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Brief History

The RapidIO™ architecture was developed to address the need for a high-performance low pin count packet-switched system level
interconnect to be used in a variety of applications as an open standard. The architecture is targeted toward networking, telecom, and
high performance embedded applications. It is intended primarily as an intra-system interface, allowing chip-to-chip and board-to-
board communications at Gigabyte per second performance levels. It provides a rich variety of features including high data band-
width, low-latency capability and support for high-performance I/O devices, as well as providing globally shared memory, message
passing, and software managed programming models. In its simplest form, the interface can be implemented in a FPGA end point.
The interconnect defines a protocol independent of a physical implementation. The physical features of an implementation utilizing
the interconnect are defined by the requirements of the implementation, such as I/O signaling levels, interconnect topology, physical
layer protocol, error detection, and so forth. The architecture is intended and partitioned to allow adaptation to a multitude of applica-
tions.

This ECMA Standard has been adopted by the General  Assembly  in February 2003.





Overview of the standard

This overview explains each of the three layers of the RapidIO architecture,  their interrelationships, an the system and device inter-
operability:

1. Logical layer—The logical layer defines the overall protocol and packet formats, the types of transactions that can be carried 
out with RapidIO,  how addressing is handled. The logical specifications are partitioned into two partitions:

— Partition I: Input/Output Logical Specification 

— Partition II: Message Passing Logical Specification

— Partition V:  Globally Shared Memory Logical Specification

2. Transport layer—The transport layer provides the necessary route information for a packet to move from one point to another. 
This information is covered in Partition III: Common Transport Specification.

3. Physical layer—The physical layer contains the device level interface such as packet transport mechanisms, flow control, 
electrical characteristics, and low-level error management. This standard covers these topics in Partition IV: Physical 8/16 
LP-LVDS Specification, and  in Partition VI:  Physial Layer 1X/4X LP-Serial Specification.

4. Inter-operability — This consists of a standard setod device and system design solutions to provide for interoperability. The 
specification is given in  Patition VII: Inter-operability Specification System and Device.

NOTE

RapidIO specifications are structured so that additions can be made to each without affecting the others. For example, each logi-
cal specification is independent and can be implemented alone.

Partitions I, II and V: Logical Specifications
In RapidIO, the logical layer is subdivided into two specifications that support distributed I/O processing. Partition I: Input/
Output Logical Specification explains how RapidIO supports input-output systems and Partition II: Message Passing Logi-
cal Specification describes the message passing features of the RapidIO interconnect. Additionally, Partition V: Globally
Shared Memory Logical Specification, specifies an extension for applications that support cache-coherency and multi-
processing.

The logical specifications do not imply a specific transport or physical interface, therefore they are specified in a bit stream
format. Necessary bits are added to the logical encodings for each lower layer in the hierarchy.

Because all logical layers fulfill the same data communication functions no matter what programming model they support,
specifications written to this logical level address similar issues. In RapidIO, this similarity among the logical specifications
is reflected in the chapter contents, with each of the logical specifications containing the following chapters:

• Chapter 1, “ System Models,” provides explanations and figures of the types of systems that can use a RapidIO interface. 
• Chapter 2, “Operation Descriptions,” describes the sets of operations and transactions supported by RapidIO message 

passing and input/output protocols.
• Chapter 3, “Packet Format Descriptions,” breaks down packets into the two basic classes of request and response packets 

and then discusses and illustrates the format types within each class for each logical specification.
• Chapter 4, “Message Passing Registers,” and Chapter 4, “Input/Output Registers,” provides a memory map of registers 

used in the message passing and I/O specifications, and then subsections that discuss and illustrate each register.
The message passing logical specification has an annex added that describes in greater detail two examples of RapidIO mes-
sage passing models, one a simple model and one a more extended model.

The extension to the logical specifications as given in Partition V contains the following chapters:

• Chapter 1, “Overview,” describes the set of operations and transactions supported by the RapidIO globally shared memory 
protocols. 



• Chapter 2, “System Models,” introduces some possible devices that could participate in a RapidIO GSM system 
environment. The chapter explains the memory directory-based mechanism that tracks memory accesses and maintains 
cache coherence. Transaction ordering and deadlock prevention are also covered.

• Chapter 3, “Operation Descriptions,” describes the set of operations and transactions supported by the RapidIO globally-
shared memory (GSM) protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format definitions for the GSM specification. The two basic 
types, request and response packets, with their sub-types and fields are defined. The chapter explains how memory read 
latency is handled by RapidIO. 

• Chapter 5, “Globally Shared Memory Registers,” describes the visible register set that allows an external processing 
element to determine the globally shared memory capabilities, configuration, and status of a processing element using this 
logical specification. Only registers or register bits specific to the GSM logical specification are explained. Refer to the 
other RapidIO logical, transport, and physical specifications of interest to determine a complete list of registers and bit 
definitions.

• Chapter 6, “Communication Protocols,” contains the communications protocol definitions for this GSM specification.
• Chapter 7, “Address Collision Resolution Tables,” explains the actions necessary under the RapidIO GSM model to 

resolve address collisions. 

Partition III: Common Transport Specification
Partition III: Common Transport Specification contains three chapters:

The introduction to Partition III: Common Transport Specification offers a general understanding of the features and func-
tions of the transport specification.

• Chapter 1, “Transport Format Description,” describes the routing methods used in RapidIO for sending packets across the 
systems of switches described in this chapter.

• Chapter 2, “Common Transport Registers,” describes the visible register set that allows an external processing element to 
determine the capabilities, configuration, and status of a processing element using this RapidIO transport layer definition.

Partitions IV and VI: Physical Layer 8/16 LP-LVDS and 1x/4x LP-Serial Specifications
Partition IV: Physical Layer 8/16 LP-LVDS Specification contains eight chapters and an annex:

• The introduction to Partition IV: Physical Layer 8/16 LP-LVDS Specification offers a general understanding of the features 
and functions of the physical layer specification.

• Chapter 1, “Physical Layer Protocol,” describes the physical layer protocol for packet delivery to the RapidIO fabric, 
including packet transmission, flow control, error management, and link maintenance protocols.

• Chapter 2, “Packet and Control Symbol Transmission,” defines packet and control symbol delineation and alignment on 
the physical port and mechanisms to control the pacing of a packet.

• Chapter 3, “Control Symbol Formats,” explains the physical layer control formats that manage the packet delivery 
protocols mentioned in Chapter 2.

• Chapter 4, “8/16 LP-LVDS Registers,” describes the register set that allows an external processing element to determine 
the physical capabilities and status of an 8/16 LP-LVDS RapidIO implementation.

• Chapter 5, “System Clocking Considerations,” discusses the RapidIO synchronous clock and how it is distributed in a 
typical switch configuration.

• Chapter 6, “Board Routing Guidelines,” explains board layout guidelines and application environment considerations for 
the RapidIO architecture.

• “Chapter 7,”  contains the signal pin descriptions for a RapidIO end point device.
• Chapter 8, “Electrical Specifications,” describes the low voltage differential signaling (LVDS) electrical specifications of 

the RapidIO 8/16 LP-LVDS device.
• Annex A, “Interface Management (Informative),” contains information pertinent to interface management in a RapidIO 

system, including SECDED error tables, error recovery, link initialization, and packet retry state machines. 

Partition VI: Physical Layer 1x/4x LP-Serial Specification containssight chapters and two annexes:

• Chapter 1, “Overview”, offers a general understanding of the futures of the physical layer specification.
• Chapter 2, “Packets”, defines the LP-Serial packet format and the fields that are added by the LP-Serial physical layer.
• Chapter 3, “Control Symbols”, defines the format of the two classes of control symbols which are the message elements 

sed by ports connected by an LP-Serial link to manage all aspects of the link operation.



