicit numeric conversions.19

• Explicit enumeration conversions.20

• Explicit reference conversions.21

• Explicit interface conversions.22

• Unboxing conversions.23

• User-defined explicit conversions.24

Explicit conversions can occur in cast expressions (§14.6.6).25

The set of explicit conversions includes all implicit conversions. [Note: This means that redundant cast26

expressions are allowed.end note]27

The explicit conversions that are not implicit conversions are conversions that cannot be proven to always28

succeed, conversions that are known to possibly lose information, and conversions across domains of types29

sufficiently different to merit explicit notation.30

13.2.1 Explicit numeric conversions31

The explicit numeric conversions are the conversions from anumeric-type to anothernumeric-type for32

which an implicit numeric conversion (§13.1.2) does not already exist:33

C# LANGUAGE SPECIFICATION

116

• Fromsbyte to byte, ushort, uint, ulong, orchar.1

• Frombyte to sbyte andchar.2

• Fromshort to sbyte, byte, ushort, uint, ulong, or char.3

• Fromushort to sbyte, byte, short, or char.4

• Fromint to sbyte, byte, short, ushort, uint, ulong, orchar.5

• Fromuint to sbyte, byte, short, ushort, int, or char.6

• Fromlong to sbyte, byte, short, ushort, int, uint, ulong, or char.7

• Fromulong to sbyte, byte, short, ushort, int, uint, long, or char.8

• Fromchar to sbyte, byte, orshort.9

• Fromfloat to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.10

• Fromdouble to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.11

• Fromdecimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.12

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible13

to convert from anynumeric-type to any othernumeric-type using a cast expression (§14.6.6).14

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An15

explicit numeric conversion is processed as follows:16

• For a conversion from an integral type to another integral type, the processing depends on the overflow17

checking context (§14.5.12) in which the conversion takes place:18

o In achecked context, the conversion succeeds if the value of the source operand is within the range19

of the destination type, but throws aSystem.OverflowException if the value of the source20

operand is outside the range of the destination type.21

o In anunchecked context, the conversion always succeeds, and proceeds as follows.22

• If the source type is larger than the destination type, then the source value is truncated by23

discarding its “extra” most significant bits. The result is then treated as a value of the destination24

type.25

• If the source type is smaller than the destination type, then the source value is either sign-26

extended or zero-extended so that it is the same size as the destination type. Sign-extension is27

used if the source type is signed; zero-extension is used if the source type is unsigned. The result28

is then treated as a value of the destination type.29

• If the source type is the same size as the destination type, then the source value is treated as a30

value of the destination type31

• For a conversion fromdecimal to an integral type, the source value is rounded towards zero to the32

nearest integral value, and this integral value becomes the result of the conversion. If the resulting integral33

value is outside the range of the destination type, aSystem.OverflowException is thrown. 34

• For a conversion fromfloator double to an integral type, the processing depends on the overflow-35

checking context (§14.5.12) in which the conversion takes place: 36

o In achecked context, the conversion proceeds as follows:37

• If the value of the source operand is within the range of the destination type, then it is rounded38

towards zero to the nearest integral value of the destination type, and this integral value is the39

result of the conversion.40

• Otherwise, aSystem.OverflowException is thrown.41

Chapter 13 Conversions

117

o In anunchecked context, the conversion always succeeds, and proceeds as follows.1

• If the value of the source operand is within the range of the destination type, then it is rounded2

towards zero to the nearest integral value of the destination type, and this integral value is the3

result of the conversion.4

• Otherwise, the result of the conversion is anunspecified value of the destination type.5

• For a conversion fromdouble to float, thedouble value is rounded to the nearestfloat value. If6

thedouble value is too small to represent as afloat, the result becomes positive zero or negative zero. If7

thedouble value is too large to represent as afloat, the result becomes positive infinity or negative8

infinity. If the double value is NaN, the result is also NaN.9

• For a conversion fromfloat or double to decimal, the source value is converted todecimal10

representation and rounded to the nearest number after the 28th decimal place if required (§11.1.6). If the11

source value is too small to represent as adecimal, the result becomes zero. If the source value is NaN,12

infinity, or too large to represent as adecimal, aSystem.OverflowException is thrown.13

• For a conversion fromdecimal to float or double, thedecimal value is rounded to the nearest14

double or float value. While this conversion may lose precision, it never causes an exception to be15

thrown.16

13.2.2 Explicit enumeration conversions17

The explicit enumeration conversions are:18

• Fromsbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, ordecimal to19

anyenum-type.20

• From anyenum-type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float,21

double, ordecimal.22

• From anyenum-type to any otherenum-type.23

An explicit enumeration conversion between two types is processed by treating any participatingenum-type24

as the underlying type of thatenum-type, and then performing an implicit or explicit numeric conversion25

between the resulting types. For example, given anenum-type E with and underlying type ofint, a26

conversion fromE to byte is processed as an explicit numeric conversion (§13.2.1) fromint to byte, and27

a conversion frombyte to E is processed as an implicit numeric conversion (§13.1.2) frombyte to int.28

13.2.3 Explicit reference conversions29

The explicit reference conversions are:30

• Fromobject to anyreference-type.31

• From anyclass-type S to anyclass-type T, providedS is a base class ofT.32

• From anyclass-type S to anyinterface-type T, providedS is not sealed and providedS does not33

implementT.34

• From anyinterface-type S to anyclass-type T, providedT is not sealed or providedT implementsS.35

• From anyinterface-type S to anyinterface-type T, providedS is not derived fromT.36

• From anarray-type S with an element typeSE to anarray-type T with an element typeTE, provided all37

of the following are true:38

o S andT differ only in element type. (In other words,S andT have the same number of dimensions.)39

o BothSE andTE arereference-types.40

o An explicit reference conversion exists fromSE to TE.41

C# LANGUAGE SPECIFICATION

118

• FromSystem.Array and the interfaces it implements, to anyarray-type.1

• FromSystem.Delegate and the interfaces it implements, to anydelegate-type.2

The explicit reference conversionsare those conversions between reference-types that require run-time3

checks to ensure they are correct.4

For an explicit reference conversion to succeed at run-time, the value of the source operand must benull,5

or theactual type of the object referenced by the source operand must be a type that can be converted to the6

destination type by an implicit reference conversion (§13.1.4). If an explicit reference conversion fails, a7

System.InvalidCastException is thrown.8

Reference conversions, implicit or explicit, never change the referential identity of the object being9

converted. [Note: In other words, while a reference conversion may change the type of the reference, it never10

changes the type or value of the object being referred to.end note]11

13.2.4 Unboxing conversions12

An unboxing conversion permits an explicit conversion from typeobject to anyvalue-type or from any13

interface-type to anyvalue-type that implements theinterface-type. An unboxing operation consists of first14

checking that the object instance is a boxed value of the givenvalue-type, and then copying the value out of15

the instance.16

Unboxing conversions are described further in §11.3.2.17

13.2.5 User-defined explicit conversions18

A user-defined explicit conversion consists of anoptional standard explicit conversion, followed by19

execution of a user-defined implicit or explicit conversion operator, followed by another optional standard20

explicit conversion. The exact rules for evaluating user-defined conversions are described in §13.4.4.21

13.3 Standard conversions22

The standard conversions are those pre-defined conversions that can occur as part of a user-defined23

conversion.24

13.3.1 Standard implicit conversions25

The following implicit conversions are classified as standard implicit conversions:26

• Identity conversions (§13.1.1)27

• Implicit numeric conversions (§13.1.2)28

• Implicit reference conversions (§13.1.4)29

• Boxing conversions (§13.1.5)30

• Implicit constant expression conversions (§13.1.6)31

The standard implicit conversions specificallyexclude user-defined implicit conversions.32

13.3.2 Standard explicit conversions33

The standard explicit conversions are all standardimplicit conversions plus the subset of the explicit34

conversions for which an opposite standard implicit conversion exists. [Note: In other words, if a standard35

implicit conversion exists from a typeA to a typeB, then a standard explicit conversion exists from typeA to36

typeB and from typeB to typeA. end note]37

Chapter 13 Conversions

119

13.4 User-defined conversions1

C# allows the pre-defined implicit and explicit conversions to be augmented byuser-defined conversions.2

User-defined conversions are introduced by declaring conversion operators (§17.9.3) in class and struct3

types.4

13.4.1 Permitted user-defined conversions5

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine6

an already existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from7

a source typeS to a target typeT only if all of the following are true:8

• S andT are different types.9

• EitherS or T is the class or struct type in which the operator declaration takes place.10

• NeitherS norT is object or aninterface-type.11

• T is not a base class ofS, andS is not a base class ofT.12

The restrictions that apply to user-defined conversions are discussed further in §17.9.3.13

13.4.2 Evaluation of user-defined conversions14

A user-defined conversion converts avalue from its type, called thesource type, to another type, called the15

target type. Evaluation of a user-defined conversion centers on finding themost specific user-defined16

conversion operator for the particular source and target types. This determination is broken into several17

steps:18

• Finding the set of classes and structs from which user-defined conversion operators will be considered.19

This set consists of the source type and its base classes and the target type and its base classes (with the20

implicit assumptions that only classes and structs candeclare user-defined operators, and that non-class21

types have no base classes).22

• From that set of types, determining which user-defined conversion operators are applicable. For a23

conversion operator to be applicable, it must be possible to perform a standard conversion (§13.3) from the24

source type to the operand type of the operator, and it must be possible to perform a standard conversion25

from the result type of the operator to the target type.26

• From the set of applicable user-defined operators, determining which operator is unambiguously the27

most specific. In general terms, the most specific operator is the operator whose operand type is “closest” to28

the source type and whose result type is “closest” to the target type. The exact rules for establishing the most29

specific user-defined conversion operator are defined in the following sections.30

Once a most specific user-defined conversion operator has been identified, the actual execution of the user-31

defined conversion involves up to three steps:32

• First, if required, performing a standard conversionfrom the source type to the operand type of the user-33

defined conversion operator.34

• Next, invoking the user-defined conversion operator to perform the conversion.35

• Finally, if required, performing a standard conversion from the result type of the user-defined36

conversion operator to the target type.37

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In38

other words, a conversion from typeS to typeT will never first execute a user-defined conversion fromS to39

X and then execute a user-defined conversion fromX to T.40

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following41

sections. The definitions make use of the following terms:42

C# LANGUAGE SPECIFICATION

120

• If a standard implicit conversion (§13.3.1) exists from a typeA to a typeB, and if neitherA norB are1

interface-types, thenA is said to beencompassed by B, andB is said toencompass A.2

• Themost encompassing type in a set of types is the one type that encompasses all other types in the set.3

If no single type encompasses all other types, then the set has no most encompassing type. In more intuitive4

terms, the most encompassing type is the “largest” type in the set—the one type to which each of the other5

types can be implicitly converted.6

• Themost encompassed type in a set of types is the one type that is encompassed by all other types in the7

set. If no single type is encompassed by all other types, then the set has no most encompassed type. In more8

intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can be9

implicitly converted to each of the other types.10

13.4.3 User-defined implicit conversions11

A user-defined implicit conversion from typeS to typeT is processed as follows:12

• Find the set of types,D, from which user-defined conversion operators will be considered. This set13

consists ofS (if S is a class or struct), the base classes ofS (if S is a class),T (if T is a class or struct), and14

the base classes ofT (if T is a class).15

• Find the set of applicable user-defined conversionoperators, U. This set consists of the user-defined16

implicit conversion operators declared by the classes or structs inD that convert from a type encompassingS17

to a type encompassed by T. IfU is empty, the conversion is undefined and a compile-time error occurs.18

• Find the most specific source type,SX, of the operators inU:19

o If any of the operators inU convert fromS, thenSX is S.20

o Otherwise,SX is the most encompassed type in the combined set of source types of the operators21

in U. If no most encompassed type can be found, then the conversion is ambiguous and a compile-22

time error occurs.23

• Find the most specific target type,TX, of the operators inU:24

o If any of the operators inU convert toT, thenTX is T.25

o Otherwise,TX is the most encompassing type in the combined set of target types of the operators26

in U. If no most encompassing type can be found, then the conversion is ambiguous and a compile-27

time error occurs.28

• If U contains exactly one user-defined conversion operator that converts fromSX to TX, then this is the29

most specific conversion operator. If no such operator exists, or if more than one such operator exists, then30

the conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is31

applied:32

o If S is notSX, then a standard implicit conversion fromS to SX is performed.33

o The most specific user-defined conversion operator is invoked to convert fromSX to TX.34

o If TX is notT, then a standard implicit conversion fromTX to T is performed.35

13.4.4 User-defined explicit conversions36

A user-defined explicit conversion from typeS to typeT is processed as follows:37

Chapter 13 Conversions

121

• Find the set of types,D, from which user-defined conversion operators will be considered. This set1

consists ofS (if S is a class or struct), the base classes ofS (if S is a class),T (if T is a class or struct), and2

the base classes ofT (if T is a class).3

• Find the set of applicable user-defined conversionoperators, U. This set consists of the user-defined4

implicit or explicit conversion operators declared by the classes or structs inD that convert from a type5

encompassing or encompassed byS to a type encompassing or encompassed byT. If U is empty, the6

conversion is undefined and a compile-time error occurs.7

• Find the most specific source type,SX, of the operators inU:8

o If any of the operators inU convert from S, thenSX is S.9

o Otherwise, if any of the operators inU convert from types that encompass S, thenSX is the most10

encompassed type in the combined set of source types of those operators. If no most encompassed11

type can be found, then the conversion is ambiguous and a compile-time error occurs.12

o Otherwise,SX is the most encompassing type in the combined set of source types of the operators13

in U. If no most encompassing type can be found, then the conversion is ambiguous and a compile-14

time error occurs.15

• Find the most specific target type,TX, of the operators inU:16

o If any of the operators inU convert toT, thenTX is T.17

o Otherwise, if any of the operators inU convert to types that are encompassed byT, thenTX is the18

most encompassing type in the combined set of source types of those operators. If no most19

encompassing type can be found, then the conversion is ambiguous and a compile-time error occurs.20

o Otherwise,TX is the most encompassed type in the combined set of target types of the operators inU.21

If no most encompassed type can be found, then the conversion is ambiguous and a compile-time22

error occurs.23

• If U contains exactly one user-defined conversion operator that converts fromSX to TX, then this is the24

most specific conversion operator. If no such operator exists, or if more than one such operator exists, then25

the conversion is ambiguous and a compile-time error occurs. Otherwise, the user-defined conversion is26

applied:27

o If S is notSX, then a standard explicit conversion fromS to SX is performed.28

o The most specific user-defined conversion operator is invoked to convert fromSX to TX.29

o If TX is notT, then a standard explicit conversion fromTX to T is performed.30

Chapter 14 Expressions

123

14. Expressions1

An expression is a sequence of operators and operands. This chapter defines the syntax, order of evaluation2

of operands and operators, and meaning of expressions.3

14.1 Expression classifications4

An expression is classified as one of the following:5

• A value. Every value has an associated type.6

• A variable. Every variable has an associated type, namely the declared type of the variable.7

• A namespace. An expression with this classification can only appear as the left-hand side of amember-8

access (§14.5.4). In any other context, an expression classified as a namespace causes a compile-time error.9

• A type. An expression with this classification can only appear as the left-hand side of amember-access10

(§14.5.4), or as an operand for theas operator (§14.9.10), theis operator (§14.9.9), or thetypeof operator11

(§14.5.11). In any other context, an expression classified as a type causes a compile-time error.12

• A method group, which is a set of overloaded methods resulting from a member lookup (§14.3). A13

method group may have an associated instance expression. When an instance method is invoked, the result14

of evaluating the instance expression becomes the instance represented bythis (§14.5.7). A method group15

is only permitted in aninvocation-expression (§14.5.5) or adelegate-creation-expression (§14.5.10.3). In16

any other context, an expression classified as a method group causes a compile-time error.17

• A property access. Every property access has an associated type, namely the type of the property.18

Furthermore, a property access may have an associated instance expression. When an accessor (theget or19

set block) of an instance property access is invoked, the result of evaluating the instance expression20

becomes the instance represented bythis (§14.5.7).21

• An event access. Every event access has an associated type, namely the type of the event. Furthermore,22

an event access may have an associated instance expression. An event access may appear as the left-hand23

operand of the+= and-= operators (§14.13.3). In any other context, an expression classified as an event24

access causes a compile-time error.25

• An indexer access. Every indexer access has an associated type, namely the element type of the26

indexer. Furthermore, an indexer access has an associated instance expression and an associated argument27

list. When an accessor (theget or set block) of an indexer access is invoked, the result of evaluating the28

instance expression becomes the instance represented bythis (§14.5.7), and the result of evaluating the29

argument list becomes the parameter list of the invocation.30

• Nothing. This occurs when the expression is an invocation of a method with a return type ofvoid. An31

expression classified as nothing is only valid in the context of astatement-expression (§15.6).32

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted33

above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.34

A property access or indexer access is always reclassified as a value by performing an invocation of theget-35

accessor or theset-accessor. The particular accessor is determined by the context of the property or indexer36

access: If the access is the target of an assignment, theset-accessor is invoked to assign a new value37

(§14.13.1). Otherwise, theget-accessor is invoked to obtain the current value (§14.1.1).38

C# LANGUAGE SPECIFICATION

124

14.1.1 Values of expressions1

Most of the constructs that involve an expression ultimately require the expression to denote avalue. In such2

cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-time error3

occurs. However, if the expression denotes a property access, an indexer access, or a variable, the value of4

the property, indexer, or variable is implicitly substituted:5

• The value of a variable is simply the value currently stored in the storage location identified by the6

variable. A variable must be considered definitelyassigned (§12.3) before its value can be obtained, or7

otherwise a compile-time error occurs.8

• The value of a property access expression is obtained by invoking theget-accessor of the property. If the9

property has noget-accessor, a compile-time error occurs. Otherwise, a function member invocation10

(§14.4.3) is performed, and the result of the invocation becomes the value of the property access expression.11

• The value of an indexer access expression is obtained by invoking theget-accessor of the indexer. If the12

indexer has noget-accessor, a compile-time error occurs. Otherwise, a function member invocation13

(§14.4.3) is performed with the argument list associated with the indexer access expression, and the result of14

the invocation becomes the value of the indexer access expression.15

14.2 Operators16

Expressions are constructed fromoperands andoperators. The operators of an expression indicate which17

operations to apply to the operands. Examples of operators include+, -, *, /, andnew. Examples of18

operands include literals, fields, local variables, and expressions.19

There are three kinds of operators:20

• Unary operators. The unary operators take one operand and use either prefix notation (such as�x) or21

postfix notation (such asx++).22

• Binary operators. The binary operators take two operands and all use infix notation (such asx + y).23

• Ternary operator. Only one ternary operator,?:, exists; it takes three operands and uses infix notation24

(c ? x : y).25

The order of evaluation of operators in an expression is determined by theprecedence andassociativity of26

the operators (§14.2.1).27

The order in which operands in an expression are evaluated, is left to right. [Example: For example, in28

F(i) + G(i++) * H(i), methodF is called using the old value ofi, then methodG is called with the old29

value ofi, and, finally, methodH is called with the new value ofi. This is separate from and unrelated to30

operator precedence.end example] Certain operators can beoverloaded. Operator overloading permits user-31

defined operator implementations to be specified for operations where one or both of the operands are of a32

user-defined class or struct type (§14.2.2).33

14.2.1 Operator precedence and associativity34

When an expression contains multiple operators, theprecedence of the operators controls the order in which35

the individual operators are evaluated. [Note: For example, the expressionx + y * z is evaluated as36

x + (y * z) because the* operator has higher precedence than the binary+ operator.end note] The37

precedence of an operator is established by the definition of its associated grammar production. [Note: For38

example, anadditive-expression consists of a sequence ofmultiplicative-expressions separated by+ or -39

 operators, thus giving the+ and- operators lower precedence than the*, /, and% operators.end note]40

The following table summarizes all operators in order of precedence from highest to lowest:41

42

Chapter 14 Expressions

125

Section Category Operators

14.5 Primary x.y f(x) a[x] x++ x-- new

typeof checked unchecked

14.6 Unary + - ! ~ ++x --x (T)x

14.7 Multiplicative * / %

14.7 Additive + -

14.8 Shift << >>

14.9 Relational and
type-testing

< > <= >= is as

14.9 Equality == !=

14.10 Logical AND &

14.10 Logical XOR ^

14.10 Logical OR |

14.11 Conditional AND &&

14.11 Conditional OR ||

14.12 Conditional ?:

14.13 Assignment = *= /= %= += -= <<= >>= &= ^= |=

1

When an operand occurs between two operators with the same precedence, theassociativity of the operators2

controls the order in which the operations are performed:3

• Except for the assignment operators, all binary operators areleft-associative, meaning that operations4

are performed from left to right. [Example: For example,x + y + z is evaluated as(x + y) + z. end5

example]6

• The assignment operators and the conditional operator (?:) areright-associative, meaning that7

operations are performed from right to left. [Example: For example,x = y = z is evaluated as8

x = (y = z). end example]9

Precedence and associativity can be controlled using parentheses. [Example: For example,x + y * z first10

multipliesy by z and then adds the result tox, but(x + y) * z first addsx andy and then multiplies the11

result byz. end example]12

14.2.2 Operator overloading13

All unary and binary operators have predefined implementations that are automatically available in any14

expression. In addition to the predefined implementations, user-defined implementations can be introduced15

by includingoperator declarations in classes and structs (§17.9). User-defined operator implementations16

always take precedence over predefined operator implementations: Only when no applicable user-defined17

operator implementations exist will the predefined operator implementations be considered.18

Theoverloadable unary operators are:19

+ - ! ~ ++ -- true false 20

[Note: Althoughtrue andfalse are not used explicitly in expressions, they are considered operators21

because they are invoked in several expression contexts: boolean expressions (§14.16) and expressions22

involving the conditional (§14.12), and conditional logical operators (§14.11).end note]23

Theoverloadable binary operators are:24

+ - * / % & | ^ << >> == != > < >= <= 25

C# LANGUAGE SPECIFICATION

126

Only the operators listed above can be overloaded. In particular, it is not possible to overload member1

access, method invocation, or the=, &&, ||, ?:, checked, unchecked, new, typeof, as, and2

is operators.3

When a binary operator is overloaded, the corresponding assignment operator, if any, is also implicitly4

overloaded. For example, an overload of operator* is also an overload of operator*=. This is described5

further in §14.13. Note that the assignment operator itself (=) cannot be overloaded. An assignment always6

performs a simple bit-wise copy of a value into a variable.7

Cast operations, such as(T)x, are overloaded by providing user-defined conversions (§13.4).8

Element access, such asa[x], is not considered an overloadable operator. Instead, user-defined indexing is9

supported through indexers (§17.8).10

In expressions, operators are referenced using operatornotation, and in declarations, operators are referenced11

using functional notation. The following table shows the relationship between operator and functional12

notations for unary and binary operators. In the first entry,op denotes any overloadable unary prefix13

operator. In the second entry,op denotes the unary postfix++ and-- operators. In the third entry,op14

denotes any overloadable binary operator. [Note: For an example of overloading the++ and-- operators see15

§17.9.1.end note]16

17

Operator notation Functional notation

op x operator op(x)

x op operator op(x)

x op y operator op(x, y)

18

User-defined operator declarations always require at least one of the parameters to be of the class or struct19

type that contains the operator declaration. [Note: Thus, it is not possible for a user-defined operator to have20

the same signature as a predefined operator.end note]21

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.22

[Example: For example, the/ operator is always a binary operator, always has the precedence level23

specified in §14.2.1, and is always left-associative.end example]24

[Note:While it is possible for a user-defined operator to perform any computation it pleases,25

implementations that produce results other than those that are intuitively expected are strongly discouraged.26

For example, an implementation ofoperator == should compare the two operands for equality and return27

an appropriatebool result.end note]28

The descriptions of individual operators in §14.5 through §14.13 specify the predefined implementations of29

the operators and any additional rules that apply to each operator. The descriptions make use of the terms30

unary operator overload resolution, binary operator overload resolution, andnumeric promotion,31

definitions of which are found in the following sections.32

14.2.3 Unary operator overload resolution33

An operation of the formop x or x op, whereop is an overloadable unary operator, andx is an expression of34

typeX, is processed as follows:35

Chapter 14 Expressions

127

• The set of candidate user-defined operators provided byX for the operationoperator op(x) is1

determined using the rules of §14.2.5.2

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate3

operators for the operation. Otherwise, the predefined unaryoperator op implementations become the set4

of candidate operators for the operation. The predefined implementations of a given operator are specified in5

the description of the operator (§14.5 and §14.6).6

• The overload resolution rules of §14.4.2 are applied to the set of candidate operators to select the best7

operator with respect to the argument list(x), and this operator becomes the result of the overload8

resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.9

14.2.4 Binary operator overload resolution10

An operation of the formx op y, whereop is an overloadable binary operator,x is an expression of typeX,11

andy is an expression of typeY, is processed as follows:12

• The set of candidate user-defined operators provided byX andY for the operationoperator op(x, y)13

is determined. The set consists of the union of the candidate operators provided byX and the candidate14

operators provided byY, each determined using the rules of §14.2.5. IfX andY are the same type, or ifX and15

Y are derived from a common base type, then sharedcandidate operators only occur in the combined set16

once.17

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate18

operators for the operation. Otherwise, the predefined binaryoperator op implementations become the set19

of candidate operators for the operation. The predefined implementations of a given operator are specified in20

the description of the operator (§14.7 through §14.13).21

• The overload resolution rules of §14.4.2 are applied to the set of candidate operators to select the best22

operator with respect to the argument list(x, y), and this operator becomes the result of the overload23

resolution process. If overload resolution fails to select a single best operator, a compile-time error occurs.24

14.2.5 Candidate user-defined operators25

Given a typeT and an operationoperator op(A), whereop is an overloadable operator andA is an26

argument list, the set of candidate user-defined operators provided byT for operator op(A) is determined27

as follows:28

• For alloperator op declarations inT, if at least one operator is applicable (§14.4.2.1) with respect to29

the argument listA, then the set of candidate operators consists of all applicableoperator op declarations30

in T.31

• Otherwise, ifT is object, the set of candidate operators is empty.32

• Otherwise, the set of candidate operators provided byT is the set of candidate operators provided by the33

direct base class ofT.34

14.2.6 Numeric promotions35

This clause is informative.36

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the37

predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather38

an effect of applying overload resolution to the predefined operators. Numeric promotion specifically does39

not affect evaluation of user-defined operators, although user-defined operators can be implemented to40

exhibit similar effects.41

As an example of numeric promotion, consider the predefined implementations of the binary* operator:42

C# LANGUAGE SPECIFICATION

128

int operator *(int x, int y); 1
uint operator *(uint x, uint y); 2
long operator *(long x, long y); 3
ulong operator *(ulong x, ulong y); 4
float operator *(float x, float y); 5
double operator *(double x, double y); 6
decimal operator *(decimal x, decimal y); 7

When overload resolution rules (§14.4.2) are applied to this set of operators, the effect is to select the first of8

the operators for which implicit conversions exist from the operand types. [Example: For example, for the9

operationb * s, whereb is abyte ands is ashort, overload resolution selectsoperator *(int, int)10

as the best operator. Thus, the effect is thatb ands are converted toint, and the type of the result isint.11

Likewise, for the operationi * d, wherei is anint andd is adouble, overload resolution selects12

operator *(double, double) as the best operator.end example]13

End of informative text.14

14.2.6.1 Unary numeric promotions15

This clause is informative.16

Unary numeric promotion occurs for the operands of the predefined+, �, and~ unary operators. Unary17

numeric promotion simply consists of converting operands of typesbyte, byte, short, ushort, orchar18

to typeint. Additionally, for the unary� operator, unary numeric promotion converts operands of type19

uint to typelong.20

End of informative text.21

14.2.6.2 Binary numeric promotions22

This clause is informative.23

Binary numeric promotion occurs for the operands of the predefined+, �, *, /, %, &, |, ^, ==, !=, >, <, >=,24

and<= binary operators. Binary numeric promotion implicitly converts both operands to a common type25

which, in case of the non-relational operators, also becomes the result type of the operation. Binary numeric26

promotion consists of applying the following rules, in the order they appear here:27

• If either operand is of typedecimal, the other operand is converted to typedecimal, or a compile-28

time error occurs if the other operand is of typefloat or double.29

• Otherwise, if either operand is of typedouble, the other operand is converted to typedouble.30

• Otherwise, if either operand is of typefloat, the other operand is converted to typefloat.31

• Otherwise, if either operand is of typeulong, the other operand is converted to typeulong, or a32

compile-time error occurs if the other operand is of typesbyte, short, int, orlong.33

• Otherwise, if either operand is of typelong, the other operand is converted to typelong.34

• Otherwise, if either operand is of typeuint and the other operand is of typesbyte, short, or int,35

both operands are converted to typelong.36

• Otherwise, if either operand is of typeuint, the other operand is converted to typeuint.37

• Otherwise, both operands are converted to typeint.38

[Note: Note that the first rule disallows any operations that mix thedecimal type with thedouble and39

float types. The rule follows from the fact that there are no implicit conversions between thedecimal40

type and thedouble andfloat types.end note]41

[Note: Also note that it is not possible for an operand to be of typeulong when the other operand is of a42

signed integral type. The reason is that no integral type exists that can represent the full range ofulong as43

well as the signed integral types.end note]44

Chapter 14 Expressions

129

In both of the above cases, a cast expression can be usedto explicitly convert one operand to a type that is1

compatible with the other operand.2

[Example: In the example3

decimal AddPercent(decimal x, double percent) { 4
 return x * (1.0 + percent / 100.0); 5
} 6

a compile-time error occurs because adecimal cannot be multiplied by adouble. The error is resolved by7

explicitly converting the second operand todecimal, as follows:8

decimal AddPercent(decimal x, double percent) { 9
 return x * (decimal)(1.0 + percent / 100.0); 10
} 11

end example]12

End of informative text.13

14.3 Member lookup14

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A15

member lookup may occur as part of evaluating asimple-name (§14.5.2) or amember-access (§14.5.4) in an16

expression.17

A member lookup of a nameN in a typeT is processed as follows:18

• First, the set of all accessible (§10.5) members namedN declared inT and the base types (§14.3.1) ofT19

is constructed. Declarations that include anoverride modifier are excluded from the set. If no members20

namedN exist and are accessible, then the lookup produces no match, and the following steps are not21

evaluated.22

• Next, members that are hidden by other members are removed from the set. For every memberS.M in23

the set, whereS is the type in which the memberM is declared, the following rules are applied:24

o If M is a constant, field, property, event, type, or enumeration member, then all members declared in25

a base type ofS are removed from the set.26

o If M is a method, then all non-method members declared in a base type ofS are removed from the27

set, and all methods with the same signature asM declared in a base type ofS are removed from the28

set.29

• Finally, having removed hidden members, the result of the lookup is determined:30

o If the set consists of a single non-method member, then this member is the result of the lookup.31

o Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.32

o Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur33

for a member lookup in an interface that has multiple direct base interfaces).34

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single-35

inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of36

the lookup rules is simply that derived members hide base members with the same name or signature. Such37

single-inheritance lookups are never ambiguous. Theambiguities that can possibly arise from member38

lookups in multiple-inheritance interfaces are described in §20.2.5.39

14.3.1 Base types40

For purposes of member lookup, a typeT is considered to have the following base types:41

C# LANGUAGE SPECIFICATION

130

• If T is object, thenT has no base type.1

• If T is avalue-type, the base type ofT is the class typeobject.2

• If T is aclass-type, the base types ofT are the base classes of T, including the class typeobject.3

• If T is aninterface-type, the base types ofT are the base interfaces ofT and the class typeobject.4

• If T is anarray-type, the base types ofT are the class typesSystem.Array andobject.5

• If T is adelegate-type, the base types ofT are the class typesSystem.Delegate andobject.6

14.4 Function members7

Function members are members that contain executable statements. Function members are always members8

of types and cannot be members of namespaces. C# defines the following categories of function members:9

• Methods10

• Properties11

• Events12

• Indexers13

• User-defined operators14

• Instance constructors15

• Static constructors16

• Destructors17

Except for static constructors and destructors (whichcannot be invoked explicitly), the statements contained18

in function members are executed through function member invocations. The actual syntax for writing a19

function member invocation depends on the particular function member category.20

The argument list (§14.4.1) of a function member invocation provides actual values or variable references21

for the parameters of the function member.22

Invocations of methods, indexers, operators, and instance constructors employ overload resolution to23

determine which of a candidate set of function members to invoke. This process is described in §14.4.2.24

Once a particular function member has been identified at compile-time, possibly through overload25

resolution, the actual run-time process of invoking the function member is described in §14.4.3.26

[Note: The following table summarizes the processing that takes place in constructs involving the six27

categories of function members that can be explicitly invoked. In the table,e, x, y, andvalue indicate28

expressions classified as variables or values,T indicates an expression classified as a type,F is the simple29

name of a method, andP is the simple name of a property.30

31

Construct Example Description

F(x, y) Overload resolution is applied to select the best methodF in the
containing class or struct. The method is invoked with the
argument list(x, y). If the method is notstatic, the
instance expression isthis.

Method
invocation

T.F(x, y) Overload resolution is applied to select the best methodF in the
class or struct T. A compile-time error occurs if the method is
notstatic. The method is invoked with the argument list
(x, y).

Chapter 14 Expressions

131

Construct Example Description

e.F(x, y) Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type ofe. A compile-time
error occurs if the method isstatic. The method is invoked
with the instance expressione and the argument list(x, y).

P Theget accessor of the propertyP in the containing class or
struct is invoked. A compile-time error occurs ifP is write-
only. If P is notstatic, the instance expression isthis.

P = value Theset accessor of the propertyP in the containing class or
struct is invoked with the argument list(value). A compile-
time error occurs ifP is read-only. IfP is notstatic, the
instance expression isthis.

T.P Theget accessor of the propertyP in the class or structT is
invoked. A compile-time error occurs ifP is notstatic or if P
is write-only.

T.P = value Theset accessor of the propertyP in the class or structT is
invoked with the argument list(value). A compile-time error
occurs ifP is notstatic or if P is read-only.

e.P Theget accessor of the propertyP in the class, struct, or
interface given by the type ofe is invoked with the instance
expressione. A compile-time error occurs ifP is static or if
P is write-only.

Property
access

e.P = value Theset accessor of the propertyP in the class, struct, or
interface given by the type ofe is invoked with the instance
expressione and the argument list(value). A compile-time
error occurs ifP is static or if P is read-only.

E += value Theadd accessor of the eventE in the containing class or struct
is invoked. IfE is notstatic, the instance expression isthis.

E -= value Theremove accessor of the eventE in the containing class or
struct is invoked. IfE is notstatic, the instance expression is
this.

T.E += value Theadd accessor of the eventE in the class or structT is
invoked. A compile-time error occurs ifE is notstatic.

T.E -= value Theremove accessor of the eventE in the class or structT is
invoked. A compile-time error occurs ifE is notstatic.

e.E += value Theadd accessor of the eventE in the class, struct, or interface
given by the type ofe is invoked with the instance expression
e. A compile-time error occurs ifE is static.

Event access

e.E -= value Theremove accessor of the eventE in the class, struct, or
interface given by the type ofe is invoked with the instance
expressione. A compile-time error occurs ifE is static.

Indexer
access

e[x, y] Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. Theget

accessor of the indexer is invoked with the instance expression
e and the argument list(x, y). A compile-time error occurs if
the indexer is write-only.

C# LANGUAGE SPECIFICATION

132

Construct Example Description

e[x, y] = value Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type ofe. Theset
accessor of the indexer is invoked with the instance expression
e and the argument list(x, y, value). A compile-time error
occurs if the indexer is read-only.

-x Overload resolution is applied to select the best unary operator
in the class or struct given by the type ofx. The selected
operator is invoked with the argument list(x).

Operator
invocation

x + y Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument list(x, y).

Instance
constructor
invocation

new T(x, y) Overload resolution is applied to select the best instance
constructor in the class or struct T. The instance constructor is
invoked with the argument list(x, y).

end note]1

14.4.1 Argument lists2

Every function member invocation includes an argument list, which provides actual values or variable3

references for the parameters of the function member. The syntax for specifying the argument list of a4

function member invocation depends on the function member category:5

• For instance constructors, methods, and delegates, the arguments are specified as anargument-list, as6

described below.7

• For properties, the argument list is empty when invoking theget accessor, and consists of the8

expression specified as the right operand of the assignment operator when invoking theset accessor.9

• For events, the argument list consists of the expression specified as the right operand of the+= or -=10

operator.11

• For indexers, the argument list consists of the expressions specified between the square brackets in the12

indexer access. When invoking theset accessor, the argument list additionally includes the expression13

specified as the right operand of the assignment operator.14

• For user-defined operators, the argument list consists of the single operand of the unary operator or the15

two operands of the binary operator.16

The arguments of properties (§17.6), events (§17.7), indexers (§17.8), and user-defined operators (§17.9) are17

always passed as value parameters (§17.5.1.1). Reference and output parameters are not supported for these18

categories of function members.19

The arguments of an instance constructor, method, or delegate invocation are specified as anargument-list:20

argument-list:21

argument22

argument-list , argument23

argument:24

expression25

ref variable-reference26

out variable-reference27

An argument-list consists of one or morearguments, separated by commas. Each argument can take one of28

the following forms:29

Chapter 14 Expressions

133

• An expression, indicating that the argument is passed as a value parameter (§17.5.1.1).1

• The keywordref followed by avariable-reference (§12.3.3), indicating that the argument is passed as a2

reference parameter (§17.5.1.2). A variable must be definitely assigned (§12.3) before it can be passed as a3

reference parameter. A volatile field (§17.4.3)cannot be passed as a reference parameter.4

• The keywordout followed by avariable-reference (§12.3.3), indicating that the argument is passed as5

an output parameter (§17.5.1.3). A variable is considered definitely assigned (§12.3) following a function6

member invocation in which the variable is passed as an output parameter. A volatile field (§17.4.3) cannot7

be passed as an output parameter.8

During the run-time processing of a function member invocation (§14.4.3), the expressions or variable9

references of an argument list are evaluated in order, from left to right, as follows:10

• For a value parameter, the argument expression is evaluated and an implicit conversion (§13.1) to the11

corresponding parameter type is performed. The resulting value becomes the initial value of the value12

parameter in the function member invocation.13

• For a reference or output parameter, the variable reference is evaluated and the resulting storage location14

becomes the storage location represented by the parameter in the function member invocation. If the variable15

reference given as a reference or output parameter is an array element of areference-type, a run-time check16

is performed to ensure that the element type of the array is identical to the type of the parameter. If this17

check fails, aSystem.ArrayTypeMismatchException is thrown.18

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter array19

(§17.5.1.4). Such function members are invoked either in their normal form or in their expanded form20

depending on which is applicable (§14.4.2.1):21

• When a function member with a parameter array is invoked in its normal form, the argument given for22

the parameter array must be a single expression ofa type that is implicitly convertible (§13.1) to the23

parameter array type. In this case, the parameter array acts precisely like a value parameter.24

• When a function member with a parameter array is invoked in its expanded form, the invocation must25

specify zero or more arguments for the parameter array, where each argument is an expression of a type that26

is implicitly convertible (§13.1) to the element typeof the parameter array. In this case, the invocation27

creates an instance of the parameter array type with a length corresponding to the number of arguments,28

initializes the elements of the array instance with the given argument values, and uses the newly created29

array instance as the actual argument.30

The expressions of an argument list are alwaysevaluated in the order they are written. [Example: Thus, the31

example32

class Test 33
{ 34
 static void F(int x, int y, int z) { 35
 System.Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z); 36
 } 37

 static void Main() { 38
 int i = 0; 39
 F(i++, i++, i++); 40
 } 41
} 42

produces the output43

x = 0, y = 1, z = 2 44

end example]45

The array covariance rules (§19.5) permit a value of an array typeA[] to be a reference to an instance of an46

array typeB[], provided an implicit reference conversion exists fromB to A. Because of these rules, when47

an array element of areference-type is passed as a reference or outputparameter, a run-time check is48

C# LANGUAGE SPECIFICATION

134

required to ensure that the actual element type of the array isidentical to that of the parameter. [Example: In1

the example2

class Test 3
{ 4
 static void F(ref object x) {�} 5

 static void Main() { 6
 object[] a = new object[10]; 7
 object[] b = new string[10]; 8
 F(ref a[0]); // Ok 9
 F(ref b[1]); // ArrayTypeMismatchException 10
 } 11
} 12

the second invocation ofF causes aSystem.ArrayTypeMismatchException to be thrown because the13

actual element type ofb is string and notobject. end example]14

When a function member with a parameter array is invoked in its expanded form, the invocation is15

processed exactly as if an array creation expression with an array initializer (§14.5.10.2) was inserted around16

the expanded parameters. [Example: For example, given the declaration17

void F(int x, int y, params object[] args); 18

the following invocations of the expanded form of the method19

F(10, 20); 20
F(10, 20, 30, 40); 21
F(10, 20, 1, "hello", 3.0); 22

correspond exactly to23

F(10, 20, new object[] {}); 24
F(10, 20, new object[] {30, 40}); 25
F(10, 20, new object[] {1, "hello", 3.0}); 26

end example] In particular, note that an empty array is created when there are zero arguments given for the27

parameter array.28

14.4.2 Overload resolution29

Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an30

argument list and a set of candidate function members. Overload resolution selects the function member to31

invoke in the following distinct contexts within C#:32

• Invocation of a method named in aninvocation-expression (§14.5.5).33

• Invocation of an instance constructor named in anobject-creation-expression (§14.5.10.1).34

• Invocation of an indexer accessor through anelement-access (§14.5.6).35

• Invocation of a predefined or user-defined operator referenced in an expression (§14.2.3 and §14.2.4).36

Each of these contexts defines the set of candidatefunction members and the list of arguments in its own37

unique way. However, once the candidate function members and the argument list have been identified, the38

selection of the best function member is the same in all cases:39

Chapter 14 Expressions

135

• First, the set of candidate function members is reduced to those function members that are applicable1

with respect to the given argument list (§14.4.2.1). If this reduced set is empty, a compile-time error occurs.2

• Then, given the set of applicable candidate function members, the best function member in that set is3

located. If the set contains only one function member, then that function member is the best function4

member. Otherwise, the best function member is theone function member that is better than all other5

function members with respect to the given argumentlist, provided that each function member is compared6

to all other function members using the rules in §14.4.2.2. If there is not exactly one function member that is7

better than all other function members, then the function member invocation is ambiguous and a compile-8

time error occurs.9

The following sections define the exact meanings of the termsapplicable function member andbetter10

function member.11

14.4.2.1 Applicable function member12

A function member is said to be anapplicable function member with respect to an argument listA when all13

of the following are true:14

• The number of arguments inA is identical to the number of parameters in the function member15

declaration.16

• For each argument in A, the parameter passing mode of the argument (i.e., value,ref, or out) is17

identical to the parameter passing mode of the corresponding parameter, and18

o for a value parameter or a parameter array, an implicit conversion (§13.1) exists from the type of the19

argument to the type of the corresponding parameter, or20

o for aref or out parameter, the type of the argument is identical to the type of the corresponding21

parameter. [Note: After all, aref or out parameter is an alias for the argument passed.end note]22

For a function member that includes a parameter array, if the function member is applicable by the above23

rules, it is said to be applicable in itsnormal form. If a function member that includes a parameter array is24

not applicable in its normal form, the function member may instead be applicable in itsexpanded form:25

• The expanded form is constructed by replacing the parameter array in the function member declaration26

with zero or more value parameters of the element type of the parameter array such that the number of27

arguments in the argument listA matches the total number of parameters. IfA has fewer arguments than the28

number of fixed parameters in the function member declaration, the expanded form of the function member29

cannot be constructed and is thus not applicable.30

• If the class, struct, or interface in which the function member is declared already contains another31

applicable function member with the same signature as the expanded form, the expanded form is not32

applicable.33

• Otherwise, the expanded form is applicable if for each argument inA the parameter passing mode of the34

argument is identical to the parameter passing mode of the corresponding parameter, and35

o for a fixed value parameter or a value parameter created by the expansion, an implicit conversion36

(§13.1) exists from the type of the argument to the type of the corresponding parameter, or37

o for aref or out parameter, the type of the argument is identical to the type of the corresponding38

parameter.39

14.4.2.2 Better function member40

Given an argument listA with a set of argument typesA1, A2, …, AN and two applicable function membersMP41

andMQ with parameter typesP1, P2, …, PN andQ1, Q2, …, QN, MP is defined to be abetter function member42

thanMQ if43

C# LANGUAGE SPECIFICATION

136

• for each argument, the implicit conversion fromAX to PX is not worse than the implicit conversion from1

AX to QX, and2

• for at least one argument, the conversion fromAX to PX is better than the conversion fromAX to QX.3

When performing this evaluation, ifMP or MQ is applicable in its expanded form, thenPX or QX refers to a4

parameter in the expanded form of the parameter list.5

14.4.2.3 Better conversion6

Given an implicit conversionC1 that converts from a typeS to a typeT1, and an implicit conversionC2 that7

converts from a typeS to a typeT2, thebetter conversion of the two conversions is determined as follows:8

• If T1 andT2 are the same type, neither conversion is better.9

• If S is T1, C1 is the better conversion.10

• If S is T2, C2 is the better conversion.11

• If an implicit conversion fromT1 to T2 exists, and no implicit conversion fromT2 to T1 exists,C1 is the12

better conversion.13

• If an implicit conversion fromT2 to T1 exists, and no implicit conversion fromT1 to T2 exists,C2 is the14

better conversion.15

• If T1 is sbyte andT2 is byte, ushort, uint, orulong, C1 is the better conversion.16

• If T2 is sbyte andT1 is byte, ushort, uint, orulong, C2 is the better conversion.17

• If T1 is short andT2 is ushort, uint, or ulong, C1 is the better conversion.18

• If T2 is short andT1 is ushort, uint, or ulong, C2 is the better conversion.19

• If T1 is int andT2 is uint, or ulong, C1 is the better conversion.20

• If T2 is int andT1 is uint, or ulong, C2 is the better conversion.21

• If T1 is long andT2 is ulong, C1 is the better conversion.22

• If T2 is long andT1 is ulong, C2 is the better conversion.23

• Otherwise, neither conversion is better.24

If an implicit conversionC1 is defined by these rules to be a better conversion than an implicit conversionC2,25

then it is also the case thatC2 is aworse conversion thanC1.26

14.4.3 Function member invocation27

This section describes the process that takes place at run-time to invoke a particular function member. It is28

assumed that a compile-time process has already determined the particular member to invoke, possibly by29

applying overload resolution to a set of candidate function members.30

For purposes of describing the invocation process,function members are divided into two categories:31

• Static function members. These are static methods, instance constructors, static property accessors, and32

user-defined operators. Static function members are always non-virtual.33

• Instance function members. These are instance methods, instance property accessors, and indexer34

accessors. Instance function members are either non-virtual or virtual, and are always invoked on a35

particular instance. The instance is computed by an instance expression, and it becomes accessible within the36

function member asthis (§14.5.7).37

The run-time processing of a function member invocation consists of the following steps, whereM is the38

function member and, ifM is an instance member,E is the instance expression:39

Chapter 14 Expressions

137

• If M is a static function member:1

o The argument list is evaluated as described in §14.4.1.2

o M is invoked.3

• If M is an instance function member declared in avalue-type:4

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.5

o If E is not classified as a variable, then a temporary local variable ofE’s type is created and the value6

of E is assigned to that variable.E is then reclassified as a reference to that temporary local variable.7

The temporary variable is accessible asthis within M, but not in any other way. Thus, only whenE8

is a true variable is it possible for the caller to observe the changes thatM makes tothis.9

o The argument list is evaluated as described in §14.4.1.10

o M is invoked. The variable referenced byE becomes the variable referenced bythis.11

• If M is an instance function member declared in areference-type:12

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.13

o The argument list is evaluated as described in §14.4.1.14

o If the type ofE is avalue-type, a boxing conversion (§11.3.1) is performed to convertE to type15

object, andE is considered to be of typeobject in the following steps. [Note: In this case,M16

could only be a member ofSystem.Object. end note]17

o The value ofE is checked to be valid. If the value ofE is null, a18

System.NullReferenceException is thrown and no further steps are executed.19

o The function member implementation to invoke is determined:20

• If the compile-time type ofE is an interface, the function member to invoke is the21

implementation ofM provided by the run-time type of the instance referenced byE. This22

function member is determined by applying theinterface mapping rules (§20.4.2) to determine23

the implementation ofM provided by the run-time type of the instance referenced byE.24

• Otherwise, ifM is a virtual function member, the function member to invoke is the25

implementation ofM provided by the run-time type of the instance referenced byE. This26

function member is determined by applying the rules for determining the most derived27

implementation (§17.5.3) ofM with respect to the run-time type of the instance referenced byE.28

• Otherwise,M is a non-virtual function member, and the function member to invoke isM itself.29

o The function member implementation determined in the step above is invoked. The object30

referenced byE becomes the object referenced bythis.31

14.4.3.1 Invocations on boxed instances32

A function member implemented in avalue-type can be invoked through a boxed instance of thatvalue-type33

in the following situations:34

• When the function member is anoverride of a method inherited from typeobject and is invoked35

through an instance expression of typeobject.36

• When the function member is an implementation of an interface function member and is invoked37

through an instance expression of aninterface-type.38

• When the function member is invoked through a delegate.39

In these situations, the boxed instance is considered to contain a variable of thevalue-type, and this variable40

becomes the variable referenced bythis within the function member invocation. [Note: In particular, this41

means that when a function member is invoked on a boxed instance, it is possible for the function member to42

modify the value contained in the boxed instance.end note]43

C# LANGUAGE SPECIFICATION

138

14.5 Primary expressions1

Primary expressions include the simplest forms of expressions.2

primary-expression:3

array-creation-expression4

primary-no-array-creation-expression5

primary-no-array-creation-expression:6

literal7

simple-name8

parenthesized-expression9

member-access10

invocation-expression11

element-access12

this-access13

base-access14

post-increment-expression15

post-decrement-expression16

object-creation-expression17

delegate-creation-expression18

typeof-expression19

sizeof-expression20

checked-expression21

unchecked-expression22

Primary expressions are divided betweenarray-creation-expressions andprimary-no-array-creation-23

expressions. Treatingarray-creation-expression in this way, rather than listing it along with the other simple24

expression forms, enables the grammar to disallow potentially confusing code such as25

object o = new int[3][1]; 26

which would otherwise be interpreted as27

object o = (new int[3])[1]; 28

14.5.1 Literals29

A primary-expression that consists of aliteral (§9.4.4) is classified as a value.30

14.5.2 Simple names31

A simple-name consists of a single identifier.32

simple-name:33

identifier34

A simple-name is evaluated and classified as follows:35

• If the simple-name appears within ablock and if theblock’s (or an enclosing block’s) local variable36

declaration space (§10.3) contains a local variable or parameter with the given name, then thesimple-name37

refers to that local variable or parameter and is classified as a variable.38

• Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration39

declaration and continuing with each enclosing outer class or struct declaration (if any), if a member lookup40

of thesimple-name in T produces a match:41

o If T is the immediately enclosing class or struct type and the lookup identifies one or more methods,42

the result is a method group with an associated instance expression ofthis.43

o If T is the immediately enclosing class or struct type, if the lookup identifies an instance member,44

and if the reference occurs within theblock of an instance constructor, an instance method, or an45

Chapter 14 Expressions

139

instance accessor, the result is the sameas a member access (§14.5.4) of the formthis.E, whereE1

is thesimple-name.2

o Otherwise, the result is the same as a member access (§14.5.4) of the formT.E, whereE is the3

simple-name. In this case, it is a compile-time error for thesimple-name to refer to an instance4

member.5

• Otherwise, starting with the namespace in which thesimple-name occurs, continuing with each6

enclosing namespace (if any), and ending with the global namespace, the following steps are evaluated until7

an entity is located:8

o If the namespace contains a namespace member with the given name, then thesimple-name refers to9

that member and, depending on the member, is classified as a namespace or a type.10

o Otherwise, if the namespace has a corresponding namespace declaration enclosing the location11

where thesimple-name occurs, then:12

• If the namespace declaration contains ausing-alias-directive that associates the given name with13

an imported namespace or type, then thesimple-name refers to that namespace or type.14

• Otherwise, if the namespaces imported by theusing-namespace-directives of the namespace15

declaration contain exactly one type with the given name, then thesimple-name refers to that16

type.17

• Otherwise, if the namespaces imported by theusing-namespace-directives of the namespace18

declaration contain more than one type with the given name, then thesimple-name is ambiguous19

and a compile-time error occurs.20

• Otherwise, the name given by thesimple-name is undefined and a compile-time error occurs.21

14.5.2.1 Invariant meaning in blocks22

For each occurrence of a given identifier as asimple-name in an expression, every other occurrence of the23

same identifier as asimple-name in an expression within the immediately enclosingblock (§15.2) orswitch-24

block (§15.7.2) must refer to the same entity. This rule ensures that the meaning of a name in the context of25

an expression is always the same within a block.26

The example27

class Test 28
{ 29
 double x; 30

 void F(bool b) { 31
 x = 1.0; 32
 if (b) { 33
 int x = 1; 34
 } 35
 } 36
} 37

results in a compile-time error becausex refers to different entities within the outer block (the extent of38

which includes the nested block in theif statement). In contrast, the example39

class Test 40
{ 41
 double x; 42

 void F(bool b) { 43
 if (b) { 44
 x = 1.0; 45
 } 46
 else { 47
 int x = 1; 48
 } 49
 } 50
} 51

C# LANGUAGE SPECIFICATION

140

is permitted because the namex is never used in the outer block.1

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same2

identifier to have one meaning as a simple name and another meaning as right operand of a member access3

(§14.5.4). [Example: For example:4

struct Point 5
{ 6
 int x, y; 7

 public Point(int x, int y) { 8
 this.x = x; 9
 this.y = y; 10
 } 11
} 12

The example above illustrates a common pattern of using the names of fields as parameter names in an13

instance constructor. In the example, the simple namesx andy refer to the parameters, but that does not14

prevent the member access expressionsthis.x andthis.y from accessing the fields.end example]15

14.5.3 Parenthesized expressions16

A parenthesized-expression consists of anexpression enclosed in parentheses.17

parenthesized-expression:18

(expression)19

A parenthesized-expression is evaluated by evaluating theexpression within the parentheses. If the20

expression within the parentheses denotes a namespace, type, or method group, a compile-time error occurs.21

Otherwise, the result of theparenthesized-expression is the result of the evaluation of the contained22

expression.23

14.5.4 Member access24

A member-access consists of aprimary-expression or apredefined-type, followed by a “.” token, followed25

by anidentifier.26

member-access:27

primary-expression . identifier28

predefined-type . identifier29

predefined-type: one of30

bool byte char decimal double float int long 31

object sbyte short string uint ulong ushort 32

A member-access of the formE.I, whereE is aprimary-expression or apredefined-type andI is an33

identifier, is evaluated and classified as follows:34

• If E is a namespace andI is the name of an accessible member of that namespace, then the result is that35

member and, depending on the member, isclassified as a namespace or a type.36

• If E is apredefined-type or aprimary-expression classified as a type, and a member lookup (§14.3) ofI37

in E produces a match, thenE.I is evaluated and classified as follows:38

o If I identifies a type, then the result is that type.39

o If I identifies one or more methods, then the result is a method group with no associated instance40

expression.41

o If I identifies astatic property, then the result is a property access with no associated instance42

expression.43

o If I identifies astatic field:44

Chapter 14 Expressions

141

• If the field isreadonly and the reference occurs outside the static constructor of the class or1

struct in which the field is declared, then the result is a value, namely the value of the static field2

I in E.3

• Otherwise, the result is a variable, namely the static fieldI in E.4

o If I identifies astatic event:5

• If the reference occurs within the class or struct in which the event is declared, and the event6

was declared withoutevent-accessor-declarations (§17.7), thenE.I is processed exactly as ifI7

was a static field.8

• Otherwise, the result is an event access with no associated instance expression.9

o If I identifies a constant, then the result is a value, namely the value of that constant.10

o If I identifies an enumeration member, then the result is a value, namely the value of that11

enumeration member.12

o Otherwise,E.I is an invalid member reference, and a compile-time error occurs.13

• If E is a property access, indexer access, variable, or value, the type of which is T, and a member lookup14

(§14.3) ofI in T produces a match, thenE.I is evaluated and classified as follows:15

o First, if E is a property or indexer access, then the valueof the property or indexer access is obtained16

(§14.1.1) andE is reclassified as a value.17

o If I identifies one or more methods, then the result is a method group with an associated instance18

expression of E.19

o If I identifies an instance property, then the result is a property access with an associated instance20

expression of E.21

o If T is aclass-type andI identifies an instance field of thatclass-type:22

• If the value ofE is null, then aSystem.NullReferenceException is thrown.23

• Otherwise, if the field isreadonly and the reference occurs outside an instance constructor of24

the class in which the field is declared, then the result is a value, namely the value of the fieldI25

in the object referenced by E.26

• Otherwise, the result is a variable, namely the fieldI in the object referenced by E.27

o If T is astruct-type andI identifies an instance field of thatstruct-type:28

• If E is a value, or if the field isreadonly and the reference occurs outside an instance29

constructor of the struct in which the field is declared, then the result is a value, namely the30

value of the fieldI in the struct instance given by E.31

• Otherwise, the result is a variable, namely the fieldI in the struct instance given by E.32

o If I identifies an instance event:33

• If the reference occurs within the class or struct in which the event is declared, and the event34

was declared withoutevent-accessor-declarations (§17.7), thenE.I is processed exactly as ifI35

was an instance field.36

• Otherwise, the result is an event access with an associated instance expression of E.37

• Otherwise,E.I is an invalid member reference, and a compile-time error occurs.38

14.5.4.1 Identical simple names and type names39

In a member access of the formE.I, if E is a single identifier, and if the meaning ofE as asimple-name40

(§14.5.2) is a constant, field, property, local variable, or parameter with the same type as the meaning ofE as41

a type-name (§10.8), then both possible meanings ofE are permitted. The two possible meanings ofE.I are42

C# LANGUAGE SPECIFICATION

142

never ambiguous, sinceI must necessarily be a member of the typeE in both cases. In other words, the rule1

simply permits access to the static members ofE where a compile-time error would otherwise have occurred.2

[Example: For example:3

struct Color 4
{ 5
 public static readonly Color White = new Color(�); 6
 public static readonly Color Black = new Color(�); 7

 public Color Complement() {�} 8
} 9

class A 10
{ 11
 public Color Color; // Field Color of type Color 12

 void F() { 13
 Color = Color.Black; // References Color.Black static 14
member 15
 Color = Color.Complement(); // Invokes Complement() on Color 16
field 17
 } 18

 static void G() { 19
 Color c = Color.White; // References Color.White static 20
member 21
 } 22
} 23

Within theA class, those occurrences of theColor identifier that reference theColor type are underlined,24

and those that reference theColor field are not underlined.end example]25

14.5.5 Invocation expressions26

An invocation-expression is used to invoke a method.27

invocation-expression:28

primary-expression (argument-listopt)29

Theprimary-expression of an invocation-expression must be a method group or a value of adelegate-type.30

If the primary-expression is a method group, theinvocation-expression is a method invocation (§14.5.5.1). If31

theprimary-expression is a value of adelegate-type, theinvocation-expression is a delegate invocation32

(§14.5.5.2). If theprimary-expression is neither a method group nor a value of adelegate-type, a compile-33

time error occurs.34

The optionalargument-list (§14.4.1) provides values or variable references for the parameters of the method.35

The result of evaluating aninvocation-expression is classified as follows:36

• If the invocation-expression invokes a method or delegate that returnsvoid, the result is nothing. An37

expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the38

context of astatement-expression (§15.6).39

• Otherwise, the result is a value of the type returned by the method or delegate.40

14.5.5.1 Method invocations41

For a method invocation, theprimary-expression of theinvocation-expression must be a method group. The42

method group identifies the one method to invoke orthe set of overloaded methods from which to choose a43

specific method to invoke. In the latter case, determination of the specific method to invoke is based on the44

context provided by the types of the arguments in theargument-list.45

The compile-time processing of a method invocation of the formM(A), whereM is a method group andA is46

an optionalargument-list, consists of the following steps:47

• The set of candidate methods for the method invocation is constructed. Starting with the set of methods48

associated with M, which were found by a previous member lookup (§14.3), the set is reduced to those49

Chapter 14 Expressions

143

methods that are applicable with respect to the argument listA. The set reduction consists of applying the1

following rules to each methodT.N in the set, whereT is the type in which the methodN is declared:2

o If N is not applicable with respect toA (§14.4.2.1), thenN is removed from the set.3

o If N is applicable with respect toA (§14.4.2.1), then all methods declared in a base type ofT are4

removed from the set.5

• If the resulting set of candidate methods is empty, then no applicable methods exist, and a compile-time6

error occurs. If the candidate methods are not all declared in the same type, the method invocation is7

ambiguous, and a compile-time error occurs (this latter situation can only occur for an invocation of a8

method in an interface that has multiple direct base interfaces, as described in §20.2.5).9

• The best method of the set of candidate methods is identified using the overload resolution rules of10

§14.4.2. If a single best method cannot be identified,the method invocation is ambiguous, and a compile-11

time error occurs.12

• Given a best method, the invocation of the method is validated in the context of the method group: If the13

best method is a static method, the method group must have resulted from asimple-name or amember-14

access through a type. If the best method is an instance method, the method group must have resulted from a15

simple-name, amember-access through a variable or value, or abase-access. If neither of these requirements16

are true, a compile-time error occurs.17

Once a method has been selected and validated at compile-time by the above steps, the actual run-time18

invocation is processed according to the rules of function member invocation described in §14.4.3.19

[Note: The intuitive effect of the resolution rules described above is as follows: To locate the particular20

method invoked by a method invocation, start with the type indicated by the method invocation and proceed21

up the inheritance chain until at least one applicable, accessible, non-override method declaration is found.22

Then perform overload resolution on the set of applicable, accessible, non-override methods declared in that23

type and invoke the method thus selected.end note]24

14.5.5.2 Delegate invocations25

For a delegate invocation, theprimary-expression of theinvocation-expression must be a value of a26

delegate-type. Furthermore, considering thedelegate-type to be a function member with the same parameter27

list as thedelegate-type, thedelegate-type must be applicable (§14.4.2.1) with respect to theargument-list of28

theinvocation-expression.29

The run-time processing of a delegate invocation of the formD(A), whereD is aprimary-expression of a30

delegate-type andA is an optionalargument-list, consists of the following steps:31

• D is evaluated. If this evaluation causes an exception, no further steps are executed.32

• The value ofD is checked to be valid. If the value ofD is null, a33

System.NullReferenceException is thrown and no further steps are executed.34

• Otherwise,D is a reference to a delegate instance. A function member invocation (§14.4.3) is performed35

on the method referenced by the delegate. If the methodis an instance method, the instance of the invocation36

becomes the instance referenced by the delegate.37

14.5.6 Element access38

An element-access consists of aprimary-no-array-creation-expression, followed by a “[“ token, followed39

by anexpression-list, followed by a “]” token. Theexpression-list consists of one or moreexpressions,40

separated by commas.41

element-access:42

primary-no-array-creation-expression [expression-list] 43

C# LANGUAGE SPECIFICATION

144

expression-list:1

expression2

expression-list , expression3

If the primary-no-array-creation-expression of anelement-access is a value of anarray-type, theelement-4

access is an array access (§14.5.6.1). Otherwise, theprimary-no-array-creation-expression must be a5

variable or value of a class, struct, or interface type that has one or more indexer members, in which case the6

element-access is an indexer access (§14.5.6.2).7

14.5.6.1 Array access8

For an array access, theprimary-no-array-creation-expression of theelement-access must be a value of an9

array-type. The number of expressions in theexpression-list must be the same as the rank of thearray-type,10

and each expression must be of typeint, uint, long, ulong, or of a type that can be implicitly converted11

to one or more of these types.12

The result of evaluating an array access is a variable of the element type of the array, namely the array13

element selected by the value(s) of the expression(s) in theexpression-list.14

The run-time processing of an array access of the formP[A], whereP is aprimary-no-array-creation-15

expression of anarray-type andA is anexpression-list, consists of the following steps:16

• P is evaluated. If this evaluation causes an exception, no further steps are executed.17

• The index expressions of theexpression-list are evaluated in order, from left to right. Following18

evaluation of each index expression, an implicit conversion (§13.1) to one of the following types is19

performed:int, uint, long, ulong. The first type in this list for which an implicit conversion exists is20

chosen. For instance, if the index expression is of typeshort then an implicit conversion toint is21

performed, since implicit conversions fromshort to int and fromshort to long are possible. If22

evaluation of an index expression or the subsequent implicit conversion causes an exception, then no further23

index expressions are evaluated and no further steps are executed.24

• The value ofP is checked to be valid. If the value ofP is null, a25

System.NullReferenceException is thrown and no further steps are executed.26

• The value of each expression in theexpression-list is checked against the actual bounds of each27

dimension of the array instance referenced by P. If one or more values are out of range, a28

System.IndexOutOfRangeException is thrown and no further steps are executed.29

• The location of the array element given by the index expression(s) is computed, and this location30

becomes the result of the array access.31

14.5.6.2 Indexer access32

For an indexer access, theprimary-no-array-creation-expression of theelement-access must be a variable33

or value of a class, struct, or interface type, and this type must implement one or more indexers that are34

applicable with respect to theexpression-list of theelement-access.35

The compile-time processing of an indexer access of the formP[A], whereP is aprimary-no-array-36

creation-expression of a class, struct, or interface typeT, andA is anexpression-list, consists of the37

following steps:38

• The set of indexers provided byT is constructed. The set consists of all indexers declared inT or a base39

type ofT that are notoverride declarations and are accessible in the current context (§10.5).40

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The following41

rules are applied to each indexerS.I in the set, whereS is the type in which the indexerI is declared:42

o If I is not applicable with respect toA (§14.4.2.1), thenI is removed from the set.43

o If I is applicable with respect toA (§14.4.2.1), then all indexers declared in a base type ofS are44

removed from the set.45

Chapter 14 Expressions

145

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and a compile-time1

error occurs. If the candidate indexers are not all declared in the same type, the indexer access is ambiguous,2

and a compile-time error occurs (this latter situation can only occur for an indexer access on an instance of3

an interface that has multiple direct base interfaces).4

• The best indexer of the set of candidate indexers isidentified using the overload resolution rules of5

§14.4.2. If a single best indexer cannot be identified,the indexer access is ambiguous, and a compile-time6

error occurs.7

• The index expressions of theexpression-list are evaluated in order, from left to right. The result of8

processing the indexer access is an expression classified as an indexer access. The indexer access expression9

references the indexer determined in the step above, and has an associated instance expression ofP and an10

associated argument list of A.11

Depending on the context in which it is used, an indexer access causes invocation of either theget-accessor12

or theset-accessor of the indexer. If the indexer access is the target of an assignment, theset-accessor is13

invoked to assign a new value (§14.13.1). In all other cases, theget-accessor is invoked to obtain the current14

value (§14.1.1).15

14.5.7 This access16

A this-access consists of the reserved wordthis.17

this-access:18

this19

A this-access is permitted only in theblock of an instance constructor, an instance method, or an instance20

accessor. It has one of the following meanings:21

• Whenthis is used in aprimary-expression within an instance constructor of a class, it is classified as a22

value. The type of the value is the class within which the usage occurs, and the value is a reference to the23

object being constructed.24

• Whenthis is used in aprimary-expression within an instance method or instance accessor of a class, it25

is classified as a value. The type of the value is the class within which the usage occurs, and the value is a26

reference to the object for which the method or accessor was invoked.27

• Whenthis is used in aprimary-expression within an instance constructor of a struct, it is classified as a28

variable. The type of the variable is the struct withinwhich the usage occurs, and the variable represents the29

struct being constructed. Thethis variable of an instance constructor of a struct behaves exactly the same30

as anout parameter of the struct type—in particular, this means that the variable must be definitely assigned31

in every execution path of the instance constructor.32

• Whenthis is used in aprimary-expression within an instance method or instance accessor of a struct, it33

is classified as a variable. The type of the variable is the struct within which the usage occurs, and the34

variable represents the struct for which the method or accessor was invoked. Thethis variable of an35

instance method of a struct behaves exactly the same as aref parameter of the struct type.36

Use ofthis in a primary-expression in a context other than the ones listed above is a compile-time error. In37

particular, it is not possible to refer tothis in a static method, a static property accessor, or in avariable-38

initializer of a field declaration.39

14.5.8 Base access40

A base-access consists of the reserved wordbase followed by either a “.” token and an identifier or an41

expression-list enclosed in square brackets:42

base-access:43

base . identifier44

base [expression-list]45

C# LANGUAGE SPECIFICATION

146

A base-access is used to access base class members that are hidden by similarly named members in the1

current class or struct. Abase-access is permitted only in theblock of an instance constructor, an instance2

method, or an instance accessor. Whenbase.I occurs in a class or struct,I must denote a member of the3

base class of that class or struct. Likewise, whenbase[E] occurs in a class, an applicable indexer must4

exist in the base class.5

At compile-time,base-access expressions of the formbase.I andbase[E] are evaluated exactly as if they6

were written((B)this).I and((B)this)[E], whereB is the base class of the class or struct in which7

the construct occurs. Thus,base.I andbase[E] correspond tothis.I andthis[E], exceptthis is8

viewed as an instance of the base class.9

When abase-access references a virtual function member (a method, property, or indexer), the10

determination of which function member to invoke at run-time(§14.4.3) is changed. The function member11

that is invoked is determined by finding the most derived implementation (§17.5.3) of the function member12

with respect toB (instead of with respect to the run-time type ofthis, as would be usual in a non-base13

access). Thus, within anoverride of avirtual function member, abase-access can be used to invoke the14

inherited implementation of the function member. If the function member referenced by abase-access is15

abstract, a compile-time error occurs.16

14.5.9 Postfix increment and decrement operators17

post-increment-expression:18

primary-expression ++ 19

post-decrement-expression:20

primary-expression --21

The operand of a postfix increment or decrement operation must be an expression classified as a variable, a22

property access, or an indexer access. The result of the operation is a value of the same type as the operand.23

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or24

indexer must have both aget and aset accessor. If this is not the case, a compile-time error occurs.25

Unary operator overload resolution (§14.2.3) is applied to select a specific operator implementation.26

Predefined++ and-- operators exist for the following types:sbyte, byte, short, ushort, int, uint,27

long, ulong, char, float, double, decimal, and any enum type. The predefined++ operators return the28

value produced by adding 1 to the operand, and the predefined-- operators return the value produced by29

subtracting 1 from the operand.30

The run-time processing of a postfix increment or decrement operation of the formx++ or x-- consists of31

the following steps:32

• If x is classified as a variable:33

o x is evaluated to produce the variable.34

o The value ofx is saved.35

o The selected operator is invoked with the saved value ofx as its argument.36

o The value returned by the operator is stored in the location given by the evaluation ofx.37

o The saved value ofx becomes the result of the operation.38

• If x is classified as a property or indexer access:39

o The instance expression (ifx is notstatic) and the argument list (ifx is an indexer access)40

associated withx are evaluated, and the results are used in the subsequentget andset accessor41

invocations.42

o Theget accessor ofx is invoked and the returned value is saved.43

o The selected operator is invoked with the saved value ofx as its argument.44

o Theset accessor ofx is invoked with the value returned by the operator as itsvalue argument.45

Chapter 14 Expressions

147

o The saved value ofx becomes the result of the operation.1

The++ and-- operators also support prefix notation (§14.6.5). The result ofx++ or x-- is the value ofx2

before the operation, whereas the result of++x or --x is the value ofx after the operation. In either case,x3

itself has the same value after the operation.4

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation.5

It is not possible to have separate operator implementations for the two notations.6

14.5.10 The new operator7

Thenew operator is used to create new instances of types.8

There are three forms ofnew expressions:9

• Object creation expressions are used to create new instances of class types and value types.10

• Array creation expressions are used to create new instances of array types.11

• Delegate creation expressions are used to create new instances of delegate types.12

Thenew operator implies creation of an instance of atype, but does not necessarily imply dynamic13

allocation of memory. In particular, instances ofvalue types require no additional memory beyond the14

variables in which they reside, and no dynamic allocations occur whennew is used to create instances of15

value types.16

14.5.10.1 Object creation expressions17

An object-creation-expression is used to create a new instance of aclass-type or avalue-type.18

object-creation-expression:19

new type (argument-listopt)20

Thetype of anobject-creation-expression must be aclass-type or avalue-type. Thetype cannot be an21

abstract class-type.22

The optionalargument-list (§14.4.1) is permitted only if thetype is aclass-type or astruct-type.23

The compile-time processing of anobject-creation-expression of the formnew T(A), whereT is aclass-type24

or avalue-type andA is an optionalargument-list, consists of the following steps:25

• If T is avalue-type andA is not present:26

o Theobject-creation-expression is a default constructor invocation. The result of theobject-creation-27

expression is a value of typeT, namely the default value forT as defined in §11.1.1.28

• Otherwise, ifT is aclass-type or astruct-type:29

o If T is anabstract class-type, a compile-time error occurs.30

o The instance constructor to invoke is determined using the overload resolution rules of §14.4.2. The31

set of candidate instance constructors consists of all accessible instance constructors declared in T. If32

the set of candidate instance constructors is empty, or if a single best instance constructor cannot be33

identified, a compile-time error occurs.34

o The result of theobject-creation-expression is a value of typeT, namely the value produced by35

invoking the instance constructor determined in the step above.36

• Otherwise, theobject-creation-expression is invalid, and a compile-time error occurs.37

The run-time processing of anobject-creation-expression of the formnew T(A), whereT is class-type or a38

struct-type andA is an optionalargument-list, consists of the following steps:39

C# LANGUAGE SPECIFICATION

148

• If T is aclass-type:1

o A new instance of classT is allocated. If there is not enough memory available to allocate the new2

instance, aSystem.OutOfMemoryException is thrown and no further steps are executed.3

o All fields of the new instance are initialized to their default values (§12.2).4

o The instance constructor is invoked according to therules of function member invocation (§14.4.3).5

A reference to the newly allocated instance is automatically passed to the instance constructor and6

the instance can be accessed from within that constructor asthis.7

• If T is astruct-type:8

o An instance of typeT is created by allocating a temporary local variable. Since an instance9

constructor of astruct-type is required to definitely assign a value to each field of the instance being10

created, no initialization of the temporary variable is necessary.11

o The instance constructor is invoked according to therules of function member invocation (§14.4.3).12

A reference to the newly allocated instance is automatically passed to the instance constructor and13

the instance can be accessed from within that constructor asthis.14

14.5.10.2 Array creation expressions15

An array-creation-expression is used to create a new instance of anarray-type.16

array-creation-expression:17

new non-array-type [expression-list] rank-specifiersopt array-initializeropt18

new array-type array-initializer19

An array creation expression of the first form allocates an array instance of the type that results from20

deleting each of the individual expressions from the expression list. For example, the array creation21

expressionnew int[10,20] produces an array instance of typeint[,], and the array creation expression22

new int[10][,] produces an array of typeint[][,]. Each expression in the expression list must be of23

typeint, uint, long, orulong, or of a type that can be implicitly converted to one or more of these types.24

The value of each expression determines the length of the corresponding dimension in the newly allocated25

array instance. Since the length of an array dimension must be nonnegative, it is a compile-time error to26

have a constant expression with a negative value, in the expression list.27

Except in an unsafe context (§25.1), the layout of arrays is unspecified.28

If an array creation expression of the first form includes an array initializer, each expression in the29

expression list must be a constant and the rank and dimension lengths specified by the expression list must30

match those of the array initializer.31

In an array creation expression of the second form, the rank of the specified array type must match that of32

the array initializer. The individual dimension lengths are inferred from the number of elements in each of33

the corresponding nesting levels of thearray initializer. Thus, the expression34

new int[,] {{0, 1}, {2, 3}, {4, 5}} 35

exactly corresponds to36

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}} 37

Array initializers are described further in §19.6.38

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly39

allocated array instance. The run-time processing of anarray creation expression consists of the following40

steps:41

Chapter 14 Expressions

149

• The dimension length expressions of theexpression-list are evaluated in order, from left to right.1

Following evaluation of each expression, an implicitconversion (§13.1) to one of the following types is2

performed:int, uint, long, ulong. The first type in this list for which an implicit conversion exists is3

chosen. If evaluation of an expression or the subsequent implicit conversion causes an exception, then no4

further expressions are evaluated and no further steps are executed.5

• The computed values for the dimension lengths are validated, as follows: If one or more of the values6

are less than zero, aSystem.OverflowException is thrown and no further steps are executed.7

• An array instance with the given dimension lengthsis allocated. If there is not enough memory available8

to allocate the new instance, aSystem.OutOfMemoryException is thrown and no further steps are9

executed.10

• All elements of the new array instance are initialized to their default values (§12.2).11

• If the array creation expression contains an array initializer, then each expression in the array initializer12

is evaluated and assigned to its corresponding array element. The evaluations and assignments are performed13

in the order the expressions are written in the array initializer—in other words, elements are initialized in14

increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or15

the subsequent assignment to the corresponding array element causes an exception, then no further elements16

are initialized (and the remaining elements will thus have their default values).17

An array creation expression permits instantiation of an array with elements of an array type, but the18

elements of such an array must be manually initialized. [Example: For example, the statement19

int[][] a = new int[100][]; 20

creates a single-dimensional array with 100 elements of typeint[]. The initial value of each element is21

null. end example] It is not possible for the same array creation expression to also instantiate the sub-22

arrays, and the statement23

int[][] a = new int[100][5]; // Error 24

results in a compile-time error. Instantiation of the sub-arrays must instead be performed manually, as in25

int[][] a = new int[100][]; 26
for (int i = 0; i < 100; i++) a[i] = new int[5]; 27

When an array of arrays has a “rectangular” shape, that is when the sub-arrays are all of the same length, it is28

more efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays29

creates 101 objects—one outer array and 100 sub-arrays. In contrast,30

int[,] = new int[100, 5]; 31

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.32

14.5.10.3 Delegate creation expressions33

A delegate-creation-expression is used to create a new instance of adelegate-type.34

delegate-creation-expression:35

new delegate-type (expression) 36

The argument of a delegate creation expression must be a method group (§14.1) or a value of adelegate-37

type. If the argument is a method group, it identifies themethod and, for an instance method, the object for38

which to create a delegate. If the argument is a value of adelegate-type, it identifies a delegate instance of39

which to create a copy.40

The compile-time processing of adelegate-creation-expression of the formnew D(E), whereD is a41

delegate-type andE is anexpression, consists of the following steps:42

• If E is a method group:43

o The set of methods identified byE must include exactly one method that is compatible (§22.1)44

with D, and this method becomes the one to which the newly created delegate refers. If no matching45

C# LANGUAGE SPECIFICATION

150

method exists, or if more than one matching method exists, a compile-time error occurs. If the1

selected method is an instance method, the instance expression associated withE determines the2

target object of the delegate.3

o As in a method invocation, the selected method must be compatible with the context of the method4

group: If the method is a static method, the method group must have resulted from asimple-name or5

a member-access through a type. If the method is an instance method, the method group must have6

resulted from asimple-name or amember-access through a variable or value. If the selected method7

does not match the context of the method group, a compile-time error occurs.8

o The result is a value of typeD, namely a newly created delegate that refers to the selected method9

and target object.10

• Otherwise, ifE is a value of adelegate-type:11

o D andE must be compatible (§22.1); otherwise, a compile-time error occurs.12

o The result is a value of typeD, namely a newly created delegate that refers to the same invocation13

list asE.14

• Otherwise, the delegate creation expression is invalid, and a compile-time error occurs.15

The run-time processing of adelegate-creation-expression of the formnew D(E), whereD is adelegate-type16

andE is anexpression, consists of the following steps:17

• If E is a method group:18

o If the method selected at compile-time is a static method, the target object of the delegate isnull.19

Otherwise, the selected method is an instance method, and the target object of the delegate is20

determined from the instance expression associated withE:21

• The instance expression is evaluated. If this evaluation causes an exception, no further steps are22

executed.23

• If the instance expression is of areference-type, the value computed by the instance expression24

becomes the target object. If the target object isnull, aSystem.NullReferenceException25

is thrown and no further steps are executed.26

• If the instance expression is of avalue-type, a boxing operation (§11.3.1) is performed to27

convert the value to an object, and this object becomes the target object.28

o A new instance of the delegate typeD is allocated. If there is not enough memory available to29

allocate the new instance, aSystem.OutOfMemoryException is thrown and no further steps are30

executed.31

o The new delegate instance is initialized with a reference to the method that was determined at32

compile-time and a reference to the target object computed above.33

• If E is a value of adelegate-type:34

o E is evaluated. If this evaluation causes an exception, no further steps are executed.35

o If the value ofE is null, aSystem.NullReferenceException is thrown and no further steps36

are executed.37

o A new instance of the delegate typeD is allocated. If there is not enough memory available to38

allocate the new instance, aSystem.OutOfMemoryException is thrown and no further steps are39

executed.40

o The new delegate instance is initialized with references to the same invocation list as the delegate41

instance given by E.42

The method and object to which a delegate refers are determined when the delegate is instantiated and then43

remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target44

method or object of a delegate once it has been created. [Note: Remember, when two delegates are45

Chapter 14 Expressions

151

combined or one is removed from another, a new delegate results; no existing delegate has its content1

changed.end note]2

It is not possible to create a delegate that refers to a property, indexer, user-defined operator, instance3

constructor, destructor, or static constructor.4

[Example: As described above, when a delegate is createdfrom a method group, the formal parameter list5

and return type of the delegate determine which of the overloaded methods to select. In the example6

delegate double DoubleFunc(double x); 7

class A 8
{ 9
 DoubleFunc f = new DoubleFunc(Square); 10

 static float Square(float x) { 11
 return x * x; 12
 } 13

 static double Square(double x) { 14
 return x * x; 15
 } 16
} 17

theA.f field is initialized with a delegate that refers to the secondSquare method because that method18

exactly matches the formal parameter list and return type ofDoubleFunc. Had the secondSquare method19

not been present, a compile-time error would have occurred.end example]20

14.5.11 The typeof operator21

Thetypeof operator is used to obtain theSystem.Type object for a type.22

typeof-expression:23

typeof (type) 24

typeof (void)25

The first form oftypeof-expression consists of atypeof keyword followed by a parenthesizedtype. The26

result of an expression of this form is theSystem.Type object for the indicated type. There is only one27

System.Type object for any given type. [Note: This means that for typeT, typeof(T) == typeof(T) 28

is always true.end note]29

The second form oftypeof-expression consists of atypeof keyword followed by a parenthesizedvoid30

keyword. The result of an expression of this form is theSystem.Type object that represents the absence of31

a type. The type object returned bytypeof(void) is distinct from the type object returned for any type.32

[Note: This special type object is useful in class libraries that allow reflection onto methods in the language,33

where those methods wish to have a way to represent the return type of any method, including void methods,34

with an instance ofSystem.Type. end note]35

[Example: The example36

using System; 37
class Test 38
{ 39
 static void Main() { 40
 Type[] t = { 41
 typeof(int), 42
 typeof(System.Int32), 43
 typeof(string), 44
 typeof(double[]), 45
 typeof(void) }; 46
 for (int i = 0; i < t.Length; i++) { 47
 Console.WriteLine(t[i].FullName); 48
 } 49
 } 50
} 51

produces the following output:52

C# LANGUAGE SPECIFICATION

152

System.Int32 1
System.Int32 2
System.String 3
System.Double[] 4
System.Void 5

Note thatint andSystem.Int32 are the same type.end example]6

14.5.12 The checked and unchecked operators7

Thechecked andunchecked operators are used to control theoverflow checking context for integral-type8

arithmetic operations and conversions.9

checked-expression:10

checked (expression)11

unchecked-expression:12

unchecked (expression) 13

Thechecked operator evaluates the contained expression in a checked context, and theunchecked14

operator evaluates the contained expression in an unchecked context. Achecked-expression or unchecked-15

expression corresponds exactly to aparenthesized-expression (§14.5.3), except that the contained expression16

is evaluated in the given overflow checking context.17

The overflow checking context can also be controlled through thechecked andunchecked statements18

(§15.11).19

The following operations are affected by the overflow checking context established by thechecked and20

unchecked operators and statements:21

• The predefined++ and-- unary operators (§14.5.9 and §14.6.5), when the operand is of an integral22

type.23

• The predefined- unary operator (§14.6.2), when the operand is of an integral type.24

• The predefined+, -, *, and/ binary operators (§14.7), when both operands are of integral types.25

• Explicit numeric conversions (§13.2.1) from one integral type to another integral type.26

When one of the above operations produce a result that is too large to represent in the destination type, the27

context in which the operation is performed controls the resulting behavior:28

• In achecked context, if the operation is a constant expression (§14.15), a compile-time error occurs.29

Otherwise, when the operation is performed at run-time, aSystem.OverflowException is thrown.30

• In anunchecked context, the result is truncated by discarding any high-order bits that do not fit in the31

destination type.32

For non-constant expressions (expressions that are evaluated at run-time) that are not enclosed by any33

checked or unchecked operators or statements, the default overflow checking context isunchecked,34

unless external factors (such as compiler switches and execution environment configuration) call for35

checked evaluation.36

For constant expressions (expressions that can be fullyevaluated at compile-time), the default overflow37

checking context is alwayschecked. Unless a constant expression is explicitly placed in anunchecked38

context, overflows that occur during the compile-time evaluation of the expression always cause compile-39

time errors.40

[Note: Developers may benefit if they exercise their code using checked mode (as well as unchecked mode).41

It also seems reasonable that, unless otherwise requested, the default overflow checking context is set to42

checked when debugging is enabled.end note]43

[Example: In the example44

Chapter 14 Expressions

153

class Test 1
{ 2
 static readonly int x = 1000000; 3
 static readonly int y = 1000000; 4

 static int F() { 5
 return checked(x * y); // Throws OverflowException 6
 } 7

 static int G() { 8
 return unchecked(x * y); // Returns -727379968 9
 } 10

 static int H() { 11
 return x * y; // Depends on default 12
 } 13
} 14

no compile-time errors are reported since neither ofthe expressions can be evaluated at compile-time. At15

run-time, theF method throws aSystem.OverflowException, and theG method returns –72737996816

(the lower 32 bits of the out-of-range result). The behavior of theH method depends on the default overflow17

checking context for the compilation, but it is either the same asF or the same asG. end example]18

[Example: In the example19

class Test 20
{ 21
 const int x = 1000000; 22
 const int y = 1000000; 23

 static int F() { 24
 return checked(x * y); // Compile error, overflow 25
 } 26

 static int G() { 27
 return unchecked(x * y); // Returns -727379968 28
 } 29

 static int H() { 30
 return x * y; // Compile error, overflow 31
 } 32
} 33

the overflows that occur when evaluating the constant expressions inF andH cause compile-time errors to34

be reported because the expressions are evaluated in achecked context. An overflow also occurs when35

evaluating the constant expression inG, but since the evaluation takes place in anunchecked context, the36

overflow is not reported.end example]37

Thechecked andunchecked operators only affect the overflow checking context for those operations that38

are textually contained within the “(” and “)” tokens. The operators have no effect on function members39

that are invoked as a result of evaluating the contained expression. [Example: In the example40

class Test 41
{ 42
 static int Multiply(int x, int y) { 43
 return x * y; 44
 } 45

 static int F() { 46
 return checked(Multiply(1000000, 1000000)); 47
 } 48
} 49

the use ofchecked in F does not affect the evaluation ofx * y in Multiply, sox * y is evaluated in50

the default overflow checking context.end example]51

Theunchecked operator is convenient when writing constants of the signed integral types in hexadecimal52

notation. [Example: For example:53

C# LANGUAGE SPECIFICATION

154

class Test 1
{ 2
 public const int AllBits = unchecked((int)0xFFFFFFFF); 3

 public const int HighBit = unchecked((int)0x80000000); 4
} 5

Both of the hexadecimal constants above are of typeuint. Because the constants are outside theint range,6

without theunchecked operator, the casts toint would produce compile-time errors.end example]7

[Note: Thechecked andunchecked operators and statements allow programmers to control certain8

aspects of some numeric calculations. However, thebehavior of some numeric operators depends on their9

operands’ data types. For example, multiplying two decimals always results in an exception on overflow10

even within an explicitlyunchecked construct. Similarly, multiplying two floats never results in an11

exception on overfloweven within an explicitlychecked construct. In addition, other operators arenever12

affected by the mode of checking, whether default or explicit. As a service to programmers, it is13

recommended that the compiler issue a warning when there is an arithmetic expression within an explicitly14

checked or unchecked context (by operator or statement) that cannot possibly be affected by the specified15

mode of checking. Since such a warning is not required, the compiler has flexibility in determining the16

circumstances that merit the issuance of such warnings.end note]17

14.6 Unary expressions18

unary-expression:19

primary-expression20

+ unary-expression21

- unary-expression22

! unary-expression23

~ unary-expression24

* unary-expression25

& unary-expression26

pre-increment-expression27

pre-decrement-expression28

cast-expression29

14.6.1 Unary plus operator30

For an operation of the form+x, unary operator overload resolution (§14.2.3) is applied to select a specific31

operator implementation. The operand is converted tothe parameter type of the selected operator, and the32

type of the result is the return type of the operator. The predefined unary plus operators are:33

int operator +(int x); 34
uint operator +(uint x); 35
long operator +(long x); 36
ulong operator +(ulong x); 37
float operator +(float x); 38
double operator +(double x); 39
decimal operator +(decimal x); 40

For each of these operators, the result is simply the value of the operand.41

14.6.2 Unary minus operator42

For an operation of the form�x, unary operator overload resolution (§14.2.3) is applied to select a specific43

operator implementation. The operand is converted tothe parameter type of the selected operator, and the44

type of the result is the return type of the operator. The predefined negation operators are:45

• Integer negation:46

int operator �(int x); 47
long operator �(long x); 48

The result is computed by subtractingx from zero. In achecked context, if the value ofx is the49

maximum negativeint or long, aSystem.OverflowException is thrown. In anunchecked50

Chapter 14 Expressions

155

context, if the value ofx is the maximum negativeint or long, the result is that same value and the1

overflow is not reported.2

If the operand of the negation operator is of typeuint, it is converted to typelong, and the type of the3

result islong. An exception is the rule that permits theint value −2147483648 (−231) to be written as a4

decimal integer literal (§9.4.4.2).5

If the operand of the negation operator is of typeulong, a compile-time error occurs. An exception is6

the rule that permits thelong value −9223372036854775808 (−263) to be written as a decimal integer7

literal (§9.4.4.2).8

• Floating-point negation:9

float operator �(float x); 10
double operator �(double x); 11

The result is the value ofx with its sign inverted. Ifx is NaN, the result is also NaN.12

• Decimal negation:13

decimal operator �(decimal x); 14

The result is computed by subtractingx from zero.15

Decimal negation is equivalent to using the unary minus operator of typeSystem.Decimal.16

14.6.3 Logical negation operator17

For an operation of the form!x, unary operator overload resolution (§14.2.3) is applied to select a specific18

operator implementation. The operand is converted tothe parameter type of the selected operator, and the19

type of the result is the return type of the operator.Only one predefined logical negation operator exists:20

bool operator !(bool x); 21

This operator computes the logical negation of the operand: If the operand istrue, the result isfalse. If22

the operand isfalse, the result istrue.23

14.6.4 Bitwise complement operator24

For an operation of the form~x, unary operator overload resolution (§14.2.3) is applied to select a specific25

operator implementation. The operand is converted tothe parameter type of the selected operator, and the26

type of the result is the return type of the operator.The predefined bitwise complement operators are:27

int operator ~(int x); 28
uint operator ~(uint x); 29
long operator ~(long x); 30
ulong operator ~(ulong x); 31

For each of these operators, the result of the operation is the bitwise complement ofx.32

Every enumeration typeE implicitly provides the following bitwise complement operator:33

E operator ~(E x); 34

The result of evaluating ~x, wherex is an expression of an enumeration typeE with an underlying typeU, is35

exactly the same as evaluating (E)(~(U)x).36

14.6.5 Prefix increment and decrement operators37

pre-increment-expression:38

++ unary-expression39

pre-decrement-expression:40

-- unary-expression41

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a42

property access, or an indexer access. The result of the operation is a value of the same type as the operand.43

C# LANGUAGE SPECIFICATION

156

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or1

indexer must have both aget and aset accessor. If this is not the case, a compile-time error occurs.2

Unary operator overload resolution (§14.2.3) is applied to select a specific operator implementation.3

Predefined++ and-- operators exist for the following types:sbyte, byte, short, ushort, int, uint,4

long, ulong, char, float, double, decimal, and any enum type. The predefined++ operators return5

the value produced by adding 1 to the operand, and the predefined-- operators return the value produced6

by subtracting 1 from the operand.7

The run-time processing of a prefix increment or decrement operation of the form++x or --x consists of the8

following steps:9

• If x is classified as a variable:10

o x is evaluated to produce the variable.11

o The selected operator is invoked with the value ofx as its argument.12

o The value returned by the operator is stored in the location given by the evaluation ofx.13

o The value returned by the operator becomes the result of the operation.14

• If x is classified as a property or indexer access:15

o The instance expression (ifx is notstatic) and the argument list (ifx is an indexer access)16

associated withx are evaluated, and the results are used in the subsequentget andset accessor17

invocations.18

o Theget accessor ofx is invoked.19

o The selected operator is invoked with the value returned by theget accessor as its argument.20

o Theset accessor ofx is invoked with the value returned by the operator as itsvalue argument.21

o The value returned by the operator becomes the result of the operation.22

The++ and-- operators also support postfix notation (§14.5.9). The result ofx++ or x-- is the value ofx23

before the operation, whereas the result of++x or --x is the value ofx after the operation. In either case,x24

itself has the same value after the operation.25

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation.26

It is not possible to have separate operator implementations for the two notations.27

14.6.6 Cast expressions28

A cast-expression is used to explicitly convert an expression to a given type.29

cast-expression:30

(type) unary-expression31

A cast-expression of the form(T)E, whereT is atype andE is aunary-expression, performs an explicit32

conversion (§13.2) of the value ofE to typeT. If no explicit conversion exists from the type ofE to T, a33

compile-time error occurs. Otherwise, the result is the value produced by the explicit conversion. The result34

is always classified as a value, even ifE denotes a variable.35

The grammar for acast-expression leads to certain syntactic ambiguities. For example, the expression(x)�36

y could either be interpreted as acast-expression (a cast of�y to typex) or as anadditive-expression37

combined with aparenthesized-expression (which computes the valuex � y).38

To resolvecast-expression ambiguities, the following rule exists: A sequence of one or moretokens (§9.4)39

enclosed in parentheses is considered the start of acast-expression only if at least one of the following are40

true:41

Chapter 14 Expressions

157

• The sequence of tokens is correct grammar for atype, but not for anexpression.1

• The sequence of tokens is correct grammar for atype, and the token immediately following the closing2

parentheses is the token “~”, the token “!”, the token “(”, an identifier (§9.4.1), aliteral (§9.4.4), or any3

keyword (§9.4.3) exceptas andis.4

[Note: The above rule means that only if the construct is unambiguously acast-expression is it considered a5

cast-expression. end note]6

The term “correct grammar” above means only that thesequence of tokens must conform to the particular7

grammatical production. It specifically does not considerthe actual meaning of any constituent identifiers.8

For example, ifx andy are identifiers, thenx.y is correct grammar for a type, even ifx.y doesn’t actually9

denote a type.10

[Note: From the disambiguation rule, it follows that, ifx andy are identifiers,(x)y, (x)(y), and(x)(-y)11

arecast-expressions, but(x)-y is not, even ifx identifies a type. However, ifx is a keyword that identifies12

a predefined type (such asint), then all four forms arecast-expressions (because such a keyword could not13

possibly be an expression by itself).end note]14

14.7 Arithmetic operators15

The*, /, %, +, and� operators are called the arithmetic operators.16

multiplicative-expression:17

unary-expression18

multiplicative-expression * unary-expression19

multiplicative-expression / unary-expression20

multiplicative-expression % unary-expression21

additive-expression:22

multiplicative-expression23

additive-expression + multiplicative-expression24

additive-expression � multiplicative-expression25

14.7.1 Multiplication operator26

For an operation of the formx * y, binary operator overload resolution (§14.2.4) is applied to select a27

specific operator implementation. The operands are converted to the parameter types of the selected28

operator, and the type of the result is the return type of the operator.29

The predefined multiplication operators are listed below. The operators all compute the product ofx andy.30

• Integer multiplication:31

int operator *(int x, int y); 32
uint operator *(uint x, uint y); 33
long operator *(long x, long y); 34
ulong operator *(ulong x, ulong y); 35

In achecked context, if the product is outside the range of the result type, a36

System.OverflowException is thrown. In anunchecked context, overflows are not reported and37

any significant high-order bits outside the range of the result type are discarded.38

• Floating-point multiplication:39

float operator *(float x, float y); 40
double operator *(double x, double y); 41

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the42

results of all possible combinations of nonzero finitevalues, zeros, infinities, and NaN’s. In the table,x43

andy are positive finite values.z is the result ofx * y. If the result is too large for the destination type,44

z is infinity. If the result is too small for the destination type,z is zero.45

46

C# LANGUAGE SPECIFICATION

158

 +y �y +0 �0 +∞ �∞ NaN

+x +z �z +0 �0 +∞ �∞ NaN

�x �z +z �0 +0 �∞ +∞ NaN

+0 +0 �0 +0 �0 NaN NaN NaN

�0 �0 +0 �0 +0 NaN NaN NaN

+∞ +∞ �∞ NaN NaN +∞ �∞ NaN

�∞ �∞ +∞ NaN NaN �∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1

• Decimal multiplication:2

decimal operator *(decimal x, decimal y); 3

If the resulting value is too large to represent in thedecimal format, aSystem.OverflowException4

is thrown. If the result value is too small to represent in thedecimal format, the result is zero. The scale5

of the result, before any rounding, is the sum of the scales of the two operands.6

Decimal multiplication is equivalent to using the multiplication operator of typeSystem.Decimal.7

14.7.2 Division operator8

For an operation of the formx / y, binary operator overload resolution (§14.2.4) is applied to select a9

specific operator implementation. The operands are converted to the parameter types of the selected10

operator, and the type of the result is the return type of the operator.11

The predefined division operators are listed below. The operators all compute the quotient ofx andy.12

• Integer division:13

int operator /(int x, int y); 14
uint operator /(uint x, uint y); 15
long operator /(long x, long y); 16
ulong operator /(ulong x, ulong y); 17

If the value of the right operand is zero, aSystem.DivideByZeroException is thrown.18

The division rounds the result towards zero, and the absolute value of the result is the largest possible19

integer that is less than the absolute value of thequotient of the two operands. The result is zero or20

positive when the two operands have the same sign and zero or negative when the two operands have21

opposite signs.22

If the left operand is the maximum negativeint or long value and the right operand is�1, an overflow23

occurs. In achecked context, this causes aSystem.OverflowException to be thrown. In an24

unchecked context, the overflow is not reported and the result is instead the value of the left operand.25

• Floating-point division:26

float operator /(float x, float y); 27
double operator /(double x, double y); 28

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the29

results of all possible combinations of nonzero finitevalues, zeros, infinities, and NaN’s. In the table,x30

andy are positive finite values.z is the result ofx / y. If the result is too large for the destination type,31

z is infinity. If the result is too small for the destination type,z is zero.32

33

Chapter 14 Expressions

159

 +y �y +0 �0 +∞ �∞ NaN

+x +z �z +∞ �∞ +0 �0 NaN

�x �z +z �∞ +∞ �0 +0 NaN

+0 +0 �0 NaN NaN +0 �0 NaN

�0 �0 +0 NaN NaN �0 +0 NaN

+∞ +∞ �∞ +∞ �∞ NaN NaN NaN

�∞ �∞ +∞ �∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1

• Decimal division:2

decimal operator /(decimal x, decimal y); 3

If the value of the right operand is zero, aSystem.DivideByZeroException is thrown. If the4

resulting value is too large to represent in thedecimal format, aSystem.OverflowException is5

thrown. If the result value is too small to represent in thedecimal format, the result is zero. The scale6

of the result, before any rounding, is the smallest scale that will preserve a result equal to the exact7

result.8

Decimal division is equivalent to using the division operator of typeSystem.Decimal.9

14.7.3 Remainder operator10

For an operation of the formx % y, binary operator overload resolution (§14.2.4) is applied to select a11

specific operator implementation. The operands are converted to the parameter types of the selected12

operator, and the type of the result is the return type of the operator.13

The predefined remainder operators are listed below. The operators all compute the remainder of the14

division betweenx andy.15

• Integer remainder:16

int operator %(int x, int y); 17
uint operator %(uint x, uint y); 18
long operator %(long x, long y); 19
ulong operator %(ulong x, ulong y); 20

The result ofx % y is the value produced byx � (x / y) * y. If y is zero, a21

System.DivideByZeroException is thrown. The remainder operator never causes an overflow.22

• Floating-point remainder:23

float operator %(float x, float y); 24
double operator %(double x, double y); 25

The following table lists the results of all possible combinations of nonzero finite values, zeros,26

infinities, and NaN’s. In the table,x andy are positive finite values.z is the result ofx % y and is27

computed asx � n * y, wheren is the largest possible integer that is less than or equal tox / y. This28

method of computing the remainder is analogous tothat used for integer operands, but differs from the29

IEEE 754 definition (in whichn is the integer closest tox / y).30

31

C# LANGUAGE SPECIFICATION

160

 +y �y +0 �0 +∞ �∞ NaN

+x +z +z NaN NaN x x NaN

�x �z �z NaN NaN �x �x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

�0 �0 �0 NaN NaN �0 �0 NaN

+∞ NaN NaN NaN NaN NaN NaN NaN

�∞ NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

1

• Decimal remainder:2

decimal operator %(decimal x, decimal y); 3

If the value of the right operand is zero, aSystem.DivideByZeroException is thrown. If the4

resulting value is too large to represent in thedecimal format, aSystem.OverflowException is5

thrown. If the result value is too small to represent in thedecimal format, the result is zero. The scale6

of the result, before any rounding, is the same as the scale ofy, and the sign of the result, if non-zero, is7

the same as that ofx.8

Decimal remainder is equivalent to using the remainder operator of typeSystem.Decimal.9

14.7.4 Addition operator10

For an operation of the formx + y, binary operator overload resolution (§14.2.4) is applied to select a11

specific operator implementation. The operands are converted to the parameter types of the selected12

operator, and the type of the result is the return type of the operator.13

The predefined addition operators are listed below. For numeric and enumeration types, the predefined14

addition operators compute the sum of the two operands. When one or both operands are of typestring,15

the predefined addition operators concatenate the string representation of the operands.16

• Integer addition:17

int operator +(int x, int y); 18
uint operator +(uint x, uint y); 19
long operator +(long x, long y); 20
ulong operator +(ulong x, ulong y); 21

In achecked context, if the sum is outside the range of the result type, a22

System.OverflowException is thrown. In anunchecked context, overflows are not reported and23

any significant high-order bits outside the range of the result type are discarded.24

• Floating-point addition:25

float operator +(float x, float y); 26
double operator +(double x, double y); 27

The sum is computed according to the rules of IEEE 754arithmetic. The following table lists the results28

of all possible combinations of nonzero finite values, zeros, infinities, and NaN’s. In the table,x andy29

are nonzero finite values, andz is the result ofx + y. If x andy have the same magnitude but opposite30

signs,z is positive zero. Ifx + y is too large to represent in the destination type,z is an infinity with31

the same sign asx + y. If x + y is too small to represent in the destination type,z is a zero with the32

same sign asx + y.33

34

Chapter 14 Expressions

161

 y +0 �0 +∞ �∞ NaN

x z x x +∞ �∞ NaN

+0 y +0 +0 +∞ �∞ NaN

�0 y +0 �0 +∞ �∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

�∞ �∞ �∞ �∞ NaN �∞ NaN

NaN NaN NaN NaN NaN NaN NaN

1

• Decimal addition:2

decimal operator +(decimal x, decimal y); 3

If the resulting value is too large to represent in thedecimal format, aSystem.OverflowException4

is thrown. The scale of the result, before any rounding, is the larger of the scales of the two operands.5

Decimal addition is equivalent to using the addition operator of typeSystem.Decimal.6

• Enumeration addition. Every enumeration type implicitly provides the following predefined operators,7

whereE is the enum type, andU is the underlying type ofE:8

E operator +(E x, U y); 9
E operator +(U x, E y); 10

The operators are evaluated exactly as(E)((U)x + (U)y).11

• String concatenation:12

string operator +(string x, string y); 13
string operator +(string x, object y); 14
string operator +(object x, string y); 15

The binary+ operator performs string concatenation when one or both operands are of typestring. If16

an operand of string concatenation isnull, an empty string is substituted. Otherwise, any non-string17

argument is converted to its string representation by invoking the virtualToString method inherited18

from typeobject. If ToString returnsnull, an empty string is substituted. [Example:19

using System; 20
class Test 21
{ 22
 static void Main() { 23
 string s = null; 24
 Console.WriteLine("s = >" + s + "<"); // displays s = >< 25
 int i = 1; 26
 Console.WriteLine("i = " + i); // displays i = 1 27
 float f = 1.2300E+15F; 28
 Console.WriteLine("f = " + f); // displays f = 1.23E+15 29
 decimal d = 2.900m; 30
 Console.WriteLine("d = " + d); // displays d = 2.900 31
 } 32
} 33

end example]34

The result of the string concatenation operator is a string that consists of the characters of the left35

operand followed by the characters of the right operand. The string concatenation operator never returns36

anull value. ASystem.OutOfMemoryException may be thrown if there is not enough memory37

available to allocate the resulting string.38

• Delegate combination. Every delegate type implicitlyprovides the following predefined operator, where39

D is the delegate type:40

D operator +(D x, D y); 41

The binary+ operator performs delegate combination when both operands are of some delegate type D.42

(If the operands have different delegate types, a compile-time error occurs.) If the first operand isnull,43

C# LANGUAGE SPECIFICATION

162

the result of the operation is the value of the second operand (even if that is alsonull). Otherwise, if the1

second operand isnull, then the result of the operation is the value of the first operand. Otherwise, the2

result of the operation is a new delegate instance that, when invoked, invokes the first operand and then3

invokes the second operand. [Note: For examples of delegate combination, see §14.7.5 and §22.3. Since4

System.Delegate is not a delegate type,operator + is not defined for it.end note]5

14.7.5 Subtraction operator6

For an operation of the formx � y, binary operator overload resolution (§14.2.4) is applied to select a7

specific operator implementation. The operands are converted to the parameter types of the selected8

operator, and the type of the result is the return type of the operator.9

The predefined subtraction operators are listed below. The operators all subtracty from x.10

• Integer subtraction:11

int operator �(int x, int y); 12
uint operator �(uint x, uint y); 13
long operator �(long x, long y); 14
ulong operator �(ulong x, ulong y); 15

In achecked context, if the difference is outside the range of the result type, a16

System.OverflowException is thrown. In anunchecked context, overflows are not reported and17

any significant high-order bits outside the range of the result type are discarded.18

• Floating-point subtraction:19

float operator �(float x, float y); 20
double operator �(double x, double y); 21

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the22

results of all possible combinations of nonzero finitevalues, zeros, infinities, and NaNs. In the table,x23

andy are nonzero finite values, andz is the result ofx � y. If x andy are equal,z is positive zero. If24

x � y is too large to represent in the destination type,z is an infinity with the same sign asx � y. If25

x � y is too small to represent in the destination type,z is a zero with the same sign asx � y.26

27

 y +0 �0 +∞ �∞ NaN

x z x x �∞ +∞ NaN

+0 �y +0 +0 �∞ +∞ NaN

�0 �y �0 +0 �∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

�∞ �∞ �∞ �∞ �∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

28

• Decimal subtraction:29

decimal operator �(decimal x, decimal y); 30

If the resulting value is too large to represent in thedecimal format, aSystem.OverflowException31

is thrown. The scale of the result, before any rounding, is the larger of the scales of the two operands.32

Decimal subtraction is equivalent to using the subtraction operator of typeSystem.Decimal.33

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined operator,34

whereE is the enum type, andU is the underlying type ofE:35

U operator �(E x, E y); 36

This operator is evaluated exactly as(U)((U)x � (U)y). In other words, the operator computes the37

difference between the ordinal values ofx andy, and the type of the result is the underlying type of the38

enumeration.39

Chapter 14 Expressions

163

E operator �(E x, U y); 1

This operator is evaluated exactly as(E)((U)x � y). In other words, the operator subtracts a value2

from the underlying type of the enumeration, yielding a value of the enumeration.3

• Delegate removal. Every delegate type implicitly provides the following predefined operator, whereD is4

the delegate type:5

D operator �(D x, D y); 6

The binary- operator performs delegate removal when both operands are of some delegate typeD. (If7

the operands have different delegate types, a compile-time error occurs.) If the first operand isnull, the8

result of the operation isnull. Otherwise, if the second operand isnull, then the result of the operation9

is the value of the first operand. Otherwise, both operands represent invocation lists (§22.1) having one10

or more entries, and the result is a new invocation list consisting of the first operand’s list with the11

second operand’s entries removed from it, provided the second operand’s list is a proper contiguous12

subset of the first’s. (For determining subset equality, corresponding entries are compared as for the13

delegate equality operator (§14.9.8).) Otherwise, the result is the value of the left operand. Neither of the14

operands’ lists is changed in the process. If the second operand’s list matches multiple subsets of15

contiguous entries in the first operand’s list, the right-most matching subset of contiguous entries is16

removed. If removal results in an empty list, the result isnull. [Example: For example:17

using System; 18
delegate void D(int x); 19
class Test 20
{ 21
 public static void M1(int i) { /* � */ } 22
 public static void M2(int i) { /* � */ } 23
} 24

class Demo 25
{ 26
 static void Main() { 27
 D cd1 = new D(Test.M1); 28
 D cd2 = new D(Test.M2); 29

 D cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1 30
 cd3 -= cd1; // => M1 + M2 + M2 31

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1 32
 cd3 -= cd1 + cd2; // => M2 + M1 33

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1 34
 cd3 -= cd2 + cd2; // => M1 + M1 35

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1 36
 cd3 -= cd2 + cd1; // => M1 + M2 37

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1 38
 cd3 -= cd1 + cd1; // => M1 + M2 + M2 + M1 39
 } 40
} 41

end example]42

14.8 Shift operators43

The<< and>> operators are used to perform bit shifting operations.44

shift-expression:45

additive-expression46

shift-expression << additive-expression47

shift-expression >> additive-expression48

For an operation of the formx << count or x >> count, binary operator overload resolution (§14.2.4) is49

applied to select a specific operator implementation. The operands are converted to the parameter types of50

the selected operator, and the type of the result is the return type of the operator.51

C# LANGUAGE SPECIFICATION

164

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct1

containing the operator declaration, and the type of the second operand must always beint.2

The predefined shift operators are listed below.3

• Shift left:4

int operator <<(int x, int count); 5
uint operator <<(uint x, int count); 6
long operator <<(long x, int count); 7
ulong operator <<(ulong x, int count); 8

The<< operator shiftsx left by a number of bits computed as described below.9

The high-order bits outside the range of the result type ofx are discarded, the remaining bits are shifted10

left, and the low-order empty bit positions are set to zero.11

• Shift right:12

int operator >>(int x, int count); 13
uint operator >>(uint x, int count); 14
long operator >>(long x, int count); 15
ulong operator >>(ulong x, int count); 16

The>> operator shiftsx right by a number of bits computed as described below.17

Whenx is of typeint or long, the low-order bits ofx are discarded, the remaining bits are shifted18

right, and the high-order empty bit positions are set to zero ifx is non-negative and set to one ifx is19

negative.20

Whenx is of typeuint or ulong, the low-order bits ofx are discarded, the remaining bits are shifted21

right, and the high-order empty bit positions are set to zero.22

For the predefined operators, the number of bits to shift is computed as follows:23

• When the type ofx is int or uint, the shift count is given by the low-order five bits ofcount. In other24

words, the shift count is computed fromcount & 0x1F.25

• When the type ofx is long or ulong, the shift count is given by the low-order six bits ofcount. In26

other words, the shift count is computed fromcount & 0x3F.27

If the resulting shift count is zero, the shift operators simply return the value ofx.28

Shift operations never cause overflows and produce the same results inchecked andunchecked contexts.29

When the left operand of the>> operator is of a signed integral type, the operator performs anarithmetic30

shift right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the31

high-order empty bit positions. When the left operand of the>> operator is of an unsigned integral type, the32

operator performs alogical shift right wherein high-order empty bit positions are always set to zero. To33

perform the opposite operation of that inferred from the operand type, explicit casts can be used. For34

example, ifx is a variable of typeint, the operationunchecked((int)((uint)x >> y)) performs a35

logical shift right ofx.36

14.9 Relational and type-testing operators37

The==, !=, <, >, <=, >=, is andas operators are called the relational and type-testing operators.38

relational-expression:39

shift-expression40

relational-expression < shift-expression41

relational-expression > shift-expression42

relational-expression <= shift-expression43

relational-expression >= shift-expression44

relational-expression is type45

relational-expression as type46

Chapter 14 Expressions

165

equality-expression:1

relational-expression2

equality-expression == relational-expression3

equality-expression != relational-expression4

Theis operator is described in §14.9.9 and theas operator is described in §14.9.10.5

The==, !=, <, >, <= and>= operators arecomparison operators. For an operation of the formx op y,6

whereop is a comparison operator, overload resolution (§14.2.4) is applied to select a specific operator7

implementation. The operands are converted to the parameter types of the selected operator, and the type of8

the result is the return type of the operator.9

The predefined comparison operators are described inthe following sections. All predefined comparison10

operators return a result of typebool, as described in the following table.11

12

Operation Result

x == y true if x is equal toy, false otherwise

x != y true if x is not equal toy, false otherwise

x < y true if x is less thany, false otherwise

x > y true if x is greater thany, false otherwise

x <= y true if x is less than or equal toy, false otherwise

x >= y true if x is greater than or equal toy, false otherwise

13

14.9.1 Integer comparison operators14

The predefined integer comparison operators are:15

bool operator ==(int x, int y); 16
bool operator ==(uint x, uint y); 17
bool operator ==(long x, long y); 18
bool operator ==(ulong x, ulong y); 19

bool operator !=(int x, int y); 20
bool operator !=(uint x, uint y); 21
bool operator !=(long x, long y); 22
bool operator !=(ulong x, ulong y); 23

bool operator <(int x, int y); 24
bool operator <(uint x, uint y); 25
bool operator <(long x, long y); 26
bool operator <(ulong x, ulong y); 27

bool operator >(int x, int y); 28
bool operator >(uint x, uint y); 29
bool operator >(long x, long y); 30
bool operator >(ulong x, ulong y); 31

bool operator <=(int x, int y); 32
bool operator <=(uint x, uint y); 33
bool operator <=(long x, long y); 34
bool operator <=(ulong x, ulong y); 35

bool operator >=(int x, int y); 36
bool operator >=(uint x, uint y); 37
bool operator >=(long x, long y); 38
bool operator >=(ulong x, ulong y); 39

Each of these operators compares the numeric values of the two integer operands and returns abool value40

that indicates whether the particular relation istrue or false.41

C# LANGUAGE SPECIFICATION

166

14.9.2 Floating-point comparison operators1

The predefined floating-point comparison operators are:2

bool operator ==(float x, float y); 3
bool operator ==(double x, double y); 4

bool operator !=(float x, float y); 5
bool operator !=(double x, double y); 6

bool operator <(float x, float y); 7
bool operator <(double x, double y); 8

bool operator >(float x, float y); 9
bool operator >(double x, double y); 10

bool operator <=(float x, float y); 11
bool operator <=(double x, double y); 12

bool operator >=(float x, float y); 13
bool operator >=(double x, double y); 14

The operators compare the operands according to the rules of the IEEE 754 standard:15

• If either operand is NaN, the result isfalse for all operators except!=, for which the result istrue.16

For any two operands,x != y always produces the same result as!(x == y). However, when one or both17

operands are NaN, the<, >, <=, and>= operatorsdo not produce the same results as the logical negation of18

the opposite operator. [Example: For example, if either ofx andy is NaN, thenx < y is false, but19

!(x >= y) is true. end example]20

• When neither operand is NaN, the operators compare the values of the two floating-point operands with21

respect to the ordering22

�∞ < �max < � < �min < �0.0 == +0.0 < +min < � < +max < +∞ 23

wheremin andmax are the smallest and largest positive finite values that can be represented in the given24

floating-point format. Notable effects of this ordering are:25

o Negative and positive zeros are considered equal.26

o A negative infinity is considered less than all other values, but equal to another negative infinity.27

o A positive infinity is considered greater than all other values, but equal to another positive infinity.28

14.9.3 Decimal comparison operators29

The predefined decimal comparison operators are:30

bool operator ==(decimal x, decimal y); 31
bool operator !=(decimal x, decimal y); 32
bool operator <(decimal x, decimal y); 33

bool operator >(decimal x, decimal y); 34
bool operator <=(decimal x, decimal y); 35
bool operator >=(decimal x, decimal y); 36

Each of these operators compares the numeric values of the two decimal operands and returns abool37

value that indicates whether the particular relation istrue or false. Each decimal comparison is38

equivalent to using the corresponding relational or equality operator of typeSystem.Decimal.39

14.9.4 Boolean equality operators40

The predefined boolean equality operators are:41

bool operator ==(bool x, bool y); 42
bool operator !=(bool x, bool y); 43

The result of== is true if both x andy aretrue or if bothx andy arefalse. Otherwise, the result is44

false.45

Chapter 14 Expressions

167

The result of!= is false if both x andy aretrue or if bothx andy arefalse. Otherwise, the result is1

true. When the operands are of typebool, the!= operator produces the same result as the^ operator.2

14.9.5 Enumeration comparison operators3

Every enumeration type implicitly provides the following predefined comparison operators:4

bool operator ==(E x, E y); 5
bool operator !=(E x, E y); 6
bool operator <(E x, E y); 7

bool operator >(E x, E y); 8
bool operator <=(E x, E y); 9
bool operator >=(E x, E y); 10

The result of evaluatingx op y, wherex andy are expressions of an enumeration typeE with an underlying11

typeU, andop is one of the comparison operators, is exactly the same as evaluating((U)x) op ((U)y). In12

other words, the enumeration type comparison operators simply compare the underlying integral values of13

the two operands.14

14.9.6 Reference type equality operators15

The predefined reference type equality operators are:16

bool operator ==(object x, object y); 17
bool operator !=(object x, object y); 18

The operators return the result of comparingthe two references for equality or non-equality.19

Since the predefined reference type equality operators accept operands of typeobject, they apply to all20

types that do not declare applicableoperator == andoperator != members. Conversely, any21

applicable user-defined equality operators effectively hide the predefined reference type equality operators.22

The predefined reference type equality operators require the operands to bereference-type values or the23

valuenull; furthermore, they require that a standard implicit conversion (§13.3.1) exists from the type of24

either operand to the type of the other operand. Unlessboth of these conditions are true, a compile-time error25

occurs. [Note: Notable implications of these rules are:26

• It is a compile-time error to use the predefined reference type equality operators to compare two27

references that are known to be different at compile-time. For example, if the compile-time types of the28

operands are two class typesA andB, and if neitherA norB derives from the other, then it would be29

impossible for the two operands to reference the sameobject. Thus, the operation is considered a compile-30

time error.31

• The predefined reference type equality operatorsdo not permit value type operands to be compared.32

Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of that33

struct type.34

• The predefined reference type equality operators never cause boxing operations to occur for their35

operands. It would be meaningless to perform suchboxing operations, since references to the newly36

allocated boxed instances would necessarily differ from all other references.37

end note]38

For an operation of the formx == y or x != y, if any applicableoperator == or operator != exists,39

the operator overload resolution (§14.2.4) rules will select that operator instead of the predefined reference40

type equality operator. However, it is always possible to select the predefined reference type equality41

operator by explicitly casting one or both of the operands to typeobject. [Example: The example 42

C# LANGUAGE SPECIFICATION

168

Using System; 1
class Test 2
{ 3
 static void Main() { 4
 string s = "Test"; 5
 string t = string.Copy(s); 6
 Console.WriteLine(s == t); 7
 Console.WriteLine((object)s == t); 8
 Console.WriteLine(s == (object)t); 9
 Console.WriteLine((object)s == (object)t); 10
 } 11
} 12

produces the output13

True 14
False 15
False 16
False 17

Thes andt variables refer to two distinctstring instances containing the same characters. The first18

comparison outputsTrue because the predefined string equality operator (§14.9.7) is selected when both19

operands are of typestring. The remaining comparisons all outputFalse because the predefined20

reference type equality operator is selected when one or both of the operands are of typeobject.21

Note that the above technique is not meaningful for value types. The example22

class Test 23
{ 24
 static void Main() { 25
 int i = 123; 26
 int j = 123; 27
 System.Console.WriteLine((object)i == (object)j); 28
 } 29
} 30

outputsFalse because the casts create references to two separate instances of boxedint values.end31

example]32

14.9.7 String equality operators33

The predefined string equality operators are: :34

bool operator ==(string x, string y); 35
bool operator !=(string x, string y); 36

Two string values are considered equal when one of the following is true:37

• Both values arenull.38

• Both values are non-null references to string instances that have identical lengths and identical39

characters in each character position.40

The string equality operators compare stringvalues rather than stringreferences. When two separate string41

instances contain the exact same sequence of characters, the values of the strings are equal, but the42

references are different. [Note: As described in §14.9.6, the reference type equality operators can be used to43

compare string references instead of string values.end note]44

14.9.8 Delegate equality operators45

Every delegate type implicitly provides the following predefined comparison operators: :46

bool operator ==(System.Delegate x, System.Delegate y); 47
bool operator !=(System.Delegate x, System.Delegate y); 48

Two delegate instances are considered equal as follows:49

Chapter 14 Expressions

169

• If either of the delegate instances isnull, they are equal if and only if both arenull.1

• If either of the delegate instances has an invocation list (§22.1) containing one entry, they are equal if2

and only if the other also has an invocation list containing one entry, and either:3

• Both refer to the same static method, or4

• Both refer to the same non-static method on the same target object.5

• If either of the delegate instances has an invocation list containing two or more entries, those instances6

are equal if and only if their invocation lists are the same length, and each entry in one’s invocation list is7

equal to the corresponding entry, in order, in the other’s invocation list.8

Note that delegates of different types can be considered equal by the above definition, as long as they have9

the same return type and parameter types.10

14.9.9 The is operator11

Theis operator is used to dynamically check if the run-time type of an object is compatible with a given12

type. The result of the operatione is T, wheree is an expression andT is a type, is a boolean value13

indicating whethere can successfully be converted to typeT by a reference conversion, a boxing conversion,14

or an unboxing conversion. The operation is evaluated as follows:15

• If the compile-time type ofe is the same asT, or if an implicit reference conversion (§13.1.4) or boxing16

conversion (§13.1.5) exists from the compile-time type ofe to T:17

o If e is of a reference type, the result of the operation is equivalent to evaluatinge != null.18

o If e is of a value type, the result of the operation istrue.19

• Otherwise, if an explicit reference conversion (§13.2.3) or unboxing conversion (§13.2.4) exists from20

the compile-time type ofe to T, a dynamic type check is performed:21

o If the value ofe is null, the result isfalse.22

o Otherwise, letR be the run-time type of the instance referenced bye. If R andT are the same type, if23

R is a reference type and an implicit reference conversion fromR to T exists, or ifR is a value type24

andT is an interface type that is implemented byR, the result istrue.25

o Otherwise, the result isfalse.26

• Otherwise, no reference or boxing conversion ofe to typeT is possible, and the result of the operation is27

false.28

Note that theis operator only considers reference conversions, boxing conversions, and unboxing29

conversions. Other conversions, such as user defined conversions, are not considered by theis operator.30

14.9.10 The as operator31

Theas operator is used to explicitly convert a value to a given reference type using a reference conversion32

or a boxing conversion. Unlike a cast expression (§14.6.6), theas operator never throws an exception.33

Instead, if the indicated conversion is not possible, the resulting value isnull.34

In an operation of the forme as T, e must be an expression andT must be a reference type. The type of the35

result isT, and the result is always classified as a value. The operation is evaluated as follows:36

• If the compile-time type ofe is the same asT, the result is simply the value ofe.37

• Otherwise, if an implicit reference conversion (§13.1.4) or boxing conversion (§13.1.5) exists from the38

compile-time type of e toT, this conversion is performed and becomes the result of the operation.39

• Otherwise, if an explicit reference conversion (§13.2.3) exists from the compile-time type ofe to T, a40

dynamic type check is performed:41

o If the value of e isnull, the result is the valuenull with the compile-time typeT.42

C# LANGUAGE SPECIFICATION

170

o Otherwise, letR be the run-time type of the instance referenced bye. If R andT are the same type, if1

R is a reference type and an implicit reference conversion fromR to T exists, or ifR is a value type2

andT is an interface type that is implemented byR, the result is the reference given bye with the3

compile-time typeT.4

o Otherwise, the result is the valuenull with the compile-time typeT.5

• Otherwise, the indicated conversion is neverpossible, and a compile-time error occurs.6

Note that theas operator only performs reference conversionsand boxing conversions. Other conversions,7

such as user defined conversions, are not possible with theas operator and should instead be performed8

using cast expressions.9

14.10 Logical operators10

The&, ^, and| operators are called the logical operators.11

and-expression:12

equality-expression13

and-expression & equality-expression14

exclusive-or-expression:15

and-expression16

exclusive-or-expression ^ and-expression17

inclusive-or-expression:18

exclusive-or-expression19

inclusive-or-expression | exclusive-or-expression20

For an operation of the formx op y, whereop is one of the logical operators, overload resolution (§14.2.4) is21

applied to select a specific operator implementation. The operands are converted to the parameter types of22

the selected operator, and the type of the result is the return type of the operator.23

The predefined logical operators are described in the following sections.24

14.10.1 Integer logical operators25

The predefined integer logical operators are:26

int operator &(int x, int y); 27
uint operator &(uint x, uint y); 28
long operator &(long x, long y); 29
ulong operator &(ulong x, ulong y); 30

int operator |(int x, int y); 31
uint operator |(uint x, uint y); 32
long operator |(long x, long y); 33
ulong operator |(ulong x, ulong y); 34

int operator ^(int x, int y); 35
uint operator ^(uint x, uint y); 36
long operator ^(long x, long y); 37
ulong operator ^(ulong x, ulong y); 38

The& operator computes the bitwise logicalAND of the two operands, the| operator computes the bitwise39

logicalOR of the two operands, and thê operator computes the bitwise logical exclusiveOR of the two40

operands. No overflows are possible from these operations.41

14.10.2 Enumeration logical operators42

Every enumeration typeE implicitly provides the following predefined logical operators:43

E operator &(E x, E y); 44
E operator |(E x, E y); 45
E operator ^(E x, E y); 46

Chapter 14 Expressions

171

The result of evaluatingx op y, wherex andy are expressions of an enumeration typeE with an underlying1

typeU, andop is one of the logical operators, is exactly the same as evaluating (E)((U)x op (U)y). In other2

words, the enumeration type logical operators simply perform the logical operation on the underlying type of3

the two operands.4

14.10.3 Boolean logical operators5

The predefined boolean logical operators are:6

bool operator &(bool x, bool y); 7
bool operator |(bool x, bool y); 8
bool operator ^(bool x, bool y); 9

The result ofx & y is true if both x andy aretrue. Otherwise, the result isfalse.10

The result ofx | y is true if eitherx or y is true. Otherwise, the result isfalse.11

The result ofx ^ y is true if x is true andy is false, orx is false andy is true. Otherwise, the result12

is false. When the operands are of typebool, the^ operator computes the same result as the!= operator.13

14.11 Conditional logical operators14

The&& and|| operators are called the conditional logicaloperators. They are also called the “short-15

circuiting” logical operators.16

conditional-and-expression:17

inclusive-or-expression18

conditional-and-expression && inclusive-or-expression19

conditional-or-expression:20

conditional-and-expression21

conditional-or-expression || conditional-and-expression22

The&& and|| operators are conditional versions of the& and| operators:23

• The operationx && y corresponds to the operationx & y, except thaty is evaluated only ifx is true.24

• The operationx || y corresponds to the operationx | y, except thaty is evaluated only ifx is25

false.26

An operation of the formx && y or x || y is processed by applying overload resolution (§14.2.4) as if the27

operation was writtenx & y or x | y. Then,28

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the29

predefined integer logical operators, a compile-time error occurs.30

• Otherwise, if the selected operator is one of the predefined boolean logical operators (§14.10.2), the31

operation is processed as described in §14.11.1.32

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as described33

in §14.11.2.34

It is not possible to directly overload the conditional logical operators. However, because the conditional35

logical operators are evaluated in terms of the regularlogical operators, overloads of the regular logical36

operators are, with certain restrictions, also considered overloads of the conditional logical operators. This is37

described further in §14.11.2.38

14.11.1 Boolean conditional logical operators39

When the operands of&& or || are of typebool, or when the operands are of types that do not define an40

applicableoperator & or operator |, but do define implicit conversions tobool, the operation is41

processed as follows:42

C# LANGUAGE SPECIFICATION

172

• The operationx && y is evaluated asx ? y : false. In other words,x is first evaluated and1

converted to typebool. Then, ifx is true, y is evaluated and converted to typebool, and this becomes the2

result of the operation. Otherwise, the result of the operation isfalse.3

• The operationx || y is evaluated asx ? true : y. In other words,x is first evaluated and converted4

to typebool. Then, ifx is true, the result of the operation istrue. Otherwise,y is evaluated and5

converted to typebool, and this becomes the result of the operation.6

14.11.2 User-defined conditional logical operators7

When the operands of&& or || are of types that declare an applicable user-definedoperator & or8

operator |, both of the following must be true, whereT is the type in which the selected operator is9

declared:10

• The return type and the type of each parameter of the selected operator must beT. In other words, the11

operator must compute the logicalAND or the logicalOR of two operands of typeT, and must return a result12

of typeT.13

• T must contain declarations ofoperator true andoperator false.14

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the&& or ||15

operation is evaluated by combining the user-definedoperator true or operator false with the16

selected user-defined operator:17

• The operationx && y is evaluated asT.false(x) ? x : T.&(x, y), whereT.false(x) is an18

invocation of theoperator false declared inT, andT.&(x, y) is an invocation of the selected19

operator &. In other words,x is first evaluated andoperator false is invoked on the result to20

determine ifx is definitely false. Then, ifx is definitely false, the result of the operation is the value21

previously computed forx. Otherwise,y is evaluated, and the selectedoperator & is invoked on the value22

previously computed forx and the value computed fory to produce the result of the operation.23

• The operationx || y is evaluated asT.true(x) ? x : T.|(x, y), whereT.true(x) is an24

invocation of theoperator true declared inT, andT.|(x, y) is an invocation of the selected25

operator |. In other words,x is first evaluated andoperator true is invoked on the result to determine26

if x is definitely true. Then, ifx is definitely true, the result of the operation is the value previously27

computed forx. Otherwise,y is evaluated, and the selectedoperator | is invoked on the value previously28

computed forx and the value computed fory to produce the result of the operation.29

In either of these operations, the expression given byx is only evaluated once, and the expression given byy30

is either not evaluated or evaluated exactly once.31

For an example of a type that implementsoperator true andoperator false, see §18.4.2.32

14.12 Conditional operator33

The?: operator is called the conditional operator. It is at times also called the ternary operator.34

conditional-expression:35

conditional-or-expression36

conditional-or-expression ? expression : expression37

A conditional expression of the formb ? x : y first evaluates the conditionb. Then, ifb is true, x is38

evaluated and becomes the result of the operation. Otherwise,y is evaluated and becomes the result of the39

operation. A conditional expression never evaluates bothx andy.40

The conditional operator is right-associative, meaning that operations are grouped from right to left. For41

example, an expression of the forma ? b : c ? d : e is evaluated asa ? b : (c ? d : e).42

The first operand of the?: operator must be an expression of a type that can be implicitly converted to43

bool, or an expression of a type that implementsoperator true. If neither of these requirements is44

satisfied, a compile-time error occurs.45

Chapter 14 Expressions

173

The second and third operands of the?: operator control the type of the conditional expression. LetX andY1

be the types of the second and third operands. Then,2

• If X andY are the same type, then this is the type of the conditional expression.3

• Otherwise, if an implicit conversion (§13.1) exists fromX to Y, but not fromY to X, thenY is the type of4

the conditional expression.5

• Otherwise, if an implicit conversion (§13.1) exists fromY to X, but not fromX to Y, thenX is the type of6

the conditional expression.7

• Otherwise, no expression type can be determined, and a compile-time error occurs.8

The run-time processing of a conditional expression of the formb ? x : y consists of the following steps:9

• First,b is evaluated, and thebool value ofb is determined:10

o If an implicit conversion from the type ofb to bool exists, then this implicit conversion is11

performed to produce abool value.12

o Otherwise, theoperator true defined by the type ofb is invoked to produce abool value.13

• If the bool value produced by the step above istrue, thenx is evaluated and converted to the type of14

the conditional expression, and this becomes the result of the conditional expression.15

• Otherwise,y is evaluated and converted to the type of the conditional expression, and this becomes the16

result of the conditional expression.17

14.13 Assignment operators18

The assignment operators assign a new value to a variable, a property, event, or an indexer element.19

assignment:20

unary-expression assignment-operator expression21

assignment-operator: one of22

= += -= *= /= %= &= |= ^= <<= >>=23

The left operand of an assignment must be an expression classified as a variable, a property access, an24

indexer access, or an event access.25

The= operator is called thesimple assignment operator. It assigns the value of the right operand to the26

variable, property, or indexer element given by theleft operand. The left operand of the simple assignment27

operator may not be an event access (except as described in §17.7.1). The simple assignment operator is28

described in §14.13.1.29

The operators formed by prefixing a binary operator with an= character are called thecompound30

assignment operators. These operators perform the indicated operation on the two operands, and then31

assign the resulting value to the variable, property, or indexer element given by the left operand. The32

compound assignment operators are described in §14.13.2.33

The+= and-= operators with an event access expression as the left operand are called theevent34

assignment operators. No other assignment operator is valid with an event access as the left operand. The35

event assignment operators are described in §14.13.3.36

The assignment operators are right-associative, meaning that operations are grouped from right to left. For37

example, an expression of the forma = b = c is evaluated asa = (b = c).38

14.13.1 Simple assignment39

The= operator is called the simple assignment operator. In a simple assignment, the right operand must be40

an expression of a type that is implicitly convertible tothe type of the left operand. The operation assigns the41

value of the right operand to the variable, property, or indexer element given by the left operand.42

C# LANGUAGE SPECIFICATION

174

The result of a simple assignment expression is the value assigned to the left operand. The result has the1

same type as the left operand and is always classified as a value.2

If the left operand is a property or indexer access, the property or indexer must have aset accessor. If this is3

not the case, a compile-time error occurs.4

The run-time processing of a simple assignment of the formx = y consists of the following steps:5

• If x is classified as a variable:6

o x is evaluated to produce the variable.7

o y is evaluated and, if required, converted to the type ofx through an implicit conversion (§13.1).8

o If the variable given byx is an array element of areference-type, a run-time check is performed to9

ensure that the value computed fory is compatible with the array instance of whichx is an element.10

The check succeeds ify is null, or if an implicit reference conversion (§13.1.4) exists from the11

actual type of the instance referenced byy to the actual element type of the array instance containing12

x. Otherwise, aSystem.ArrayTypeMismatchException is thrown.13

o The value resulting from the evaluation and conversion ofy is stored into the location given by the14

evaluation ofx.15

• If x is classified as a property or indexer access:16

o The instance expression (ifx is notstatic) and the argument list (ifx is an indexer access)17

associated withx are evaluated, and the results are used in the subsequentset accessor invocation.18

o y is evaluated and, if required, converted to the type ofx through an implicit conversion (§13.1).19

o Theset accessor ofx is invoked with the value computed fory as itsvalue argument.20

[Note: The array covariance rules (§19.5) permit a value of an array typeA[] to be a reference to an21

instance of an array typeB[], provided an implicit reference conversion exists fromB to A. Because of22

these rules, assignment to an array element of areference-type requires a run-time check to ensure that the23

value being assigned is compatible with the array instance. In the example24

string[] sa = new string[10]; 25
object[] oa = sa; 26

oa[0] = null; // Ok 27
oa[1] = "Hello"; // Ok 28
oa[2] = new ArrayList(); // ArrayTypeMismatchException 29

the last assignment causes aSystem.ArrayTypeMismatchException to be thrown because an instance30

of ArrayList cannot be stored in an element of astring[]. end note]31

When a property or indexer declared in astruct-type is the target of an assignment, the instance expression32

associated with the property or indexer access must be classified as a variable. If the instance expression is33

classified as a value, a compile-time error occurs. [Note: Because of §14.5.4, the same rule also applies to34

fields. end note]35

[Example: Given the declarations:36

struct Point 37
{ 38
 int x, y; 39

 public Point(int x, int y) { 40
 this.x = x; 41
 this.y = y; 42
 } 43

 public int X { 44
 get { return x; } 45
 set { x = value; } 46
 } 47

Chapter 14 Expressions

175

 public int Y { 1
 get { return y; } 2
 set { y = value; } 3
 } 4
} 5

struct Rectangle 6
{ 7
 Point a, b; 8

 public Rectangle(Point a, Point b) { 9
 this.a = a; 10
 this.b = b; 11
 } 12

 public Point A { 13
 get { return a; } 14
 set { a = value; } 15
 } 16

 public Point B { 17
 get { return b; } 18
 set { b = value; } 19
 } 20
} 21

in the example22

Point p = new Point(); 23
p.X = 100; 24
p.Y = 100; 25
Rectangle r = new Rectangle(); 26
r.A = new Point(10, 10); 27
r.B = p; 28

the assignments top.X, p.Y, r.A, andr.B are permitted becausep andr are variables. However, in the29

example30

Rectangle r = new Rectangle(); 31
r.A.X = 10; 32
r.A.Y = 10; 33
r.B.X = 100; 34
r.B.Y = 100; 35

the assignments are all invalid, sincer.A andr.B are not variables.end example]36

14.13.2 Compound assignment37

An operation of the formx op= y is processed by applying binary operator overload resolution (§14.2.4) as38

if the operation was writtenx op y. Then,39

• If the return type of the selected operator isimplicitly convertible to the type ofx, the operation is40

evaluated asx = x op y, except thatx is evaluated only once.41

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is42

explicitly convertible to the type ofx, and ify is implicitly convertible to the type ofx, then the operation is43

evaluated asx = (T)(x op y), whereT is the type ofx, except thatx is evaluated only once.44

• Otherwise, the compound assignment is invalid, and a compile-time error occurs.45

The term “evaluated only once” means that in the evaluation ofx op y, the results of any constituent46

expressions ofx are temporarily saved and then reused when performing the assignment tox. [Example: For47

example, in the assignmentA()[B()] += C(), whereA is a method returningint[], andB andC are48

methods returningint, the methods are invoked only once, in the orderA, B, C. end example]49

When the left operand of a compound assignment is a property access or indexer access, the property or50

indexer must have both aget accessor and aset accessor. If this is not the case, a compile-time error51

occurs.52

C# LANGUAGE SPECIFICATION

176

The second rule above permitsx op= y to be evaluated asx = (T)(x op y) in certain contexts. The rule1

exists such that the predefined operators can be used as compound operators when the left operand is of type2

sbyte, byte, short, ushort, orchar. Even when both arguments are of one of those types, the3

predefined operators produce a result of typeint, as described in §14.2.6.2. Thus, without a cast it would4

not be possible to assign the result to the left operand.5

The intuitive effect of the rule for predefined operators is simply thatx op= y is permitted if both of6

x op y andx = y are permitted. [Example: In the example7

byte b = 0; 8
char ch = '\0'; 9
int i = 0; 10

b += 1; // Ok 11
b += 1000; // Error, b = 1000 not permitted 12
b += i; // Error, b = i not permitted 13
b += (byte)i; // Ok 14

ch += 1; // Error, ch = 1 not permitted 15
ch += (char)1; // Ok 16

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.17

end example]18

14.13.3 Event assignment19

If the left operand of a+= or -= operator is classified as an event access, then the expression is evaluated as20

follows:21

• The instance expression, if any, of the event access is evaluated.22

• The right operand of the+= or -= operator is evaluated, and, if required, converted to the type of the left23

operand through an implicit conversion (§13.1).24

• An event accessor of the event is invoked, with argument list consisting of the right operand, after25

evaluation and, if necessary, conversion. If the operator was+=, theadd accessor is invoked; if the operator26

was-=, theremove accessor is invoked.27

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only28

in the context of astatement-expression (§15.6).29

14.14 Expression30

An expression is either aconditional-expression or anassignment.31

expression:32

conditional-expression33

assignment34

14.15 Constant expressions35

A constant-expression is an expression that can be fully evaluated at compile-time.36

constant-expression:37

expression38

The type of a constant expression can be one of the following:sbyte, byte, short, ushort, int, uint,39

long, ulong, char, float, double, decimal, bool, string, any enumeration type, or the null type.40

The following constructs are permitted in constant expressions:41

Chapter 14 Expressions

177

• Literals (including thenull literal).1

• References toconst members of class and struct types.2

• References to members of enumeration types.3

• Parenthesized sub-expressions, whichare themselves constant expressions.4

• Cast expressions, provided the target type is one of the types listed above.5

• The predefined+, �, !, and~ unary operators.6

• The predefined+, �, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and>= binary operators, provided7

each operand is of a type listed above.8

• The?: conditional operator.9

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the10

expression is evaluated at compile-time. This is trueeven if the expression is a sub-expression of a larger11

expression that contains non-constant constructs.12

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-13

constant expressions, except that where run-time evaluation would have thrown an exception, compile-time14

evaluation causes a compile-time error to occur.15

Unless a constant expression is explicitly placed in anunchecked context, overflows that occur in integral-16

type arithmetic operations and conversions during thecompile-time evaluation of the expression always17

cause compile-time errors (§14.5.12).18

Constant expressions occur in the contexts listed below. In these contexts, a compile-time error occurs if an19

expression cannot be fully evaluated at compile-time.20

• Constant declarations (§17.3).21

• Enumeration member declarations (§21.30).22

• case labels of aswitch statement (§15.7.2).23

• goto case statements (§15.9.3).24

• Dimension lengths in an array creation expression (§14.5.10.2) that includes an initializer.25

• Attributes (§24).26

An implicit constant expression conversion (§13.1.6) permits a constant expression of typeint to be27

converted tosbyte, byte, short, ushort, uint, or ulong, provided the value of the constant expression28

is within the range of the destination type.29

14.16 Boolean expressions30

A boolean-expression is an expression that yields a result of typebool.31

boolean-expression:32

expression33

The controlling conditional expression of anif-statement (§15.7.1),while-statement (§15.8.1),do-statement34

(§15.8.2), orfor-statement (§15.8.3) is aboolean-expression. The controlling conditional expression of the35

?: operator (§14.12) follows the same rules as aboolean-expression, but for reasons of operator precedence36

is classified as aconditional-or-expression.37

A boolean-expression is required to be of a type that can be implicitly converted tobool or of a type that38

implementsoperator true. [Note: As required by §17.9.1, any type that implementsoperator true 39

must also implement operator false. end note] If neither requirement is satisfied, a compile-time error40

occurs.41

C# LANGUAGE SPECIFICATION

178

When a boolean expression is of a type that cannot be implicitly converted tobool but does implement1

operator true, then following evaluation of the expression, theoperator true implementation2

provided by that type is invoked to produce abool value.3

[Note: TheDBBool struct type in §18.4.2 provides an example of a type that implementsoperator true4

andoperator false. end note]5

Chapter 15 Statements

179

15. Statements1

C# provides a variety of statements. [Note: Most of these statements will be familiar to developers who have2

programmed in C and C++.end note]3

statement:4

labeled-statement5

declaration-statement6

embedded-statement7

embedded-statement:8

block9

empty-statement10

expression-statement11

selection-statement12

iteration-statement13

jump-statement14

try-statement15

checked-statement16

unchecked-statement17

lock-statement18

using-statement19

Theembedded-statement nonterminal is used for statements that appear within other statements. The use of20

embedded-statement rather thanstatement excludes the use of declaration statements and labeled statements21

in these contexts. [Example: The code22

void F(bool b) { 23
 if (b) 24
 int i = 44; 25
} 26

results in a compile-time error because anif statement requires anembedded-statement rather than a27

statement for its if branch. If this code were permitted, then the variablei would be declared, but it could28

never be used. (Note, however, that by placingi’s declaration in a block, the example is valid.)end29

example]30

15.1 End points and reachability31

Every statement has anend point. In intuitive terms, the end point of a statement is the location that32

immediately follows the statement. The execution rulesfor composite statements (statements that contain33

embedded statements) specify the action that is taken when control reaches the end point of an embedded34

statement. For example, when control reaches the endpoint of a statement in a block, control is transferred35

to the next statement in the block.36

If a statement can possibly be reached by execution, the statement is said to bereachable. Conversely, if37

there is no possibility that a statement will be executed, the statement is said to beunreachable.38

[Example: In the example39

void F() { 40
 Console.WriteLine("reachable"); 41
 goto Label; 42
 Console.WriteLine("unreachable"); 43
 Label: 44
 Console.WriteLine("reachable"); 45
} 46

C# LANGUAGE SPECIFICATION

180

the second invocation ofConsole.WriteLine is unreachable because there is no possibility that the1

statement will be executed.end example]2

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an3

error for a statement to be unreachable.4

[Note: To determine whether a particular statement or end point is reachable, the compiler performs flow5

analysis according to the reachability rules defined for each statement. The flow analysis takes into account6

the values of constant expressions (§14.15) that control the behavior of statements, but the possible values of7

non-constant expressions are not considered. In otherwords, for purposes of control flow analysis, a non-8

constant expression of a given type is considered to have any possible value of that type.9

In the example10

void F() { 11
 const int i = 1; 12
 if (i == 2) Console.WriteLine("unreachable"); 13
} 14

the boolean expression of theif statement is a constant expression because both operands of the15

== operator are constants. As the constant expressionis evaluated at compile-time, producing the value16

false, theConsole.WriteLine invocation is considered unreachable. However, ifi is changed to be a17

local variable18

void F() { 19
 int i = 1; 20
 if (i == 2) Console.WriteLine("reachable"); 21
} 22

theConsole.WriteLine invocation is considered reachable, even though, in reality, it will never be23

executed.end note]24

Theblock of a function member is always considered reachable. By successively evaluating the reachability25

rules of each statement in a block, the reachabilityof any given statement can be determined.26

[Example: In the example27

void F(int x) { 28
 Console.WriteLine("start"); 29
 if (x < 0) Console.WriteLine("negative"); 30
} 31

the reachability of the secondConsole.WriteLine is determined as follows:32

• The firstConsole.WriteLine expression statement is reachable because the block of theF method is33

reachable (§15.2).34

• The end point of the firstConsole.WriteLine expression statement is reachable15.2 because that35

statement is reachable (§15.6 and §15.2).36

• Theif statement is reachable because the end point of the firstConsole.WriteLine expression37

statement is reachable (§15.6 and §15.2).38

• The secondConsole.WriteLine expression statement is reachable because the boolean expression of39

theif statement does not have the constant valuefalse.40

end example]41

There are two situations in which it is a compile-time error for the end point of a statement to be reachable:42

Chapter 15 Statements

181

• Because theswitch statement does not permit a switch section to “fall through” to the next switch1

section, it is a compile-time error for the end point ofthe statement list of a switch section to be reachable. If2

this error occurs, it is typically an indication that abreak statement is missing.3

• It is a compile-time error for the end point of the block of a function member that computes a value to be4

reachable. If this error occurs, it typically is an indication that areturn statement is missing.5

15.2 Blocks6

A block permits multiple statements to be written in contexts where a single statement is allowed.7

block:8

{ statement-listopt }9

A block consists of an optionalstatement-list (§15.2.1), enclosed in braces. If the statement list is omitted,10

the block is said to be empty.11

A block may contain declaration statements (§15.5). The scope of a local variable or constant declared in a12

block is the block.13

Within a block, the meaning of a name used in an expression context must always be the same (§14.5.2.1).14

A block is executed as follows:15

• If the block is empty, control is transferred to the end point of the block.16

• If the block is not empty, control is transferred to the statement list. When and if control reaches the end17

point of the statement list, control is transferred to the end point of the block.18

The statement list of a block is reachable if the block itself is reachable.19

The end point of a block is reachable if the block is empty or if the end point of the statement list is20

reachable.21

15.2.1 Statement lists22

A statement list consists of one or more statements written in sequence. Statement lists occur inblocks23

(§15.2) and inswitch-blocks (§15.7.2).24

statement-list:25

statement26

statement-list statement27

A statement list is executed by transferring control to the first statement. When and if control reaches the end28

point of a statement, control is transferred to the nextstatement. When and if control reaches the end point of29

the last statement, control is transferred to the end point of the statement list.30

A statement in a statement list is reachable if at least one of the following is true:31

• The statement is the first statement andthe statement list itself is reachable.32

• The end point of the preceding statement is reachable.33

• The statement is a labeled statement and the label is referenced by a reachablegoto statement.34

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.35

15.3 The empty statement36

An empty-statement does nothing.37

empty-statement:38

; 39

An empty statement is used when there are no operations to perform in a context where a statement is40

required.41

C# LANGUAGE SPECIFICATION

182

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end1

point of an empty statement is reachable if the empty statement is reachable.2

[Example: An empty statement can be used when writing awhile statement with a null body:3

bool ProcessMessage() {�} 4

void ProcessMessages() { 5
 while (ProcessMessage()) 6
 ; 7
} 8

Also, an empty statement can be used to declare a label just before the closing “}” of a block:9

void F() { 10
 � 11

if (done) goto exit; 12
 � 13

exit: ; 14
} 15

end example]16

15.4 Labeled statements17

A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted in18

blocks, but are not permitted as embedded statements.19

labeled-statement:20

identifier : statement21

A labeled statement declares a label with the name given by theidentifier. The scope of a label is the whole22

block in which the label is declared, including any nested blocks. It is a compile-time error for two labels23

with the same name to have overlapping scopes.24

A label can be referenced fromgoto statements (§15.9.3) within the scope of the label. [Note: This means25

thatgoto statements can transfer control within blocks and out of blocks, but never into blocks.end note]26

Labels have their own declaration space and do not interfere with other identifiers. [Example: The example27

int F(int x) { 28
 if (x >= 0) goto x; 29
 x = -x; 30
 x: return x; 31
} 32

is valid and uses the namex as both a parameter and a label. end example]33

Execution of a labeled statement corresponds exactly toexecution of the statement following the label.34

In addition to the reachability provided by normal flow ofcontrol, a labeled statement is reachable if the35

label is referenced by a reachablegoto statement. (Exception: If agoto statement is inside atry that36

includes afinally block, and the labeled statement is outside thetry, and the end point of thefinally37

block is unreachable, then the labeled statement is not reachable from thatgoto statement.)38

15.5 Declaration statements39

A declaration-statement declares a local variable or constant. Declaration statements are permitted in blocks,40

but are not permitted as embedded statements.41

declaration-statement:42

local-variable-declaration ;43

local-constant-declaration ; 44

15.5.1 Local variable declarations45

A local-variable-declaration declares one or more local variables.46

Chapter 15 Statements

183

local-variable-declaration:1

type local-variable-declarators2

local-variable-declarators:3

local-variable-declarator4

local-variable-declarators , local-variable-declarator5

local-variable-declarator:6

identifier7

identifier = local-variable-initializer8

local-variable-initializer:9

expression10

array-initializer11

Thetype of a local-variable-declaration specifies the type of the variables introduced by the declaration.12

The type is followed by a list oflocal-variable-declarators, each of which introduces a new variable. A13

local-variable-declarator consists of anidentifier that names the variable, optionally followed by an14

“=” token and alocal-variable-initializer that gives the initial value of the variable.15

The value of a local variable is obtained in an expression using asimple-name (§14.5.2), and the value of a16

local variable is modified using anassignment (§14.13). A local variable must be definitely assigned (§12.3)17

at each location where its value is obtained.18

The scope of a local variable declared in alocal-variable-declaration is the block in which the declaration19

occurs. It is an error to refer to a local variable in a textual position that precedes thelocal-variable-20

declarator of the local variable. Within the scope of a localvariable, it is a compile-time error to declare21

another local variable or constant with the same name.22

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single23

variables with the same type. Furthermore, a variableinitializer in a local variable declaration corresponds24

exactly to an assignment statement that is inserted immediately after the declaration.25

[Example: The example26

void F() { 27
 int x = 1, y, z = x * 2; 28
} 29

corresponds exactly to30

void F() { 31
 int x; x = 1; 32
 int y; 33
 int z; z = x * 2; 34
} 35

end example]36

15.5.2 Local constant declarations37

A local-constant-declaration declares one or more local constants.38

local-constant-declaration:39

const type constant-declarators40

constant-declarators:41

constant-declarator42

constant-declarators , constant-declarator43

constant-declarator:44

identifier = constant-expression45

Thetype of a local-constant-declaration specifies the type of the constants introduced by the declaration.46

The type is followed by a list ofconstant-declarators, each of which introduces a new constant. Aconstant-47

C# LANGUAGE SPECIFICATION

184

declarator consists of anidentifier that names the constant, followed by an “=” token, followed by a1

constant-expression (§14.15) that gives the value of the constant.2

Thetype andconstant-expression of a local constant declaration must follow the same rules as those of a3

constant member declaration (§17.3).4

The value of a local constant is obtained in an expression using asimple-name (§14.5.2).5

The scope of a local constant is the block in which thedeclaration occurs. It is an error to refer to a local6

constant in a textual position that precedes itsconstant-declarator. Within the scope of a local constant, it is7

a compile-time error to declare another localvariable or constant with the same name.8

A local constant declaration that declares multiple constants is equivalent to multiple declarations of single9

constants with the same type.10

15.6 Expression statements11

An expression-statement evaluates a given expression. The value computed by the expression, if any, is12

discarded.13

expression-statement:14

statement-expression ;15

statement-expression:16

invocation-expression17

object-creation-expression18

assignment19

post-increment-expression20

post-decrement-expression21

pre-increment-expression22

pre-decrement-expression23

Not all expressions are permitted as statements. [Note: In particular, expressions such asx + y and24

x == 1, that merely compute a value (which will be discarded), are not permitted as statements.end note]25

Execution of an expression statement evaluates the contained expression and then transfers control to the26

end point of the expression statement. The end point of anexpression-statement is reachable if that27

expression-statement is reachable.28

15.7 Selection statements29

Selection statements select one of a number of possible statements for execution based on the value of some30

expression.31

selection-statement:32

if-statement33

switch-statement34

15.7.1 The if statement35

Theif statement selects a statement for execution based on the value of a boolean expression.36

if-statement:37

if (boolean-expression) embedded-statement38

if (boolean-expression) embedded-statement else embedded-statement39

boolean-expression:40

expression41

An else part is associated with the lexically nearest precedingif that is allowed by the syntax. [Example:42

Thus, anif statement of the form43

if (x) if (y) F(); else G(); 44

Chapter 15 Statements

185

is equivalent to1

if (x) { 2
 if (y) { 3
 F(); 4
 } 5
 else { 6
 G(); 7
 } 8
} 9

end example]10

An if statement is executed as follows:11

• Theboolean-expression (§14.16) is evaluated.12

• If the boolean expression yieldstrue, control is transferred to the first embedded statement. When and13

if control reaches the end point of that statement,control is transferred to the end point of theif statement.14

• If the boolean expression yieldsfalse and if anelse part is present, control is transferred to the15

second embedded statement. When and if control reaches the end point of that statement, control is16

transferred to the end point of theif statement.17

• If the boolean expression yieldsfalse and if anelse part is not present, control is transferred to the18

end point of theif statement.19

The first embedded statement of anif statement is reachable if theif statement is reachable and the20

boolean expression does not have the constant valuefalse.21

The second embedded statement of anif statement, if present, is reachable if theif statement is reachable22

and the boolean expression does not have the constant valuetrue.23

The end point of anif statement is reachable if the end point of at least one of its embedded statements is24

reachable. In addition, the end point of anif statement with noelse part is reachable if theif statement is25

reachable and the boolean expression does not have the constant valuetrue.26

15.7.2 The switch statement27

The switch statement selects for execution a statement list having an associated switch label that corresponds28

to the value of the switch expression.29

switch-statement:30

switch (expression) switch-block31

switch-block:32

{ switch-sectionsopt }33

switch-sections:34

switch-section35

switch-sections switch-section36

switch-section:37

switch-labels statement-list38

switch-labels:39

switch-label40

switch-labels switch-label41

switch-label:42

case constant-expression :43

default :44

A switch-statement consists of the keywordswitch, followed by a parenthesized expression (called the45

switch expression), followed by aswitch-block. Theswitch-block consists of zero or moreswitch-sections,46

C# LANGUAGE SPECIFICATION

186

enclosed in braces. Eachswitch-section consists of one or moreswitch-labels followed by astatement-list1

(§15.2.1).2

Thegoverning type of aswitch statement is established by the switch expression. If the type of the switch3

expression issbyte, byte, short, ushort, int, uint, long, ulong, char, string, or anenum-type,4

then that is the governing type of theswitch statement. Otherwise, exactly one user-defined implicit5

conversion (§13.4) must exist from the type of the switch expression to one of the following possible6

governing types:sbyte, byte, short, ushort, int, uint, long, ulong, char, string. If no such7

implicit conversion exists, or if more than one such implicit conversion exists, a compile-time error occurs.8

The constant expression of eachcase label must denote a value of a type that is implicitly convertible9

(§13.1) to the governing type of theswitch statement. A compile-time error occurs if two or morecase10

labels in the sameswitch statement specify the same constant value.11

There can be at most onedefault label in a switch statement.12

A switch statement is executed as follows:13

• The switch expression is evaluated and converted to the governing type.14

• If one of the constants specified in acase label in the sameswitch statement is equal to the value of15

the switch expression, control is transferred to the statement list following the matchedcase label.16

• If none of the constants specified incase labels in the sameswitch statement is equal to the value of17

the switch expression, and if adefault label is present, control is transferred to the statement list following18

thedefault label.19

• If none of the constants specified incase labels in the sameswitch statement is equal to the value of20

the switch expression, and if nodefault label is present, control is transferred to the end point of the21

switch statement.22

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is23

known as the “no fall through” rule. [Example: The example24

switch (i) { 25
case 0: 26
 CaseZero(); 27
 break; 28
case 1: 29
 CaseOne(); 30
 break; 31
default: 32
 CaseOthers(); 33
 break; 34
} 35

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch36

section is not permitted to “fall through” to the next switch section, and the example37

switch (i) { 38
case 0: 39
 CaseZero(); 40
case 1: 41
 CaseZeroOrOne(); 42
default: 43
 CaseAny(); 44
} 45

results in a compile-time error. When execution of a switch section is to be followed by execution of another46

switch section, an explicitgoto case or goto default statement must be used:47

Chapter 15 Statements

187

switch (i) { 1
case 0: 2
 CaseZero(); 3
 goto case 1; 4
case 1: 5
 CaseZeroOrOne(); 6
 goto default; 7
default: 8
 CaseAny(); 9
 break; 10
} 11

end example]12

Multiple labels are permitted in aswitch-section. [Example: The example13

switch (i) { 14
case 0: 15
 CaseZero(); 16
 break; 17
case 1: 18
 CaseOne(); 19
 break; 20
case 2: 21
default: 22
 CaseTwo(); 23
 break; 24
} 25

is valid. The example does not violate the“no fall through” rule because the labelscase 2: anddefault:26

are part of the sameswitch-section. end example]27

[Note: The “no fall through” rule prevents a common class of bugs that occur in C and C++ whenbreak28

statements are accidentally omitted. In addition, because of this rule, the switch sections of aswitch29

statement can be arbitrarily rearranged without affecting the behavior of the statement. For example, the30

sections of theswitch statement above can be reversed without affecting the behavior of the statement:31

switch (i) { 32
default: 33
 CaseAny(); 34
 break; 35
case 1: 36
 CaseZeroOrOne(); 37
 goto default; 38
case 0: 39
 CaseZero(); 40
 goto case 1; 41
} 42

end note]43

[Note: The statement list of a switch section typically ends in abreak, goto case, orgoto default44

statement, but any construct that renders the end point of the statement list unreachable is permitted. For45

example, awhile statement controlled by the boolean expressiontrue is known to never reach its end46

point. Likewise, athrow or return statement always transfers control elsewhere and never reaches its end47

point. Thus, the following example is valid:48

switch (i) { 49
case 0: 50
 while (true) F(); 51
case 1: 52
 throw new ArgumentException(); 53
case 2: 54
 return; 55
} 56

end note]57

[Example: The governing type of aswitch statement may be the typestring. For example:58

C# LANGUAGE SPECIFICATION

188

void DoCommand(string command) { 1
 switch (command.ToLower()) { 2
 case "run": 3
 DoRun(); 4
 break; 5
 case "save": 6
 DoSave(); 7
 break; 8
 case "quit": 9
 DoQuit(); 10
 break; 11
 default: 12
 InvalidCommand(command); 13
 break; 14
 } 15
} 16

end example]17

[Note: Like the string equality operators (§14.9.7), theswitch statement is case sensitive and will execute a18

given switch section only if the switch expression string exactly matches acase label constant.end note]19

When the governing type of aswitch statement isstring, the valuenull is permitted as a case label20

constant.21

Thestatement-lists of aswitch-block may contain declaration statements (§15.5). The scope of a local22

variable or constant declared in a switch block is the switch block.23

Within a switch block, the meaning of a name usedin an expression context must always be the same24

(§14.5.2.1).25

The statement list of a given switch section is reachable if theswitch statement is reachable and at least26

one of the following is true:27

• The switch expression is a non-constant value.28

• The switch expression is a constant value that matches acase label in the switch section.29

• The switch expression is a constant value that doesn’t match anycase label, and the switch section30

contains thedefault label.31

• A switch label of the switch section is referenced by a reachablegoto case or goto default32

statement.33

The end point of aswitch statement is reachable if at least one of the following is true:34

• Theswitch statement contains a reachablebreak statement that exits theswitch statement.35

• Theswitch statement is reachable, the switch expression is a non-constant value, and nodefault36

label is present.37

• Theswitch statement is reachable, the switch expression is a constant value that doesn’t match any38

case label, and nodefault label is present.39

15.8 Iteration statements40

Iteration statements repeatedly execute an embedded statement.41

iteration-statement:42

while-statement43

do-statement44

for-statement45

foreach-statement46

15.8.1 The while statement47

Thewhile statement conditionally executes an embedded statement zero or more times.48

Chapter 15 Statements

189

while-statement:1

while (boolean-expression) embedded-statement2

A while statement is executed as follows:3

• Theboolean-expression (§14.16) is evaluated.4

• If the boolean expression yieldstrue, control is transferred to the embedded statement. When and if5

control reaches the end point of the embedded statement (possibly from execution of acontinue6

statement), control is transferred to the beginning of thewhile statement.7

• If the boolean expression yieldsfalse, control is transferred to the end point of thewhile statement.8

Within the embedded statement of awhile statement, abreak statement (§15.9.1) may be used to transfer9

control to the end point of thewhile statement (thus ending iteration of the embedded statement), and a10

continue statement (§15.9.2) may be used to transfer control to the end point of the embedded statement11

(thus performing another iteration of thewhile statement).12

The embedded statement of awhile statement is reachable if thewhile statement is reachable and the13

boolean expression does not have the constant valuefalse.14

The end point of awhile statement is reachable if at least one of the following is true:15

• Thewhile statement contains a reachablebreak statement that exits thewhile statement.16

• Thewhile statement is reachable and the boolean expression does not have the constant valuetrue.17

15.8.2 The do statement18

Thedo statement conditionally executes an embedded statement one or more times.19

do-statement:20

do embedded-statement while (boolean-expression) ; 21

A do statement is executed as follows:22

• Control is transferred to the embedded statement.23

• When and if control reaches the end point of the embedded statement (possibly from execution of a24

continue statement), theboolean-expression (§14.16) is evaluated. If the boolean expression yieldstrue,25

control is transferred to the beginning of thedo statement. Otherwise, control is transferred to the end point26

of thedo statement.27

Within the embedded statement of ado statement, abreak statement (§15.9.1) may be used to transfer28

control to the end point of thedo statement (thus ending iteration of the embedded statement), and a29

continue statement (§15.9.2) may be used to transfer control to the end point of the embedded statement30

(thus performing another iteration of thedo statement).31

The embedded statement of ado statement is reachable if thedo statement is reachable.32

The end point of ado statement is reachable if at least one of the following is true:33

• Thedo statement contains a reachablebreak statement that exits thedo statement.34

• The end point of the embedded statement is reachable and the boolean expression does not have the35

constant valuetrue.36

15.8.3 The for statement37

Thefor statement evaluates a sequence of initialization expressions and then, while a condition is true,38

repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.39

for-statement:40

for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement41

C# LANGUAGE SPECIFICATION

190

for-initializer:1

local-variable-declaration2

statement-expression-list3

for-condition:4

boolean-expression5

for-iterator:6

statement-expression-list7

statement-expression-list:8

statement-expression9

statement-expression-list , statement-expression10

Thefor-initializer, if present, consists of either alocal-variable-declaration (§15.5.1) or a list ofstatement-11

expressions (§15.6) separated by commas. The scope of a local variable declared by afor-initializer starts at12

thelocal-variable-declarator for the variable and extends to the end of the embedded statement. The scope13

includes thefor-condition and thefor-iterator.14

Thefor-condition, if present, must be aboolean-expression (§14.16).15

Thefor-iterator, if present, consists of a list ofstatement-expressions (§15.6) separated by commas.16

A for statement is executed as follows:17

• If a for-initializer is present, the variable initializers or statement expressions are executed in the order18

they are written. This step is only performed once.19

• If a for-condition is present, it is evaluated.20

• If the for-condition is not present or if the evaluation yieldstrue, control is transferred to the embedded21

statement. When and if control reaches the end point ofthe embedded statement (possibly from execution of22

acontinue statement), the expressions of thefor-iterator, if any, are evaluated in sequence, and then23

another iteration is performed, starting with evaluation of thefor-condition in the step above.24

• If the for-condition is present and the evaluation yieldsfalse, control is transferred to the end point of25

thefor statement.26

Within the embedded statement of afor statement, abreak statement (§15.9.1) may be used to transfer27

control to the end point of thefor statement (thus ending iteration of the embedded statement), and a28

continue statement (§15.9.2) may be used to transfer control to the end point of the embedded statement29

(thus executing another iteration of thefor statement).30

The embedded statement of afor statement is reachable if one of the following is true:31

• Thefor statement is reachable and nofor-condition is present.32

• Thefor statement is reachable and afor-condition is present and does not have the constant value33

false.34

The end point of afor statement is reachable if at least one of the following is true:35

• Thefor statement contains a reachablebreak statement that exits thefor statement.36

• Thefor statement is reachable and afor-condition is present and does not have the constant value37

true.38

15.8.4 The foreach statement39

Theforeach statement enumerates the elements of a collection, executing an embedded statement for each40

element of the collection.41

foreach-statement:42

foreach (type identifier in expression) embedded-statement43

Chapter 15 Statements

191

Thetype andidentifier of aforeach statement declare theiteration variable of the statement. The iteration1

variable corresponds to a read-only local variable with a scope that extends over the embedded statement.2

During execution of aforeach statement, the iteration variable represents the collection element for which3

an iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to4

modify the iteration variable (via assignment or the++ and-- operators) or pass the iteration variable as a5

ref or out parameter.6

The type of theexpression of aforeach statement must be a collection type (as defined below), and an7

explicit conversion (§13.2) must exist from the element type of the collection to the type of the iteration8

variable. Ifexpression has the valuenull, aSystem.NullReferenceException is thrown.9

A typeC is said to be acollection type if it implements theSystem.IEnumerable interface or implements10

thecollection pattern by meeting all of the following criteria:11

• C contains apublic instance method with the signatureGetEnumerator(), that returns astruct-type,12

class-type, or interface-type, which is calledE in the following text.13

• E contains apublic instance method with the signatureMoveNext() and the return typebool.14

• E contains apublic instance property namedCurrent that permits reading the current value. The type15

of this property is said to be theelement type of the collection type.16

A type that implementsIEnumerable is also a collection type, even if it doesn't satisfy the conditions17

above. (This is possible if it implementsIEnumerable via private interface implementation.)18

TheSystem.Array type (§19.1.1) is a collection type, and since all array types derive from19

System.Array, any array type expression is permitted in aforeach statement. The order in which20

foreach traverses the elements of an array is as follows: For single-dimensional arrays elements are21

traversed in increasing index order, starting with index0 and ending with indexLength � 1. For multi-22

dimensional arrays, elements are traversed such that the indices of the rightmost dimension are increased23

first, then the next left dimension, and so on to the left.24

A foreach statement of the form:25

foreach (ElementType element in collection) statement 26

corresponds to one of two possible expansions:27

• If the collection expression is of a type that implements the collection pattern (as defined above), the28

expansion of theforeach statement is:29

Enumerator enumerator = (collection).GetEnumerator(); 30
try { 31
 while (enumerator.MoveNext()) { 32
 ElementType element = (ElementType)enumerator.Current; 33
 statement; 34
 } 35
} 36
finally { 37
 IDisposable disposable = enumerator as System.IDisposable; 38
 if (disposable != null) disposable.Dispose(); 39
} 40

[Note: Significant optimizations of the above are often easily available. If the typeE implements41

System.IDisposable, then the expression(enumerator as System.IDisposable) will always42

be non-null and the implementation can safely substitute a simple conversion for a possibly more43

expensive type test. Conversely, if the typeE is sealed and does not implement44

System.IDisposable, then the expression(enumerator as System.IDisposable) will45

always evaluate to null. In this case, the implementation can safely optimize away the entire finally46

clause.end note]47

C# LANGUAGE SPECIFICATION

192

• Otherwise; thecollection expression is of a type that implementsSystem.IEnumerable, and the1

expansion of theforeach statement is:2

IEnumerator enumerator = 3
((System.IEnumerable)(collection)).GetEnumerator(); 4
try { 5
 while (enumerator.MoveNext()) { 6
 ElementType element = (ElementType)enumerator.Current; 7
 statement; 8
 } 9
} 10
finally { 11
 IDisposable disposable = enumerator as System.IDisposable; 12
 if (disposable != null) disposable.Dispose(); 13
} 14