• Chapter 4, “PCS and PMA Layers”, defines the fonctions provided by the Physical Coding Sublayer (PSC) and the 
Physical Media Attachment (PMA) sublayer, comprising encoding, link transmission rules, serialization and link 
initialization.

• Chapter 5, “LP-Serial Protocol”, defines how packets, control symbols, and the PSC/PMA sublayers are used to implement 
the physical layer protocol that provides the reliable delivery of packets between two RapidIO devices that are connected 
by an LP-Serial link.

• Chapter 6, “LP-Serial Registers”, defines the physical layer control and status register set. By accessing this LP-Serial 
Command and Status Register (CSR) set a processing element may query the capabilities and status, and configure another 
processing element.

• Chapter 7, “Signal Descriptions”, describes the signal pin for end point devices and shows the connectivity between 
processing elements with 1x ports and those with 4x ports.

• Chapter 8, “A.C. Electrical Specifications”, defines the electrical requirements for the LP-Serial device, comprosing two 
transmission types and three speed grades.

• Annex A, “Interface Management”, describes state machines showing examples for error recovery, link initialization and 
packet retry.

• Annex B, “Bibliography”.

Partition VII: Inter-operability Specification System and Device
Partition VII: Inter-operability Specification System and Device contains chapters:

• Chapter 1, “Overview”, provides a short survey about one way of interworking of system components.
• Chapter 2, “System Exploration and Initialization”, describes a system that is explored and configured at boot time by 

processors, in order to support relatively fast-changing plug-and-play or hot-swap systems.
• Chapter 3, “816 LP-LVDS Device Class Requirements”, describes the requirements for devices adhering to the 8/16 LP-

LVDS physical layer specification, and defines three classes of devices with increasing levels of functionality.
• Chapter 4, “PCI Considerations”, describes architectural considerations for an implementation of a RapidIO to PCI (PVCI 

2.2 and PCI x1.0) bridge processing element.
• Chapter 5, “Globally Shared Memory (GSM) Devices”, defines the portions of the GMS protocol necessary to implement 

different processing elements (devices). Additionally, this chapter contains the 8/16 LP-LVDS and 1x/4x LP-Serial 
transaction to priority mappings to guarantee that a system maintains cache coherence and is deadlock free.

Partition VIII: Error Management Extensions Specification
Partition VIII: Error Management Extensions Specification contains two chapters and one annex:

• Chapter 1, “Error Management Extensions”, defines the additional requirements for all physical and logical layers, and 
describes the behavior of a device when an error is detected and how the new registers and bits are managed by sofware 
and hardware.

• Chapter 2, “Error Management Registers”, describes the Error Management Extended Features block, and a number of new 
bits to the existing standard physical layer registers.

• Annex A provides information and background on the application of the error management capabilities.

Extensions
Extensions to this base set of RapidIO specifications will be published periodically under separate cover. 

Terminology
Refer to the Glossary at the back of this document. 

Conventions
|| Concatenation, used to indicate that two fields are physically associated as consecutive bits

ACTIVE_HIGH Names of active high signals are shown in uppercase text with no overbar. Active-high signals are
asserted when high and not asserted when low.

ACTIVE_LOW Names of active low signals are shown in uppercase text with an overbar. Active low signals are
asserted when low and not asserted when high. 

italics Book titles in text are set in italics.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields, or ranges
appear in brackets. 



TRANSACTION Transaction types are expressed in all caps.

operation Device operation types are expressed in plain text. 

n A decimal value. 

[n-m] Used to express a numerical range from n to m. 

0bnn A binary value, the number of bits is determined by the number of digits.

0xnn A hexadecimal value, the number of bits is determined by the number of digits or from the surrounding
context; for example, 0xnn may be a 5, 6, 7, or 8 bit value.
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Summary

This summary is intended for anyone who needs a high-level understanding of the RapidIO architecture. The layers of the
architecture are described, and the functional, physical, and performance features are presented.

Introduction
RapidIO is a packet-switched interconnect intended primarily as an intra-system interface for chip-to-chip and board-to-
board communications at Gigabyte-per-second performance levels. Uses for the architecture can be found in connected
microprocessors, memory, and memory mapped I/O devices that operate in networking equipment, memory subsystems,
and general purpose computing.

The RapidIO interconnect is targeted toward memory-mapped distributed memory systems and subsystems. Such systems
consist of multiple independent devices that use DMA engines to communicate data and maintain their consistency by pass-
ing messages back and forth among the devices. The majority of applications written today use such a DMA and message
passing programming model.

RapidIO is a definition of a system interconnect. System concepts such as processor programming models, caching, system
reset, and interrupt programming models are beyond the scope of the RapidIO architecture. However, these functions may
use facilities provided within the RapidIO interconnect to support the necessary behavior. For example, the RapidIO archi-
tecture provides the necessary operations to support processor programming models ranging from strong consistency
through total store ordering to weak ordering. Any reference to these areas within the RapidIO architecture specification is
for illustration only. Subsequent revisions of the RapidIO specifications may further define these system functions.

Although this set of RapidIO specifications is built for the distributed memory system, further RapidIO specifications
extend the capabilities of the interface and address topics such as a serial physical layer, globally shared memory, and inter-
operability requirements. These specifications are available under separate covers from the specifications contained in this
book. 

 RapidIO Layered Hierarchy

The RapidIO architecture is specified in a three-layer hierarchy consisting of logical, common transport, and physical speci-
fications:

• Logical specifications—The logical specifications define the operation protocols required by the end points to carry out 
the targeted operation and the necessary transaction packet formats. The logical specifications do not imply a specific 
transport nor physical interface, therefore they are specified in a bit stream format. Necessary bits are added to the logical 
formats for each lower layer in the hierarchy.

• Because applications are written using different programming models, the RapidIO architecture subdivides its 
specifications to support them. Currently the RapidIO logical specifications include the following: 

• System I/O specifications in Partition I: Input/Output Logical Specification 
• Message passing specifications in Partition II: Message Passing Logical Specification
• Additional logical layer specifications under separate covers

System and Device, 
Inter-operability Spec

Logical Specifications, Partitions I–II

Physical Specifications, Partition  IV, 

Message Passing

Transport Specification, Partition  III

System I/O

8/16 LP-LVDS

Transport

GSM ExtensionsGlobally Shared Memory Extensions,

1x/4x LP-Serial

Partition V

Partition VI

Partition VII
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• Transport specification—The common transport specification describes the packet addressing scheme for delivery of 
RapidIO packets from one end point to another. The common transport specification is common to all of RapidIO and is 
described in Partition III: Common Transport Specification.

• Physical specification—A set of physical layer specifications define the interface between two devices and the packet 
transport mechanisms, flow control, and electrical characteristics. This specification is described in Partition IV: Physical 
8/16 LP-LVDS Specification. Additional physical layer specifications are under separate covers. 

RapidIO Feature Set

The RapidIO feature set and protocols are based upon a number of considerations for both general computing and embedded
applications. In each of the three layers, these features are broken down into three categories: functional, physical, and 
performance.

Logical Layer Features
Message passing and direct-memory access (DMA) devices can improve the interconnect efficiency if larger 
non-coherent data quantities are encapsulated within a single packet, so RapidIO supports a variety of data sizes within
the packet formats. Because the message passing programming model is fundamentally a non-coherent non-shared mem-
ory model, in a RapidIO device, portions of the memory space are only directly accessible by a processor or a local
device controlled message passing interface.