In either expansion, theenumerator variable is a temporary variable that is inaccessible in, and invisible15

to, the embeddedstatement, and theelement variable is read-only in the embeddedstatement.16

[Example: The following example prints out each value in atwo-dimensional array, in element order:17

using System; 18
class Test 19
{ 20
 static void Main() { 21
 double[,] values = { 22
 {1.2, 2.3, 3.4, 4.5}, 23
 {5.6, 6.7, 7.8, 8.9} 24
 }; 25

 26

 foreach (double elementValue in values) 27
 Console.Write("{0} ", elementValue); 28
 Console.WriteLine(); 29
 } 30
} 31

The output produced is as follows:32

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 33

end example]34

15.9 Jump statements35

Jump statements unconditionally transfer control.36

jump-statement:37

break-statement38

continue-statement39

goto-statement40

return-statement41

throw-statement42

The location to which a jump statement transfers control is called thetarget of the jump statement.43

When a jump statement occurs within a block, and the target of that jump statement is outside that block, the44

jump statement is said toexit the block. While a jump statement may transfer control out of a block, it can45

never transfer control into a block.46

Execution of jump statements is complicated by the presence of interveningtry statements. In the absence47

of suchtry statements, a jump statement unconditionally transfers control from the jump statement to its48

target. In the presence of such interveningtry statements, execution is more complex. If the jump statement49

exits one or moretry blocks with associatedfinally blocks, control is initially transferred to the50

finally block of the innermosttry statement. When and if control reaches the end point of afinally51

block, control is transferred to thefinally block of the next enclosingtry statement. This process is52

repeated until thefinally blocks of all interveningtry statements have been executed.53

Chapter 15 Statements

193

[Example: In the example1

using System; 2
class Test 3
{ 4
 static void Main() { 5
 while (true) { 6
 try { 7
 try { 8
 Console.WriteLine("Before break"); 9
 break; 10
 } 11
 finally { 12
 Console.WriteLine("Innermost finally block"); 13
 } 14
 } 15
 finally { 16
 Console.WriteLine("Outermost finally block"); 17
 } 18
 } 19
 Console.WriteLine("After break"); 20
 } 21
} 22

the finally blocks associated with two try statementsare executed before control is transferred to the target23

of the jump statement.24

The output produced is as follows:25

Before break 26
Innermost finally block 27
Outermost finally block 28
After break 29

end example]30

15.9.1 The break statement31

Thebreak statement exits the nearest enclosingswitch, while, do, for, orforeach statement.32

break-statement:33

break ; 34

The target of abreak statement is the end point of the nearest enclosingswitch, while, do, for, or35

foreach statement. If abreak statement is not enclosed by aswitch, while, do, for, orforeach36

statement, a compile-time error occurs.37

When multipleswitch, while, do, for, or foreach statements are nested within each other, abreak38

statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto39

statement (§15.9.3) must be used.40

A break statement cannot exit afinally block (§15.10). When abreak statement occurs within a41

finally block, the target of thebreak statement must be within the samefinally block; otherwise a42

compile-time error occurs.43

A break statement is executed as follows:44

• If the break statement exits one or moretry blocks with associatedfinally blocks, control is45

initially transferred to thefinally block of the innermosttry statement. When and if control reaches the46

end point of afinally block, control is transferred to thefinally block of the next enclosingtry47

statement. This process is repeated until thefinally blocks of all interveningtry statements have been48

executed.49

• Control is transferred to the target of thebreak statement.50

Because abreak statement unconditionally transfers control elsewhere, the end point of abreak statement51

is never reachable. 52

C# LANGUAGE SPECIFICATION

194

15.9.2 The continue statement1

Thecontinue statement starts a new iteration of the nearest enclosingwhile, do, for, orforeach2

statement.3

continue-statement:4

continue ; 5

The target of acontinue statement is the end point of the embedded statement of the nearest enclosing6

while, do, for, orforeach statement. If acontinue statement is not enclosed by awhile, do, for, or7

foreach statement, a compile-time error occurs.8

When multiplewhile, do, for, orforeach statements are nested within each other, acontinue9

statement applies only to the innermost statement. To transfer control across multiple nesting levels, agoto10

statement (§15.9.3) must be used.11

A continue statement cannot exit afinally block (§15.10). When acontinue statement occurs within12

afinally block, the target of thecontinue statement must be within the samefinally block;13

otherwise a compile-time error occurs.14

A continue statement is executed as follows:15

• If the continue statement exits one or moretry blocks with associatedfinally blocks, control is16

initially transferred to thefinally block of the innermosttry statement. When and if control reaches the17

end point of afinally block, control is transferred to thefinally block of the next enclosingtry18

statement. This process is repeated until thefinally blocks of all interveningtry statements have been19

executed.20

• Control is transferred to the target of thecontinue statement.21

Because acontinue statement unconditionally transfers control elsewhere, the end point of acontinue22

statement is never reachable. 23

15.9.3 The goto statement24

Thegoto statement transfers control to a statement that is marked by a label.25

goto-statement:26

goto identifier ; 27

goto case constant-expression ;28

goto default ;29

The target of agoto identifier statement is the labeled statement with the given label. If a label with the30

given name does not exist in the current function member, or if thegoto statement is not within the scope of31

the label, a compile-time error occurs. [Note: This rule permits the use of agoto statement to transfer32

controlout of a nested scope, but notinto a nested scope. In the example33

using System; 34
class Test 35
{ 36
 static void Main(string[] args) { 37
 string[,] table = { 38
 {"red", "blue", "green"}, 39
 {"Monday", "Wednesday", "Friday"} 40
 }; 41

 foreach (string str in args) { 42
 int row, colm; 43
 for (row = 0; row <= 1; ++row) 44
 for (colm = 0; colm <= 2; ++colm) 45
 if (str == table[row,colm]) 46
 goto done; 47

Chapter 15 Statements

195

 Console.WriteLine("{0} not found", str); 1
 continue; 2
 done: 3
 Console.WriteLine("Found {0} at [{1}][{2}]", str, row, colm); 4
 } 5
 } 6
} 7

agoto statement is used to transfer control out of a nested scope.end note]8

The target of agoto case statement is the statement list in the immediately enclosing switch statement9

(§15.7.2) which contains acase label with the given constant value. If thegoto case statement is not10

enclosed by aswitch statement, if theconstant-expression is not implicitly convertible (§13.1) to the11

governing type of the nearest enclosingswitch statement, or if the nearest enclosingswitch statement12

does not contain acase label with the given constant value, a compile-time error occurs.13

The target of agoto default statement is the statement list in the immediately enclosing switch statement14

(§15.7.2), which contains adefault label. If thegoto default statement is not enclosed by aswitch15

statement, or if the nearest enclosingswitch statement does not contain adefault label, a compile-time16

error occurs.17

A goto statement cannot exit afinally block (§15.10). When agoto statement occurs within a18

finally block, the target of thegoto statement must be within the samefinally block, or otherwise a19

compile-time error occurs.20

A goto statement is executed as follows:21

• If the goto statement exits one or moretry blocks with associatedfinally blocks, control is initially22

transferred to thefinally block of the innermosttry statement. When and if control reaches the end point23

of afinally block, control is transferred to thefinally block of the next enclosingtry statement. This24

process is repeated until thefinally blocks of all interveningtry statements have been executed.25

• Control is transferred to the target of thegoto statement.26

Because agoto statement unconditionally transfers control elsewhere, the end point of agoto statement is27

never reachable. 28

15.9.4 The return statement29

Thereturn statement returns control to the caller of the function member in which thereturn statement30

appears.31

return-statement:32

return expressionopt ; 33

A return statement with no expression can be used only in a function member that does not compute a34

value; that is, a method with the return typevoid, theset accessor of a property or indexer, the add and35

remove accessors of an event, an instance constructor, static constructor, or a destructor.36

A return statement with an expression can only be used in a function member that computes a value, that37

is, a method with a non-void return type, theget accessor of a property or indexer, or a user-defined38

operator. An implicit conversion (§13.1) must exist from the type of the expression to the return type of the39

containing function member.40

It is a compile-time error for areturn statement to appear in afinally block (§15.10). 41

A return statement is executed as follows:42

• If the return statement specifies an expression, the expression is evaluated and the resulting value is43

converted to the return type of the containing function member by an implicit conversion. The result of the44

conversion becomes the value returned to the caller.45

• If the return statement is enclosed by one or moretry blocks with associatedfinally blocks,46

control is initially transferred to thefinally block of the innermosttry statement. When and if control47

C# LANGUAGE SPECIFICATION

196

reaches the end point of afinally block, control is transferred to thefinally block of the next enclosing1

try statement. This process is repeated until thefinally blocks of all enclosingtry statements have been2

executed.3

• Control is returned to the caller of the containing function member.4

Because areturn statement unconditionally transfers control elsewhere, the end point of areturn5

statement is never reachable. 6

15.9.5 The throw statement7

Thethrow statement throws an exception.8

throw-statement:9

throw expressionopt ; 10

A throw statement with an expression throws the value produced by evaluating the expression. The11

expression must denote a value of the class typeSystem.Exception or of a class type that derives from12

System.Exception. If evaluation of the expression producesnull, a13

System.NullReferenceException is thrown instead.14

A throw statement with no expression can be used only in acatch block, in which case, that statement re-15

throws the exception that is currently being handled by thatcatch block.16

Because athrow statement unconditionally transfers control elsewhere, the end point of athrow statement17

is never reachable. 18

When an exception is thrown, control is transferred to the firstcatch clause in an enclosingtry statement19

that can handle the exception. The process that takesplace from the point of the exception being thrown to20

the point of transferring control to a suitable exception handler is known asexception propagation.21

Propagation of an exception consists of repeatedly evaluating the following steps until acatch clause that22

matches the exception is found. In this description, thethrow point is initially the location at which the23

exception is thrown.24

• In the current function member, eachtry statement that encloses the throw point is examined. For each25

statementS, starting with the innermosttry statement and ending with the outermosttry statement, the26

following steps are evaluated:27

o If the try block ofS encloses the throw point and ifS has one or morecatch clauses, thecatch28

clauses are examined in order of appearance to locate a suitable handler for the exception. The first29

catch clause that specifies the exception type or a base type of the exception type is considered a30

match. A generalcatch (§15.10) clause is considered a match for any exception type. If a matching31

catch clause is located, the exception propagation is completed by transferring control to the block32

of thatcatch clause.33

o Otherwise, if thetry block or acatch block ofS encloses the throw point and ifS has afinally34

block, control is transferred to thefinally block. If thefinally block throws another exception,35

processing of the current exception is terminated. Otherwise, when control reaches the end point of36

thefinally block, processing of the current exception is continued.37

Chapter 15 Statements

197

• If an exception handler was not located in the currentfunction member invocation, the function member1

invocation is terminated. The steps above are then repeated for the caller of the function member with a2

throw point corresponding to the statement from which the function member was invoked.3

• If the exception processing terminates all function member invocations in the current thread, indicating4

that the thread has no handler for the exception, thenthe thread is itself terminated. The impact of such5

termination is implementation-defined.6

15.10 The try statement7

Thetry statement provides a mechanism for catching exceptions that occur during execution of a block.8

Furthermore, thetry statement provides the ability to specify a block of code that is always executed when9

control leaves thetry statement.10

try-statement:11

try block catch-clauses12

try block finally-clause13

try block catch-clauses finally-clause14

catch-clauses:15

specific-catch-clauses general-catch-clauseopt16

specific-catch-clausesopt general-catch-clause17

specific-catch-clauses:18

specific-catch-clause19

specific-catch-clauses specific-catch-clause20

specific-catch-clause:21

catch (class-type identifieropt) block22

general-catch-clause:23

catch block24

finally-clause:25

finally block26

There are three possible forms oftry statements:27

• A try block followed by one or morecatch blocks.28

• A try block followed by afinally block.29

• A try block followed by one or morecatch blocks followed by afinally block.30

When acatch clause specifies aclass-type, the type must beSystem.Exception or a type that derives31

from System.Exception.32

When acatch clause specifies both aclass-type and anidentifier, anexception variable of the given name33

and type is declared. The exception variable corresponds to a local variable with a scope that extends over34

thecatch block. During execution of thecatch block, the exception variable represents the exception35

currently being handled. For purposes of definite assignment checking, the exception variable is considered36

definitely assigned in its entire scope.37

Unless acatch clause includes an exception variable name, itis impossible to access the exception object38

in thecatch block.39

A catch clause that specifies neither an exception type noran exception variable name is called a general40

catch clause. Atry statement can only have one generalcatch clause, and if one is present it must be the41

lastcatch clause.42

[Note: Some environments, especially those supporting multiple languages, may support exceptions that are43

not representable as an object derived fromSystem.Exception, although such an exception could never44

be generated by C# code. In such an environment, a general catch clause might be used to catch such an45

C# LANGUAGE SPECIFICATION

198

exception. Thus, a general catch clause is semantically different from one that specifies the type1

System.Exception, in that the former may also catch exceptions from other languages.end note]2

In order to locate a handler for an exception,catch clauses are examined in lexical order. A compile-time3

error occurs if acatch clause specifies a type that is the same as, or is derived from, a type that was4

specified in an earliercatch clause for the sametry. [Note: Without this restriction, it would be possible to5

write unreachablecatch clauses.end note]6

Within acatch block, athrow statement (§15.9.5) with no expression can be used to re-throw the7

exception that was caught by thecatch block. Assignments to an exception variable do not alter the8

exception that is re-thrown.9

[Example: In the example10

using System; 11
class Test 12
{ 13
 static void F() { 14
 try { 15
 G(); 16
 } 17
 catch (Exception e) { 18
 Console.WriteLine("Exception in F: " + e.Message); 19
 e = new Exception("F"); 20
 throw; // re-throw 21
 } 22
 } 23

 static void G() { 24
 throw new Exception("G"); 25
 } 26

 static void Main() { 27
 try { 28
 F(); 29
 } 30
 catch (Exception e) { 31
 Console.WriteLine("Exception in Main: " + e.Message); 32
 } 33
 } 34
} 35

the methodF catches an exception, writes some diagnostic information to the console, alters the exception36

variable, and re-throws the exception. The exception that is re-thrown is the original exception, so the output37

produced is:38

Exception in F: G 39
Exception in Main: G 40

If the first catch block had throwne instead of rethrowing the current exception, the output produced would41

be as follows:42

Exception in F: G 43
Exception in Main: F 44

end example]45

It is a compile-time error for abreak, continue, orgoto statement to transfer control out of afinally46

block. When abreak, continue, or goto statement occurs in afinally block, the target of the statement47

must be within the samefinally block, or otherwise a compile-time error occurs.48

It is a compile-time error for areturn statement to occur in afinally block.49

A try statement is executed as follows:50

• Control is transferred to thetry block.51

• When and if control reaches the end point of thetry block:52

o If the try statement has afinally block, thefinally block is executed.53

Chapter 15 Statements

199

o Control is transferred to the end point of thetry statement.1

• If an exception is propagated to thetry statement during execution of thetry block:2

o Thecatch clauses, if any, are examined in order of appearance to locate a suitable handler for the3

exception. The firstcatch clause that specifies the exception type or a base type of the exception4

type is considered a match. A generalcatch clause is considered a match for any exception type. If5

a matchingcatch clause is located:6

• If the matchingcatch clause declares an exception variable, the exception object is assigned to7

the exception variable.8

• Control is transferred to the matchingcatch block.9

• When and if control reaches the end point of thecatch block:10

o If the try statement has afinally block, thefinally block is executed.11

o Control is transferred to the end point of thetry statement.12

• If an exception is propagated to thetry statement during execution of thecatch block:13

o If the try statement has afinally block, thefinally block is executed.14

o The exception is propagated to the next enclosingtry statement.15

o If the try statement has nocatch clauses or if nocatch clause matches the exception:16

• If the try statement has afinally block, thefinally block is executed.17

• The exception is propagated to the next enclosingtry statement.18

The statements of afinally block are always executed when control leaves atry statement. This is true19

whether the control transfer occurs as a result of normal execution, as a result of executing abreak,20

continue, goto, orreturn statement, or as a result of propagating an exception out of thetry statement.21

If an exception is thrown during execution of afinally block, the exception is propagated to the next22

enclosingtry statement. If another exception was in the process of being propagated, that exception is lost.23

The process of propagating an exception is discussed further in the description of thethrow statement24

(§15.9.5).25

Thetry block of atry statement is reachable if thetry statement is reachable.26

A catch block of atry statement is reachable if thetry statement is reachable.27

Thefinally block of atry statement is reachable if thetry statement is reachable.28

The end point of atry statement is reachable if both of the following are true:29

• The end point of thetry block is reachable or the end point of at least onecatch block is reachable.30

• If a finally block is present, the end point of thefinally block is reachable.31

15.11 The checked and unchecked statements32

Thechecked andunchecked statements are used to control theoverflow checking context for integral-33

type arithmetic operations and conversions.34

checked-statement:35

checked block36

unchecked-statement:37

unchecked block38

Thechecked statement causes all expressions in theblock to be evaluated in a checked context, and the39

unchecked statement causes all expressions in theblock to be evaluated in an unchecked context.40

C# LANGUAGE SPECIFICATION

200

Thechecked andunchecked statements are precisely equivalent to thechecked andunchecked1

operators (§14.5.12), except that they operate on blocks instead of expressions.2

15.12 The lock statement3

Thelock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then4

releases the lock.5

lock-statement:6

lock (expression) embedded-statement7

The expression of alock statement must denote a value of areference-type. No implicit boxing conversion8

(§13.1.5) is ever performed for the expression of alock statement, and thus it is a compile-time error for the9

expression to denote a value of avalue-type.10

A lock statement of the form11

lock (x) � 12

wherex is an expression of areference-type, is precisely equivalent to13

System.Threading.Monitor.Enter(x); 14
try { 15
 � 16
} 17
finally { 18
 System.Threading.Monitor.Exit(x); 19
} 20

except thatx is only evaluated once.21

[Example: TheSystem.Type object of a class can conveniently be used as the mutual-exclusion lock for22

static methods of the class. For example:23

class Cache 24
{ 25
 public static void Add(object x) { 26
 lock (typeof(Cache)) { 27
 � 28
 } 29
 } 30

 public static void Remove(object x) { 31
 lock (typeof(Cache)) { 32
 � 33
 } 34
 } 35
} 36

end example]37

15.13 The using statement38

Theusing statement obtains one or more resources, executes a statement, and then disposes of the resource.39

using-statement:40

using (resource-acquisition) embedded-statement41

resource-acquisition:42

local-variable-declaration43

expression44

A resource is a class or struct that implementsSystem.IDisposable, which includes a single45

parameterless method namedDispose. Code that is using a resource can callDispose to indicate that the46

resource is no longer needed. IfDispose is not called, then automatic disposal eventually occurs as a47

consequence of garbage collection.48

Chapter 15 Statements

201

If the form of resource-acquisition is local-variable-declaration then the type of thelocal-variable-1

declaration must beSystem.IDisposable or a type that can be implicitly converted to2

System.IDisposable. If the form ofresource-acquisition is expression then this expression must be3

System.IDisposable or a type that can be implicitly converted toSystem.IDisposable.4

Local variables declared in aresource-acquisition are read-only, and must include an initializer. A compile-5

time error occurs if the embedded statement attempts to modify these local variables (via assignment or the6

++ and-- operators) or pass them asref or out parameters.7

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is8

implicitly enclosed in atry statement that includes afinally clause. Thisfinally clause disposes of the9

resource. If anull resource is acquired, then no call toDispose is made, and no exception is thrown.10

A using statement of the form11

using (R r1 = new R()) { 12
 r1.F(); 13
} 14

is precisely equivalent to15

R r1 = new R(); 16
try { 17
 r1.F(); 18
} 19
finally { 20
 if (r1 != null) ((IDisposable)r1).Dispose(); 21
} 22

A resource-acquisition may acquire multiple resources of a given type. This is equivalent to nestedusing23

statements. A using statement of the form24

using (R r1 = new R(), r2 = new R()) { 25
 r1.F(); 26
 r2.F(); 27
} 28

is precisely equivalent to:29

using (R r1 = new R()) 30
 using (R r2 = new R()) { 31
 r1.F(); 32
 r2.F(); 33
 } 34

which is, by expansion, precisely equivalent to:35

R r1 = new R(); 36
try { 37
 R r2 = new R(); 38
 try { 39
 r1.F(); 40
 r2.F(); 41
 } 42
 finally { 43
 if (r2 != null) ((IDisposable)r2).Dispose(); 44
 } 45
} 46
finally { 47
 if (r1 != null) ((IDisposable)r1).Dispose(); 48
} 49

Chapter 16 Namespaces

203

16. Namespaces1

C# programs are organized using namespaces. Namespaces are used both as an “internal” organization2

system for a program, and as an “external” organization system—a way of presenting program elements that3

are exposed to other programs.4

Using-directives (§16.3) are provided to facilitate the use of namespaces.5

16.1 Compilation units6

A compilation-unit defines the overall structure of a source file. A compilation unit consists of zero or more7

using-directives followed by zero or moreglobal-attributes followed by zero or morenamespace-member-8

declarations.9

compilation-unit:10

using-directivesopt global-attributesopt namespace-member-declarationsopt11

A C# program consists of one or more compilation units, each contained in a separate source file. When a12

C# program is compiled, all of the compilation units are processed together. Thus, compilation units can13

depend on each other, possibly in a circular fashion.14

Theusing-directives of a compilation unit affect theglobal-attributes andnamespace-member-declarations15

of that compilation unit, but have no effect on other compilation units.16

Theglobal-attributes (§24) of a compilation unit permit the specification of attributes for the target17

assembly. Assemblies act as physical containers for types.18

Thenamespace-member-declarations of each compilation unit of a program contribute members to a single19

declaration space called the global namespace. [Example: For example:20

File A.cs:21

class A {} 22

File B.cs:23

class B {} 24

The two compilation units contribute to the single global namespace, in this case declaring two classes with25

the fully qualified namesA andB. Because the two compilation units contribute to the same declaration26

space, it would have been an error if each contained a declaration of a member with the same name.end27

example]28

16.2 Namespace declarations29

A namespace-declaration consists of the keywordnamespace, followed by a namespace name and body,30

optionally followed by a semicolon.31

namespace-declaration:32

namespace qualified-identifier namespace-body ;opt33

qualified-identifier:34

identifier35

qualified-identifier . identifier36

namespace-body:37

{ using-directivesopt namespace-member-declarationsopt }38

C# LANGUAGE SPECIFICATION

204

A namespace-declaration may occur as a top-level declaration in acompilation-unit or as a member1

declaration within anothernamespace-declaration. When anamespace-declaration occurs as a top-level2

declaration in acompilation-unit, the namespace becomes a member of the global namespace. When a3

namespace-declaration occurs within anothernamespace-declaration, the inner namespace becomes a4

member of the outer namespace. In either case, the name of a namespace must be unique within the5

containing namespace.6

Namespaces are implicitlypublic and the declaration of a namespace cannot include any access modifiers.7

Within a namespace-body, the optionalusing-directives import the names of other namespaces and types,8

allowing them to be referenced directly instead of through qualified names. The optionalnamespace-9

member-declarations contribute members to the declaration space of the namespace. Note that allusing-10

directives must appear before any member declarations.11

Thequalified-identifier of a namespace-declaration may be a single identifier or a sequence of identifiers12

separated by “.” tokens. The latter form permits a program todefine a nested namespace without lexically13

nesting several namespace declarations. [Example: For example,14

namespace N1.N2 15
{ 16
 class A {} 17

 class B {} 18
} 19

is semantically equivalent to20

namespace N1 21
{ 22
 namespace N2 23
 { 24
 class A {} 25

 class B {} 26
 } 27
} 28

end example]29

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute30

to the same declaration space (§10.3). [Example: In the example31

namespace N1.N2 32
{ 33
 class A {} 34
} 35

namespace N1.N2 36
{ 37
 class B {} 38
} 39

the two namespace declarations above contribute to the same declaration space, in this case declaring two40

classes with the fully qualified namesN1.N2.A andN1.N2.B. Because the two declarations contribute to41

the same declaration space, it would have been an error if each contained a declaration of a member with the42

same name.end example]43

16.3 Using directives44

Using-directives facilitate the use of namespaces and types defined in other namespaces.Using-directives45

impact the name resolution process ofnamespace-or-type-names (§10.8) andsimple-names (§14.5.2), but46

unlike declarations,using-directives do not contribute new members to the underlying declaration spaces of47

the compilation units or namespaces within which they are used.48

using-directives:49

using-directive50

using-directives using-directive51

Chapter 16 Namespaces

205

using-directive:1

using-alias-directive2

using-namespace-directive3

A using-alias-directive (§16.3.1) introduces an alias for a namespace or type.4

A using-namespace-directive (§16.3.2) imports the type members of a namespace.5

The scope of ausing-directive extends over thenamespace-member-declarations of its immediately6

containing compilation unit or namespace body. The scope of ausing-directive specifically does not include7

its peerusing-directives. Thus, peerusing-directives do not affect each other, and the order in which they are8

written is insignificant.9

16.3.1 Using alias directives10

A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the11

immediately enclosing compilation unit or namespace body.12

using-alias-directive:13

using identifier = namespace-or-type-name ; 14

Within member declarations in a compilation unit or namespace body that contains ausing-alias-directive,15

the identifier introduced by theusing-alias-directive can be used to reference the given namespace or type.16

[Example: For example:17

namespace N1.N2 18
{ 19
 class A {} 20
} 21

namespace N3 22
{ 23
 using A = N1.N2.A; 24

 class B: A {} 25
} 26

Above, within member declarations in theN3 namespace,A is an alias forN1.N2.A, and thus classN3.B27

derives from classN1.N2.A. The same effect can be obtained by creating an aliasR for N1.N2 and then28

referencingR.A:29

namespace N3 30
{ 31
 using R = N1.N2; 32

 class B: R.A {} 33
} 34

end example]35

Theidentifier of a using-alias-directive must be unique within the declaration space of the compilation unit36

or namespace that immediately contains theusing-alias-directive. [Example: For example:37

namespace N3 38
{ 39
 class A {} 40
} 41

namespace N3 42
{ 43
 using A = N1.N2.A; // Error, A already exists 44
} 45

Above,N3 already contains a member A, so it is a compile-time error for ausing-alias-directive to use that46

identifier.end example] Likewise, it is a compile-time error for two or moreusing-alias-directives in the47

same compilation unit or namespace bodyto declare aliases by the same name.48

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but49

it does not contribute any new members to the underlying declaration space. In other words, ausing-alias-50

C# LANGUAGE SPECIFICATION

206

directive is not transitive, but, rather, affects only the compilation unit or namespace body in which it occurs.1

[Example: In the example2

namespace N3 3
{ 4
 using R = N1.N2; 5
} 6

namespace N3 7
{ 8
 class B: R.A {} // Error, R unknown 9
} 10

the scope of theusing-alias-directive that introducesR only extends to member declarations in the11

namespace body in which it is contained, soR is unknown in the second namespace declaration. However,12

placing theusing-alias-directive in the containing compilation unit causes the alias to become available13

within both namespace declarations:14

using R = N1.N2; 15

namespace N3 16
{ 17
 class B: R.A {} 18
} 19

namespace N3 20
{ 21
 class C: R.A {} 22
} 23

end example]24

Just like regular members, names introduced byusing-alias-directives are hidden by similarly named25

members in nested scopes. [Example: In the example26

using R = N1.N2; 27

namespace N3 28
{ 29
 class R {} 30

 class B: R.A {} // Error, R has no member A 31
} 32

the reference toR.A in the declaration ofB causes a compile-time error becauseR refers toN3.R, not33

N1.N2. end example]34

The order in whichusing-alias-directives are written has no significance, and resolution of thenamespace-35

or-type-name referenced by ausing-alias-directive is not affected by theusing-alias-directive itself or by36

otherusing-directives in the immediately containing compilation unit or namespace body. In other words,37

thenamespace-or-type-name of a using-alias-directive is resolved as if the immediately containing38

compilation unit or namespace body had nousing-directives. [Example: In the example39

namespace N1.N2 {} 40

namespace N3 41
{ 42
 using R1 = N1; // OK 43

 using R2 = N1.N2; // OK 44

 using R3 = R1.N2; // Error, R1 unknown 45
} 46

the lastusing-alias-directive results in a compile-time error because it is not affected by the firstusing-alias-47

directive. end example]48

A using-alias-directive can create an alias for any namespace or type, including the namespace within which49

it appears and any namespace or type nested within that namespace.50

Chapter 16 Namespaces

207

Accessing a namespace or type through an alias yields exactly the same result as accessing that namespace1

or type through its declared name. [Example: For example, given2

namespace N1.N2 3
{ 4
 class A {} 5
} 6

namespace N3 7
{ 8
 using R1 = N1; 9
 using R2 = N1.N2; 10

 class B 11
 { 12
 N1.N2.A a; // refers to N1.N2.A 13
 R1.N2.A b; // refers to N1.N2.A 14
 R2.A c; // refers to N1.N2.A 15
 } 16
} 17

the namesN1.N2.A, R1.N2.A, andR2.A are equivalent and all refer to the class whose fully qualified18

name isN1.N2.A. end example]19

16.3.2 Using namespace directives20

A using-namespace-directive imports the types contained in a namespace into the immediately enclosing21

compilation unit or namespace body, enabling the identifier of each type to be used without qualification.22

using-namespace-directive:23

using namespace-name ;24

Within member declarations in a compilation unit or namespace body that contains ausing-namespace-25

directive, the types contained in the given namespace can be referenced directly. [Example: For example:26

namespace N1.N2 27
{ 28
 class A {} 29
} 30

namespace N3 31
{ 32
 using N1.N2; 33

 class B: A {} 34
} 35

Above, within member declarations in theN3 namespace, the type members ofN1.N2 are directly36

available, and thus classN3.B derives from classN1.N2.A. end example]37

A using-namespace-directive imports the types contained in the given namespace, but specifically does not38

import nested namespaces. [Example: In the example39

namespace N1.N2 40
{ 41
 class A {} 42
} 43

namespace N3 44
{ 45
 using N1; 46

 class B: N2.A {} // Error, N2 unknown 47
} 48

theusing-namespace-directive imports the types contained inN1, but not the namespaces nested inN1. Thus,49

the reference toN2.A in the declaration ofB results in a compile-time error because no members namedN250

are in scope.end example]51

Unlike ausing-alias-directive, ausing-namespace-directive may import types whose identifiers are already52

defined within the enclosing compilation unit or namespace body. In effect, names imported by ausing-53

C# LANGUAGE SPECIFICATION

208

namespace-directive are hidden by similarly named members in the enclosing compilation unit or1

namespace body. [Example: For example:2

namespace N1.N2 3
{ 4
 class A {} 5

 class B {} 6
} 7

namespace N3 8
{ 9
 using N1.N2; 10

 class A {} 11
} 12

Here, within member declarations in theN3 namespace,A refers toN3.A rather thanN1.N2.A. end example]13

When more than one namespace imported byusing-namespace-directives in the same compilation unit or14

namespace body contain types by the same name, references to that name are considered ambiguous.15

[Example: In the example16

namespace N1 17
{ 18
 class A {} 19
} 20

namespace N2 21
{ 22
 class A {} 23
} 24

namespace N3 25
{ 26
 using N1; 27

 using N2; 28

 class B: A {} // Error, A is ambiguous 29
} 30

bothN1 andN2 contain a memberA, and becauseN3 imports both, referencingA in N3 is a compile-time31

error.end example] In this situation, the conflict can be resolved either through qualification of references32

to A, or by introducing ausing-alias-directive that picks a particularA. [Example: For example:33

namespace N3 34
{ 35
 using N1; 36

 using N2; 37

 using A = N1.A; 38

 class B: A {} // A means N1.A 39
} 40

end example]41

Like a using-alias-directive, ausing-namespace-directive does not contribute any new members to the42

underlying declaration space of the compilation unit or namespace, but, rather, affects only the compilation43

unit or namespace body in which it appears.44

Thenamespace-name referenced by ausing-namespace-directive is resolved in the same way as the45

namespace-or-type-name referenced by ausing-alias-directive. Thus,using-namespace-directives in the46

same compilation unit or namespace body do not affect each other and can be written in any order.47

16.4 Namespace members48

A namespace-member-declaration is either anamespace-declaration (§16.2) or atype-declaration (§16.5).49

Chapter 16 Namespaces

209

namespace-member-declarations:1

namespace-member-declaration2

namespace-member-declarations namespace-member-declaration3

namespace-member-declaration:4

namespace-declaration5

type-declaration6

A compilation unit or a namespace body can containnamespace-member-declarations, and such7

declarations contribute new members to the underlyingdeclaration space of the containing compilation unit8

or namespace body.9

16.5 Type declarations10

A type-declaration is aclass-declaration (§17.1), astruct-declaration (§18.1), aninterface-declaration11

(§20.1), anenum-declaration (§21.1), or adelegate-declaration (§22.1).12

type-declaration:13

class-declaration14

struct-declaration15

interface-declaration16

enum-declaration17

delegate-declaration18

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration19

within a namespace, class, or struct.20

When a type declaration for a typeT occurs as a top-level declaration in a compilation unit, the fully21

qualified name of the newly declared type is simplyT. When a type declaration for a typeT occurs within a22

namespace, class, or struct, the fully qualified name of the newly declared type isN.T, whereN is the fully23

qualified name of the containing namespace, class, or struct.24

A type declared within a class or struct is called a nested type (§17.2.6).25

The permitted access modifiers and the default access for a type declaration depend on the context in which26

the declaration takes place (§10.5.1):27

• Types declared in compilation units or namespaces can havepublic or internal access. The default28

is internal access.29

• Types declared in classes can havepublic, protected internal, protected, internal, or30

private access. The default isprivate access.31

• Types declared in structs can havepublic, internal, orprivate access. The default isprivate32

access.33

Chapter 17 Classes

211

17. Classes1

A class is a data structure that may contain data members (constants and fields), function members2

(methods, properties, events, indexers, operators, instance constructors, destructors, and static constructors),3

and nested types. Class types support inheritance, a mechanism whereby aderived class can extend and4

specialize abase class.5

17.1 Class declarations6

A class-declaration is atype-declaration (§16.5) that declares a new class.7

class-declaration:8

attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt9

A class-declaration consists of an optional set ofattributes (§24), followed by an optional set ofclass-10

modifiers (§17.1.1), followed by the keywordclass and anidentifier that names the class, followed by an11

optionalclass-base specification (§17.1.2), followed by aclass-body (§17.1.3), optionally followed by a12

semicolon.13

17.1.1 Class modifiers14

A class-declaration may optionally include a sequence of class modifiers:15

class-modifiers:16

class-modifier17

class-modifiers class-modifier18

class-modifier:19

new20

public 21

protected 22

internal23

private24

abstract25

sealed26

It is a compile-time error for the same modifier to appear multiple times in a class declaration.27

Thenew modifier is permitted on nested classes. It specifies that the class hides an inherited member by the28

same name, as described in §10.2.2. It is a compile-time error for thenew modifier to appear on a class29

declaration that is not a nested class declaration.30

Thepublic, protected, internal, andprivate modifiers control the accessibility of the class.31

Depending on the context in which the class declaration occurs, some of these modifiers may not be32

permitted (§10.5.1).33

Theabstract andsealed modifiers are discussed in the following sections.34

17.1.1.1 Abstract classes35

Theabstract modifier is used to indicate that a class is incomplete and that it is intended to be used only36

as a base class. Anabstract class differs from anon-abstract class in the following ways:37

C# LANGUAGE SPECIFICATION

212

• An abstract class cannot be instantiated directly, and it is a compile-time error to use thenew operator on1

an abstract class. While it is possible to have variables and values whose compile-time types are abstract,2

such variables and values will necessarily either benull or contain references to instances of non-abstract3

classes derived from the abstract types.4

• An abstract class is permitted (but not required) to contain abstract members.5

• An abstract class cannot be sealed.6

When a non-abstract class is derived from an abstractclass, the non-abstract class must include actual7

implementations of all inherited abstract members, thereby overriding those abstract members. [Example: In8

the example9

abstract class A 10
{ 11
 public abstract void F(); 12
} 13

abstract class B: A 14
{ 15
 public void G() {} 16
} 17

class C: B 18
{ 19
 public override void F() { 20
 // actual implementation of F 21
 } 22
} 23

the abstract classA introduces an abstract methodF. ClassB introduces an additional methodG, but since it24

doesn’t provide an implementation ofF, B must also be declared abstract. ClassC overridesF and provides25

an actual implementation. Since there are no abstract members inC, C is permitted (but not required) to be26

non-abstract.end example]27

17.1.1.2 Sealed classes28

Thesealed modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed29

class is specified as the base class of another class.30

A sealed class cannot also be an abstract class.31

[Note: Thesealed modifier is primarily used to prevent unintended derivation, but it also enables certain32

run-time optimizations. In particular, because a sealed class is known to never have any derived classes, it is33

possible to transform virtual function member invocations on sealed class instances into non-virtual34

invocations.end note]35

17.1.2 Class base specification36

A class declaration may include aclass-base specification, which defines the direct base class of the class37

and the interfaces (§20) implemented by the class.38

class-base:39

: class-type40

: interface-type-list41

: class-type , interface-type-list42

interface-type-list:43

interface-type44

interface-type-list , interface-type45

Chapter 17 Classes

213

17.1.2.1 Base classes1

When aclass-type is included in theclass-base, it specifies the direct base class of the class being declared.2

If a class declaration has noclass-base, or if theclass-base lists only interface types, the direct base class is3

assumed to beobject. A class inherits members from its direct base class, as described in §17.2.1.4

[Example: In the example5

class A {} 6

class B: A {} 7

classA is said to be the direct base class ofB, andB is said to be derived fromA. SinceA does not explicitly8

specify a direct base class, its direct base class is implicitlyobject. end example]9

The direct base class of a class type must be at least as accessible as the class type itself (§10.5.4). For10

example, it is a compile-time error for apublic class to derive from aprivate or internal class.11

The direct base class of a class type must not be any of the following types:System.Array,12

System.Delegate, System.Enum, orSystem.ValueType.13

The base classes of a class are the direct base class and its base classes. In other words, the set of base14

classes is the transitive closure of the direct base class relationship. [Note: Referring to the example above,15

the base classes ofB areA andobject. end note]16

Except for classobject, every class has exactly one direct base class. Theobject class has no direct base17

class and is the ultimate base class of all other classes.18

When a classB derives from a classA, it is a compile-time error forA to depend onB. A classdirectly19

depends on its direct base class (if any) anddirectly depends on the class within which it is immediately20

nested (if any). Given this definition, the complete setof classes upon which a class depends is the transitive21

closure of thedirectly depends on relationship.22

[Example: The example23

class A: B {} 24

class B: C {} 25

class C: A {} 26

is in error because the classes circularly depend on themselves. Likewise, the example27

class A: B.C {} 28

class B: A 29
{ 30
 public class C {} 31
} 32

results in a compile-time error becauseA depends onB.C (its direct base class), which depends onB (its33

immediately enclosing class), which circularly depends on A.end example]34

Note that a class does not depend on the classes that are nested within it. [Example: In the example35

class A 36
{ 37
 class B: A {} 38
} 39

B depends onA (becauseA is both its direct base class and its immediately enclosing class), butA does not40

depend onB (sinceB is neither a base class nor an enclosing class ofA). Thus, the example is valid.end41

example]42

It is not possible to derive from asealed class. [Example: In the example43

sealed class A {} 44

class B: A {} // Error, cannot derive from a sealed class 45

classB results in a compile-time error because it attempts to derive from thesealed class A.end example]46

C# LANGUAGE SPECIFICATION

214

17.1.2.2 Interface implementations1

A class-base specification may include a list of interface types, in which case the class is said to implement2

the given interface types. Interface implementations are discussed further in §20.4.3

17.1.3 Class body4

Theclass-body of a class defines the members of that class.5

class-body:6

{ class-member-declarationsopt }7

17.2 Class members8

The members of a class consist of the members introduced by itsclass-member-declarations and the9

members inherited from the direct base class.10

class-member-declarations:11

class-member-declaration12

class-member-declarations class-member-declaration13

class-member-declaration:14

constant-declaration15

field-declaration16

method-declaration17

property-declaration18

event-declaration19

indexer-declaration20

operator-declaration21

constructor-declaration22

destructor-declaration23

static-constructor-declaration24

type-declaration25

The members of a class are divided into the following categories:26

• Constants, which represent constant values associated with that class (§17.3).27

• Fields, which are the variables of that class (§17.4).28

• Methods, which implement the computations and actions that can be performed by that class (§17.5).29

• Properties, which define named characteristics and the actions associated with reading and writing those30

characteristics (§17.6).31

• Events, which define notifications that can be generated by that class (§17.7).32

• Indexers, which permit instances of that class to be indexed in the same way as arrays (§17.8).33

• Operators, which define the expression operators that can be applied to instances of that class (§17.9).34

• Instance constructors, which implement the actionsrequired to initialize instances of that class (§17.10)35

• Destructors, which implement the actions to be performed before instances of that class are permanently36

discarded (§17.12).37

• Static constructors, which implement the actionsrequired to initialize that class itself (§17.11).38

• Types, which represent the types that are local to that class (§16.5).39

Members that can contain executable code are collectively known as thefunction members of the class. The40

function members of a class are the methods, properties, events, indexers,operators, instance constructors,41

destructors, and static constructors of that class.42

Chapter 17 Classes

215

A class-declaration creates a new declaration space (§10.3), and theclass-member-declarations1

immediately contained by theclass-declaration introduce new members into this declaration space. The2

following rules apply toclass-member-declarations:3

• Instance constructors, destructors, and static constructors must have the same name as the immediately4

enclosing class. All other members must have names that differ from the name of the immediately enclosing5

class.6

• The name of a constant, field, property, event, ortype must differ from the names of all other members7

declared in the same class.8

• The name of a method must differ from the names of all other non-methods declared in the same class.9

In addition, the signature (§10.6) of a method must differ from the signatures of all other methods declared10

in the same class.11

• The signature of an instance constructor must differfrom the signatures of all other instance constructors12

declared in the same class.13

• The signature of an indexer must differ from the signatures of all other indexers declared in the same14

class.15

• The signature of an operator must differ from the signatures of all other operators declared in the same16

class.17

The inherited members of a class (§17.2.1) arenot part of the declaration space of a class. [Note: Thus, a18

derived class is allowed to declare a member with the same name or signature as an inherited member19

(which in effect hides the inherited member).end note]20

17.2.1 Inheritance21

A classinherits the members of its direct base class. Inheritance means that a class implicitly contains all22

members of its direct base class, except for the instanceconstructors, destructors, and static constructors of23

the base class. Some importantaspects of inheritance are:24

• Inheritance is transitive. IfC is derived from B, andB is derived from A, thenC inherits the members25

declared inB as well as the members declared in A.26

• A derived classextends its direct base class. A derived class can add new members to those it inherits,27

but it cannot remove the definition of an inherited member.28

• Instance constructors, destructors, and static constructors are not inherited, but all other members are,29

regardless of their declared accessibility (§10.5). However, depending on their declared accessibility,30

inherited members might not be accessible in a derived class.31

• A derived class canhide (§10.7.1.2) inherited members by declaring new members with the same name32

or signature. Note however that hiding an inherited member does not remove that member—it merely makes33

that member inaccessible in the derived class.34

• An instance of a class contains a set of all instance fields declared in the class and its base classes, and35

an implicit conversion (§13.1.4) exists from a derived class type to any of its base class types. Thus, a36

reference to an instance of some derived class can be treated as a reference to an instance of any of its base37

classes.38

• A class can declare virtual methods, properties,and indexers, and derived classes can override the39

implementation of these function members. This enables classes to exhibit polymorphic behavior wherein40

the actions performed by a function member invocation varies depending on the run-time type of the41

instance through which that function member is invoked.42

17.2.2 The new modifier43

A class-member-declaration is permitted to declare a member with the same name or signature as an44

inherited member. When this occurs, the derived class member is said tohide the base class member. Hiding45

C# LANGUAGE SPECIFICATION

216

an inherited member is not considered an error, but it does cause the compiler to issue a warning. To1

suppress the warning, the declaration of the derived class member can include anew modifier to indicate2

that the derived member is intended to hide the base member. This topic is discussed further in §10.7.1.2.3

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning to that effect4

is issued. This warning is suppressed by removing thenew modifier.5

17.2.3 Access modifiers6

A class-member-declaration can have any one of the five possible kinds of declared accessibility (§10.5.1):7

public, protected internal, protected, internal, orprivate. Except for theprotected8

internal combination, it is a compile-time error to specify more than one access modifier. When aclass-9

member-declaration does not include any access modifiers,private is assumed.10

17.2.4 Constituent types11

Types that are used in the declaration of a member are called theconstituent types of that member. Possible12

constituent types are the type of a constant, field, property, event, or indexer, the return type of a method or13

operator, and the parameter types of a method, indexer,operator, or instance constructor. The constituent14

types of a member must be at least as accessible as that member itself (§10.5.4).15

17.2.5 Static and instance members16

Members of a class are eitherstatic members or instance members. [Note: Generally speaking, it is useful17

to think of static members as belonging to classes and instance members as belonging to objects (instances18

of classes).end note]19

When a field, method, property, event, operator, or constructor declaration includes astatic modifier, it20

declares a static member. In addition, a constant or type declaration implicitly declares a static member.21

Static members have the following characteristics:22

• When a static member is referenced in amember-access (§14.5.4) of the formE.M, E must denote a type23

that has a memberM. It is a compile-time error forE to denote an instance.24

• A static field identifies exactly one storage location. No matter how many instances of a class are25

created, there is only ever one copy of a static field.26

• A static function member (method, property, event, operator, or constructor) does not operate on a27

specific instance, and it is a compile-time error to refer tothis in such a function member.28

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a29

static modifier, it declares an instance member. (Aninstance member is sometimes called a non-static30

member.) Instance members have the following characteristics:31

• When an instance member is referenced in amember-access (§14.5.4) of the formE.M, E must denote32

an instance of a type that has a memberM. It is a compile-time error forE to denote a type.33

• Every instance of a class contains a separate set of all instance fields of the class.34

• An instance function member (method, property, indexer, instance constructor, or destructor) operates35

on a given instance of the class, and this instance can be accessed asthis (§14.5.7).36

[Example: The following example illustrates the rules for accessing static and instance members:37

class Test 38
{ 39
 int x; 40
 static int y; 41

 void F() { 42
 x = 1; // Ok, same as this.x = 1 43
 y = 1; // Ok, same as Test.y = 1 44
 } 45

Chapter 17 Classes

217

 static void G() { 1
 x = 1; // Error, cannot access this.x 2
 y = 1; // Ok, same as Test.y = 1 3
 } 4

 static void Main() { 5
 Test t = new Test(); 6
 t.x = 1; // Ok 7
 t.y = 1; // Error, cannot access static member through 8
instance 9
 Test.x = 1; // Error, cannot access instance member through type 10
 Test.y = 1; // Ok 11
 } 12
} 13

TheF method shows that in an instance function member, asimple-name (§14.5.2) can be used to access14

both instance members and static members. TheG method shows that in a static function member, it is a15

compile-time error to access an instance member through asimple-name. TheMain method shows that in a16

member-access (§14.5.4), instance members must be accessed through instances, and static members must17

be accessed through types.end example]18

17.2.6 Nested types19

A type declared within a class or struct is called anested type. A type that is declared within a compilation20

unit or namespace is called anon-nested type. [Example: In the following example:21

using System; 22
class A 23
{ 24
 class B 25
 { 26
 static void F() { 27
 Console.WriteLine("A.B.F"); 28
 } 29
 } 30
} 31

classB is a nested type because it is declared within classA, and classA is a non-nested type because it is32

declared within a compilation unit.end example]33

17.2.6.1 Fully qualified name34

The fully qualified name (§10.8.1) for a nested type isS.N whereS is the fully qualified name of the type in35

which typeN is declared.36

17.2.6.2 Declared accessibility37

Non-nested types can have public or internal declared accessibility and they internal declared accessibility38

by default. Nested types can have these forms of declared accessibility too, plus one or more additional39

forms of declared accessibility, depending on whether the containing type is a class or struct:40

• A nested type that is declared in a class can have any of five forms of declared accessibility (public,41

protected internal, protected, internal, or private) and, like other class members, defaults to private declared42

accessibility.43

• A nested type that is declared in a struct can have any of three forms of declared accessibility (public,44

internal, or private) and, like other struct members, defaults to private declared accessibility.45

[Example: The example46

C# LANGUAGE SPECIFICATION

218

public class List 1
{ 2
 // Private data structure 3
 private class Node 4
 { 5
 public object Data; 6
 public Node Next; 7
 public Node(object data, Node next) { 8
 this.Data = data; 9
 this.Next = next; 10
 } 11
 } 12

 private Node first = null; 13
 private Node last = null; 14

 // Public interface 15
 public void AddToFront(object o) {�} 16
 public void AddToBack(object o) {�} 17
 public object RemoveFromFront() {�} 18
 public object AddToFront() {�} 19
 public int Count { get {�} } 20
} 21

declares a private nested classNode. end example]22

17.2.6.3 Hiding23

A nested type may hide (§10.7.1.1) a base member. Thenew modifier is permitted on nested type24

declarations so that hiding can be expressed explicitly. [Example: The example25

using System; 26
class Base 27
{ 28
 public static void M() { 29
 Console.WriteLine("Base.M"); 30
 } 31
} 32

class Derived: Base 33
{ 34
 new public class M 35
 { 36
 public static void F() { 37
 Console.WriteLine("Derived.M.F"); 38
 } 39
 } 40
} 41

class Test 42
{ 43
 static void Main() { 44
 Derived.M.F(); 45
 } 46
} 47

shows a nested classM that hides the methodM defined inBase. end example]48

17.2.6.4 this access49

A nested type and its containing type do not have a special relationship with regard tothis-access (§14.5.7).50

Specifically,this within a nested type cannot be used to refer to instance members of the containing type.51

In cases where a nested type needs access to the instance members of its containing type, access can be52

provided by providing thethis for the instance of the containing type as a constructor argument for the53

nested type. [Example: The following example54

Chapter 17 Classes

219

using System; 1
class C 2
{ 3
 int i = 123; 4
 public void F() { 5
 Nested n = new Nested(this); 6
 n.G(); 7
 } 8

 public class Nested { 9
 C this_c; 10
 public Nested(C c) { 11
 this_c = c; 12
 } 13
 public void G() { 14
 Console.WriteLine(this_c.i); 15
 } 16
 } 17
} 18

class Test { 19
 static void Main() { 20
 C c = new C(); 21
 c.F(); 22
 } 23
} 24

shows this technique. An instance ofC creates an instance ofNested, and passes its ownthis to Nested's25

constructor in order to provide subsequent access toC's instance members.end example]26

17.2.6.5 Access to private and protected members of the containing type27

A nested type has access to all of the members that are accessible to its containing type, including members28

of the containing type that have private and protected declared accessibility. [Example: The example29

using System; 30
class C 31
{ 32
 private static void F() { 33
 Console.WriteLine("C.F"); 34
 } 35
 public class Nested 36
 { 37
 public static void G() { 38
 F(); 39
 } 40
 } 41
} 42

class Test 43
{ 44
 static void Main() { 45
 C.Nested.G(); 46
 } 47
} 48

shows a classC that contains a nested classNested. Within Nested, the methodG calls the static methodF49

defined inC, andF has private declared accessibility.end example]50

A nested type also may access protected members defined in a base type of its containing type. [Example: In51

the example52

using System; 53
class Base 54
{ 55
 protected void F() { 56
 Console.WriteLine("Base.F"); 57
 } 58
} 59

C# LANGUAGE SPECIFICATION

220

class Derived: Base 1
{ 2
 public class Nested 3
 { 4
 public void G() { 5
 Derived d = new Derived(); 6
 d.F(); // ok 7
 } 8
 } 9
} 10

class Test 11
{ 12
 static void Main() { 13
 Derived.Nested n = new Derived.Nested(); 14
 n.G(); 15
 } 16
} 17

the nested classDerived.Nested accesses the protected methodF defined inDerived's base class,Base,18

by calling through an instance ofDerived. end example]19

17.2.7 Reserved member names20

To facilitate the underlying C# runtime implementation, for each source member declaration that is a21

property, event, or indexer, the implementation must reserve two method signatures based on the kind of the22

member declaration, its name, and its type (§17.2.7.1, §17.2.7.2, §17.2.7.3). It is a compile-time error for a23

program to declare a member whose signature matches one of these reserved signatures, even if the24

underlying runtime implementation does not make use of these reservations.25

The reserved names do not introduce declarations, thus they do not participate in member lookup. However,26

a declaration’s associated reserved method signatures do participate in inheritance (§17.2.1), and can be27

hidden with the new modifier (§17.2.2).28

[Note: The reservation of these names serves three purposes:29

1. To allow the underlying implementation to use an ordinary identifier as a method name for get or set30

access to the C# language feature.31

2. To allow other languages to interoperate using an ordinary identifier as a method name for get or set32

access to the C# language feature.33

3. To help ensure that the source accepted by one conforming compiler is accepted by another, by34

making the specifics of reserved member names consistent across all C# implementations.35

end note]36

The declaration of a destructor (§17.12) also causes a signature to be reserved (§17.2.7.4).37

17.2.7.1 Member Names Reserved for Properties38

For a propertyP (§17.6) of typeT, the following signatures are reserved:39

T get_P(); 40
void set_P(T value); 41

Both signatures are reserved, even if the property is read-only or write-only.42

[Example: In the example43

using System; 44
class A { 45
 public int P { 46
 get { return 123; } 47
 } 48
} 49

Chapter 17 Classes

221

class B: A { 1
 new public int get_P() { 2
 return 456; 3
 } 4
 new public void set_P(int value) { 5
 } 6
} 7

class Test 8
{ 9
 static void Main() { 10
 B b = new B(); 11
 A a = b; 12
 Console.WriteLine(a.P); 13
 Console.WriteLine(b.P); 14
 Console.WriteLine(b.get_P()); 15
 } 16
} 17

a classA defines a read-only propertyP, thus reserving signatures forget_P andset_P methods. A classB18

derives fromA and hides both of these reserved signatures. The example produces the output:19

123 20
123 21
456 22

end example]23

17.2.7.2 Member Names Reserved for Events24

For an eventE (§17.7) of delegate typeT, the following signatures are reserved: 25

void add_E(T handler); 26
void remove_E(T handler); 27

17.2.7.3 Member Names Reserved for Indexers28

For an indexer (§17.8) of typeT with parameter-listL, the following signatures are reserved: 29

T get_Item(L); 30
void set_Item(L, T value); 31

Both signatures are reserved, even if the indexer is read-only or write-only.32

17.2.7.4 Member Names Reserved for Destructors33

For a class containing a destructor (§17.12), the following signature is reserved: 34

void Finalize(); 35

17.3 Constants36

A constant is a class member that represents a constant value: a value that can be computed at compile-time.37

A constant-declaration introduces one or more constants of a given type.38

constant-declaration:39

attributesopt constant-modifiersopt const type constant-declarators ;40

constant-modifiers:41

constant-modifier42

constant-modifiers constant-modifier43

constant-modifier:44

new45

public46

protected 47

internal48

private49

C# LANGUAGE SPECIFICATION

222

constant-declarators:1

constant-declarator2

constant-declarators , constant-declarator3

constant-declarator:4

identifier = constant-expression5

A constant-declaration may include a set ofattributes (§24), anew modifier (§17.2.2), and a valid6

combination of the four access modifiers (§17.2.3). The attributes and modifiers apply to all of the members7

declared by theconstant-declaration. Even though constants are considered static members, aconstant-8

declaration neither requires nor allows astatic modifier. It is an error for the same modifier to appear9

multiple times in a constant declaration.10

Thetype of a constant-declaration specifies the type of the members introduced by the declaration. The type11

is followed by a list ofconstant-declarators, each of which introduces a new member. Aconstant-declarator12

consists of anidentifier that names the member, followed by an “=” token, followed by aconstant-13

expression (§14.15) that gives the value of the member.14

Thetype specified in a constant declaration must besbyte, byte, short, ushort, int, uint, long,15

ulong, char, float, double, decimal, bool, string, anenum-type, or areference-type. Eachconstant-16

expression must yield a value of the target type or of a type that can be converted to the target type by an17

implicit conversion (§13.1).18

Thetype of a constant must be at least as accessible as the constant itself (§10.5.4).19

The value of a constant is obtained in an expression using asimple-name (§14.5.2) or amember-access20

(§14.5.4).21

A constant can itself participate in aconstant-expression. Thus, a constant may be used in any construct that22

requires aconstant-expression. [Note: Examples of such constructs includecase labels,goto case23

statements,enum member declarations, attributes, and other constant declarations.end note]24

[Note: As described in §14.15, aconstant-expression is an expression that can be fully evaluated at compile-25

time. Since the only way to create a non-null value of areference-type other thanstring is to apply the26

new operator, and since thenew operator is not permitted in aconstant-expression, the only possible value27

for constants ofreference-types other thanstring is null. end note]28

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a29

constant declaration, or when the value cannot be computed at compile-time by aconstant-expression, a30

readonly field (§17.4.2) may be used instead. [Note: The versioning semantics ofconst andreadonly31

differ (§17.4.2.2).end-note]32

A constant declaration that declares multiple constants is equivalent to multiple declarations of single33

constants with the same attributes, modifiers, and type. [Example: For example34

class A 35
{ 36
 public const double X = 1.0, Y = 2.0, Z = 3.0; 37
} 38

is equivalent to39

class A 40
{ 41
 public const double X = 1.0; 42
 public const double Y = 2.0; 43
 public const double Z = 3.0; 44
} 45

end example]46

Constants are permitted to depend on other constants within the same program as long as the dependencies47

are not of a circular nature. The compiler automaticallyarranges to evaluate the constant declarations in the48

appropriate order. [Example: In the example49

Chapter 17 Classes

223

class A 1
{ 2
 public const int X = B.Z + 1; 3
 public const int Y = 10; 4
} 5

class B 6
{ 7
 public const int Z = A.Y + 1; 8
} 9

the compiler first evaluatesA.Y, then evaluatesB.Z, and finally evaluatesA.X, producing the values10, 11,10

and12. end example] Constant declarations may depend on constants from other programs, but such11

dependencies are only possible in one direction. [Example: Referring to the example above, ifA andB were12

declared in separate programs, it would be possible forA.X to depend onB.Z, butB.Z could then not13

simultaneously depend onA.Y. end example]14

17.4 Fields15

A field is a member that represents a variable associated with an object or class. Afield-declaration16

introduces one or more fields of a given type.17

field-declaration:18

attributesopt field-modifiersopt type variable-declarators ; 19

field-modifiers:20

field-modifier21

field-modifiers field-modifier22

field-modifier:23

new24

public25

protected 26

internal27

private 28

static 29

readonly 30

volatile31

variable-declarators:32

variable-declarator33

variable-declarators , variable-declarator34

variable-declarator:35

identifier36

identifier = variable-initializer37

variable-initializer:38

expression39

array-initializer40

A field-declaration may include a set ofattributes (§24), anew modifier (§17.2.2), a valid combination of41

the four access modifiers (§17.2.3), and astatic modifier (§17.4.1). In addition, afield-declaration may42

include areadonly modifier (§17.4.2) or avolatile modifier (§17.4.3), but not both The attributes and43

modifiers apply to all of the members declared by thefield-declaration. It is an error for the same modifier44

to appear multiple times in afield declaration. It is an error for the same modifier to appear multiple times in45

a field declaration.46

Thetype of a field-declaration specifies the type of the members introduced by the declaration. The type is47

followed by a list ofvariable-declarators, each of which introduces a new member. Avariable-declarator48

consists of anidentifier that names that member, optionally followed by an “=” token and avariable-49

initializer (§17.4.5) that gives the initial value of that member.50

C# LANGUAGE SPECIFICATION

224

Thetype of a field must be at least as accessible as the field itself (§10.5.4).1

The value of a field is obtained in an expression using asimple-name (§14.5.2) or amember-access2

(§14.5.4). The value of a non-readonly field is modified using anassignment (§14.13). The value of a non-3

readonly field can be both obtained and modified usingpostfix increment and decrement operators (§14.5.9)4

and prefix increment and decrement operators (§14.6.5).5

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the6

same attributes, modifiers, and type. [Example: For example7

class A 8
{ 9
 public static int X = 1, Y, Z = 100; 10
} 11

is equivalent to12

class A 13
{ 14
 public static int X = 1; 15
 public static int Y; 16
 public static int Z = 100; 17
} 18

end example]19

17.4.1 Static and instance fields20

When a field declaration includes astatic modifier, the fields introduced by the declaration arestatic21

fields. When nostatic modifier is present, the fields introduced by the declaration areinstance fields.22

Static fields and instance fields are two of the several kinds of variables (§12) supported by C#, and at times23

they are referred to asstatic variables andinstance variables, respectively.24

A static field is not part of a specific instance; instead, it identifies exactly one storage location. No matter25

how many instances of a class are created, there is only ever one copy of a static field for the associated26

application domain.27

An instance field belongs to an instance. Specifically, every instance of a class contains a separate set of all28

the instance fields of that class.29

When a field is referenced in amember-access (§14.5.4) of the formE.M, if M is a static field,E must denote30

a type that has a fieldM, and ifM is an instance field,E must denote an instance of a type that has a fieldM.31

The differences between static and instance members are discussed further in §17.2.5.32

17.4.2 Readonly fields33

When afield-declaration includes areadonly modifier, the fields introduced by the declaration are34

readonly fields. Direct assignments to readonly fields can only occur as part of that declaration or in an35

instance constructor or static constructor in the same class. (A readonly field can be assigned to multiple36

times in these contexts.) Specifically, direct assignments to areadonly field are permitted only in the37

following contexts:38

• In thevariable-declarator that introduces the field (by including avariable-initializer in the39

declaration).40

• For an instance field, in the instance constructors ofthe class that contains the field declaration; for a41

static field, in the static constructor of the class that contains the field declaration. These are also the only42

contexts in which it is valid to pass areadonly field as anout or ref parameter.43

Attempting to assign to areadonly field or pass it as anout or ref parameter in any other context is a44

compile-time error.45

Chapter 17 Classes

225

17.4.2.1 Using static readonly fields for constants1

A static readonly field is useful when a symbolic name for a constant value is desired, but when the2

type of the value is not permitted in aconst declaration, or when the value cannot be computed at compile-3

time. [Example: In the example4

public class Color 5
{ 6
 public static readonly Color Black = new Color(0, 0, 0); 7
 public static readonly Color White = new Color(255, 255, 255); 8
 public static readonly Color Red = new Color(255, 0, 0); 9
 public static readonly Color Green = new Color(0, 255, 0); 10
 public static readonly Color Blue = new Color(0, 0, 255); 11

 private byte red, green, blue; 12

 public Color(byte r, byte g, byte b) { 13
 red = r; 14
 green = g; 15
 blue = b; 16
 } 17
} 18

theBlack, White, Red, Green, andBlue members cannot be declared asconst members because their19

values cannot be computed at compile-time. However, declaring themstatic readonly instead has much20

the same effect.end example]21

17.4.2.2 Versioning of constants and static readonly fields22

Constants and readonly fields have different binary versioning semantics. When an expression references a23

constant, the value of the constantis obtained at compile-time, but when an expression references a readonly24

field, the value of the field is not obtained until run-time. [Example: Consider an application that consists of25

two separate programs:26

using System; 27
namespace Program1 28
{ 29
 public class Utils 30
 { 31
 public static readonly int X = 1; 32
 } 33
} 34

namespace Program2 35
{ 36
 class Test 37
 { 38
 static void Main() { 39
 Console.WriteLine(Program1.Utils.X); 40
 } 41
 } 42
} 43

TheProgram1 andProgram2 namespaces denote two programs that are compiled separately. Because44

Program1.Utils.X is declared as a static readonly field, the value output by theConsole.WriteLine45

statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value ofX is changed46

andProgram1 is recompiled, theConsole.WriteLine statement will output the new value even if47

Program2 isn’t recompiled. However, hadX been a constant, the value ofX would have been obtained at48

the timeProgram2 was compiled, and would remain unaffected by changes inProgram1 until Program249

is recompiled.end example]50

17.4.3 Volatile fields51

When afield-declaration includes avolatile modifier, the fields introduced by that declaration are52

volatile fields. For non-volatile fields, optimization techniques that reorder instructions can lead to53

unexpected and unpredictable results in multi-threadedprograms that access fields without synchronization54

C# LANGUAGE SPECIFICATION

226

such as that provided by thelock-statement (§15.12). These optimizations can be performed by the compiler,1

by the runtime system, or by hardware. For volatile fields, such reordering optimizations are restricted:2

• A read of a volatile field is called avolatile read. A volatile read has “acquire semantics”; that is, it is3

guaranteed to occur prior to any references to memorythat occur after it in the instruction sequence.4

• A write of a volatile field is called avolatile write. A volatile write has “release semantics”; that is, it is5

guaranteed to happen after any memory references prior to the write instruction in the instruction sequence.6

These restrictions ensure that all threads will observe volatile writes performed by any other thread in the7

order in which they were performed. A conforming implementation is not required to provide a single total8

ordering of volatile writes as seen from all threads of execution. The type of a volatile field must be one of9

the following:10

• A reference-type.11

• The typebyte, sbyte, short, ushort, int, uint, char, float, or bool.12

• An enum-type having an enum base type ofbyte, sbyte, short, ushort, int, or uint.13

[Example: The example14

using System; 15
using System.Threading; 16
class Test 17
{ 18
 public static int result; 19
 public static volatile bool finished; 20
 static void Thread2() { 21
 result = 143; 22
 finished = true; 23
 } 24

 static void Main() { 25
 finished = false; 26
 // Run Thread2() in a new thread 27
 new Thread(new ThreadStart(Thread2)).Start(); 28
 // Wait for Thread2 to signal that it has a result by setting 29
 // finished to true. 30
 for (;;) { 31
 if (finished) { 32
 Console.WriteLine("result = {0}", result); 33
 return; 34
 } 35
 } 36
 } 37
} 38

produces the output:39

result = 143 40

In this example, the methodMain starts a new thread that runs the methodThread2. This method stores a41

value into a non-volatile field calledresult, then storestrue in the volatile fieldfinished. The main42

thread waits for the fieldfinished to be set totrue, then reads the fieldresult. Sinceresult has been43

declaredvolatile, the main thread must read the value 143 from the fieldresult. If the field finished44

had not been declaredvolatile, then it would be permissible for the store toresult to be visible to the45

main threadafter the store tofinished, and hence for the main thread to read the value 0 from the field46

result. Declaringfinished as avolatile field prevents any such inconsistency.end example]47

17.4.4 Field initialization48

The initial value of a field, whether it be a static field or an instance field, is the default value (§12.2) of the49

field’s type. It is not possible to observe the value of a field before this default initialization has occurred,50

and a field is thus never “uninitialized”. [Example: The example51

Chapter 17 Classes

227

using System; 1
class Test 2
{ 3
 static bool b; 4
 int i; 5

 static void Main() { 6
 Test t = new Test(); 7
 Console.WriteLine("b = {0}, i = {1}", b, t.i); 8
 } 9
} 10

produces the output11

b = False, i = 0 12

becauseb andi are both automatically initialized to default values.end example]13

17.4.5 Variable initializers14

Field declarations may includevariable-initializers. For static fields, variable initializers correspond to15

assignment statements that are executed during class initialization. For instance fields, variable initializers16

correspond to assignment statements that are executed when an instance of the class is created.17

[Example: The example18

using System; 19
class Test 20
{ 21
 static double x = Math.Sqrt(2.0); 22
 int i = 100; 23
 string s = "Hello"; 24

 static void Main() { 25
 Test a = new Test(); 26
 Console.WriteLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s); 27
 } 28
} 29

produces the output30

x = 1.4142135623731, i = 100, s = Hello 31

because an assignment tox occurs when static field initializers execute and assignments toi ands occur32

when the instance field initializers execute.end example]33

The default value initialization described in §17.4.3 occurs for all fields, including fields that have variable34

initializers. Thus, when a class is initialized, all static fields in that class are first initialized to their default35

values, and then the static field initializers are executed in textual order. Likewise, when an instance of a36

class is created, all instance fields in that instance are first initialized to their default values, and then the37

instance field initializers are executed in textual order.38

It is possible for static fields with variable initializers to be observed in their default value state. [Example:39

However, this is strongly discouraged as a matter of style. The example40

using System; 41
class Test 42
{ 43
 static int a = b + 1; 44
 static int b = a + 1; 45

 static void Main() { 46
 Console.WriteLine("a = {0}, b = {1}", a, b); 47
 } 48
} 49

exhibits this behavior. Despite the circular definitions ofa andb, the program is valid. It results in the output50

a = 1, b = 2 51

C# LANGUAGE SPECIFICATION

228

because the static fieldsa andb are initialized to0 (the default value forint) before their initializers are1

executed. When the initializer fora runs, the value ofb is zero, and soa is initialized to 1. When the2

initializer for b runs, the value ofa is already 1, and sob is initialized to 2.end example]3

17.4.5.1 Static field initialization4

The static field variable initializers of a class correspond to a sequence of assignments that are executed in5

the textual order in which they appearin the class declaration. If a static constructor (§17.11) exists in the6

class, execution of the static field initializers occurs immediately prior to executing that static constructor.7

Otherwise, the static field initializers are executed at an implementation-dependent time prior to the first use8

of a static field of that class. [Example: The example9

using System; 10
class Test 11
{ 12
 static void Main() { 13
 Console.WriteLine("{0} {1}", B.Y, A.X); 14
 } 15
 public static int f(string s) { 16
 Console.WriteLine(s); 17
 return 1; 18
 } 19
} 20

class A 21
{ 22
 public static int X = Test.f("Init A"); 23
} 24

class B 25
{ 26
 public static int Y = Test.f("Init B"); 27
} 28

might produce either the output:29

Init A 30
Init B 31
1 1 32

or the output:33

Init B 34
Init A 35
1 1 36

because the execution ofX's initializer andY's initializer could occur in either order; they are only37

constrained to occur before the referencesto those fields. However, in the example:38

using System; 39
class Test { 40
 static void Main() { 41
 Console.WriteLine("{0} {1}", B.Y, A.X); 42
 } 43
 public static int f(string s) { 44
 Console.WriteLine(s); 45
 return 1; 46
 } 47
} 48

class A 49
{ 50
 static A() {} 51
 public static int X = Test.f("Init A"); 52
} 53

Chapter 17 Classes

229

class B 1
{ 2
 static B() {} 3
 public static int Y = Test.f("Init B"); 4
} 5

the output must be:6

Init B 7
Init A 8
1 1 9

because the rules for when static constructors execute provide thatB's static constructor (and henceB's static10

field initializers) must run beforeA's static constructor and field initializers.end example]11

17.4.5.2 Instance field initialization12

The instance field variable initializers of a class correspond to a sequence of assignments that are executed13

immediately upon entry to any one of the instance constructors (§17.10.2) of that class. The variable14

initializers are executed in the textual order in which they appear in the class declaration. The class instance15

creation and initialization process is described further in §17.10.16

A variable initializer for an instance field cannot reference the instance being created. Thus, it is a compile-17

time error to referencethis in a variable initializer, as it is a compile-time error for a variable initializer to18

reference any instance member through asimple-name. [Example: In the example19

class A 20
{ 21
 int x = 1; 22
 int y = x + 1; // Error, reference to instance member of this 23
} 24

the variable initializer fory results in a compile-time error because it references a member of the instance25

being created.end example]26

17.5 Methods27

A method is a member that implements a computation or action that can be performed by an object or class.28

Methods are declared usingmethod-declarations:29

method-declaration:30

method-header method-body31

method-header:32

attributesopt method-modifiersopt return-type member-name (formal-parameter-listopt) 33

method-modifiers:34

method-modifier35

method-modifiers method-modifier36

method-modifier:37

new 38

public 39

protected 40

internal 41

private 42

static 43

virtual 44

sealed 45

override 46

abstract 47

extern 48

C# LANGUAGE SPECIFICATION

230

return-type:1

type2

void 3

member-name:4

identifier5

interface-type . identifier6

method-body:7

block8

;9

A method-declaration may include a set ofattributes (§24) and a valid combination of the four access10

modifiers (§17.2.3), thenew (§17.2.2),static (§17.5.2),virtual (§17.5.3),override (§17.5.4),11

sealed (§17.5.5),abstract (§17.5.6), andextern (§17.5.7) modifiers.12

A declaration has a valid combination of modifiers if all of the following are true:13

• The declaration includes a valid combination of access modifiers (§17.2.3).14

• The declaration does not include the same modifier multiple times.15

• The declaration includes at most one of the following modifiers:static, virtual, andoverride.16

• The declaration includes at most one of the following modifiers:new andoverride.17

• If the declaration includes theabstract modifier, then the declaration does not include any of the18

following modifiers:static, virtual, or extern.19

• If the declaration includes theprivate modifier, then the declaration does not include any of the20

following modifiers:virtual, override, orabstract.21

• If the declaration includes thesealed modifier, then the declaration also includes theoverride22

modifier.23

Thereturn-type of a method declaration specifies the type of the value computed and returned by the24

method. Thereturn-type is void if the method does not return a value.25

Themember-name specifies the name of the method. Unless the method is an explicit interface member26

implementation (§20.4.1), themember-name is simply anidentifier. For an explicit interface member27

implementation, themember-name consists of aninterface-type followed by a “.” and anidentifier.28

The optionalformal-parameter-list specifies the parameters of the method (§17.5.1).29

Thereturn-type and each of the types referenced in theformal-parameter-list of a method must be at least as30

accessible as the method itself (§10.5.4).31

Forabstract andextern methods, themethod-body consists simply of a semicolon. For all other32

methods, themethod-body consists of ablock, which specifies the statements to execute when the method is33

invoked.34

The name and the formal parameter list of a method define the signature (§10.6) of the method. Specifically,35

the signature of a method consists of its name and the number, modifiers, and types of its formal parameters.36

The return type is not part of a method’s signature, nor are the names of the formal parameters.37

The name of a method must differ from the names of all other non-methods declared in the same class. In38

addition, the signature of a method must differ from the signatures of all other methods declared in the same39

class.40

17.5.1 Method parameters41

The parameters of a method, if any, are declared by the method’sformal-parameter-list.42

Chapter 17 Classes

231

formal-parameter-list:1

fixed-parameters2

fixed-parameters , parameter-array3

parameter-array4

fixed-parameters:5

fixed-parameter6

fixed-parameters , fixed-parameter7

fixed-parameter:8

attributesopt parameter-modifieropt type identifier9

parameter-modifier:10

ref 11

out 12

parameter-array:13

attributesopt params array-type identifier14

The formal parameter list consists of one or more comma-separated parameters of which only the last may15

be aparameter-array.16

A fixed-parameter consists of an optional set ofattributes (§24), an optionalref or out modifier, atype,17

and anidentifier. Eachfixed-parameter declares a parameter of the given type with the given name.18

A parameter-array consists of an optional set ofattributes (§24), aparams modifier, anarray-type, and an19

identifier. A parameter array declares a single parameter of the given array type with the given name. The20

array-type of a parameter array must be a single-dimensional array type (§19.1). In a method invocation, a21

parameter array permits either a single argument of the given array type to be specified, or it permits zero or22

more arguments of the array element type to be specified. Parameter arrays are described further in23

§17.5.1.4.24

A method declaration creates a separate declaration space for parameters and local variables. Names are25

introduced into this declaration space by the formal parameter list of the method and by local variable26

declarations in theblock of the method. All names in the declaration space of a method must be unique.27

Thus, it is a compile-time error for a parameter or local variable to have the same name as another parameter28

or local variable.29

A method invocation (§14.5.5.1) creates a copy, specific to that invocation, of the formal parameters and30

local variables of the method, and the argument list of the invocation assigns values or variable references to31

the newly created formal parameters. Within theblock of a method, formal parameters can be referenced by32

their identifiers insimple-name expressions (§14.5.2).33

There are four kinds of formal parameters:34

• Value parameters, which are declared without any modifiers.35

• Reference parameters, which are declared with theref modifier.36

• Output parameters, which are declared with theout modifier.37

• Parameter arrays, which are declared with theparams modifier.38

[Note: As described in §10.6, theref andout modifiers are part of a method’s signature, but theparams39

modifier is not.end note]40

17.5.1.1 Value parameters41

A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local42

variable that gets its initial value from the corresponding argument supplied in the method invocation.43

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be44

an expression of a type that is implicitly convertible (§13.1) to the formal parameter type.45

C# LANGUAGE SPECIFICATION

232

A method is permitted to assign new values to a value parameter. Such assignments only affect the local1

storage location represented by the value parameter—they have no effect on the actual argument given in the2

method invocation.3

17.5.1.2 Reference parameters4

A parameter declared with aref modifier is a reference parameter. Unlike a value parameter, a reference5

parameter does not create a new storage location. Instead, a reference parameter represents the same storage6

location as the variable given as the argument in the method invocation.7

When a formal parameter is a reference parameter, the corresponding argument in a method invocation must8

consist of the keywordref followed by avariable-reference (§12.3.3) of the same type as the formal9

parameter. A variable must be definitely assigned before it can be passed as a reference parameter.10

Within a method, a reference parameter is always considered definitely assigned.11

[Example: The example12

using System; 13
class Test 14
{ 15
 static void Swap(ref int x, ref int y) { 16
 int temp = x; 17
 x = y; 18
 y = temp; 19
 } 20

 static void Main() { 21
 int i = 1, j = 2; 22
 Swap(ref i, ref j); 23
 Console.WriteLine("i = {0}, j = {1}", i, j); 24
 } 25
} 26

produces the output27

i = 2, j = 1 28

For the invocation ofSwap in Main, x representsi andy representsj. Thus, the invocation has the effect of29

swapping the values ofi andj. end example]30

In a method that takes reference parameters, it is possible for multiple names to represent the same storage31

location. [Example: In the example32

class A 33
{ 34
 string s; 35

 void F(ref string a, ref string b) { 36
 s = "One"; 37
 a = "Two"; 38
 b = "Three"; 39
 } 40

 void G() { 41
 F(ref s, ref s); 42
 } 43
} 44

the invocation ofF in G passes a reference tos for botha andb. Thus, for that invocation, the namess, a,45

andb all refer to the same storage location, and the three assignments all modify the instance fields. end46

example]47

17.5.1.3 Output parameters48

A parameter declared with anout modifier is an output parameter. Similar to a reference parameter, an49

output parameter does not create a new storage location. Instead, an output parameter represents the same50

storage location as the variable given as the argument in the method invocation.51

Chapter 17 Classes

233

When a formal parameter is an output parameter, the corresponding argument in a method invocation must1

consist of the keywordout followed by avariable-reference (§12.3.3) of the same type as the formal2

parameter. A variable need not be definitely assigned before it can be passed as an output parameter, but3

following an invocation where a variable was passed as an output parameter, the variable is considered4

definitely assigned.5

Within a method, just like a local variable, an output parameter is initially considered unassigned and must6

be definitely assigned before its value is used.7

Every output parameter of a method must be definitely assigned before the method returns.8

Output parameters are typically used in methods that produce multiple return values. [Example: For9

example:10

using System; 11
class Test 12
{ 13
 static void SplitPath(string path, out string dir, out string name) { 14
 int i = path.Length; 15
 while (i > 0) { 16
 char ch = path[i � 1]; 17
 if (ch == '\\' || ch == '/' || ch == ':') break; 18
 i--; 19
 } 20
 dir = path.Substring(0, i); 21
 name = path.Substring(i); 22
 } 23

 static void Main() { 24
 string dir, name; 25
 SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name); 26
 Console.WriteLine(dir); 27
 Console.WriteLine(name); 28
 } 29
} 30

The example produces the output:31

c:\Windows\System\ 32
hello.txt 33

Note that thedir andname variables can be unassigned before they are passed toSplitPath, and that they34

are considered definitely assigned following the call.end example]35

17.5.1.4 Parameter arrays36

A parameter declared with aparams modifier is a parameter array. If a formal parameter list includes a37

parameter array, it must be the last parameter in thelist and it must be of a single-dimensional array type.38

[Example: For example, the typesstring[] andstring[][] can be used as the type of a parameter array,39

but the typestring[,] can not.end example] It is not possible to combine theparams modifier with the40

modifiersref andout.41

A parameter array permits arguments to be specified in one of two ways in a method invocation:42

• The argument given for a parameter array can be a single expression of a type that is implicitly43

convertible (§13.1) to the parameter array type. In this case, the parameter array acts precisely like a value44

parameter.45

• Alternatively, the invocation can specify zero or more arguments for the parameter array, where each46

argument is an expression of a type that is implicitly convertible (§13.1) to the element type of the parameter47

array. In this case, the invocation creates an instanceof the parameter array type with a length corresponding48

to the number of arguments, initializes the elements of the array instance with the given argument values,49

and uses the newly created array instance as the actual argument.50

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely51

equivalent to a value parameter (§17.5.1.1) of the same type.52

C# LANGUAGE SPECIFICATION

234

[Example: The example1

using System; 2
class Test 3
{ 4
 static void F(params int[] args) { 5
 Console.Write("Array contains {0} elements:", args.Length); 6
 foreach (int i in args) 7
 Console.Write(" {0}", i); 8
 Console.WriteLine(); 9
 } 10

 static void Main() { 11
 int[] arr = {1, 2, 3}; 12
 F(arr); 13
 F(10, 20, 30, 40); 14
 F(); 15
 } 16
} 17

produces the output18

Array contains 3 elements: 1 2 3 19
Array contains 4 elements: 10 20 30 40 20
Array contains 0 elements: 21

The first invocation ofF simply passes the arraya as a value parameter. The second invocation ofF22

automatically creates a four-elementint[] with the given element values and passes that array instance as a23

value parameter. Likewise, the third invocation ofF creates a zero-elementint[] and passes that instance24

as a value parameter. The second and third invocations are precisely equivalent to writing:25

F(new int[] {10, 20, 30, 40}); 26
F(new int[] {}); 27

end example]28

When performing overload resolution, a method with a parameter array may be applicable either in its29

normal form or in its expanded form (§14.4.2.1). Theexpanded form of a method is available only if the30

normal form of the method is not applicable and only if a method with the same signature as the expanded31

form is not already declared in the same type.32

[Example: The example33

using System; 34
class Test 35
{ 36
 static void F(params object[] a) { 37
 Console.WriteLine("F(object[])"); 38
 } 39

 static void F() { 40
 Console.WriteLine("F()"); 41
 } 42

 static void F(object a0, object a1) { 43
 Console.WriteLine("F(object,object)"); 44
 } 45

 static void Main() { 46
 F(); 47
 F(1); 48
 F(1, 2); 49
 F(1, 2, 3); 50
 F(1, 2, 3, 4); 51
 } 52
} 53

produces the output54

Chapter 17 Classes

235

F(); 1
F(object[]); 2
F(object,object); 3
F(object[]); 4
F(object[]); 5

In the example, two of the possible expanded forms of the method with a parameter array are already6

included in the class as regular methods. These expanded forms are therefore not considered when7

performing overload resolution, and the first and third method invocations thus select the regular methods.8

When a class declares a method with a parameter array, it is not uncommon to also include some of the9

expanded forms as regular methods. By doing so it is possible to avoid the allocation of an array instance10

that occurs when an expanded form of a method with a parameter array is invoked.end example]11

When the type of a parameter array isobject[], a potential ambiguity arises between the normal form of12

the method and the expended form for a singleobject parameter. The reason for the ambiguity is that an13

object[] is itself implicitly convertible to typeobject. The ambiguity presents no problem, however,14

since it can be resolved by inserting a cast if needed.15

[Example: The example16

using System; 17
class Test 18
{ 19
 static void F(params object[] args) { 20
 foreach (object o in args) { 21
 Console.Write(o.GetType().FullName); 22
 Console.Write(" "); 23
 } 24
 Console.WriteLine(); 25
 } 26

 static void Main() { 27
 object[] a = {1, "Hello", 123.456}; 28
 object o = a; 29
 F(a); 30
 F((object)a); 31
 F(o); 32
 F((object[])o); 33
 } 34
} 35

produces the output36

System.Int32 System.String System.Double 37
System.Object[] 38
System.Object[] 39
System.Int32 System.String System.Double 40

In the first and last invocations of F, the normal form ofF is applicable because an implicit conversion exists41

from the argument type to the parameter type (both are of typeobject[]). Thus, overload resolution selects42

the normal form of F, and the argument is passed as a regular value parameter. In the second and third43

invocations, the normal form ofF is not applicable because no implicit conversion exists from the argument44

type to the parameter type (typeobject cannot be implicitly converted to typeobject[]). However, the45

expanded form ofF is applicable, so it is selected by overload resolution. As a result, a one-element46

object[] is created by the invocation, and the single element of the array is initialized with the given47

argument value (which itself is a reference to anobject[]). end example]48

17.5.2 Static and instance methods49

When a method declaration includes astatic modifier, that method is said to be a static method. When no50

static modifier is present, the method is said to be an instance method.51

A static method does not operate on a specific instance, and it is a compile-time error to refer tothis in a52

static method.53

C# LANGUAGE SPECIFICATION

236

An instance method operates on a given instance of a class, and that instance can be accessed asthis1

(§14.5.7).2

When a method is referenced in amember-access (§14.5.4) of the formE.M, if M is a static method,E must3

denote a type that has a methodM, and ifM is an instance method,E must denote an instance of a type that4

has a methodM.5

The differences between static and instance members are discussed further in §17.2.5.6

17.5.3 Virtual methods7

When an instance method declaration includes avirtual modifier, that method is said to be avirtual8

method. When novirtual modifier is present, the method is said to be anon-virtual method.9

The implementation of a non-virtual method is invariant: The implementation is the same whether the10

method is invoked on an instance of the class in which it is declared or an instance of a derived class. In11

contrast, the implementation of a virtual method canbe superseded by derived classes. The process of12

superseding the implementation of an inherited virtual method is known asoverriding that method (§17.5.4).13

In a virtual method invocation, therun-time type of the instance for which that invocation takes place14

determines the actual method implementation to invoke. In a non-virtual method invocation, thecompile-15

time type of the instance is the determining factor. In precise terms, when a method namedN is invoked with16

an argument listA on an instance with a compile-time typeC and a run-time typeR (whereR is eitherC or a17

class derived fromC), the invocation is processed as follows:18

• First, overload resolution is applied to C, N, and A, to select a specific methodM from the set of methods19

declared in and inherited byC. This is described in §14.5.5.1.20

• Then, ifM is a non-virtual method,M is invoked.21

• Otherwise,M is a virtual method, and the most derived implementation ofM with respect toR is invoked.22

For every virtual method declared in or inherited by a class, there exists amost derived implementation of23

the method with respect to that class. The most derived implementation of a virtual methodM with respect to24

a classR is determined as follows:25

• If R contains the introducingvirtual declaration ofM, then this is the most derived implementation26

of M.27

• Otherwise, ifR contains anoverride of M, then this is the most derived implementation ofM.28

• Otherwise, the most derived implementation ofM is the same as that of the direct base class ofR.29

[Example: The following example illustrates the differences between virtual and non-virtual methods:30

using System; 31
class A 32
{ 33
 public void F() { Console.WriteLine("A.F"); } 34
 public virtual void G() { Console.WriteLine("A.G"); } 35
} 36

class B: A 37
{ 38
 new public void F() { Console.WriteLine("B.F"); } 39
 public override void G() { Console.WriteLine("B.G"); } 40
} 41

Chapter 17 Classes

237

class Test 1
{ 2
 static void Main() { 3
 B b = new B(); 4
 A a = b; 5
 a.F(); 6
 b.F(); 7
 a.G(); 8
 b.G(); 9
 } 10
} 11

In the example,A introduces a non-virtual methodF and a virtual methodG. The classB introduces anew12

non-virtual method F, thushiding the inherited F, and alsooverrides the inherited methodG. The example13

produces the output:14

A.F 15
B.F 16
B.G 17
B.G 18

Notice that the statementa.G() invokesB.G, notA.G. This is because the run-time type of the instance19

(which isB), not the compile-time type of the instance (which isA), determines the actual method20

implementation to invoke.end example]21

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual22

methods with the same signature. This does not present an ambiguity problem, since all but the most derived23

method are hidden. [Example: In the example24

using System; 25
class A 26
{ 27
 public virtual void F() { Console.WriteLine("A.F"); } 28
} 29

class B: A 30
{ 31
 public override void F() { Console.WriteLine("B.F"); } 32
} 33

class C: B 34
{ 35
 new public virtual void F() { Console.WriteLine("C.F"); } 36
} 37

class D: C 38
{ 39
 public override void F() { Console.WriteLine("D.F"); } 40
} 41

class Test 42
{ 43
 static void Main() { 44
 D d = new D(); 45
 A a = d; 46
 B b = d; 47
 C c = d; 48
 a.F(); 49
 b.F(); 50
 c.F(); 51
 d.F(); 52
 } 53
} 54

theC andD classes contain two virtual methods with the same signature: The one introduced byA and the55

one introduced byC. The method introduced byC hides the method inherited fromA. Thus, the override56

declaration inD overrides the method introduced byC, and it is not possible forD to override the method57

introduced byA. The example produces the output:58

C# LANGUAGE SPECIFICATION

238

B.F 1
B.F 2
D.F 3
D.F 4

Note that it is possible to invoke the hidden virtual method by accessing an instance ofD through a less5

derived type in which the method is not hidden.end example]6

17.5.4 Override methods7

When an instance method declaration includes anoverride modifier, the method is said to be anoverride8

method. An override method overrides an inherited virtual method with the same signature. Whereas a9

virtual method declarationintroduces a new method, an override method declarationspecializes an existing10

inherited virtual method by providing a new implementation of that method.11

The method overridden by anoverride declaration is known as theoverridden base method. For an12

override methodM declared in a class C, the overridden base method is determined by examining each base13

class of C, starting with the direct base class ofC and continuing with each successive direct base class, until14

an accessible method with the same signature asM is located. For the purposes of locating the overridden15

base method, a method is considered accessible if it ispublic, if it is protected, if it is protected 16

internal, or if it is internal and declared in the same program as C.17

A compile-time error occurs unless all of the following are true for an override declaration:18

• An overridden base method can be located as described above.19

• The overridden base method is a virtual, abstract, or override method. In other words, the overridden20

base method cannot be static or non-virtual.21

• The overridden base method is not a sealed method.22

• The override declaration and the overridden base method have the same declared accessibility. In other23

words, an override declaration cannot change the accessibility of the virtual method.24

An override declaration can access the overridden base method using abase-access (§14.5.8). [Example: In25

the example26

class A 27
{ 28
 int x; 29

 public virtual void PrintFields() { 30
 Console.WriteLine("x = {0}", x); 31
 } 32
} 33

class B: A 34
{ 35
 int y; 36

 public override void PrintFields() { 37
 base.PrintFields(); 38
 Console.WriteLine("y = {0}", y); 39
 } 40
} 41

thebase.PrintFields() invocation inB invokes thePrintFields method declared inA. A base-42

access disables the virtual invocation mechanism and simply treats the base method as a non-virtual method.43

Had the invocation inB been written((A)this).PrintFields(), it would recursively invoke the44

PrintFields method declared in B, not the one declared in A, sincePrintFields is virtual and the run-45

time type of((A)this) is B. end example]46

Only by including anoverride modifier can a method override another method. In all other cases, a47

method with the same signature as an inherited method simply hides the inherited method. [Example: In the48

example49

Chapter 17 Classes

239

class A 1
{ 2
 public virtual void F() {} 3
} 4

class B: A 5
{ 6
 public virtual void F() {} // Warning, hiding inherited F() 7
} 8

theF method inB does not include anoverride modifier and therefore does not override theF method9

in A. Rather, theF method inB hides the method inA, and a warning is reported because the declaration does10

not include anew modifier.end example]11

[Example: In the example12

class A 13
{ 14
 public virtual void F() {} 15
} 16

class B: A 17
{ 18
 new private void F() {} // Hides A.F within B 19
} 20

class C: B 21
{ 22
 public override void F() {} // Ok, overrides A.F 23
} 24

theF method inB hides the virtualF method inherited fromA. Since the newF in B has private access, its25

scope only includes the class body ofB and does not extend to C. Therefore, the declaration ofF in C is26

permitted to override theF inherited fromA. end example]27

17.5.5 Sealed methods28

When an instance method declaration includes asealed modifier, that method is said to be asealed29

method. A sealed method overrides an inherited virtual method with the same signature. An override method30

can also be marked with thesealed modifier. Use of this modifier prevents a derived class from further31

overriding the method.32

[Example: The example33

using System; 34
class A 35
{ 36
 public virtual void F() { 37
 Console.WriteLine("A.F"); 38
 } 39

 public virtual void G() { 40
 Console.WriteLine("A.G"); 41
 } 42
} 43

class B: A 44
{ 45
 sealed override public void F() { 46
 Console.WriteLine("B.F"); 47
 } 48

 override public void G() { 49
 Console.WriteLine("B.G"); 50
 } 51
} 52

C# LANGUAGE SPECIFICATION

240

class C: B 1
{ 2
 override public void G() { 3
 Console.WriteLine("C.G"); 4
 } 5
} 6

the classB provides two override methods: anF method that has thesealed modifier and aG method that7

does not.B’s use of the sealedmodifier preventsC from further overridingF. end example]8

17.5.6 Abstract methods9

When an instance method declaration includes anabstract modifier, that method is said to be anabstract10

method. Although an abstract method is implicitly also a virtual method, it cannot have the modifier11

virtual.12

An abstract method declaration introduces a new virtual method but does not provide an implementation of13

that method. Instead, non-abstract derived classes are required to provide their own implementation by14

overriding that method. Because an abstract method provides no actual implementation, themethod-body of15

an abstract method simply consists of a semicolon.16

Abstract method declarations are only permitted in abstract classes (§17.1.1.1).17

[Example: In the example18

public abstract class Shape 19
{ 20
 public abstract void Paint(Graphics g, Rectangle r); 21
} 22

public class Ellipse: Shape 23
{ 24
 public override void Paint(Graphics g, Rectangle r) { 25
 g.DrawEllipse(r); 26
 } 27
} 28

public class Box: Shape 29
{ 30
 public override void Paint(Graphics g, Rectangle r) { 31
 g.DrawRect(r); 32
 } 33
} 34

theShape class defines the abstract notion of a geometrical shape object that can paint itself. ThePaint35

method is abstract because there is no meaningful default implementation. TheEllipse andBox classes36

are concreteShape implementations. Because these classes are non-abstract, they are required to override37

thePaint method and provide an actual implementation.end example]38

It is a compile-time error for abase-access (§14.5.8) to reference an abstract method. [Example: In the39

example40

abstract class A 41
{ 42
 public abstract void F(); 43
} 44

class B: A 45
{ 46
 public override void F() { 47
 base.F(); // Error, base.F is abstract 48
 } 49
} 50

a compile-time error is reported for thebase.F() invocation because it references an abstract method.end51

example]52

Chapter 17 Classes

241

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to1

force re-implementation of the method in derived classes, and makes the original implementation of the2

method unavailable. [Example: In the example3

using System; 4
class A 5
{ 6
 public virtual void F() { 7
 Console.WriteLine("A.F"); 8
 } 9
} 10

abstract class B: A 11
{ 12
 public abstract override void F(); 13
} 14

class C: B 15
{ 16
 public override void F() { 17
 Console.WriteLine("C.F"); 18
 } 19
} 20

classA declares a virtual method, classB overrides this method with an abstract method, and classC21

overrides that abstract method to provide its own implementation.end example]22

17.5.7 External methods23

When a method declaration includes anextern modifier, the method is said to be anexternal method.24

External methods are implemented externally, typically using a language other than C#. Because an external25

method declaration provides no actual implementation, themethod-body of an external method simply26

consists of a semicolon.27

The mechanism by which linkage to an external method is achieved, is implementation-defined.28

[Example: The following example demonstrates the use of theextern modifier in combination with a29

DllImport attribute that specifies the name of the external library in which the method is implemented:30

using System.Text; 31
using System.Security.Permissions; 32
using System.Runtime.InteropServices; 33
class Path 34
{ 35
 [DllImport("kernel32", SetLastError=true)] 36
 static extern bool CreateDirectory(string name, SecurityAttribute sa); 37

 [DllImport("kernel32", SetLastError=true)] 38
 static extern bool RemoveDirectory(string name); 39

 [DllImport("kernel32", SetLastError=true)] 40
 static extern int GetCurrentDirectory(int bufSize, StringBuilder buf); 41

 [DllImport("kernel32", SetLastError=true)] 42
 static extern bool SetCurrentDirectory(string name); 43
} 44

end example]45

17.5.8 Method body46

Themethod-body of a method declaration consists of either ablock or a semicolon.47

Abstract and external method declarations do not provide a method implementation, so their method bodies48

simply consist of a semicolon. For any other method,the method body is a block (§15.2) that contains the49

statements to execute when that method is invoked.50

C# LANGUAGE SPECIFICATION

242

When the return type of a method isvoid, return statements (§15.9.4) in that method’s body are not1

permitted to specify an expression. If execution of the method body of a void method completes normally2

(that is, control flows off the end of the method body), that method simply returns to its caller.3

When the return type of a method is notvoid, eachreturn statement in that method body must specify an4

expression of a type that is implicitly convertible to the return type. The endpoint of the method body of a5

value-returning method must not be reachable. In other words, in a value-returning method, control is not6

permitted to flow off the end of the method body.7

[Example: In the example8

class A 9
{ 10
 public int F() {} // Error, return value required 11

 public int G() { 12
 return 1; 13
 } 14

 public int H(bool b) { 15
 if (b) { 16
 return 1; 17
 } 18
 else { 19
 return 0; 20
 } 21
 } 22
} 23

the value-returningF method results in a compile-time error because control can flow off the end of the24

method body. TheG andH methods are correct because all possible execution paths end in a return25

statement that specifies a return value.end example]26

17.5.9 Method overloading27

The method overload resolution rules are described in §14.4.2.28

17.6 Properties29

A property is a member that provides access to an attribute of an object or a class. Examples of properties30

include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.31

Properties are a natural extension of fields—both are named members with associated types, and the syntax32

for accessing fields and properties is the same. However, unlike fields, properties do not denote storage33

locations. Instead, properties haveaccessors that specify the statements to be executed when their values are34

read or written. Properties thus provide a mechanism forassociating actions with the reading and writing of35

an object’s attributes; furthermore, they permit such attributes to be computed.36

Properties are declared usingproperty-declarations:37

property-declaration:38

attributesopt property-modifiersopt type member-name { accessor-declarations }39

property-modifiers:40

property-modifier41

property-modifiers property-modifier42

Chapter 17 Classes

243

property-modifier:1

new 2

public 3

protected 4

internal 5

private 6

static 7

virtual 8

sealed 9

override 10

abstract 11

extern12

member-name:13

identifier14

interface-type . identifier15

A property-declaration may include a set ofattributes (§24) and a valid combination of the four access16

modifiers (§17.2.3), thenew (§17.2.2),static (§17.6.1),virtual (§17.5.3, §17.6.3),override (§17.5.4,17

§17.6.3),sealed (§17.5.5),abstract (§17.5.6, §17.6.3), andextern modifiers.18

Property declarations are subject to the same rules asmethod declarations (§17.5) with regard to valid19

combinations of modifiers.20

Thetype of a property declaration specifies the type of the property introduced by the declaration, and the21

member-name specifies the name of the property. Unless the property is an explicit interface member22

implementation, themember-name is simply anidentifier. For an explicit interface member implementation23

(§20.4.1), themember-name consists of aninterface-type followed by a “.” and anidentifier.24

Thetype of a property must be at least as accessible as the property itself (§10.5.4).25

Theaccessor-declarations, which must be enclosed in “{” and “}” tokens, declare the accessors (§17.6.2) of26

the property. The accessors specify the executable statements associated with reading and writing the27

property.28

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as29

a variable. Thus, it is not possible to pass a property as aref or out argument.30

When a property declaration includes anextern modifier, the property is said to be anexternal property.31

Because an external property declaration provides no actual implementation, each of itsaccessor-32

declarations consists of a semicolon.33

17.6.1 Static and instance properties34

When a property declaration includes astatic modifier, the property is said to be astatic property. When35

nostatic modifier is present, the property is said to be aninstance property.36

A static property is not associated with a specific instance, and it is a compile-time error to refer tothis in37

the accessors of a static property.38

An instance property is associated with a given instance of a class, and that instance can be accessed as39

this (§14.5.7) in the accessors of that property.40

When a property is referenced in amember-access (§14.5.4) of the formE.M, if M is a static property,E must41

denote a type that has a propertyM, and ifM is an instance property, E must denote an instance having a42

propertyM.43

The differences between static and instance members are discussed further in §17.2.5.44

C# LANGUAGE SPECIFICATION

244

17.6.2 Accessors1

Theaccessor-declarations of a property specify the executable statements associated with reading and2

writing that property.3

accessor-declarations:4

get-accessor-declaration set-accessor-declarationopt5

set-accessor-declaration get-accessor-declarationopt6

get-accessor-declaration:7

attributesopt get accessor-body8

set-accessor-declaration:9

attributesopt set accessor-body10

accessor-body:11

block12

;13

The accessor declarations consist of aget-accessor-declaration, aset-accessor-declaration, or both. Each14

accessor declaration consists of the tokenget or set followed by anaccessor-body. Forabstract and15

extern properties, theaccessor-body for each accessor specified is simply a semicolon. For the accessors16

of any non-abstract, non-extern property, theaccessor-body is ablock which specifies the statements to be17

executed when the corresponding accessor is invoked.18

A get accessor corresponds to a parameterless method witha return value of the property type. Except as19

the target of an assignment, when a property is referenced in an expression, theget accessor of the property20

is invoked to compute the value of the property (§14.1.1). The body of aget accessor must conform to the21

rules for value-returning methods described in §17.5.8. In particular, allreturn statements in the body of a22

get accessor must specify an expression that is implicitly convertible to the property type. Furthermore, the23

endpoint of aget accessor must not be reachable.24

A set accessor corresponds to a method with a single value parameter of the property type and avoid25

return type. The implicit parameter of aset accessor is always namedvalue. When a property is26

referenced as the target of an assignment (§14.13), or as the operand of++ or �- (§14.5.9, 14.6.5), theset27

accessor is invoked with an argument (whose value is that of the right-hand side of the assignment or the28

operand of the++ or �- operator) that provides the new value (§14.13.1). The body of aset accessor must29

conform to the rules forvoid methods described in §17.5.8. In particular,return statements in theset30

accessor body are not permitted to specify an expression. Since aset accessor implicitly has a parameter31

namedvalue, it is a compile-time error for a local variable declaration in aset accessor to have that name.32

Based on the presence or absence of theget andset accessors, a property is classified as follows:33

• A property that includes both aget accessor and aset accessor is said to be aread-write property.34

• A property that has only aget accessor is said to be aread-only property. It is a compile-time error for35

a read-only property to be the target of an assignment.36

• A property that has only aset accessor is said to be awrite-only property. Except as the target of an37

assignment, it is a compile-time error to reference a write-only property in an expression. [Note: The pre-38

and postfix++ and-- operators cannot be applied to write-only properties, since these operators read the old39

value of their operand before they write the new one.end note]40

[Example: In the example41

public class Button: Control 42
{ 43
 private string caption; 44

Chapter 17 Classes

245

 public string Caption { 1
 get { 2
 return caption; 3
 } 4
 set { 5
 if (caption != value) { 6
 caption = value; 7
 Repaint(); 8
 } 9
 } 10
 } 11

 public override void Paint(Graphics g, Rectangle r) { 12
 // Painting code goes here 13
 } 14
} 15

theButton control declares a publicCaption property. Theget accessor of theCaption property returns16

the string stored in the privatecaption field. Theset accessor checks if the new value is different from the17

current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern18

shown above: Theget accessor simply returns a value stored in a private field, and theset accessor19

modifies that private field and then performs any additional actions required to fully update the state of the20

object.21

Given theButton class above, the following is an example of use of theCaption property:22

Button okButton = new Button(); 23
okButton.Caption = "OK"; // Invokes set accessor 24
string s = okButton.Caption; // Invokes get accessor 25

Here, theset accessor is invoked by assigning a value to the property, and theget accessor is invoked by26

referencing the property in an expression.end example]27

Theget andset accessors of a property are not distinct members, and it is not possible to declare the28

accessors of a property separately. [Note: As such, it is not possible for the two accessors of a read-write29

property to have different accessibility.end note] [Example: The example30

class A 31
{ 32
 private string name; 33

 public string Name { // Error, duplicate member name 34
 get { return name; } 35
 } 36

 public string Name { // Error, duplicate member name 37
 set { name = value; } 38
 } 39
} 40

does not declare a single read-write property. Rather, it declares two properties with the same name, one41

read-only and one write-only. Since two members declared in the same class cannot have the same name, the42

example causes a compile-time error to occur.end example]43

When a derived class declares a property by the same name as an inherited property, the derived property44

hides the inherited property with respect to both reading and writing. [Example: In the example45

class A 46
{ 47
 public int P { 48
 set {�} 49
 } 50
} 51

class B: A 52
{ 53
 new public int P { 54
 get {�} 55
 } 56
} 57

C# LANGUAGE SPECIFICATION

246

theP property inB hides theP property inA with respect to both reading and writing. Thus, in the1

statements2

B b = new B(); 3
b.P = 1; // Error, B.P is read-only 4
((A)b).P = 1; // Ok, reference to A.P 5

the assignment tob.P causes a compile-time error to be reported, since the read-onlyP property inB hides6

the write-onlyP property in A. Note, however, that a cast can be used to access the hiddenP property.end7

example]8

Unlike public fields, properties provide a separation between an object’s internal state and its public9

interface. [Example: Consider the example:10

class Label 11
{ 12
 private int x, y; 13
 private string caption; 14

 public Label(int x, int y, string caption) { 15
 this.x = x; 16
 this.y = y; 17
 this.caption = caption; 18
 } 19

 public int X { 20
 get { return x; } 21
 } 22

 public int Y { 23
 get { return y; } 24
 } 25

 public Point Location { 26
 get { return new Point(x, y); } 27
 } 28

 public string Caption { 29
 get { return caption; } 30
 } 31
} 32

Here, theLabel class uses twoint fields,x andy, to store its location. The location is publicly exposed33

both as anX and aY property and as aLocation property of typePoint. If, in a future version ofLabel,34

it becomes more convenient to store the location as aPoint internally, the change can be made without35

affecting the public interface of the class:36

class Label 37
{ 38
 private Point location; 39
 private string caption; 40

 public Label(int x, int y, string caption) { 41
 this.location = new Point(x, y); 42
 this.caption = caption; 43
 } 44

 public int X { 45
 get { return location.x; } 46
 } 47

 public int Y { 48
 get { return location.y; } 49
 } 50

 public Point Location { 51
 get { return location; } 52
 } 53

 public string Caption { 54
 get { return caption; } 55
 } 56
} 57

Chapter 17 Classes

247

Hadx andy instead beenpublic readonly fields, it would have been impossible to make such a change1

to theLabel class.end example]2

[Note: Exposing state through properties is not necessarilyany less efficient than exposing fields directly. In3

particular, when a property is non-virtual and contains only a small amount of code, the execution4

environment may replace calls to accessors with the actual code of the accessors. This process is known as5

inlining, and it makes property access as efficient as fieldaccess, yet preserves the increased flexibility of6

properties.end note]7

[Example: Since invoking aget accessor is conceptually equivalent to reading the value of a field, it is8

considered bad programming style forget accessors to have observable side-effects. In the example9

class Counter 10
{ 11
 private int next; 12

 public int Next { 13
 get { return next++; } 14
 } 15
} 16

the value of theNext property depends on the number of times the property has previously been accessed.17

Thus, accessing the property produces an observable side effect, and the property should be implemented as18

a method instead.end example]19

[Note: The “no side-effects” convention forget accessors doesn’t mean thatget accessors should always20

be written to simply return values stored in fields. Indeed,get accessors often compute the value of a21

property by accessing multiple fields or invoking methods. However, a properly designedget accessor22

performs no actions that cause observable changes in the state of the object.end note]23

Properties can be used to delay initialization of a resource until the moment it is first referenced. [Example:24

For example:25

using System.IO; 26

public class Console 27
{ 28
 private static TextReader reader; 29
 private static TextWriter writer; 30
 private static TextWriter error; 31

 public static TextReader In { 32
 get { 33
 if (reader == null) { 34
 reader = new StreamReader(Console.OpenStandardInput()); 35
 } 36
 return reader; 37
 } 38
 } 39

 public static TextWriter Out { 40
 get { 41
 if (writer == null) { 42
 writer = new StreamWriter(Console.OpenStandardOutput()); 43
 } 44
 return writer; 45
 } 46
 } 47

 public static TextWriter Error { 48
 get { 49
 if (error == null) { 50
 error = new StreamWriter(Console.OpenStandardError()); 51
 } 52
 return error; 53
 } 54
 } 55
} 56

C# LANGUAGE SPECIFICATION

248

TheConsole class contains three properties,In, Out, andError, that represent the standard input, output,1

and error devices, respectively. By exposing these members as properties, theConsole class can delay their2

initialization until they are actually used. For example, upon first referencing theOut property, as in3

Console.Out.WriteLine("hello, world"); 4

the underlyingTextWriter for the output device is created. But if the application makes no reference to the5

In andError properties, then no objects are created for those devices.end example]6

17.6.3 Virtual, sealed, override, and abstract accessors7

A virtual property declaration specifies that the accessors of the property are virtual. Thevirtual8

modifier applies to both accessors of a read-write property—it is not possible for only one accessor of a9

read-write property to be virtual.10

An abstract property declaration specifies that the accessors of the property are virtual, but does not11

provide an actual implementation of the accessors. Instead, non-abstract derived classes are required to12

provide their own implementation for the accessors by overriding the property. Because an accessor for an13

abstract property declaration provides no actual implementation, itsaccessor-body simply consists of a14

semicolon.15

A property declaration that includes both theabstract andoverride modifiers specifies that the property16

is abstract and overrides a base property. The accessors of such a property are also abstract.17

Abstract property declarations are only permitted in abstract classes (§17.1.1.1). The accessors of an18

inherited virtual property can be overridden in a derived class by including a property declaration that19

specifies anoverride directive. This is known as anoverriding property declaration. An overriding20

property declaration does not declare a new property. Instead, it simply specializes the implementations of21

the accessors of an existing virtual property.22

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as23

the inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is24

read-only or write-only), the overriding property must include only thataccessor. If the inherited property25

includes both accessors (i.e., if the inherited property is read-write), the overriding property can include26

either a single accessor or both accessors.27

An overriding property declaration may include thesealed modifier. Use of this modifier prevents a28

derived class from further overriding the property.The accessors of a sealed property are also sealed.29

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors30

behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in31

§17.5.3, §17.5.4, §17.5.5, and §17.5.6 apply as if accessors were methods of a corresponding form:32

• A get accessor corresponds to a parameterless method with a return value of the property type and the33

same modifiers as the containing property.34

• A set accessor corresponds to a method with a single value parameter of the property type, avoid35

return type, and the same modifiers as the containing property.36

[Example: In the example37

abstract class A 38
{ 39
 int y; 40

 public virtual int X { 41
 get { return 0; } 42
 } 43

 public virtual int Y { 44
 get { return y; } 45
 set { y = value; } 46
 } 47

 public abstract int Z { get; set; } 48
} 49

Chapter 17 Classes

249

X is a virtual read-only property,Y is a virtual read-write property, andZ is an abstract read-write property.1

BecauseZ is abstract, the containing classA must also be declared abstract.2

A class that derives fromA is show below:3

class B: A 4
{ 5
 int z; 6

 public override int X { 7
 get { return base.X + 1; } 8
 } 9

 public override int Y { 10
 set { base.Y = value < 0? 0: value; } 11
 } 12

 public override int Z { 13
 get { return z; } 14
 set { z = value; } 15
 } 16
} 17

Here, the declarations ofX, Y, andZ are overriding property declarations. Each property declaration exactly18

matches the accessibility modifiers, type, and name of the corresponding inherited property. Theget19

accessor ofX and theset accessor ofY use thebase keyword to access the inherited accessors. The20

declaration ofZ overrides both abstract accessors—thus, there are no outstanding abstract function members21

in B, andB is permitted to be a non-abstract class.end example]22

17.7 Events23

An event is a member that enables an object or class to provide notifications. Clients can attach executable24

code for events by supplyingevent handlers.25

Events are declared usingevent-declarations:26

event-declaration:27

attributesopt event-modifiersopt event type variable-declarators ; 28

attributesopt event-modifiersopt event type member-name { event-accessor-declarations29

}30

event-modifiers:31

event-modifier32

event-modifiers event-modifier33

event-modifier:34

new 35

public 36

protected 37

internal 38

private 39

static 40

virtual 41

sealed 42

override 43

abstract 44

extern45

event-accessor-declarations:46

add-accessor-declaration remove-accessor-declaration47

remove-accessor-declaration add-accessor-declaration48

add-accessor-declaration:49

attributesopt add block50

C# LANGUAGE SPECIFICATION

250

remove-accessor-declaration:1

attributesopt remove block2

An event-declaration may include a set ofattributes (§24) and a valid combination of the four access3

modifiers (§17.2.3), thenew (§17.2.2),static (§17.5.2, §17.7.3),virtual (§17.5.3, §17.7.4),override4

(§17.5.4, §17.7.4),sealed (§17.5.5),abstract (§17.5.6, §17.7.4), andextern modifiers.5

Event declarations are subject to the same rules as method declarations (§17.5) with regard to valid6

combinations of modifiers.7

Thetype of an event declaration must be adelegate-type (§11.2), and thatdelegate-type must be at least as8

accessible as the event itself (§10.5.4).9

An event declaration may includeevent-accessor-declarations. However, if it does not, for non-extern, non-10

abstract events, the compiler shall supply them automatically (§17.7.1); for extern events, the accessors are11

provided externally.12

An event declaration that omitsevent-accessor-declarations defines one or more events—one for each of the13

variable-declarators. The attributes and modifiers apply to all of the members declared by such anevent-14

declaration.15

It is a compile-time error for anevent-declaration to include both theabstract modifier and brace-16

delimitedevent-accessor-declarations.17

When an event declaration includes anextern modifier, the event is said to be anexternal event. Because18

an external event declaration provides no actual implementation, it is an error for it to include both the19

extern modifier andevent-accessor-declarations.20

An event can be used as the left-hand operand of the+= and-= operators (§14.13.3). These operators are21

used, respectively, to attach event handlers to, or to remove event handlers from an event, and the access22

modifiers of the event control the contexts in which such operations are permitted.23

Since+= and�= are the only operations that are permitted on an event outside the type that declares the24

event, external code can add and remove handlers for an event, but cannot in any other way obtain or modify25

the underlying list of event handlers.26

In an operation of the formx += y or x �= y, whenx is an event and the reference takes place outside the27

type that contains the declaration ofx, the result of the operation has typevoid (as opposed to having the28

type ofx, with the value ofx after the assignment). This rule prohibits external code from indirectly29

examining the underlying delegate of an event.30

[Example: The following example shows how event handlers are attached to instances of theButton class:31

public delegate void EventHandler(object sender, EventArgs e); 32

public class Button: Control 33
{ 34
 public event EventHandler Click; 35
} 36

public class LoginDialog: Form 37
{ 38
 Button OkButton; 39
 Button CancelButton; 40

 public LoginDialog() { 41
 OkButton = new Button(�); 42
 OkButton.Click += new EventHandler(OkButtonClick); 43
 CancelButton = new Button(�); 44
 CancelButton.Click += new EventHandler(CancelButtonClick); 45
 } 46

 void OkButtonClick(object sender, EventArgs e) { 47
 // Handle OkButton.Click event 48
 } 49

Chapter 17 Classes

251

 void CancelButtonClick(object sender, EventArgs e) { 1
 // Handle CancelButton.Click event 2
 } 3
} 4

Here, theLoginDialog instance constructor creates twoButton instances and attaches event handlers to5

theClick events.end example]6

17.7.1 Field-like events7

Within the program text of the class or struct that contains the declaration of an event, certain events can be8

used like fields. To be used in this way, an event must not beabstract or extern, and must not explicitly9

includeevent-accessor-declarations. Such an event can be used in any context that permits a field. The field10

contains a delegate (§22), which refers to the list of event handlers that have been added to the event. If no11

event handlers have been added, the field containsnull.12

[Example: In the example13

public delegate void EventHandler(object sender, EventArgs e); 14

public class Button: Control 15
{ 16
 public event EventHandler Click; 17

 protected void OnClick(EventArgs e) { 18
 if (Click != null) Click(this, e); 19
 } 20

 public void Reset() { 21
 Click = null; 22
 } 23
} 24

Click is used as a field within theButton class. As the example demonstrates, the field can be examined,25

modified, and used in delegate invocation expressions. TheOnClick method in theButton class “raises”26

theClick event. The notion of raising an event is precisely equivalent to invoking the delegate represented27

by the event—thus, there are no special language constructs for raising events. Note that the delegate28

invocation is preceded by a check that ensures the delegate is non-null.29

Outside the declaration of theButton class, theClick member can only be used on the left-hand side of30

the+= and�= operators, as in31

b.Click += new EventHandler(�); 32

which appends a delegate tothe invocation list of theClick event, and33

b.Click �= new EventHandler(�); 34

which removes a delegate from the invocation list of theClick event.end example]35

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and36

creates accessors for the event that add or remove event handlers to the delegate field. In order to be thread-37

safe, the addition or removal operations are done whileholding the lock (§15.12) on the containing object38

for an instance event, or the type object (§14.5.11) for a static event.39

[Note: Thus, an instance event declaration of the form:40

class X { 41
 public event D Ev; 42
} 43

could be compiled to something equivalent to:44

class X { 45
 private D __Ev; // field to hold the delegate 46

 public event D Ev { 47
 add { 48
 lock(this) { __Ev = __Ev + value; } 49
 } 50

C# LANGUAGE SPECIFICATION

252

 remove { 1
 lock(this) { __Ev = __Ev - value; } 2
 } 3
 } 4
} 5

Within the classX, references toEv are compiled to reference the hidden field__Ev instead. The name6

“__Ev” is arbitrary; the hidden field could have any name or no name at all.7

Similarly, a static event declaration of the form:8

class X { 9
 public static event D Ev; 10
} 11

could be compiled to something equivalent to:12

class X { 13
 private static D __Ev; // field to hold the delegate 14

 public static event D Ev { 15
 add { 16
 lock(typeof(X)) { __Ev = __Ev + value; } 17
 } 18

 remove { 19
 lock(typeof(X)) { __Ev = __Ev - value; } 20
 } 21
 } 22
} 23

end note]24

17.7.2 Event accessors25

[Note: Event declarations typically omitevent-accessor-declarations, as in theButton example above. One26

situation for doing so involves the case in which the storage cost of one field per event is not acceptable. In27

such cases, a class can includeevent-accessor-declarations and use a private mechanism for storing the list28

of event handlers. Similarly, in cases where the handling of an event requires access to external resources,29

event accessors may be used to manage these resources.end note]30

Theevent-accessor-declarations of an event specify the executable statements associated with adding and31

removing event handlers.32

The accessor declarations consist of anadd-accessor-declaration and aremove-accessor-declaration. Each33

accessor declaration consists of the tokenadd or remove followed by ablock. Theblock associated with an34

add-accessor-declaration specifies the statements to execute when an event handler is added, and theblock35

associated with aremove-accessor-declaration specifies the statements to execute when an event handler is36

removed.37

Eachadd-accessor-declaration andremove-accessor-declaration corresponds to a method with a single38

value parameter of the event type, and avoid return type. The implicit parameter of an event accessor is39

namedvalue. When an event is used in an event assignment, the appropriate event accessor is used.40

Specifically, if the assignment operator is+= then the add accessor is used, and if the assignment operator is41

�= then the remove accessor is used. In either case, the right-hand operand of the assignment operator is42

used as the argument to the event accessor. The block of anadd-accessor-declaration or aremove-accessor-43

declaration must conform to the rules forvoid methods described in §17.5.8. In particular,return44

statements in such a block are not permitted to specify an expression.45

Since an event accessor implicitly has a parameter namedvalue, it is a compile-time error for a local46

variable declared in an event accessor to have that name.47

[Example: In the example48

Chapter 17 Classes

253

class Control: Component 1
{ 2
 // Unique keys for events 3
 static readonly object mouseDownEventKey = new object(); 4
 static readonly object mouseUpEventKey = new object(); 5

 // Return event handler associated with key 6
 protected Delegate GetEventHandler(object key) {�} 7

 // Add event handler associated with key 8
 protected void AddEventHandler(object key, Delegate handler) {�} 9

 // Remove event handler associated with key 10
 protected void RemoveEventHandler(object key, Delegate handler) {�} 11

 // MouseDown event 12
 public event MouseEventHandler MouseDown { 13
 add { AddEventHandler(mouseDownEventKey, value); } 14
 remove { RemoveEventHandler(mouseDownEventKey, value); } 15
 } 16

 // MouseUp event 17
 public event MouseEventHandler MouseUp { 18
 add { AddEventHandler(mouseUpEventKey, value); } 19
 remove { RemoveEventHandler(mouseUpEventKey, value); } 20
 } 21

 // Invoke the MouseUp event 22
 protected void OnMouseUp(MouseEventArgs args) { 23
 MouseEventHandler handler; 24
 handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey); 25
 if (handler != null) 26
 handler(this, args); 27
 } 28
} 29

theControl class implements an internal storage mechanism for events. TheAddEventHandler method30

associates a delegate value with a key, theGetEventHandler method returns the delegate currently31

associated with a key, and theRemoveEventHandler method removes a delegate as an event handler for32

the specified event. Presumably, the underlying storage mechanism is designed such that there is no cost for33

associating anull delegate value with a key, and thus unhandled events consume no storage.end example]34

17.7.3 Static and instance events35

When an event declaration includes astatic modifier, the event is said to be astatic event. When no36

static modifier is present, the event is said to be aninstance event.37

A static event is not associated with a specific instance, and it is a compile-time error to refer tothis in the38

accessors of a static event.39

An instance event is associated with a given instance of a class, and this instance can be accessed asthis40

(§14.5.7) in the accessors of that event.41

When an event is referenced in amember-access (§14.5.4) of the formE.M, if M is a static event,E must42

denote a type, and ifM is an instance event, E must denote an instance.43

The differences between static and instance members are discussed further in §17.2.5.44

17.7.4 Virtual, sealed, override, and abstract accessors45

A virtual event declaration specifies that theaccessors of that event are virtual. Thevirtual modifier46

applies to both accessors of an event.47

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide an48

actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their49

own implementation for the accessors by overriding the event. Because an accessor for an abstract event50

declaration provides no actual implementation, itsaccessor-body simply consists of a semicolon.51

C# LANGUAGE SPECIFICATION

254

An event declaration that includes both theabstract andoverride modifiers specifies that the event is1

abstract and overrides a base event. The accessors of such an event are also abstract.2

Abstract event declarations are only permitted in abstract classes (§17.1.1.1).3

The accessors of an inherited virtual event can be overridden in a derived class by including an event4

declaration that specifies anoverride modifier. This is known as anoverriding event declaration. An5

overriding event declaration does not declare a new event. Instead, it simply specializes the implementations6

of the accessors of an existing virtual event.7

An overriding event declaration must specify the exactsame accessibility modifiers, type, and name as the8

overridden event.9

An overriding event declaration may include thesealed modifier. Use of this modifier prevents a derived10

class from further overriding the event. The accessors of a sealed event are also sealed.11

It is a compile-time error for an overriding event declaration to include anew modifier.12

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors13

behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in14

§17.5.3, §17.5.4, §17.5.5, and §17.5.6 apply as if accessors were methods of a corresponding form. Each15

accessor corresponds to a method with a single value parameter of the event type, avoid return type, and16

the same modifiers as the containing event.17

17.8 Indexers18

An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are19

declared usingindexer-declarations:20

indexer-declaration:21

attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations } 22

indexer-modifiers:23

indexer-modifier24

indexer-modifiers indexer-modifier25

indexer-modifier:26

new 27

public 28

protected 29

internal 30

private 31

virtual 32

sealed 33

override 34

abstract 35

extern 36

indexer-declarator:37

type this [formal-parameter-list]38

type interface-type . this [formal-parameter-list] 39

An indexer-declaration may include a set ofattributes (§24) and a valid combination of the four access40

modifiers (§17.2.3), thenew (§17.2.2),virtual (§17.5.3),override (§17.5.4),sealed (§17.5.5),41

abstract (§17.5.6), andextern (§17.5.7) modifiers.42

Indexer declarations are subject to the same rules asmethod declarations (§17.5) with regard to valid43

combinations of modifiers, with the one exception being that the static modifier is not permitted on an44

indexer declaration.45

Chapter 17 Classes

255

The modifiers virtual, override, andabstract are mutually exclusive except in one case. The1

abstract andoverride modifiers may be used together so that an abstract indexer can override a virtual2

one.3

Thetype of an indexer declaration specifies the element type of the indexer introduced by the declaration.4

Unless the indexer is an explicit interface member implementation, thetype is followed by the keyword5

this. For an explicit interface member implementation, thetype is followed by aninterface-type, a “.”, and6

the keywordthis. Unlike other members, indexers do not have user-defined names.7

Theformal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer8

corresponds to that of a method (§17.5.1), except that at least one parameter must be specified, and that the9

ref andout parameter modifiers are not permitted.10

Thetype of an indexer and each of the types referenced in theformal-parameter-list must be at least as11

accessible as the indexer itself (§10.5.4).12

Theaccessor-declarations (§17.6.2), which must be enclosed in “{” and “}” tokens, declare the accessors13

of the indexer. The accessors specify the executable statements associated with reading and writing indexer14

elements.15

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer16

element is not classified as a variable. Thus, it is not possible to pass an indexer element as aref or out17

argument.18

Theformal-parameter-list of an indexer defines the signature (§10.6) of the indexer. Specifically, the19

signature of an indexer consists of the number and types of its formal parameters. The element type and20

names of the formal parameters arenot part of an indexer’s signature.21

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.22

Indexers and properties are very similar in concept, but differ in the following ways:23

• A property is identified by its name, whereas an indexer is identified by its signature.24

• A property is accessed through asimple-name (§14.5.2) or amember-access (§14.5.4), whereas an25

indexer element is accessed through anelement-access (§14.5.6.2).26

• A property can be astatic member, whereas an indexer is always an instance member.27

• A get accessor of a property corresponds to a method with no parameters, whereas aget accessor of an28

indexer corresponds to a method with the same formal parameter list as the indexer.29

• A set accessor of a property corresponds to a method with a single parameter namedvalue, whereas a30

set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus31

an additional parameter namedvalue.32

• It is a compile-time error for an indexer accessor to declare a local variable with the same name as an33

indexer parameter.34

• In an overriding property declaration, the inherited property is accessed using the syntaxbase.P, where35

P is the property name. In an overriding indexer declaration, the inherited indexer is accessed using the36

syntaxbase[E], whereE is a comma-separated list of expressions.37

Aside from these differences, all rules defined in §17.6.2 and §17.6.3 apply to indexer accessors as well as to38

property accessors.39

When an indexer declaration includes anextern modifier, the indexer is said to be anexternal indexer.40

Because an external indexer declaration provides no actual implementation, each of itsaccessor-41

declarations consists of a semicolon.42

[Example: The example below declares aBitArray class that implements an indexer for accessing the43

individual bits in the bit array.44

C# LANGUAGE SPECIFICATION

256

using System; 1
class BitArray 2
{ 3
 int[] bits; 4
 int length; 5

 public BitArray(int length) { 6
 if (length < 0) throw new ArgumentException(); 7
 bits = new int[((length - 1) >> 5) + 1]; 8
 this.length = length; 9
 } 10

 public int Length { 11
 get { return length; } 12
 } 13

 public bool this[int index] { 14
 get { 15
 if (index < 0 || index >= length) { 16
 throw new IndexOutOfRangeException(); 17
 } 18
 return (bits[index >> 5] & 1 << index) != 0; 19
 } 20
 set { 21
 if (index < 0 || index >= length) { 22
 throw new IndexOutOfRangeException(); 23
 } 24
 if (value) { 25
 bits[index >> 5] |= 1 << index; 26
 } 27
 else { 28
 bits[index >> 5] &= ~(1 << index); 29
 } 30
 } 31
 } 32
} 33

An instance of theBitArray class consumes substantially less memory than a correspondingbool[]34

(since each value of the former occupies only one bit instead of the latter’s one byte), but it permits the same35

operations as abool[].36

The followingCountPrimes class uses aBitArray and the classical “sieve” algorithm to compute the37

number of primes between 1 and a given maximum:38

class CountPrimes 39
{ 40
 static int Count(int max) { 41
 BitArray flags = new BitArray(max + 1); 42
 int count = 1; 43
 for (int i = 2; i <= max; i++) { 44
 if (!flags[i]) { 45
 for (int j = i * 2; j <= max; j += i) flags[j] = true; 46
 count++; 47
 } 48
 } 49
 return count; 50
 } 51

 static void Main(string[] args) { 52
 int max = int.Parse(args[0]); 53
 int count = Count(max); 54
 Console.WriteLine("Found {0} primes between 1 and {1}", count, 55
max); 56
 } 57
} 58

Note that the syntax for accessing elements of theBitArray is precisely the same as for abool[]. end59

example]60

Chapter 17 Classes

257

[Example: The following example shows a 26×10 grid class that has an indexer with two parameters. The1

first parameter is required to be an upper- or lowercase letter in the range A–Z, and the second is required to2

be an integer in the range 0–9.3

using System; 4
class Grid 5
{ 6
 const int NumRows = 26; 7
 const int NumCols = 10; 8
 int[,] cells = new int[NumRows, NumCols]; 9

 10
 public int this[char c, int colm] 11
 { 12
 get { 13
 c = Char.ToUpper(c); 14
 if (c < 'A' || c > 'Z') { 15
 throw new ArgumentException(); 16
 } 17
 if (colm < 0 || colm >= NumCols) { 18
 throw new IndexOutOfRangeException(); 19
 } 20
 return cells[c - 'A', colm]; 21
 } 22

 set { 23
 c = Char.ToUpper(c); 24
 if (c < 'A' || c > 'Z') { 25
 throw new ArgumentException(); 26
 } 27
 if (colm < 0 || colm >= NumCols) { 28
 throw new IndexOutOfRangeException(); 29
 } 30
 cells[c - 'A', colm] = value; 31
 } 32
 } 33
} 34

end example]35

17.8.1 Indexer overloading36

The indexer overload resolution rules are described in §14.4.2.37

17.9 Operators38

An operator is a member that defines the meaning of an expression operator that can be applied to instances39

of the class. Operators are declared usingoperator-declarations:40

operator-declaration:41

attributesopt operator-modifiers operator-declarator operator-body 42

operator-modifiers:43

operator-modifier44

operator-modifiers operator-modifier45

operator-modifier:46

public 47

static 48

extern 49

operator-declarator:50

unary-operator-declarator51

binary-operator-declarator52

conversion-operator-declarator53

C# LANGUAGE SPECIFICATION

258

unary-operator-declarator:1

type operator overloadable-unary-operator (type identifier) 2

overloadable-unary-operator: one of3

+ - ! ~ ++ -- true false4

binary-operator-declarator:5

type operator overloadable-binary-operator (type identifier , type identifier) 6

overloadable-binary-operator: one of7

+ - * / % & | ^ << >> == != > < >= <=8

conversion-operator-declarator: 9

implicit operator type (type identifier)10

explicit operator type (type identifier) 11

operator-body:12

block13

; 14

There are three categories of overloadable operators: Unary operators (§17.9.1), binary operators (§17.9.2),15

and conversion operators (§17.9.3).16

When an operator declaration includes anextern modifier, the operator is said to be anexternal operator.17

Because an external operator provides no actual implementation, itsoperator-body consists of a semi-colon.18

For all other operators, theoperator-body consists of ablock, which specifies the statements to execute19

when the operator is invoked. Theblock of an operator must conform to the rules for value-returning20

methods described in §17.5.8.21

The following rules apply to all operator declarations:22

• An operator declaration must include both apublic and astatic modifier.23

• The parameter(s) of an operator must be value parameters. It is a compile-time error for an operator24

declaration to specifyref or out parameters.25

• The signature of an operator (§17.9.1, §17.9.2, §17.9.3) must differ from the signatures of all other26

operators declared in the same class.27

• All types referenced in an operator declaration must be at least as accessible as the operator itself28

(§10.5.4).29

• It is an error for the same modifier to appear multiple times in an operator declaration.30

Each operator category imposes additional restrictions, as described in the following sections.31

Like other members, operators declared in a base class are inherited by derived classes. Because operator32

declarations always require the class or struct in which the operator is declared to participate in the signature33

of the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a34

base class. Thus, thenew modifier is never required, and therefore never permitted, in an operator35

declaration.36

Additional information on unary and binary operators can be found in §14.2.37

Additional information on conversion operators can be found in §13.4.38

17.9.1 Unary operators39

The following rules apply to unary operator declarations, whereT denotes the class or struct type that40

contains the operator declaration:41

Chapter 17 Classes

259

• A unary+, -, !, or~ operator must take a single parameter of typeT and can return any type.1

• A unary++ or -- operator must take a single parameter of typeT and must return typeT.2

• A unarytrue or false operator must take a single parameter of typeT and must return typebool.3

The signature of a unary operatorconsists of the operator token (+, -, !, ~, ++, --, true, orfalse) and the4

type of the single formal parameter. The return typeis not part of a unary operator’s signature, nor is the5

name of the formal parameter.6

Thetrue andfalse unary operators require pair-wise declaration. A compile-time error occurs if a class7

declares one of these operators without also declaring the other. Thetrue andfalse operators are8

described further in §14.16.9

[Example: The following example shows an implementation and subsequent usage ofoperator++ for an10

integer vector class:11

public class IntVector 12
{ 13
 public int Length { � } // read-only property 14
 public int this[int index] { � } // read-write indexer 15
 public IntVector(int vectorLength) { � } 16
 public static IntVector operator++(IntVector iv) { 17
 IntVector temp = new IntVector(iv.Length); 18
 for (int i = 0; i < iv.Length; ++i) 19
 temp[i] = iv[i] + 1; 20
 return temp; 21
 } 22
} 23

class Test 24
{ 25
 static void Main() { 26
 IntVector iv1 = new IntVector(4); // vector of 4x0 27
 IntVector iv2; 28
 29
 iv2 = iv1++; // iv2 contains 4x0, iv1 contains 4x1 30
 iv2 = ++iv1; // iv2 contains 4x2, iv1 contains 4x2 31
} 32

Note how the operator method returns the value produced by adding 1 to the operand, just like the postfix33

increment and decrement operators(§14.5.9), and theprefix increment and decrement operators (§14.6.5).34

Unlike in C++, this method need not, and, in fact, must not, modify the value of its operand directly.end35

example]36

17.9.2 Binary operators37

A binary operator must take two parameters, at least one of which must have the class or struct type in which38

the operator is declared. A binary operator can return any type.39

The signature of a binary operator consists of the operator token (+, -, *, /, %, &, |, ^, <<, >>, ==, !=, >, <,40

>=, or<=) and the types of the two formal parameters. The return type and the names of the formal41

parameters are not part of a binary operator’s signature.42

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair,43

there must be a matching declaration of the other operator of the pair. Two operator declarations match when44

they have the same return type and the same type for each parameter. The following operators require pair-45

wise declaration:46

C# LANGUAGE SPECIFICATION

260

• operator == andoperator !=1

• operator > andoperator <2

• operator >= andoperator <=3

17.9.3 Conversion operators4

A conversion operator declaration introduces auser-defined conversion (§13.4), which augments the pre-5

defined implicit and explicit conversions.6

A conversion operator declaration that includes theimplicit keyword introduces a user-defined implicit7

conversion. Implicit conversions can occur in a variety of situations, including function member invocations,8

cast expressions, and assignments. This is described further in §13.1.9

A conversion operator declaration that includes theexplicit keyword introduces a user-defined explicit10

conversion. Explicit conversions can occur in cast expressions, and are described further in §13.2.11

A conversion operator converts from a source type, indicated by the parameter type of the conversion12

operator, to a target type, indicated by the return type of the conversion operator. A class or struct is13

permitted to declare a conversion from a source typeS to a target typeT provided all of the following are14

true:15

• S andT are different types.16

• EitherS or T is the class or struct type in which the operator declaration takes place.17

• NeitherS norT is object or aninterface-type.18

• T is not a base class of S, andS is not a base class of T.19

From the second rule it follows that a conversion operator must convert either to or from the class or struct20

type in which the operator is declared. [Example: For example, it is possible for a class or struct typeC to21

define a conversion fromC to int and fromint to C, but not fromint to bool. end example]22

It is not possible to redefine a pre-defined conversion.Thus, conversion operators are not allowed to convert23

from or toobject because implicit and explicit conversions already exist betweenobject and all other24

types. Likewise, neither the source nor the target types of a conversion can be a base type of the other, since25

a conversion would then already exist.26

User-defined conversions are not allowed to convert from or tointerface-types. In particular, this restriction27

ensures that no user-defined transformations occur when converting to aninterface-type, and that a28

conversion to aninterface-type succeeds only if the object being converted actually implements the specified29

interface-type.30

The signature of a conversion operator consists of the source type and the target type. (Note that this is the31

only form of member for which the return type participates in the signature.) Theimplicit or explicit32

classification of a conversion operator is not part of the operator’s signature. Thus, a class or struct cannot33

declare both animplicit and anexplicit conversion operator with the same source and target types.34

[Note: In general, user-defined implicit conversions should be designed to never throw exceptions and never35

lose information. If a user-defined conversion can give rise to exceptions (for example, because the source36

argument is out of range) or loss of information (such asdiscarding high-order bits), then that conversion37

should be defined as an explicit conversion.end note]38

[Example: In the example39

using System; 40
public struct Digit 41
{ 42
 byte value; 43

Chapter 17 Classes

261

 public Digit(byte value) { 1
 if (value < 0 || value > 9) throw new ArgumentException(); 2
 this.value = value; 3
 } 4

 public static implicit operator byte(Digit d) { 5
 return d.value; 6
 } 7

 public static explicit operator Digit(byte b) { 8
 return new Digit(b); 9
 } 10
} 11

the conversion fromDigit to byte is implicit because it never throws exceptions or loses information, but12

the conversion frombyte to Digit is explicit sinceDigit can only represent a subset of the possible13

values of abyte. end example]14

17.10 Instance constructors15

An instance constructor is a member that implements the actions required to initialize an instance of a class.16

Instance constructors are declared usingconstructor-declarations:17

constructor-declaration:18

attributesopt constructor-modifiersopt constructor-declarator constructor-body19

constructor-modifiers:20

constructor-modifier21

constructor-modifiers constructor-modifier22

constructor-modifier:23

public24

protected 25

internal26

private 27

extern28

constructor-declarator:29

identifier (formal-parameter-listopt) constructor-initializeropt30

constructor-initializer:31

: base (argument-listopt) 32

: this (argument-listopt) 33

constructor-body:34

block35

; 36

A constructor-declaration may include a set ofattributes (§24), a valid combination of the four access37

modifiers (§17.2.3), and anextern (§17.5.7) modifier. A constructor declaration is not permitted to include38

the same modifier multiple times.39

Theidentifier of a constructor-declarator must name the class in which the instance constructor is declared.40

If any other name is specified, a compile-time error occurs.41

The optionalformal-parameter-list of an instance constructor is subject to the same rules as theformal-42

parameter-list of a method (§17.5). The formal parameter list defines the signature (§10.6) of an instance43

constructor and governs the process whereby overload resolution (§14.4.2) selects a particular instance44

constructor in an invocation.45

Each of the types referenced in theformal-parameter-list of an instance constructor must be at least as46

accessible as the constructor itself (§10.5.4).47

The optionalconstructor-initializer specifies another instance constructor to invoke before executing the48

statements given in theconstructor-body of this instance constructor. This is described further in §17.10.1.49

C# LANGUAGE SPECIFICATION

262

When a constructor declaration includes anextern modifier, the constructor is said to be anexternal1

constructor.2

Because an external constructor declaration provides no actual implementation, itsconstructor-body consists3

of a semicolon. For all other constructors, theconstructor-body consists of ablock, which specifies the4

statements to initialize a new instance of the class. This corresponds exactly to theblock of an instance5

method with avoid return type (§17.5.8).6

Instance constructors are not inherited. Thus, a class has no instance constructors other than those actually7

declared in the class. If a class contains no instance constructor declarations, a default instance constructor is8

automatically provided (§17.10.4).9

Instance constructors are invoked byobject-creation-expressions (§14.5.10.1) and throughconstructor-10

initializers.11

17.10.1 Constructor initializers12

All instance constructors (except those for classobject) implicitly include an invocation of another13

instance constructor immediately before theconstructor-body. The constructor to implicitly invoke is14

determined by theconstructor-initializer:15

• An instance constructor initializer of the formbase(argument-listopt) causes an instance constructor16

from the direct base class to be invoked. That constructor is selected usingargument-list and the overload17

resolution rules of §14.4.2. The set of candidate instanceconstructors consists of all accessible instance18

constructors declared in the direct base class. If thisset is empty, or if a single best instance constructor19

cannot be identified, a compile-time error occurs.20

• An instance constructor initializer of the formthis(argument-listopt) causes an instance constructor21

from the class itself to be invoked. The constructor is selected usingargument-list and the overload22

resolution rules of §14.4.2. The set of candidate instanceconstructors consists of all accessible instance23

constructors declared in the class itself. If that set is empty, or if a single best instance constructor cannot be24

identified, a compile-time error occurs. If an instance constructor declaration includes a constructor25

initializer that invokes the constructor itself, a compile-time error occurs.26

If an instance constructor has no constructor initializer, a constructor initializer of the formbase() is27

implicitly provided. [Note: Thus, an instance constructor declaration of the form28

C(�) {�} 29

is exactly equivalent to30

C(�): base() {�} 31

end note]32

The scope of the parameters given by theformal-parameter-list of an instance constructor declaration33

includes the constructor initializer of that declaration. Thus, a constructor initializer is permitted to access34

the parameters of the constructor. [Example: For example:35

class A 36
{ 37
 public A(int x, int y) {} 38
} 39

class B: A 40
{ 41
 public B(int x, int y): base(x + y, x - y) {} 42
} 43

end example]44

An instance constructor initializer cannot access the instance being created. Therefore it is a compile-time45

error to referencethis in an argument expression of the constructor initializer, as it is a compile-time error46

for an argument expression to reference any instance member through asimple-name.47

Chapter 17 Classes

263

17.10.2 Instance variable initializers1

When an instance constructor has no constructor initializer, or it has a constructor initializer of the form2

base(�), that constructor implicitly performs the initializations specified by thevariable-initializers of the3

instance fields declared in its class. This corresponds to a sequence of assignments that are executed4

immediately upon entry to the constructor and before the implicit invocation of the direct base class5

constructor. The variable initializers are executed in the textual order in which they appear in the class6

declaration.7

17.10.3 Constructor execution8

Variable initializers are transformed into assignment statements, and these assignment statements are9

executedbefore the invocation of the base class instance constructor. This ordering ensures that all instance10

fields are initialized by their variable initializers beforeany statements that have access to that instance are11

executed. [Example: For example:12

using System; 13
class A 14
{ 15
 public A() { 16
 PrintFields(); 17
 } 18

 public virtual void PrintFields() {} 19
} 20

class B: A 21
{ 22
 int x = 1; 23
 int y; 24

 public B() { 25
 y = -1; 26
 } 27

 public override void PrintFields() { 28
 Console.WriteLine("x = {0}, y = {1}", x, y); 29
 } 30
} 31

Whennew B() is used to create an instance of B, the following output is produced:32

x = 1, y = 0 33

The value ofx is 1 because the variable initializer is executed before the base class instance constructor is34

invoked. However, the value ofy is 0 (the default value of anint) because the assignment toy is not35

executed until after the base class constructor returns.36

It is useful to think of instance variable initializers and constructor initializers as statements that are37

automatically inserted before theconstructor-body. [Example: The example38

using System; 39
using System.Collections; 40

class A 41
{ 42
 int x = 1, y = -1, count; 43

 public A() { 44
 count = 0; 45
 } 46

 public A(int n) { 47
 count = n; 48
 } 49
} 50

C# LANGUAGE SPECIFICATION

264

class B: A 1
{ 2
 double sqrt2 = Math.Sqrt(2.0); 3
 ArrayList items = new ArrayList(100); 4
 int max; 5

 public B(): this(100) { 6
 items.Add("default"); 7
 } 8

 public B(int n): base(n � 1) { 9
 max = n; 10
 } 11
} 12

contains several variable initializers; it also contains constructor initializers of both forms (base andthis).13

The example corresponds to the code shown below, whereeach comment indicates an automatically inserted14

statement (the syntax used for the automatically inserted constructor invocations isn’t valid, but merely15

serves to illustrate the mechanism).16

using System.Collections; 17

class A 18
{ 19
 int x, y, count; 20

 public A() { 21
 x = 1; // Variable initializer 22
 y = -1; // Variable initializer 23
 object(); // Invoke object() constructor 24
 count = 0; 25
 } 26

 public A(int n) { 27
 x = 1; // Variable initializer 28
 y = -1; // Variable initializer 29
 object(); // Invoke object() constructor 30
 count = n; 31
 } 32
} 33

class B: A 34
{ 35
 double sqrt2; 36
 ArrayList items; 37
 int max; 38

 public B(): this(100) { 39
 B(100); // Invoke B(int) constructor 40
 items.Add("default"); 41
 } 42

 public B(int n): base(n � 1) { 43
 sqrt2 = Math.Sqrt(2.0); // Variable initializer 44
 items = new ArrayList(100); // Variable initializer 45
 A(n � 1); // Invoke A(int) constructor 46
 max = n; 47
 } 48
} 49

end example]50

17.10.4 Default constructors51

If a class contains no instance constructor declarations, a default instance constructor is automatically52

provided. That default constructor simply invokes the parameterless constructor of the direct base class. If53

the direct base class does not have an accessible parameterless instance constructor, a compile-time error54

occurs. If the class is abstract then the declared accessibility for the default constructor is protected.55

Otherwise, the declared accessibility for the default constructor is public. [Note: Thus, the default56

constructor is always of the form57

Chapter 17 Classes

265

protected C(): base() {} 1

or2

public C(): base() {} 3

whereC is the name of the class.end note]4

[Example: In the example5

class Message 6
{ 7
 object sender; 8
 string text; 9
} 10

a default constructor is provided because the class contains no instance constructor declarations. Thus, the11

example is precisely equivalent to12

class Message 13
{ 14
 object sender; 15
 string text; 16

 public Message(): base() {} 17
} 18

end example]19

17.10.5 Private constructors20

When a class declares only private instance constructors, it is not possible for other classes to derive from21

that class or to create instances of that class (an exception being classes nested within that class). [Example:22

Private instance constructors are commonly used in classes that contain only static members. For example:23

public class Trig 24
{ 25
 private Trig() {} // Prevent instantiation 26

 public const double PI = 3.14159265358979323846; 27

 public static double Sin(double x) {�} 28
 public static double Cos(double x) {�} 29
 public static double Tan(double x) {�} 30
} 31

TheTrig class groups related methods and constants, but is not intended to be instantiated. Therefore, it32

declares a single empty private instance constructor.end example] At least one instance constructor must be33

declared to suppress the automatic generation of a default constructor.34

17.10.6 Optional instance constructor parameters35

[Note: Thethis(�) form of constructor initializer is commonly used in conjunction with overloading to36

implement optional instance constructor parameters. In the example37

class Text 38
{ 39
 public Text(): this(0, 0, null) {} 40
 public Text(int x, int y): this(x, y, null) {} 41
 public Text(int x, int y, string s) { 42
 // Actual constructor implementation 43
 } 44
} 45

the first two instance constructorsmerely provide the default values for the missing arguments. Both use a46

this(�) constructor initializer to invoke the third instance constructor, which actually does the work of47

initializing the new instance. The effect is that of optional constructor parameters:48

Text t1 = new Text(); // Same as Text(0, 0, null) 49
Text t2 = new Text(5, 10); // Same as Text(5, 10, null) 50
Text t3 = new Text(5, 20, "Hello"); 51

C# LANGUAGE SPECIFICATION

266

end note]1

17.11 Static constructors2

A static constructor is a member that implements the actionsrequired to initialize a class. Static3

constructors are declared usingstatic-constructor-declarations:4

static-constructor-declaration:5

attributesopt static-constructor-modifiers identifier () static-constructor-body6

static-constructor-modifiers:7

externopt static8

static externopt9

static-constructor-body:10

block11

;12

A static-constructor-declaration may include a set ofattributes (§24) and anextern modifier (§17.5.7).13

Theidentifier of a static-constructor-declaration must name the class in which the static constructor is14

declared. If any other name is specified, a compile-time error occurs.15

When a static constructor declaration includes anextern modifier, the static constructor is said to be an16

external static constructor. Because an external static constructor declaration provides no actual17

implementation, itsstatic-constructor-body consists of a semicolon. For all other static constructor18

declarations, thestatic-constructor-body consists of ablock, which specifies the statements to execute in19

order to initialize the class. This corresponds exactly to themethod-body of a static method with avoid20

return type (§17.5.8).21

Static constructors are not inherited, and cannot be called directly.22

The static constructor for a class executes at mostonce in a given application domain. The execution of a23

static constructor is triggered by the first of the following events to occur within an application domain:24

• An instance of the class is created.25

• Any of the static members of the class are referenced.26

If a class contains theMain method (§10.1) in which execution begins, the static constructor for that class27

executes before theMain method is called. If a class contains any static fields with initializers, those28

initializers are executed in textual order immediately prior to executing the static constructor.29

[Example: The example30

using System; 31
class Test 32
{ 33
 static void Main() { 34
 A.F(); 35
 B.F(); 36
 } 37
} 38

class A 39
{ 40
 static A() { 41
 Console.WriteLine("Init A"); 42
 } 43
 public static void F() { 44
 Console.WriteLine("A.F"); 45
 } 46
} 47

Chapter 17 Classes

267

class B 1
{ 2
 static B() { 3
 Console.WriteLine("Init B"); 4
 } 5
 public static void F() { 6
 Console.WriteLine("B.F"); 7
 } 8
} 9

must produce the output:10

Init A 11
A.F 12
Init B 13
B.F 14

because the execution ofA's static constructor is triggered by the call toA.F, and the execution ofB's static15

constructor is triggered by the call toB.F. end example]16

It is possible to construct circular dependencies that allow static fields with variable initializers to be17

observed in their default value state.18

[Example: The example19

using System; 20
class A 21
{ 22
 public static int X; 23
 static A() { X = B.Y + 1;} 24
} 25

class B 26
{ 27
 public static int Y = A.X + 1; 28
 static B() {} 29
 static void Main() { 30
 Console.WriteLine("X = {0}, Y = {1}", A.X, B.Y); 31
 } 32
} 33

produces the output34

X = 1, Y = 2 35

To execute theMain method, the system first runs the initializer forB.Y, prior to classB's static constructor.36

Y's initializer causesA's static constructor to be run because the value ofA.X is referenced. The static37

constructor ofA in turn proceeds to compute the value ofX, and in doing so fetches the default value ofY,38

which is zero.A.X is thus initialized to 1. The process of runningA's static field initializers and static39

constructor then completes, returning to the calculation of the initial value ofY, the result of which40

becomes 2.end example]41

17.12 Destructors42

A destructor is a member that implements the actions required to destruct an instance of a class. A43

destructor is declared using adestructor-declaration:44

destructor-declaration:45

attributesopt externopt ~ identifier () destructor-body46

destructor-body:47

block48

;49

A destructor-declaration may include a set ofattributes (§24).50

Theidentifier of a destructor-declarator must name the class in which the destructor is declared. If any other51

name is specified, a compile-time error occurs.52

C# LANGUAGE SPECIFICATION

268

When a destructor declaration includes anextern modifier, the destructor is said to be anexternal1

destructor. Because an external destructor declaration provides no actual implementation, itsdestructor-2

body consists of a semicolon. For all other destructors, thedestructor-body consists of ablock, which3

specifies the statements to execute in order to destruct an instance of the class. Adestructor-body4

corresponds exactly to themethod-body of an instance method with avoid return type (§17.5.8).5

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in6

that class.7

[Note: Since a destructor is required to have no parameters, it cannot be overloaded, so a class can have, at8

most, one destructor.end note]9

Destructors are invoked automatically, and cannot beinvoked explicitly. An instance becomes eligible for10

destruction when it is no longer possible for any code to use that instance. Execution of the destructor for the11

instance may occur at any time after the instance becomes eligible for destruction. When an instance is12

destructed, the destructors in that instance’s inheritance chain are called, in order, from most derived to least13

derived [Example: The output of the example14

using System; 15
class A 16
{ 17
 ~A() { 18
 Console.WriteLine("A's destructor"); 19
 } 20
} 21

class B: A 22
{ 23
 ~B() { 24
 Console.WriteLine("B's destructor"); 25
 } 26
} 27

class Test 28
{ 29
 static void Main() { 30
 B b = new B(); 31
 b = null; 32
 GC.Collect(); 33
 GC.WaitForPendingFinalizers(); 34
 } 35
} 36

is37

B�s destructor 38
A�s destructor 39

since destructors in an inheritance chain are called in order, from most derived to least derived.end example]40

Destructors may be implemented by overriding the virtual methodFinalize onSystem.Object. In any41

event, C# programs are not permitted to override this method or call it (or overrides of it) directly.42

[Example: For instance, the program43

class A 44
{ 45
 override protected void Finalize() {} // error 46
 public void F() { 47
 this.Finalize(); // error 48
 } 49
} 50

contains two errors.end example]51

The compiler behaves as if this method, and overrides of it, does not exist at all. [Example: Thus, this52

program:53

Chapter 17 Classes

269

class A 1
{ 2
 void Finalize() {} // permitted 3
} 4

is valid and the method shown hidesSystem.Object’s Finalize method.end example]5

For a discussion of the behavior when an exception is thrown from a destructor, see §23.3.6

Chapter 18 Structs

271

18. Structs1

Structs are similar to classes in that they represent data structures that can contain data members and2

function members. However, unlike classes, structs are value types and do not require heap allocation. A3

variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a4

reference to the data, the latter known as an object.5

[Note: Structs are particularly useful for small data structures that have value semantics. Complex numbers,6

points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to7

these data structures is that they have few data members, that they do not require use of inheritance or8

referential identity, and that they can be conveniently implemented using value semantics where assignment9

copies the value instead of the reference.end note]10

As described in §11.1.3, the simple types provided by C#, such asint, double, andbool, are, in fact, all11

struct types. Just as these predefined types are structs, it is also possible to use structs and operator12

overloading to implement new “primitive” types in the C# language. Two examples of such types are given13

at the end of this chapter (§18.4).14

18.1 Struct declarations15

A struct-declaration is atype-declaration (§16.5) that declares a new struct:16

struct-declaration:17

attributesopt struct-modifiersopt struct identifier struct-interfacesopt struct-body ;opt18

A struct-declaration consists of an optional set ofattributes (§24), followed by an optional set ofstruct-19

modifiers (§18.1.1), followed by the keywordstruct and anidentifier that names the struct, followed by an20

optionalstruct-interfaces specification (§18.1.2), followed by astruct-body (§18.1.3), optionally followed21

by a semicolon.22

18.1.1 Struct modifiers23

A struct-declaration may optionally include a sequence of struct modifiers:24

struct-modifiers:25

struct-modifier26

struct-modifiers struct-modifier27

struct-modifier:28

new29

public 30

protected 31

internal32

private33

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.34

The modifiers of a struct declaration have the samemeaning as those of a class declaration (§17.1.1).35

18.1.2 Struct interfaces36

A struct declaration may include astruct-interfaces specification, in which case the struct is said to37

implement the given interface types.38

struct-interfaces:39

: interface-type-list40

C# LANGUAGE SPECIFICATION

272

Interface implementations are discussed further in §20.4.1

18.1.3 Struct body2

Thestruct-body of a struct defines the members of the struct.3

struct-body:4

{ struct-member-declarationsopt }5

18.2 Struct members6

The members of a struct consist of the members introduced by itsstruct-member-declarations and the7

members inherited from the typeSystem.ValueType.8

struct-member-declarations:9

struct-member-declaration10

struct-member-declarations struct-member-declaration11

struct-member-declaration:12

constant-declaration13

field-declaration14

method-declaration15

property-declaration16

event-declaration17

indexer-declaration18

operator-declaration19

constructor-declaration20

static-constructor-declaration21

type-declaration22

Except for the differences noted in §18.3, the descriptions of class members provided in §17.2 through23

§17.11 apply to struct members as well.24

18.3 Class and struct differences25

18.3.1 Value semantics26

Structs are value types (§11.1) and are said to have valuesemantics. Classes, on the other hand, are reference27

types (§11.2) and are said tohave reference semantics.28

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains29

a reference to the data, the latter known as an object.30

With classes, it is possible for two variables to reference the same object, and thus possible for operations on31

one variable to affect the object referenced by the othervariable. With structs, the variables each have their32

own copy of the data, and it is not possible for operations on one to affect the other. Furthermore, because33

structs are not reference types, it is not possible for values of a struct type to benull.34

[Example: Given the declaration35

struct Point 36
{ 37
 public int x, y; 38

 public Point(int x, int y) { 39
 this.x = x; 40
 this.y = y; 41
 } 42
} 43

the code fragment44

Chapter 18 Structs

273

Point a = new Point(10, 10); 1
Point b = a; 2
a.x = 100; 3
System.Console.WriteLine(b.x); 4

outputs the value10. The assignment ofa to b creates a copy of the value, andb is thus unaffected by the5

assignment toa.x. HadPoint instead been declared as a class, the output would be100 becausea andb6

would reference the same object.end example]7

18.3.2 Inheritance8

All struct types implicitly inherit fromSystem.ValueType, which, in turn, inherits from classobject. A9

struct declaration may specify a list of implemented interfaces, but it is not possible for a struct declaration10

to specify a base class.11

Struct types are never abstract and are always implicitly sealed. Theabstract andsealed modifiers are12

therefore not permitted in a struct declaration.13

Since inheritance isn’t supported for structs, thedeclared accessibility of a struct member cannot be14

protected or protected internal.15

Function members in a struct cannot beabstract or virtual, and theoverride modifier is allowed16

only to override methods inherited from the typeSystem.ValueType.17

18.3.3 Assignment18

Assignment to a variable of a struct type creates acopy of the value being assigned. This differs from19

assignment to a variable of a class type, which copies the reference but not the object identified by the20

reference.21

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function22

member, a copy of the struct is created. A struct may be passed by reference to a function member using a23

ref or out parameter.24

When a property or indexer of a struct is the target of an assignment, the instance expression associated with25

the property or indexer access must be classified as a variable. If the instance expression is classified as a26

value, a compile-time error occurs. This is described in further detail in §14.13.1.27

18.3.4 Default values28

As described in §12.2, several kinds of variables areautomatically initialized to their default value when29

they are created. For variables of class types and other reference types, this default value isnull. However,30

since structs are value types that cannot benull, the default value of a struct is the value produced by31

setting all value type fields to their default value and all reference type fields tonull.32

[Example: Referring to thePoint struct declared above, the example33

Point[] a = new Point[100]; 34

initializes eachPoint in the array to the value produced by setting thex andy fields to zero.end example]35

The default value of a struct corresponds to the valuereturned by the default constructor of the struct36

(§11.1.1). Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead,37

every struct implicitly has a parameterless instance constructor, which always returns the value that results38

from setting all value type fields to their default value and all reference type fields tonull.39

[Note: Structs should be designed to consider the default initialization state a valid state. In the example40

using System; 41
struct KeyValuePair 42
{ 43
 string key; 44
 string value; 45

C# LANGUAGE SPECIFICATION

274

 public KeyValuePair(string key, string value) { 1
 if (key == null || value == null) throw new ArgumentException(); 2
 this.key = key; 3
 this.value = value; 4
 } 5
} 6

the user-defined instance constructor protects against null values only where it is explicitly called. In cases7

where aKeyValuePair variable is subject to default value initialization, thekey andvalue fields will be8

null, and the struct must be prepared to handle this state.end note]9

18.3.5 Boxing and unboxing10

A value of a class type can be converted to typeobject or to an interface type that is implemented by the11

class simply by treating the reference as another type at compile-time. Likewise, a value of typeobject or12

a value of an interface type can be converted back to a class type without changing the reference (but of13

course a run-time type check is required in this case).14

Since structs are not reference types, these operations are implemented differently for struct types. When a15

value of a struct type is converted to typeobject or to an interface type that is implemented by the struct, a16

boxing operation takes place. Likewise, when a value of typeobject or a value of an interface type is17

converted back to a struct type, an unboxing operation takes place. A key difference from the same18

operations on class types is that boxing and unboxingcopies the struct value either into or out of the boxed19

instance. [Note: Thus, following a boxing or unboxing operation, changes made to the unboxed struct are not20

reflected in the boxed struct.end note]21

For further details on boxing and unboxing, see §11.3.22

18.3.6 Meaning of this23

Within an instance constructor or instance function member of a class,this is classified as a value. Thus,24

while this can be used to refer to the instance for which the function member was invoked, it is not25

possible to assign tothis in a function member of a class.26

Within an instance constructor of a struct,this corresponds to anout parameter of the struct type, and27

within an instance function member of a struct,this corresponds to aref parameter of the struct type. In28

both cases,this is classified as a variable, and it is possible to modify the entire struct for which the29

function member was invoked by assigning tothis or by passingthis as aref or out parameter.30

18.3.7 Field initializers31

As described in §18.3.4, the default value of a struct consists of the value that results from setting all value32

type fields to their default value and all reference type fields tonull. For this reason, a struct does not33

permit instance field declarations to include variable initializers. [Example: As such, the following example34

results in one or more compile-time errors:35

struct Point 36
{ 37
 public int x = 1; // Error, initializer not permitted 38
 public int y = 1; // Error, initializer not permitted 39
} 40

end example]41

This restriction applies only to instance fields. Static fields of a struct are permitted to include variable42

initializers.43

18.3.8 Constructors44

Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct45

implicitly has a parameterless instance constructor, which always returns the value that results from setting46

all value type fields to their default value and all reference type fields tonull (§11.1.1). A struct can declare47

instance constructors having parameters. [Example: For example48

Chapter 18 Structs

275

struct Point 1
{ 2
 int x, y; 3

 public Point(int x, int y) { 4
 this.x = x; 5
 this.y = y; 6
 } 7
} 8

Given the above declaration, the statements9

Point p1 = new Point(); 10
Point p2 = new Point(0, 0); 11

both create aPoint with x andy initialized to zero.end example]12

A struct instance constructor is not permitted to include a constructor initializer of the formbase(�).13

Thethis variable of a struct instance constructor corresponds to anout parameter of the struct type, and14

similar to anout parameter,this must be definitely assigned (§12.3) at every location where the15

constructor returns. [Example: Consider the instance constructor implementation below:16

struct Point 17
{ 18
 int x, y; 19

 public int X { 20
 set { x = value; } 21
 } 22

 public int Y { 23
 set { y = value; } 24
 } 25

 public Point(int x, int y) { 26
 X = x; // error, this is not yet definitely assigned 27
 Y = y; // error, this is not yet definitely assigned 28
 } 29
} 30

No instance member function (including the set accessors for the propertiesX andY) can be called until all31

fields of the struct being constructed have beendefinitely assigned. Note, however, that ifPoint were a32

class instead of a struct, the instance constructor implementation would be permitted.33

end example]34

18.3.9 Destructors35

A struct is not permitted to declare a destructor.36

18.4 Struct examples37

This whole clause is informative.38

18.4.1 Database integer type39

TheDBInt struct below implements an integer type that can represent the complete set of values of theint40

type, plus an additional state that indicates an unknown value. A type with these characteristics is commonly41

used in databases.42

using System; 43
public struct DBInt 44
{ 45
 // The Null member represents an unknown DBInt value. 46

 public static readonly DBInt Null = new DBInt(); 47

C# LANGUAGE SPECIFICATION

276

 // When the defined field is true, this DBInt represents a known value 1
 // which is stored in the value field. When the defined field is 2
false, 3
 // this DBInt represents an unknown value, and the value field is 0. 4

 int value; 5
 bool defined; 6

 // Private instance constructor. Creates a DBInt with a known value. 7

 DBInt(int value) { 8
 this.value = value; 9
 this.defined = true; 10
 } 11

 // The IsNull property is true if this DBInt represents an unknown 12
value. 13

 public bool IsNull { get { return !defined; } } 14

 // The Value property is the known value of this DBInt, or 0 if this 15
 // DBInt represents an unknown value. 16

 public int Value { get { return value; } } 17

 // Implicit conversion from int to DBInt. 18

 public static implicit operator DBInt(int x) { 19
 return new DBInt(x); 20
 } 21

 // Explicit conversion from DBInt to int. Throws an exception if the 22
 // given DBInt represents an unknown value. 23

 public static explicit operator int(DBInt x) { 24
 if (!x.defined) throw new InvalidOperationException(); 25
 return x.value; 26
 } 27

 public static DBInt operator +(DBInt x) { 28
 return x; 29
 } 30

 public static DBInt operator -(DBInt x) { 31
 return x.defined? -x.value: Null; 32
 } 33

 public static DBInt operator +(DBInt x, DBInt y) { 34
 return x.defined && y.defined? x.value + y.value: Null; 35
 } 36

 public static DBInt operator -(DBInt x, DBInt y) { 37
 return x.defined && y.defined? x.value - y.value: Null; 38
 } 39

 public static DBInt operator *(DBInt x, DBInt y) { 40
 return x.defined && y.defined? x.value * y.value: Null; 41
 } 42

 public static DBInt operator /(DBInt x, DBInt y) { 43
 return x.defined && y.defined? x.value / y.value: Null; 44
 } 45

 public static DBInt operator %(DBInt x, DBInt y) { 46
 return x.defined && y.defined? x.value % y.value: Null; 47
 } 48

 public static DBBool operator ==(DBInt x, DBInt y) { 49
 return x.defined && y.defined? x.value == y.value: DBBool.Null; 50
 } 51

 public static DBBool operator !=(DBInt x, DBInt y) { 52
 return x.defined && y.defined? x.value != y.value: DBBool.Null; 53
 } 54

 public static DBBool operator >(DBInt x, DBInt y) { 55
 return x.defined && y.defined? x.value > y.value: DBBool.Null; 56
 } 57

Chapter 18 Structs

277

 public static DBBool operator <(DBInt x, DBInt y) { 1
 return x.defined && y.defined? x.value < y.value: DBBool.Null; 2
 } 3

 public static DBBool operator >=(DBInt x, DBInt y) { 4
 return x.defined && y.defined? x.value >= y.value: DBBool.Null; 5
 } 6

 public static DBBool operator <=(DBInt x, DBInt y) { 7
 return x.defined && y.defined? x.value <= y.value: DBBool.Null; 8
 } 9
} 10

18.4.2 Database boolean type11

TheDBBool struct below implements a three-valued logical type. The possible values of this type are12

DBBool.True, DBBool.False, andDBBool.Null, where theNull member indicates an unknown value.13

Such three-valued logical types are commonly used in databases.14

using System; 15
public struct DBBool 16
{ 17
 // The three possible DBBool values. 18

 public static readonly DBBool Null = new DBBool(0); 19
 public static readonly DBBool False = new DBBool(-1); 20
 public static readonly DBBool True = new DBBool(1); 21

 // Private field that stores �1, 0, 1 for False, Null, True. 22

 sbyte value; 23

 // Private instance constructor. The value parameter must be �1, 0, or 24
1. 25

 DBBool(int value) { 26
 this.value = (sbyte)value; 27
 } 28

 // Properties to examine the value of a DBBool. Return true if this 29
 // DBBool has the given value, false otherwise. 30

 public bool IsNull { get { return value == 0; } } 31

 public bool IsFalse { get { return value < 0; } } 32

 public bool IsTrue { get { return value > 0; } } 33

 // Implicit conversion from bool to DBBool. Maps true to DBBool.True 34
and 35
 // false to DBBool.False. 36

 public static implicit operator DBBool(bool x) { 37
 return x? True: False; 38
 } 39

 // Explicit conversion from DBBool to bool. Throws an exception if the 40
 // given DBBool is Null, otherwise returns true or false. 41

 public static explicit operator bool(DBBool x) { 42
 if (x.value == 0) throw new InvalidOperationException(); 43
 return x.value > 0; 44
 } 45

 // Equality operator. Returns Null if either operand is Null, 46
otherwise 47
 // returns True or False. 48

 public static DBBool operator ==(DBBool x, DBBool y) { 49
 if (x.value == 0 || y.value == 0) return Null; 50
 return x.value == y.value? True: False; 51
 } 52

 // Inequality operator. Returns Null if either operand is Null, 53
otherwise 54
 // returns True or False. 55

C# LANGUAGE SPECIFICATION

278

 public static DBBool operator !=(DBBool x, DBBool y) { 1
 if (x.value == 0 || y.value == 0) return Null; 2
 return x.value != y.value? True: False; 3
 } 4

 // Logical negation operator. Returns True if the operand is False, 5
Null 6
 // if the operand is Null, or False if the operand is True. 7

 public static DBBool operator !(DBBool x) { 8
 return new DBBool(-x.value); 9
 } 10

 // Logical AND operator. Returns False if either operand is False, 11
 // otherwise Null if either operand is Null, otherwise True. 12

 public static DBBool operator &(DBBool x, DBBool y) { 13
 return new DBBool(x.value < y.value? x.value: y.value); 14
 } 15

 // Logical OR operator. Returns True if either operand is True, 16
otherwise 17
 // Null if either operand is Null, otherwise False. 18

 public static DBBool operator |(DBBool x, DBBool y) { 19
 return new DBBool(x.value > y.value? x.value: y.value); 20
 } 21