Packet headers are as small as possible to minimize the control overhead and are organized for fast, efficient assembly
and disassembly. As the amount of data included in a packet increases, packet efficiency increases. RapidIO supports data
payloads up to 256 bytes. Messages are very important for embedded control applications, so a variety of large and small
data fields and multiple packet messages are supported.

Multiple transactions are allowed concurrently in the system, not only through the ability to pipeline transactions from a
single device, but also through spatial reuse of interfaces between different devices in the system. Without this, a majority
of the potential system throughput is wasted.

Functional Features
The following are RapidIO logical layer functional features: 

• Many embedded systems are multiprocessor systems, not multiprocessing systems, and prefer a message passing or 
software-based coherency programming model over the traditional computer-style globally shared memory 
programming model in order to support their distributed I/O and processing requirements, especially in the 
networking and routing markets. RapidIO supports all of these programming models.

• System sizes from very small to very large are supported in the same or compatible packet formats—RapidIO plans 
for future expansion and requirements.

• Read-modify-write atomic operations are useful for synchronization between processors or other system elements.
• The RapidIO architecture supports 50- and 66-bit addresses as well as 34-bit local addresses for smaller systems.
• Message passing and DMA devices can improve the interconnect efficiency if larger non-coherent data quantities can 

be encapsulated within a single packet, so RapidIO supports a variety of data sizes within the packet formats.
• Because the message passing programming model is fundamentally a non-coherent non-shared memory model, 

RapidIO can assume that portions of the memory space are only directly accessible by a processor or device local to 
that memory space. A remote device that attempts to access that memory space must do so through a local device 
controlled message passing interface.

Physical Features
The following are features of the RapidIO logical layer designed to satisfy the needs of the physical layer requirements
for various applications and systems:

• The RapidIO packet definition is independent of the width of the physical interface to other devices on the 
interconnect fabric.

• The protocols and packet formats are independent of the physical interconnect topology. The protocols work whether 
the physical fabric is a point-to-point ring, a bus, a switched multi-dimensional network, a duplex serial connection, 
and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.
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• The protocols handle out-of-order packet transmission and reception.
• No requirement exists in RapidIO for geographical addressing; a device’s identifier does not depend on its location 

in the address map but can be assigned by other means.
• Certain devices have bandwidth and latency requirements for proper operation. RapidIO should not preclude an 

implementation from imposing these constraints within the system.

Performance Features
Following are performance features at the logical layer:

• Messages are very important for networking applications, so a variety of large and small data fields and multiple 
packet messages are supported for efficiency.
• Packet headers are as small as possible to minimize the control overhead and are organized for fast, efficient assembly 
and disassembly.
• Multiple transactions are allowed concurrently in the system, preventing much potential system input from being 
wasted. 

Transport Layer Features
The transport layer functions of the RapidIO interconnect have been addressed by incorporating the following functional,
physical, and performance features.

Functional Features
Functional features at the transport layer include the following:

• System sizes from very small to very large are supported in the same or compatible packet formats.
• Because RapidIO has only a single transport specification, compatibility among implementations is assured.
• The transport specification is flexible, so that it can be adapted to future applications.
• Packets are assumed, but not required, to be directed from a single source to a single destination.

Physical Features
The following are physical features of the RapidIO fabric that apply at the transport layer:

• The transport definition is independent of the width of the physical interface between devices in the interconnect 
fabric.
• No requirement exists in RapidIO for geographical addressing; a device’s identifier does not depend on its location 
in the address map but can be assigned by other means.

Performance Features
Performance features that apply to the transport layer include the following:

• Packet headers are as small as possible to minimize the control overhead and are organized for fast, efficient assembly 
and disassembly.

• Broadcasting and multicasting can be implemented by interpreting the transport information in the interconnect 
fabric.

Physical Layer Features
The physical layer defines the signal definitions, flow control and error management for RapidIO. Initially an 8-bit and
16-bit parallel (8/16 LP-LVDS), point-to-point interface is deployed. An 8/16 LP-LVDS device interface contains a 
dedicated 8- or 16-bit input port with clock and frame signals, and a 8- or 16-bit output port with clock and frame signals.
A source-synchronous-clock signal clocks packet data on the rising and falling edges. A frame signal provides a control
reference. Differential signaling is used to reduce interface complexity, provide robust signal quality, and promote good
frequency scalability across printed circuit boards and connectors.  

Functional Features
Following is a functional feature of the physical layer of RapidIO:

• RapidIO provides a flow control mechanism between devices that communicate on the RapidIO interconnect fabric, 
because infinite data buffering is not available in a device.
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Physical Features
The following are physical features of the RapidIO physical layer:

• Connections are point-to-point unidirectional, one in and one out, with 8-bit or 16-bit ports
• Physical layer protocols and packet formats are to some degree independent of the topology of the physical 

interconnect; however; the physical structure is assumed to be link-based.
• There is no dependency in RapidIO on the bandwidth or latency of the physical fabric.
• Physical layer protocols handle out-of-order and in-order packet transmission and reception.
• Physical layer protocols are tolerant of transient errors caused by high frequency operation of the interface or 

excessive noise in the system environment.

Performance Features
The following are performance features of the RapidIO physical layer:

• Physical protocols and packet formats allow for the smallest to the largest data payload sizes
• Packet headers are as small as possible to minimize the control overhead and are organized for fast, efficient assembly 

and disassembly.
• Multiple transactions are allowed concurrently in the system, preventing much potential system input from being 

wasted. 
• The electrical specification allows for the fastest possible speed of operation for future devices.
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I Partition I

Partition I is intended for users who need to understand the input/output system architecture of the RapidIO interconnect. 

I.1 Overview
The Input/Output Logical Specification is part of RapidIO’s logical layer specifications that define the interconnect’s
overall protocol and packet formats. This layer contains the transaction protocols necessary for end points to process a
transaction. Another RapidIO logical layer specification is described in Partition II: Message Passing Logical Specifica-
tion.

The logical specifications do not imply a specific transport or physical interface; therefore they are specified in a bit
stream format. At the lower levels in the RapidIO three-layer hierarchy, necessary bits are added to the logical encoding
for the transport and physical layers.

RapidIO is targeted toward memory-mapped distributed memory systems. A message passing programming model is
supported to enable distributed I/O processing. Partition I: Input/Output Logical Specification defines the basic I/O sys-
tem architecture of RapidIO.

I.2 Contents
Following are the contents of Partition I: Input/Output Logical Specification:

• Chapter 1, “System Models,” introduces some devices that might be part of a RapidIO system environment. 
System issues, such as the ordered and unordered systems that can be built using RapidIO, are explained. 

• Chapter 2, “Operation Descriptions,” describes the set of transactions and operations supported by the I/O 
protocols. 

• Chapter 3, “Packet Format Descriptions,” contains the packet format definitions for the Input/Output 
specification. The two basic types, request and response packets, with their sub-types and fields are defined. 

• Chapter 4, “Input/Output Registers,” describes the visible register set that allows an external processing element 
to determine the I/O capabilities, configuration, and status of a processing element using this logical specification. 
Only registers or register bits specific to the Input/Output specification are explained. Refer to the other RapidIO 
logical, transport, and physical specifications of interest to determine a complete list of registers and bit 
definitions.

1 Chapter 1 - System Models

This overview introduces some possible devices in a RapidIO system. 