 // Definitely true operator. Returns true if the operand is True, 22
false 23
 // otherwise. 24

 public static bool operator true(DBBool x) { 25
 return x.value > 0; 26
 } 27

 // Definitely false operator. Returns true if the operand is False, 28
false 29
 // otherwise. 30

 public static bool operator false(DBBool x) { 31
 return x.value < 0; 32
 } 33
} 34

End of informative text.35

Chapter 19 Arrays

279

19. Arrays1

An array is a data structure that contains a number of variables which are accessed through computed2

indices. The variables contained in an array, also called theelements of the array, are all of the same type,3

and this type is called theelement type of the array.4

An array has a rank which determines the number of indices associated with each array element. The rank of5

an array is also referred to as the dimensions of the array. An array with a rank of one is called asingle-6

dimensional array. An array with a rank greater than one is called amulti-dimensional array. Specific sized7

multi-dimensional arrays are often referred to as two-dimensional arrays, three-dimensional arrays, and so8

on. Each dimension of an array has an associated length which is an integral number greater than or equal to9

zero. The dimension lengths are not part of the type of the array, but rather are established when an instance10

of the array type is created at run-time. The length of a dimension determines the valid range of indices for11

that dimension: For a dimension of length N, indices can range from0 to N � 1 inclusive. The total number12

of elements in an array is the product of the lengths of each dimension in the array. If one or more of the13

dimensions of an array have a length of zero, the array is said to be empty.14

The element type of an array can be any type, including an array type.15

19.1 Array types16

An array type is written as anon-array-type followed by one or morerank-specifiers:17

array-type:18

non-array-type rank-specifiers19

non-array-type:20

type21

rank-specifiers:22

rank-specifier23

rank-specifiers rank-specifier24

rank-specifier:25

[dim-separatorsopt] 26

dim-separators:27

,28

dim-separators ,29

A non-array-type is anytype that is not itself anarray-type.30

The rank of an array type is given by the leftmostrank-specifier in thearray-type: A rank-specifier indicates31

that the array is an array with a rank of one plus the number of “,” tokens in therank-specifier.32

The element type of an array type is the type that results from deleting the leftmostrank-specifier:33

• An array type of the formT[R] is an array with rankR and a non-array element typeT.34

• An array type of the formT[R][R1]�[RN] is an array with rankR and an element typeT[R1]�[RN].35

In effect, therank-specifiers are read from left to rightbefore the final non-array element type. [Example:36

The typeint[][,,][,] is a single-dimensional array of three-dimensional arrays of two-dimensional37

arrays ofint. end example]38

At run-time, a value of an array type can benull or a reference to an instance of that array type.39

C# LANGUAGE SPECIFICATION

280

19.1.1 The System.Array type1

The typeSystem.Array is the abstract base type of all array types. An implicit reference conversion2

(§13.1.4) exists from any array type toSystem.Array, and an explicit reference conversion (§13.2.3) exists3

from System.Array to any array type. Note thatSystem.Array is not itself anarray-type. Rather, it is a4

class-type from which allarray-types are derived.5

At run-time, a value of typeSystem.Array can benull or a reference to an instance of any array type.6

19.2 Array creation7

Array instances are created byarray-creation-expressions (§14.5.10.2) or by field or local variable8

declarations that include anarray-initializer (§19.6).9

When an array instance is created, the rank and length of each dimension are established and then remain10

constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an11

existing array instance, nor is it possible to resize its dimensions.12

An array instance is always of an array type. TheSystem.Array type is an abstract type that cannot be13

instantiated.14

Elements of arrays created byarray-creation-expressions are always initialized to their default value15

(§12.2).16

19.3 Array element access17

Array elements are accessed usingelement-access expressions (§14.5.6.1) of the formA[I1, I2, �, IN],18

whereA is an expression of an array type and eachIX is an expression of typeint, uint, long, ulong, or19

of a type that can be implicitly converted to one or more of these types. The result of an array element access20

is a variable, namely the array element selected by the indices.21

The elements of an array can be enumerated using aforeach statement (§15.8.4).22

19.4 Array members23

Every array type inherits the members declared by theSystem.Array type.24

19.5 Array covariance25

For any tworeference-typesA andB, if an implicit reference conversion (§13.1.4) or explicit reference26

conversion (§13.2.3) exists fromA to B, then the same reference conversion also exists from the array type27

A[R] to the array typeB[R], whereR is any givenrank-specifier (but the same for both array types). This28

relationship is known asarray covariance. Array covariance, in particular, means that a value of an array29

typeA[R] may actually be a reference to an instance of an array typeB[R], provided an implicit reference30

conversion exists fromB to A.31

Because of array covariance, assignments to elements of reference type arrays include a run-time check32

which ensures that the value being assigned to the array element is actually of a permitted type (§14.13.1).33

[Example: For example:34

class Test 35
{ 36
 static void Fill(object[] array, int index, int count, object value) { 37
 for (int i = index; i < index + count; i++) array[i] = value; 38
 } 39

 static void Main() { 40
 string[] strings = new string[100]; 41
 Fill(strings, 0, 100, "Undefined"); 42
 Fill(strings, 0, 10, null); 43
 Fill(strings, 90, 10, 0); 44
 } 45
} 46

Chapter 19 Arrays

281

The assignment toarray[i] in theFill method implicitly includes a run-time check, which ensures that1

the object referenced byvalue is eithernull or an instance of a type that is compatible with the actual2

element type ofarray. In Main, the first two invocations ofFill succeed, but the third invocation causes a3

System.ArrayTypeMismatchException to be thrown upon executing the first assignment to4

array[i]. The exception occurs because a boxedint cannot be stored in astring array.end example]5

Array covariance specifically does not extend to arrays ofvalue-types. For example, no conversion exists6

that permits anint[] to be treated as anobject[].7

19.6 Array initializers8

Array initializers may be specified in field declarations (§17.4), local variable declarations (§15.5.1), and9

array creation expressions (§14.5.10.2):10

array-initializer:11

{ variable-initializer-listopt }12

{ variable-initializer-list , }13

variable-initializer-list:14

variable-initializer15

variable-initializer-list , variable-initializer16

variable-initializer:17

expression18

array-initializer19

An array initializer consists of a sequence of variable initializers, enclosed by “{”and “}” tokens and20

separated by “,” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional21

array, a nested array initializer.22

The context in which an array initializer is used determines the type of the array being initialized. In an array23

creation expression, the array type immediately precedes the initializer. In a field or variable declaration, the24

array type is the type of the field or variable being declared. When an array initializer is used in a field or25

variable declaration, [Example: such as:26

int[] a = {0, 2, 4, 6, 8}; 27

end example] it is simply shorthand for an equivalent array creation expression: [Example:28

int[] a = new int[] {0, 2, 4, 6, 8}; 29

end example]30

For a single-dimensional array, the array initializer must consist of a sequence of expressions that are31

assignment compatible with the element type of the array. The expressions initialize array elements in32

increasing order, starting with the element at index zero. The number of expressions in the array initializer33

determines the length of the array instance being created. [Example: For example, the array initializer above34

creates anint[] instance of length 5 and then initializes the instance with the following values:35

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8; 36

end example]37

For a multi-dimensional array, the array initializermust have as many levels of nesting as there are38

dimensions in the array. The outermost nesting level corresponds to the leftmost dimension and the39

innermost nesting level corresponds to the rightmost dimension. The length of each dimension of the array is40

determined by the number of elements at the corresponding nesting level in the array initializer. For each41

nested array initializer, the number of elements must be the same as the other array initializers at the same42

level. [Example: The example:43

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}; 44

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the45

rightmost dimension:46

C# LANGUAGE SPECIFICATION

282

int[,] b = new int[5, 2]; 1

and then initializes the array instance with the following values:2

b[0, 0] = 0; b[0, 1] = 1; 3
b[1, 0] = 2; b[1, 1] = 3; 4
b[2, 0] = 4; b[2, 1] = 5; 5
b[3, 0] = 6; b[3, 1] = 7; 6
b[4, 0] = 8; b[4, 1] = 9; 7

end example]8

When an array creation expression includes both explicit dimension lengths and an array initializer, the9

lengths must be constant expressions and the number of elements at each nesting level must match the10

corresponding dimension length. [Example: Here are some examples:11

int i = 3; 12
int[] x = new int[3] {0, 1, 2}; // OK 13
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant 14
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch 15

Here, the initializer fory results in a compile-time error because the dimension length expression is not a16

constant, and the initializer forz results in a compile-time error because the length and the number of17

elements in the initializer do not agree.end example]18

Chapter 20 Interfaces

283

20. Interfaces1

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An2

interface may inherit from multiple base interfaces, anda class or struct may implement multiple interfaces.3

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide4

implementations for the members that it defines. The interface merely specifies the members that must be5

supplied by classes or interfaces that implement the interface.6

20.1 Interface declarations7

An interface-declaration is atype-declaration (§16.5) that declares a new interface type.8

interface-declaration:9

attributesopt interface-modifiersopt interface identifier interface-baseopt interface-body10

;opt11

An interface-declaration consists of an optional set ofattributes (§24), followed by an optional set of12

interface-modifiers (§20.1.1), followed by the keywordinterface and anidentifier that names the13

interface, optionally followed by an optionalinterface-base specification (§20.1.2), followed by ainterface-14

body (§20.1.3), optionally followed by a semicolon.15

20.1.1 Interface modifiers16

An interface-declaration may optionally include a sequence of interface modifiers:17

interface-modifiers:18

interface-modifier19

interface-modifiers interface-modifier20

interface-modifier:21

new22

public 23

protected 24

internal25

private 26

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.27

Thenew modifier is only permitted on nested interfaces. It specifies that the interface hides an inherited28

member by the same name, as described in §17.2.2.29

Thepublic, protected, internal, andprivate modifiers control the accessibility of the interface.30

Depending on the context in which the interface declaration occurs, only some of these modifiers may be31

permitted (§10.5.1).32

20.1.2 Base interfaces33

An interface can inherit from zero or more interfaces, which are called theexplicit base interfaces of the34

interface. When an interface has one or more explicit baseinterfaces, then in the declaration of that interface,35

the interface identifier is followed by a colon and a comma-separated list of base interface identifiers.36

interface-base:37

: interface-type-list38

C# LANGUAGE SPECIFICATION

284

The explicit base interfaces of an interface must be at least as accessible as the interface itself (§10.5.4).1

[Note: For example, it is a compile-time error to specify aprivate or internal interface in theinterface-2

base of apublic interface.end note]3

It is a compile-time error for an interface to directly or indirectly inherit from itself.4

Thebase interfaces of an interface are the explicit base interfaces and their base interfaces. In other words,5

the set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base6

interfaces, and so on. An interface inherits all members of its base interfaces. [Example: In the example7

interface IControl 8
{ 9
 void Paint(); 10
} 11

interface ITextBox: IControl 12
{ 13
 void SetText(string text); 14
} 15

interface IListBox: IControl 16
{ 17
 void SetItems(string[] items); 18
} 19

interface IComboBox: ITextBox, IListBox {} 20

the base interfaces ofIComboBox areIControl, ITextBox, andIListBox. In other words, the21

IComboBox interface above inherits membersSetText andSetItems as well asPaint. end example]22

A class or struct that implements an interface also implicitly implements all of the interface’s base23

interfaces.24

20.1.3 Interface body25

Theinterface-body of an interface defines the members of the interface.26

interface-body:27

{ interface-member-declarationsopt }28

20.2 Interface members29

The members of an interface are the members inherited from the base interfaces and the members declared30

by the interface itself.31

interface-member-declarations:32

interface-member-declaration33

interface-member-declarations interface-member-declaration34

interface-member-declaration:35

interface-method-declaration36

interface-property-declaration37

interface-event-declaration38

interface-indexer-declaration39

An interface declaration may declare zero or more members. The members of an interface must be methods,40

properties, events, or indexers. An interface cannotcontain constants, fields, operators, instance41

constructors, destructors, or types, nor can an interface contain static members of any kind.42

All interface members implicitly have public access.It is a compile-time error for interface member43

declarations to include any modifiers. In particular, interface members cannot be declared with the modifiers44

abstract, public, protected, internal, private, virtual, override, or static.45

[Example: The example46

public delegate void StringListEvent(IStringList sender); 47

Chapter 20 Interfaces

285

public interface IStringList 1
{ 2
 void Add(string s); 3

 int Count { get; } 4

 event StringListEvent Changed; 5

 string this[int index] { get; set; } 6
} 7

declares an interface that contains one each of the possible kinds of members: A method, a property, an8

event, and an indexer.end example]9

An interface-declaration creates a new declaration space (§10.3), and theinterface-member-declarations10

immediately contained by theinterface-declaration introduce new members into this declaration space. The11

following rules apply tointerface-member-declarations:12

• The name of a method must differ from the names of all properties and events declared in the same13

interface. In addition, the signature (§10.6) of a method must differ from the signatures of all other methods14

declared in the same interface.15

• The name of a property or event must differ from thenames of all other members declared in the same16

interface.17

• The signature of an indexer must differ from the signatures of all other indexers declared in the same18

interface.19

The inherited members of an interface are specifically not part of the declaration space of the interface.20

Thus, an interface is allowed to declare a member withthe same name or signature as an inherited member.21

When this occurs, the derived interface member is said tohide the base interface member. Hiding an22

inherited member is not considered an error, but it does cause the compiler to issue a warning. To suppress23

the warning, the declaration of the derived interface member must include anew modifier to indicate that the24

derived member is intended to hide the base member. This topic is discussed further in §10.7.1.2.25

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to26

that effect. This warning is suppressed by removing thenew modifier.27

20.2.1 Interface methods28

Interface methods are declared usinginterface-method-declarations:29

interface-method-declaration:30

attributesopt newopt return-type identifier (formal-parameter-listopt) ;31

Theattributes, return-type, identifier, andformal-parameter-list of an interface method declaration have the32

same meaning as those of a method declaration in a class (§17.5). An interface method declaration is not33

permitted to specify a method body, and the declaration therefore always ends with a semicolon.34

20.2.2 Interface properties35

Interface properties are declared usinginterface-property-declarations:36

interface-property-declaration:37

attributesopt newopt type identifier { interface-accessors }38

interface-accessors:39

attributesopt get ; 40

attributesopt set ; 41

attributesopt get ; attributesopt set ;42

attributesopt set ; attributesopt get ; 43

Theattributes, type, andidentifier of an interface property declaration have the same meaning as those of a44

property declaration in a class (§17.6).45

C# LANGUAGE SPECIFICATION

286

The accessors of an interface property declaration correspond to the accessors of a class property declaration1

(§17.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate2

whether the property is read-write, read-only, or write-only.3

20.2.3 Interface events4

Interface events are declared usinginterface-event-declarations:5

interface-event-declaration:6

attributesopt newopt event type identifier ; 7

Theattributes, type, andidentifier of an interface event declaration have the same meaning as those of an8

event declaration in a class (§17.7).9

20.2.4 Interface indexers10

Interface indexers are declared usinginterface-indexer-declarations:11

interface-indexer-declaration:12

attributesopt newopt type this [formal-parameter-list] { interface-accessors } 13

Theattributes, type, andformal-parameter-list of an interface indexer declaration have the same meaning as14

those of an indexer declaration in a class (§17.8).15

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration16

(§17.8), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate17

whether the indexer is read-write, read-only, or write-only.18

20.2.5 Interface member access19

Interface members are accessed through member access (§14.5.4) and indexer access (§14.5.6.2) expressions20

of the formI.M andI[A], whereI is an instance of an interface type,M is a method, property, or event of21

that interface type, andA is an indexer argument list.22

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or23

one direct base interface), the effects of the memberlookup (§14.3), method invocation (§14.5.5.1), and24

indexer access (§14.5.6.2) rules are exactly the same as for classes and structs: More derived members hide25

less derived members with the same name or signature. However, for multiple-inheritance interfaces,26

ambiguities can occur when two or more unrelated base interfaces declare members with the same name or27

signature. This section shows several examples of suchsituations. In all cases, explicit casts can be used to28

resolve the ambiguities.29

[Example: In the example30

interface IList 31
{ 32
 int Count { get; set; } 33
} 34

interface ICounter 35
{ 36
 void Count(int i); 37
} 38

interface IListCounter: IList, ICounter {} 39

class C 40
{ 41
 void Test(IListCounter x) { 42
 x.Count(1); // Error 43
 x.Count = 1; // Error 44
 ((IList)x).Count = 1; // Ok, invokes IList.Count.set 45
 ((ICounter)x).Count(1); // Ok, invokes ICounter.Count 46
 } 47
} 48

Chapter 20 Interfaces

287

the first two statements cause compile-time errors because the member lookup (§14.3) ofCount in1

IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by castingx to the2

appropriate base interface type. Such casts have norun-time costs—they merely consist of viewing the3

instance as a less derived type at compile-time.end example]4

[Example: In the example5

interface IInteger 6
{ 7
 void Add(int i); 8
} 9

interface IDouble 10
{ 11
 void Add(double d); 12
} 13

interface INumber: IInteger, IDouble {} 14

class C 15
{ 16
 void Test(INumber n) { 17
 n.Add(1); // Error, both Add methods are applicable 18
 n.Add(1.0); // Ok, only IDouble.Add is applicable 19
 ((IInteger)n).Add(1); // Ok, only IInteger.Add is a candidate 20
 ((IDouble)n).Add(1); // Ok, only IDouble.Add is a candidate 21
 } 22
} 23

the invocationn.Add(1) is ambiguous because a method invocation (§14.5.5.1) requires all overloaded24

candidate methods to be declared in the same type. However, the invocationn.Add(1.0) is permitted25

because onlyIDouble.Add is applicable. When explicit casts are inserted, there is only one candidate26

method, and thus no ambiguity.end example]27

[Example: In the example28

interface IBase 29
{ 30
 void F(int i); 31
} 32

interface ILeft: IBase 33
{ 34
 new void F(int i); 35
} 36

interface IRight: IBase 37
{ 38
 void G(); 39
} 40

interface IDerived: ILeft, IRight {} 41

class A 42
{ 43
 void Test(IDerived d) { 44
 d.F(1); // Invokes ILeft.F 45
 ((IBase)d).F(1); // Invokes IBase.F 46
 ((ILeft)d).F(1); // Invokes ILeft.F 47
 ((IRight)d).F(1); // Invokes IBase.F 48
 } 49
} 50

theIBase.F member is hidden by theILeft.F member. The invocationd.F(1) thus selectsILeft.F,51

even thoughIBase.F appears to not be hidden in the access path that leads throughIRight.52

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any53

access path, it is hidden in all access paths. Because the access path fromIDerived to ILeft to IBase54

hidesIBase.F, the member is also hidden in the access path fromIDerived to IRight to IBase. end55

example]56

C# LANGUAGE SPECIFICATION

288

20.3 Fully qualified interface member names1

An interface member is sometimes referred to by itsfully qualified name. The fully qualified name of an2

interface member consists of the name of the interfacein which the member is declared, followed by a dot,3

followed by the name of the member. The fully qualified name of a member references the interface in4

which the member is declared. [Example: For example, given the declarations5

interface IControl 6
{ 7
 void Paint(); 8
} 9

interface ITextBox: IControl 10
{ 11
 void SetText(string text); 12
} 13

the fully qualified name ofPaint is IControl.Paint and the fully qualified name ofSetText is14

ITextBox.SetText. In the example above, it is not possible to refer toPaint asITextBox.Paint. end15

example]16

When an interface is part of a namespace, the fully qualified name of an interface member includes the17

namespace name. [Example: For example18

namespace System 19
{ 20
 public interface ICloneable 21
 { 22
 object Clone(); 23
 } 24
} 25

Here, the fully qualified name of theClone method isSystem.ICloneable.Clone. end example]26

20.4 Interface implementations27

Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an28

interface, the interface identifier is included in the base class list of the class or struct. [Example: For29

example:30

interface ICloneable 31
{ 32
 object Clone(); 33
} 34

interface IComparable 35
{ 36
 int CompareTo(object other); 37
} 38

class ListEntry: ICloneable, IComparable 39
{ 40
 public object Clone() {�} 41

 public int CompareTo(object other) {�} 42
} 43

end example]44

A class or struct that implements an interface also implicitly implements all of the interface’s base45

interfaces. This is true even if the class or struct doesn’t explicitly list all base interfaces in the base class46

list. [Example: For example:47

interface IControl 48
{ 49
 void Paint(); 50
} 51

Chapter 20 Interfaces

289

interface ITextBox: IControl 1
{ 2
 void SetText(string text); 3
} 4

class TextBox: ITextBox 5
{ 6
 public void Paint() {�} 7

 public void SetText(string text) {�} 8
} 9

Here, classTextBox implements bothIControl andITextBox. end example]10

20.4.1 Explicit interface member implementations11

For purposes of implementing interfaces, a class or struct may declareexplicit interface member12

implementations. An explicit interface member implementation is a method, property, event, or indexer13

declaration that references a fully qualified interface member name. [Example: For example14

interface ICloneable 15
{ 16
 object Clone(); 17
} 18

interface IComparable 19
{ 20
 int CompareTo(object other); 21
} 22

class ListEntry: ICloneable, IComparable 23
{ 24
 object ICloneable.Clone() {�} 25

 int IComparable.CompareTo(object other) {�} 26
} 27

Here,ICloneable.Clone andIComparable.CompareTo are explicit interface member28

implementations.end example]29

[Example: In some cases, the name of an interface member may not be appropriate for the implementing30

class, in which case the interface member may be implemented using explicit interface member31

implementation. A class implementing a file abstraction, for example, would likely implement aClose32

member function that has the effect of releasing the file resource, and implement theDispose method of33

theIDisposable interface using explicit interface member implementation:34

interface IDisposable { 35
 void Dispose(); 36
} 37
class MyFile: IDisposable { 38
 void IDisposable.Dispose() { 39
 Close(); 40
 } 41
 public void Close() { 42
 // Do what's necessary to close the file 43
 System.GC.SuppressFinalize(this); 44
 } 45
} 46

end example]47

It is not possible to access an explicit interface memberimplementation through its fully qualified name in a48

method invocation, property access, or indexer access.An explicit interface member implementation can49

only be accessed through an interface instance, and is in that case referenced simply by its member name.50

It is a compile-time error for an explicit interface member implementation to include access modifiers, and it51

is a compile-time error to include the modifiersabstract, virtual, override, orstatic.52

Explicit interface member implementations have different accessibility characteristics than other members.53

Because explicit interface member implementations are never accessible through their fully qualified name54

C# LANGUAGE SPECIFICATION

290

in a method invocation or a property access, they are in asense private. However, since they can be accessed1

through an interface instance, they are in a sense also public.2

Explicit interface member implementations serve two primary purposes:3

• Because explicit interface member implementations are not accessible through class or struct instances,4

they allow interface implementations to be excludedfrom the public interface of a class or struct. This is5

particularly useful when a class or struct implementsan internal interface that is of no interest to a consumer6

of that class or struct.7

• Explicit interface member implementations allow disambiguation of interface members with the same8

signature. Without explicit interface member implementations it would be impossible for a class or struct to9

have different implementations of interface members with the same signature and return type, as would it be10

impossible for a class or struct to have any implementation at all of interface members with the same11

signature but with different return types.12

For an explicit interface member implementation to be valid, the class or struct must name an interface in its13

base class list that contains a member whose fully qualified name, type, and parameter types exactly match14

those of the explicit interface member implementation. [Example: Thus, in the following class15

class Shape: ICloneable 16
{ 17
 object ICloneable.Clone() {�} 18

 int IComparable.CompareTo(object other) {�} // invalid 19
} 20

the declaration ofIComparable.CompareTo results in a compile-time error becauseIComparable is not21

listed in the base class list ofShape and is not a base interface ofICloneable. Likewise, in the22

declarations23

class Shape: ICloneable 24
{ 25
 object ICloneable.Clone() {�} 26
} 27

class Ellipse: Shape 28
{ 29
 object ICloneable.Clone() {�} // invalid 30
} 31

the declaration ofICloneable.Clone in Ellipse results in a compile-time error becauseICloneable is32

not explicitly listed in the base class list ofEllipse. end example]33

The fully qualified name of an interface member must reference the interface in which the member was34

declared. [Example: Thus, in the declarations35

interface IControl 36
{ 37
 void Paint(); 38
} 39

interface ITextBox: IControl 40
{ 41
 void SetText(string text); 42
} 43

class TextBox: ITextBox 44
{ 45
 void IControl.Paint() {�} 46

 void ITextBox.SetText(string text) {�} 47
} 48

the explicit interface member implementation ofPaint must be written asIControl.Paint. end49

example]50

Chapter 20 Interfaces

291

20.4.2 Interface mapping1

A class or struct must provide implementations of all members of the interfaces that are listed in the base2

class list of the class or struct. The process of locating implementations of interface members in an3

implementing class or struct is known asinterface mapping.4

Interface mapping for a class or structC locates an implementation for each member of each interface5

specified in the base class list ofC. The implementation of a particular interface memberI.M, whereI is the6

interface in which the memberM is declared, is determined by examining each class or structS, starting with7

C and repeating for each successive base class ofC, until a match is located:8

• If S contains a declaration of an explicit interface member implementation that matchesI andM, then9

this member is the implementation ofI.M.10

• Otherwise, ifS contains a declaration of a non-static public member that matchesM, then this member is11

the implementation ofI.M.12

A compile-time error occurs if implementations cannot be located for all members of all interfaces specified13

in the base class list ofC. Note that the members of an interface include those members that are inherited14

from base interfaces.15

For purposes of interface mapping, a class memberA matches an interface memberB when:16

• A andB are methods, and the name, type, and formal parameter lists ofA andB are identical.17

• A andB are properties, the name and type ofA andB are identical, andA has the same accessors asB (A18

is permitted to have additional accessors if it is not anexplicit interface member implementation).19

• A andB are events, and the name and type ofA andB are identical.20

• A andB are indexers, the type and formal parameter lists ofA andB are identical, andA has the same21

accessors asB (A is permitted to have additional accessors if it is not an explicit interface member22

implementation).23

Notable implications of the interface-mapping algorithm are:24

• Explicit interface member implementations take precedence over other members in the same class or25

struct when determining the class or struct member that implements an interface member.26

• Neither non-public nor static members participate in interface mapping.27

[Example: In the example28

interface ICloneable 29
{ 30
 object Clone(); 31
} 32

class C: ICloneable 33
{ 34
 object ICloneable.Clone() {�} 35

 public object Clone() {�} 36
} 37

theICloneable.Clone member ofC becomes the implementation ofClone in ICloneable because38

explicit interface member implementations take precedence over other members.end example]39

If a class or struct implements two or more interfaces containing a member with the same name, type, and40

parameter types, it is possible to map each of those interface members onto a single class or struct member.41

[Example: For example42

interface IControl 43
{ 44
 void Paint(); 45
} 46

C# LANGUAGE SPECIFICATION

292

interface IForm 1
{ 2
 void Paint(); 3
} 4

class Page: IControl, IForm 5
{ 6
 public void Paint() {�} 7
} 8

Here, thePaint methods of bothIControl andIForm are mapped onto thePaint method inPage. It is9

of course also possible to have separate explicit interface member implementations for the two methods.end10

example]11

If a class or struct implements an interface thatcontains hidden members, then some members must12

necessarily be implemented through explicit interface member implementations. [Example: For example13

interface IBase 14
{ 15
 int P { get; } 16
} 17

interface IDerived: IBase 18
{ 19
 new int P(); 20
} 21

An implementation of this interface would require at least one explicit interface member implementation,22

and would take one of the following forms23

class C: IDerived 24
{ 25
 int IBase.P { get {�} } 26

 int IDerived.P() {�} 27
} 28

class C: IDerived 29
{ 30
 public int P { get {�} } 31

 int IDerived.P() {�} 32
} 33

class C: IDerived 34
{ 35
 int IBase.P { get {�} } 36

 public int P() {�} 37
} 38

end example]39

When a class implements multiple interfaces that have the same base interface, there can be only one40

implementation of the base interface. [Example: In the example41

interface IControl 42
{ 43
 void Paint(); 44
} 45

interface ITextBox: IControl 46
{ 47
 void SetText(string text); 48
} 49

interface IListBox: IControl 50
{ 51
 void SetItems(string[] items); 52
} 53

class ComboBox: IControl, ITextBox, IListBox 54
{ 55
 void IControl.Paint() {�} 56

Chapter 20 Interfaces

293

 void ITextBox.SetText(string text) {�} 1

 void IListBox.SetItems(string[] items) {�} 2
} 3

it is not possible to have separate implementations for theIControl named in the base class list, the4

IControl inherited byITextBox, and theIControl inherited byIListBox. Indeed, there is no notion of5

a separate identity for these interfaces. Rather, the implementations ofITextBox andIListBox share the6

same implementation ofIControl, andComboBox is simply considered to implement three interfaces,7

IControl, ITextBox, andIListBox. end example]8

The members of a base class participate in interface mapping. [Example: In the example9

interface Interface1 10
{ 11
 void F(); 12
} 13

class Class1 14
{ 15
 public void F() {} 16

 public void G() {} 17
} 18

class Class2: Class1, Interface1 19
{ 20
 new public void G() {} 21
} 22

the methodF in Class1 is used inClass2's implementation ofInterface1. end example]23

20.4.3 Interface implementation inheritance24

A class inherits all interface implementations provided by its base classes.25

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface26

mappings it inherits from its base classes. [Example: For example, in the declarations27

interface IControl 28
{ 29
 void Paint(); 30
} 31

class Control: IControl 32
{ 33
 public void Paint() {�} 34
} 35

class TextBox: Control 36
{ 37
 new public void Paint() {�} 38
} 39

thePaint method inTextBox hides thePaint method inControl, but it does not alter the mapping of40

Control.Paint ontoIControl.Paint, and calls toPaint through class instances and interface41

instances will have the following effects42

Control c = new Control(); 43
TextBox t = new TextBox(); 44
IControl ic = c; 45
IControl it = t; 46
c.Paint(); // invokes Control.Paint(); 47
t.Paint(); // invokes TextBox.Paint(); 48
ic.Paint(); // invokes Control.Paint(); 49
it.Paint(); // invokes Control.Paint(); 50

end example]51

C# LANGUAGE SPECIFICATION

294

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived1

classes to override the virtual method and alter the implementation of the interface. [Example: For example,2

rewriting the declarations above to3

interface IControl 4
{ 5
 void Paint(); 6
} 7

class Control: IControl 8
{ 9
 public virtual void Paint() {�} 10
} 11

class TextBox: Control 12
{ 13
 public override void Paint() {�} 14
} 15

the following effects will now be observed16

Control c = new Control(); 17
TextBox t = new TextBox(); 18
IControl ic = c; 19
IControl it = t; 20
c.Paint(); // invokes Control.Paint(); 21
t.Paint(); // invokes TextBox.Paint(); 22
ic.Paint(); // invokes Control.Paint(); 23
it.Paint(); // invokes TextBox.Paint(); 24

end example]25

Since explicit interface member implementations cannotbe declared virtual, it is not possible to override an26

explicit interface member implementation. However,it is perfectly valid for an explicit interface member27

implementation to call another method, and that other method can be declared virtual to allow derived28

classes to override it. [Example: For example29

interface IControl 30
{ 31
 void Paint(); 32
} 33

class Control: IControl 34
{ 35
 void IControl.Paint() { PaintControl(); } 36

 protected virtual void PaintControl() {�} 37
} 38

class TextBox: Control 39
{ 40
 protected override void PaintControl() {�} 41
} 42

Here, classes derived fromControl can specialize the implementation ofIControl.Paint by overriding43

thePaintControl method.end example]44

20.4.4 Interface re-implementation45

A class that inherits an interface implementation is permitted tore-implement the interface by including it in46

the base class list.47

A re-implementation of an interface follows exactly the same interface mapping rules as an initial48

implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the49

interface mapping established for the re-implementation of the interface. [Example: For example, in the50

declarations51

Chapter 20 Interfaces

295

interface IControl 1
{ 2
 void Paint(); 3
} 4

class Control: IControl 5
{ 6
 void IControl.Paint() {�} 7
} 8

class MyControl: Control, IControl 9
{ 10
 public void Paint() {} 11
} 12

the fact thatControl mapsIControl.Paint ontoControl.IControl.Paint doesn’t affect the re-13

implementation inMyControl, which mapsIControl.Paint ontoMyControl.Paint. end example]14

Inherited public member declarations and inherited explicit interface member declarations participate in the15

interface mapping process for re-implemented interfaces. [Example: For example16

interface IMethods 17
{ 18
 void F(); 19
 void G(); 20
 void H(); 21
 void I(); 22
} 23

class Base: IMethods 24
{ 25
 void IMethods.F() {} 26
 void IMethods.G() {} 27
 public void H() {} 28
 public void I() {} 29
} 30

class Derived: Base, IMethods 31
{ 32
 public void F() {} 33
 void IMethods.H() {} 34
} 35

Here, the implementation ofIMethods in Derived maps the interface methods ontoDerived.F,36

Base.IMethods.G, Derived.IMethods.H, andBase.I. end example]37

When a class implements an interface, it implicitly alsoimplements all of that interface’s base interfaces.38

Likewise, a re-implementation of an interface is alsoimplicitly a re-implementation of all of the interface’s39

base interfaces. [Example: For example40

interface IBase 41
{ 42
 void F(); 43
} 44

interface IDerived: IBase 45
{ 46
 void G(); 47
} 48

class C: IDerived 49
{ 50
 void IBase.F() {�} 51

 void IDerived.G() {�} 52
} 53

class D: C, IDerived 54
{ 55
 public void F() {�} 56

 public void G() {�} 57
} 58

C# LANGUAGE SPECIFICATION

296

Here, the re-implementation ofIDerived also re-implementsIBase, mappingIBase.F ontoD.F. end1

example]2

20.4.5 Abstract classes and interfaces3

Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces4

that are listed in the base class list of the class. However, an abstract class is permitted to map interface5

methods onto abstract methods. [Example: For example6

interface IMethods 7
{ 8
 void F(); 9
 void G(); 10
} 11

abstract class C: IMethods 12
{ 13
 public abstract void F(); 14
 public abstract void G(); 15
} 16

Here, the implementation ofIMethods mapsF andG onto abstract methods, which must be overridden in17

non-abstract classes that derive fromC. end example]18

Note that explicit interface member implementations cannot be abstract, but explicit interface member19

implementations are of course permitted to call abstract methods. [Example: For example20

interface IMethods 21
{ 22
 void F(); 23
 void G(); 24
} 25

abstract class C: IMethods 26
{ 27
 void IMethods.F() { FF(); } 28
 void IMethods.G() { GG(); } 29
 protected abstract void FF(); 30
 protected abstract void GG(); 31
} 32

Here, non-abstract classes that derive fromC would be required to overrideFF andGG, thus providing the33

actual implementation ofIMethods. end example]34

Chapter 21 Enums

297

21. Enums1

An enum type is a distinct type that declares a set of named constants. [Example: The example2

enum Color 3
{ 4
 Red, 5
 Green, 6
 Blue 7
} 8

declares an enum type namedColor with membersRed, Green, andBlue. end example]9

21.1 Enum declarations10

An enum declaration declares a new enum type. An enum declaration begins with the keywordenum, and11

defines the name, accessibility, underlying type, and members of the enum.12

enum-declaration:13

attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt14

enum-base:15

: integral-type16

enum-body:17

{ enum-member-declarationsopt }18

{ enum-member-declarations , }19

Each enum type has a corresponding integral type called theunderlying type of the enum type. This20

underlying type must be able to represent all the enumerator values defined in the enumeration. An enum21

declaration may explicitly declare an underlying type ofbyte, sbyte, short, ushort, int, uint, long22

or ulong. [Note: char cannot be used as an underlying type.end note] An enum declaration that does not23

explicitly declare an underlying type has an underlying type ofint.24

[Example: The example25

enum Color: long 26
{ 27
 Red, 28
 Green, 29
 Blue 30
} 31

declares an enum with an underlying type oflong. end example] [Note: A developer might choose to use an32

underlying type oflong, as in the example, to enable the use of values that are in the range oflong but not33

in the range ofint, or to preserve this option for the future.end note]34

21.2 Enum modifiers35

An enum-declaration may optionally include a sequence of enum modifiers:36

enum-modifiers:37

enum-modifier38

enum-modifiers enum-modifier39

C# LANGUAGE SPECIFICATION

298

enum-modifier:1

new2

public 3

protected 4

internal5

private 6

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.7

The modifiers of an enum declaration have the same meaning as those of a class declaration (§17.1.1). Note,8

however, that theabstract andsealed modifiers are not permitted in an enum declaration. Enums cannot9

be abstract and do not permit derivation.10

21.3 Enum members11

The body of an enum type declaration defines zero or more enum members, which are the named constants12

of the enum type. No two enum members can have the same name.13

enum-member-declarations:14

enum-member-declaration15

enum-member-declarations , enum-member-declaration16

enum-member-declaration:17

attributesopt identifier18

attributesopt identifier = constant-expression19

Each enum member has an associated constant value. The type of this value is the underlying type for the20

containing enum. The constant value for each enum member must be in the range of the underlying type for21

the enum. [Example: The example22

enum Color: uint 23
{ 24
 Red = -1, 25
 Green = -2, 26
 Blue = -3 27
} 28

results in a compile-time error because the constant values-1, -2, and�3 are not in the range of the29

underlying integral typeuint. end example]30

Multiple enum members may share the same associated value. [Example: The example31

enum Color 32
{ 33
 Red, 34
 Green, 35
 Blue, 36
 37
 Max = Blue 38
} 39

shows an enum that has two enum members—Blue andMax—that have the same associated value.end40

example]41

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the42

enum member has aconstant-expression initializer, the value of that constant expression, implicitly43

converted to the underlying type of the enum, is the associated value of the enum member. If the declaration44

of the enum member has no initializer, its associated value is set implicitly, as follows:45

Chapter 21 Enums

299

• If the enum member is the first enum member declared in the enum type, its associated value is zero.1

• Otherwise, the associated value of the enum member is obtained by increasing the associated value of2

the textually preceding enum member by one. This increased value must be within the range of values that3

can be represented by the underlying type.4

[Example: The example5

using System; 6

enum Color 7
{ 8
 Red, 9
 Green = 10, 10
 Blue 11
} 12

class Test 13
{ 14
 static void Main() { 15
 Console.WriteLine(StringFromColor(Color.Red)); 16
 Console.WriteLine(StringFromColor(Color.Green)); 17
 Console.WriteLine(StringFromColor(Color.Blue)); 18
 } 19

 static string StringFromColor(Color c) { 20
 switch (c) { 21
 case Color.Red: 22
 return String.Format("Red = {0}", (int) c); 23

 case Color.Green: 24
 return String.Format("Green = {0}", (int) c); 25

 case Color.Blue: 26
 return String.Format("Blue = {0}", (int) c); 27

 default: 28
 return "Invalid color"; 29
 } 30
 } 31
} 32

prints out the enum member names and their associated values. The output is:33

Red = 0 34
Green = 10 35
Blue = 11 36

for the following reasons:37

• the enum memberRed is automatically assigned the value zero (since it has no initializer and is the first38

enum member);39

• the enum memberGreen is explicitly given the value10;40

• and the enum memberBlue is automatically assigned the value one greater than the member that41

textually precedes it.42

end example]43

The associated value of an enum member may not, directly or indirectly, use the value of its own associated44

enum member. Other than this circularity restriction, enum member initializers may freely refer to other45

enum member initializers, regardless of their textualposition. Within an enum member initializer, values of46

other enum members are always treated as having the type of their underlying type, so that casts are not47

necessary when referring to other enum members.48

[Example: The example49

C# LANGUAGE SPECIFICATION

300

enum Circular 1
{ 2
 A = B, 3
 B 4
} 5

results in a compile-time error because the declarations ofA andB are circular.A depends onB explicitly,6

andB depends onA implicitly. end example]7

Enum members are named and scoped in a manner exactlyanalogous to fields within classes. The scope of8

an enum member is the body of its containing enum type. Within that scope, enum members can be referred9

to by their simple name. From all other code, the name of an enum member must be qualified with the name10

of its enum type. Enum members do not have any declared accessibility—an enum member is accessible if11

its containing enum type is accessible.12

21.4 Enum values and operations13

Each enum type defines a distinct type; an explicit enumeration conversion (§13.2.2) is required to convert14

between an enum type and an integral type, or between two enum types. The set of values that an enum type15

can take on is not limited by its enum members. In particular, any value of the underlying type of an enum16

can be cast to the enum type, and is a distinct valid value of that enum type.17

Enum members have the type of their containing enum type (except within other enum member initializers:18

see §21.3). The value of an enum member declared in enum typeE with associated valuev is (E)v.19

The following operators can be used on values of enum types:==, !=, <, >, <=, >= (§14.9.5),+ (§14.7.4),20

- (§14.7.5),̂ , &, | (§14.10.2),~ (§14.6.4),++, -- (§14.5.9 and §14.6.5), andsizeof (§25.5.4).21

Every enum type automatically derives from the classSystem.Enum. Thus, inherited methods and22

properties of this class can be used on values of an enum type.23

Chapter 22 Delegates

301

22. Delegates1

[Note: Delegates enable scenarios thatother languages—such as C++, Pascal, and Modula—have addressed2

with function pointers. Unlike C++ function pointers, however, delegates are fully object oriented, and3

unlike C++ pointers to member functions, delegates encapsulate both an object instance and a method.end4

note]5

A delegate declaration defines a class that is derived from the classSystem.Delegate. A delegate instance6

encapsulates one or more methods, each of which is referred to as acallable entity. For instance methods, a7

callable entity consists of an instance and a methodon that instance. For static methods, a callable entity8

consists of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all9

of that delegate instance’s methods with that set of arguments.10

An interesting and useful property of a delegate instance is that it does not know or care about the classes of11

the methods it encapsulates; all that matters is that those methods be compatible (§22.1) with the delegate’s12

type. This makes delegates perfectly suited for “anonymous” invocation.13

22.1 Delegate declarations14

A delegate-declaration is atype-declaration (§16.5) that declares a new delegate type.15

delegate-declaration:16

attributesopt delegate-modifiersopt delegate return-type identifier17

(formal-parameter-listopt) ;18

delegate-modifiers:19

delegate-modifier20

delegate-modifiers delegate-modifier21

delegate-modifier:22

new23

public 24

protected 25

internal26

private 27

It is a compile-time error for the same modifier to appear multiple times in a delegate declaration.28

Thenew modifier is only permitted on delegates declared within another type, in which case it specifies that29

such a delegate hides an inherited member by the same name, as described in §17.2.2.30

Thepublic, protected, internal, andprivate modifiers control the accessibility of the delegate type.31

Depending on the context in which the delegate declaration occurs, some of these modifiers may not be32

permitted (§10.5.1).33

The delegate’s type name isidentifier.34

The optionalformal-parameter-list specifies the parameters of the delegate, andreturn-type indicates the35

return type of the delegate. A method and a delegate type arecompatible if both of the following are true:36

• They have the same number or parameters, with the same types, in the same order, with the same37

parameter modifiers.38

• Their return-types are the same.39

Delegate types in C# are name equivalent, not structurally equivalent. [Note: However, instances of two40

distinct but structurally equivalent delegate types may compare as equal (§14.9.8).end note] Specifically,41

C# LANGUAGE SPECIFICATION

302

two different delegate types that have the sameparameter lists and return type are considereddifferent1

delegate types. [Example: For example:2

delegate int D1(int i, double d); 3

class A 4
{ 5
 public static int M1(int a, double b) {�} 6
} 7

class B 8
{ 9
 delegate int D2(int c, double d); 10
 public static int M1(int f, double g) {�} 11
 public static void M2(int k, double l) {�} 12
 public static int M3(int g) {�} 13
 public static void M4(int g) {�} 14
} 15

The delegate typesD1 andD2 are both compatible with the methodsA.M1 andB.M1, since they have the16

same return type and parameter list; however, these delegate types are two different types, so they are not17

interchangeable. The delegate typesD1 andD2 are incompatible with the methodsB.M2, B.M3, andB.M4,18

since they have different return types or parameter lists.end example]19

The only way to declare a delegate type is via adelegate-declaration. A delegate type is a class type that is20

derived fromSystem.Delegate. Delegate types are implicitlysealed, so it is not permissible to derive21

any type from a delegate type. It is also not permissible to derive a non-delegate class type from22

System.Delegate. Note thatSystem.Delegate is not itself a delegate type; it is a class type from which23

all delegate types are derived.24

C# provides special syntax for delegate instantiation and invocation. Except for instantiation, any operation25

that can be applied to a class or class instance can also be applied to a delegate class or instance,26

respectively. In particular, it is possible to access members of theSystem.Delegate type via the usual27

member access syntax.28

The set of methods encapsulated by a delegate instance is called aninvocation list. When a delegate instance29

is created (§22.2) from a single method, it encapsulates that method, and its invocation list contains only one30

entry. However, when two non-null delegate instances are combined, their invocation lists are31

concatenated—in the order left operand then right operand—to form a new invocation list, which contains32

two or more entries.33

Delegates are combined using the binary+ (§14.7.4) and+= operators (§14.13.2). A delegate can be34

removed from a combination of delegates, using the binary- (§14.7.5) and-= operators (§14.13.2).35

Delegates can be compared for equality (§14.9.8).36

[Example: The following example shows the instantiation of a number of delegates, and their corresponding37

invocation lists:38

delegate void D(int x); 39
class Test 40
{ 41
 public static void M1(int i) {�} 42
 public static void M2(int i) {�} 43
} 44

class Demo 45
{ 46
 static void Main() { 47
 D cd1 = new D(Test.M1); // M1 48
 D cd2 = new D(Test.M2); // m2 49
 D cd3 = cd1 + cd2; // M1 + M2 50
 D cd4 = cd3 + cd1; // M1 + M2 + M1 51
 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2 52
 } 53
} 54

Chapter 22 Delegates

303

Whencd1 andcd2 are instantiated, they each encapsulate one method. Whencd3 is instantiated, it has an1

invocation list of two methods,M1 andM2, in that order.cd4’s invocation list containsM1, M2, andM1, in2

that order. Finally, cd5’s invocation list containsM1, M2, M1, M1, andM2, in that order.3

For more examples of combining (as well as removing) delegates, see §22.3.end example]4

22.2 Delegate instantiation5

An instance of a delegate is created by adelegate-creation-expression (§14.5.10.3). The newly created6

delegate instance then refers to either:7

• The static method referenced in thedelegate-creation-expression, or8

• The target object (which cannot benull) and instance method referenced in thedelegate-creation-9

expression, or10

• Another delegate11

[Example: For example:12

delegate void D(int x); 13
class Test 14
{ 15
 public static void M1(int i) {�} 16
 public void M2(int i) {�} 17
} 18

class Demo 19
{ 20
 static void Main() { 21
 D cd1 = new D(Test.M1); // static method 22
 Test t = new Test(); 23
 D cd2 = new D(t.M2); // instance method 24
 D cd3 = new D(cd2); // another delegate 25
 } 26
} 27

end example]28

Once instantiated, delegate instances always refer to the same target object and method. [Note: Remember,29

when two delegates are combined, or one is removed from another, a new delegate results with its own30

invocation list; the invocation lists of the delegates combined or removed remain unchanged.end note]31

22.3 Delegate invocation32

C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation33

list contains one entry, is invoked, it invokes the one method with the same arguments it was given, and34

returns the same value as the referred to method. (See §14.5.5.2 for detailed information on delegate35

invocation.) If an exception occurs during the invocation of such a delegate, and that exception is not caught36

within the method that was invoked, the search for an exception catch clause continues in the method that37

called the delegate, as if that method had directly called the method to which that delegate referred.38

Invocation of a delegate instance whose invocation list contains multiple entries, proceeds by invoking each39

of the methods in the invocation list, synchronously, in order. Each method so called is passed the same set40

of arguments as was given to the delegate instance.If such a delegate invocation includes reference41

parameters (§17.5.1.2), each method invocation will occur with a reference to the same variable; changes to42

that variable by one method in the invocation list will be visible to methods further down the invocation list.43

If the delegate invocation includes output parameters or a return value, their final value will come from the44

invocation of the last delegate in the list. If an exception occurs during processing of the invocation of such a45

delegate, and that exception is not caught within the method that was invoked, the search for an exception46

catch clause continues in the method that called the delegate, and any methods further down the invocation47

list arenot invoked.48

C# LANGUAGE SPECIFICATION

304

Attempting to invoke a delegate instance whose value isnull results in an exception of type1

System.NullReferenceException.2

[Example: The following example shows how to instantiate, combine, remove, and invoke delegates:3

using System; 4
delegate void D(int x); 5
class Test 6
{ 7
 public static void M1(int i) { 8
 Console.WriteLine("Test.M1: " + i); 9
 } 10

 public static void M2(int i) { 11
 Console.WriteLine("Test.M2: " + i); 12
 } 13

 public void M3(int i) { 14
 Console.WriteLine("Test.M3: " + i); 15
 } 16
} 17

class Demo 18
{ 19
 static void Main() { 20
 D cd1 = new D(Test.M1); 21
 cd1(-1); // call M1 22

 D cd2 = new D(Test.M2); 23
 cd2(-2); // call M2 24

 D cd3 = cd1 + cd2; 25
 cd3(10); // call M1 then M2 26
 27
 cd3 += cd1; 28
 cd3(20); // call M1, M2, then M1 29

 Test t = new Test(); 30
 D cd4 = new D(t.M3); 31
 cd3 += cd4; 32
 cd3(30); // call M1, M2, M1, then M3 33

 cd3 -= cd1; // remove last M1 34
 cd3(40); // call M1, M2, then M3 35

 cd3 -= cd4; 36
 cd3(50); // call M1 then M2 37

 cd3 -= cd2; 38
 cd3(60); // call M1 39
 cd3 -= cd2; // impossible removal is benign 40
 cd3(60); // call M1 41

cd3 -= cd1; // invocation list is empty 42
// cd3(70); // System.NullReferenceException thrown 43
 cd3 -= cd1; // impossible removal is benign 44
 } 45
} 46

As shown in the statementcd3 += cd1;, a delegate can be present in an invocation list multiple times. In47

this case, it is simply invoked once per occurrence. Inan invocation list such as this, when that delegate is48

removed, the last occurrence in the invocation list is the one actually removed.49

Immediately prior to the execution of the final statement,cd3 -= cd1;, the delegatecd3 refers to an50

empty invocation list. Attempting to remove a delegate from an empty list (or to remove a non-existent51

delegate from a non-empty list) is not an error. 52

The output produced is:53

Test.M1: -1 54
Test.M2: -2 55

Chapter 22 Delegates

305

Test.M1: 10 1
Test.M2: 10 2

Test.M1: 20 3
Test.M2: 20 4
Test.M1: 20 5

Test.M1: 30 6
Test.M2: 30 7
Test.M1: 30 8
Test.M3: 30 9

Test.M1: 40 10
Test.M2: 40 11
Test.M3: 40 12

Test.M1: 50 13
Test.M2: 50 14

Test.M1: 60 15
Test.M1: 60 16

end example]17

Chapter 23 Exceptions

307

23. Exceptions1

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and2

application-level error conditions. [Note: The exception mechanism is C# is quite similar to that of C++,3

with a few important differences:4

• In C#, all exceptions must be represented by an instance of a class type derived from5

System.Exception. In C++, any value of any type can be used to represent an exception.6

• In C#, a finally block (§15.10) can be used to write termination code that executes in both normal7

execution and exceptional conditions. Such code is difficult to write in C++ without duplicating code.8

• In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well9

defined exception classes and are on a par with application-level error conditions.10

end note]11

23.1 Causes of exceptions12

Exception can be thrown in two different ways.13

• A throw statement (§15.9.5) throws an exception immediately and unconditionally. Control never14

reaches the statement immediately following thethrow.15

• Certain exceptional conditions that arise during the processing of C# statements and expression cause an16

exception in certain circumstances when the operation cannot be completed normally. For example, an17

integer division operation (§14.7.2) throws aSystem.DivideByZeroException if the denominator is18

zero. See §23.4 for a list of the various exceptions that can occur in this way.19

23.2 The System.Exception class20

TheSystem.Exception class is the base type of all exceptions. This class has a few notable properties21

that all exceptions share:22

• Message is a read-only property of typestring that contains a human-readable description of the23

reason for the exception.24

• InnerException is a read-only property of typeException. If its value is non-null, it refers to the25

exception that caused the current exception. (That is,the current exception was raised in a catch block26

handling the typeInnerException.) Otherwise, its value is null, indicating that this exception was not27

caused by another exception. (Thenumber of exception objects chained together in this manner can be28

arbitrary.)29

The value of these properties can be specified in calls to the instance constructor forSystem.Exception. 30

23.3 How exceptions are handled31

Exceptions are handled by atry statement (§15.10).32

When an exception occurs, the system searches for the nearestcatch clause that can handle the exception,33

as determined by the run-time type of the exception. First, the current method is searched for a lexically34

enclosingtry statement, and the associatedcatch clauses of thetry statement are considered in order. If35

that fails, the method that called the current method is searched for a lexically enclosingtry statement that36

encloses the point of the call to the current method. This search continues until acatch clause is found that37

can handle the current exception, by naming an exception class that is of the same class, or a base class, of38

C# LANGUAGE SPECIFICATION

308

the run-time type of the exception being thrown. Acatch clause that doesn’t name an exception class can1

handle any exception.2

Once a matchingcatch clause is found, the system prepares to transfer control to the first statement of the3

catch clause. Before execution of thecatch clause begins, the system first executes, in order any4

finally clauses that were associated withtry statements more nested that than the one that caught the5

exception.6

If no matching catch clause is found, one of two things occurs:7

• If the search for a matchingcatch clause reaches a static constructor (§17.11) or static field initializer,8

then aSystem.TypeInitializationException is thrown at the point that triggered the invocation of9

the static constructor. The inner exception of theSystem.TypeInitializationException contains the10

exception that was originally thrown.11

• If the search for matchingcatch clauses reaches the code that initiallystarted the thread, then execution12

of the thread is terminated. The impact of suchtermination is implementation-defined.13

Exceptions that occur during destructor execution areworth special mention. If an exception occurs during14

destructor execution, and that exception is not caught, then the execution of that destructor is terminated and15

the destructor of the base class (if any) is called. If there is no base class (as in the case of theobject type)16

or if there is no base class destructor, then the exception is discarded.17

23.4 Common Exception Classes18

The following exceptions are thrown by certain C# operations.19

System.ArithmeticException A base class for exceptions that occur during
arithmetic operations, such as
System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchException Thrown when a store into an array fails because the
actual type of the stored element is incompatible
with the actual type of the array.

System.DivideByZeroException Thrown when an attempt to divide an integral
value by zero occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an
index that is less than zero or outside the bounds of
the array.

System.InvalidCastException Thrown when an explicit conversion from a base
type or interface to a derived type fails at run time.

System.NullReferenceException Thrown when anull reference is used in a way
that causes the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory (via
new) fails.

System.OverflowException Thrown when an arithmetic operation in a
checked context overflows.

System.StackOverflowException Thrown when the execution stack is exhausted by
having too many pending method calls; typically
indicative of very deep or unbounded recursion.

System.TypeInitializationException Thrown when a static constructor throws an
exception, and nocatch clauses exists to catch it.

20

Chapter 24 Attributes

309

24. Attributes1

[Note: Much of the C# language enables the programmer to specify declarative information about the2

entities defined in the program. For example, the accessibility of a method in a class is specified by3

decorating it with themethod-modifiers public, protected, internal, andprivate. end note]4

C# enables programmers to invent new kinds of declarative information, calledattributes. Programmers can5

then attach attributes to various program entities, and retrieve attribute information in a run-time6

environment. [Note: For instance, a framework might define aHelpAttribute attribute that can be placed7

on certain program elements (such as classes and methods) to provide a mapping from those program8

elements to their documentation.end note]9

Attributes are defined through the declaration of attribute classes (§24.1), which may have positional and10

named parameters (§24.1.2). Attributes are attached to entities in a C# program using attribute specifications11

(§24.2), and can be retrieved at run-time as attribute instances (§24.3).12

24.1 Attribute classes13

A class that derives from the abstract classSystem.Attribute, whether directly or indirectly, is an14

attribute class. The declaration of an attribute class defines a new kind of attribute that can be placed on a15

declaration. By convention, attribute classes are named with a suffix ofAttribute. Uses of an attribute16

may either include or omit this suffix.17

24.1.1 Attribute usage18

The attributeAttributeUsage (§24.4.1) is used to describe how an attribute class can be used.19

AttributeUsage has a positional parameter (§24.1.2) that enables an attribute class to specify the kinds of20

declarations on which it can be used. [Example: The example21

using System; 22
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)] 23
public class SimpleAttribute: Attribute 24
{} 25

defines an attribute class namedSimpleAttribute that can be placed onclass-declarations andinterface-26

declarations only. The example27

[Simple] class Class1 {�} 28

[Simple] interface Interface1 {�} 29

shows several uses of theSimple attribute. Although this attribute is defined with the name30

SimpleAttribute, when this attribute is used, theAttribute suffix may be omitted, resulting in the31

short nameSimple. Thus, the example above is semantically equivalent to the following32

[SimpleAttribute] class Class1 {�} 33

[SimpleAttribute] interface Interface1 {�} 34

end example]35

AttributeUsage has a named parameter (§24.1.2), calledAllowMultiple, which indicates whether the36

attribute can be specified more than once for a given entity. IfAllowMultiple for an attribute class is true,37

then that class is amulti-use attribute class, and can be specified more than once on an entity. If38

AllowMultiple for an attribute class is false or it is unspecified, then that class is asingle-use attribute39

class, and can be specified at most once on an entity.40

[Example: The example41

C# LANGUAGE SPECIFICATION

310

using System; 1
[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)] 2
public class AuthorAttribute: Attribute { 3
 public AuthorAttribute(string name) { 4
 this.name = name; 5
 } 6
 public string Name { get { return name;} } 7
 private string name; 8
} 9

defines a multi-use attribute class namedAuthorAttribute. The example10

[Author("Brian Kernighan"), Author("Dennis Ritchie")] 11
class Class1 {�} 12

shows a class declaration with two uses of theAuthor attribute.end example]13

AttributeUsage has another named parameter (§24.1.2), calledInherited, which indicates whether the14

attribute, when specified on a base class, is also inherited by classes that derive from that base class. If15

Inherited for an attribute class is true, then that attribute is inherited. IfInherited for an attribute class16

is false or it is unspecified, then that attribute is not inherited.17

An attribute classX not having anAttributeUsage attribute attached to it, as in18

using System; 19
class X: Attribute { � } 20

is equivalent to the following:21

using System; 22
[AttributeUsage(AttributeTargets.All, AllowMultiple = false, Inherited = 23
true)] 24
class X: Attribute { � } 25

24.1.2 Positional and named parameters26

Attribute classes can havepositional parameters andnamed parameters. Each public instance constructor27

for an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-28

static public read-write field and property for an attribute class defines a named parameter for the attribute29

class.30

[Example: The example31

using System; 32
[AttributeUsage(AttributeTargets.Class)] 33
public class HelpAttribute: Attribute 34
{ 35

 public HelpAttribute(string url) { // url is a positional parameter 36
 � 37
 } 38

 public string Topic { // Topic is a named parameter 39
 get {�} 40
 set {�} 41
 } 42

 public string Url { get {�} } 43
} 44

defines an attribute class namedHelpAttribute that has one positional parameter (string url) and one45

named parameter (string Topic). Although it is non-static and public, the propertyUrl does not define a46

named parameter, since it is not read-write.47

This attribute class might be used as follows:48

[Help("http://www.mycompany.com/�/Class1.htm")] 49
class Class1 { 50
} 51

Chapter 24 Attributes

311

[Help("http://www.mycompany.com/�/Misc.htm", Topic ="Class2")] 1
class Class2 { 2
} 3

end example]4

24.1.3 Attribute parameter types5

The types of positional and named parameters for an attribute class are limited to theattribute parameter6

types, which are:7

• One of the following types:bool, byte, char, double, float, int, long, short, string.8

• The typeobject.9

• The typeSystem.Type.10

• An enum type, provided it has public accessibility and the types in which it is nested (if any) also have11

public accessibility.12

• Single-dimensional arrays of the above types.13

24.2 Attribute specification14

Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a15

piece of additional declarative information that is specified for a declaration. Attributes can be specified at16

global scope (to specify attributes on the containing assembly) and fortype-declarations (§16.5),class-17

member-declarations (§17.2),interface-member-declarations (§20.2),enum-member-declarations (§21.1),18

accessor-declarations (§17.6.2),event-accessor-declarations (§17.7), andformal-parameter-lists (§17.5.1).19

Attributes are specified inattribute sections. An attribute section consists of a pair of square brackets, which20

surround a comma-separated list of one or more attributes. The order in which attributes are specified in21

such a list, and the order in which sections attached to the same program entity are arranged, is not22

significant. For instance, the attribute specifications[A][B], [B][A], [A, B], and[B, A] are equivalent.23

global-attributes:24

global-attribute-sections25

global-attribute-sections:26

global-attribute-section27

global-attribute-sections global-attribute-section28

global-attribute-section:29

[global-attribute-target-specifier attribute-list] 30

[global-attribute-target-specifier attribute-list ,] 31

global-attribute-target-specifier:32

global-attribute-target :33

global-attribute-target:34

assembly 35

attributes:36

attribute-sections37

attribute-sections:38

attribute-section39

attribute-sections attribute-section40

attribute-section:41

[attribute-target-specifieropt attribute-list] 42

[attribute-target-specifieropt attribute-list ,] 43

attribute-target-specifier:44

attribute-target :45

C# LANGUAGE SPECIFICATION

312

attribute-target:1

field2

event3

method4

param5

property6

return 7

type 8

attribute-list:9

attribute10

attribute-list , attribute11

attribute:12

attribute-name attribute-argumentsopt13

attribute-name:14

type-name15

attribute-arguments:16

(positional-argument-listopt) 17

(positional-argument-list , named-argument-list) 18

(named-argument-list)19

positional-argument-list:20

positional-argument21

positional-argument-list , positional-argument22

positional-argument:23

attribute-argument-expression24

named-argument-list:25

named-argument26

named-argument-list , named-argument27

named-argument:28

identifier = attribute-argument-expression29

attribute-argument-expression:30

expression31

An attribute consists of anattribute-name and an optional list of positional and named arguments. The32

positional arguments (if any) precede the named arguments. A positional argument consists of anattribute-33

argument-expression; a named argument consists of a name, followed by an equal sign, followed by an34

attribute-argument-expression, which, together, are constrained by the same rules as simple assignment.)35

The order of named arguments is not significant.36

Theattribute-name identifies an attribute class. If the form ofattribute-name is type-name then this name37

must refer to an attribute class. Otherwise, a compile-time error occurs. [Example: The example38

class Class1 {} 39

[Class1] class Class2 {} // Error 40

results in a compile-time error because it attempts to useClass1 as an attribute class whenClass1 is not41

an attribute class.end example]42

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly43

specify the target by including anattribute-target-specifier. When an attribute is placed at the global level, a44

global-attribute-target-specifier is required. In all other locations, a reasonable default is applied, but an45

attribute-target-specifier can be used to affirm or override the default in certain ambiguous cases (or to just46

affirm the default in non-ambiguous cases). Thus, typically,attribute-target-specifiers can be omitted47

except at the global level. The potentially ambiguous contexts are resolved as follows:48

Chapter 24 Attributes

313

• An attribute specified on a delegate declaration canapply either to the delegate being declared or to its1

return value. In the absence of anattribute-target-specifier, the attribute applies to the delegate. The2

presence of thetype attribute-target-specifier indicates that the attribute applies to the delegate; the3

presence of thereturn attribute-target-specifier indicates that the attribute applies to the return value.4

• An attribute specified on a method declaration can apply either to the method being declared or to its5

return value. In the absence of anattribute-target-specifier, the attribute applies to the method. The presence6

of themethod attribute-target-specifier indicates that the attribute applies to the method; the presence of the7

return attribute-target-specifier indicates that the attribute applies to the return value.8

• An attribute specified on an operator declaration can apply either to the operator being declared or to its9

return value of this declaration. In the absence of anattribute-target-specifier, the attribute applies to the10

operator. The presence of thetype attribute-target-specifier indicates that the attribute applies to the11

operator; the presence of thereturn attribute-target-specifier indicates that the attribute applies to the12

return value.13

• An attribute specified on an event declaration that omits event accessors can apply to the event being14

declared, to the associated field (if the event is not abstract), or to the associated add and remove methods. In15

the absence of anattribute-target-specifier, the attribute applies to the event declaration. The presence of the16

event attribute-target-specifier indicates that the attribute applies to the event; the presence of thefield17

attribute-target-specifier indicates that the attribute applies to the field; and the presence of themethod18

attribute-target-specifier indicates that the attribute applies to the methods.19

• An attribute specified on a get accessor declaration for a property or indexer declaration can apply either20

to the associated method or to its return value. In the absence of anattribute-target-specifier, the attribute21

applies to the method. The presence of themethod attribute-target-specifier indicates that the attribute22

applies to the method; the presence of thereturn attribute-target-specifier indicates that the attribute23

applies to the return value.24

• An attribute specified on a set accessor for a property or indexer declaration can apply either to the25

associated method or to its lone implicit parameter. In the absence of anattribute-target-specifier, the26

attribute applies to the method. The presence of themethod attribute-target-specifier indicates that the27

attribute applies to the method; the presence of theparam attribute-target-specifier indicates that the28

attribute applies to the parameter.29

• An attribute specified on an add or remove accessor declaration for an event declaration can apply either30

to the associated method or to its lone parameter. In the absence of anattribute-target-specifier, the attribute31

applies to the method. The presence of themethod attribute-target-specifier indicates that the attribute32

applies to the method; the presence of theparam attribute-target-specifier indicates that the attribute applies33

to the parameter.34

An implementation may accept other attribute target specifiers, the purpose of which is implementation-35

defined. However, an implementation that doesnot recognize such a target, shall issue a warning.36

By convention, attribute classes are named with a suffix ofAttribute. An attribute-name of the formtype-37

name may either include or omit this suffix. If an attribute class is found both with and without this suffix,38

an ambiguity is present, and a compile-time error shall be issued. If theattribute-name is spelled using a39

verbatim identifier (§9.4.2), then only an attribute without a suffix is matched, thus enabling such an40

ambiguity to be resolved. [Example: The example41

using System; 42
[AttributeUsage(AttributeTargets.All)] 43
public class X: Attribute 44
{} 45

[AttributeUsage(AttributeTargets.All)] 46
public class XAttribute: Attribute 47
{} 48

[X] // error: ambiguity 49
class Class1 {} 50

C# LANGUAGE SPECIFICATION

314

[XAttribute] // refers to XAttribute 1
class Class2 {} 2

[@X] // refers to X 3
class Class3 {} 4

[@XAttribute] // refers to XAttribute 5
class Class4 {} 6

shows two attribute classes namedX andXAttribute. The attribute[X] is ambiguous, since it could refer7

to eitherX or XAttribute. Using a verbatim identifier allows the exact intent to be specified in such rare8

cases. The attribute[XAttribute] is not ambiguous (although it would be if there was an attribute class9

namedXAttributeAttribute!). If the declaration for classX is removed, then both attributes refer to the10

attribute class namedXAttribute, as follows:11

using System; 12
[AttributeUsage(AttributeTargets.All)] 13
public class XAttribute: Attribute 14
{} 15

[X] // refers to XAttribute 16
class Class1 {} 17

[XAttribute] // refers to XAttribute 18
class Class2 {} 19

[@X] // error: no attribute named �X� 20
class Class3 {} 21

end example]22

It is a compile-time error to use a single-use attribute class more than once on the same entity. [Example:23

The example24

using System; 25
[AttributeUsage(AttributeTargets.Class)] 26
public class HelpStringAttribute: Attribute 27
{ 28
 string value; 29

 public HelpStringAttribute(string value) { 30
 this.value = value; 31
 } 32

 public string Value { get {�} } 33
} 34

[HelpString("Description of Class1")] 35
[HelpString("Another description of Class1")] 36
public class Class1 {} 37

results in a compile-time error because it attempts to useHelpString, which is a single-use attribute class,38

more than once on the declaration ofClass1. end example]39

An expressionE is anattribute-argument-expression if all of the following statements are true:40

• The type ofE is an attribute parameter type (§24.1.3).41

• At compile-time, the value ofE can be resolved to one of the following:42

o A constant value.43

o A System.Type object.44

o A one-dimensional array ofattribute-argument-expressions.45

[Example: For example:46

Chapter 24 Attributes

315

using System; 1
[AttributeUsage(AttributeTargets.Class)] 2
public class MyAttribute: Attribute 3
{ 4
 public int P1 { 5
 get {�} 6
 set {�} 7
 } 8

 public Type P2 { 9
 get {�} 10
 set {�} 11
 } 12

 public object P3 { 13
 get {�} 14
 set {�} 15
 } 16
} 17

[My(P1 = 1234, P3 = new int[]{1, 3, 5}, P2 = typeof(float))] 18
class MyClass {} 19

end example]20

24.3 Attribute instances21

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an22

attribute class, positional arguments, and named arguments. An attribute instance is an instance of the23

attribute class that is initialized with the positional and named arguments.24

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the25

following sections.26

24.3.1 Compilation of an attribute27

The compilation of anattribute with attribute classT, positional-argument-list P andnamed-argument-list N,28

consists of the following steps:29

• Follow the compile-time processing steps for compiling anobject-creation-expression of the form30

new T(P). These steps either result in a compile-time error, or determine an instance constructor onT that31

can be invoked at run-time. Call this instance constructorC.32

• If C does not have public accessibility, then a compile-time error occurs.33

• For eachnamed-argument Arg in N:34

o Let Name be theidentifier of thenamed-argument Arg.35

o Name must identify a non-static read-write public field or property onT. If T has no such field or36

property, then a compile-time error occurs.37

• Keep the following information for run-time instantiation of the attribute: the attribute classT, the38

instance constructorC onT, thepositional-argument-list P and thenamed-argument-list N.39

24.3.2 Run-time retrieval of an attribute instance40

Compilation of anattribute yields an attribute classT, an instance constructorC onT, apositional-argument-41

list P, and anamed-argument-list N. Given this information, an attribute instance can be retrieved at run-time42

using the following steps:43

C# LANGUAGE SPECIFICATION

316

• Follow the run-time processing steps for executing anobject-creation-expression of the form1

new T(P), using the instance constructorC as determined at compile-time. These steps either result in an2

exception, or produce an instance ofT. Call this instanceO.3

• For eachnamed-argument Arg in N, in order:4

o Let Name be theidentifier of thenamed-argument Arg. If Name does not identify a non-static public5

read-write field or property onO, then an exception is thrown.6

o Let Value be the result of evaluating theattribute-argument-expression of Arg.7

o If Name identifies a field onO, then set this field to the valueValue.8

o Otherwise,Name identifies a property onO. Set this property to the valueValue.9

o The result isO, an instance of the attribute classT that has been initialized with thepositional-10

argument-list P and thenamed-argument-list N.11

24.4 Reserved attributes12

A small number of attributes affect the language in some way. These attributes include:13

• System.AttributeUsageAttribute (§24.4.1), which is used to describe the ways in which an14

attribute class can be used.15

• System.ConditionalAttribute (§24.4.2), which is used to define conditional methods.16

• System.ObsoleteAttribute (§24.4.3), which is used to mark a member as obsolete.17

24.4.1 The AttributeUsage attribute18

The attributeAttributeUsage is used to describe the manner in which the attribute class can be used.19

A class that is decorated with theAttributeUsage attribute must derive fromSystem.Attribute, either20

directly or indirectly. Otherwise, a compile-time error occurs.21

[Note: For an example of using this attribute, see §24.1.1.end note]22

24.4.2 The Conditional attribute23

The attributeConditional enables the definition ofconditional methods. TheConditional attribute24

indicates a condition by testing a conditional compilation symbol. Calls to a conditional method are either25

included or omitted depending on whether this symbolis defined at the point of the call. If the symbol is26

defined, the call is included; otherwise, the call is omitted.27

A conditional method is subject to the following restrictions:28

• The conditional method must be a method in aclass-declaration. A compile-time error occurs if the29

Conditional attribute is specified on an interface method.30

• The conditional method must have a return type ofvoid.31

• The conditional method must not be marked with theoverride modifier. A conditional method may be32

marked with thevirtual modifier, however. Overrides of such a method are implicitly conditional, and33

must not be explicitly marked with aConditional attribute.34

• The conditional method must not be an implementation of an interface method. Otherwise, a compile-35

time error occurs.36

In addition, a compile-time error occurs if a conditional method is used in adelegate-creation-expression.37

[Example: The example38

#define DEBUG 39

Chapter 24 Attributes

317

using System; 1
using System.Diagnostics; 2
class Class1 3
{ 4
 [Conditional("DEBUG")] 5
 public static void M() { 6
 Console.WriteLine("Executed Class1.M"); 7
 } 8
} 9

class Class2 10
{ 11
 public static void Test() { 12
 Class1.M(); 13
 } 14
} 15

declaresClass1.M as a conditional method.Class2'sTest method calls this method. Since the16

conditional compilation symbolDEBUG is defined, ifClass2.Test is called, it will callM. If the symbol17

DEBUG had not been defined, thenClass2.Test would not callClass1.M. end example]18

It is important to note that the inclusion or exclusion of a call to a conditional method is controlled by the19

conditional compilation symbols at the point of the call. [Example: In the example20

// Begin class1.cs 21
 using System; 22
 using System.Diagnostics; 23
 class Class1 24
 { 25
 [Conditional("DEBUG")] 26
 public static void F() { 27
 Console.WriteLine("Executed Class1.F"); 28
 } 29
 } 30
// End class1.cs 31

 32

// Begin class2.cs 33
 #define DEBUG 34

 class Class2 35
 { 36
 public static void G() { 37
 Class1.F(); // F is called 38
 } 39
 } 40
// End class2.cs 41

 42

// Begin class3.cs 43
 #undef DEBUG 44

 class Class3 45
 { 46
 public static void H() { 47
 Class1.F(); // F is not called 48
 } 49
 } 50
// End class3.cs 51

the classesClass2 andClass3 each contain calls to the conditional methodClass1.F, which is52

conditional based on whether or notDEBUG is defined. Since this symbol is defined in the context ofClass253

but notClass3, the call toF in Class2 is included, while the call toF in Class3 is omitted.end example]54

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional55

method throughbase, of the formbase.M, are subject to the normal conditional method call rules.56

[Example: In the example57

C# LANGUAGE SPECIFICATION

318

// Begin class1.cs 1
 using System; 2
 using System.Diagnostics; 3
 class Class1 4
 { 5
 [Conditional("DEBUG")] 6
 public virtual void M() { 7
 Console.WriteLine("Class1.M executed"); 8
 } 9
 } 10
// End class1.cs 11

 12

// Begin class2.cs 13
 using System; 14
 class Class2: Class1 15
 { 16
 public override void M() { 17
 Console.WriteLine("Class2.M executed"); 18
 base.M(); // base.M is not called! 19
 } 20
 } 21
// End class2.cs 22

 23

// Begin class3.cs 24
 #define DEBUG 25

 using System; 26
 class Class3 27
 { 28
 public static void Test() { 29
 Class2 c = new Class2(); 30
 c.M(); // M is called 31
 } 32
 } 33
// End class3.cs 34

Class2 includes a call to theM defined in its base class. This call is omitted because the base method is35

conditional based on the presence of the symbolDEBUG, which is undefined. Thus, the method writes to the36

console “Class2.M executed” only. Judicious use ofpp-declarations can eliminate such problems.end37

example]38

24.4.3 The Obsolete attribute39

The attributeObsolete is used to mark types and members of types that should no longer be used.40

using System; 41
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct | 42
 AttributeTargets.Enum | AttributeTargets.Interface | 43
 AttributeTargets.Delegate | AttributeTargets.Method | 44
 AttributeTargets.Constructor | AttributeTargets.Property | 45
 AttributeTargets.Field | AttributeTargets.Event)] 46
public class ObsoleteAttribute: Attribute 47
{ 48
 public ObsoleteAttribute() {�} 49
 public ObsoleteAttribute(string message) {�} 50
 public ObsoleteAttribute(string message, bool error) {�} 51
 public string Message { get {�} } 52
 public bool IsError{ get {�} } 53
} 54

If a program uses a type or member that is decorated with theObsolete attribute, then the compiler shall55

issue a warning or error in order to alert the developer, so the offending code can be fixed. Specifically, the56

compiler shall issue a warning if no error parameter isprovided, or if the error parameter is provided and has57

the value false. The compiler shall issue a compile-time error if the error parameter is specified and has the58

value true.59

Chapter 24 Attributes

319

[Example: In the example1

[Obsolete("This class is obsolete; use class B instead")] 2
class A 3
{ 4
 public void F() {} 5
} 6

class B 7
{ 8
 public void F() {} 9
} 10

class Test 11
{ 12
 static void Main() { 13
 A a = new A(); // warning 14
 a.F(); 15
 } 16
} 17

the classA is decorated with theObsolete attribute. Each use ofA in Main results in a warning that18

includes the specified message, “This class is obsolete; use classB instead.”19

end example]20

Chapter 25 Unsafe code

321

25. Unsafe code1

An implementation that does not support unsafe codeis required to diagnose any usage of the keyword2

unsafe.3

This remainder of this clause is conditionally normative.4

[Note: The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its5

omission of pointers as a data type. Instead, C# provides references and the ability to create objects that are6

managed by a garbage collector. This design, coupled with other features, makes C# a much safer language7

than C or C++. In the core C# language it is simply not possible to have an uninitialized variable, a8

“dangling” pointer, or an expression that indexes an array beyond its bounds. Whole categories of bugs that9

routinely plague C and C++ programs are thus eliminated.10

While practically every pointer type construct in C or C++ has a reference type counterpart in C#,11

nonetheless, there are situations where access to pointer types becomes a necessity. For example, interfacing12

with the underlying operating system, accessing a memory-mapped device, or implementing a time-critical13

algorithm may not be possible or practical without access to pointers. To address this need, C# provides the14

ability to write unsafe code.15

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and16

integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like17

writing C code within a C# program.18

Unsafe code is in fact a “safe” feature from the perspective of both developers and users. Unsafe code must19

be clearly marked with the modifierunsafe, so developers can’t possibly use unsafe features accidentally,20

and the execution engine works to ensure that unsafe code cannot be executed in an untrusted environment.21

end note]22

25.1 Unsafe contexts23

The unsafe features of C# are available only inunsafe contexts. An unsafe context is introduced by including24

anunsafe modifier in the declaration of a type or member, or by employing anunsafe-statement:25

• A declaration of a class, struct, interface, or delegate may include anunsafe modifier, in which case26

the entire textual extent of that type declaration (including the body of the class, struct, or interface) is27

considered an unsafe context.28

• A declaration of a field, method, property, event, indexer, operator, instance constructor, destructor, or29

static constructor may include anunsafe modifier, in which case, the entire textual extent of that member30

declaration is considered an unsafe context.31

• An unsafe-statement enables the use of an unsafe context within ablock. The entire textual extent of the32

associatedblock is considered an unsafe context.33

The associated grammar extensions are shown below. For brevity, ellipses (...) are used to represent34

productions that appear in preceding chapters.35

class-modifier:36

...37

unsafe38

struct-modifier:39

...40

unsafe41

C# LANGUAGE SPECIFICATION

322

interface-modifier:1

...2

unsafe3

delegate-modifier:4

...5

unsafe6

field-modifier:7

...8

unsafe9

method-modifier:10

...11

unsafe12

property-modifier:13

...14

unsafe15

event-modifier:16

...17

unsafe18

indexer-modifier:19

...20

unsafe21

operator-modifier:22

...23

unsafe24

constructor-modifier:25

...26

unsafe27

destructor-declaration:28

attributesopt externopt unsafeopt ~ identifier () destructor-body29

attributesopt unsafeopt externopt ~ identifier () destructor-body30

static-constructor-declaration:31

attributesopt externopt unsafeopt static identifier () static-constructor-body32

attributesopt unsafeopt externopt static identifier () static-constructor-body33

embedded-statement:34

...35

unsafe-statement36

unsafe-statement:37

unsafe block38

• [Example: In the example39

public unsafe struct Node 40
{ 41
 public int Value; 42
 public Node* Left; 43
 public Node* Right; 44
} 45

theunsafe modifier specified in the struct declaration causes the entire textual extent of the struct46

declaration to become an unsafe context. Thus, it is possible to declare theLeft andRight fields to be of a47

pointer type. The example above could also be written48

Chapter 25 Unsafe code

323

public struct Node 1
{ 2
 public int Value; 3
 public unsafe Node* Left; 4
 public unsafe Node* Right; 5
} 6

Here, theunsafe modifiers in the field declarations cause those declarations to be considered unsafe7

contexts.end example]8

Other than establishing an unsafe context, thus permitting the use of pointer types, theunsafe modifier has9

no effect on a type or a member. [Example: In the example10

public class A 11
{ 12
 public unsafe virtual void F() { 13
 char* p; 14
 � 15
 } 16
} 17

public class B: A 18
{ 19
 public override void F() { 20
 base.F(); 21
 � 22
 } 23
} 24

theunsafe modifier on theF method inA simply causes the textual extent ofF to become an unsafe25

context in which the unsafe features of the language can be used. In the override ofF in B, there is no need26

to re-specify theunsafe modifier—unless, of course, theF method inB itself needs access to unsafe27

features.28

The situation is slightly different when a pointer type is part of the method’s signature29

public unsafe class A 30
{ 31
 public virtual void F(char* p) {�} 32
} 33

public class B: A 34
{ 35
 public unsafe override void F(char* p) {�} 36
} 37

Here, becauseF’s signature includes a pointer type, it can only be written in an unsafe context. However, the38

unsafe context can be introduced by either making the entire class unsafe, as is the case in A, or by including39

anunsafe modifier in the method declaration, as is the case in B.end example]40

25.2 Pointer types41

In an unsafe context, atype (§11) may be apointer-type as well as avalue-type or areference-type.42

type:43

value-type44

reference-type45

pointer-type46

A pointer-type is written as anunmanaged-type or the keywordvoid, followed by a* token:47

pointer-type:48

unmanaged-type *49

void *50

unmanaged-type:51

type52

C# LANGUAGE SPECIFICATION

324

The type specified before the* in a pointer type is called thereferent type of the pointer type. It represents1

the type of the variable to which a value of the pointer type points.2

Unlike references (values of reference types), pointers are not tracked by the garbage collector—the garbage3

collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not4

permitted to point to a reference or to a struct that contains references, and the referent type of a pointer must5

be anunmanaged-type.6

An unmanaged-type is any type that isn’t areference-type and doesn’t containreference-type fields at any7

level of nesting. In other words, anunmanaged-type is one of the following:8

• sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.9

• Any enum-type.10

• Any pointer-type.11

• Any user-definedstruct-type that contains fields ofunmanaged-types only.12

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted13

to contain pointers, but referents of pointers are not permitted to contain references.14

[Example: Some examples of pointer types are given in the table below:15

16

Example Description

byte* Pointer tobyte

char* Pointer tochar

int** Pointer to pointer toint

int*[] Single-dimensional array of pointers toint

void* Pointer to unknown type

17

end example]18

For a given implementation, all pointer types must have the same size and representation.19

[Note: Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the* is written20

along with the underlying type only, not as a prefix punctuator on each pointer name. For example:21

 int* pi, pj; // NOT as int *pi, *pj; 22

end note]23

The value of a pointer having typeT* represents theaddress of a variable of typeT. The pointer indirection24

operator* (§25.5.1) may be used to access this variable. For example, given a variableP of typeint*, the25

expression*P denotes theint variable found at the address contained in P.26

Like an object reference, a pointer may benull. Applying the indirection operator to anull pointer results27

in implementation-defined behavior. A pointer with valuenull is represented by all-bits-zero.28

Thevoid* type represents a pointer to an unknown type. Because the referent type is unknown, the29

indirection operator cannot be applied to a pointer of typevoid*, nor can any arithmetic be performed on30

such a pointer. However, a pointer of typevoid* can be cast to any other pointer type (and vice versa). 31

Pointer types are a separate category of types. Unlike reference types and value types, pointer types do not32

inherit fromobject and no conversions exist between pointer types andobject. In particular, boxing and33

unboxing (§11.3) are not supported for pointers. However, conversions are permitted between different34

pointer types and between pointer types and the integral types. This is described in §25.4.35

A pointer-type may be used as the type of a volatile field (§17.4.3).36

Chapter 25 Unsafe code

325

[Note: Although pointers can be passed asref or out parameters, doing so can cause undefined behavior,1

since the pointer may well be set to point to a local variable which no longer exists when the called method2

returns, or the fixed object to which it used to point, is no longer fixed. For example:3

using System; 4
class Test 5
{ 6
 static int value = 20; 7
 8
 unsafe static void F(out int* pi1, ref int* pi2) { 9
 int i = 10; 10
 pi1 = &i; 11
 12
 fixed (int* pj = &value) { 13
 // ... 14
 pi2 = pj; 15
 } 16
 } 17
 18

 static void Main() { 19
 int i = 10; 20
 unsafe { 21
 int* px1; 22
 int* px2 = &i; 23
 24
 F(out px1, ref px2); 25
 Console.WriteLine("*px1 = {0}, *px2 = {1}", 26
 *px1, *px2); // undefined behavior 27
 } 28
 } 29
} 30

end note]31

A method can return a value of some type, and that type can be a pointer. [Example: For example, when32

given a pointer to a contiguous sequence ofints, that sequence's element count, and some otherint value,33

the following method returns the address of that value in that sequence, if a match occurs; otherwise it34

returnsnull:35

unsafe static int* Find(int* pi, int size, int value) { 36
 for (int i = 0; i < size; ++i) { 37
 if (*pi == value) { 38
 return pi; 39
 } 40
 ++pi; 41
 } 42
 return null; 43
} 44

end example]45

In an unsafe context, several constructsare available for operating on pointers:46