1.1 Processing Element Models
“Figure 1-1. A Possible RapidIO-Based Computing System” on page 4 describes a possible RapidIO-based computing
system. The processing element is a computer device such as a processor attached to a local memory and to a RapidIO
system interconnect “Figure i. RapidIO Layered Hierarchy,” . The bridge part of the system provides I/O subsystem serv-
ices such as high-speed PCI interfaces and gigabit Ethernet ports, interrupt control, and other system support functions.

The following sections describe several possible processing elements.
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1.1.1 Processor-Memory Processing Element Model
Figure 1-2 shows an example of a processing element consisting of a processor connected to an agent device. The
agent carries out several services on behalf of the processor. Most importantly, it provides access to a local memory
that has much lower latency than memory that is local to another processing element (remote memory accesses). It also
provides an interface to the RapidIO interconnect to service those remote memory accesses.

1.1.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated component that is designed specifically
to connect to a RapidIO interconnect system as shown in Figure 1-3. This type of device integrates a memory system
and other support logic with a processor on the same piece of silicon or within the same package. 

Figure 1-1. A Possible RapidIO-Based Computing System

Figure 1-2. Processor-Memory Processing Element Example

Processing
Element A

Memory

Processing
Element B

Memory

Processing
Element C

Memory

Processing
Element D

Memory

Bridge

PCI A

PCI B XBUS

MPIC

RapidIO System Interconnect Fabric

Firewire

Agent

Memory

Processor

Local Interconnect

RapidIO-based
System Interconnect



- 5 -

 

1.1.3 Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a memory-only device as shown in 
Figure 1-4. This type of device is much simpler than a processor; it only responds to requests from the external system,
not to local requests as in the processor-based model. As such, its memory is remote for all processors in the system.

1.1.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory. A processor-only processing ele-
ment is shown in Figure 1-5

1.1.5 I/O Processing Element
This type of processing element is shown as the bridge in Figure 1-1. This device has distinctly different behavior than
a processor or a memory device. An I/O device only needs to move data into and out of local or remote memory. 

Figure 1-3. Integrated Processor-Memory Processing Element Example

Figure1-4. Memory-Only Processing Element Example

Figure 1-5. Processor-Only Processing Element Example
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1.1.6 Switch Processing Element
A switch processing element is a device that allows communication with other processing elements through the switch.
A switch may be used to connect a variety of RapidIO-compliant processing elements. A possible switch is shown in
Figure1-6. Behavior of the switches, and the interconnect fabric in general, is addressed in the RapidIO Common
Transport Specification.

1.2 System Issues
The following sections describe transaction ordering and system deadlock considerations in a RapidIO system. 

1.2.1 Operation Ordering
Most operations in an I/O system do not have any requirements as far as completion ordering. There are, however, sev-
eral tasks that require events to occur in a specific order. As an example, a processing element may wish to write a set
of registers in another processing element. The sequence in which those writes are carried out may be critical to the
operation of the target processing element. Without some specific system rules there would be no guarantee of comple-
tion ordering of these operations. Ordering is mostly a concern for operations between a specific source and destina-
tion pair. 

In certain cases a processing element may communicate with another processing element or set of processing elements
in different contexts. A set or sequence of operations issued by a processing element may have requirements for com-
pleting in order at the target processing element. That same processing element may have another sequence of opera-
tions that also requires a completion order at the target processing element. However, the issuing processing element
has no requirements for completion order between the two sequences of operations. Further, it may be desirable for
one of the sequences of operations to complete at a higher priority than the other sequence. The term “transaction
request flow” is defined as one of these sequences of operations.

A transaction request flow is defined as a ordered sequence of non-maintenance request transactions from a given
source (as indicated by the source identifier) to a given destination (as indicated by the transaction destination identi-
fier), where a maintenance request is a special system support request. Each packet in a transaction request flow has
the same source identifier and the same destination identifier.

There may be multiple transaction request flows between a given source and destination pair. When multiple flows
exist between a source and destination pair, the flows are distinguished by a flow indicator (flowID). Rapid IO allows
multiple transaction request flows between any source and destination pair. The flows between each source and desti-
nation pair are identified with alphabetic characters beginning with A.

The flows between each source and destination pair are prioritized. The flow priority increases alphabetically with
flow A having the lowest priority, flow B having the next to lowest priority, etc. When multiple transaction request
flows exist between a given source and destination pair, transactions of a higher priority flow may pass transactions of
a lower priority flow, but transactions of a lower priority flow may not pass transactions of a higher priority flow.

Maintenance transactions are not part of any transaction request flow. However, within a RapidIO fabric, maintenance
transactions may not pass other maintenance transactions of the same or higher priority taking the same path through
the fabric.

Response transactions are not part of any transaction request flow. There is no ordering between any pair of response
transactions and there is no ordering between any response transaction and any request transaction that did not cause

Figure 1-6. Switch Processing Element Example

Switch
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the generation of the response.

To support transaction request flows, all devices that support the RapidIO logical specification shall comply as appli-
cable with the following Fabric Delivering Ordering and End point Completion Ordering rules.

Fabric Delivery Ordering Rules

1. Non-maintenance request transactions within a transaction request flow (same source identifier, same destination
identifier, and same flowID) shall be delivered to the logical layer of the destination in the same order that they were
issued by the logical layer of the source.

2. Non-maintenance request transactions that have the same source (same source identifier) and the same destination
(same destination identifier) but different flowIDs shall be delivered to the logical layer of the destination as follows.

- A transaction of a higher priority transaction request flow that was issued by the logical layer of the source before a 
transaction of a lower priority transaction request flow shall be delivered to the logical layer of the destination before 
the lower priority transaction.

- A transaction of a higher priority transaction request flow that was issued by the logical layer of the source after a 
transaction of a lower priority transaction request flow may be delivered to the logical layer of the destination before 
the lower priority transaction.

3. Request transactions that have different sources (different source identifiers) or different destinations (different
destination identifiers) are unordered with respect to each other.

End point Completion Ordering Rules

1. Write request transactions in a transaction request flow shall be completed at the logical layer of the destination in
the same order that the transactions were delivered to the logical layer of the destination.

2. A read request transaction with source A and destination B shall force the completion at the logical layer of B of all
write requests in the same transaction request flow that were received by the logical layer of B before the read request
transaction.

Read request transactions need not be completed in the same order that they were received by the logical layer of the
destination. As a consequence, read response transactions need not be issued by the logical layer of the destination in
the same order that the associated read request transactions were received.

Write response transactions will likely be issued at the logical level in the order that the associated write request was
received. However, since response transactions are not part of any flow, they are not ordered relative to one another
and may not arrive at the logical level their destination in the same order as the associated write transactions were
issued. Therefore, write response transactions need not be issued by the logical layer in the same order as the associ-
ated write request was received.

It may be necessary to impose additional rules in order to provide for inter operability with other interface standards or
programming models. However, such additional rules are beyond the scope of this specification.

1.2.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO processing elements: unordered and
ordered. The RapidIO logical protocols assume that all outstanding transactions to another processing element are
delivered in an arbitrary order. In other words, the logical protocols do not rely on transaction interdependencies for
operation. RapidIO also allows completely ordered delivery systems to be constructed. Each type of system puts dif-
ferent constraints on the implementation of the source and destination processing elements and any intervening hard-
ware. The specific mechanisms and definitions of how RapidIO enforces transaction ordering are discussed in the
appropriate physical layer specification.

1.2.2.1 Unordered Delivery System Issues
An unordered delivery system is defined as an interconnect fabric where transactions between a source and destina-
tion pair can arbitrarily pass each other during transmission through the intervening fabric. 

Operations in the unordered system that are required to complete in a specific order shall be properly managed at
the source processing element. For example, enforcing a specific sequence for writing a series of configuration reg-
isters, or preventing a subsequent read from bypassing a preceding write to a specific address are cases of ordering
that may need to be managed at the source. The source of these transactions shall issue them in a purely serial
sequence, waiting for completion notification for a write before issuing the next transaction to the interconnect fab-
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ric. The destination processing element shall guarantee that all outstanding non-coherent operations from that
source are completed before servicing a subsequent non-coherent request from that source.

1.2.2.2 Ordered Delivery System Issues
Ordered delivery systems place additional implementation constraints on both the source and destination processing
elements as well as any intervening hardware. Typically an ordered system requires that all transactions between a
source/destination pair be completed in the order generated, not necessarily the order in which they can be accepted
by the destination or an intermediate device. In one example, if several requests are sent before proper receipt is
acknowledged the destination or intermediate device shall retry all following transactions until the first retried
packet is retransmitted and accepted. In this case, the source shall “unroll” its outstanding transaction list and
retransmit the first one to maintain the proper system ordering. In another example, an interface may make use of
explicit transaction tags which allow the destination to place the transactions in the proper order upon receipt.

1.2.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation where a loop of buffering devices
is formed, in which forward progress at each device is dependent upon progress at the next device. If no device in the
loop can make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases resources in the network and allows
forward progress to be made. RapidIO is designed to be a reliable fabric for use in real time tightly coupled systems,
therefore discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a deadlock free topology be provided for
response-less operations. Dependency loops to single direction packets can exist in unconstrained switch topologies.
Often the dependency loop can be avoided with simple routing rules. Topologies like hypercubes or three-dimensional
meshes physically contain loops. In both cases, routing is done in several dimensions (x,y,z). If routing is constrained
to the x dimension, then y, then z (dimension ordered routing), topology related dependency loops are avoided in these
structures. 

In addition, a processing element design shall not form dependency links between its input and output ports. A depend-
ency link between input and output ports occurs if a processing element is unable to accept an input packet until a wait-
ing packet can be issued from the output port. 

RapidIO supports operations, such as read operations, that require responses to complete. These operations can lead to
a dependency link between a processing element’s input port and output port. 

As an example of a input to output port dependency, consider a processing element where the output port queue is full.
The processing element can not accept a new request at its input port since there is no place to put the response in the
output port queue. No more transactions can be accepted at the input port until the output port is able to free entries in
the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is described in the appropriate Physi-
cal Layer specification.

2 Chapter 2 - Operation Descriptions

This chapter describes the set of operations and their associated transactions supported by the I/O protocols of RapidIO. The
transaction types, packet formats, and other necessary transaction information are described in Chapter 3, “Packet Format
Descriptions.” 

The I/O operation protocols work using request/response transaction pairs through the interconnect fabric. A processing ele-
ment sends a request transaction to another processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been completed or if an error condition is
encountered. Each transaction is sent as a packet through the interconnect fabric. For example, a processing element that
requires data from another processing element sends an NREAD transaction in a request packet to that processing element,
which reads its local memory at the requested address and returns the data in a DONE transaction in a response packet. Note
that not all requests require responses; some requests assume that the desired activity will complete properly.

Two possible response transactions can be received by a requesting processing element:
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• A DONE response indicates to the requestor that the desired transaction has completed and it also returns data for read-
type transactions as described above. 

• An ERROR response means that the target of the transaction encountered an unrecoverable error and could not complete 
the transaction. 

Packets may contain additional information that is interpreted by the interconnect fabric to route the packets through the fab-
ric from the source to the destination, such as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of the physical layer protocol to manage
flow control, errors, etc. Flow control and other fabric-specific communication requirements are described in the appropriate
RapidIO transport and physical layer specifications and are beyond the scope of this document.

For most transaction types, a request transaction sent into the system is marked with a transaction ID that is unique for each
requestor and responder processing element pair. This transaction ID allows a response to be easily matched to the original
request when it is returned to the requestor. An end point cannot reuse a transaction ID value to the same destination until the
response from the original transaction has been received by the requestor. The number of outstanding transactions that may
be supported is implementation dependent. 

Transaction IDs may also be used to indicate sequence information if ordered reception of transactions is required by the
destination processing element and the interconnect fabric can reorder packets. The receiving device can either retry subse-
quent out-of-order requests, or it can accept and not complete the subsequent out-of-order requests until the missing transac-
tions in the sequence have been received and completed.

2.1 I/O Operations Cross Reference
Table 2-1 contains a cross reference of the I/O operations defined in this RapidIO specification and their system usage. 

2.2 I/O Operations
The operations described in this section are used for I/O accesses to physical addresses in the target of the operation.
Examples are accesses to non-coherent memory, ROM boot code, or to configuration registers that do not participate in
any globally shared system memory protocol. These accesses may be of any specifiable size allowed by the system. 

All data payloads that are less than 8 bytes shall be padded and have their bytes aligned to their proper byte position
within the double-word, as in the examples shown in Figure 2-6 throughFigure 2-8.

The described behaviors are the same regardless of the actual target physical address. 

Table 2-1. I/O Operations Cross Reference

Operation Transactions
Used Possible System Usage

Request 
Transaction 

Classification 
for Completion 
Ordering Rules

Description Packet Format

Read NREAD, 
RESPONSE

Read operation Read Section  
2.2.1

Type 2 Section 3.1.5 

Write NWRITE Write operation Write Section  
2.2.2

Type 5 Section 3.1.7 

Write-with-
response

NWRITE_R, 
RESPONSE

Write operation Write Section  
2.2.3

Type 5 Section 3.1.7 

Streaming-write SWRITE Write operation Write Section  
2.2.2

Type 6 Section 3.1.8 

Atomic (read-
modify-write)

ATOMIC, 
RESPONSE

Read-modify-write 
operation 

Write Section  
2.2.4

Type 2 Section 3.1.5 
Type 5 Section 3.1.7 

Maintenance MAINTENANCE System exploration, 
initialization, and 
maintenance operation

not applicable Section  
2.3.1

Type 8 Section 3.1.10 
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2.2.1 Read Operations
The read operation, consisting of the NREAD and RESPONSE transactions (typically a DONE response) as shown in
Figure 2-1 is used by a processing element that needs to read data from the specified address. The data returned is of the
size requested.

If the read operation is to memory, data is returned from the memory regardless of the state of any system-wide cache
coherence mechanism for the specified cache line or lines, although it may cause a snoop of any caches local to the mem-
ory controller. 

2.2.2 Write and Streaming-Write Operations
The write and streaming-write operations, consisting of the NWRITE and SWRITE transactions as shown in 
Figure 2-2, are used by a processing element that needs to write data to the specified address. The NWRITE transac-
tion allows multiple double-word, word, half-word and byte writes with properly padded and aligned (to the 8-byte
boundary) data payload. The SWRITE transaction is a double-word-only version of the NWRITE that has less header
overhead. The write size and alignment for the NWRITE transaction are specified in Table 3-4. Non-contiguous and
unaligned writes are not supported. It is the requestor’s responsibility to break up a write operation into multiple trans-
actions if the block is not aligned.

NWRITE and SWRITE transactions do not receive responses, so there is no notification to the sender when the trans-
action has completed at the destination. 

If the write operation is to memory, data is written to the memory regardless of the state of any system-wide cache
coherence mechanism for the specified cache line or lines, although it may cause a snoop of any caches local to the
memory controller. 