C# LANGUAGE SPECIFICATION

326

• The* operator may be used to perform pointer indirection (§25.5.1).1

• The-> operator may be used to access a member of a struct through a pointer (§25.5.2).2

• The[] operator may be used to index a pointer (§25.5.3).3

• The& operator may be used to obtain the address of a variable (§25.5.4).4

• The++ and-- operators may be used to increment and decrement pointers (§25.5.5).5

• The+ and- operators may be used to perform pointer arithmetic (§25.5.6).6

• The==, !=, <, >, <=, and=> operators may be used to compare pointers (§25.5.7).7

• Thestackalloc operator may be used to allocate memory from the call stack (§25.7).8

• Thefixed statement may be used to temporarily fix a variable so its address can be obtained (§25.6).9

25.3 Fixed and moveable variables10

The address-of operator (§25.5.4) and thefixed statement (§25.6) divide variables into two categories:11

Fixed variables andmoveable variables.12

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector.13

(Examples of fixed variables include local variables, value parameters, and variables created by14

dereferencing pointers.) On the other hand, moveablevariables reside in storage locations that are subject to15

relocation or disposal by the garbage collector. (Examples of moveable variables include fields in objects16

and elements of arrays.)17

The& operator (§25.5.4) permits the address of a fixedvariable to be obtained without restrictions.18

However, because a moveable variable is subject torelocation or disposal by the garbage collector, the19

address of a moveable variable can only be obtained using afixed statement (§25.6), and that address20

remains valid only for the duration of thatfixed statement.21

In precise terms, a fixed variable is one of the following:22

• A variable resulting from asimple-name (§14.5.2) that refers to a local variable or a value parameter.23

• A variable resulting from amember-access (§14.5.4) of the formV.I, whereV is a fixed variable of a24

struct-type.25

• A variable resulting from apointer-indirection-expression (§25.5.1) of the form*P, apointer-member-26

access (§25.5.2) of the formP->I, or apointer-element-access (§25.5.3) of the formP[E].27

All other variables are classified as moveable variables.28

Note that a static field is classified as a moveable variable. Also note that aref or out parameter is29

classified as a moveable variable, even if the argument given for the parameter is a fixed variable. Finally,30

note that a variable produced by dereferencing a pointer is always classified as a fixed variable.31

25.4 Pointer conversions32

In an unsafe context, the set of available implicit conversions (§13.1) is extended to include the following33

implicit pointer conversions:34

• From anypointer-type to the typevoid*.35

• From the null type to anypointer-type.36

Additionally, in an unsafe context, the set of available explicit conversions (§13.2) is extended to include the37

following explicit pointer conversions:38

Chapter 25 Unsafe code

327

• From anypointer-type to any otherpointer-type.1

• Fromsbyte, byte, short, ushort, int, uint, long, orulong to anypointer-type.2

• From anypointer-type to sbyte, byte, short, ushort, int, uint, long, orulong.3

Finally, in an unsafe context, the set of standard implicit conversions (§13.3.1) includes the following4

pointer conversion:5

• From anypointer-type to the typevoid*.6

Conversions between two pointer types never change the actual pointer value. In other words, a conversion7

from one pointer type to another has no effect on the underlying address given by the pointer.8

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the9

pointed-to type, the behavior is undefined if the resultis dereferenced. In general, the concept “correctly10

aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B, which, in turn, is11

correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.12

[Example: Consider the following case in which a variable having one type is accessed via a pointer to a13

different type:14

char c = 'A'; 15
char* pc = &c; 16
void* pv = pc; 17
int* pi = (int*)pv; 18
int i = *pi; // undefined 19
*pi = 123456; // undefined 20

end example]21

When a pointer type is converted to a pointer tobyte, the result points to the lowest addressed byte of the22

variable. Successive increments of the result, up to the size of the variable, yield pointers to the remaining23

bytes of that variable. [Example: For example, the following method displays each of the eight bytes in a24

double as a hexadecimal value:25

using System; 26
class Test 27
{ 28
 static void Main() { 29
 double d = 123.456e23; 30
 unsafe { 31
 byte* pb = (byte*)&d; 32
 33
 for (int i = 0; i < sizeof(double); ++i) 34
 Console.Write(" {0,2:X}", (uint)(*pb++)); 35
 Console.WriteLine(); 36
 } 37
 } 38
} 39

Of course, the output produced depends on endianness. end example]40

Mappings between pointers and integersare implementation-defined. [Note: However, on 32- and 64-bit41

CPU architectures with a linear address space, conversions of pointers to or from integral types typically42

behave exactly like conversions ofuint or ulong values, respectively, to or from those integral types.end43

note]44

25.5 Pointers in expressions45

In an unsafe context, an expression may yield a result of a pointer type, but outside an unsafe context it is a46

compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context a47

compile-time error occurs if anysimple-name (§14.5.2),member-access (§14.5.4),invocation-expression48

(§14.5.5), orelement-access (§14.5.6) is of a pointer type.49

In an unsafe context, theprimary-no-array-creation-expression (§14.5) andunary-expression (§14.6)50

productions permit the following additional constructs:51

C# LANGUAGE SPECIFICATION

328

primary-no-array-creation-expression:1

…2

pointer-member-access3

pointer-element-access4

sizeof-expression5

6

unary-expression:7

…8

pointer-indirection-expression9

addressof-expression10

These constructs are described in the following sections.11

[Note: The precedence and associativity of the unsafe operators is implied by the grammar.end note]12

25.5.1 Pointer indirection13

A pointer-indirection-expression consists of an asterisk (*) followed by aunary-expression.14

pointer-indirection-expression:15

* unary-expression16

The unary* operator denotespointer indirection and is used to obtain the variable to which a pointer points.17

The result of evaluating*P, whereP is an expression of a pointer typeT*, is a variable of typeT. It is a18

compile-time error to apply the unary* operator to an expression of typevoid* or to an expression that19

isn’t of a pointer type.20

The effect of applying the unary* operator to anull pointer is implementation-defined. In particular, there21

is no guarantee that this operation throws aSystem.NullReferenceException.22

If an invalid value has been assigned to the pointer, the behavior of the unary* operator is undefined. [Note:23

Among the invalid values for dereferencing a pointer by the unary* operator are an address inappropriately24

aligned for the type pointed to (see example in §25.4), and the address of a variable after the end of its25

lifetime. end note]26

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form27

*P is considered initially assigned (§12.3.1).28

25.5.2 Pointer member access29

A pointer-member-access consists of aprimary-expression, followed by a “->” token, followed by an30

identifier.31

pointer-member-access:32

primary-expression -> identifier33

In a pointer member access of the formP->I, P must be an expression of a pointer type other thanvoid*,34

andI must denote an accessible member of the type to whichP points.35

A pointer member access of the formP->I is evaluated exactly as(*P).I. For a description of the pointer36

indirection operator (*), see §25.5.1. For a description of the member access operator (.), see §14.5.4.37

[Example: In the example38

struct Point 39
{ 40
 public int x; 41
 public int y; 42

 public override string ToString() { 43
 return "(" + x + "," + y + ")"; 44
 } 45
} 46

Chapter 25 Unsafe code

329

using System; 1
class Test 2
{ 3
 static void Main() { 4
 Point point; 5
 unsafe { 6
 Point* p = &point; 7
 p->x = 10; 8
 p->y = 20; 9
 Console.WriteLine(p->ToString()); 10
 } 11
 } 12
} 13

the-> operator is used to access fields and invoke a method of a struct through a pointer. Because the14

operationP->I is precisely equivalent to(*P).I, theMain method could equally well have been written:15

using System; 16
class Test 17
{ 18
 static void Main() { 19
 Point point; 20
 unsafe { 21
 Point* p = &point; 22
 (*p).x = 10; 23
 (*p).y = 20; 24
 Console.WriteLine((*p).ToString()); 25
 } 26
 } 27
} 28

end example]29

25.5.3 Pointer element access30

A pointer-element-access consists of aprimary-no-array-creation-expression followed by an expression31

enclosed in “[” and “]”.32

pointer-element-access:33

primary-no-array-creation-expression [expression]34

In a pointer element access of the formP[E], P must be an expression of a pointer type other thanvoid*,35

andE must be an expression of a type that can be implicitly converted toint, uint, long, or ulong.36

A pointer element access of the formP[E] is evaluated exactly as*(P + E). For a description of the pointer37

indirection operator (*), see §25.5.1. For a description of the pointer addition operator (+), see §25.5.6.38

[Example: In the example39

class Test 40
{ 41
 static void Main() { 42
 unsafe { 43
 char* p = stackalloc char[256]; 44
 for (int i = 0; i < 256; i++) p[i] = (char)i; 45
 } 46
 } 47
} 48

a pointer element access is used to initialize the character buffer in afor loop. Because the operationP[E]49

is precisely equivalent to*(P + E), the example could equally well have been written:50

C# LANGUAGE SPECIFICATION

330

class Test 1
{ 2
 static void Main() { 3
 unsafe { 4
 char* p = stackalloc char[256]; 5
 for (int i = 0; i < 256; i++) *(p + i) = (char)i; 6
 } 7
 } 8
} 9

end example]10

The pointer element access operator does not check for out-of-bounds errors and the behavior when11

accessing an out-of-bounds element is undefined. [Note: This is the same as C and C++.end note]12

25.5.4 The address-of operator13

An addressof-expression consists of an ampersand (&) followed by aunary-expression.14

addressof-expression:15

& unary-expression16

Given an expressionE which is of a typeT and is classified as a fixed variable (§25.3), the construct&E17

computes the address of the variable given by E. The type of the result isT* and is classified as a value. A18

compile-time error occurs ifE is not classified as a variable, ifE is classified as a volatile field (§17.4.3), or19

if E denotes a moveable variable. In the last case, a fixed statement (§25.6) can be used to temporarily “fix”20

the variable before obtaining its address.21

The& operator does not require its argument to be definitely assigned, but following an& operation, the22

variable to which the operator is applied is considered definitely assigned in the execution path in which the23

operation occurs. It is the responsibility of the programmer to ensure that correct initialization of the variable24

actually does take place in this situation.25

[Example: In the example26

using System; 27
class Test 28
{ 29
 static void Main() { 30
 int i; 31
 unsafe { 32
 int* p = &i; 33
 *p = 123; 34
 } 35
 Console.WriteLine(i); 36
 } 37
} 38

i is considered definitely assigned following the&i operation used to initializep. The assignment to*p in39

effect initializesi, but the inclusion of this initialization is the responsibility of the programmer, and no40

compile-time error would occur if the assignment was removed.end example]41

[Note: The rules of definite assignment for the& operator exist such that redundant initialization of local42

variables can be avoided. For example, many external APIs take a pointer to a structure which is filled in by43

the API. Calls to such APIs typically pass the address of a local struct variable, and without the rule,44

redundant initialization of the struct variable would be required.end note]45

[Note: As stated in §14.5.4, outside an instance constructor or static constructor for a struct or class that46

defines a readonly field, that field is considered a value, not a variable. As such, its address cannot be taken.47

Similarly, the address of aconstant cannot be taken.end note]48

25.5.5 Pointer increment and decrement49

In an unsafe context, the++ and-- operators (§14.5.9 and §14.6.5) can be applied to pointer variables of all50

types exceptvoid*. Thus, for every pointer typeT*, the following operators are implicitly defined:51

Chapter 25 Unsafe code

331

T* operator ++(T* x); 1

T* operator --(T* x); 2

The operators produce the same results asx+1 andx-1, respectively (§25.5.6). In other words, for a pointer3

variable of typeT*, the++ operator addssizeof(T) to the address contained in the variable, and the4

-- operator subtractssizeof(T) from the address contained in the variable.5

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is6

implementation-defined, but no exceptions are produced.7

25.5.6 Pointer arithmetic8

In an unsafe context, the+ operator (§14.7.4) and� operator (§14.7.5) can be applied to values of all9

pointer types exceptvoid*. Thus, for every pointer typeT*, the following operators are implicitly defined:10

T* operator +(T* x, int y); 11
T* operator +(T* x, uint y); 12
T* operator +(T* x, long y); 13
T* operator +(T* x, ulong y); 14

T* operator +(int x, T* y); 15
T* operator +(uint x, T* y); 16
T* operator +(long x, T* y); 17
T* operator +(ulong x, T* y); 18

T* operator �(T* x, int y); 19
T* operator �(T* x, uint y); 20
T* operator �(T* x, long y); 21
T* operator �(T* x, ulong y); 22

long operator �(T* x, T* y); 23

Given an expressionP of a pointer typeT* and an expressionN of typeint, uint, long, orulong, the24

expressionsP + N andN + P compute the pointer value of typeT* that results from adding25

N * sizeof(T) to the address given by P. Likewise, the expressionP � N computes the pointer value of26

typeT* that results from subtractingN * sizeof(T) from the address given by P.27

Given two expressions,P andQ, of a pointer typeT*, the expressionP � Q computes the difference28

between the addresses given byP andQ and then divides that difference bysizeof(T). The type of the29

result is alwayslong. In effect,P - Q is computed as((long)(P) - (long)(Q)) / sizeof(T).30

[Example: For example:31
32

using System; 33
class Test 34
{ 35
 static void Main() { 36
 unsafe { 37
 int* values = stackalloc int[20]; 38
 39
 int* p = &values[1]; 40
 int* q = &values[15]; 41
 42
 Console.WriteLine("p - q = {0}", p - q); 43
 Console.WriteLine("q - p = {0}", q - p); 44
 } 45
 } 46
} 47

which produces the output:48

p - q = -14 49
q - p = 14 50

end example]51

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an52

implementation-defined fashion, but no exceptions are produced.53

C# LANGUAGE SPECIFICATION

332

25.5.7 Pointer comparison1

In an unsafe context, the==, !=, <, >, <=, and=> operators (§14.9) can be applied to values of all pointer2

types. The pointer comparison operators are:3

bool operator ==(void* x, void* y); 4
bool operator !=(void* x, void* y); 5
bool operator <(void* x, void* y); 6

bool operator >(void* x, void* y); 7
bool operator <=(void* x, void* y); 8
bool operator >=(void* x, void* y); 9

Because an implicit conversion exists from any pointer type to thevoid* type, operands of any pointer type10

can be compared using these operators. The comparison operators compare the addresses given by the two11

operands as if they were unsigned integers.12

25.5.8 The sizeof operator13

Thesizeof operator returns the number of bytes occupied by a variable of a given type. The type specified14

as an operand tosizeof must be anunmanaged-type (§25.2).15

sizeof-expression:16

sizeof (unmanaged-type)17

The result of thesizeof operator is a value of typeint. For certain predefined types, thesizeof operator18

yields a constant value as shown in the table below.19

20

Expression Result

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

21

For all other types, the result of thesizeof operator is implementation-defined and is classified as a value,22

not a constant.23

The order in which members are packed into a struct is unspecified.24

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and at25

the end of the struct. The contents of the bits used as padding are indeterminate.26

When applied to an operand that has struct type, the result is the total number of bytes in a variable of that27

type, including any padding.28

25.6 The fixed statement29

In an unsafe context, theembedded-statement (§15) production permits an additional construct, thefixed30

statement, which is used to “fix” a moveable variable such that its address remains constant for the duration31

of the statement.32

Chapter 25 Unsafe code

333

embedded-statement:1

...2

fixed-statement3

fixed-statement:4

fixed (pointer-type fixed-pointer-declarators) embedded-statement5

fixed-pointer-declarators:6

fixed-pointer-declarator7

fixed-pointer-declarators , fixed-pointer-declarator8

fixed-pointer-declarator:9

identifier = fixed-pointer-initializer10

11

fixed-pointer-initializer:12

& variable-reference13

expression14

Eachfixed-pointer-declarator declares a local variable of the givenpointer-type and initializes that local15

variable with the address computed by the correspondingfixed-pointer-initializer. A local variable declared16

in afixed statement is accessible in anyfixed-pointer-initializers occurring to the right of that variable’s17

declaration, and in theembedded-statement of thefixed statement. A local variable declared by afixed18

statement is considered read-only. A compile-time error occurs if the embedded statement attempts to19

modify this local variable (via assignment or the++ and-- operators) or pass it as aref or out parameter.20

A fixed-pointer-initializer can be one of the following:21

• The token “&” followed by avariable-reference (§12.3.3) to a moveable variable (§25.3) of an22

unmanaged typeT, provided the typeT* is implicitly convertible to the pointer type given in thefixed23

statement. In this case, the initializer computes the address of the given variable, and the variable is24

guaranteed to remain at a fixed address for the duration of thefixed statement.25

• An expression of anarray-type with elements of an unmanaged typeT, provided the typeT* is26

implicitly convertible to the pointer type given in thefixed statement. In this case, the initializer computes27

the address of the first element in the array, and the entire array is guaranteed to remain at a fixed address for28

the duration of thefixed statement. The behavior of thefixed statement is implementation-defined if the29

array expression is null or if the array has zero elements.30

• An expression of typestring, provided the typechar* is implicitly convertible to the pointer type31

given in thefixed statement. In this case, the initializer computes the address of the first character in the32

string, and the entire string is guaranteed to remain at a fixed address for the duration of thefixed33

statement. The behavior of thefixed statement is implementation-defined if the string expression is null.34

For each address computed by afixed-pointer-initializer thefixed statement ensures that the variable35

referenced by the address is not subject to relocation or disposal by the garbage collector for the duration of36

thefixed statement. For example, if the address computed by afixed-pointer-initializer references a field of37

an object or an element of an array instance, thefixed statement guarantees that the containing object38

instance is not relocated or disposed of during the lifetime of the statement.39

It is the programmer's responsibility to ensure that pointers created byfixed statements do not survive40

beyond execution of those statements. For example, when pointers created byfixed statements are passed41

to external APIs, it is the programmer’s responsibility to ensure that the APIs retain no memory of these42

pointers.43

Fixed objects may cause fragmentation of the heap (because they can’t be moved). For that reason, objects44

should be fixed only when absolutely necessary and then only for the shortest amount of time45

possible.[Example: The example46

C# LANGUAGE SPECIFICATION

334

class Test 1
{ 2
 static int x; 3
 int y; 4

 unsafe static void F(int* p) { 5
 *p = 1; 6
 } 7

 static void Main() { 8
 Test t = new Test(); 9
 int[] a = new int[10]; 10
 unsafe { 11
 fixed (int* p = &x) F(p); 12
 fixed (int* p = &t.y) F(p); 13
 fixed (int* p = &a[0]) F(p); 14
 fixed (int* p = a) F(p); 15
 } 16
 } 17
} 18

demonstrates several uses of thefixed statement. The first statement fixes and obtains the address of a19

static field, the second statement fixes and obtains the address of an instance field, and the third statement20

fixes and obtains the address of an array element. In each case it would have been an error to use the regular21

& operator since the variables are all classified as moveable variables.22

The third and fourthfixed statements in the example above produce identical results. In general, for an23

array instancea, specifying&a[0] in afixed statement is the same as simply specifyinga.24

Here’s another example of thefixed statement, this time usingstring:25
26

class Test 27
{ 28
 static string name = "xx"; 29
 30
 unsafe static void F(char* p) { 31
 for (int i = 0; p[i] != '\0'; ++i) 32
 Console.WriteLine(p[i]); 33
 } 34
 35

 static void Main() { 36
 unsafe { 37
 fixed (char* p = name) F(p); 38
 fixed (char* p = "xx") F(p); 39
 } 40
 } 41
} 42

end example]43

In an unsafe context array elements of single-dimensional arrays are stored in increasing index order,44

starting with index0 and ending with indexLength � 1. For multi-dimensional arrays, array elements are45

stored such that the indices of the rightmost dimension are increased first, then the next left dimension, and46

so on to the left.47

Within afixed statement that obtains a pointerp to an array instancea, the pointer values ranging fromp48

to p + a.Length - 1 represent addresses of the elements in the array. Likewise, the variables ranging from49

p[0] to p[a.Length - 1] represent the actual array elements. Given the way in which arrays are stored ,50

we can treat an array of any dimension as though it were linear. [Example: For example.51

Chapter 25 Unsafe code

335

using System; 1
class Test 2
{ 3
 static void Main() { 4
 int[,,] a = new int[2,3,4]; 5
 unsafe { 6
 fixed (int* p = a) { 7
 for (int i = 0; i < a.Length; ++i) // treat as linear 8
 p[i] = i; 9
 } 10
 } 11
 12

 for (int i = 0; i < 2; ++i) 13
 for (int j = 0; j < 3; ++j) { 14
 for (int k = 0; k < 4; ++k) 15
 Console.Write("[{0},{1},{2}] = {3,2} ", i, j, k, 16
a[i,j,k]); 17
 Console.WriteLine(); 18
 } 19
 } 20
} 21

which produces the output:22

[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3 23
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7 24
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11 25
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15 26
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19 27
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23 28

end example]29

[Example: In the example30

class Test 31
{ 32
 unsafe static void Fill(int* p, int count, int value) { 33
 for (; count != 0; count--) *p++ = value; 34
 } 35

 static void Main() { 36
 int[] a = new int[100]; 37
 unsafe { 38
 fixed (int* p = a) Fill(p, 100, -1); 39
 } 40
 } 41
} 42

afixed statement is used to fix an array so its address can be passed to a method that takes a pointer.end43

example]44

A char* value produced by fixing a string instance always points to a null-terminated string. Within a fixed45

statement that obtains a pointerp to a string instances, the pointer values ranging fromp to46

p + s.Length - 1 represent addresses of the characters in the string, and the pointer value47

p + s.Length always points to a null character (the character with value'\0').48

Modifying objects of managed type through fixed pointers can result in undefined behavior. [Note: For49

example, because strings are immutable, it is the programmer’s responsibility to ensure that the characters50

referenced by a pointer to a fixed string are not modified.end note]51

[Note: The automatic null-termination of strings is particularly convenient when calling external APIs that52

expect “C-style” strings. Note, however, that a string instance is permitted to contain null characters. If such53

null characters are present, the string will appear truncated when treated as a null-terminatedchar*. end54

note]55

C# LANGUAGE SPECIFICATION

336

25.7 Stack allocation1

In an unsafe context, a local variable declaration (§15.5.1) may include a stack allocation initializer, which2

allocates memory from the call stack.3

local-variable-initializer:4

expression5

array-initializer6

stackalloc-initializer7

stackalloc-initializer:8

stackalloc unmanaged-type [expression] 9

Theunmanaged-type indicates the type of the items that will be stored in the newly allocated location, and10

theexpression indicates the number of these items. Taken together, these specify the required allocation11

size. Since the size of a stack allocation cannot be negative, it is a compile-time error to specify the number12

of items as a constant-expression that evaluates to a negative value.13

A stack allocation initializer of the formstackalloc T[E] requiresT to be an unmanaged type (§25.2) and14

E to be an expression of typeint. The construct allocatesE * sizeof(T) bytes from the call stack and15

returns a pointer, of typeT*, to the newly allocated block. IfE is a negative value, then the behavior is16

undefined. If E is zero, then no allocation is made, and the pointer returned is implementation-defined. If17

there is not enough memory available to allocate a block of the given size, a18

System.StackOverflowException is thrown.19

The content of the newly allocated memory is undefined.20

Stack allocation initializers are not permitted in catch or finally blocks (§15.10).21

[Note: There is no way to explicitly free memory allocated usingstackalloc. end note] All stack-22

allocated memory blocks created during the execution of a function member are automatically discarded23

when that function member returns. [Note: This corresponds to thealloca function, an extension24

commonly found C and C++ implementations.end note]25

[Example: In the example26

using System; 27
class Test 28
{ 29
 static string IntToString(int value) { 30
 int n = value >= 0 ? value : -value; 31
 unsafe { 32
 char* buffer = stackalloc char[16]; 33
 char* p = buffer + 16; 34
 do { 35
 *--p = (char)(n % 10 + '0'); 36
 n /= 10; 37
 } while (n != 0); 38
 if (value < 0) *--p = '-'; 39
 return new string(p, 0, (int)(buffer + 16 - p)); 40
 } 41
 } 42

 static void Main() { 43
 Console.WriteLine(IntToString(12345)); 44
 Console.WriteLine(IntToString(-999)); 45
 } 46
} 47

astackalloc initializer is used in theIntToString method to allocate a buffer of 16 characters on the48

stack. The buffer is automatically discarded when the method returns.end example]49

25.8 Dynamic memory allocation50

Except for thestackalloc operator, C# provides no predefined constructs for managing non-garbage51

collected memory. Such services are typically provided by supporting class libraries or imported directly52

Chapter 25 Unsafe code

337

from the underlying operating system. [Example: For example, theMemory class below illustrates how the1

heap functions of an underlying operating system might be accessed from C#:2

using System; 3
using System.Runtime.InteropServices; 4

public unsafe class Memory 5
{ 6
 // Handle for the process heap. This handle is used in all calls to 7
the 8
 // HeapXXX APIs in the methods below. 9

 static int ph = GetProcessHeap(); 10

 // Private instance constructor to prevent instantiation. 11

 private Memory() {} 12

 // Allocates a memory block of the given size. The allocated memory is 13
 // automatically initialized to zero. 14

 public static void* Alloc(int size) { 15
 void* result = HeapAlloc(ph, HEAP_ZERO_MEMORY, size); 16
 if (result == null) throw new OutOfMemoryException(); 17
 return result; 18
 } 19

 // Copies count bytes from src to dst. The source and destination 20
 // blocks are permitted to overlap. 21

 public static void Copy(void* src, void* dst, int count) { 22
 byte* ps = (byte*)src; 23
 byte* pd = (byte*)dst; 24
 if (ps > pd) { 25
 for (; count != 0; count--) *pd++ = *ps++; 26
 } 27
 else if (ps < pd) { 28
 for (ps += count, pd += count; count != 0; count--) *--pd = *--29
ps; 30
 } 31
 } 32

 // Frees a memory block. 33

 public static void Free(void* block) { 34
 if (!HeapFree(ph, 0, block)) throw new InvalidOperationException(); 35
 } 36

 // Re-allocates a memory block. If the reallocation request is for a 37
 // larger size, the additional region of memory is automatically 38
 // initialized to zero. 39

 public static void* ReAlloc(void* block, int size) { 40
 void* result = HeapReAlloc(ph, HEAP_ZERO_MEMORY, block, size); 41
 if (result == null) throw new OutOfMemoryException(); 42
 return result; 43
 } 44

 // Returns the size of a memory block. 45

 public static int SizeOf(void* block) { 46
 int result = HeapSize(ph, 0, block); 47
 if (result == -1) throw new InvalidOperationException(); 48
 return result; 49
 } 50

 // Heap API flags 51

 const int HEAP_ZERO_MEMORY = 0x00000008; 52

 // Heap API functions 53

 [DllImport("kernel32")] 54
 static extern int GetProcessHeap(); 55

 [DllImport("kernel32")] 56
 static extern void* HeapAlloc(int hHeap, int flags, int size); 57

C# LANGUAGE SPECIFICATION

338

 [DllImport("kernel32")] 1
 static extern bool HeapFree(int hHeap, int flags, void* block); 2

 [DllImport("kernel32")] 3
 static extern void* HeapReAlloc(int hHeap, int flags, 4
 void* block, int size); 5

 [DllImport("kernel32")] 6
 static extern int HeapSize(int hHeap, int flags, void* block); 7
} 8

An example that uses theMemory class is given below:9

class Test 10
{ 11
 static void Main() { 12
 unsafe { 13
 byte* buffer = (byte*)Memory.Alloc(256); 14
 for (int i = 0; i < 256; i++) buffer[i] = (byte)i; 15
 byte[] array = new byte[256]; 16
 fixed (byte* p = array) Memory.Copy(buffer, p, 256); 17
 Memory.Free(buffer); 18
 for (int i = 0; i < 256; i++) Console.WriteLine(array[i]); 19
 } 20
 } 21
} 22

The example allocates 256 bytes of memory throughMemory.Alloc and initializes the memory block with23

values increasing from 0 to 255. It then allocates a 256-element byte array and usesMemory.Copy to copy24

the contents of the memory block into the byte array. Finally, the memory block is freed using25

Memory.Free and the contents of the byte array are output on the console.end example]26

End of conditionally normative text.27

Appendix A Grammar

339

A. Grammar1

This clause is informative.2

This appendix contains summaries of the lexical and syntactic grammars found in the main document, and of3

the grammar extensions for unsafe code. Grammar productions appear here in the same order that they4

appear in the main document.5

A.1 Lexical grammar6

input::7

input-sectionopt8

input-section::9

input-section-part10

input-section input-section-part11

input-section-part::12

input-elementsopt new-line13

pp-directive14

input-elements::15

input-element16

input-elements input-element17

input-element::18

whitespace19

comment20

token21

A.1.1 Line terminators22

new-line::23

Carriage return character (U+000D)24

Line feed character (U+000A)25

Carriage return character (U+000D) followed by line feed character (U+000A)26

Line separator character (U+2028)27

Paragraph separator character (U+2029)28

A.1.2 White space29

whitespace::30

Any character with Unicode class Zs31

Horizontal tab character (U+0009)32

Vertical tab character (U+000B)33

Form feed character (U+000C)34

A.1.3 Comments35

comment::36

single-line-comment37

delimited-comment38

single-line-comment::39

// input-charactersopt40

C# LANGUAGE SPECIFICATION

340

input-characters::1

input-character2

input-characters input-character3

input-character::4

Any Unicode character except anew-line-character5

new-line-character::6

Carriage return character (U+000D)7

Line feed character (U+000A)8

Line separator character (U+2028)9

Paragraph separator character (U+2029)10

delimited-comment::11

/* delimited-comment-charactersopt */12

delimited-comment-characters::13

delimited-comment-character14

delimited-comment-characters delimited-comment-character15

delimited-comment-character::16

not-asterisk17

* not-slash18

not-asterisk::19

Any Unicode character except*20

not-slash::21

Any Unicode character except/22

A.1.4 Tokens23

token::24

identifier25

keyword26

integer-literal27

real-literal28

character-literal29

string-literal30

operator-or-punctuator31

A.1.5 Unicode character escape sequences32

unicode-character-escape-sequence::33

\u hex-digit hex-digit hex-digit hex-digit34

\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit35

A.1.6 Identifiers36

identifier::37

available-identifier38

@ identifier-or-keyword39

available-identifier::40

An identifier-or-keyword that is not akeyword41

identifier-or-keyword::42

identifier-start-character identifier-part-charactersopt43

identifier-start-character::44

letter-character45

_ (the underscore character)46

Appendix A Grammar

341

identifier-part-characters::1

identifier-part-character2

identifier-part-characters identifier-part-character3

identifier-part-character::4

letter-character5

decimal-digit-character6

connecting-character7

combining-character8

formatting-character9

letter-character::10

A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl11

A unicode-character-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or12

Nl13

combining-character::14

A Unicode character of classes Mn or Mc15

A unicode-character-escape-sequence representing a character of classes Mn or Mc16

decimal-digit-character::17

A Unicode character of the class Nd18

A unicode-character-escape-sequence representing a character of the class Nd19

connecting-character::20

A Unicode character of the class Pc21

A unicode-character-escape-sequence representing a character of the class Pc22

formatting-character::23

A Unicode character of the class Cf24

A unicode-character-escape-sequence representing a character of the class Cf25

A.1.7 Keywords26

keyword:: one of27

abstract as base bool break 28

byte case catch char checked 29

class const continue decimal default 30

delegate do double else enum 31

event explicit extern false finally 32

fixed float for foreach goto 33

if implicit in int interface 34

internal is lock long namespace 35

new null object operator out 36

override params private protected public 37

readonly ref return sbyte sealed 38

short sizeof stackalloc static string 39

struct switch this throw true 40

try typeof uint ulong unchecked 41

unsafe ushort using virtual void 42

while 43

C# LANGUAGE SPECIFICATION

342

A.1.8 Literals1

literal::2

boolean-literal3

integer-literal4

real-literal5

character-literal6

string-literal7

null-literal8

boolean-literal::9

true 10

false 11

integer-literal::12

decimal-integer-literal13

hexadecimal-integer-literal14

decimal-integer-literal::15

decimal-digits integer-type-suffixopt16

decimal-digits::17

decimal-digit18

decimal-digits decimal-digit19

decimal-digit:: one of20

0 1 2 3 4 5 6 7 8 9 21

integer-type-suffix:: one of22

U u L l UL Ul uL ul LU Lu lU lu 23

hexadecimal-integer-literal::24

0x hex-digits integer-type-suffixopt25

0X hex-digits integer-type-suffixopt26

hex-digits::27

hex-digit28

hex-digits hex-digit29

hex-digit:: one of30

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f 31

real-literal::32

decimal-digits . decimal-digits exponent-partopt real-type-suffixopt33

. decimal-digits exponent-partopt real-type-suffixopt34

decimal-digits exponent-part real-type-suffixopt35

decimal-digits real-type-suffix36

exponent-part::37

e signopt decimal-digits38

E signopt decimal-digits39

sign:: one of40

+ - 41

real-type-suffix:: one of42

F f D d M m43

character-literal::44

' character '45

Appendix A Grammar

343

character::1

single-character2

simple-escape-sequence3

hexadecimal-escape-sequence4

unicode-character-escape-sequence5

single-character::6

Any character except' (U+0027), \ (U+005C), andnew-line-character7

simple-escape-sequence:: one of8

\' \" \\ \0 \a \b \f \n \r \t \v 9

hexadecimal-escape-sequence::10

\x hex-digit hex-digitopt hex-digitopt hex-digitopt 11

string-literal::12

regular-string-literal13

verbatim-string-literal14

regular-string-literal::15

" regular-string-literal-charactersopt " 16

regular-string-literal-characters::17

regular-string-literal-character18

regular-string-literal-characters regular-string-literal-character19

regular-string-literal-character::20

single-regular-string-literal-character21

simple-escape-sequence22

hexadecimal-escape-sequence23

unicode-character-escape-sequence24

single-regular-string-literal-character::25

Any character except" (U+0022), \ (U+005C), andnew-line-character26

verbatim-string-literal::27

@" verbatim -string-literal-charactersopt "28

verbatim-string-literal-characters::29

verbatim-string-literal-character30

verbatim-string-literal-characters verbatim-string-literal-character31

verbatim-string-literal-character::32

single-verbatim-string-literal-character33

quote-escape-sequence34

single-verbatim-string-literal-character::35

any character except"36

quote-escape-sequence::37

""38

null-literal::39

null 40

A.1.9 Operators and punctuators41

operator-or-punctuator:: one of42

{ } [] () . , : ; 43

+ - * / % & | ^ ! ~ 44

= < > ? ++ -- && || << >> 45

== != <= >= += -= *= /= %= &= 46

|= ^= <<= >>= -> 47

C# LANGUAGE SPECIFICATION

344

A.1.10 Pre-processing directives1

pp-directive::2

pp-declaration3

pp-conditional4

pp-line5

pp-diagnostic6

pp-region7

pp-new-line::8

whitespaceopt single-line-commentopt new-line9

conditional-symbol::10

Any identifier-or-keyword excepttrue or false11

pp-expression::12

whitespaceopt pp-or-expression whitespaceopt13

pp-or-expression::14

pp-and-expression15

pp-or-expression whitespaceopt || whitespaceopt pp-and-expression16

pp-and-expression::17

pp-equality-expression18

pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression19

pp-equality-expression::20

pp-unary-expression21

pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression22

pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression23

pp-unary-expression::24

pp-primary-expression25

! whitespaceopt pp-unary-expression26

pp-primary-expression::27

true28

false29

conditional-symbol30

(whitespaceopt pp-expression whitespaceopt)31

32

pp-declaration::33

whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line34

whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line35

pp-conditional::36

pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif37

pp-if-section::38

whitespaceopt # whitespaceopt if whitespace pp-expression pp-new-line conditional-39

sectionopt40

pp-elif-sections::41

pp-elif-section42

pp-elif-sections pp-elif-section43

pp-elif-section::44

whitespaceopt # whitespaceopt elif whitespace pp-expression pp-new-line conditional-45

sectionopt46

pp-else-section::47

whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt48

Appendix A Grammar

345

pp-endif::1

whitespaceopt # whitespaceopt endif pp-new-line2

conditional-section::3

input-section4

skipped-section5

skipped-section::6

skipped-section-part7

skipped-section skipped-section-part8

skipped-section-part::9

skipped-charactersopt new-line10

pp-directive11

skipped-characters::12

whitespaceopt not-number-sign input-charactersopt13

not-number-sign::14

Any input-character except#15

pp-line::16

whitespaceopt # whitespaceopt line whitespaceopt line-indicator pp-new-line17

line-indicator::18

decimal-digits whitespace file-name19

decimal-digits20

default21

file-name::22

" file-name-characters "23

file-name-characters::24

file-name-character25

file-name-characters file-name-character26

file-name-character::27

Any character except" (U+0022), andnew-line28

pp-diagnostic::29

whitespaceopt # whitespaceopt error whitespaceopt pp-message30

whitespaceopt # whitespaceopt warning whitespaceopt pp-message31

pp-message::32

input-charactersopt new-line33

pp-region::34

pp-start-region conditional-sectionopt pp-end-region35

pp-start-region::36

whitespaceopt # whitespaceopt region whitespaceopt pp-message37

pp-end-region::38

whitespaceopt # whitespaceopt endregion whitespaceopt pp-message39

A.2 Syntactic grammar40

A.2.1 Basic concepts41

namespace-name:42

namespace-or-type-name43

type-name:44

namespace-or-type-name45

C# LANGUAGE SPECIFICATION

346

namespace-or-type-name:1

identifier2

namespace-or-type-name . identifier3

A.2.2 Types4

type:5

value-type6

reference-type7

value-type:8

struct-type9

enum-type10

struct-type:11

type-name12

simple-type13

simple-type:14

numeric-type15

bool16

numeric-type:17

integral-type18

floating-point-type19

decimal20

integral-type:21

sbyte 22

byte 23

short 24

ushort 25

int 26

uint 27

long 28

ulong 29

char30

floating-point-type:31

float 32

double33

enum-type:34

type-name35

reference-type:36

class-type37

interface-type38

array-type39

delegate-type40

class-type:41

type-name42

object43

string 44

interface-type:45

type-name46

array-type:47

non-array-type rank-specifiers48

Appendix A Grammar

347

non-array-type:1

type2

rank-specifiers:3

rank-specifier4

rank-specifiers rank-specifier5

rank-specifier:6

[dim-separatorsopt] 7

dim-separators:8

,9

dim-separators ,10

delegate-type:11

type-name12

A.2.3 Variables13

variable-reference:14

expression15

A.2.4 Expressions16

argument-list:17

argument18

argument-list , argument19

argument:20

expression21

ref variable-reference22

out variable-reference23

primary-expression:24

array-creation-expression25

primary-no-array-creation-expression26

primary-no-array-creation-expression:27

literal28

simple-name29

parenthesized-expression30

member-access31

invocation-expression32

element-access33

this-access34

base-access35

post-increment-expression36

post-decrement-expression37

object-creation-expression38

delegate-creation-expression39

40

typeof-expression41

sizeof-expression42

checked-expression43

unchecked-expression44

simple-name:45

identifier46

parenthesized-expression:47

(expression)48

C# LANGUAGE SPECIFICATION

348

member-access:1

primary-expression . identifier2

predefined-type . identifier3

predefined-type: one of4

bool byte char decimal double float int long 5

object sbyte short string uint ulong ushort 6

invocation-expression:7

primary-expression (argument-listopt)8

element-access:9

primary-no-array-creation-expression [expression-list] 10

expression-list:11

expression12

expression-list , expression13

this-access:14

this15

base-access:16

base . identifier17

base [expression-list]18

post-increment-expression:19

primary-expression ++ 20

post-decrement-expression:21

primary-expression --22

object-creation-expression:23

new type (argument-listopt)24

array-creation-expression:25

new non-array-type [expression-list] rank-specifiersopt array-initializeropt26

new array-type array-initializer27

delegate-creation-expression:28

new delegate-type (expression) 29

typeof-expression:30

typeof (type) 31

typeof (void)32

checked-expression:33

checked (expression)34

unchecked-expression:35

unchecked (expression) 36

unary-expression:37

primary-expression38

+ unary-expression39

- unary-expression40

! unary-expression41

~ unary-expression42

* unary-expression43

pre-increment-expression44

pre-decrement-expression45

cast-expression46

pre-increment-expression:47

++ unary-expression48

Appendix A Grammar

349

pre-decrement-expression:1

-- unary-expression2

cast-expression:3

(type) unary-expression4

multiplicative-expression:5

unary-expression6

multiplicative-expression * unary-expression7

multiplicative-expression / unary-expression8

multiplicative-expression % unary-expression9

additive-expression:10

multiplicative-expression11

additive-expression + multiplicative-expression12

additive-expression � multiplicative-expression13

shift-expression:14

additive-expression15

shift-expression << additive-expression16

shift-expression >> additive-expression17

relational-expression:18

shift-expression19

relational-expression < shift-expression20

relational-expression > shift-expression21

relational-expression <= shift-expression22

relational-expression >= shift-expression23

relational-expression is type24

relational-expression as type25

equality-expression:26

relational-expression27

equality-expression == relational-expression28

equality-expression != relational-expression29

and-expression:30

equality-expression31

and-expression & equality-expression32

exclusive-or-expression:33

and-expression34

exclusive-or-expression ^ and-expression35

inclusive-or-expression:36

exclusive-or-expression37

inclusive-or-expression | exclusive-or-expression38

conditional-and-expression:39

inclusive-or-expression40

conditional-and-expression && inclusive-or-expression41

conditional-or-expression:42

conditional-and-expression43

conditional-or-expression || conditional-and-expression44

conditional-expression:45

conditional-or-expression46

conditional-or-expression ? expression : expression47

assignment:48

unary-expression assignment-operator expression49

C# LANGUAGE SPECIFICATION

350

assignment-operator: one of1

= += -= *= /= %= &= |= ^= <<= >>=2

expression:3

conditional-expression4

assignment5

constant-expression:6

expression7

boolean-expression:8

expression9

A.2.5 Statements10

statement:11

labeled-statement12

declaration-statement13

embedded-statement14

embedded-statement:15

block16

empty-statement17

expression-statement18

selection-statement19

iteration-statement20

jump-statement21

try-statement22

checked-statement23

unchecked-statement24

lock-statement25

using-statement26

block:27

{ statement-listopt }28

statement-list:29

statement30

statement-list statement31

empty-statement:32

; 33

labeled-statement:34

identifier : statement35

declaration-statement:36

local-variable-declaration ;37

local-constant-declaration ; 38

local-variable-declaration:39

type local-variable-declarators40

local-variable-declarators:41

local-variable-declarator42

local-variable-declarators , local-variable-declarator43

local-variable-declarator:44

identifier45

identifier = local-variable-initializer46

Appendix A Grammar

351

local-variable-initializer:1

expression2

array-initializer3

local-constant-declaration:4

const type constant-declarators5

constant-declarators:6

constant-declarator7

constant-declarators , constant-declarator8

constant-declarator:9

identifier = constant-expression10

expression-statement:11

statement-expression ;12

statement-expression:13

invocation-expression14

object-creation-expression15

assignment16

post-increment-expression17

post-decrement-expression18

pre-increment-expression19

pre-decrement-expression20

selection-statement:21

if-statement22

switch-statement23

if-statement:24

if (boolean-expression) embedded-statement25

if (boolean-expression) embedded-statement else embedded-statement26

boolean-expression:27

expression28

switch-statement:29

switch (expression) switch-block30

switch-block:31

{ switch-sectionsopt }32

switch-sections:33

switch-section34

switch-sections switch-section35

switch-section:36

switch-labels statement-list37

switch-labels:38

switch-label39

switch-labels switch-label40

switch-label:41

case constant-expression :42

default :43

iteration-statement:44

while-statement45

do-statement46

for-statement47

foreach-statement48

C# LANGUAGE SPECIFICATION

352

while-statement:1

while (boolean-expression) embedded-statement2

do-statement:3

do embedded-statement while (boolean-expression) ; 4

for-statement:5

for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement6

for-initializer:7

local-variable-declaration8

statement-expression-list9

for-condition:10

boolean-expression11

for-iterator:12

statement-expression-list13

statement-expression-list:14

statement-expression15

statement-expression-list , statement-expression16

foreach-statement:17

foreach (type identifier in expression) embedded-statement18

jump-statement:19

break-statement20

continue-statement21

goto-statement22

return-statement23

throw-statement24

break-statement:25

break ; 26

continue-statement:27

continue ; 28

goto-statement:29

goto identifier ; 30

goto case constant-expression ;31

goto default ;32

return-statement:33

return expressionopt ; 34

throw-statement:35

throw expressionopt ; 36

try-statement:37

try block catch-clauses38

try block finally-clause39

try block catch-clauses finally-clause40

catch-clauses:41

specific-catch-clauses general-catch-clauseopt42

specific-catch-clausesopt general-catch-clause43

specific-catch-clauses:44

specific-catch-clause45

specific-catch-clauses specific-catch-clause46

Appendix A Grammar

353

specific-catch-clause:1

catch (class-type identifieropt) block2

general-catch-clause:3

catch block4

finally-clause:5

finally block6

checked-statement:7

checked block8

unchecked-statement:9

unchecked block10

lock-statement:11

lock (expression) embedded-statement12

using-statement:13

using (resource-acquisition) embedded-statement14

resource-acquisition:15

local-variable-declaration16

expression17

compilation-unit:18

using-directivesopt global-attributesopt namespace-member-declarationsopt19

namespace-declaration:20

namespace qualified-identifier namespace-body ;opt21

qualified-identifier:22

identifier23

qualified-identifier . identifier24

namespace-body:25

{ using-directivesopt namespace-member-declarationsopt }26

using-directives:27

using-directive28

using-directives using-directive29

using-directive:30

using-alias-directive31

using-namespace-directive32

using-alias-directive:33

using identifier = namespace-or-type-name ; 34

using-namespace-directive:35

using namespace-name ;36

namespace-member-declarations:37

namespace-member-declaration38

namespace-member-declarations namespace-member-declaration39

namespace-member-declaration:40

namespace-declaration41

type-declaration42

C# LANGUAGE SPECIFICATION

354

type-declaration:1

class-declaration2

struct-declaration3

interface-declaration4

enum-declaration5

delegate-declaration6

A.2.6 Classes7

class-declaration:8

attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt9

class-modifiers:10

class-modifier11

class-modifiers class-modifier12

class-modifier:13

new14

public 15

protected 16

internal17

private18

abstract19

sealed20

class-base:21

: class-type22

: interface-type-list23

: class-type , interface-type-list24

interface-type-list:25

interface-type26

interface-type-list , interface-type27

class-body:28

{ class-member-declarationsopt }29

class-member-declarations:30

class-member-declaration31

class-member-declarations class-member-declaration32

class-member-declaration:33

constant-declaration34

field-declaration35

method-declaration36

property-declaration37

event-declaration38

indexer-declaration39

operator-declaration40

constructor-declaration41

destructor-declaration42

static-constructor-declaration43

type-declaration44

constant-declaration:45

attributesopt constant-modifiersopt const type constant-declarators ;46

constant-modifiers:47

constant-modifier48

constant-modifiers constant-modifier49

Appendix A Grammar

355

constant-modifier:1

new2

public3

protected 4

internal5

private6

constant-declarators:7

constant-declarator8

constant-declarators , constant-declarator9

constant-declarator:10

identifier = constant-expression11

field-declaration:12

attributesopt field-modifiersopt type variable-declarators ; 13

field-modifiers:14

field-modifier15

field-modifiers field-modifier16

field-modifier:17

new18

public19

protected 20

internal21

private 22

static 23

readonly 24

volatile25

variable-declarators:26

variable-declarator27

variable-declarators , variable-declarator28

variable-declarator:29

identifier30

identifier = variable-initializer31

variable-initializer:32

expression33

array-initializer34

method-declaration:35

method-header method-body36

method-header:37

attributesopt method-modifiersopt return-type member-name (formal-parameter-listopt) 38

method-modifiers:39

method-modifier40

method-modifiers method-modifier41

C# LANGUAGE SPECIFICATION

356

method-modifier:1

new 2

public 3

protected 4

internal 5

private 6

static 7

virtual 8

sealed 9

override 10

abstract 11

extern 12

return-type:13

type14

void 15

member-name:16

identifier17

interface-type . identifier18

method-body:19

block20

;21

formal-parameter-list:22

fixed-parameters23

fixed-parameters , parameter-array24

parameter-array25

fixed-parameters:26

fixed-parameter27

fixed-parameters , fixed-parameter28

fixed-parameter:29

attributesopt parameter-modifieropt type identifier30

parameter-modifier:31

ref 32

out 33

parameter-array:34

attributesopt params array-type identifier35

property-declaration:36

attributesopt property-modifiersopt type member-name { accessor-declarations }37

property-modifiers:38

property-modifier39

property-modifiers property-modifier40

Appendix A Grammar

357

property-modifier:1

new 2

public 3

protected 4

internal 5

private 6

static 7

virtual 8

sealed 9

override 10

abstract 11

extern12

member-name:13

identifier14

interface-type . identifier15

accessor-declarations:16

get-accessor-declaration set-accessor-declarationopt17

set-accessor-declaration get-accessor-declarationopt18

get-accessor-declaration:19

attributesopt get accessor-body20

set-accessor-declaration:21

attributesopt set accessor-body22

accessor-body:23

block24

;25

event-declaration:26

attributesopt event-modifiersopt event type variable-declarators ; 27

attributesopt event-modifiersopt event type member-name { event-accessor-declarations28

}29

event-modifiers:30

event-modifier31

event-modifiers event-modifier32

event-modifier:33

new 34

public 35

protected 36

internal 37

private 38

static 39

virtual 40

sealed 41

override 42

abstract 43

extern44

event-accessor-declarations:45

add-accessor-declaration remove-accessor-declaration46

remove-accessor-declaration add-accessor-declaration47

add-accessor-declaration:48

attributesopt add block49

C# LANGUAGE SPECIFICATION

358

remove-accessor-declaration:1

attributesopt remove block2

indexer-declaration:3

attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations } 4

indexer-modifiers:5

indexer-modifier6

indexer-modifiers indexer-modifier7

indexer-modifier:8

new 9

public 10

protected 11

internal 12

private 13

virtual 14

sealed 15

override 16

abstract 17

extern18

indexer-declarator:19

type this [formal-parameter-list]20

type interface-type . this [formal-parameter-list] 21

operator-declaration:22

attributesopt operator-modifiers operator-declarator operator-body 23

operator-modifiers:24

operator-modifier25

operator-modifiers operator-modifier26

operator-modifier:27

public 28

static 29

extern 30

operator-declarator:31

unary-operator-declarator32

binary-operator-declarator33

conversion-operator-declarator34

unary-operator-declarator:35

type operator overloadable-unary-operator (type identifier) 36

overloadable-unary-operator: one of37

+ - ! ~ ++ -- true false38

binary-operator-declarator:39

type operator overloadable-binary-operator (type identifier , type identifier) 40

overloadable-binary-operator: one of41

+ - * / % & | ^ << >> == != > < >= <=42

conversion-operator-declarator: 43

implicit operator type (type identifier)44

explicit operator type (type identifier) 45

operator-body:46

block47

; 48

Appendix A Grammar

359

constructor-declaration:1

attributesopt constructor-modifiersopt constructor-declarator constructor-body2

constructor-modifiers:3

constructor-modifier4

constructor-modifiers constructor-modifier5

constructor-modifier:6

public7

protected 8

internal9

private 10

extern11

constructor-declarator:12

identifier (formal-parameter-listopt) constructor-initializeropt13

constructor-initializer:14

: base (argument-listopt) 15

: this (argument-listopt) 16

constructor-body:17

block18

; 19

static-constructor-declaration:20

attributesopt static-constructor-modifiers identifier () static-constructor-body21

static-constructor-modifiers:22

externopt static23

static externopt24

static-constructor-body:25

block26

;27

destructor-declaration:28

attributesopt externopt ~ identifier () destructor-body29

destructor-body:30

block31

;32

A.2.7 Structs33

struct-declaration:34

attributesopt struct-modifiersopt struct identifier struct-interfacesopt struct-body ;opt35

struct-modifiers:36

struct-modifier37

struct-modifiers struct-modifier38

struct-modifier:39

new40

public 41

protected 42

internal43

private44

struct-interfaces:45

: interface-type-list46

C# LANGUAGE SPECIFICATION

360

struct-body:1

{ struct-member-declarationsopt }2

struct-member-declarations:3

struct-member-declaration4

struct-member-declarations struct-member-declaration5

struct-member-declaration:6

constant-declaration7

field-declaration8

method-declaration9

property-declaration10

event-declaration11

indexer-declaration12

operator-declaration13

constructor-declaration14

static-constructor-declaration15

type-declaration16

A.2.8 Arrays17

array-type:18

non-array-type rank-specifiers19

non-array-type:20

type21

rank-specifiers:22

rank-specifier23

rank-specifiers rank-specifier24

rank-specifier:25

[dim-separatorsopt] 26

dim-separators:27

,28

dim-separators ,29

array-initializer:30

{ variable-initializer-listopt }31

{ variable-initializer-list , }32

variable-initializer-list:33

variable-initializer34

variable-initializer-list , variable-initializer35

variable-initializer:36

expression37

array-initializer38

A.2.9 Interfaces39

interface-declaration:40

attributesopt interface-modifiersopt interface identifier interface-baseopt interface-body41

;opt42

interface-modifiers:43

interface-modifier44

interface-modifiers interface-modifier45

Appendix A Grammar

361

interface-modifier:1

new2

public 3

protected 4

internal5

private 6

interface-base:7

: interface-type-list8

interface-body:9

{ interface-member-declarationsopt }10

interface-member-declarations:11

interface-member-declaration12

interface-member-declarations interface-member-declaration13

interface-member-declaration:14

interface-method-declaration15

interface-property-declaration16

interface-event-declaration17

interface-indexer-declaration18

interface-method-declaration:19

attributesopt newopt return-type identifier (formal-parameter-listopt) ;20

interface-property-declaration:21

attributesopt newopt type identifier { interface-accessors }22

interface-accessors:23

attributesopt get ; 24

attributesopt set ; 25

attributesopt get ; attributesopt set ;26

attributesopt set ; attributesopt get ; 27

interface-event-declaration:28

attributesopt newopt event type identifier ; 29

interface-indexer-declaration:30

attributesopt newopt type this [formal-parameter-list] { interface-accessors } 31

A.2.10 Enums32

enum-declaration:33

attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt34

enum-base:35

: integral-type36

enum-body:37

{ enum-member-declarationsopt }38

{ enum-member-declarations , }39

enum-modifiers:40

enum-modifier41

enum-modifiers enum-modifier42

enum-modifier:43

new44

public 45

protected 46

internal47

private 48

C# LANGUAGE SPECIFICATION

362

enum-member-declarations:1

enum-member-declaration2

enum-member-declarations , enum-member-declaration3

enum-member-declaration:4

attributesopt identifier5

attributesopt identifier = constant-expression6

A.2.11 Delegates7

delegate-declaration:8

attributesopt delegate-modifiersopt delegate type identifier (formal-parameter-listopt)9

;10

delegate-modifiers:11

delegate-modifier12

delegate-modifiers delegate-modifier13

delegate-modifier:14

new15

public 16

protected 17

internal18

private 19

A.2.12 Attributes20

global-attributes:21

global-attribute-sections22

global-attribute-sections:23

global-attribute-section24

global-attribute-sections global-attribute-section25

global-attribute-section:26

[global-attribute-target-specifier attribute-list] 27

[global-attribute-target-specifier attribute-list ,] 28

global-attribute-target-specifier:29

global-attribute-target :30

global-attribute-target:31

assembly 32

attributes:33

attribute-sections34

attribute-sections:35

attribute-section36

attribute-sections attribute-section37

attribute-section:38

[attribute-target-specifieropt attribute-list] 39

[attribute-target-specifieropt attribute-list ,] 40

attribute-target-specifier:41

attribute-target :42

Appendix A Grammar

363

attribute-target:1

field2

event3

method4

module5

param6

property7

return 8

type 9

attribute-list:10

attribute11

attribute-list , attribute12

attribute:13

attribute-name attribute-argumentsopt14

attribute-name:15

type-name16

attribute-arguments:17

(positional-argument-listopt) 18

(positional-argument-list , named-argument-list) 19

(named-argument-list)20

positional-argument-list:21

positional-argument22

positional-argument-list , positional-argument23

positional-argument:24

attribute-argument-expression25

named-argument-list:26

named-argument27

named-argument-list , named-argument28

named-argument:29

identifier = attribute-argument-expression30

attribute-argument-expression:31

expression32

A.3 Grammar extensions for unsafe code33

embedded-statement:34

...35

unsafe-statement36

unsafe-statement:37

unsafe block38

type:39

value-type40

reference-type41

pointer-type42

pointer-type:43

unmanaged-type *44

void *45

unmanaged-type:46

type47

C# LANGUAGE SPECIFICATION

364

primary-no-array-creation-expression:1

...2

pointer-member-access3

pointer-element-access4

sizeof-expression5

unary-expression:6

...7

pointer-indirection-expression8

addressof-expression9

pointer-indirection-expression:10

* unary-expression11

pointer-member-access:12

primary-expression -> identifier13

pointer-element-access:14

primary-no-array-creation-expression [expression]15

addressof-expression:16

& unary-expression17

sizeof-expression:18

sizeof (unmanaged-type)19

embedded-statement:20

...21

fixed-statement22

fixed-statement:23

fixed (pointer-type fixed-pointer-declarators) embedded-statement24

fixed-pointer-declarators:25

fixed-pointer-declarator26

fixed-pointer-declarators , fixed-pointer-declarator27

fixed-pointer-declarator:28

identifier = fixed-pointer-initializer29

fixed-pointer-initializer:30

& variable-reference31

expression32

variable-initializer:33

expression34

array-initializer35

stackalloc-initializer36

stackalloc-initializer:37

stackalloc unmanaged-type [expression] 38

End of informative text.39

Appendix B Portability issues

365

B. Portability issues1

This clause is informative.2

This annex collects some information about portability that appears in this ECMA Standard.3

4

B.1 Undefined behavior5

6

A program that does not contain any occurrences of theunsafe modifier cannot exhibit any undefined7

behavior.8

9

The behavior is undefined in the following circumstances:10

1. When dereferencing the result of converting one pointer type to another, and the resulting pointer is not11

correctly aligned for the pointed-to type. (§25.4)12

2. When the unary* operator is applied to a pointer containing an invalid value (§25.5.1).13

3. When a pointer is subscripted to access an out-of-bounds element (§25.5.3).14

4. Modifying objects of managed type through fixed pointers (§25.6)15

5. The initial content of memory allocated bystackalloc (§25.7).16

17

B.2 Implementation-defined behavior18

19

A conforming implementation is required to document its choice of behavior in each of the areas listed in20

this clause. The following are implementation-defined:21

22

C# LANGUAGE SPECIFICATION

366

• The behavior when an identifier not in Normalization Form C is encountered (§9.4.2).1

• The values of any application parameters passed toMain by the host environment prior to application2

startup (§10.1).3

• The mechanism by which linkage to an external function is achieved (§17.5.7).4

• The impact of thread termination when no matching catch clause is found for an exception and the code5

that initially started that thread is reached. (§23.3)6

• The purpose of attribute target specifiers other than those identified by this standard (§24.2).7

• The mappings between pointers and integers (§25.4).8

• The effect of applying the unary* operator to anull pointer (§25.5.1).9

• The behavior when pointer arithmetic overflows the domain of the pointer type (§25.5.5).10

• The result of thesizeof operator for other than the pre-defined value types (§25.5.8).11

• The behavior of thefixed statement if the array expression is null or if the array has zero12

elements (§25.6).13

• The behavior of thefixed statement if the string expression is null (§25.6).14

• The value returned when a stack allocation of size zero is made (§25.7).15

B.3 Unspecified behavior16

17

• The time at which the destructor (if any) for an object is run, once that object has become eligible for18

destruction.19

• The value of the result when converting out-of-range values fromfloator double values to an integral20

type in an unchecked context (§13.2.1).21

• The layout of arrays, except in an unsafe context (§14.5.10.2).22

• The exact timing of static field initialization (§17.4.5.1).23

• The order in which members are packed into a struct (§25.5.8).24

B.4 Other Issues25

26

1. The exact results of floating-point expression evaluation may vary from one implementation to another,27

because an implementation is permitted to evaluate such expressions using a greater range and/or28

precision than is required. (§11.1.5)29

2. The CLI reserves certain signatures for compatibility with other programming languages. (§17.2.7)30

End of informative text.31

Appendix C Naming guidelines

367

C. Naming guidelines1

This annex is informative.2

One of the most important elements of predictability and discoverability is the use of a consistent naming3

pattern. Many of the common user questions don’t evenarise once these conventions are understood and4

widely used. There are three elements to the naming guidelines:5

1. Casing – use of the correct capitalization style6

2. Mechanical – use nouns for classes, verbs for methods, etc.7

3. Word choice – use consistent terms across class libraries.8

The following section lays out rules for the firsttwo elements, and some philosophy for the third.9

C.1 Capitalization styles10

The following section describes different ways of capitalizing identifiers.11

C.1.1 Pascal casing12

This convention capitalizes the firstcharacter of each word. For example:13

 Color BitConverter 14

C.1.2 Camel casing15

This convention capitalizes the first character ofeach word except the first word. For example:16

 backgroundColor totalValueCount 17

C.1.3 All uppercase18

Only use all uppercase letters for an identifier if it contains an abbreviation. For example:19

 System.IO 20
 System.WinForms.UI 21

C.1.4 Capitalization summary22

The following table summarizes the capitalization style for the different kinds of identifiers:23

24

C# LANGUAGE SPECIFICATION

368

Type Case Notes

Class PascalCase

Attribute Class PascalCase Has a suffix ofAttribute

Exception Class PascalCase Has a suffix ofException

Constant PascalCase

Enum type PascalCase

Enum values PascalCase

Event PascalCase

Interface PascalCase Has a prefix ofI

Local variable camelCase

Method PascalCase

Namespace PascalCase

Property PascalCase

Public Instance Field PascalCase Rarely used (use a property instead)

Protected Instance Field camelCase Rarely used (use a property instead)

Parameter camelCase
 1

C.2 Word choice2

• Do avoid using class names duplicated in heavily used namespaces. For example, don’t use the3

following for a class name.4

System Collections Forms UI 5

• Do notuse abbreviations in identifiers.6

• If you must use abbreviations, do use camelCase for any abbreviation containing more than two7

characters, even if this is not the usual abbreviation.8

C.3 Namespaces9

The general rule for namespace naming is:CompanyName.TechnologyName.10

Appendix C Naming guidelines

369

• Do avoid the possibility of two published namespaces having the same name, by prefixing namespace1

names with a company name or other well-established brand. For example,Microsoft.Office for the2

Office Automation classes provided by Microsoft.3

• Do use PascalCase, and separate logical components with periods (as in4

Microsoft.Office.PowerPoint). If your brand employs non-traditional casing, dofollow the casing5

defined by your brand, even if it deviates from normal namespace casing (for example,NeXT.WebObjects,6

andee.cummings).7

• Do use plural namespace names whereappropriate. For example, useSystem.Collections rather8

thanSystem.Collection. Exceptions to this rule are brand names and abbreviations. For example, use9

System.IO notSystem.IOs.10

• Do nothave namespaces and classes with the same name.11

C.4 Classes12

• Do name classes with nouns or noun phrases.13

• Do use PascalCase.14

• Do use sparingly, abbreviations in class names.15

• Do notuse any prefix (such as “C”, for example). Wherepossible, avoid starting with the letter “I”,16

since that is the recommended prefix for interface names. If you must start with that letter, make sure the17

second character is lowercase, as inIdentityStore.18

• Do notuse any underscores.19

public class FileStream { � } 20
public class Button { � } 21
public class String { � } 22

C.5 Interfaces23

• Do name interfaces with nouns or noun phrases, or adjectives describing behavior. For example,24

IComponent (descriptive noun),ICustomAttributeProvider (noun phrase), and25

IPersistable (adjective).26

• Do use PascalCase.27

• Do use sparingly, abbreviations in interface names.28

• Do notuse any underscores.29

• Do prefix interface names with the letter “I”, to indicate that the type is an interface.30

• Do use similar names when defining a class/interface pair where the class is a standard implementation31

of the interface. The names should differ only by the “I” prefix in the interface name. This approach is used32

for the interfaceIComponent and its standard implementation, Component.33

public interface IComponent { � } 34
public class Component : IComponent { � } 35
public interface IServiceProvider{ � } 36
public interface IFormatable { � } 37

C# LANGUAGE SPECIFICATION

370

C.6 Enums1

• Do use PascalCase for enums.2

• Do use PascalCase for enum value names.3

• Do use sparingly, abbreviations in enum names.4

• Do notuse a family-name prefix on enum.5

• Do notuse any “Enum” suffix on enum types.6

• Do use a singular name for enums7

• Do use a plural name for bit fields8

• Do define enumerated values using an enum if they are used in a parameter or property. This gives9

development tools a chance at knowing the possible values for a property or parameter.10

public enum FileMode{ 11
 Create, 12
 CreateNew, 13
 Open, 14
 OpenOrCreate, 15
 Truncate 16
} 17

• Do use the Flags custom attribute if the numeric values are meant to be bitwiseORed together18

[Flags] 19
public enum Bindings { 20
 CreateInstance, 21
 DefaultBinding, 22
 ExcatBinding, 23
 GetField, 24
 GetProperty, 25
 IgnoreCase, 26
 InvokeMethod, 27
 NonPublic, 28
 OABinding, 29
 SetField 30
 SetProperty, 31
 Static 32
} 33

Appendix C Naming guidelines

371

• Do useint as the underlying type of an enum. (An exception to this rule is if the enum represents flags1

and there are more than 32 flags, or the enum may grow to that many flags in the future, or the type needs to2

be different fromint for backward compatibility.)3

• Do use enums only if the value can be completely expressed as a set of bit flags. Do not use enums for4

open sets (such as operating system version).5

C.7 Static fields6

• Do name static members with nouns, noun phrases, or abbreviations for nouns.7

• Do name static members using PascalCase.8

• Do notuse Hungarian-type prefixes on static member names.9

C.8 Parameters10

• Do use descriptive names such that a parameter’s name and type clearly imply its meaning.11

• Do name parameters using camelCase.12

• Do prefer names based on a parameter’s meaning, to names based on the parameter’s type. It is likely13

that development tools will provide the information about type in a convenient way, so the parameter name14

can be put to better use describing semantics rather than type.15

• Do notreserve parameters for future use. If more data is need in the next version, a new overload can be16

added.17

• Do notuse Hungarian-type prefixes.18

Type GetType (string typeName) 19
string Format (string format, object [] args) 20

C.9 Methods21

• Do name methods with verbs or verb phrases.22

• Do name methods with PascalCase23

RemoveAll(), GetCharArray(), Invoke() 24

C.10 Properties25

• Do name properties using noun or noun phrases26

• Do name properties with PascalCase27

• Considerhaving a property with the same as a type. When declaring a property with the same name as a28

type, also make the type of the property be that type. In other words, the following is okay29

public enum Color {...}30
public class Control {31

public Color Color { get {...} set {...} }32
}33

but this is not34

public enum Color {...}35
public class Control {36

public int Color { get {...} set {...} }37
}38

In the latter case, it will not be possible to refer to the members of the Color enum becauseColor.Xxx39

will be interpreted as being a member access that first gets the value of theColor property (of type40

int) and then accesses a member of that value (which would have to be an instance member of41

System.Int32).42

C# LANGUAGE SPECIFICATION

372

C.11 Events1

• Do name event handlers with the “EventHandler” suffix.2

public delegate void MouseEventHandler(object sender, MouseEvent e); 3

• Do use two parameters namedsender ande. The sender parameter represents the object that raised the4

event, and this parameter is always of typeobject, even if it is possible to employ a more specific type.5

The state associated with the event is encapsulated in an instancee of an event class. Use an appropriate and6

specific event class for its type.7

public delegate void MouseEventHandler(object sender, MouseEvent e); 8

• Do name event argument classes with the “EventArgs” suffix.9

public class MouseEventArgs : EventArgs { 10
 int x; 11
 int y; 12
 public MouseEventArgs(int x, int y) 13
 { this.x = x; this.y = y; } 14
 public int X { get { return x; } } 15
 public int Y { get { return y; } } 16
} 17

• Do name event names that have a concept of pre- and post-operation using the present and past tense (do18

not useBeforeXxx/AfterXxx pattern). For example, a close eventthat could be canceled would have a19

Closing and Closed event.20

public event ControlEventHandler ControlAdded { 21
 //.. 22
} 23

• Considernaming events with a verb.24

C.12 Case sensitivity25

• Don’t use names that require case sensitivity. Components might need to be usable from both case-26

sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish between two27

names within the same context that differ only by case, components must avoid this situation.28

Examples of what not to do:29

• Don’t have two namespaces whose names differ only by case.30

namespace ee.cummings; 31
namespace Ee.Cummings; 32

• Don’t have a method with two parameters whose names differ only by case.33

void F(string a, string A) 34

• Don’t have a namespace with two types whose names differ only by case.35

System.WinForms.Point p; 36
System.WinForms.POINT pp; 37

• Don’t have a type with two properties whose names differ only by case.38

int F {get, set}; 39
int F {get, set} 40

• Don’t have a type with two methods whose names differ only by case.41

void f(); 42
void F(); 43

Appendix C Naming guidelines

373

C.13 Avoiding type name confusion1

Different languages use different names to identify the fundamental managed types, so in a multi-language2

environment, designers must take care to avoid language-specific terminology. This section describes a set3

of rules that help avoid type name confusion.4

• Do use semantically interesting names rather than type names.5

• In the rare case that a parameter has no semanticmeaning beyond its type, use a generic name. For6

example, a class that supports writing a variety of data types into a stream might have:7

void Write(double value); 8
void Write(float value); 9
void Write(long value); 10
void Write(int value); 11
void Write(short value); 12

rather than a language-specific alternative such as:13

void Write(double doubleValue); 14
void Write(float floatValue); 15
void Write(long longValue); 16
void Write(int intValue); 17
void Write(short shortValue); 18

• In the extremely rare case that it is necessary to have a uniquely named method for each fundamental19

data type, douse the following universal type names:Sbyte, Byte, Int16, UInt16, Int32, UInt32,20

Int64, UInt64, Single, Double, Boolean, Char, String, andObject. For example, a class that21

supports reading a variety of data types from a stream might have:22

double ReadDouble(); 23
float ReadSingle(); 24
long ReadIn64(); 25
int ReadInt32(); 26
short ReadInt16(); 27

rather than a language-specific alternative such as:28

double ReadDouble(); 29
float ReadFloat(); 30
long ReadLong(); 31
int ReadInt(); 32
short ReadShort(); 33

End of informative text.34

Appendix D Standard Library

375

D. Standard Library1

A conforming C# implementation shall provide a set of types having specific semantics. For convenience,2

these types and their members are listed here, in alphabetical order. For a formal definition of these types3

and their members, refer to ECMA-335, 1st Edition, December 2001,Common Language Infrastructure4

(CLI), Partition IV; Base Class Library (BCL), Extended Numerics Library, and Extended Array Library,5