2.2.3 Write-With-Response Operations 
The write-with-response operation, consisting of the NWRITE_R and RESPONSE transactions (typically a DONE
response) as shown in Figure 2-3, is identical to the write operation except that it receives a response to notify the
sender that the write has completed at the destination. This operation is useful for guaranteeing read-after-write and
write-after-write ordering through a system that can reorder transactions and for enforcing other required system
behaviors. 

Fgure 2-1. Read Operation

Figure 2-2. Write and Streaming-Write Operations

Figure 2-3. Write-With-Response Operation

DONE, data2

NREAD1

Requestor Destination

NWRITE or SWRITE, data1

Requestor Destination

NWRITE_R, data1

Requestor

DONE2

Destination
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2.2.4 Atomic (Read-Modify-Write) Operations 
The read-modify-write operation, consisting of the ATOMIC and RESPONSE transactions (typically a DONE
response) as shown in Figure 2-4 is used by a number of cooperating processing elements to perform synchronization
using non-coherent memory. The allowed specified data sizes are one word (4 bytes), one half-word (2 bytes) or one
byte, with the size of the transaction specified in the same way as for an NWRITE transaction. Double-word (8-byte)
and 3, 5, 6, and 7 byte ATOMIC transactions may not be specified. 

The atomic operation is a combination read and write operation. The destination reads the data at the specified address,
returns the read data to the requestor, performs the required operation to the data, and then writes the modified data
back to the specified address without allowing any intervening activity to that address. Defined operations are incre-
ment, decrement, test-and-swap, set, and clear (See bit settings in Table 4-9 and Table 4-10). Of these, only test-and-
swap require the requesting processing element to supply data. The target data of an atomic operation may be initial-
ized using an NWRITE transaction. 

If the atomic operation is to memory, data is written to the memory regardless of the state of any system-wide cache
coherence mechanism for the specified cache line or lines, although it may cause a snoop of any caches local to the
memory controller. 

2.3 System Operations
All data payloads that are less than 8 bytes shall be padded and have their bytes aligned to their proper byte position
within the double-word, as in the examples shown in Figure 2-6 through Figure 2-8.

2.3.1 Maintenance Operations 
The maintenance operation, which can consist of more than one MAINTENANCE transaction as shown in Figure 2-5
is used by a processing element that needs to read or write data to the specified CARs, CSRs, or locally-defined regis-
ters or data structures. If a response is required, MAINTENANCE requests receive a MAINTENANCE response
rather than a normal response for both read and write operations. Supported accesses are in 32 bit quantities and may
optionally be in double-word and multiple double-word quantities to a maximum of 64 bytes. 

2.4 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means that the RapidIO interface to devices
that are little-endian shall perform the proper endian transformation to format a data payload. 

Operations that specify data quantities that are less than 8 bytes shall have the bytes aligned to their proper byte position
within the big-endian double-word, as in the examples shown in Figure 2-6 through Figure 2-8.

Figure 2-4. Atomic (Read-Modify-Write) Operation

Figure 2-5. Maintenance Operation

DONE, data2

ATOMIC, data (opt.)1

Requestor Destination

opt. MAINTENANCE, opt. data2

MAINTENANCE, opt. data1

Requestor Destination
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For write operations, a processing element shall properly align data transfers to a double-word boundary for transmission
to the destination. This alignment may require breaking up a data stream into multiple transactions if the data is not natu-
rally aligned. A number of data payload sizes and double-word alignments are defined to minimize this burden. 
Figure 2-9 shows a 48-byte data stream that a processing element wishes to write to another processing element through
the interconnect fabric. The data displayed in the figure is big-endian and double-word aligned with the bytes to be writ-
ten shaded in grey. Because the start of the stream and the end of the stream are not aligned to a double-word boundary,
the sending processing element shall break the stream into three transactions as shown in the figure. 

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and indicates a byte lane 5, 6, and 7 three-byte
write. The second transaction sends all of the remaining data except for the final sub-double-word. The third transaction
sends the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte lanes 0, 1, 2, 3, and 4. 

Figure 2-6. Byte Alignment Example

Figure 2-7. Half-Word Alignment Example

Figure 2-8. Word Alignment Example

Figure 2-9. Data Alignment Example

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB

First transaction sends these three bytes
with this double-word alignment

Byte
Lane

0

Byte
Lane

1

Byte
Lane

2

Byte
Lane

3

Byte
Lane

4

Byte
Lane

5

Byte
Lane

6

Byte
Lane

7

MSB

LSB

Second transaction sends these five
double-words

Third transaction sends these five bytes
with this double-word alignment

Double-Word Boundary
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3 Chapter 3 - Packet Format Descriptions

This chapter contains the packet format definitions for the RapidIO Input/Output Logical Specification. Four types of I/O
packet formats exist:

• Request
• Response
• Implementation-defined
• Reserved
The packet formats are intended to be interconnect fabric independent so the system interconnect can be anything required
for a particular application. Reserved formats, unless defined in another logical specification, shall not be used by a device. 

3.1 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing element to accomplish some activity
on its behalf, such as a memory read operation. The request packet format types and their transactions for the RapidIO
Input/Output Logical Specification are shown in Table 3-1 below. 

3.1.1 Addressing and Alignment
The size of the address is defined as a system-wide parameter; thus the packet formats do not support mixed local
physical address fields simultaneously. The least three significant bits of all addresses are not specified and are
assumed to be logic 0.

All transactions are aligned to a byte, half-word, word, or double-word boundary. Read and write request addresses are
aligned to any specifiable double-word boundary and are not aligned to the size of the data written or requested. Data
payloads start at the first double-word and proceed linearly through the address space. Sub-double-word data payloads
shall be padded and properly aligned within the 8-byte boundary. Non-contiguous or unM0aligned transactions that
would ordinarily require a byte mask are not supported. A sending device that requires this behavior shall break the
operation into multiple request transactions. An example of this is shown in Section 2.4, “Endian, Byte Ordering, and
Alignment.” 

3.1.2 Field Definitions for All Request Packet Formats
Table 3-2 through Table 3-4 describe the field definitions for all request packet formats. Bit fields that are defined as

Table 3-1. Request Packet Type to Transaction Type Cross Reference

Request Packet 
Format Type Transaction Type Definition Document 

Section No.

Type 0 Implementation-
defined

Defined by the device implementation Section 3.1.3

Type 1 — Reserved Section 3.1.4

Type 2 ATOMIC Read-modify-write operation on specified address Section 3.1.5

NREAD Read specified address

Type 3-4 — Reserved Section 3.1.6

Type 5 ATOMIC test-and-
swap

Read-test=0-swap-write operation on specified address Section 3.1.7

NWRITE Write specified address

NWRITE_R Write specified address, notify source of completion

Type 6 SWRITE Write specified address Section 3.1.8

Type 7 — Reserved Section 3.1.9

Type 8 MAINTENANCE Read or write device configuration registers and perform 
other system maintenance tasks

Section 3.1.10

Type 9-11 — Reserved Section 3.1.11
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“reserved” shall be assigned to logic 0s when generated and ignored when received. Bit field encodings that are
defined as “reserved” shall not be assigned when the packet is generated. A received reserved encoding is regarded as
an error if a meaningful encoding is required for the transaction and function, otherwise it is ignored. Implementation-
defined fields shall be ignored unless the encoding is understood by the receiving device. All packets described are bit
streams from the first bit to the last bit, represented in the figures from left to right respectively. 

Table 3-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table 3.3, Table 3.4 and 
Section 2.4. 

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table 3.3 and Section 
2.4. 