which are included by reference in this ECMA Standard.6

This rest of this clause is informative.7

8

// Namespace: System, Library: BCL 9

public class ApplicationException: Exception 10

{ 11

 public ApplicationException(); 12

 public ApplicationException(string message); 13

 public ApplicationException(string message, Exception innerException); 14

} 15

 16

// Namespace: System, Library: BCL 17

public class ArgumentException: SystemException 18

{ 19

 public ArgumentException(); 20

 public ArgumentException(string message); 21

 public ArgumentException(string message, Exception innerException); 22

 public ArgumentException(string message, string paramName, Exception 23

 innerException); 24

 public ArgumentException(string message, string paramName); 25

 public virtual string ParamName { get; } 26

} 27

 28

// Namespace: System, Library: BCL 29

public class ArgumentNullException: ArgumentException 30

{ 31

 public ArgumentNullException(); 32

 public ArgumentNullException(string paramName); 33

 public ArgumentNullException(string paramName, string message); 34

} 35

 36

// Namespace: System, Library: BCL 37

public class ArgumentOutOfRangeException: ArgumentException 38

{ 39

 public ArgumentOutOfRangeException(); 40

C# LANGUAGE SPECIFICATION

376

 public ArgumentOutOfRangeException(string paramName); 1

 public ArgumentOutOfRangeException(string paramName, string message); 2

 public ArgumentOutOfRangeException(string paramName, object actualValue, 3

 string message); 4

 public virtual object ActualValue { get; } 5

} 6

 7

// Namespace: System, Library: BCL 8

public class ArithmeticException: SystemException 9

{ 10

 public ArithmeticException(); 11

 public ArithmeticException(string message); 12

 public ArithmeticException(string message, Exception innerException); 13

} 14

 15

// Namespace: System, Library: BCL 16

public abstract class Array: ICloneable, ICollection, IEnumerable, IList 17

{ 18

 protected Array(); 19

 public static int BinarySearch(Array array, object value); 20

 public static int BinarySearch(Array array, int index, int length, object 21

 value); 22

 public static int BinarySearch(Array array, object value, IComparer 23

 comparer); 24

 public static int BinarySearch(Array array, int index, int length, object 25

 value, IComparer comparer); 26

 public static void Clear(Array array, int index, int length); 27

 public virtual object Clone(); 28

 public static void Copy(Array sourceArray, Array destinationArray, int 29

 length); 30

 public static void Copy(Array sourceArray, int sourceIndex, Array 31

 destinationArray, int destinationIndex, int length); 32

 public virtual void CopyTo(Array array, int index); 33

 public static Array CreateInstance(Type elementType, int length); 34

 public static Array CreateInstance(Type elementType, int length1, int 35

 length2); 36

 public static Array CreateInstance(Type elementType, int length1, int 37

 length2, int length3); 38

 public static Array CreateInstance(Type elementType, int[] lengths); 39

 public static Array CreateInstance(Type elementType, int[] lengths, int[] 40

 lowerBounds); 41

 public virtual IEnumerator GetEnumerator(); 42

 public object GetValue(int[] indices); 43

 public object GetValue(int index); 44

Appendix D Standard Library

377

 public object GetValue(int index1, int index2); 1

 public object GetValue(int index1, int index2, int index3); 2

 public static int IndexOf(Array array, object value); 3

 public static int IndexOf(Array array, object value, int startIndex); 4

 public static int IndexOf(Array array, object value, int startIndex, int 5

 count); 6

 public static int LastIndexOf(Array array, object value); 7

 public static int LastIndexOf(Array array, object value, int startIndex); 8

 public static int LastIndexOf(Array array, object value, int startIndex, 9

 int count); 10

 public static void Reverse(Array array); 11

 public static void Reverse(Array array, int index, int length); 12

 public void SetValue(object value, int index); 13

 public void SetValue(object value, int index1, int index2); 14

 public void SetValue(object value, int index1, int index2, int index3); 15

 public void SetValue(object value, int[] indices); 16

 public static void Sort(Array array); 17

 public static void Sort(Array keys, Array items); 18

 public static void Sort(Array array, int index, int length); 19

 public static void Sort(Array keys, Array items, int index, int length); 20

 public static void Sort(Array array, IComparer comparer); 21

 public static void Sort(Array keys, Array items, IComparer comparer); 22

 public static void Sort(Array array, int index, int length, IComparer 23

 comparer); 24

 public static void Sort(Array keys, Array items, int index, int length, 25

 IComparer comparer); 26

 int IList.Add(object value); 27

 void IList.Clear(); 28

 bool IList.Contains(object value); 29

 int IList.IndexOf(object value); 30

 void IList.Insert(int index, object value); 31

 void IList.Remove(object value); 32

 void IList.RemoveAt(int index); 33

 bool IList.IsFixedSize { get; } 34

 bool IList.IsReadOnly { get; } 35

 bool ICollection.IsSynchronized { get; } 36

 public int Length { get; } 37

 public long LongLength {get;} 38

 public int Rank { get; } 39

 object ICollection.SyncRoot { get; } 40

 int ICollection.Count { get; } 41

 public virtual object this[int index] { get; set; } 42

} 43

 44

C# LANGUAGE SPECIFICATION

378

// Namespace: System.Collections, Library: BCL 1

public class ArrayList: ICloneable, ICollection, IEnumerable, IList 2

{ 3

 public ArrayList(); 4

 public ArrayList(int capacity); 5

 public ArrayList(ICollection c); 6

 public static ArrayList Adapter(IList list); 7

 public virtual int Add(object value); 8

 public virtual void AddRange(ICollection c); 9

 public virtual int BinarySearch(object value, IComparer comparer); 10

 public virtual int BinarySearch(object value); 11

 public virtual int BinarySearch(int index, int count, object value, 12

 IComparer comparer); 13

 public virtual void Clear(); 14

 public virtual object Clone(); 15

 public virtual bool Contains(object item); 16

 public virtual void CopyTo(Array array, int arrayIndex); 17

 public virtual void CopyTo(int index, Array array, int arrayIndex, int 18

 count); 19

 public virtual void CopyTo(Array array); 20

 public static ArrayList FixedSize(ArrayList list); 21

 public virtual IEnumerator GetEnumerator(); 22

 public virtual IEnumerator GetEnumerator(int index, int count); 23

 public virtual ArrayList GetRange(int index, int count); 24

 public virtual int IndexOf(object value); 25

 public virtual int IndexOf(object value, int startIndex, int count); 26

 public virtual int IndexOf(object value, int startIndex); 27

 public virtual void Insert(int index, object value); 28

 public virtual void InsertRange(int index, ICollection c); 29

 public virtual int LastIndexOf(object value, int startIndex, int count); 30

 public virtual int LastIndexOf(object value, int startIndex); 31

 public virtual int LastIndexOf(object value); 32

 public static ArrayList ReadOnly(ArrayList list); 33

 public virtual void Remove(object obj); 34

 public virtual void RemoveAt(int index); 35

 public virtual void RemoveRange(int index, int count); 36

 public static ArrayList Repeat(object value, int count); 37

 public virtual void Reverse(int index, int count); 38

 public virtual void Reverse(); 39

 public virtual void SetRange(int index, ICollection c); 40

 public virtual void Sort(int index, int count, IComparer comparer); 41

 public virtual void Sort(IComparer comparer); 42

 public virtual void Sort(); 43

 public static ArrayList Synchronized(ArrayList list); 44

Appendix D Standard Library

379

 public virtual Array ToArray(Type type); 1

 public virtual object[] ToArray(); 2

 public virtual void TrimToSize(); 3

 public virtual int Capacity { get; set; } 4

 int ICollection.Count { get; } 5

 public virtual int Count { get; } 6

 bool IList.IsFixedSize { get; } 7

 public virtual bool IsFixedSize { get; } 8

 bool IList.IsReadOnly { get; } 9

 public virtual bool IsReadOnly { get; } 10

 bool ICollection.IsSynchronized { get; } 11

 public virtual bool IsSynchronized { get; } 12

 public virtual object this[int index] { get; set; } 13

 object ICollection.SyncRoot { get; } 14

 public virtual object SyncRoot { get; } 15

} 16

 17

// Namespace: System, Library: BCL 18

public class ArrayTypeMismatchException: SystemException 19

{ 20

 public ArrayTypeMismatchException(); 21

 public ArrayTypeMismatchException(string message); 22

 public ArrayTypeMismatchException(string message, Exception innerException); 23

} 24

 25

// Namespace: System.Text, Library: BCL 26

public class ASCIIEncoding: Encoding 27

{ 28

 public ASCIIEncoding(); 29

 public override int GetByteCount(char[] chars, int index, int count); 30

 public override int GetByteCount(string chars); 31

 public override int GetBytes(string chars, int charIndex, int charCount, 32

 byte[] bytes, int byteIndex); 33

 public override int GetBytes(char[] chars, int charIndex, int charCount, 34

 byte[] bytes, int byteIndex); 35

 public override int GetCharCount(byte[] bytes, int index, int count); 36

 public override int GetChars(byte[] bytes, int byteIndex, int byteCount, 37

 char[] chars, int charIndex); 38

 public override int GetMaxByteCount(int charCount); 39

 public override int GetMaxCharCount(int byteCount); 40

 public override string GetString(byte[] bytes, int byteIndex, int 41

 byteCount); 42

 public override string GetString(byte[] bytes); 43

} 44

C# LANGUAGE SPECIFICATION

380

 1

// Namespace: System, Library: BCL 2

public delegate void AsyncCallback(IAsyncResult ar); 3

 4

// Namespace: System, Library: BCL 5

public abstract class Attribute 6

{ 7

 protected Attribute(); 8

 public override bool Equals(object obj); 9

 public override int GetHashCode(); 10

} 11

 12

// Namespace: System, Library: BCL 13

public enum AttributeTargets 14

{ 15

 All = Assembly | 0x2 | Class | Struct | Enum | Constructor | Method | 16

 Property | Field | Event | Interface | Parameter | Delegate | 17

 ReturnValue, 18

 Assembly = 0x1, 19

 Class = 0x4, 20

 Constructor = 0x20, 21

 Delegate = 0x1000, 22

 Enum = 0x10, 23

 Event = 0x200, 24

 Field = 0x100, 25

 Interface = 0x400, 26

 Method = 0x40, 27

 Parameter = 0x800, 28

 Property = 0x80, 29

 ReturnValue = 0x2000, 30

 Struct = 0x8, 31

} 32

 33

// Namespace: System, Library: BCL 34

public sealed class AttributeUsageAttribute: Attribute 35

{ 36

 public AttributeUsageAttribute(AttributeTargets validOn); 37

 public bool AllowMultiple { get; set; } 38

 public bool Inherited { get; set; } 39

 public AttributeTargets ValidOn { get; } 40

} 41

 42

// Namespace: System, Library: BCL 43

public struct Boolean: IComparable 44

Appendix D Standard Library

381

{ 1

 public static readonly string FalseString; 2

 public static readonly string TrueString; 3

 public int CompareTo(object obj); 4

 public override bool Equals(object obj); 5

 public override int GetHashCode(); 6

 public static bool Parse(string value); 7

 public string ToString(IFormatProvider provider); 8

 public override string ToString(); 9

} 10

 11

// Namespace: System, Library: BCL 12

public struct Byte: IComparable, IFormattable 13

{ 14

 public const byte MaxValue = 255; 15

 public const byte MinValue = 0; 16

 public int CompareTo(object value); 17

 public override bool Equals(object obj); 18

 public override int GetHashCode(); 19

 public static byte Parse(string s); 20

 public static byte Parse(string s, NumberStyles style); 21

 public static byte Parse(string s, IFormatProvider provider); 22

 public static byte Parse(string s, NumberStyles style, IFormatProvider 23

 provider); 24

 public string ToString(IFormatProvider provider); 25

 public string ToString(string format, IFormatProvider provider); 26

 public override string ToString(); 27

 public string ToString(string format); 28

} 29

 30

// Namespace: System, Library: BCL 31

public struct Char: IComparable 32

{ 33

 public const char MaxValue = (char)0xFFFF; 34

 public const char MinValue = (char)0x0; 35

 public int CompareTo(object value); 36

 public override bool Equals(object obj); 37

 public override int GetHashCode(); 38

 public static double GetNumericValue(char c); 39

 public static double GetNumericValue(string s, int index); 40

 public static UnicodeCategory GetUnicodeCategory(char c); 41

 public static UnicodeCategory GetUnicodeCategory(string s, int index); 42

 public static bool IsControl(char c); 43

 public static bool IsControl(string s, int index); 44

C# LANGUAGE SPECIFICATION

382

 public static bool IsDigit(char c); 1

 public static bool IsDigit(string s, int index); 2

 public static bool IsLetter(char c); 3

 public static bool IsLetter(string s, int index); 4

 public static bool IsLetterOrDigit(char c); 5

 public static bool IsLetterOrDigit(string s, int index); 6

 public static bool IsLower(char c); 7

 public static bool IsLower(string s, int index); 8

 public static bool IsNumber(char c); 9

 public static bool IsNumber(string s, int index); 10

 public static bool IsPunctuation(char c); 11

 public static bool IsPunctuation(string s, int index); 12

 public static bool IsSeparator(char c); 13

 public static bool IsSeparator(string s, int index); 14

 public static bool IsSurrogate(char c); 15

 public static bool IsSurrogate(string s, int index); 16

 public static bool IsSymbol(char c); 17

 public static bool IsSymbol(string s, int index); 18

 public static bool IsUpper(char c); 19

 public static bool IsUpper(string s, int index); 20

 public static bool IsWhiteSpace(char c); 21

 public static bool IsWhiteSpace(string s, int index); 22

 public static char Parse(string s); 23

 public static char ToLower(char c); 24

 public string ToString(IFormatProvider provider); 25

 public override string ToString(); 26

 public static char ToUpper(char c); 27

} 28

 29

// Namespace: System, Library: BCL 30

public sealed class CharEnumerator: ICloneable, IEnumerator 31

{ 32

 public object Clone(); 33

 public bool MoveNext(); 34

 public void Reset(); 35

 public char Current { get; } 36

 object IEnumerator.Current { get; } 37

} 38

 39

// Namespace: System, Library: BCL 40

public sealed class CLSCompliantAttribute: Attribute 41

{ 42

 public CLSCompliantAttribute(bool isCompliant); 43

 public bool IsCompliant { get; } 44

Appendix D Standard Library

383

} 1

 2

// Namespace: System.Security, Library: BCL 3

public abstract class CodeAccessPermission: IPermission 4

{ 5

 protected CodeAccessPermission(); 6

 public void Assert(); 7

 public abstract IPermission Copy(); 8

 public void Demand(); 9

 public void Deny(); 10

 public abstract void FromXml(SecurityElement elem); 11

 public abstract IPermission Intersect(IPermission target); 12

 public abstract bool IsSubsetOf(IPermission target); 13

 public override string ToString(); 14

 public abstract SecurityElement ToXml(); 15

 public virtual IPermission Union(IPermission other); 16

} 17

 18

// Namespace: System.Security.Permissions, Library: BCL 19

public abstract class CodeAccessSecurityAttribute: SecurityAttribute 20

{ 21

 protected CodeAccessSecurityAttribute(); 22

 public CodeAccessSecurityAttribute(SecurityAction action); 23

} 24

 25

// Namespace: System.Collections, Library: BCL 26

public sealed class Comparer: IComparer 27

{ 28

 public static readonly Comparer Default; 29

 public int Compare(object a, object b); 30

} 31

 32

// Namespace: System.Diagnostics, Library: BCL 33

public sealed class ConditionalAttribute: Attribute 34

{ 35

 public ConditionalAttribute(string conditionString); 36

 public string ConditionString { get; } 37

} 38

 39

// Namespace: System, Library: BCL 40

public sealed class Console 41

{ 42

 public static Stream OpenStandardError(); 43

 public static Stream OpenStandardError(int bufferSize); 44

C# LANGUAGE SPECIFICATION

384

 public static Stream OpenStandardInput(); 1

 public static Stream OpenStandardInput(int bufferSize); 2

 public static Stream OpenStandardOutput(); 3

 public static Stream OpenStandardOutput(int bufferSize); 4

 public static int Read(); 5

 public static string ReadLine(); 6

 public static void SetError(TextWriter newError); 7

 public static void SetIn(TextReader newIn); 8

 public static void SetOut(TextWriter newOut); 9

 public static void Write(string format, object arg0); 10

 public static void Write(string format, object arg0, object arg1); 11

 public static void Write(string format, object arg0, object arg1, object 12

 arg2); 13

 public static void Write(string format, params object[] arg); 14

 public static void Write(bool value); 15

 public static void Write(char value); 16

 public static void Write(char[] buffer); 17

 public static void Write(char[] buffer, int index, int count); 18

 public static void Write(double value); 19

 public static void Write(decimal value); 20

 public static void Write(float value); 21

 public static void Write(int value); 22

 public static void Write(uint value); 23

 public static void Write(long value); 24

 public static void Write(ulong value); 25

 public static void Write(object value); 26

 public static void Write(string value); 27

 public static void WriteLine(); 28

 public static void WriteLine(bool value); 29

 public static void WriteLine(char value); 30

 public static void WriteLine(char[] buffer); 31

 public static void WriteLine(char[] buffer, int index, int count); 32

 public static void WriteLine(decimal value); 33

 public static void WriteLine(double value); 34

 public static void WriteLine(float value); 35

 public static void WriteLine(int value); 36

 public static void WriteLine(uint value); 37

 public static void WriteLine(long value); 38

 public static void WriteLine(ulong value); 39

 public static void WriteLine(object value); 40

 public static void WriteLine(string value); 41

 public static void WriteLine(string format, object arg0); 42

 public static void WriteLine(string format, object arg0, object arg1); 43

 public static void WriteLine(string format, object arg0, object arg1, 44

Appendix D Standard Library

385

 object arg2); 1

 public static void WriteLine(string format, params object[] arg); 2

 public static TextWriter Error { get; } 3

 public static TextReader In { get; } 4

 public static TextWriter Out { get; } 5

} 6

 7

// Namespace: System, Library: BCL 8

public sealed class Convert 9

{ 10

 public static bool ToBoolean(bool value); 11

 public static bool ToBoolean(sbyte value); 12

 public static bool ToBoolean(byte value); 13

 public static bool ToBoolean(short value); 14

 public static bool ToBoolean(ushort value); 15

 public static bool ToBoolean(int value); 16

 public static bool ToBoolean(uint value); 17

 public static bool ToBoolean(long value); 18

 public static bool ToBoolean(ulong value); 19

 public static bool ToBoolean(string value); 20

 public static bool ToBoolean(float value); 21

 public static bool ToBoolean(double value); 22

 public static bool ToBoolean(decimal value); 23

 public static byte ToByte(bool value); 24

 public static byte ToByte(byte value); 25

 public static byte ToByte(char value); 26

 public static byte ToByte(sbyte value); 27

 public static byte ToByte(short value); 28

 public static byte ToByte(ushort value); 29

 public static byte ToByte(int value); 30

 public static byte ToByte(uint value); 31

 public static byte ToByte(long value); 32

 public static byte ToByte(ulong value); 33

 public static byte ToByte(float value); 34

 public static byte ToByte(double value); 35

 public static byte ToByte(decimal value); 36

 public static byte ToByte(string value); 37

 public static byte ToByte(string value, IFormatProvider provider); 38

 public static char ToChar(char value); 39

 public static char ToChar(sbyte value); 40

 public static char ToChar(byte value); 41

 public static char ToChar(short value); 42

 public static char ToChar(ushort value); 43

 public static char ToChar(int value); 44

C# LANGUAGE SPECIFICATION

386

 public static char ToChar(uint value); 1

 public static char ToChar(long value); 2

 public static char ToChar(ulong value); 3

 public static char ToChar(string value); 4

 public static DateTime ToDateTime(DateTime value); 5

 public static DateTime ToDateTime(string value); 6

 public static DateTime ToDateTime(string value, IFormatProvider provider); 7

 public static decimal ToDecimal(sbyte value); 8

 public static decimal ToDecimal(byte value); 9

 public static decimal ToDecimal(short value); 10

 public static decimal ToDecimal(ushort value); 11

 public static decimal ToDecimal(int value); 12

 public static decimal ToDecimal(uint value); 13

 public static decimal ToDecimal(long value); 14

 public static decimal ToDecimal(ulong value); 15

 public static decimal ToDecimal(float value); 16

 public static decimal ToDecimal(double value); 17

 public static decimal ToDecimal(string value); 18

 public static decimal ToDecimal(string value, IFormatProvider provider); 19

 public static decimal ToDecimal(decimal value); 20

 public static decimal ToDecimal(bool value); 21

 public static double ToDouble(sbyte value); 22

 public static double ToDouble(byte value); 23

 public static double ToDouble(short value); 24

 public static double ToDouble(ushort value); 25

 public static double ToDouble(int value); 26

 public static double ToDouble(uint value); 27

 public static double ToDouble(long value); 28

 public static double ToDouble(ulong value); 29

 public static double ToDouble(float value); 30

 public static double ToDouble(double value); 31

 public static double ToDouble(decimal value); 32

 public static double ToDouble(string value); 33

 public static double ToDouble(string value, IFormatProvider provider); 34

 public static double ToDouble(bool value); 35

 public static short ToInt16(bool value); 36

 public static short ToInt16(char value); 37

 public static short ToInt16(sbyte value); 38

 public static short ToInt16(byte value); 39

 public static short ToInt16(ushort value); 40

 public static short ToInt16(int value); 41

 public static short ToInt16(uint value); 42

 public static short ToInt16(short value); 43

 public static short ToInt16(long value); 44

Appendix D Standard Library

387

 public static short ToInt16(ulong value); 1

 public static short ToInt16(float value); 2

 public static short ToInt16(double value); 3

 public static short ToInt16(decimal value); 4

 public static short ToInt16(string value); 5

 public static short ToInt16(string value, IFormatProvider provider); 6

 public static int ToInt32(bool value); 7

 public static int ToInt32(char value); 8

 public static int ToInt32(sbyte value); 9

 public static int ToInt32(byte value); 10

 public static int ToInt32(short value); 11

 public static int ToInt32(ushort value); 12

 public static int ToInt32(uint value); 13

 public static int ToInt32(int value); 14

 public static int ToInt32(long value); 15

 public static int ToInt32(ulong value); 16

 public static int ToInt32(float value); 17

 public static int ToInt32(double value); 18

 public static int ToInt32(decimal value); 19

 public static int ToInt32(string value); 20

 public static int ToInt32(string value, IFormatProvider provider); 21

 public static long ToInt64(bool value); 22

 public static long ToInt64(char value); 23

 public static long ToInt64(sbyte value); 24

 public static long ToInt64(byte value); 25

 public static long ToInt64(short value); 26

 public static long ToInt64(ushort value); 27

 public static long ToInt64(int value); 28

 public static long ToInt64(uint value); 29

 public static long ToInt64(ulong value); 30

 public static long ToInt64(long value); 31

 public static long ToInt64(float value); 32

 public static long ToInt64(double value); 33

 public static long ToInt64(decimal value); 34

 public static long ToInt64(string value); 35

 public static long ToInt64(string value, IFormatProvider provider); 36

 public static sbyte ToSByte(bool value); 37

 public static sbyte ToSByte(sbyte value); 38

 public static sbyte ToSByte(char value); 39

 public static sbyte ToSByte(byte value); 40

 public static sbyte ToSByte(short value); 41

 public static sbyte ToSByte(ushort value); 42

 public static sbyte ToSByte(int value); 43

 public static sbyte ToSByte(uint value); 44

C# LANGUAGE SPECIFICATION

388

 public static sbyte ToSByte(long value); 1

 public static sbyte ToSByte(ulong value); 2

 public static sbyte ToSByte(float value); 3

 public static sbyte ToSByte(double value); 4

 public static sbyte ToSByte(decimal value); 5

 public static sbyte ToSByte(string value); 6

 public static sbyte ToSByte(string value, IFormatProvider provider); 7

 public static float ToSingle(sbyte value); 8

 public static float ToSingle(byte value); 9

 public static float ToSingle(short value); 10

 public static float ToSingle(ushort value); 11

 public static float ToSingle(int value); 12

 public static float ToSingle(uint value); 13

 public static float ToSingle(long value); 14

 public static float ToSingle(ulong value); 15

 public static float ToSingle(float value); 16

 public static float ToSingle(double value); 17

 public static float ToSingle(decimal value); 18

 public static float ToSingle(string value); 19

 public static float ToSingle(string value, IFormatProvider provider); 20

 public static float ToSingle(bool value); 21

 public static string ToString(bool value); 22

 public static string ToString(char value); 23

 public static string ToString(sbyte value); 24

 public static string ToString(sbyte value, IFormatProvider provider); 25

 public static string ToString(byte value); 26

 public static string ToString(byte value, IFormatProvider provider); 27

 public static string ToString(short value); 28

 public static string ToString(short value, IFormatProvider provider); 29

 public static string ToString(ushort value); 30

 public static string ToString(ushort value, IFormatProvider provider); 31

 public static string ToString(int value); 32

 public static string ToString(int value, IFormatProvider provider); 33

 public static string ToString(uint value); 34

 public static string ToString(uint value, IFormatProvider provider); 35

 public static string ToString(long value); 36

 public static string ToString(long value, IFormatProvider provider); 37

 public static string ToString(ulong value); 38

 public static string ToString(ulong value, IFormatProvider provider); 39

 public static string ToString(float value); 40

 public static string ToString(float value, IFormatProvider provider); 41

 public static string ToString(double value); 42

 public static string ToString(double value, IFormatProvider provider); 43

 public static string ToString(decimal value); 44

Appendix D Standard Library

389

 public static string ToString(decimal value, IFormatProvider provider); 1

 public static string ToString(DateTime value); 2

 public static string ToString(DateTime value, IFormatProvider provider); 3

 public static string ToString(string value); 4

 public static ushort ToUInt16(bool value); 5

 public static ushort ToUInt16(char value); 6

 public static ushort ToUInt16(sbyte value); 7

 public static ushort ToUInt16(byte value); 8

 public static ushort ToUInt16(short value); 9

 public static ushort ToUInt16(int value); 10

 public static ushort ToUInt16(ushort value); 11

 public static ushort ToUInt16(uint value); 12

 public static ushort ToUInt16(long value); 13

 public static ushort ToUInt16(ulong value); 14

 public static ushort ToUInt16(float value); 15

 public static ushort ToUInt16(double value); 16

 public static ushort ToUInt16(decimal value); 17

 public static ushort ToUInt16(string value); 18

 public static ushort ToUInt16(string value, IFormatProvider provider); 19

 public static uint ToUInt32(bool value); 20

 public static uint ToUInt32(char value); 21

 public static uint ToUInt32(sbyte value); 22

 public static uint ToUInt32(byte value); 23

 public static uint ToUInt32(short value); 24

 public static uint ToUInt32(ushort value); 25

 public static uint ToUInt32(int value); 26

 public static uint ToUInt32(uint value); 27

 public static uint ToUInt32(long value); 28

 public static uint ToUInt32(ulong value); 29

 public static uint ToUInt32(float value); 30

 public static uint ToUInt32(double value); 31

 public static uint ToUInt32(decimal value); 32

 public static uint ToUInt32(string value); 33

 public static uint ToUInt32(string value, IFormatProvider provider); 34

 public static ulong ToUInt64(bool value); 35

 public static ulong ToUInt64(char value); 36

 public static ulong ToUInt64(sbyte value); 37

 public static ulong ToUInt64(byte value); 38

 public static ulong ToUInt64(short value); 39

 public static ulong ToUInt64(ushort value); 40

 public static ulong ToUInt64(int value); 41

 public static ulong ToUInt64(uint value); 42

 public static ulong ToUInt64(long value); 43

 public static ulong ToUInt64(ulong value); 44

C# LANGUAGE SPECIFICATION

390

 public static ulong ToUInt64(float value); 1

 public static ulong ToUInt64(double value); 2

 public static ulong ToUInt64(decimal value); 3

 public static ulong ToUInt64(string value); 4

 public static ulong ToUInt64(string value, IFormatProvider provider); 5

} 6

 7

// Namespace: System, Library: BCL 8

public struct DateTime: IComparable, IFormattable 9

{ 10

 public DateTime(long ticks); 11

 public DateTime(int year, int month, int day); 12

 public DateTime(int year, int month, int day, int hour, int minute, int 13

 second); 14

 public DateTime(int year, int month, int day, int hour, int minute, int 15

 second, int millisecond); 16

 public static readonly DateTime MaxValue; 17

 public static readonly DateTime MinValue; 18

 public DateTime Add(TimeSpan value); 19

 public DateTime AddDays(double value); 20

 public DateTime AddHours(double value); 21

 public DateTime AddMilliseconds(double value); 22

 public DateTime AddMinutes(double value); 23

 public DateTime AddMonths(int months); 24

 public DateTime AddSeconds(double value); 25

 public DateTime AddTicks(long value); 26

 public DateTime AddYears(int value); 27

 public static int Compare(DateTime t1, DateTime t2); 28

 public int CompareTo(object value); 29

 public static int DaysInMonth(int year, int month); 30

 public override bool Equals(object value); 31

 public static bool Equals(DateTime t1, DateTime t2); 32

 public override int GetHashCode(); 33

 public static bool IsLeapYear(int year); 34

 public static DateTime operator +(DateTime d, TimeSpan t); 35

 public static bool operator ==(DateTime d1, DateTime d2); 36

 public static bool operator >(DateTime t1, DateTime t2); 37

 public static bool operator >=(DateTime t1, DateTime t2); 38

 public static bool operator !=(DateTime d1, DateTime d2); 39

 public static bool operator <(DateTime t1, DateTime t2); 40

 public static bool operator <=(DateTime t1, DateTime t2); 41

 public static DateTime operator -(DateTime d, TimeSpan t); 42

 public static TimeSpan operator -(DateTime d1, DateTime d2); 43

 public static DateTime Parse(string s); 44

Appendix D Standard Library

391

 public static DateTime Parse(string s, IFormatProvider provider); 1

 public static DateTime Parse(string s, IFormatProvider provider, 2

 DateTimeStyles styles); 3

 public static DateTime ParseExact(string s, string format, IFormatProvider 4

 provider); 5

 public static DateTime ParseExact(string s, string format, IFormatProvider 6

 provider, DateTimeStyles style); 7

 public static DateTime ParseExact(string s, string[] formats, 8

 IFormatProvider provider, DateTimeStyles style); 9

 public TimeSpan Subtract(DateTime value); 10

 public DateTime Subtract(TimeSpan value); 11

 public DateTime ToLocalTime(); 12

 public string ToLongDateString(); 13

 public string ToLongTimeString(); 14

 public string ToShortDateString(); 15

 public string ToShortTimeString(); 16

 public string ToString(IFormatProvider provider); 17

 public string ToString(string format, IFormatProvider provider); 18

 public override string ToString(); 19

 public string ToString(string format); 20

 public DateTime ToUniversalTime(); 21

 public DateTime Date { get; } 22

 public int Day { get; } 23

 public int DayOfYear { get; } 24

 public int Hour { get; } 25

 public int Millisecond { get; } 26

 public int Minute { get; } 27

 public int Month { get; } 28

 public static DateTime Now { get; } 29

 public int Second { get; } 30

 public long Ticks { get; } 31

 public TimeSpan TimeOfDay { get; } 32

 public static DateTime Today { get; } 33

 public static DateTime UtcNow { get; } 34

 public int Year { get; } 35

} 36

 37

// Namespace: System.Globalization, Library: BCL 38

public sealed class DateTimeFormatInfo: ICloneable, IFormatProvider 39

{ 40

 public DateTimeFormatInfo(); 41

 public object Clone(); 42

 public string GetAbbreviatedMonthName(int month); 43

 public int GetEra(string eraName); 44

C# LANGUAGE SPECIFICATION

392

 public string GetEraName(int era); 1

 public object GetFormat(Type formatType); 2

 public string GetMonthName(int month); 3

 public static DateTimeFormatInfo ReadOnly(DateTimeFormatInfo dtfi); 4

 public string[] AbbreviatedDayNames { get; set; } 5

 public string[] AbbreviatedMonthNames { get; set; } 6

 public string AMDesignator { get; set; } 7

 public static DateTimeFormatInfo CurrentInfo { get; } 8

 public string DateSeparator { get; set; } 9

 public string[] DayNames { get; set; } 10

 public string FullDateTimePattern { get; set; } 11

 public static DateTimeFormatInfo InvariantInfo { get; } 12

 public bool IsReadOnly { get; } 13

 public string LongDatePattern { get; set; } 14

 public string LongTimePattern { get; set; } 15

 public string MonthDayPattern { get; set; } 16

 public string[] MonthNames { get; set; } 17

 public string PMDesignator { get; set; } 18

 public string ShortDatePattern { get; set; } 19

 public string ShortTimePattern { get; set; } 20

 public string TimeSeparator { get; set; } 21

 public string YearMonthPattern { get; set; } 22

} 23

 24

// Namespace: System.Globalization, Library: BCL 25

public enum DateTimeStyles 26

{ 27

 AdjustToUniversal = 0x10, 28

 AllowInnerWhite = 0x4, 29

 AllowLeadingWhite = 0x1, 30

 AllowTrailingWhite = 0x2, 31

 AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite, 32

 NoCurrentDateDefault = 0x8, 33

 None = 0x0, 34

} 35

 36

// Namespace: System, Library: ExtendedNumerics 37

public struct Decimal: IComparable, IFormattable 38

{ 39

 public Decimal(int value); 40

 public Decimal(uint value); 41

 public Decimal(long value); 42

 public Decimal(ulong value); 43

 public Decimal(float value); 44

Appendix D Standard Library

393

 public Decimal(double value); 1

 public Decimal(int[] bits); 2

 public static readonly decimal MaxValue; 3

 public static readonly decimal MinusOne; 4

 public static readonly decimal MinValue; 5

 public static readonly decimal One; 6

 public static readonly decimal Zero; 7

 public static decimal Add(decimal d1, decimal d2); 8

 public static int Compare(decimal d1, decimal d2); 9

 public int CompareTo(object value); 10

 public static decimal Divide(decimal d1, decimal d2); 11

 public override bool Equals(object value); 12

 public static bool Equals(decimal d1, decimal d2); 13

 public static decimal Floor(decimal d); 14

 public static int[] GetBits(decimal d); 15

 public override int GetHashCode(); 16

 public static decimal Multiply(decimal d1, decimal d2); 17

 public static decimal Negate(decimal d); 18

 public static Decimal operator +(Decimal d1, Decimal d2); 19

 public static Decimal operator --(Decimal d); 20

 public static Decimal operator /(Decimal d1, Decimal d2); 21

 public static bool operator ==(Decimal d1, Decimal d2); 22

 public static explicit operator Decimal(float value); 23

 public static explicit operator Decimal(double value); 24

 public static explicit operator byte(Decimal value); 25

 public static explicit operator sbyte(Decimal value); 26

 public static explicit operator char(Decimal value); 27

 public static explicit operator short(Decimal value); 28

 public static explicit operator ushort(Decimal value); 29

 public static explicit operator int(Decimal value); 30

 public static explicit operator uint(Decimal value); 31

 public static explicit operator long(Decimal value); 32

 public static explicit operator ulong(Decimal value); 33

 public static explicit operator float(Decimal value); 34

 public static explicit operator double(Decimal value); 35

 public static bool operator >(Decimal d1, Decimal d2); 36

 public static bool operator >=(Decimal d1, Decimal d2); 37

 public static implicit operator Decimal(byte value); 38

 public static implicit operator Decimal(sbyte value); 39

 public static implicit operator Decimal(short value); 40

 public static implicit operator Decimal(ushort value); 41

 public static implicit operator Decimal(char value); 42

 public static implicit operator Decimal(int value); 43

 public static implicit operator Decimal(uint value); 44

C# LANGUAGE SPECIFICATION

394

 public static implicit operator Decimal(long value); 1

 public static implicit operator Decimal(ulong value); 2

 public static Decimal operator ++(Decimal d); 3

 public static bool operator !=(Decimal d1, Decimal d2); 4

 public static bool operator <(Decimal d1, Decimal d2); 5

 public static bool operator <=(Decimal d1, Decimal d2); 6

 public static Decimal operator %(Decimal d1, Decimal d2); 7

 public static Decimal operator *(Decimal d1, Decimal d2); 8

 public static Decimal operator -(Decimal d1, Decimal d2); 9

 public static Decimal operator -(Decimal d); 10

 public static Decimal operator +(Decimal d); 11

 public static decimal Parse(string s); 12

 public static decimal Parse(string s, NumberStyles style); 13

 public static decimal Parse(string s, IFormatProvider provider); 14

 public static decimal Parse(string s, NumberStyles style, IFormatProvider 15

 provider); 16

 public static decimal Remainder(decimal d1, decimal d2); 17

 public static decimal Round(decimal d, int decimals); 18

 public static decimal Subtract(decimal d1, decimal d2); 19

 public string ToString(IFormatProvider provider); 20

 public string ToString(string format, IFormatProvider provider); 21

 public override string ToString(); 22

 public string ToString(string format); 23

 public static decimal Truncate(decimal d); 24

} 25

 26

// Namespace: System.Text, Library: BCL 27

public abstract class Decoder 28

{ 29

 protected Decoder(); 30

 public abstract int GetCharCount(byte[] bytes, int index, int count); 31

 public abstract int GetChars(byte[] bytes, int byteIndex, int byteCount, 32

 char[] chars, int charIndex); 33

} 34

 35

// Namespace: System, Library: BCL 36

public abstract class Delegate: ICloneable 37

{ 38

 public virtual object Clone(); 39

 public static Delegate Combine(Delegate a, Delegate b); 40

 public static Delegate Combine(Delegate[] delegates); 41

 public override bool Equals(object obj); 42

 public override int GetHashCode(); 43

 public virtual Delegate[] GetInvocationList(); 44

Appendix D Standard Library

395

 public static bool operator ==(Delegate d1, Delegate d2); 1

 public static bool operator !=(Delegate d1, Delegate d2); 2

 public static Delegate Remove(Delegate source, Delegate value); 3

 public static Delegate RemoveAll(Delegate source, Delegate value); 4

 public object Target { get; } 5

} 6

 7

// Namespace: System.Collections, Library: BCL 8

public struct DictionaryEntry 9

{ 10

 public DictionaryEntry(object key, object value); 11

 public object Key { get; set; } 12

 public object Value { get; set; } 13

} 14

 15

// Namespace: System.IO, Library: BCL 16

public sealed class Directory 17

{ 18

 public static void Delete(string path); 19

 public static void Delete(string path, bool recursive); 20

 public static bool Exists(string path); 21

 public static DateTime GetCreationTime(string path); 22

 public static string GetCurrentDirectory(); 23

 public static string[] GetDirectories(string path); 24

 public static string[] GetDirectories(string path, string searchPattern); 25

 public static string GetDirectoryRoot(string path); 26

 public static string[] GetFiles(string path); 27

 public static string[] GetFiles(string path, string searchPattern); 28

 public static string[] GetFileSystemEntries(string path); 29

 public static string[] GetFileSystemEntries(string path, string 30

 searchPattern); 31

 public static DateTime GetLastAccessTime(string path); 32

 public static DateTime GetLastWriteTime(string path); 33

 public static void Move(string sourceDirName, string destDirName); 34

 public static void SetCreationTime(string path, DateTime creationTime); 35

 public static void SetCurrentDirectory(string path); 36

 public static void SetLastAccessTime(string path, DateTime lastAccessTime); 37

 public static void SetLastWriteTime(string path, DateTime lastWriteTime); 38

} 39

 40

// Namespace: System.IO, Library: BCL 41

public class DirectoryNotFoundException: IOException 42

{ 43

 public DirectoryNotFoundException(); 44

C# LANGUAGE SPECIFICATION

396

 public DirectoryNotFoundException(string message); 1

 public DirectoryNotFoundException(string message, Exception innerException); 2

} 3

 4

// Namespace: System, Library: BCL 5

public class DivideByZeroException: ArithmeticException 6

{ 7

 public DivideByZeroException(); 8

 public DivideByZeroException(string message); 9

 public DivideByZeroException(string message, Exception innerException); 10

} 11

 12

// Namespace: System, Library: ExtendedNumerics 13

public struct Double: IComparable, IFormattable 14

{ 15

 public const double Epsilon = 4.9406564584124654e-324; 16

 public const double MaxValue = 1.7976931348623157e+308; 17

 public const double MinValue = -1.7976931348623157e+308; 18

 public const double NaN = (double)0.0 / (double)0.0; 19

 public const double NegativeInfinity = (double)-1.0 / (double)(0.0); 20

 public const double PositiveInfinity = (double)1.0 / (double)(0.0); 21

 public int CompareTo(object value); 22

 public override bool Equals(object obj); 23

 public override int GetHashCode(); 24

 public static bool IsInfinity(double d); 25

 public static bool IsNaN(double d); 26

 public static bool IsNegativeInfinity(double d); 27

 public static bool IsPositiveInfinity(double d); 28

 public static double Parse(string s); 29

 public static double Parse(string s, NumberStyles style); 30

 public static double Parse(string s, IFormatProvider provider); 31

 public static double Parse(string s, NumberStyles style, IFormatProvider 32

 provider); 33

 public string ToString(IFormatProvider provider); 34

 public string ToString(string format, IFormatProvider provider); 35

 public override string ToString(); 36

 public string ToString(string format); 37

} 38

 39

// Namespace: System, Library: BCL 40

public class DuplicateWaitObjectException: ArgumentException 41

{ 42

 public DuplicateWaitObjectException(); 43

 public DuplicateWaitObjectException(string parameterName); 44

Appendix D Standard Library

397

 public DuplicateWaitObjectException(string parameterName, string message); 1

} 2

 3

// Namespace: System.Text, Library: BCL 4

public abstract class Encoder 5

{ 6

 protected Encoder(); 7

 public abstract int GetByteCount(char[] chars, int index, int count, bool 8

 flush); 9

 public abstract int GetBytes(char[] chars, int charIndex, int charCount, 10

 byte[] bytes, int byteIndex, bool flush); 11

} 12

 13

// Namespace: System.Text, Library: BCL 14

public abstract class Encoding 15

{ 16

 protected Encoding(); 17

 public static byte[] Convert(Encoding srcEncoding, Encoding dstEncoding, 18

 byte[] bytes); 19

 public static byte[] Convert(Encoding srcEncoding, Encoding dstEncoding, 20

 byte[] bytes, int index, int count); 21

 public override bool Equals(object value); 22

 public abstract int GetByteCount(char[] chars, int index, int count); 23

 public virtual int GetByteCount(string s); 24

 public virtual int GetByteCount(char[] chars); 25

 public virtual int GetBytes(string s, int charIndex, int charCount, byte[] 26

 bytes, int byteIndex); 27

 public virtual byte[] GetBytes(string s); 28

 public abstract int GetBytes(char[] chars, int charIndex, int charCount, 29

 byte[] bytes, int byteIndex); 30

 public virtual byte[] GetBytes(char[] chars, int index, int count); 31

 public virtual byte[] GetBytes(char[] chars); 32

 public abstract int GetCharCount(byte[] bytes, int index, int count); 33

 public virtual int GetCharCount(byte[] bytes); 34

 public abstract int GetChars(byte[] bytes, int byteIndex, int byteCount, 35

 char[] chars, int charIndex); 36

 public virtual char[] GetChars(byte[] bytes, int index, int count); 37

 public virtual char[] GetChars(byte[] bytes); 38

 public virtual Decoder GetDecoder(); 39

 public virtual Encoder GetEncoder(); 40

 public override int GetHashCode(); 41

 public abstract int GetMaxByteCount(int charCount); 42

 public abstract int GetMaxCharCount(int byteCount); 43

 public virtual byte[] GetPreamble(); 44

C# LANGUAGE SPECIFICATION

398

 public virtual string GetString(byte[] bytes, int index, int count); 1

 public virtual string GetString(byte[] bytes); 2

 public static Encoding ASCII { get; } 3

 public static Encoding BigEndianUnicode { get; } 4

 public static Encoding Default { get; } 5

 public static Encoding Unicode { get; } 6

 public static Encoding UTF8 { get; } 7

} 8

 9

// Namespace: System.IO, Library: BCL 10

public class EndOfStreamException: IOException 11

{ 12

 public EndOfStreamException(); 13

 public EndOfStreamException(string message); 14

 public EndOfStreamException(string message, Exception innerException); 15

} 16

 17

// Namespace: System, Library: BCL 18

public abstract class Enum: ValueType, IComparable, IFormattable 19

{ 20

 public int CompareTo(object target); 21

 public override bool Equals(object obj); 22

 public static string Format(Type enumType, object value, string format); 23

 public override int GetHashCode(); 24

 public static string GetName(Type enumType, object value); 25

 public static string[] GetNames(Type enumType); 26

 public static Type GetUnderlyingType(Type enumType); 27

 public static Array GetValues(Type enumType); 28

 public static bool IsDefined(Type enumType, object value); 29

 public static object Parse(Type enumType, string value); 30

 public static object Parse(Type enumType, string value, bool ignoreCase); 31

 public static object ToObject(Type enumType, object value); 32

 public static object ToObject(Type enumType, sbyte value); 33

 public static object ToObject(Type enumType, short value); 34

 public static object ToObject(Type enumType, int value); 35

 public static object ToObject(Type enumType, byte value); 36

 public static object ToObject(Type enumType, ushort value); 37

 public static object ToObject(Type enumType, uint value); 38

 public static object ToObject(Type enumType, long value); 39

 public static object ToObject(Type enumType, ulong value); 40

 public string ToString(IFormatProvider provider); 41

 public string ToString(string format, IFormatProvider provider); 42

 public override string ToString(); 43

 public string ToString(string format); 44

Appendix D Standard Library

399

} 1

 2

// Namespace: System, Library: BCL 3

public sealed class Environment 4

{ 5

 public static void Exit(int exitCode); 6

 public static string[] GetCommandLineArgs(); 7

 public static string GetEnvironmentVariable(string variable); 8

 public static IDictionary GetEnvironmentVariables(); 9

 public static string CommandLine { get; } 10

 public static int ExitCode { get; set; } 11

 public bool HasShutdownStarted { get; } 12

 public static string NewLine { get; } 13

 public static string StackTrace { get; } 14

 public static int TickCount { get; } 15

 public static Version Version { get; } 16

} 17

 18

// Namespace: System.Security.Permissions, Library: BCL 19

public sealed class EnvironmentPermission: CodeAccessPermission 20

{ 21

 public EnvironmentPermission(PermissionState state); 22

 public EnvironmentPermission(EnvironmentPermissionAccess flag, string 23

 pathList); 24

 public override IPermission Copy(); 25

 public override void FromXml(SecurityElement esd); 26

 public override IPermission Intersect(IPermission target); 27

 public override bool IsSubsetOf(IPermission target); 28

 public override SecurityElement ToXml(); 29

 public override IPermission Union(IPermission other); 30

} 31

 32

// Namespace: System.Security.Permissions, Library: BCL 33

public enum EnvironmentPermissionAccess 34

{ 35

 AllAccess = Read | Write, 36

 NoAccess = 0x0, 37

 Read = 0x1, 38

 Write = 0x2, 39

} 40

 41

// Namespace: System.Security.Permissions, Library: BCL 42

public sealed class EnvironmentPermissionAttribute: CodeAccessSecurityAttribute 43