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit—see 
Table 3.4 and Section 2.4. For writes greater than one double-word, the size is the maximum payload that should 
be expected by the receiver.

rsrv Reserved

srcTID The packet’s transaction ID

transaction The specific transaction within the format class to be performed by the recipient; also called type or ttype.

extended 
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and extended address 
fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in a packet with the xamsbs as the 
most significant bits in the address.

address Least significant 29 bits (bits [0-28] of byte address [0-31]) of the double-word physical address

Table 3-3. Read Size (rdsize) Definitions

wdptr rdsize Number of 
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011
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0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16

0b0 0b1100 32

0b1 0b1100 64

0b0 0b1101 96

0b1 0b1101 128

0b0 0b1110 160

0b1 0b1110 192

0b0 0b1111 224

0b1 0b1111 256

Table 3-4. Write Size (wrsize) Definitions

wdptr wrsize Number of 
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

Table 3-3. Read Size (rdsize) Definitions(Continued)

wdptr rdsize Number of 
Bytes Byte Lanes
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3.1.3 Type 0 Packet Format (Implementation-Defined)
The type 0 packet format is reserved for implementation-defined functions such as flow control. 

3.1.4 Type 1 Packet Format (Reserved)
The type 1 packet format is reserved.

3.1.5 Type 2 Packet Format (Request Class)
The type 2 format is used for the NREAD and ATOMIC transactions as specified in the transaction field defined in
Table 3-5. Type 2 packets never contain a data payload. 

The data payload size for the response to an ATOMIC transaction is 8 bytes. The addressing scheme defined for the
read portion of the ATOMIC transaction also controls the size of the atomic operation in memory so the bytes shall be
contiguous and shall be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to that boundary and byte
lane as with a regular read transaction. Double-word (8-byte), 3, 5, 6, and 7 byte ATOMIC transactions are not
allowed.

Note that type 2 packets don’t have any special fields. 

0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16 
maximum

0b0 0b1100 32 
maximum

0b1 0b1100 64 
maximum

00b 0b1101 reserved

0b1 0b1101 128 
maximum

0b0 0b1110 reserved

0b1 0b1110 reserved

0b0 0b1111 reserved

0b1 0b1111 256 
maximum

Table 3-5. Transaction Fields and Encodings for Type 2 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NREAD transaction

0b0101–1011 Reserved

0b1100 ATOMIC inc: post-increment the data

0b1101 ATOMIC dec: post-decrement the data

Table 3-4. Write Size (wrsize) Definitions(Continued)

wdptr wrsize Number of 
Bytes Byte Lanes
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Figure 3-1 displays the type 2 packet with all its fields. The field value 0b0010 in Figure 3-1 specifies that the packet
format is of type 2.

Figure 3-1. Type 2 Packet Bit Stream Format 

3.1.6 Type 3–4 Packet Formats (Reserved)
The type 3–4 packet formats are reserved.

3.1.7 Type 5 Packet F3.1.7 ormat (Write Class)
Type 5 packets always contain a data payload. A data payload that consists of a single double-word or less has sizing
information as defined in Table 3-4. The wrsize field specifies the maximum size of the data payload for multiple dou-
ble-word transactions. The data payload may not exceed that size but may be smaller if desired. The ATOMIC,
NWRITE, and NWRITE_R transactions use the type 5 format as defined in Table 3-6. NWRITE request packets do
not require a response. Therefore, the transaction ID (srcTID) field for a NWRITE request is undefined and may have
an arbitrary value. 

The ATOMIC test-and-swap transaction is limited to one double-word (8 bytes) of data payload. The addressing
scheme defined for the write transactions also controls the size of the atomic operation in memory so the bytes shall be
contiguous and shall be of size byte, half-word (2 bytes), or word (4 bytes), and be aligned to that boundary and byte
lane as with a regular write transaction. Double-word (8-byte) and 3, 5, 6, and 7 byte ATOMIC test-and-swap transac-
tions are not allowed. 

Note that type 5 packets don’t have any special fields. 

Figure 3-2 displays the type 5 packet with all its fields. The field value 0b0101 in Figure 3-2 specifies that the packet 
format is of type 5-

Table 3-6. Transaction Fields and Encodings for Type 5 Packets

Encoding Transaction Field

0b0000–0011 Reserved

0b0100 NWRITE transaction

0b0101 NWRITE_R transaction

0b0110–1101 Reserved

0b1110 ATOMIC test-and-swap: read and return the data, 
compare to 0, write with supplied data if compare is true

0b1111 Reserved

0 0 1 0

4 4 4 8

transaction rdsize srcTID

addressextended address

0, 16, 32

wdptr xamsbs

1 229
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.

3.1.8 Type 6 Packet Format (Streaming-Write Class)
The type 6 packet is a special-purpose type that always contains data. The data payload always contains a minimum of
one complete double-word. Sub-double-word data payloads shall use the type 5 NWRITE transaction. Type 6 transac-
tions may contain any number of double-words up to the maximum defined in Table 3-4. 

Because the SWRITE transaction is the only transaction to use format type 6, there is no need for the transaction field
within the packet. There are also no size or transaction ID fields. 

Figure 3-3 displays the type 6 packet with all its fields. The field value 0b0110 in Figure 3-3 specifies that the packet
format is of type 6. 

3.1.9 Type 7 Packet Format (Reserved)
The type 7 packet format is reserved.

3.1.10 Type 8 Packet Format (Maintenance Class)
The type 8 MAINTENANCE packet format is used to access the RapidIO capability and status registers (CARs and
CSRs) and data structures. Unlike other request formats, the type 8 packet format serves as both the request and the
response format for maintenance operations. Type 8 packets contain no addresses and only contain data payloads for
write requests and read responses. All configuration register read accesses are performed in word (4-byte), and option-
ally double-word (8-byte) or specifiable multiple double-word quantities up to a limit of 64 bytes. All register write
accesses are also performed in word (4-byte), and optionally double-word (8-byte) or multiple double-word quantities
up to a limit of 64 bytes. 

Read and write data sizes are specified as shown in Table 3-3 and Table 3-4. The wrsize field specifies the maximum
size of the data payload for multiple double-word transactions. The data payload may not exceed that size but may be
smaller if desired. Both the maintenance read and the maintenance write request generate the appropriate maintenance

Figure 3-2. Type 5 Packet Bit Stream Format

Figure 3-3. Type 6 Packet Bit Stream Format 

0 1 0 1

4 4 4 8

transaction wrsize srcTID

addressextended address

0, 16, 32
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double-word n

64
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addressextended address
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response. 

The maintenance port-write operation is a write operation that does not have guaranteed delivery and does not have an
associated response. This maintenance operation is useful for sending messages such as error indicators or status infor-
mation from a device that does not contain an end point, such as a switch. The data payload is typically placed in a
queue in the targeted end point and an interrupt is typically generated to a local processor. A port-write request to a
queue that is full or busy servicing another request may be discarded.

Definitions and encodings of fields specific to type 8 packets are provided in Table 3-7. Fields that are not specific to
type 8 packets are described in Table 3-2.

Figure 3-4 displays a type 8 request (read or write) packet with all its fields. The field value 0b1000 in Figure 3-4 spec-
ifies that the packet format is of type 8. The srcTID and config_offset fields are reserved for port-write requests. 