{ 44

C# LANGUAGE SPECIFICATION

400

 public EnvironmentPermissionAttribute(SecurityAction action); 1

 public override IPermission CreatePermission(); 2

 public string All { set; } 3

 public string Read { get; set; } 4

 public string Write { get; set; } 5

} 6

 7

// Namespace: System, Library: BCL 8

public class EventArgs 9

{ 10

 public EventArgs(); 11

 public static readonly EventArgs Empty; 12

} 13

 14

// Namespace: System, Library: BCL 15

public delegate void EventHandler(object sender, EventArgs e); 16

 17

// Namespace: System, Library: BCL 18

public class Exception 19

{ 20

 public Exception(); 21

 public Exception(string message); 22

 public Exception(string message, Exception innerException); 23

 public virtual Exception GetBaseException(); 24

 public override string ToString(); 25

 public Exception InnerException { get; } 26

 public virtual string Message { get; } 27

 public virtual string StackTrace { get; } 28

} 29

 30

// Namespace: System, Library: BCL 31

public sealed class ExecutionEngineException: SystemException 32

{ 33

 public ExecutionEngineException(); 34

 public ExecutionEngineException(string message); 35

 public ExecutionEngineException(string message, Exception innerException); 36

} 37

 38

// Namespace: System.IO, Library: BCL 39

public sealed class File 40

{ 41

 public static StreamWriter AppendText(string path); 42

 public static void Copy(string sourceFileName, string destFileName); 43

 public static void Copy(string sourceFileName, string destFileName, bool 44

Appendix D Standard Library

401

 overwrite); 1

 public static FileStream Create(string path); 2

 public static FileStream Create(string path, int bufferSize); 3

 public static StreamWriter CreateText(string path); 4

 public static void Delete(string path); 5

 public static bool Exists(string path); 6

 public static DateTime GetCreationTime(string path); 7

 public static DateTime GetLastAccessTime(string path); 8

 public static DateTime GetLastWriteTime(string path); 9

 public static void Move(string sourceFileName, string destFileName); 10

 public static FileStream Open(string path, FileMode mode); 11

 public static FileStream Open(string path, FileMode mode, FileAccess 12

 access); 13

 public static FileStream Open(string path, FileMode mode, FileAccess 14

 access, FileShare share); 15

 public static FileStream OpenRead(string path); 16

 public static StreamReader OpenText(string path); 17

 public static FileStream OpenWrite(string path); 18

 public static void SetCreationTime(string path, DateTime creationTime); 19

 public static void SetLastAccessTime(string path, DateTime lastAccessTime); 20

 public static void SetLastWriteTime(string path, DateTime lastWriteTime); 21

} 22

 23

// Namespace: System.IO, Library: BCL 24

public enum FileAccess 25

{ 26

 Read = 0x1, 27

 ReadWrite = Read | Write, 28

 Write = 0x2, 29

} 30

 31

// Namespace: System.Security.Permissions, Library: BCL 32

public sealed class FileIOPermission: CodeAccessPermission 33

{ 34

 public FileIOPermission(PermissionState state); 35

 public FileIOPermission(FileIOPermissionAccess access, string path); 36

 public override IPermission Copy(); 37

 public override void FromXml(SecurityElement esd); 38

 public override IPermission Intersect(IPermission target); 39

 public override bool IsSubsetOf(IPermission target); 40

 public override SecurityElement ToXml(); 41

 public override IPermission Union(IPermission other); 42

} 43

 44

C# LANGUAGE SPECIFICATION

402

// Namespace: System.Security.Permissions, Library: BCL 1

public enum FileIOPermissionAccess 2

{ 3

 AllAccess = Read | Write | Append | PathDiscovery, 4

 Append = 0x4, 5

 NoAccess = 0x0, 6

 PathDiscovery = 0x8, 7

 Read = 0x1, 8

 Write = 0x2, 9

} 10

 11

// Namespace: System.Security.Permissions, Library: BCL 12

public sealed class FileIOPermissionAttribute: CodeAccessSecurityAttribute 13

{ 14

 public FileIOPermissionAttribute(SecurityAction action); 15

 public override IPermission CreatePermission(); 16

 public string All { set; } 17

 public string Append { get; set; } 18

 public string PathDiscovery { get; set; } 19

 public string Read { get; set; } 20

 public string Write { get; set; } 21

} 22

 23

// Namespace: System.IO, Library: BCL 24

public class FileLoadException: IOException 25

{ 26

 public FileLoadException(); 27

 public FileLoadException(string message); 28

 public FileLoadException(string message, Exception inner); 29

 public FileLoadException(string message, string fileName); 30

 public FileLoadException(string message, string fileName, Exception inner); 31

 public override string ToString(); 32

 public string FileName { get; } 33

 public override string Message { get; } 34

} 35

 36

// Namespace: System.IO, Library: BCL 37

public enum FileMode 38

{ 39

 Append = 6, 40

 Create = 2, 41

 CreateNew = 1, 42

 Open = 3, 43

 OpenOrCreate = 4, 44

Appendix D Standard Library

403

 Truncate = 5, 1

} 2

 3

// Namespace: System.IO, Library: BCL 4

public class FileNotFoundException: IOException 5

{ 6

 public FileNotFoundException(); 7

 public FileNotFoundException(string message); 8

 public FileNotFoundException(string message, Exception innerException); 9

 public FileNotFoundException(string message, string fileName); 10

 public FileNotFoundException(string message, string fileName, Exception 11

 innerException); 12

 public override string ToString(); 13

 public string FileName { get; } 14

 public override string Message { get; } 15

} 16

 17

// Namespace: System.IO, Library: BCL 18

public enum FileShare 19

{ 20

 None = 0x0, 21

 Read = 0x1, 22

 ReadWrite = Read | Write, 23

 Write = 0x2, 24

} 25

 26

// Namespace: System.IO, Library: BCL 27

public class FileStream: Stream 28

{ 29

 public FileStream(string path, FileMode mode); 30

 public FileStream(string path, FileMode mode, FileAccess access); 31

 public FileStream(string path, FileMode mode, FileAccess access, FileShare 32

 share); 33

 public FileStream(string path, FileMode mode, FileAccess access, FileShare 34

 share, int bufferSize); 35

 public FileStream(string path, FileMode mode, FileAccess access, FileShare 36

 share, int bufferSize, bool useAsync); 37

 public override IAsyncResult BeginRead(byte[] array, int offset, int 38

 numBytes, AsyncCallback userCallback, object stateObject); 39

 public override IAsyncResult BeginWrite(byte[] array, int offset, int 40

 numBytes, AsyncCallback userCallback, object stateObject); 41

 public override void Close(); 42

 protected virtual void Dispose(bool disposing); 43

 public override int EndRead(IAsyncResult asyncResult); 44

C# LANGUAGE SPECIFICATION

404

 public override void EndWrite(IAsyncResult asyncResult); 1

 ~FileStream(); 2

 public override void Flush(); 3

 public override int Read(byte[] array, int offset, int count); 4

 public override int ReadByte(); 5

 public override long Seek(long offset, SeekOrigin origin); 6

 public override void SetLength(long value); 7

 public override void Write(byte[] array, int offset, int count); 8

 public override void WriteByte(byte value); 9

 public override bool CanRead { get; } 10

 public override bool CanSeek { get; } 11

 public override bool CanWrite { get; } 12

 public virtual bool IsAsync { get; } 13

 public override long Length { get; } 14

 public override long Position { get; set; } 15

} 16

 17

// Namespace: System, Library: BCL 18

public class FlagsAttribute: Attribute 19

{ 20

 public FlagsAttribute(); 21

} 22

 23

// Namespace: System, Library: BCL 24

public class FormatException: SystemException 25

{ 26

 public FormatException(); 27

 public FormatException(string message); 28

 public FormatException(string message, Exception innerException); 29

} 30

 31

// Namespace: System, Library: BCL 32

public sealed class GC 33

{ 34

 public static void KeepAlive(object obj); 35

 public static void ReRegisterForFinalize(object obj); 36

 public static void SuppressFinalize(object obj); 37

 public static void WaitForPendingFinalizers(); 38

} 39

 40

// Namespace: System.Collections, Library: BCL 41

public class Hashtable: ICloneable, ICollection, IDictionary, IEnumerable 42

{ 43

 public Hashtable(); 44

Appendix D Standard Library

405

 public Hashtable(int capacity); 1

 public Hashtable(IHashCodeProvider hcp, IComparer comparer); 2

 public Hashtable(int capacity, IHashCodeProvider hcp, IComparer comparer); 3

 public Hashtable(IDictionary d); 4

 public Hashtable(IDictionary d, IHashCodeProvider hcp, IComparer comparer); 5

 public virtual void Add(object key, object value); 6

 public virtual void Clear(); 7

 public virtual object Clone(); 8

 public virtual bool Contains(object key); 9

 public virtual bool ContainsKey(object key); 10

 public virtual bool ContainsValue(object value); 11

 public virtual void CopyTo(Array array, int arrayIndex); 12

 public virtual IDictionaryEnumerator GetEnumerator(); 13

 protected virtual int GetHash(object key); 14

 protected virtual bool KeyEquals(object item, object key); 15

 public virtual void Remove(object key); 16

 public static Hashtable Synchronized(Hashtable table); 17

 IEnumerator IEnumerable.GetEnumerator(); 18

 int ICollection.Count { get; } 19

 public virtual int Count { get; } 20

 bool IDictionary.IsFixedSize { get; } 21

 public virtual bool IsFixedSize { get; } 22

 bool IDictionary.IsReadOnly { get; } 23

 public virtual bool IsReadOnly { get; } 24

 bool ICollection.IsSynchronized { get; } 25

 public virtual bool IsSynchronized { get; } 26

 public virtual object this[object key] { get; set; } 27

 ICollection IDictionary.Keys { get; } 28

 public virtual ICollection Keys { get; } 29

 object ICollection.SyncRoot { get; } 30

 public virtual object SyncRoot { get; } 31

 ICollection IDictionary.Values { get; } 32

 public virtual ICollection Values { get; } 33

} 34

 35

// Namespace: System, Library: BCL 36

public interface IAsyncResult 37

{ 38

 object AsyncState { get; } 39

 WaitHandle AsyncWaitHandle { get; } 40

 bool CompletedSynchronously { get; } 41

 bool IsCompleted { get; } 42

} 43

 44

C# LANGUAGE SPECIFICATION

406

// Namespace: System, Library: BCL 1

public interface ICloneable 2

{ 3

 object Clone(); 4

} 5

 6

// Namespace: System.Collections, Library: BCL 7

public interface ICollection: IEnumerable 8

{ 9

 void CopyTo(Array array, int index); 10

 int Count { get; } 11

 bool IsSynchronized { get; } 12

 object SyncRoot { get; } 13

} 14

 15

// Namespace: System, Library: BCL 16

public interface IComparable 17

{ 18

 int CompareTo(object obj); 19

} 20

 21

// Namespace: System.Collections, Library: BCL 22

public interface IComparer 23

{ 24

 int Compare(object x, object y); 25

} 26

 27

// Namespace: System.Collections, Library: BCL 28

public interface IDictionary: ICollection, IEnumerable 29

{ 30

 void Add(object key, object value); 31

 void Clear(); 32

 bool Contains(object key); 33

 IDictionaryEnumerator GetEnumerator(); 34

 void Remove(object key); 35

 bool IsFixedSize { get; } 36

 bool IsReadOnly { get; } 37

 object this[object key] { get; set; } 38

 ICollection Keys { get; } 39

 ICollection Values { get; } 40

} 41

 42

// Namespace: System.Collections, Library: BCL 43

public interface IDictionaryEnumerator: IEnumerator 44

Appendix D Standard Library

407

{ 1

 DictionaryEntry Entry { get; } 2

 object Key { get; } 3

 object Value { get; } 4

} 5

 6

// Namespace: System, Library: BCL 7

public interface IDisposable 8

{ 9

 void Dispose(); 10

} 11

 12

// Namespace: System.Collections, Library: BCL 13

public interface IEnumerable 14

{ 15

 IEnumerator GetEnumerator(); 16

} 17

 18

// Namespace: System.Collections, Library: BCL 19

public interface IEnumerator 20

{ 21

 bool MoveNext(); 22

 void Reset(); 23

 object Current { get; } 24

} 25

 26

// Namespace: System, Library: BCL 27

public interface IFormatProvider 28

{ 29

 object GetFormat(Type formatType); 30

} 31

 32

// Namespace: System, Library: BCL 33

public interface IFormattable 34

{ 35

 string ToString(string format, IFormatProvider formatProvider); 36

} 37

 38

// Namespace: System.Collections, Library: BCL 39

public interface IHashCodeProvider 40

{ 41

 int GetHashCode(object obj); 42

} 43

 44

C# LANGUAGE SPECIFICATION

408

// Namespace: System.Collections, Library: BCL 1

public interface IList: ICollection, IEnumerable 2

{ 3

 int Add(object value); 4

 void Clear(); 5

 bool Contains(object value); 6

 int IndexOf(object value); 7

 void Insert(int index, object value); 8

 void Remove(object value); 9

 void RemoveAt(int index); 10

 bool IsFixedSize { get; } 11

 bool IsReadOnly { get; } 12

 object this[int index] { get; set; } 13

} 14

 15

// Namespace: System, Library: BCL 16

public sealed class IndexOutOfRangeException: SystemException 17

{ 18

 public IndexOutOfRangeException(); 19

 public IndexOutOfRangeException(string message); 20

 public IndexOutOfRangeException(string message, Exception innerException); 21

} 22

 23

// Namespace: System, Library: BCL 24

public struct Int16: IComparable, IFormattable 25

{ 26

 public const short MaxValue = 32767; 27

 public const short MinValue = -32768; 28

 public int CompareTo(object value); 29

 public override bool Equals(object obj); 30

 public override int GetHashCode(); 31

 public static short Parse(string s); 32

 public static short Parse(string s, NumberStyles style); 33

 public static short Parse(string s, IFormatProvider provider); 34

 public static short Parse(string s, NumberStyles style, IFormatProvider 35

 provider); 36

 public string ToString(IFormatProvider provider); 37

 public string ToString(string format, IFormatProvider provider); 38

 public override string ToString(); 39

 public string ToString(string format); 40

} 41

 42

// Namespace: System, Library: BCL 43

public struct Int32: IComparable, IFormattable 44

Appendix D Standard Library

409

{ 1

 public const int MaxValue = 2147483647; 2

 public const int MinValue = -2147483648; 3

 public int CompareTo(object value); 4

 public override bool Equals(object obj); 5

 public override int GetHashCode(); 6

 public static int Parse(string s); 7

 public static int Parse(string s, NumberStyles style); 8

 public static int Parse(string s, IFormatProvider provider); 9

 public static int Parse(string s, NumberStyles style, IFormatProvider 10

 provider); 11

 public string ToString(IFormatProvider provider); 12

 public string ToString(string format, IFormatProvider provider); 13

 public override string ToString(); 14

 public string ToString(string format); 15

} 16

 17

// Namespace: System, Library: BCL 18

public struct Int64: IComparable, IFormattable 19

{ 20

 public const long MaxValue = 9223372036854775807; 21

 public const long MinValue = -9223372036854775808; 22

 public int CompareTo(object value); 23

 public override bool Equals(object obj); 24

 public override int GetHashCode(); 25

 public static long Parse(string s); 26

 public static long Parse(string s, NumberStyles style); 27

 public static long Parse(string s, IFormatProvider provider); 28

 public static long Parse(string s, NumberStyles style, IFormatProvider 29

 provider); 30

 public string ToString(IFormatProvider provider); 31

 public string ToString(string format, IFormatProvider provider); 32

 public override string ToString(); 33

 public string ToString(string format); 34

} 35

 36

// Namespace: System.Threading, Library: BCL 37

public sealed class Interlocked 38

{ 39

 public static int CompareExchange(ref int location1, int value, int 40

 comparand); 41

 public static float CompareExchange(ref float location1, float value, float 42

 comparand); 43

 public static object CompareExchange(ref object location1, object value, 44

C# LANGUAGE SPECIFICATION

410

 object comparand); 1

 public static int Decrement(ref int location); 2

 public static long Decrement(ref long location); 3

 public static int Exchange(ref int location1, int value); 4

 public static float Exchange(ref float location1, float value); 5

 public static object Exchange(ref object location1, object value); 6

 public static int Increment(ref int location); 7

 public static long Increment(ref long location); 8

} 9

 10

// Namespace: System, Library: BCL 11

public class InvalidCastException: SystemException 12

{ 13

 public InvalidCastException(); 14

 public InvalidCastException(string message); 15

 public InvalidCastException(string message, Exception innerException); 16

} 17

 18

// Namespace: System, Library: BCL 19

public class InvalidOperationException: SystemException 20

{ 21

 public InvalidOperationException(); 22

 public InvalidOperationException(string message); 23

 public InvalidOperationException(string message, Exception innerException); 24

} 25

 26

// Namespace: System, Library: BCL 27

public sealed class InvalidProgramException: SystemException 28

{ 29

 public InvalidProgramException(); 30

 public InvalidProgramException(string message); 31

 public InvalidProgramException(string message, Exception inner); 32

} 33

 34

// Namespace: System.IO, Library: BCL 35

public class IOException: SystemException 36

{ 37

 public IOException(); 38

 public IOException(string message); 39

 public IOException(string message, Exception innerException); 40

} 41

 42

// Namespace: System.Security, Library: BCL 43

public interface IPermission 44

Appendix D Standard Library

411

{ 1

 IPermission Copy(); 2

 void Demand(); 3

 IPermission Intersect(IPermission target); 4

 bool IsSubsetOf(IPermission target); 5

 IPermission Union(IPermission target); 6

} 7

 8

// Namespace: System, Library: BCL 9

public abstract class MarshalByRefObject 10

{ 11

} 12

 13

// Namespace: System, Library: ExtendedNumerics 14

public sealed class Math 15

{ 16

 public const double E = 2.71828182845905; 17

 public const double PI = 3.14159265358979; 18

 public static sbyte Abs(sbyte value); 19

 public static short Abs(short value); 20

 public static int Abs(int value); 21

 public static long Abs(long value); 22

 public static float Abs(float value); 23

 public static double Abs(double value); 24

 public static decimal Abs(decimal value); 25

 public static double Acos(double d); 26

 public static double Asin(double d); 27

 public static double Atan(double d); 28

 public static double Atan2(double y, double x); 29

 public static long BigMul(int a, int b); 30

 public static double Ceiling(double a); 31

 public static double Cos(double d); 32

 public static double Cosh(double value); 33

 public static int DivRem(int a, int b, out int result); 34

 public static long DivRem(long a, long b, out long result); 35

 public static double Exp(double d); 36

 public static double Floor(double d); 37

 public static double IEEERemainder(double x, double y); 38

 public static double Log(double d); 39

 public static double Log(double a, double newBase); 40

 public static double Log10(double d); 41

 public static sbyte Max(sbyte val1, sbyte val2); 42

 public static byte Max(byte val1, byte val2); 43

 public static short Max(short val1, short val2); 44

C# LANGUAGE SPECIFICATION

412

 public static ushort Max(ushort val1, ushort val2); 1

 public static int Max(int val1, int val2); 2

 public static uint Max(uint val1, uint val2); 3

 public static long Max(long val1, long val2); 4

 public static ulong Max(ulong val1, ulong val2); 5

 public static float Max(float val1, float val2); 6

 public static double Max(double val1, double val2); 7

 public static decimal Max(decimal val1, decimal val2); 8

 public static sbyte Min(sbyte val1, sbyte val2); 9

 public static byte Min(byte val1, byte val2); 10

 public static short Min(short val1, short val2); 11

 public static ushort Min(ushort val1, ushort val2); 12

 public static int Min(int val1, int val2); 13

 public static uint Min(uint val1, uint val2); 14

 public static long Min(long val1, long val2); 15

 public static ulong Min(ulong val1, ulong val2); 16

 public static float Min(float val1, float val2); 17

 public static double Min(double val1, double val2); 18

 public static decimal Min(decimal val1, decimal val2); 19

 public static double Pow(double x, double y); 20

 public static double Round(double a); 21

 public static double Round(double value, int digits); 22

 public static decimal Round(decimal d); 23

 public static int Sign(sbyte value); 24

 public static int Sign(short value); 25

 public static int Sign(int value); 26

 public static int Sign(long value); 27

 public static int Sign(float value); 28

 public static int Sign(double value); 29

 public static int Sign(decimal value); 30

 public static double Sin(double a); 31

 public static double Sinh(double value); 32

 public static double Sqrt(double d); 33

 public static double Tan(double a); 34

 public static double Tanh(double value); 35

} 36

 37

// Namespace: System.IO, Library: BCL 38

public class MemoryStream: Stream 39

{ 40

 public MemoryStream(); 41

 public MemoryStream(int capacity); 42

 public MemoryStream(byte[] buffer); 43

 public MemoryStream(byte[] buffer, bool writable); 44

Appendix D Standard Library

413

 public MemoryStream(byte[] buffer, int index, int count); 1

 public MemoryStream(byte[] buffer, int index, int count, bool writable); 2

 public MemoryStream(byte[] buffer, int index, int count, bool writable, 3

 bool publiclyVisible); 4

 public override void Close(); 5

 public override void Flush(); 6

 public virtual byte[] GetBuffer(); 7

 public override int Read(byte[] buffer, int offset, int count); 8

 public override int ReadByte(); 9

 public override long Seek(long offset, SeekOrigin loc); 10

 public override void SetLength(long value); 11

 public virtual byte[] ToArray(); 12

 public override void Write(byte[] buffer, int offset, int count); 13

 public override void WriteByte(byte value); 14

 public virtual void WriteTo(Stream stream); 15

 public override bool CanRead { get; } 16

 public override bool CanSeek { get; } 17

 public override bool CanWrite { get; } 18

 public virtual int Capacity { get; set; } 19

 public override long Length { get; } 20

 public override long Position { get; set; } 21

} 22

 23

// Namespace: System.Threading, Library: BCL 24

public sealed class Monitor 25

{ 26

 public static void Enter(object obj); 27

 public static void Exit(object obj); 28

 public static void Pulse(object obj); 29

 public static void PulseAll(object obj); 30

 public static bool TryEnter(object obj); 31

 public static bool TryEnter(object obj, int millisecondsTimeout); 32

 public static bool TryEnter(object obj, TimeSpan timeout); 33

 public static bool Wait(object obj, int millisecondsTimeout); 34

 public static bool Wait(object obj, TimeSpan timeout); 35

 public static bool Wait(object obj); 36

} 37

 38

// Namespace: System, Library: ExtendedNumerics 39

public class NotFiniteNumberException: ArithmeticException 40

{ 41

 public NotFiniteNumberException(); 42

 public NotFiniteNumberException(double offendingNumber); 43

 public NotFiniteNumberException(string message); 44

C# LANGUAGE SPECIFICATION

414

 public NotFiniteNumberException(string message, double offendingNumber); 1

 public NotFiniteNumberException(string message, double offendingNumber, 2

 Exception innerException); 3

 public double OffendingNumber { get; } 4

} 5

 6

// Namespace: System, Library: BCL 7

public class NotSupportedException: SystemException 8

{ 9

 public NotSupportedException(); 10

 public NotSupportedException(string message); 11

 public NotSupportedException(string message, Exception innerException); 12

} 13

 14

// Namespace: System, Library: BCL 15

public class NullReferenceException: SystemException 16

{ 17

 public NullReferenceException(); 18

 public NullReferenceException(string message); 19

 public NullReferenceException(string message, Exception innerException); 20

} 21

 22

// Namespace: System.Globalization, Library: BCL 23

public sealed class NumberFormatInfo: ICloneable, IFormatProvider 24

{ 25

 public NumberFormatInfo(); 26

 public object Clone(); 27

 public object GetFormat(Type formatType); 28

 public static NumberFormatInfo ReadOnly(NumberFormatInfo nfi); 29

 public int CurrencyDecimalDigits { get; set; } 30

 public string CurrencyDecimalSeparator { get; set; } 31

 public string CurrencyGroupSeparator { get; set; } 32

 public int[] CurrencyGroupSizes { get; set; } 33

 public int CurrencyNegativePattern { get; set; } 34

 public int CurrencyPositivePattern { get; set; } 35

 public string CurrencySymbol { get; set; } 36

 public static NumberFormatInfo CurrentInfo { get; } 37

 public static NumberFormatInfo InvariantInfo { get; } 38

 public bool IsReadOnly { get; } 39

 public string NaNSymbol { get; set; } 40

 public string NegativeInfinitySymbol { get; set; } 41

 public string NegativeSign { get; set; } 42

 public int NumberDecimalDigits { get; set; } 43

 public string NumberDecimalSeparator { get; set; } 44

Appendix D Standard Library

415

 public string NumberGroupSeparator { get; set; } 1

 public int[] NumberGroupSizes { get; set; } 2

 public int NumberNegativePattern { get; set; } 3

 public int PercentDecimalDigits { get; set; } 4

 public string PercentDecimalSeparator { get; set; } 5

 public string PercentGroupSeparator { get; set; } 6

 public int[] PercentGroupSizes { get; set; } 7

 public int PercentNegativePattern { get; set; } 8

 public int PercentPositivePattern { get; set; } 9

 public string PercentSymbol { get; set; } 10

 public string PerMilleSymbol { get; set; } 11

 public string PositiveInfinitySymbol { get; set; } 12

 public string PositiveSign { get; set; } 13

} 14

 15

// Namespace: System.Globalization, Library: BCL 16

public enum NumberStyles 17

{ 18

 AllowCurrencySymbol = 0x100, 19

 AllowDecimalPoint = 0x20, 20

 AllowExponent = 0x80, 21

 AllowHexSpecifier = 0x200, 22

 AllowLeadingSign = 0x4, 23

 AllowLeadingWhite = 0x1, 24

 AllowParentheses = 0x10, 25

 AllowThousands = 0x40, 26

 AllowTrailingSign = 0x8, 27

 AllowTrailingWhite = 0x2, 28

 Any = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | 29

 AllowTrailingSign | AllowParentheses | AllowDecimalPoint | 30

 AllowThousands | AllowExponent | AllowCurrencySymbol, 31

 Currency = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | 32

 AllowTrailingSign | AllowParentheses | AllowDecimalPoint | 33

 AllowThousands | AllowCurrencySymbol, 34

 Float = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | 35

 AllowDecimalPoint | AllowExponent, 36

 HexNumber = AllowLeadingWhite | AllowTrailingWhite | AllowHexSpecifier, 37

 Integer = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign, 38

 None = 0x0, 39

 Number = AllowLeadingWhite | AllowTrailingWhite | AllowLeadingSign | 40

 AllowTrailingSign | AllowDecimalPoint | AllowThousands, 41

} 42

 43

// Namespace: System, Library: BCL 44

C# LANGUAGE SPECIFICATION

416

public class Object 1

{ 2

 public Object(); 3

 public virtual bool Equals(object obj); 4

 public static bool Equals(object objA, object objB); 5

 ~Object(); 6

 public virtual int GetHashCode(); 7

 public Type GetType(); 8

 protected object MemberwiseClone(); 9

 public static bool ReferenceEquals(object objA, object objB); 10

 public virtual string ToString(); 11

} 12

 13

// Namespace: System, Library: BCL 14

public class ObjectDisposedException: InvalidOperationException 15

{ 16

 public ObjectDisposedException(string objectName); 17

 public ObjectDisposedException(string objectName, string message); 18

 public override string Message { get; } 19

 public string ObjectName { get; } 20

} 21

 22

// Namespace: System, Library: BCL 23

public sealed class ObsoleteAttribute: Attribute 24

{ 25

 public ObsoleteAttribute(); 26

 public ObsoleteAttribute(string message); 27

 public ObsoleteAttribute(string message, bool error); 28

 public bool IsError { get; } 29

 public string Message { get; } 30

} 31

 32

// Namespace: System, Library: BCL 33

public class OutOfMemoryException: SystemException 34

{ 35

 public OutOfMemoryException(); 36

 public OutOfMemoryException(string message); 37

 public OutOfMemoryException(string message, Exception innerException); 38

} 39

 40

// Namespace: System, Library: BCL 41

public class OverflowException: ArithmeticException 42

{ 43

 public OverflowException(); 44

Appendix D Standard Library

417

 public OverflowException(string message); 1

 public OverflowException(string message, Exception innerException); 2

} 3

 4

// Namespace: System.IO, Library: BCL 5

public sealed class Path 6

{ 7

 public static readonly char AltDirectorySeparatorChar; 8

 public static readonly char DirectorySeparatorChar; 9

 public static readonly char PathSeparator; 10

 public static string ChangeExtension(string path, string extension); 11

 public static string Combine(string path1, string path2); 12

 public static string GetDirectoryName(string path); 13

 public static string GetExtension(string path); 14

 public static string GetFileName(string path); 15

 public static string GetFileNameWithoutExtension(string path); 16

 public static string GetFullPath(string path); 17

 public static string GetPathRoot(string path); 18

 public static string GetTempFileName(); 19

 public static string GetTempPath(); 20

 public static bool HasExtension(string path); 21

 public static bool IsPathRooted(string path); 22

} 23

 24

// Namespace: System.IO, Library: BCL 25

public class PathTooLongException: IOException 26

{ 27

 public PathTooLongException(); 28

 public PathTooLongException(string message); 29

 public PathTooLongException(string message, Exception innerException); 30

} 31

 32

// Namespace: System.Security, Library: BCL 33

public class PermissionSet: ICollection, IEnumerable 34

{ 35

 public PermissionSet(PermissionState state); 36

 public PermissionSet(PermissionSet permSet); 37

 public virtual IPermission AddPermission(IPermission perm); 38

 public virtual void Assert(); 39

 public virtual PermissionSet Copy(); 40

 public virtual void CopyTo(Array array, int index); 41

 public virtual void Demand(); 42

 public virtual void Deny(); 43

 public virtual void FromXml(SecurityElement et); 44

C# LANGUAGE SPECIFICATION

418

 public virtual IEnumerator GetEnumerator(); 1

 public virtual bool IsSubsetOf(PermissionSet target); 2

 public virtual void PermitOnly(); 3

 public override string ToString(); 4

 public virtual SecurityElement ToXml(); 5

 public virtual PermissionSet Union(PermissionSet other); 6

 int ICollection.Count { get; } 7

 bool ICollection.IsSynchronized { get; } 8

 object ICollection.SyncRoot { get; } 9

} 10

 11

// Namespace: System.Security.Permissions, Library: BCL 12

public enum PermissionState 13

{ 14

 None = 0, 15

 Unrestricted = 1, 16

} 17

 18

// Namespace: System, Library: BCL 19

public class Random 20

{ 21

 public Random(); 22

 public Random(int Seed); 23

 public virtual int Next(int maxValue); 24

 public virtual int Next(int minValue, int maxValue); 25

 public virtual int Next(); 26

 public virtual void NextBytes(byte[] buffer); 27

 public virtual double NextDouble(); 28

} 29

 30

// Namespace: System, Library: BCL 31

public class RankException: SystemException 32

{ 33

 public RankException(); 34

 public RankException(string message); 35

 public RankException(string message, Exception innerException); 36

} 37

 38

// Namespace: System, Library: BCL 39

public struct SByte: IComparable, IFormattable 40

{ 41

 public const sbyte MaxValue = 127; 42

 public const sbyte MinValue = -128; 43

 public int CompareTo(object obj); 44

Appendix D Standard Library

419

 public override bool Equals(object obj); 1

 public override int GetHashCode(); 2

 public static sbyte Parse(string s); 3

 public static sbyte Parse(string s, NumberStyles style); 4

 public static sbyte Parse(string s, IFormatProvider provider); 5

 public static sbyte Parse(string s, NumberStyles style, IFormatProvider 6

 provider); 7

 public string ToString(IFormatProvider provider); 8

 public string ToString(string format, IFormatProvider provider); 9

 public override string ToString(); 10

 public string ToString(string format); 11

} 12

 13

// Namespace: System.Security.Permissions, Library: BCL 14

public enum SecurityAction 15

{ 16

 Assert = 3, 17

 Demand = 2, 18

 Deny = 4, 19

 InheritanceDemand = 7, 20

 LinkDemand = 6, 21

 PermitOnly = 5, 22

 RequestMinimum = 8, 23

 RequestOptional = 9, 24

 RequestRefuse = 10, 25

} 26

 27

// Namespace: System.Security.Permissions, Library: BCL 28

public abstract class SecurityAttribute: Attribute 29

{ 30

 protected SecurityAttribute(); 31

 public SecurityAttribute(SecurityAction action); 32

 public abstract IPermission CreatePermission(); 33

 public bool Unrestricted { get; set; } 34

} 35

 36

// Namespace: System.Security, Library: BCL 37

public sealed class SecurityElement 38

{ 39

 public override string ToString(); 40

} 41

 42

// Namespace: System.Security, Library: BCL 43

public class SecurityException: SystemException 44

C# LANGUAGE SPECIFICATION

420

{ 1

 public SecurityException(); 2

 public SecurityException(string message); 3

 public SecurityException(string message, Exception inner); 4

} 5

 6

// Namespace: System.Security.Permissions, Library: BCL 7

public sealed class SecurityPermission: CodeAccessPermission 8

{ 9

 public SecurityPermission(PermissionState state); 10

 public SecurityPermission(SecurityPermissionFlag flag); 11

 public override IPermission Copy(); 12

 public override void FromXml(SecurityElement esd); 13

 public override IPermission Intersect(IPermission target); 14

 public override bool IsSubsetOf(IPermission target); 15

 public override SecurityElement ToXml(); 16

 public override IPermission Union(IPermission target); 17

} 18

 19

// Namespace: System.Security.Permissions, Library: BCL 20

public sealed class SecurityPermissionAttribute: CodeAccessSecurityAttribute 21

{ 22

 public SecurityPermissionAttribute(SecurityAction action); 23

 public override IPermission CreatePermission(); 24

 public SecurityPermissionFlag Flags { get; set; } 25

} 26

 27

// Namespace: System.Security.Permissions, Library: BCL 28

public enum SecurityPermissionFlag 29

{ 30

 Assertion = 0x1, 31

 ControlThread = 0x10, 32

 Execution = 0x8, 33

 NoFlags = 0x0, 34

 SkipVerification = 0x4, 35

 UnmanagedCode = 0x2, 36

} 37

 38

// Namespace: System.IO, Library: BCL 39

public enum SeekOrigin 40

{ 41

 Begin = 0, 42

 Current = 1, 43

 End = 2, 44

Appendix D Standard Library

421

} 1

 2

// Namespace: System, Library: ExtendedNumerics 3

public struct Single: IComparable, IFormattable 4

{ 5

 public const float Epsilon = (float)1.401298E-45; 6

 public const float MaxValue = (float)3.402823E+38; 7

 public const float MinValue = (float)-3.402823E+38; 8

 public const float NaN = (float)0.0 / (float)0.0; 9

 public const float NegativeInfinity = (float)-1.0 / (float)0.0; 10

 public const float PositiveInfinity = (float)1.0 / (float)0.0; 11

 public int CompareTo(object value); 12

 public override bool Equals(object obj); 13

 public override int GetHashCode(); 14

 public static bool IsInfinity(float f); 15

 public static bool IsNaN(float f); 16

 public static bool IsNegativeInfinity(float f); 17

 public static bool IsPositiveInfinity(float f); 18

 public static float Parse(string s); 19

 public static float Parse(string s, NumberStyles style); 20

 public static float Parse(string s, IFormatProvider provider); 21

 public static float Parse(string s, NumberStyles style, IFormatProvider 22

 provider); 23

 public string ToString(IFormatProvider provider); 24

 public string ToString(string format, IFormatProvider provider); 25

 public override string ToString(); 26

 public string ToString(string format); 27

} 28

 29

// Namespace: System, Library: BCL 30

public sealed class StackOverflowException: SystemException 31

{ 32

 public StackOverflowException(); 33

 public StackOverflowException(string message); 34

 public StackOverflowException(string message, Exception innerException); 35

} 36

 37

// Namespace: System.IO, Library: BCL 38

public abstract class Stream: MarshalByRefObject, IDisposable 39

{ 40

 protected Stream(); 41

 public static readonly Stream Null; 42

 public virtual IAsyncResult BeginRead(byte[] buffer, int offset, int count, 43

 AsyncCallback callback, object state); 44

C# LANGUAGE SPECIFICATION

422

 public virtual IAsyncResult BeginWrite(byte[] buffer, int offset, int 1

 count, AsyncCallback callback, object state); 2

 public virtual void Close(); 3

 protected virtual WaitHandle CreateWaitHandle(); 4

 public virtual int EndRead(IAsyncResult asyncResult); 5

 public virtual void EndWrite(IAsyncResult asyncResult); 6

 public abstract void Flush(); 7

 public abstract int Read(byte[] buffer, int offset, int count); 8

 public virtual int ReadByte(); 9

 public abstract long Seek(long offset, SeekOrigin origin); 10

 public abstract void SetLength(long value); 11

 void IDisposable.Dispose(); 12

 public abstract void Write(byte[] buffer, int offset, int count); 13

 public virtual void WriteByte(byte value); 14

 public abstract bool CanRead { get; } 15

 public abstract bool CanSeek { get; } 16

 public abstract bool CanWrite { get; } 17

 public abstract long Length { get; } 18

 public abstract long Position { get; set; } 19

} 20

 21

// Namespace: System.IO, Library: BCL 22

public class StreamReader: TextReader 23

{ 24

 public StreamReader(Stream stream); 25

 public StreamReader(Stream stream, bool detectEncodingFromByteOrderMarks); 26

 public StreamReader(Stream stream, Encoding encoding); 27

 public StreamReader(Stream stream, Encoding encoding, bool 28

 detectEncodingFromByteOrderMarks); 29

 public StreamReader(Stream stream, Encoding encoding, bool 30

 detectEncodingFromByteOrderMarks, int bufferSize); 31

 public StreamReader(string path); 32

 public StreamReader(string path, bool detectEncodingFromByteOrderMarks); 33

 public StreamReader(string path, Encoding encoding); 34

 public StreamReader(string path, Encoding encoding, bool 35

 detectEncodingFromByteOrderMarks); 36

 public StreamReader(string path, Encoding encoding, bool 37

 detectEncodingFromByteOrderMarks, int bufferSize); 38

 public override void Close(); 39

 public void DiscardBufferedData(); 40

 protected override void Dispose(bool disposing); 41

 public override int Peek(); 42

 public override int Read(char[] buffer, int index, int count); 43

 public override int Read(); 44

Appendix D Standard Library

423

 public override string ReadLine(); 1

 public override string ReadToEnd(); 2

 public virtual Stream BaseStream { get; } 3

 public virtual Encoding CurrentEncoding { get; } 4

} 5

 6

// Namespace: System.IO, Library: BCL 7

public class StreamWriter: TextWriter 8

{ 9

 public StreamWriter(Stream stream); 10

 public StreamWriter(Stream stream, Encoding encoding); 11

 public StreamWriter(Stream stream, Encoding encoding, int bufferSize); 12

 public StreamWriter(string path); 13

 public StreamWriter(string path, bool append); 14

 public StreamWriter(string path, bool append, Encoding encoding); 15

 public StreamWriter(string path, bool append, Encoding encoding, int 16

 bufferSize); 17

 public override void Close(); 18

 protected override void Dispose(bool disposing); 19

 ~StreamWriter(); 20

 public override void Flush(); 21

 public override void Write(string value); 22

 public override void Write(char[] buffer, int index, int count); 23

 public override void Write(char[] buffer); 24

 public override void Write(char value); 25

 public virtual bool AutoFlush { get; set; } 26

 public virtual Stream BaseStream { get; } 27

 public override Encoding Encoding { get; } 28

} 29

 30

// Namespace: System, Library: BCL 31

public sealed class String: ICloneable, IComparable, IEnumerable 32

{ 33

 unsafe public String(char* value); 34

 unsafe public String(char* value, int startIndex, int length); 35

 public String(char[] value, int startIndex, int length); 36

 public String(char[] value); 37

 public String(char c, int count); 38

 public static readonly string Empty; 39

 public object Clone(); 40

 public static int Compare(string strA, string strB); 41

 public static int Compare(string strA, string strB, bool ignoreCase); 42

 public static int Compare(string strA, int indexA, string strB, int indexB, 43

 int length); 44

C# LANGUAGE SPECIFICATION

424

 public static int Compare(string strA, int indexA, string strB, int indexB, 1

 int length, bool ignoreCase); 2

 public static int CompareOrdinal(string strA, string strB); 3

 public static int CompareOrdinal(string strA, int indexA, string strB, int 4

 indexB, int length); 5

 public int CompareTo(object value); 6

 public static string Concat(object arg0, object arg1); 7

 public static string Concat(object arg0, object arg1, object arg2); 8

 public static string Concat(params object[] args); 9

 public static string Concat(string str0, string str1); 10

 public static string Concat(string str0, string str1, string str2); 11

 public static string Concat(params string[] values); 12

 public static string Copy(string str); 13

 public void CopyTo(int sourceIndex, char[] destination, int 14

 destinationIndex, int count); 15

 public bool EndsWith(string value); 16

 public override bool Equals(object obj); 17

 public static bool Equals(string a, string b); 18

 public static string Format(string format, object arg0); 19

 public static string Format(string format, object arg0, object arg1); 20

 public static string Format(string format, object arg0, object arg1, object 21

 arg2); 22

 public static string Format(string format, params object[] args); 23

 public static string Format(IFormatProvider provider, string format, params 24

 object[] args); 25

 public CharEnumerator GetEnumerator(); 26

 public override int GetHashCode(); 27

 public int IndexOf(char value); 28

 public int IndexOf(char value, int startIndex); 29

 public int IndexOf(char value, int startIndex, int count); 30

 public int IndexOf(string value); 31

 public int IndexOf(string value, int startIndex); 32

 public int IndexOf(string value, int startIndex, int count); 33

 public int IndexOfAny(char[] anyOf); 34

 public int IndexOfAny(char[] anyOf, int startIndex); 35

 public int IndexOfAny(char[] anyOf, int startIndex, int count); 36

 public string Insert(int startIndex, string value); 37

 public static string Intern(string str); 38

 public static string IsInterned(string str); 39

 public static string Join(string separator, string[] value); 40

 public static string Join(string separator, string[] value, int startIndex, 41

 int count); 42

 public int LastIndexOf(char value); 43

 public int LastIndexOf(char value, int startIndex); 44

Appendix D Standard Library

425

 public int LastIndexOf(char value, int startIndex, int count); 1

 public int LastIndexOf(string value); 2

 public int LastIndexOf(string value, int startIndex); 3

 public int LastIndexOf(string value, int startIndex, int count); 4

 public int LastIndexOfAny(char[] anyOf); 5

 public int LastIndexOfAny(char[] anyOf, int startIndex); 6

 public int LastIndexOfAny(char[] anyOf, int startIndex, int count); 7

 public static bool operator ==(String a, String b); 8

 public static bool operator !=(String a, String b); 9

 public string PadLeft(int totalWidth); 10

 public string PadLeft(int totalWidth, char paddingChar); 11

 public string PadRight(int totalWidth); 12

 public string PadRight(int totalWidth, char paddingChar); 13

 public string Remove(int startIndex, int count); 14

 public string Replace(char oldChar, char newChar); 15

 public string Replace(string oldValue, string newValue); 16

 public string[] Split(params char[] separator); 17

 public string[] Split(char[] separator, int count); 18

 public bool StartsWith(string value); 19

 public string Substring(int startIndex); 20

 public string Substring(int startIndex, int length); 21

 IEnumerator IEnumerable.GetEnumerator(); 22

 public char[] ToCharArray(); 23

 public char[] ToCharArray(int startIndex, int length); 24

 public string ToLower(); 25

 public string ToString(IFormatProvider provider); 26

 public override string ToString(); 27

 public string ToUpper(); 28

 public string Trim(params char[] trimChars); 29

 public string Trim(); 30

 public string TrimEnd(params char[] trimChars); 31

 public string TrimStart(params char[] trimChars); 32

 public char this[int index] { get; } 33

 public int Length { get; } 34

} 35

 36

// Namespace: System.Text, Library: BCL 37

public sealed class StringBuilder 38

{ 39

 public StringBuilder(); 40

 public StringBuilder(int capacity); 41

 public StringBuilder(string value); 42

 public StringBuilder Append(char value, int repeatCount); 43

 public StringBuilder Append(char[] value, int startIndex, int charCount); 44

C# LANGUAGE SPECIFICATION

426

 public StringBuilder Append(string value); 1

 public StringBuilder Append(string value, int startIndex, int count); 2

 public StringBuilder Append(bool value); 3

 public StringBuilder Append(sbyte value); 4

 public StringBuilder Append(byte value); 5

 public StringBuilder Append(char value); 6

 public StringBuilder Append(short value); 7

 public StringBuilder Append(int value); 8

 public StringBuilder Append(long value); 9

 public StringBuilder Append(float value); 10

 public StringBuilder Append(double value); 11

 public StringBuilder Append(decimal value); 12

 public StringBuilder Append(ushort value); 13

 public StringBuilder Append(uint value); 14

 public StringBuilder Append(ulong value); 15

 public StringBuilder Append(object value); 16

 public StringBuilder Append(char[] value); 17

 public StringBuilder AppendFormat(string format, object arg0); 18

 public StringBuilder AppendFormat(string format, object arg0, object arg1); 19

 public StringBuilder AppendFormat(string format, object arg0, object arg1, 20

 object arg2); 21

 public StringBuilder AppendFormat(string format, params object[] args); 22

 public StringBuilder AppendFormat(IFormatProvider provider, string format, 23

 params object[] args); 24

 public int EnsureCapacity(int capacity); 25

 public bool Equals(StringBuilder sb); 26

 public StringBuilder Insert(int index, string value, int count); 27

 public StringBuilder Insert(int index, string value); 28

 public StringBuilder Insert(int index, bool value); 29

 public StringBuilder Insert(int index, sbyte value); 30

 public StringBuilder Insert(int index, byte value); 31

 public StringBuilder Insert(int index, short value); 32

 public StringBuilder Insert(int index, char value); 33

 public StringBuilder Insert(int index, char[] value); 34

 public StringBuilder Insert(int index, char[] value, int startIndex, int 35

 charCount); 36

 public StringBuilder Insert(int index, int value); 37

 public StringBuilder Insert(int index, long value); 38

 public StringBuilder Insert(int index, float value); 39

 public StringBuilder Insert(int index, double value); 40

 public StringBuilder Insert(int index, decimal value); 41

 public StringBuilder Insert(int index, ushort value); 42

 public StringBuilder Insert(int index, uint value); 43

 public StringBuilder Insert(int index, ulong value); 44

Appendix D Standard Library

427

 public StringBuilder Insert(int index, object value); 1

 public StringBuilder Remove(int startIndex, int length); 2

 public StringBuilder Replace(string oldValue, string newValue); 3

 public StringBuilder Replace(string oldValue, string newValue, int 4

 startIndex, int count); 5

 public StringBuilder Replace(char oldChar, char newChar); 6

 public StringBuilder Replace(char oldChar, char newChar, int startIndex, 7

 int count); 8

 public override string ToString(); 9

 public string ToString(int startIndex, int length); 10

 public int Capacity { get; set; } 11

 public char this[int index] { get; set; } 12

 public int Length { get; set; } 13

} 14

 15

// Namespace: System.IO, Library: BCL 16

public class StringReader: TextReader 17

{ 18

 public StringReader(string s); 19

 public override void Close(); 20

 protected override void Dispose(bool disposing); 21

 public override int Peek(); 22

 public override int Read(char[] buffer, int index, int count); 23

 public override int Read(); 24

 public override string ReadLine(); 25

 public override string ReadToEnd(); 26

} 27

 28

// Namespace: System.IO, Library: BCL 29

public class StringWriter: TextWriter 30

{ 31

 public StringWriter(); 32

 public StringWriter(IFormatProvider formatProvider); 33

 public StringWriter(StringBuilder sb); 34

 public StringWriter(StringBuilder sb, IFormatProvider formatProvider); 35

 public override void Close(); 36

 protected override void Dispose(bool disposing); 37

 public virtual StringBuilder GetStringBuilder(); 38

 public override string ToString(); 39

 public override void Write(string value); 40

 public override void Write(char[] buffer, int index, int count); 41

 public override void Write(char value); 42

 public override Encoding Encoding { get; } 43

} 44

C# LANGUAGE SPECIFICATION

428

 1

// Namespace: System.Threading, Library: BCL 2

public class SynchronizationLockException: SystemException 3

{ 4

 public SynchronizationLockException(); 5

 public SynchronizationLockException(string message); 6

 public SynchronizationLockException(string message, Exception 7

 innerException); 8

} 9

 10

// Namespace: System, Library: BCL 11

public class SystemException: Exception 12

{ 13

 public SystemException(); 14

 public SystemException(string message); 15

 public SystemException(string message, Exception innerException); 16

} 17

 18

// Namespace: System.IO, Library: BCL 19

public abstract class TextReader: MarshalByRefObject, IDisposable 20

{ 21

 protected TextReader(); 22

 public static readonly TextReader Null; 23

 public virtual void Close(); 24

 protected virtual void Dispose(bool disposing); 25

 public virtual int Peek(); 26

 public virtual int Read(char[] buffer, int index, int count); 27

 public virtual int Read(); 28

 public virtual int ReadBlock(char[] buffer, int index, int count); 29

 public virtual string ReadLine(); 30

 public virtual string ReadToEnd(); 31

 public static TextReader Synchronized(TextReader reader); 32

 void IDisposable.Dispose(); 33

} 34

 35

// Namespace: System.IO, Library: BCL 36

public abstract class TextWriter: MarshalByRefObject, IDisposable 37

{ 38

 protected TextWriter(); 39

 protected TextWriter(IFormatProvider formatProvider); 40

 public static readonly TextWriter Null; 41

 public virtual void Close(); 42

 protected virtual void Dispose(bool disposing); 43

 public virtual void Flush(); 44

Appendix D Standard Library

429

 public static TextWriter Synchronized(TextWriter writer); 1

 void IDisposable.Dispose(); 2

 public virtual void Write(string format, params object[] arg); 3

 public virtual void Write(string format, object arg0, object arg1, object 4

 arg2); 5

 public virtual void Write(string format, object arg0, object arg1); 6

 public virtual void Write(string format, object arg0); 7

 public virtual void Write(object value); 8

 public virtual void Write(string value); 9

 public virtual void Write(decimal value); 10

 public virtual void Write(double value); 11

 public virtual void Write(float value); 12

 public virtual void Write(ulong value); 13

 public virtual void Write(long value); 14

 public virtual void Write(uint value); 15

 public virtual void Write(int value); 16

 public virtual void Write(bool value); 17

 public virtual void Write(char[] buffer, int index, int count); 18

 public virtual void Write(char[] buffer); 19

 public virtual void Write(char value); 20

 public virtual void WriteLine(string format, params object[] arg); 21

 public virtual void WriteLine(string format, object arg0, object arg1, 22

 object arg2); 23

 public virtual void WriteLine(string format, object arg0, object arg1); 24

 public virtual void WriteLine(string format, object arg0); 25

 public virtual void WriteLine(object value); 26

 public virtual void WriteLine(string value); 27

 public virtual void WriteLine(decimal value); 28

 public virtual void WriteLine(double value); 29

 public virtual void WriteLine(float value); 30

 public virtual void WriteLine(ulong value); 31

 public virtual void WriteLine(long value); 32

 public virtual void WriteLine(uint value); 33

 public virtual void WriteLine(int value); 34

 public virtual void WriteLine(bool value); 35

 public virtual void WriteLine(char[] buffer, int index, int count); 36

 public virtual void WriteLine(char[] buffer); 37

 public virtual void WriteLine(char value); 38

 public virtual void WriteLine(); 39

 public abstract Encoding Encoding { get; } 40

 public virtual IFormatProvider FormatProvider { get; } 41

 public virtual string NewLine { get; set; } 42

} 43

 44

C# LANGUAGE SPECIFICATION

430

// Namespace: System, Library: BCL 1

public sealed class Thread 2

{ 3

 public Thread(ThreadStart start); 4

 public void Abort(object stateInfo); 5

 public void Abort(); 6

 ~Thread(); 7

 public void Join(); 8

 public bool Join(int millisecondsTimeout); 9

 public bool Join(TimeSpan timeout); 10

 public static void MemoryBarrier (); 11

 public static void ResetAbort(); 12

 public static void Sleep(int millisecondsTimeout); 13

 public static void Sleep(TimeSpan timeout); 14

 public void Start(); 15

 public static byte VolatileRead (ref byte address); 16

 public static short VolatileRead (ref short address); 17

 public static int VolatileRead (ref int address); 18

 public static long VolatileRead (ref long address); 19

 public static sbyte VolatileRead (ref sbyte address); 20

 public static ushort VolatileRead (ref ushort address); 21

 public static uint VolatileRead (ref uint address); 22

 public static ulong VolatileRead (ref ulong address); 23

 public static float VolatileRead (ref float address); 24

 public static double VolatileRead (ref double address); 25

 public static object VolatileRead (ref object address); 26

 public static void VolatileWrite (ref byte address, byte value); 27

 public static void VolatileWrite (ref short address, short value); 28

 public static void VolatileWrite (ref int address, int value); 29

 public static void VolatileWrite (ref long address, long value); 30

 public static void VolatileWrite (ref sbyte address, sbyte value); 31

 public static void VolatileWrite (ref ushort address, ushort value); 32

 public static void VolatileWrite (ref uint address, uint value); 33

 public static void VolatileWrite (ref ulong address, ulong value); 34

 public static void VolatileWrite (ref float address, float value); 35

 public static void VolatileWrite (ref double address, double value); 36

 public static void VolatileWrite (ref object address, object value); 37

 public static Thread CurrentThread { get; } 38

 public bool IsAlive { get; } 39

 public bool IsBackground { get; set; } 40

 public string Name { get; set; } 41

 public ThreadPriority Priority { get; set; } 42

 public ThreadState ThreadState { get; } 43

} 44

Appendix D Standard Library

431

 1

// Namespace: System.Threading, Library: BCL 2

public sealed class ThreadAbortException: SystemException 3

{ 4

 public object ExceptionState { get; } 5

} 6

 7

// Namespace: System.Threading, Library: BCL 8

public enum ThreadPriority 9

{ 10

 AboveNormal = 3, 11

 BelowNormal = 1, 12

 Highest = 4, 13

 Lowest = 0, 14

 Normal = 2, 15

} 16

 17

// Namespace: System.Threading, Library: BCL 18

public delegate void ThreadStart(); 19

 20

// Namespace: System.Threading, Library: BCL 21

public enum ThreadState 22

{ 23

 Aborted = 0x100, 24

 AbortRequested = 0x80, 25

 Background = 0x4, 26

 Running = 0x0, 27

 Stopped = 0x10, 28

 Unstarted = 0x8, 29

 WaitSleepJoin = 0x20, 30

} 31

 32

// Namespace: System.Threading, Library: BCL 33

public class ThreadStateException: SystemException 34

{ 35

 public ThreadStateException(); 36

 public ThreadStateException(string message); 37

 public ThreadStateException(string message, Exception innerException); 38

} 39

 40

// Namespace: System.Threading, Library: BCL 41

public sealed class Timeout 42

{ 43

 public const int Infinite = -1; 44

C# LANGUAGE SPECIFICATION

432

} 1

 2

// Namespace: System.Threading, Library: BCL 3

public sealed class Timer: MarshalByRefObject, IDisposable 4

{ 5

 public Timer(TimerCallback callback, object state, int dueTime, int period); 6

 public Timer(TimerCallback callback, object state, TimeSpan dueTime, 7

 TimeSpan period); 8

 public bool Change(int dueTime, int period); 9

 public bool Change(TimeSpan dueTime, TimeSpan period); 10

 public void Dispose(); 11

 public bool Dispose(WaitHandle notifyObject); 12

 ~Timer(); 13

} 14

 15

// Namespace: System.Threading, Library: BCL 16

public delegate void TimerCallback(object state); 17

 18

// Namespace: System, Library: BCL 19

public struct TimeSpan: IComparable 20

{ 21

 public TimeSpan(long ticks); 22

 public TimeSpan(int hours, int minutes, int seconds); 23

 public TimeSpan(int days, int hours, int minutes, int seconds); 24

 public TimeSpan(int days, int hours, int minutes, int seconds, int 25

 milliseconds); 26

 public static readonly TimeSpan MaxValue; 27

 public static readonly TimeSpan MinValue; 28

 public const long TicksPerDay = 864000000000; 29

 public const long TicksPerHour = 36000000000; 30

 public const long TicksPerMillisecond = 10000; 31

 public const long TicksPerMinute = 600000000; 32

 public const long TicksPerSecond = 10000000; 33

 public static readonly TimeSpan Zero; 34

 public TimeSpan Add(TimeSpan ts); 35

 public static int Compare(TimeSpan t1, TimeSpan t2); 36

 public int CompareTo(object value); 37

 public TimeSpan Duration(); 38

 public override bool Equals(object value); 39

 public static bool Equals(TimeSpan t1, TimeSpan t2); 40

 public static TimeSpan FromDays(double value); 41

 public static TimeSpan FromHours(double value); 42

 public static TimeSpan FromMilliseconds(double value); 43

 public static TimeSpan FromMinutes(double value); 44

Appendix D Standard Library

433

 public static TimeSpan FromSeconds(double value); 1

 public static TimeSpan FromTicks(long value); 2

 public override int GetHashCode(); 3

 public TimeSpan Negate(); 4

 public static TimeSpan operator +(TimeSpan t1, TimeSpan t2); 5

 public static bool operator ==(TimeSpan t1, TimeSpan t2); 6

 public static bool operator >(TimeSpan t1, TimeSpan t2); 7

 public static bool operator >=(TimeSpan t1, TimeSpan t2); 8

 public static bool operator !=(TimeSpan t1, TimeSpan t2); 9

 public static bool operator <(TimeSpan t1, TimeSpan t2); 10

 public static bool operator <=(TimeSpan t1, TimeSpan t2); 11

 public static TimeSpan operator -(TimeSpan t1, TimeSpan t2); 12

 public static TimeSpan operator -(TimeSpan t); 13

 public static TimeSpan operator +(TimeSpan t); 14

 public static TimeSpan Parse(string s); 15

 public TimeSpan Subtract(TimeSpan ts); 16

 public override string ToString(); 17

 public int Days { get; } 18

 public int Hours { get; } 19

 public int Milliseconds { get; } 20

 public int Minutes { get; } 21

 public int Seconds { get; } 22

 public long Ticks { get; } 23

 public double TotalDays { get; } 24

 public double TotalHours { get; } 25

 public double TotalMilliseconds { get; } 26

 public double TotalMinutes { get; } 27

 public double TotalSeconds { get; } 28

} 29

 30

// Namespace: System, Library: BCL 31

public abstract class Type: Object 32

{ 33

 public virtual int GetArrayRank(); 34

 public abstract Type GetElementType(); 35

 public override int GetHashCode(); 36

 public virtual bool IsAssignableFrom(Type c); 37

 public virtual bool IsInstanceOfType(object o); 38

 public virtual bool IsSubclassOf(Type c); 39

 public override string ToString(); 40

 public abstract Type BaseType { get; } 41

 public abstract string FullName { get; } 42

 public bool IsArray { get; } 43

 public bool IsClass { get; } 44

C# LANGUAGE SPECIFICATION

434

 public bool IsEnum { get; } 1

 public bool IsInterface { get; } 2

 public bool IsPointer { get; } 3

 public bool IsValueType { get; } 4

} 5

 6

// Namespace: System, Library: BCL 7

public sealed class TypeInitializationException: SystemException 8

{ 9

 public string TypeName { get; } 10

} 11

 12

// Namespace: System, Library: BCL 13

public struct UInt16: IComparable, IFormattable 14

{ 15

 public const ushort MaxValue = 65535; 16

 public const ushort MinValue = 0; 17

 public int CompareTo(object value); 18

 public override bool Equals(object obj); 19

 public override int GetHashCode(); 20

 public static ushort Parse(string s); 21

 public static ushort Parse(string s, NumberStyles style); 22

 public static ushort Parse(string s, IFormatProvider provider); 23

 public static ushort Parse(string s, NumberStyles style, IFormatProvider 24

 provider); 25

 public string ToString(IFormatProvider provider); 26

 public string ToString(string format, IFormatProvider provider); 27

 public override string ToString(); 28

 public string ToString(string format); 29

} 30

 31

// Namespace: System, Library: BCL 32

public struct UInt32: IComparable, IFormattable 33

{ 34

 public const uint MaxValue = 4294967295; 35

 public const uint MinValue = 0; 36

 public int CompareTo(object value); 37

 public override bool Equals(object obj); 38

 public override int GetHashCode(); 39

 public static uint Parse(string s); 40

 public static uint Parse(string s, NumberStyles style); 41

 public static uint Parse(string s, IFormatProvider provider); 42

 public static uint Parse(string s, NumberStyles style, IFormatProvider 43

 provider); 44

Appendix D Standard Library

435

 public string ToString(IFormatProvider provider); 1

 public string ToString(string format, IFormatProvider provider); 2

 public override string ToString(); 3

 public string ToString(string format); 4

} 5

 6

// Namespace: System, Library: BCL 7

public struct UInt64: IComparable, IFormattable 8

{ 9

 public const ulong MaxValue = 18446744073709551615; 10

 public const ulong MinValue = 0; 11

 public int CompareTo(object value); 12

 public override bool Equals(object obj); 13

 public override int GetHashCode(); 14

 public static ulong Parse(string s); 15

 public static ulong Parse(string s, NumberStyles style); 16

 public static ulong Parse(string s, IFormatProvider provider); 17

 public static ulong Parse(string s, NumberStyles style, IFormatProvider 18

 provider); 19

 public string ToString(IFormatProvider provider); 20

 public string ToString(string format, IFormatProvider provider); 21

 public override string ToString(); 22

 public string ToString(string format); 23

} 24

 25

// Namespace: System, Library: BCL 26

public class UnauthorizedAccessException: SystemException 27

{ 28

 public UnauthorizedAccessException(); 29

 public UnauthorizedAccessException(string message); 30

 public UnauthorizedAccessException(string message, Exception inner); 31

} 32

 33

// Namespace: System.Globalization, Library: BCL 34

public enum UnicodeCategory 35

{ 36

 ClosePunctuation = 21, 37

 ConnectorPunctuation = 18, 38

 Control = 14, 39

 CurrencySymbol = 26, 40

 DashPunctuation = 19, 41

 DecimalDigitNumber = 8, 42

 EnclosingMark = 7, 43

 FinalQuotePunctuation = 23, 44

C# LANGUAGE SPECIFICATION

436

 Format = 15, 1

 InitialQuotePunctuation = 22, 2

 LetterNumber = 9, 3

 LineSeparator = 12, 4

 LowercaseLetter = 1, 5

 MathSymbol = 25, 6

 ModifierLetter = 3, 7

 ModifierSymbol = 27, 8

 NonSpacingMark = 5, 9

 OpenPunctuation = 20, 10

 OtherLetter = 4, 11

 OtherNotAssigned = 29, 12

 OtherNumber = 10, 13

 OtherPunctuation = 24, 14

 OtherSymbol = 28, 15

 ParagraphSeparator = 13, 16

 PrivateUse = 17, 17

 SpaceSeparator = 11, 18

 SpacingCombiningMark = 6, 19

 Surrogate = 16, 20

 TitlecaseLetter = 2, 21

 UppercaseLetter = 0, 22

} 23

 24

// Namespace: System.Text, Library: BCL 25

public class UnicodeEncoding: Encoding 26

{ 27

 public UnicodeEncoding(); 28

 public UnicodeEncoding(bool bigEndian, bool byteOrderMark); 29

 public override bool Equals(object value); 30

 public override int GetByteCount(char[] chars, int index, int count); 31

 public override int GetByteCount(string s); 32

 public override int GetBytes(string s, int charIndex, int charCount, byte[] 33

 bytes, int byteIndex); 34

 public override byte[] GetBytes(string s); 35

 public override int GetBytes(char[] chars, int charIndex, int charCount, 36

 byte[] bytes, int byteIndex); 37

 public override int GetCharCount(byte[] bytes, int index, int count); 38

 public override int GetChars(byte[] bytes, int byteIndex, int byteCount, 39

 char[] chars, int charIndex); 40

 public override Decoder GetDecoder(); 41

 public override int GetHashCode(); 42

 public override int GetMaxByteCount(int charCount); 43

 public override int GetMaxCharCount(int byteCount); 44

Appendix D Standard Library

437

 public override byte[] GetPreamble(); 1

} 2

 3

// Namespace: System.Text, Library: BCL 4

public class UTF8Encoding: Encoding 5

{ 6

 public UTF8Encoding(); 7

 public UTF8Encoding(bool encoderShouldEmitUTF8Identifier); 8

 public UTF8Encoding(bool encoderShouldEmitUTF8Identifier, bool 9

 throwOnInvalidBytes); 10

 public override bool Equals(object value); 11

 public override int GetByteCount(char[] chars, int index, int count); 12

 public override int GetByteCount(string chars); 13

 public override int GetBytes(string s, int charIndex, int charCount, byte[] 14

 bytes, int byteIndex); 15

 public override byte[] GetBytes(string s); 16

 public override int GetBytes(char[] chars, int charIndex, int charCount, 17

 byte[] bytes, int byteIndex); 18

 public override int GetCharCount(byte[] bytes, int index, int count); 19

 public override int GetChars(byte[] bytes, int byteIndex, int byteCount, 20

 char[] chars, int charIndex); 21

 public override Decoder GetDecoder(); 22

 public override Encoder GetEncoder(); 23

 public override int GetHashCode(); 24

 public override int GetMaxByteCount(int charCount); 25

 public override int GetMaxCharCount(int byteCount); 26

 public override byte[] GetPreamble(); 27

} 28

 29

// Namespace: System, Library: BCL 30

public abstract class ValueType 31

{ 32

 protected ValueType(); 33

 public override bool Equals(object obj); 34

 public override int GetHashCode(); 35

 public override string ToString(); 36

} 37

 38

// Namespace: System.Security, Library: BCL 39

public class VerificationException: SystemException 40

{ 41

 public VerificationException(); 42

 public VerificationException(string message); 43

 public VerificationException(string message, Exception innerException); 44

C# LANGUAGE SPECIFICATION

438

} 1

 2

// Namespace: System, Library: BCL 3

public sealed class Version: ICloneable, IComparable 4

{ 5

 public Version(int major, int minor, int build, int revision); 6

 public Version(int major, int minor, int build); 7

 public Version(int major, int minor); 8

 public Version(string version); 9

 public Version(); 10

 public object Clone(); 11

 public int CompareTo(object version); 12

 public override bool Equals(object obj); 13

 public override int GetHashCode(); 14

 public static bool operator ==(Version v1, Version v2); 15

 public static bool operator >(Version v1, Version v2); 16

 public static bool operator >=(Version v1, Version v2); 17

 public static bool operator !=(Version v1, Version v2); 18

 public static bool operator <(Version v1, Version v2); 19

 public static bool operator <=(Version v1, Version v2); 20

 public int Build { get; } 21

 public int Major { get; } 22

 public int Minor { get; } 23

 public int Revision { get; } 24

} 25

 26

// Namespace: System.Threading, Library: BCL 27

public abstract class WaitHandle: MarshalByRefObject, IDisposable 28

{ 29

 public WaitHandle(); 30

 public virtual void Close(); 31

 protected virtual void Dispose(bool explicitDisposing); 32

 ~WaitHandle(); 33

 void IDisposable.Dispose(); 34

 public static bool WaitAll(WaitHandle[] waitHandles); 35

 public static int WaitAny(WaitHandle[] waitHandles); 36

 public virtual bool WaitOne(); 37

} 38

39

End of informative text.40

Appendix E Documentation Comments

439

E. Documentation Comments1

This clause is informative.2

C# provides a mechanism for programmers to document their code using a special comment syntax that3

contains XML text. Comments using such syntax are calleddocumentation comments. The XML4

generation tool is called thedocumentation generator. (This generator could be, but need not be, the5

C# compiler itself.) The output produced by the documentation generator is called thedocumentation file. A6

documentation file is used as input to adocumentation viewer; a tool intended to produce some sort of7

visual display of type information and its associated documentation.8

A conforming C# compiler is not required to check the syntax of documentation comments; such comments9

are simply ordinary comments. A conforming compiler is permitted to do such checking, however.10

This specification suggests a set of standard tags to be used in documentation comments. For11

C# implementations targeting the CLI, it also provides information about the documentation generator and12

the format of the documentation file. No information is provided about the documentation viewer.13

E.1 Introduction14

Comments having a special form can be used to direct a tool to produce XML from those comments and the15

source code elements, which they precede. Such comments aresingle-line comments of the form///� or16

delimited comments of the form/** � */. They must immediately precede a user-defined type (such as a17

class, delegate, or interface) or a member (such as afield, event, property, or method) that they annotate.18

Syntax:19

single-line-doc-comment::20

/// input-charactersopt21

delimited-doc-comment::22

/** delimited-comment-charactersopt */23

In a single-line-doc-comment, if there is awhitespace character following the/// characters on each of the24

single-line-doc-comments adjacent to the currentsingle-line-doc-comment, then thatwhitespace character is25

not included in the XML output.26

In a delimited-doc-comment, if the first non-whitespace character on the second line is anasterisk and the27

same pattern of optionalwhitespace characters and anasterisk character is repeated at the beginning of each28

of the lines within thedelimited-doc-comment, then the characters of the repeated pattern are not included in29

the XML output. The pattern may includewhitespace characters after, as well as before, theasterisk30

character.31

Example:32

/** 33
 * <remarks>Class <c>Point</c> models a point in a two-dimensional 34
 * plane.</remarks> 35
 */ 36
public class Point 37
{ 38
 /// <remarks>method <c>draw</c> renders the point.</remarks> 39
 void draw() {�} 40
} 41

The text within documentation comments must be well formed according to the rules of XML42

(http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated and the documentation43

file will contain a comment saying that an error was encountered.44

C# LANGUAGE SPECIFICATION

440

Although developers are free to create their own setof tags, a recommended set is defined in §E.2. Some of1

the recommended tags have special meanings:2

• The<param> tag is used to describe parameters. If such a tag is used, the documentation generator must3

verify that the specified parameter exists and that all parameters are described in documentation comments.4

If such verification fails, the documentation generator issues a warning.5

• Thecref attribute can be attached to any tag to provide a reference to a code element. The6

documentation generator must verify that this codeelement exists. If the verification fails, the7

documentation generator issues a warning. When looking for a name described in acref attribute, the8

documentation generator must respectnamespace visibility according tousing statements appearing within9

the source code.10

• The<summary> tag is intended to be used by a documentation viewer to display additional information11

about a type or member.12

Note carefully that the documentation file does not provide full information about the type and members (for13

example, it does not contain any type information). To get such information about a type or member, the14

documentation file must be used in conjunction with reflection on the actual type or member.15

E.2 Recommended tags16

The documentation generator must accept and process any tag that is valid according to the rules of XML.17

The following tags provide commonly used functionality in user documentation. (Of course, other tags are18

possible.)19

20

Tag Reference Purpose

<c> §E.2.1 Set text in a code-like font

<code> §E.2.2 Set one or more lines of source code or program output

<example> §E.2.3 Indicate an example

<exception> §E.2.4 Identifies the exceptions a method can throw

<list> §E.2.5 Create a list or table

<para> §E.2.6 Permit structure to be added to text

<param> §E.2.7 Describe a parameter for a method or constructor

<paramref> §E.2.8 Identify that a word is a parameter name

<permission> §E.2.9 Document the security accessibility of a member

<remarks> §E.2.10 Describe a type

<returns> §E.2.11 Describe the return value of a method

<see> §E.2.12 Specify a link

<seealso> §E.2.13 Generate aSee Also entry

<summary> §E.2.14 Describe a member of a type

<value> §E.2.15 Describe a property

21

E.2.1 <c>22

This tag provides a mechanism to indicate that a fragment of text within a description should be set a special23

font such as that used for a block of code. (For lines of actual code, use<code> (§E.2.2).)24

Appendix E Documentation Comments

441

Syntax:1

<c>text to be set like code</c> 2

Example:3

/// <remarks>Class <c>Point</c> models a point in a two-dimensional 4
/// plane.</remarks> 5
public class Point 6
{ 7
 // � 8
} 9

E.2.2 <code>10

This tag is used to set one or more lines of source code or program output in some special font. (For small11

code fragments in narrative, use<c> (§E.2.1).)12

Syntax:13

<code>source code or program output</code> 14

Example:15

 /// <summary>This method changes the point's location by 16
 /// the given x- and y-offsets. 17
 /// <example>For example: 18
 /// <code> 19
 /// Point p = new Point(3,5); 20
 /// p.Translate(-1,3); 21
 /// </code> 22
 /// results in <c>p</c>'s having the value (2,8). 23
 /// </example> 24
 /// </summary> 25

 public void Translate(int xor, int yor) { 26
 X += xor; 27
 Y += yor; 28
 } 29

E.2.3 <example>30

This tag allows example code within a comment, to specify how a method or other library member may be31

used. Ordinarily, this would also involve use of the tag<code> (§E.2.2) as well.32

Syntax:33

<example>description</example> 34

Example:35

See<code> (§E.2.2) for an example.36

E.2.4 <exception>37

This tag provides a way to document the exceptions a method can throw.38

Syntax:39

<exception cref="member">description</exception> 40

where 41

cref="member" 42

The name of a member. The documentation generator checks that the given member exists and43

translatesmember to the canonical element name in the documentation file.44

description 45

A description of the circumstances in which the exception is thrown.46

C# LANGUAGE SPECIFICATION

442

Example:1

public class DataBaseOperations 2
{ 3
 /// <exception cref="MasterFileFormatCorruptException"></exception> 4
 /// <exception cref="MasterFileLockedOpenException"></exception> 5
 public static void ReadRecord(int flag) { 6
 if (flag == 1) 7
 throw new MasterFileFormatCorruptException(); 8
 else if (flag == 2) 9
 throw new MasterFileLockedOpenException(); 10
 // � 11
 } 12
} 13

E.2.5 <list>14

This tag is used to create a list or table of items. It may contain a<listheader> block to define the15

heading row of either a table or definition list. (When defining a table, only an entry forterm in the heading16

need be supplied.)17

Each item in the list is specified with an<item> block. When creating a definition list, bothterm and18

description must be specified. However, for a table, bulleted list, or numbered list, onlydescription19

need be specified.20

Syntax:21

<list type="bullet" | "number" | "table"> 22
 <listheader> 23
 <term>term</term> 24
 <description>description</description> 25
 </listheader> 26
 <item> 27
 <term>term</term> 28
 <description>description</description> 29
 </item> 30
 � 31
 <item> 32
 <term>term</term> 33
 <description>description</description> 34
 </item> 35
</list> 36

where37

term 38

The term to define, whose definition is indescription.39

description 40

 41

Either an item in a bullet or numbered list, or the definition of aterm.42

Appendix E Documentation Comments

443

Example:1

public class MyClass 2
{ 3
 /// <remarks>Here is an example of a bulleted list: 4
 /// <list type="bullet"> 5
 /// <item> 6
 /// <description>Item 1.</description> 7
 /// </item> 8
 /// <item> 9
 /// <description>Item 2.</description> 10
 /// </item> 11
 /// </list> 12
 /// </remarks> 13
 public static void Main () { 14
 // � 15
 } 16
} 17

E.2.6 <para>18

This tag is for use inside other tags, such as<remarks> (§E.2.10) or<returns> (§E.2.11), and permits19

structure to be added to text.20

Syntax:21

<para>content</para> 22

where23

content 24

The text of the paragraph.25

Example:26

 /// <summary>This is the entry point of the Point class testing 27
program. 28
 /// <para>This program tests each method and operator, and 29
 /// is intended to be run after any non-trvial maintenance has 30
 /// been performed on the Point class.</para></summary> 31
 public static void Main() { 32
 // � 33
 } 34

E.2.7 <param>35

This tag is used to describe a parameterfor a method, constructor, or indexer.36

Syntax:37

<param name="name">description</param> 38

where39

name 40

The name of the parameter.41

description 42

A description of the parameter.43

Example:44

 /// <summary>This method changes the point's location to 45
 /// the given coordinates.</summary> 46
 /// <param><c>xor</c> is the new x-coordinate.</param> 47
 /// <param><c>yor</c> is the new y-coordinate.</param> 48
 public void Move(int xor, int yor) { 49
 X = xor; 50
 Y = yor; 51
 } 52

C# LANGUAGE SPECIFICATION

444

E.2.8 <paramref>1

This tag is used to indicate that a word is a parameter. The documentation file can be processed to format2

this parameter in some distinct way.3

Syntax:4

<paramref name="name"/> 5

where6

name 7

The name of the parameter.8

Example:9

 /// <summary>This constructor initializes the new Point to 10
 /// (<paramref name="xor"/>,<paramref name="yor"/>).</summary> 11
 /// <param><c>xor</c> is the new Point's x-coordinate.</param> 12
 /// <param><c>yor</c> is the new Point's y-coordinate.</param> 13
 public Point(int xor, int yor) { 14
 X = xor; 15
 Y = yor; 16
 } 17

E.2.9 <permission>18

This tag allows the security accessibility of a member to be documented.19

Syntax:20

<permission cref="member">description</permission> 21

where22

cref="member" 23

The name of a member. The documentation generator checks that the given code element exists24

and translatesmember to the canonical element name in the documentation file.25

description 26

A description of the access to the member.27

Example:28

/// <permission cref="System.Security.PermissionSet">Everyone can 29
/// access this method.</permission> 30
public static void Test() { 31
 // � 32
} 33

E.2.10 <remarks>34

This tag is used to specify overview information about a type. (Use<summary> (§E.2.14) to describe the35

members of a type.)36

Syntax:37

<remarks>description</remarks> 38

where39

description 40

The text of the remarks.41

Appendix E Documentation Comments

445

Example:1

/// <remarks>Class <c>Point</c> models a point in a two-dimensional 2
plane.</remarks> 3
public class Point 4
{ 5
 // � 6
} 7

E.2.11 <returns>8

This tag is used to describe the return value of a method.9

Syntax:10

<returns>description</returns> 11

where12

description 13

A description of the return value.14

Example:15

 /// <summary>Report a point's location as a string.</summary> 16
 /// <returns>A string representing a point's location, in the form 17
(x,y), 18
 /// without any leading, training, or embedded whitespace.</returns> 19
 public override string ToString() { 20
 return "(" + X + "," + Y + ")"; 21
 } 22

E.2.12 <see>23

This tag allows a link to be specified within text. (Use<seealso> (§E.2.13) to indicate text that is to appear24

in a See Also section.)25

Syntax:26

<see cref="member"/> 27

where28

cref="member" 29

The name of a member. The documentation generator checks that the given code element exists30

and passesmember to the element name in the documentation file.31

Example:32

 /// <summary>This method changes the point's location to 33
 /// the given coordinates.</summary> 34
 /// <see cref="Translate"/> 35
 public void Move(int xor, int yor) { 36
 X = xor; 37
 Y = yor; 38
 } 39

 /// <summary>This method changes the point's location by 40
 /// the given x- and y-offsets. 41
 /// </summary> 42
 /// <see cref="Move"/> 43
 public void Translate(int xor, int yor) { 44
 X += xor; 45
 Y += yor; 46
 } 47

E.2.13 <seealso>48

This tag allows an entry to be generated for theSee Also section. (Use<see> (§E.2.12) to specify a link49

from within text.)50

C# LANGUAGE SPECIFICATION

446

Syntax:1

<seealso cref="member"/> 2

where3

cref="member" 4

The name of a member. The documentation generator checks that the given code element exists5

and passesmember to the element name in the documentation file.6

Example:7

 /// <summary>This method determines whether two Points have the same 8
 /// location.</summary> 9
 /// <seealso cref="operator=="/> 10
 /// <seealso cref="operator!="/> 11
 public override bool Equals(object o) { 12
 // � 13
 } 14

E.2.14 <summary>15

This tag can be used to describe a member for a type. (Use<remarks> (§E.2.10) to describe the type itself.)16

Syntax:17

<summary>description</summary> 18

where19

description 20

A summary of the member.21

Example:22

/// <summary>This constructor initializes the new Point to 23
(0,0).</summary> 24
public Point() : this(0,0) { 25
} 26

E.2.15 <value>27

This tag allows a property to be described.28

Syntax:29

<value>property description</value> 30

where31

property description 32

A description for the property.33

Example:34

/// <value>Property <c>X</c> represents the point's x-coordinate.</value> 35
public int X 36
{ 37
 get { return x; } 38
 set { x = value; } 39
} 40

E.3 Processing the documentation file41

The following information is intended for C# implementations targeting the CLI.42

The documentation generator generates an ID string for each element in the source code that is tagged with a43

documentation comment. This ID string uniquely identifies a source element. A documentation viewer can44

use an ID string to identify the corresponding metadata/reflection item to which the documentation applies.45

Appendix E Documentation Comments

447

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a1

generated ID string for each element.2

E.3.1 ID string format3

The documentation generator observes the following rules when it generates the ID strings:4

• No white space is placed in the string.5

• The first part of the string identifies the kind ofmember being documented, via a single character6

followed by a colon. The following kinds of members are defined:7

Character Description

E Event

F Field

M Method (including constructors, destructors, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the error. For
example, the documentation generator generates error information for links
that cannot be resolved.

• The second part of the string is the fully qualified name of the element, starting at the root of the8

namespace. The name of the element, its enclosing type(s), and namespace are separated by periods. If the9

name of the item itself has periods, they are replaced by theNUMBER SIGN# (U+000D). (It is assumed that10

no element has this character in its name.)11

• For methods and properties with arguments, the argument list follows, enclosed in parentheses. For12

those without arguments, the parentheses are omitted. The arguments are separated by commas. The13

encoding of each argument is the same as a CLI signature, as follows: Arguments are represented by their14

fully qualified name. For example,int becomesSystem.Int32, string becomesSystem.String,15

object becomesSystem.Object, and so on. Arguments having theout or ref modifier have a '@'16

following their type name. Arguments passed by value or viaparams have no special notation. Arguments17

that are arrays are represented as [lowerbound:size, …, lowerbound:size] where the number of commas is the18

rank – 1, and the lower bounds and size of each dimension, if known, are represented in decimal. If a lower19

bound or size is not specified, it is omitted. If the lower bound and size for a particular dimension are20

omitted, the ':' is omitted as well. Jagged arrays are represented by one "[]" per level. Arguments that have21

pointer types other than void are represented using a '*' following the type name. A void pointer is22

represented using a type name of "System.Void".23

E.3.2 ID string examples24

The following examples each show a fragment of C# code, along with the ID string produced from each25

source element capable of having a documentation comment:26

• Types are represented using their fully qualified name.27

enum Color {Red, Blue, Green}; 28
namespace Acme 29
{ 30
interface IProcess { /* � */ } 31
struct ValueType { /* � */ } 32

C# LANGUAGE SPECIFICATION

448

class Widget: Iprocess 1
{ 2
 public class NestedClass { /* � */ } 3
 public interface IMenuItem { /* � */ } 4
 public delegate void Del(int i); 5
 public enum Direction {North, South, East, West}; 6
} 7
} 8

"T:Color" 9
"T:Acme.IProcess" 10
"T:Acme.ValueType" 11
"T:Acme.Widget" 12
"T:Acme.Widget.NestedClass" 13
"T:Acme.Widget.IMenuItem" 14
"T:Acme.Widget.Del" 15
"T:Acme.Widget.Direction"16

• Fields are represented by their fully qualified name.17

namespace Acme 18
{ 19
struct ValueType 20
{ 21
 private int total; 22
} 23

class Widget: Iprocess 24
{ 25
 public class NestedClass 26
 { 27
 private int value; 28
 } 29

 private string message; 30
 private static Color defaultColor; 31
 private const double PI = 3.14159; 32
 protected readonly double monthlyAverage; 33
 private long[] array1; 34
 private Widget[,] array2; 35
 private unsafe int *pCount; 36
 private unsafe float **ppValues; 37
} 38
} 39

"F:Acme.ValueType.total" 40
"F:Acme.Widget.NestedClass.value" 41
"F:Acme.Widget.message" 42
"F:Acme.Widget.defaultColor" 43
"F:Acme.Widget.PI" 44
"F:Acme.Widget.monthlyAverage" 45
"F:Acme.Widget.array1" 46
"F:Acme.Widget.array2" 47
"F:Acme.Widget.pCount" 48
"F:Acme.Widget.ppValues" 49

• Constructors.50

namespace Acme 51
{ 52
class Widget: Iprocess 53
{ 54
 static Widget() { /* � */ } 55
 public Widget() { /* � */ } 56
 public Widget(string s) { /* � */ } 57
} 58
} 59

"M:Acme.Widget.#cctor" 60
"M:Acme.Widget.#ctor" 61
"M:Acme.Widget.#ctor(System.String)" 62

Appendix E Documentation Comments

449

• Destructors.1

namespace Acme 2
{ 3
class Widget: Iprocess 4
{ 5
 ~Widget() { /* � */ } 6
} 7
} 8

"M:Acme.Widget.Finalize" 9

• Methods.10

namespace Acme 11
{ 12
struct ValueType 13
{ 14
 public void M(int i) { /* � */ } 15
} 16

class Widget: Iprocess 17
{ 18
 public class NestedClass 19
 { 20
 public void M(int i) { /* � */ } 21
 } 22
 public static void M0() { /* � */ } 23
 public void M1(char c, out float f, ref ValueType v) { /* � */ } 24
 public void M2(short[] x1, int[,] x2, long[][] x3) { /* � */ } 25
 public void M3(long[][] x3, Widget[][,,] x4) { /* � */ } 26
 public unsafe void M4(char *pc, Color **pf) { /* � */ } 27
 public unsafe void M5(void *pv, double *[][,] pd) { /* � */ } 28
 public void M6(int i, params object[] args) { /* � */ } 29
} 30
} 31

"M:Acme.ValueType.M(System.Int32)" 32
"M:Acme.Widget.NestedClass.M(System.Int32)" 33
"M:Acme.Widget.M0" 34
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)" 35
"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])" 36
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])" 37
"M:Acme.Widget.M4(System.Char*,Color**)" 38
"M:Acme.Widget.M5(=VOID*,System.Double*[0:,0:][])" 39
"M:Acme.Widget.M6(System.Int32,System.Object[])" 40
 41

• Properties and indexers.42

namespace Acme 43
{ 44
class Widget: Iprocess 45
{ 46
 public int Width {get { /* � */ } set { /* � */ }} 47
 public int this[int i] {get { /* � */ } set { /* � */ }} 48
 public int this[string s, int i] {get { /* � */ } set { /* � */ }} 49
} 50
} 51

"P:Acme.Widget.Width" 52
"P:Acme.Widget.Item(System.Int32)" 53
"P:Acme.Widget.Item(System.String,System.Int32)" 54

C# LANGUAGE SPECIFICATION

450

• Events1

namespace Acme 2
{ 3
class Widget: Iprocess 4
{ 5
 public event Del AnEvent; 6
} 7
} 8

"E:Acme.Widget.AnEvent" 9

• Unary operators.10

namespace Acme 11
{ 12
class Widget: Iprocess 13
{ 14
 public static Widget operator+(Widget x) { /* � */ } 15
} 16
} 17

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)" 18

The complete set of unary operator function names used is as follows:op_UnaryPlus,19

op_UnaryNegation, op_Negation, op_OnesComplement, op_Increment, op_Decrement,20

op_True, andop_False. 21

• Binary operators.22

namespace Acme 23
{ 24
class Widget: Iprocess 25
{ 26
 public static Widget operator+(Widget x1, Widget x2) { return x1; } 27
} 28
} 29

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)" 30

The complete set of binary operator function names used is as follows:op_Addition,31

op_Subtraction, op_Multiply, op_Division, op_Modulus, op_BitwiseAnd,32

op_BitwiseOr, op_ExclusiveOr, op_LeftShift, op_RightShift, op_Equality,33

op_Inequality, op_LessThan, op_LessThanOrEqual, op_GreaterThan, and34

op_GreaterThanOrEqual. 35

• Conversion operators have a trailing '~' followed by the return type.36

namespace Acme 37
{ 38
class Widget: Iprocess 39
{ 40
 public static explicit operator int(Widget x) { /* � */ } 41
 public static implicit operator long(Widget x) { /* � */ } 42
} 43
} 44

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32" 45
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64" 46

E.4 An example47

E.4.1 C# source code48

The following example shows the source code of a Point class:49

Appendix E Documentation Comments

451

namespace Graphics 1
{ 2
 3
/// <remarks>Class <c>Point</c> models a point in a two-dimensional 4
plane. 5
/// </remarks> 6
public class Point 7
{ 8

 /// <summary>Instance variable <c>x</c> represents the point's 9
 /// x-coordinate.</summary> 10
 private int x; 11

 /// <summary>Instance variable <c>y</c> represents the point's 12
 /// y-coordinate.</summary> 13
 private int y; 14

 /// <value>Property <c>X</c> represents the point's x-15
coordinate.</value> 16
 public int X 17
 { 18
 get { return x; } 19
 set { x = value; } 20
 } 21

 /// <value>Property <c>Y</c> represents the point's y-22
coordinate.</value> 23
 public int Y 24
 { 25
 get { return y; } 26
 set { y = value; } 27
 } 28

 /// <summary>This constructor initializes the new Point to 29
 /// (0,0).</summary> 30
 public Point() : this(0,0) {} 31

 /// <summary>This constructor initializes the new Point to 32
 /// (<paramref name="xor"/>,<paramref name="yor"/>).</summary> 33
 /// <param><c>xor</c> is the new Point's x-coordinate.</param> 34
 /// <param><c>yor</c> is the new Point's y-coordinate.</param> 35
 public Point(int xor, int yor) { 36
 X = xor; 37
 Y = yor; 38
 } 39

 /// <summary>This method changes the point's location to 40
 /// the given coordinates.</summary> 41
 /// <param><c>xor</c> is the new x-coordinate.</param> 42
 /// <param><c>yor</c> is the new y-coordinate.</param> 43
 /// <see cref="Translate"/> 44
 public void Move(int xor, int yor) { 45
 X = xor; 46
 Y = yor; 47
 } 48

 /// <summary>This method changes the point's location by 49
 /// the given x- and y-offsets. 50
 /// <example>For example: 51
 /// <code> 52
 /// Point p = new Point(3,5); 53
 /// p.Translate(-1,3); 54
 /// </code> 55
 /// results in <c>p</c>'s having the value (2,8). 56
 /// </example> 57
 /// </summary> 58
 /// <param><c>xor</c> is the relative x-offset.</param> 59
 /// <param><c>yor</c> is the relative y-offset.</param> 60
 /// <see cref="Move"/> 61
 public void Translate(int xor, int yor) { 62
 X += xor; 63
 Y += yor; 64
 } 65

C# LANGUAGE SPECIFICATION

452

 /// <summary>This method determines whether two Points have the same 1
 /// location.</summary> 2
 /// <param><c>o</c> is the object to be compared to the current 3
object. 4
 /// </param> 5
 /// <returns>True if the Points have the same location and they have 6
 /// the exact same type; otherwise, false.</returns> 7
 /// <seealso cref="operator=="/> 8
 /// <seealso cref="operator!="/> 9
 public override bool Equals(object o) { 10
 if (o == null) { 11
 return false; 12
 } 13

 if (this == o) { 14
 return true; 15
 } 16

 if (GetType() == o.GetType()) { 17
 Point p = (Point)o; 18
 return (X == p.X) && (Y == p.Y); 19
 } 20
 return false; 21
 } 22

 /// <summary>Report a point's location as a string.</summary> 23
 /// <returns>A string representing a point's location, in the form 24
(x,y), 25
 /// without any leading, training, or embedded whitespace.</returns> 26
 public override string ToString() { 27
 return "(" + X + "," + Y + ")"; 28
 } 29

 /// <summary>This operator determines whether two Points have the same 30
 /// location.</summary> 31
 /// <param><c>p1</c> is the first Point to be compared.</param> 32
 /// <param><c>p2</c> is the second Point to be compared.</param> 33
 /// <returns>True if the Points have the same location and they have 34
 /// the exact same type; otherwise, false.</returns> 35
 /// <seealso cref="Equals"/> 36
 /// <seealso cref="operator!="/> 37
 public static bool operator==(Point p1, Point p2) { 38
 if ((object)p1 == null || (object)p2 == null) { 39
 return false; 40
 } 41
 42
 if (p1.GetType() == p2.GetType()) { 43
 return (p1.X == p2.X) && (p1.Y == p2.Y); 44
 } 45
 46
 return false; 47
 } 48

 /// <summary>This operator determines whether two Points have the same 49
 /// location.</summary> 50
 /// <param><c>p1</c> is the first Point to be compared.</param> 51
 /// <param><c>p2</c> is the second Point to be compared.</param> 52
 /// <returns>True if the Points do not have the same location and the 53
 /// exact same type; otherwise, false.</returns> 54
 /// <seealso cref="Equals"/> 55
 /// <seealso cref="operator=="/> 56
 public static bool operator!=(Point p1, Point p2) { 57
 return !(p1 == p2); 58
 } 59

Appendix E Documentation Comments

453

 /// <summary>This is the entry point of the Point class testing 1
 /// program. 2
 /// <para>This program tests each method and operator, and 3
 /// is intended to be run after any non-trvial maintenance has 4
 /// been performed on the Point class.</para></summary> 5
 public static void Main() { 6
 // class test code goes here 7
 } 8
} 9
} 10

E.4.2 Resulting XML11

Here is the output produced by one documentation generator when given the source code for classPoint,12

shown above:13

<?xml version="1.0"?> 14
<doc> 15
 <assembly> 16
 <name>Point</name> 17
 </assembly> 18
 <members> 19
 <member name="T:Graphics.Point"> 20
 <remarks>Class <c>Point</c> models a point in a two-21
dimensional 22
 plane. 23
 </remarks> 24
 </member> 25

 <member name="F:Graphics.Point.x"> 26
 <summary>Instance variable <c>x</c> represents the point's 27
 x-coordinate.</summary> 28
 </member> 29

 <member name="F:Graphics.Point.y"> 30
 <summary>Instance variable <c>y</c> represents the point's 31
 y-coordinate.</summary> 32
 </member> 33

 <member name="M:Graphics.Point.#ctor"> 34
 <summary>This constructor initializes the new Point to 35
 (0,0).</summary> 36
 </member> 37

 <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)"> 38
 <summary>This constructor initializes the new Point to 39
 (<paramref name="xor"/>,<paramref name="yor"/>).</summary> 40
 <param><c>xor</c> is the new Point's x-coordinate.</param> 41
 <param><c>yor</c> is the new Point's y-coordinate.</param> 42
 </member> 43

 <member name="M:Graphics.Point.Move(System.Int32,System.Int32)"> 44
 <summary>This method changes the point's location to 45
 the given coordinates.</summary> 46
 <param><c>xor</c> is the new x-coordinate.</param> 47
 <param><c>yor</c> is the new y-coordinate.</param> 48
 <see 49
cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/> 50
 </member> 51

C# LANGUAGE SPECIFICATION

454

 <member 1
 name="M:Graphics.Point.Translate(System.Int32,System.Int32)"> 2
 <summary>This method changes the point's location by 3
 the given x- and y-offsets. 4
 <example>For example: 5
 <code> 6
 Point p = new Point(3,5); 7
 p.Translate(-1,3); 8
 </code> 9
 results in <c>p</c>'s having the value (2,8). 10
 </example> 11
 </summary> 12
 <param><c>xor</c> is the relative x-offset.</param> 13
 <param><c>yor</c> is the relative y-offset.</param> 14
 <see 15
cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/> 16
 </member> 17

 <member name="M:Graphics.Point.Equals(System.Object)"> 18
 <summary>This method determines whether two Points have the 19
same 20
 location.</summary> 21
 <param><c>o</c> is the object to be compared to the current 22
 object. 23
 </param> 24
 <returns>True if the Points have the same location and they 25
have 26
 the exact same type; otherwise, false.</returns> 27
 <seealso 28
 29
cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/> 30
 <seealso 31
 32
cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/> 33
 </member> 34

 <member name="M:Graphics.Point.ToString"> 35
 <summary>Report a point's location as a string.</summary> 36
 <returns>A string representing a point's location, in the 37
form 38
 (x,y), 39
 without any leading, training, or embedded 40
whitespace.</returns> 41
 </member> 42

 <member 43
 44
name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"> 45
 <summary>This operator determines whether two Points have the 46
 same 47
 location.</summary> 48
 <param><c>p1</c> is the first Point to be compared.</param> 49
 <param><c>p2</c> is the second Point to be compared.</param> 50
 <returns>True if the Points have the same location and they 51
have 52
 the exact same type; otherwise, false.</returns> 53
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/> 54
 <seealso 55
 56
cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/> 57
 </member> 58

Appendix E Documentation Comments

455

 <member 1
 2
name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"> 3
 <summary>This operator determines whether two Points have the 4
 same 5
 location.</summary> 6
 <param><c>p1</c> is the first Point to be compared.</param> 7
 <param><c>p2</c> is the second Point to be compared.</param> 8
 <returns>True if the Points do not have the same location and 9
 the 10
 exact same type; otherwise, false.</returns> 11
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/> 12
 <seealso 13
 14
cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/> 15
 </member> 16

 <member name="M:Graphics.Point.Main"> 17
 <summary>This is the entry point of the Point class testing 18
 program. 19
 <para>This program tests each method and operator, and 20
 is intended to be run after any non-trvial maintenance has 21
 been performed on the Point class.</para></summary> 22
 </member> 23

 <member name="P:Graphics.Point.X"> 24
 <value>Property <c>X</c> represents the point's 25
 x-coordinate.</value> 26
 </member> 27

 <member name="P:Graphics.Point.Y"> 28
 <value>Property <c>Y</c> represents the point's 29
 y-coordinate.</value> 30
 </member> 31
 </members> 32
</doc> 33

Appendix F Index

457

F. Index1

This clause is informative.2

3 –3

binary...1684

unary ..1615

– –6

pointer and...3417

postfix ..1528

prefix..1629

! 16110

!= 17111

See pre-processing directive, format of12

%16513

%= ...18214

&15

binary...17616

unary ..34017

&&...17718

& versus...17719

&=..18220

()21

cast operator...See cast22

grouping parentheses .See precedence:grouping23

parentheses and24

method call operator14825

*26

binary...16327

unary ..33828

*=...18229

. 14630

/ 16431

/* */..................................See comment, delimited32

// See comment, single-line33

/// See documentation comment34

/= 18235

:36

base class..21837

base interface..29138

?: 17939

@ identifier prefix..6040

@ verbatim string prefix6441

[]42

array element access.....................................15043

base access ...15244

element access..14945

indexer access ..15046

overloading element access.............See indexer47

pointer element access33948

\u See escape sequence, Unicode49

\U............................See escape sequence, Unicode50

^ 17651

^= ...18252

| 17653

|| 17754

| versus..17755

|= 18256

~ 16157

+58

binary ...16659

unary ..16060

++61

pointer and ...34162

postfix ..15263

prefix ..16264

+= ...18265

event handler addition....................38,182, 25866

C# LANGUAGE SPECIFICATION

458

< 1711

<<...1702

<<= ..1823

<=...1714

= 1795

–=...1826

event handler removal 38,182, 2587

==...1718

> 1719

–>...33810

>=...17111

>>...17012

arithmetic...17013

logical ..17014

>>= ..18215

0x integer literal prefix6216

0X integer literal prefix6217

abstract18

class and...21719

event and..25720

indexer and ..26321

method and ..24722

property and...25123

accessibility ... 32,7924

class member ...8025

compilation unit type.....................................8026

constraints on...8327

enumeration member8028

interface member ...8029

internal...See internal30

Main 's ...7531

namespace type..8032

private ...See private33

protectedSee protected34

protected internalSee protected internal35

public ...See public36

restrictions on ..8037

struct member...8038

accessibility domain...8039

accessor ..12940

event...26041

add..260. See also +=, event handler addition42

remove..........260. See also –=, event handler43

removal44

indexer..263, 32145

get...263, 29446

set ...263, 29447

interface..29448

property ..250,25149

get...25150

side-effects in a25551

set ...25152

address..33453

address-of operator............................See &, unary54

analysis55

lexical ...5656

static flow......................See static flow analysis57

application..758

application domain...759

application entry point7560

application parameter...7561

application startup..7562

application termination7563

destructors and ...7664

exit status code...7665

static variable and...10566

argument ..767

argument list...13868

ArrayTypeMismatchException and14069

expression evaluation order13970

method call...14871

overload resolution and................................14072

variable length....................See parameter array73

ArithmeticException ..31874

array 20,287. See also Array75

Appendix F Index

459

array of... 20,1551

base type of an ...2882

creation of anSee new, array creation3

dimension of an 21,1544

length of a ..2875

element ..1066

definite assignment and1067

life of an...1068

type of an ...2879

element access in an15010

initializer for an 21,28911

jaggedSee array, array of12

multi-dimensional.. 2013

rank of an....................................... 20,154, 28714

rectangular ... 2115

single-dimensional... 2016

subscript17

types permitted in an................................15018

subscripting....See also array, element access in19

an20

Array.. 79, 123, 197, 28821

conversion to ...12022

members of ..79, 28823

array covariance....................................... 139,28824

array element ...28725

ArrayTypeMismatchException26

argument list and 139, 14027

array covariance and.................................... 28928

simple assignment and................................. 18029

as 171,17630

cast versus..17631

assembly ..7, 48, 20932

assignment33

compound .. 180,18234

overloading..13235

definite...10836

try and..11337

when required ..10838

event...18039

simple...108, 179,18040

associativity..28,13141

grouping parentheses and.......................28,13142

atomicity ..11843

attribute 52,319. See also Attribute44

class naming convention31945

compilation of an ...32546

delegate ..32347

event...32348

add accessor ...32349

remove accessor32350

instance of an ...32551

method..32352

name of an..32253

property54

get accessor ..32355

set accessor...32356

reserved ..32657

specification of an ..32158

Attribute ...31959

attribute class ...31960

multi-use ..319, 32061

parameter62

named...32063

positional..32064

single-use ...31965

attribute section..32166

Attribute suffix...32367

attribute target ..32368

assembly...32369

event...32370

field ..32371

method..32372

param..32373

property ..32374

return ..32375

C# LANGUAGE SPECIFICATION

460

type .. 3231

AttributeUsage..........See AttributeUsageAttribute2

AttributeUsageAttribute 319,3263

banker’s rounding..1004

base..1515

. and ...1516

[] and..1517

access member of ..1518

constructor call9

explicit ...27010

implicit...27011

base class ..See class, base12

base interfaceSee interface, base13

behavior ...714

implementation-defined...................................715

documenting .. 416

summary of all ...37717

undefined ... 3,718

unspecified...719

summary of all ...37820

#define ...6921

block .. 30,18722

catch...20323

declaration in a ..18724

declaration space of aSee declaration space,25

block and26

empty ...18727

exiting a ...19928

finally........................... 199, 200, 201, 202,20329

exception thrown from.............................20530

nested31

duplicate labels in a7732

duplicate local variables in a76, 8533

simple name in a..14534

try...20335

bool.........................18, 97,100. See also Boolean36

Boolean.. 79, 9737

members of ..7938

boxing ..22,10239

break...31,20040

do/while and...19641

finally and ..20042

for and ..19643

inside nested iteration statements.................20044

reachability and..20045

target of ..20046

while and..19547

byte................................. 18, 97,98. See also Byte48

Byte..78, 9749

members of...7850

<c> ...46351

C standard ..552

C++ standard..553

case ..19254

goto ..See goto case55

case label ..19256

null as a ..19457

cast ...19, 121,16258

as versus ...17659

redundant..12160

catch ...20361

general..20462

char.................................18, 97,98. See also Char63

integer literal and ...9864

Char..79, 9765

members of...7966

character67

carriage return ..5668

encoding of...5869

form feed..5870

horizontal tab..5871

line feed..5672

line separator ..5673

null ...34674

paragraph separator ..5675

Appendix F Index

461

Unicode class Cf.. 601

Unicode class L1 ... 592

Unicode class Lm .. 593

Unicode class Lo ... 594

Unicode class Lt .. 595

Unicode class Lu ... 596

Unicode class Mc .. 597

Unicode class Mn .. 598

Unicode class N1... 599

Unicode class Nd... 5910

Unicode class Pc.. 5911

Unicode class Zs.. 5812

Unicode escape sequence 5813

vertical tab ... 5814

checked..9815

constant expression and...............................18316

explicit numeric conversion and..................12217

integer addition and16618

integer division and16419

integer multiplication and............................16320

integer subtraction and.................................16821

operator..15822

shift operations and......................................17023

statement.. 32,20624

checked operator versus...........................20625

unary minus and ..16126

class ... 17, 32,101, 21727

abstract... 44,21728

attribute..................................See attribute class29

base.. 101,21830

direct ..21831

accessibility of a21932

classes which cannot be a21933

type accessibility8334

circular dependence21935

Console .. 1536

declaration of ...7637

declaration space of a......See declaration space,38

class and39

initialization of a ..23440

initialization of a ..4341

interface implementations and a...................21942

member ..7943

accessibility of a...............................216, 22244

constantSee constant45

constructor46

instanceSee constructor:instance47

staticSee constructor:static48

destructor.................................See destructor49

event..See event50

field ..See field51

hiding a...22152

indexer...See indexer53

instance ..22254

method...See method55

operatorSee operator56

propertySee property57

static ...22258

type...See type59

members...22060

nested ...21761

non-abstract..21762

permitted modifiers on a21763

sealed..218, 21964

struct versus ...279, 28065

assignment..28166

boxing and unboxing................................28267

constructors ..28268

default values ...28169

destructors ..28370

field initializers ..28271

inheritance..28172

meaning of this...28273

value semantics ..28074

class library ..775

C# LANGUAGE SPECIFICATION

462

CLI.. iii, 151

CLS.. 112

<code>...4633

collection ... 1974

enumerating elements in aSee foreach5

System.Array ... 1976

comment .. 56, 587

delimited ..578

documentationSee documentation comment9

single-line ..5710

Common Language Infrastructure............See CLI11

Common Language SpecificationSee CLS12

compilation unit...20913

attributes of a ...20914

interdependency of20915

type accessibility and...................................21616

ConditionalSee ConditionalAttribute17

conditional compilation69. See also18

ConditionalAttribute19

conditional compilation symbol6720

defining a...See #define21

scope of a...6722

undefining a.................................See #undefine23

ConditionalAttribute..32624

conformance ..325

Console.. 1526

const......................................97.See also constant27

constant.. 34,22828

accessibility of a ..22829

initializer for a ...22830

interdependency of22931

local ... 3032

declaration of ...18933

scope of..190, 19434

named ...See enum35

readonly versus.................................... 229,23136

restrictions on type of a22837

type accessibility of a8338

versioning of a..23239

constant expression40

default integral overflow checking...............15841

constant folding..9742

constructor43

execution44

semantics of..27245

instance ..41,26946

accessibility of a.......................................26947

default ..27348

initializer and..27049

private ..27350

invocation of a..13851

overloading of a ...8452

parameterless53

struct and..28254

signature of a..8455

static ...43,27456

struct57

this in a...28358

value type ...9659

continue..31,20060

do/while and...19661

finally and ..20062

for and ..19663

inside nested iteration statements.................20064

reachability and..20065

target of ..20066

while and..19567

conversion ..19,11968

better ..14169

boxing ..102, 12070

explicit..19,12171

enumeration..12272

numeric ..12173

reference...12374

standard ..12475

Appendix F Index

463

user-defined124, 1261

using a cast ..1622

using as ..1763

identity...1194

implicit... 19,1195

constant expression..................................1206

constant int to byte...................................1207

constant int to sbyte1208

constant int to short1209

constant int to ushort12010

decimal to/from floating-point.................10011

enumeration ...12012

numeric ..11913

pre-defined and exceptions......................11914

reference ..12015

standard..12416

to/from char98, 12017

user-defined 119,121, 12518

zero to enumeration12019

standard..12420

to/from bool ...10021

unboxing..103, 12322

incompatible type and..............................10323

null and ..10324

user-defined ...124, 26825

evaluation of a ...12426

worse..14227

conversion operatorSee operator, conversion28

creation of an instanceSee new, object creation29

cref...46230

Current... 19731

d real literal suffix ...6332

D real literal suffix...6333

decimal18, 97,99. See also Decimal34

Decimal.. 79, 9735

members of ..7936

declaration ...7637

name hiding by a..7638

order of...7739

type.............................See type, declaration of a40

declaration space..7641

block and..76, 7742

class and ...7643

duplicate names in a.......................................7644

enumeration and...7645

global..7646

interface and...7647

label..77, 18848

local variable ..7649

namespace ..76, 7750

nested blocks and ...7751

struct and..7652

switch block and.......................................76, 7753

default ..19254

goto ..See goto default55

default label..19256

#define..6857

ConditionalAttribute and..............................32658

definite assignmentSee assignment, definite59

definitely assigned.............See variable, definitely60

assigned61

definitions ..762

delegate 17, 38, 47,311. See also Delegate.See63

also Delegate64

accessibility of a...31165

combination of a...16866

creation of a..............See new, delegate creation67

equality ofSee operator, equality, delegate68

invocation of a......................................149, 31369

removal of a ...16970

sealedness of a..31271

Delegate47, 79, 123, 31172

conversion to..12073

members of...7974

derived class.......................219. See class, derived75

C# LANGUAGE SPECIFICATION

464

design goals ..iii1

destructor ... 42,2762

instance variable and1053

invocation of a ...2764

struct and ...2835

diagnostic message ..76

Dispose ..2077

DivideByZeroException..................................3178

decimal division...1659

decimal remainder and.................................16610

integer division and16411

integer remainder and16512

do/while ... 31,19513

break and ...19614

continue and...19615

reachability and ...19616

documentation comment46117

recommended tags in...................................46218

XML output from .. 47619

documentation comment tag20

<c> ...See <c>21

<code> ...See <code>22

<example>See <example>23

<exception>See <exception>24

<list>..See <list>25

<para>..See <para>26

<param>..See <param>27

<paramref>See <paramref>28

<permission>See <permission>29

<remarks>..................................See <remarks>30

<returns>See <returns>31

<see> ...See <see>32

<seealso>See <seealso>33

<summary>..............................See <summary>34

<value>...See <value>35

cref...See cref36

documentation file ...46137

ID string ...46938

processing of ..46939

documentation generator..................................46140

documentation viewer46141

double.........................18, 97,98. See also Double42

precision...9943

range...9944

Double..79, 9745

members of...7946

element access..14947

#elif ..6948

#else ...6949

else ...See if/else50

#endif ...6951

#endregion..7252

enum........................... 17, 47,307. See also Enum53

accessibility and ...30754

declaration of an...7655

declaration space of an....See declaration space,56

enumeration57

member ..30858

initialization of an30859

value of an..30860

members of an..7961

permitted operations on an...........................31062

underlying type of an30763

value of an..31064

Enum..31065

#error..3,7166

error67

compile-time ..768

escape sequence69

alert ..6470

backslash ..6471

backspace ...6472

carriage return ..6473

double quote...6474

form feed..6475

Appendix F Index

465

hexadecimal ...631

regular string literal and.............................642

verbatim string literal and..........................643

horizontal tab ...644

list of.. 645

new line ...646

null...647

simple ..638

regular string literal and.............................649

verbatim string literal and..........................6410

single quote..6411

Unicode..58, 5912

vertical tab ...6413

event .. 38,25714

abstract...26215

accessibility of a ..25716

accessing an ... 13717

external ..25818

handler ...25719

inhibiting overriding of an...........................26220

instance..26121

interface and ..29422

override..26223

sealed ...26224

static...26125

type accessibility of an8426

virtual...26127

event access expressionSee expression, event28

access29

<example> ...46330

examples .. 1331

<exception> ...46332

exception......................7, 317. See also Exception33

catching from other languages...........See catch,34

general35

handling of an ..31736

propagation of an...20237

rethrow an..........See throw, with no expression38

types thrown by certain C# operations.........31839

Exception ...31740

catch and ..20341

throw and ...20242

Exception.Exception ..31743

Exception.InnerException................................31744

Exception.Message ..31745

Execution Order ...9346

expanded form ..See function member, applicable,47

expanded form48

explicit..26849

expression ..12950

array creation.................See new, array creation51

boolean...18452

constant ..18353

delegate creationSee new, delegate creation54

event access..12955

indexer access ..12956

invocation...14857

kinds of...12958

method group ...12959

namespace ..12960

nothing ...12961

object creationSee new, object creation62

parenthesized..14663

primary...14364

property access...12965

type...12966

value...12967

value of an..13068

variable...12969

extensions...370

documenting...471

extern..24872

event and ..25773

indexer and...26274

property and ...250,25175

f real literal suffix...6376

C# LANGUAGE SPECIFICATION

466

F real literal suffix ...631

false ...61, 1002

field.. 23, 35,2293

accessibility of a ..2304

initialization of a..................................233, 2345

initializer for a ...2306

instance..2317

initialization of an.................................... 2368

public9

property versus ..25310

readonly ... 3511

versioning of a ...23212

static...23113

initialization of a...................................... 23414

type accessibility of a8315

volatile ...23216

finalization17

suppression of.. 7618

finally19

break and ...20020

continue and...20021

goto and ...20122

jump statement and......................................19923

return and...20224

financial calculationsSee decimal25

float.............................. 18, 97,98. See also Single26

precision ..9927

range ..9928

for .. 31,19629

break and ...19630

continue and...19631

reachability and ...19732

for condition ..19633

for initializer ..19634

for iterator..19635

foreach ... 31,19736

function member......................................136, 22037

applicable ...14138

expanded form..14139

normal form..14140

better ..14141

invocation of a..14242

naming restrictions on a22043

function pointerSee delegate44

garbage collection ..2745

destructor call and ..4246

fixed variables and33647

movable variables and..................................33648

pointer tracking and33449

garbage collector ..9150

get accessor ..3751

attribute property..32352

indexer..263, 29453

property ..25154

GetEnumerator ...19755

global name..............See declaration space, global56

goto ..30,20057

finally and ..20158

label and ...18859

reachability and..20160

target of ..20161

goto case...194,20062

goto default ..194,20063

grammar ...5564

lexical ...9, 5565

syntactic ...9, 5566

ICloneable67

conversion to..12068

identifier ...58,5969

beginning with two underscores.....................6070

verbatim ...6071

IDisposable ..20772

IECSee International Electrotechnical73

Commission74

IEC 60559 standard..575

Appendix F Index

467

IEEESee Institute of Electrical and Electronics1

Engineers2

IEEE 754 standard...........See IEC 60559 standard3

IEnumerable.GetEnumerator..See GetEnumerator4

IEnumerator.Current............................See Current5

IEnumerator.MoveNext..................See MoveNext6

#if...697

if/else ... 30,1908

reachability and ...1919

implementation ..810

conforming ..311

implicit...26812

indexer ... 40,26213

accessibility of an ..26214

accessing an ... 13715

interface and ..29416

output parameter and13817

overloading of an...8518

property versus ..26319

reference parameter and...............................13820

signature of an ...8421

type accessibility of an8422

indexer access..15023

indexer access expression.See expression, indexer24

access25

IndexOutOfRangeException26

array access and... 15027

infinity28

negative..9929

positive ..9930

informative text ...331

inheritance ... 43,101, 22132

initializer33

array... 154,28934

constant35

local ...18936

constructor37

instance..27038

static ...27439

enum member...30840

field ..23041

fixed pointer ...34342

for...19643

stack allocation...34644

struct...28245

variable46

instance ..27147

local..18948

static ...27449

initially assigned ...See variable, initially assigned50

initially unassignedSee variable, initially51

unassigned52

instance ..10153

absence of..See null54

Institute of Electrical and Electronics Engineers1155

int 18, 97,98. See also Int3256

Int16 ...79, 9757

members of...7958

Int32 ...19, 79, 9759

members of...7960

Int64 ...79, 9761

members of...7962

interface..17, 45,29163

abstract class and..30464

accessibility of an...29165

base ..29166

type accessibility ..8367

declaration of..7668

declaration space of a......See declaration space,69

interface70

implementation of an29671

inheritance and ...30272

mapping to an...29973

member ..79, 29274

accessibility of an.....................................29275

event...29476

C# LANGUAGE SPECIFICATION

468

indexer ...2941

method ...2932

property..2933

name of an ...2964

re-implementation of an...............................3035

internal... 33,80, 816

International Electrotechnical Commission....... 117

International Organization for Standardization . 118

InvalidCastException9

explicit reference conversion....................... 12310

unboxing and ... 10311

is 102, 129, 171,17512

ISO...................See International Organization for13

Standardization14

ISO/IEC 10646 .. 3, 515

keyword ... 58,6016

use as an identifier ...6017

l integer literal suffix ...6218

L integer literal suffix ..6219

label ... 30,18820

declaration of a ..7721

goto and ...20022

scope of a...18823

library ..See class library24

#line ...7225

line terminator ...5626

<list>..46427

literal.. 18, 58,61, 14428

boolean ..6129

character ..6330

decimalSee literal:real31

floating-pointSee literal:real32

integer ..6133

decimal ..6134

hexadecimal ...6135

type of an ...6236

null...6537

real ...6238

string ..6439

duplicate memory sharing..........................6540

regular ..6441

verbatim ...6442

lock...32,20643

long 18, 97,98. See also Int6444

lu integer literal suffix..6245

lU integer literal suffix.......................................6246

Lu integer literal suffix6247

LU integer literal suffix......................................6248

lvalue...................................See variable reference49

m real literal suffix...6350

M real literal suffix ..6351

Main ...15,7552

accessibility of..7553

command-line arguments and7554

optional parameter in7555

overloading of ..7556

recognized signatures for7557

return type int ...7658

return type void ..7659

selecting from multiple7560

member ..7861

nested ...8062

overloading of aSee overloading63

scope of a ...See scope64

top-level ...8065

unsafe ...33266

member access146. See accessibility67

member lookup ..13568

member name69

form of a...7870

forward reference ...8671

memory management...9172

automatic..2673

direct ..26, 34774

method..36,23675

Appendix F Index

469

abstract...2471

accessibility of a ..2372

calling a ...1483

conditional326. See ConditionalAttribute4

external ..2485

inhibiting overriding of a.....See sealed, method6

instance.. 36,2437

invocation of a 136,148, 2388

non-void...2499

overloading of a....................................... 36,8410

overridden base..24511

override..24512

overriding ...See virtual13

sealed ... 24614

signature of a ... 36,8415

static... 36,24316

virtual...24317

void..237, 24918

return and...20219

method group expression..See expression, method20

group21

modifier22

abstract..See abstract23

defaultSee modifier, none24

extern ...See extern25

internal...See internal26

new ...See new27

none ...8028

out ...See out29

override..See override30

params.................................See parameter array31

private ...See private32

protectedSee protected33

protected internalSee protected internal34

public ...See public35

readonly ...See readonly36

ref..See ref37

sealed ...See sealed38

static ..See static39

virtual ..See virtual40

volatile...See volatile41

monetary calculationsSee decimal42

MoveNext ..19743

mutex..See lock44

mutual exclusion lockSee lock45

name46

hiding ...85, 8747

via inheritance..8848

via nesting ..8749

qualified ...8950

fully ..9051

simple...14452

visibility of a ..8753

namespace8, 15, 48, 76,80, 20954

accessibility..........See accessibility, namespace55

alias for a..21156

declaration of a...20957

global..209, 21058

import members from a................................21359

members of a..21560

modifiers and..21061

name62

form of a...21063

nested ...21064

type65

accessibility and21666

namespace expression .See expression, namespace67

NaN..9968

nested memberSee member, nested69

nested scopeSee scope, nested70

new...15371

array creation..15472

class member hiding and..............................22173

delegate creation155, 31374

dimension length evaluation order15475

C# LANGUAGE SPECIFICATION

470

object creation ... 1531

value type and..962

new, array creation .. 213

normal form......See function member, applicable,4

normal form5

normative text..3, 136

conditionally ..3, 137

Not-a-Number..See NaN8

notes... 139

nothing expression............See expression, nothing10

null...6511

representation of ..10812

NullReferenceException13

array access and... 15014

delegate creation and 15615

delegate invocation and 14916

foreach and .. 19717

function member18

invocation and ... 14319

member access and 14720

throw null and..20221

object17, 22, 79,95, 101.See also Object22

aliasing of ..9523

as a direct base class21924

conversion of value type to..........................12025

conversion to ...12026

conversion to value type..............................12327

inaccessible..9128

live ...9129

Object .. 79, 10130

members of ..7931

object creationSee new, object creation32

Obsolete..............................See ObsoleteAttribute33

ObsoleteAttribute ..32934

operand ..13035

mixing decimal and floating-point10036

mixing integral and decimal10037

mixing integral and floating-point.................9938

operator28, 39, 40, 58,66, 130, 131,26539

binary ...See -, binary40

unary ...See -, unary41

- -42

postfixSee - -, postfix43

prefix ..See - -, prefix44

! See !45

!= See !=46

%See %47

%=..See %=48

&49

binary ..See &:binary50

unary ...See &, unary51

&& ..See &&52

&= ..See &=53

()54

castSee (), cast operator55

method call.........See (), method call operator56

*57

binary ..See *, binary58

unary ..See *, unary59

*= ..See *=60

. See .61

/ See /62

/= See /=63

?: See ?:64

[] See []65

pointer element accessSee [], pointer element66

access67

^ See ^68

^= ..See ^=69

| See |70

|| See ||71

|= See |=72

~ See ~73

+74

binary ..See +, binary75

unary ..See +, unary76

Appendix F Index

471

++1

postfixSee ++, postfix2

prefix..See ++, prefix3

+=..See +=4

< See <5

<<..See <<6

<<= ...See <<=7

<=..See <=8

= See =9

-=See –=10

==..See ==11

> See >12

–>...See –>13

>=..See >=14

>>..See >>15

>>= ...See >>=16

address-ofSee &, unary17

arithmetic...16318

asSee as19

assignmentSee assignment20

associativity of anSee associativity21

binary...13022

integral types and.......................................9823

overload resolution13324

overloadable ..13125

overloading..26726

bitwise complement...................................See ~27

cast...See cast28

overloading......See conversion, user-defined29

checked...........................See checked, operator30

comparison ..17131

decimal ..17232

enumeration ...17333

floating-point ...17234

integer ..17135

conditional ..See ?:36

conversion.. 124,26837

equality38

boolean...17339

delegate ..17540

reference...17341

string ..17442

external...26643

floating-point44

exceptions and..9945

hiding of an ..8846

integral overflow checking and....................15847

invocation of an..13748

is 102.See is49

logical...17650

boolean...17751

conditional..17752

boolean...17853

user-defined..17854

enumeration..17755

integer ..17656

new..See new57

order of evaluation of...................................13058

overloading an..1959

restrictions on...13260

overloading of an85, 130, 13161

restrictions on...13262

overloadingan...26563

precedence ofSee precedence64

relational ..17165

shift ..17066

signature of an..8467

sizeof ..See sizeof68

ternary ..13069

typeof ..See typeof70

unary ..13071

integer types and ..9872

overload resolution...................................13273

overloadable...13174

C# LANGUAGE SPECIFICATION

472

overloading..2671

unchecked...................See unchecked, operator2

user-defined ...1333

output parameter and1384

reference parameter and...........................1385

order of declarationsSee declaration, order of6

order of evaluation7

argument list expressions.............................1398

operands in an expression............................1309

operatorsSee operator, order of evaluation of10

out.. 24, 106,138, 23911

signature and..8412

OutOfMemoryException13

array creation and .. 15514

delegate creation and 15615

object creation and....................................... 15416

string concatenation and 16717

output... 1518

formatted.. 1619

overflow... 2020

checking of integer 98,158, 20621

pointer increment or decrement...........341, 37722

OverflowException23

array creation and .. 15524

checked operator and........................... 158, 15925

decimal addition and.................................... 16726

decimal and.. 10027

decimal division... 16528

decimal remainder and................................. 16629

decimal subtraction and............................... 16830

explicit numeric conversion and.................. 12231

integer addition and 16632

integer division and 16433

integer subtraction and................................. 16834

integral types and... 9835

multiplication and................................ 163, 16436

unary minus and .. 16137

overload resolution...................................136, 14038

overloading ..8439

override ..135, 143,24540

base access and...15241

<para> ..46542

<param> ...46543

parameter..8, 23744

output24,106, 108,138, 23945

definite assignment and............................10646

this as an...10747

reference.........................24,106, 108,138, 23848

definite assignment and............................10649

this as a...10650

type accessibility of a.....................................8451

value.......................................23,106, 138, 23852

definite assignment and............................10653

life of a ...10654

parameter array25,139, 24055

signature and ..8456

<paramref>...46657

params 25, 240.See parameter array58

<permission>..46659

pointer60

address difference of34161

arithmetic and...34162

comparison of...34263

decrementing a ...34164

fixed65

initializer ..34366

incrementing a..34167

indirection of a ...33868

member access via a.....................................33869

permitted operations on a.............................33570

referent type of a ..33471

string72

writing through a......................................34673

to functionSee delegate74

Appendix F Index

473

to member function.........................See delegate1

type of a ... 3332

precedence ... 28,1303

grouping parentheses and1314

precedence table ..1305

pre-processing declaration.................................686

permitted placement of687

pre-processing directive..................................... 568

#define ...See #define9

#elif..See #elif10

#else...See #else11

#endif...See #endif12

#endregionSee #endregion13

#error ...See #error14

#if..See #if15

#line ...See #line16

#region...See #region17

#undef ...See #undef18

#warning.......................................See #warning19

conditional compilation6920

nesting of ...7021

ordering of in a set7022

format of .. 6623

pre-processing expression6724

evaluation rules..6825

grouping parentheses in6726

operators permitted in....................................6727

private.. 33,80, 8128

production.. 929

program..8, 55, 20930

conforming ..431

strictly conforming ..332

valid ...833

program entry point ... 1534

program instantiation...835

programming language36

interfacing with another................................. 6037

promotion38

numeric ..13339

binary ...13440

unary ..13441

property ..37,25042

abstract ...25543

accessibility of a...25044

accessing a ...13645

external...25146

indexer versus ..26347

inhibiting overriding of a25648

inlining possibilities of.................................25449

instance ..25150

interface and...29351

output parameter and....................................13852

override ..25653

public field versus ..25354

read-only ..25255

read-write ...25256

reference parameter and13857

sealed..25658

static ...25159

type accessibility of a.....................................8460

virtual ...25561

write-only...25262

property access expression............See expression,63

property access64

protected...33,80, 81, 8365

protected internal..............................33,80, 81, 8366

public..33,80, 8167

punctuator ..58,6668

reachability...18569

readonly..35, 97,23170

constant versus229,23171

recommended practice ...872

ref ...24, 106, 138, 23873

signature and ..8474

reference...9575

C# LANGUAGE SPECIFICATION

474

equality of.......See operator, equality, reference1

reference parameterSee parameter, reference2

#region...723

region...724

<remarks>..4665

reserved wordSee keyword6

resource..2077

disposal of a ..2078

return ... 32,2029

finally and..20210

from void Main..7611

reachability and ...20212

with expression..20213

with no expression.......................................20214

return type15

type accessibility of a83, 8416

<returns> ...46717

sbyte............................. 18, 97,98. See also SByte18

SByte ... 78, 9719

members of ..7820

scope..8521

class member ... 8522

enum member .. 8623

inner...8524

label ... 8625

local variable ... 8626

local variable in for.. 8627

namespace member 8528

nested...8529

parameter ... 8630

struct member .. 8631

using name... 8532

sealed33

abstract class and ... 21834

class and... 21835

event and.. 25736

indexer and .. 26237

method and...24638

property and ...25039

string types and ..10140

value types and...9641

<see>..46742

<seealso>..46843

set accessor...3744

attribute property..32345

indexer..263, 29446

property ..25147

short............................... 18, 97,98. See also Int1648

side effect ...9349

signature...8450

Single ...79, 9751

members of...7952

sizeof ..130,34253

source file...8, 55, 20954

declaration space and multiple7655

line number in a..7256

name of a..7257

type suffix .cs ...1558

source text59

exclusion of ..6960

inclusion of...6961

stackalloc..34662

freeing memory obtained via34663

StackOverflowException31864

stackalloc and...34665

statement ..29,18566

break...See break67

checkedSee checked, statement68

composite ...18569

continue..See continue70

declaration..18871

do/while...See do/while72

embedded ...18573

empty..18774

Appendix F Index

475

end point of..1851

reachability of ..1872

expression ..1903

for ...See for4

foreach ...See foreach5

goto...See goto6

if/else ...See if/else7

iteration..1958

jump...1999

target of a...19910

try statement and......................................19911

labeled..18812

lock ...See lock13

reachable..18514

return..See return15

selection...19016

switch..See switch17

throw..See throw18

try..See try19

unchecked.................See unchecked, statement20

unreachable..18521

unsafe...33122

usingSee using-statement23

while ...See while24

statement list ..18725

static... 15, 105, 22226

static flow analysis 108, 18627

string................................ 17, 101.See also String28

concatenation of...16729

C-style..34630

equality of..............See operator, quality, string31

null-terminated ..34632

String ... 79.See String33

members of ..7934

struct .. 17, 44,27935

advice for using over class...........................27936

assignment and .. 28137

boxing and..28238

class versus...279,28039

assignment..28140

boxing and unboxing................................28241

constructors ..28242

default values ...28143

destructors ..28344

field initializers ..28245

inheritance..28146

meaning of this...28247

value semantics ..28048

declaration of..7649

declaration space of a......See declaration space,50

struct51

field alignment in a34352

field initializers and......................................28253

inheritance and ...28154

interfaces and ...27955

member ..78, 28056

accessibility of a.......................................21657

padding in a..34358

pass by reference..28159

pass by value ..28160

permitted modifiers on a27961

return by value ...28162

unboxing and..28263

<summary> ..46864

switch ...31,19165

governing type of ...19266

string as ..19467

reachability and..19468

switch block ...19269

declaration space of a......See declaration space,70

switch block71

simple name in a ..14572

switch label ..19273

switch section...19274

end point of75

C# LANGUAGE SPECIFICATION

476

reachability of ..1871

symbol2

non-terminal .. 93

terminal.. 94

System ... 15, 975

System.ArithmeticException............................See6

ArithmeticException7

System.Array ...See Array8

System.ArrayTypeMismatchException............See9

ArrayTypeMismatchException10

System.Attribute....................... 326.See Attribute11

System.AttributeUsageAttribute.......................See12

AttributeUsageAttribute13

System.BooleanSee Boolean14

System.Byte...See Byte15

System.Char...See Char16

System.ConditionalAttributeSee17

ConditionalAttribute18

System.ConsoleSee Console19

System.Decimal.................................See Decimal20

System.DelegateSee Delegate.See Delegate21

System.DivideByZeroExceptionSee22

DivideByZeroException23

System.Double.....................................See Double24

System.Enum...See Enum25

System.ExceptionSee Exception26

System.IDisposableSee IDisposable27

System.IndexOutOfRangeException................See28

IndexOutOfRangeException29

System.Int16...See Int1630

System.Int32...See Int3231

System.Int64...See Int6432

System.InvalidCastException...........................See33

InvalidCastException34

System.NullReferenceException......................See35

NullReferenceException36

System.ObsoleteAttribute...See ObsoleteAttribute37

System.OutOfMemoryExceptionSee38

OutOfMemoryException39

System.OverflowExceptionSee40

OverflowException41

System.SByte ...See SByte42

System.Single..See Single43

System.StackOverflowExceptionSee44

StackOverflowException45

System.Type..See Type46

System.TypeInitializationExceptionSee47

TypeInitializationException48

System.UInt16See UInt1649

System.UInt32See UInt3250

System.UInt64See UInt6451

this..106, 107,15152

assignment to in struct..................................28253

constructor call54

explicit..27055

indexer and...26356

this access...15157

throw ..32,20258

reachability and..20259

with expression ..20260

with no expression20261

throw point ...20262

token...9, 56, 5863

separation of...5664

top-level memberSee member, top-level65

ToString ...22, 3666

string concatenation and...............................16767

true ...61, 10068

try ...203, 31769

jump statement and19970

reachability and..20671

try block ...See block, try72

type...9573

array ...101, 28774

array element..28775

base ..13576

boolean...10077

Appendix F Index

477

versus integer types1001

class ...See class2

collectionSee collection3

compile-time.. 2434

constituent..2225

decimal ..996

precision ..997

range ..998

representation of1009

versus floating-point10010

declaration of a 76,21511

delegate..10212

dynamic ... 10213

check...See is14

element ..19715

enum ...See enum16

enumeration ... 9517

enumeration ... 10018

representation of 10019

floating-point20

versus decimal ...10021

floating-point ... 18,9822

representation of ..9823

heap allocation and 27924

initialization of25

static variable and 10526

integer .. 18,9727

char differences ...9828

representation of ..9729

interface ...10130

memory occupied bySee sizeof31

nested... 215,22332

non-nested..22333

null34

conversion from.......................................12035

object ...10136

object as base class of every 9537

pointer 95.See pointer, type38

reference...16, 95,10039

null compatibility with10140

value versus..9541

referent ...33442

run-time..24343

compatibility checkSee is44

sealed..9645

simple...95, 9746

alias for predefined struct type...................9747

mapping to system class.............................7848

members of a..78, 9749

struct type and ..27950

string ..10151

struct....................................... 95, 96.See struct52

constructors in a ...9653

predefined ..9754

unmanaged ...33455

unsafe ...33156

value...16, 9557

constructor and...9658

conversion to/from a reference type.........10259

sealed..9660

struct...28061

value versus reference..............................95, 9662

void* ..33463

volatile..23264

Type ...15765

type expression......................See expression, type66

TypeInitializationException67

no matching catch clause and.......................31868

typeof ...129,15769

u integer literal suffix...6270

U integer literal suffix ..6271

uint 18, 97,98. See also UInt3272

UInt16 ..79, 9773

members of...7974

C# LANGUAGE SPECIFICATION

478

UInt32.. 79, 971

members of ..792

UInt64.. 79, 973

members of ..794

ul integer literal suffix625

uL integer literal suffix626

Ul integer literal suffix627

UL integer literal suffix628

ulong...........................18, 97,98. See also UInt649

unboxing.. 22,10210

unchecked..9811

constant expression and...............................18312

explicit numeric conversion and..................12213

integer addition and 16614

integer division and 16415

integer subtraction and................................. 16816

multiplication and.. 16317

operator..15818

shift operations and......................................17019

statement.. 32,20620

unchecked operator versus.......................20621

unary minus and ..16122

#undef..6823

applying to undefined name6924

Unicode.. 18, 5525

char type and..9826

string type and ...10127

Unicode standard ... 3, 528

unsafe... 27,33129

unsafe code ..8, 27,33130

stack allocation and 34631

unsafe context..33132

ushort18, 97,98. See also UInt1633

using-directive 15, 49, 209,21034

order of multiple211, 21235

permitted location of a.................................21036

scope of a...21137

using-statement ..32,20738

UTF-8...339

<value> ..46840

value...13041

default ..10742

value type ...9643

enum member...30844

Not-a-NumberSee NaN45

reference type.................................See instance46

set accessor and..............................37,251, 26347

value expression...........See expression, value.See48

expression, value49

value parametersSee parameter, value50

ValueType..28151

variable...22,10552

definitely assigned................................105, 10853

exception ..20354

catch without an20455

fixed ...33656

initially assigned105, 10857

initially unassigned105, 108, 10958

instance23,105. See field, instance59

definite assignment and............................10660

in a class...10561

in a struct..10662

initializer ..27163

life of an ...105, 10664

iteration ..19765

local..16, 22, 30,10766

declaration..................................76, 107, 18967

for and ..19668

declaration of multiple189, 19069

definite assignment and....................107, 18970

scope of ..189, 19471

movable..33672

reference.......................................See reference73

static23,105. See field, static74

definite assignment and............................10575

Appendix F Index

479

variable expressionSee expression, variable1

variable reference ..1172

versioning .. 503

virtual... 43,2434

base access and .. 1525

void.. 129,2376

void*..3347

casting to/from a ..3348

volatile ...2329

#warning..7110

warning11

compile-time..812

hiding an accessible name88, 89, 221, 29313

unnecessary new usage222, 29314

unreachable statement18615

user-defined..7116

while...31,19517

break and..19518

continue and ...19519

reachability and..19520

white space...56,5821

XML...46122

zero23

negative ..9824

positive...9825

26

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

ECMA29
114 Rue du Rhône30
CH-1204 Geneva31
Switzerland32

Fax: +41 22 849.60.0133
Email: documents@ecma.ch34

Files of this Standard can be freely downloaded from the ECMA web site (www.ecma.ch). This site gives full35
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.36

37

38

39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

ECMA30
114 Rue du Rhône31
CH-1204 Geneva32
Switzerland33

See inside cover page for obtaining further soft copies.34

35

36

37