Figure 3-7. Specific Field Definitions and Encodings for Type 8 Packets

Type 8 Fields Encoding Definition

transaction 0b0000 Specifies a maintenance read request

0b0001 Specifies a maintenance write request

0b0010 Specifies a maintenance read response

0b0011 Specifies a maintenance write response

0b0100 Specifies a maintenance port-write request

0b0101–1111 Reserved

config_offset — Double-word offset into the CAR/CSR register block for reads and writes

srcTID — The type 8 request packet’s transaction ID (reserved for port-write requests) 

targetTID — The corresponding type 8 response packet’s transaction ID

status 0b0000 DONE—Requested transaction has completed successfully

0b0001–0110 Reserved

0b0111 ERROR—Unrecoverable error detected

0b1000–1011 Reserved

0b1100–1111 Implementation-defined—Can be used for additional information such as an error code

Figure 3-4. Type 8 Request Packet Bit Stream Format

1 0 0 0

4 4 4 8

transaction rdsize/wrsize srcTID

config_offset
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wdptr rsrv

1 2

64

double-word n
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Figure 3.5 displays a type 8 response packet with all its fields. 

3.1.11 Type 9–11 Packet Formats (Reserved)
The type 9–11 packet formats are reserved.

3.2 Response Packet Formats
A response transaction is issued by a processing element when it has completed a request made to it by a remote process-
ing element. Response packets are always directed and are transmitted in the same way as request packets. Currently two
packet format types exist, as shown in Table 3-8.. 

Figure 3-5. Type 8 Response Packet Bit Stream Format 

Table 3-8. Response Packet Type to Transaction Type Cross Reference

Response Packet 
Format Type Transaction Type Definition Document Section 

Number

Type 12 — Reserved Section 3.2.2

Type 13 RESPONSE Issued by a processing element when it completes a 
request by a remote element.

Section 3.2.3

Type 14 — Reserved Section 3.2.4

Type 15 Implementation-
defined

Defined by the device implementation Section 3.2.5

1 0 0 0

4 4 4 8

transaction status targetTID

reserved

24

64

double-word n

•  •  •
64

double-word 0
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3.2.1 Field Definitions for All Response Packet Formats 
The field definitions in Table 3-9  apply to more than one of the response packet formats. 

3.2.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

3.2.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status, data (if required), and the requestor’s transaction ID. A RESPONSE packet
with an “ERROR” status or a response that is not expected to have a data payload never has a data payload. The type
13 format is used for response packets to all request packets except maintenance and response-less writes. 

Note that type 13 packets do not have any special fields.

Figure 3-6  illustrates the format and fields of type 13 packets. The field value 0b1101 in Figure 3-6 specifies that the
packet format i is of type 13 .

3.2.4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

• 3.2.5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as flow control. 

Table 3-9. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

targetTID — The corresponding request packet’s transaction ID

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional information such as 
an error code

Figure 3-6. Type 13 Packet Bit Stream Format 
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4 Chapter 4 - Input/Output Registers

This chapter describes the visible register set that allows an external processing element to determine the capabilities, con-
figuration, and status of a processing element using this logical specification. This chapter only describes registers or regis-
ter bits defined by this specification. Refer to the other RapidIO logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions. All registers are 32-bits and aligned to a 32-bit boundary. 

4.1 Register Summary
Table 4-1 shows the register map for this RapidIO specification. These capability registers (CARs) and command and sta-
tus registers (CSRs) can be accessed using RapidIO maintenance operations. Any register offsets not defined are consid-
ered reserved for this specification unless otherwise stated. Other registers required for a processing element are defined
in other applicable RapidIO specifications and by the requirements of the specific device and are beyond the scope of this
specification. Read and write accesses to reserved register offsets shall terminate normally and not cause an error condi-
tion in the target device. Writes to CAR (read-only) space shall terminate normally and not cause an error condition in the
target device.

Register bits defined as reserved are considered reserved for this specification only. Bits that are reserved in this specifi-
cation may be defined in another RapidIO specification. 

4.2 Reserved Register and Bit Behavior
Table 4-2 describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO 
register space.

Table 4-1. I/O Register Map

Configuration 
Space Byte 

Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 Device Identity CAR Device Information CAR

0x8 Assembly Identity CAR Assembly Information CAR

0x10 Processing Element Features CAR Switch Port Information CAR

0x18 Source Operations CAR Destination Operations CAR

0x20–38 Reserved

0x40 Reserved Write Port CSR

0x48 Reserved Processing Element Logical Layer Control 
CSR

0x50 Reserved

0x58 Local Configuration Space High Base Address 
CSR

Local Configuration Space Base Address CSR

0x60–F8 Reserved

0x100–
FFF8 Extended Features Space

0x10000–
FFFFF8 Implementation-defined Space
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4.3 Extended Features Data Structure
The RapidIO capability and command and status registers implement an extended capability data structure. If the
extended features bit (bit 28) in the processing element features register is set, the extended features pointer is valid and
points to the first entry in the extended features data structure. This pointer is an offset into the standard 16 Mbyte capa-
bility register (CAR) and command and status register (CSR) space and is accessed with a maintenance read operation in
the same way as when accessing CARs and CSRs. 

The extended features data structure is a singly linked list of double-word structures. Each of these contains a pointer to
the next structure (EF_PTR) and an extended feature type identifier (EF_ID). The end of the list is determined when the
next extended feature pointer has a value of logic 0. All pointers and extended features blocks shall index completely into

Table 4-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register 
Space (CAR Space - this 
space is read-only)

Reserved bit read - ignore returned value1

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 

read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - write - ignored

 Reserved 
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status 
Register Space (CSR 
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2

2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 
for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined 
Space

Reserved bit and 
register

All behavior implementation-defined
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the extended features space of the CSR space, and all shall be aligned to a double-word boundary so the three least signif-
icant bits shall equal logic 0. Pointer values not in extended features space or improperly aligned are illegal and shall be
treated as the end of the data structure. Figure 4-1 shows an example of an extended features data structure. It is required
that the extended features bit is set to logic 1 in the processing element features register. 

4.4 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external processing element to determine its capa-
bilities through maintenance read operations. All registers are 32 bits wide and are organized and accessed in 32-bit (4
byte) quantities, although some processing elements may optionally allow larger accesses. CARs are read-only. Refer to
Table 4-2 for the required behavior for accesses to reserved registers and register bits. 

CARs are big-endian with bit 0 and Word 0 respectively the most significant bit and word.

4.4.1  Device Identity CAR (Offset 0x0 Word 0)
The DeviceVendorIdentity field identifies the vendor that manufactured the device containing the processing element.
A value for the DeviceVendorIdentity field is uniquely assigned to a device vendor by the registration authority of the
RapidIO Trade Association. 

The DeviceIdentity field is intended to uniquely identify the type of device from the vendor specified by the DeviceV-
endorIdentity field. The values for the DeviceIdentity field are assigned and managed by the respective vendor. See
Table 4-3. 

4.4.2  Device Information CAR (Offset 0x0 Word 1)
The DeviceRev field is intended to identify the revision level of the device. The value for the DeviceRev field is
assigned and managed by the vendor specified by the DeviceVendorIdentity field. See Table 4-4 

4.4.3 Assembly Identity CAR (Offset 0x8 Word 0)
The AssyVendorIdentity field identifies the vendor that manufactured the assembly or subsystem containing the
device. A value for the AssyVendorIdentity field is uniquely assigned to a assembly vendor by the registration author-

Figure 4-1. Example Extended Features Data Structure

Table 4-3. Bit Settings for Device Identity CAR

Bit Field Name Description

0–15 DeviceIdentity Device identifier

16–31 DeviceVendorIdentity Device vendor identifier

Table 4-4. Bit Settings for Device Information CAR

Bit Field Name Description

0-31 DeviceRev Device revision level

ExtendedFeaturesPtr

ExtendedFeatureID
0 15 16 31 32
NextExtendedFeaturePtr reserved

47 48
reserved

ExtendedFeatureID
0 15 16 31 32
NextExtendedFeaturePtr reserved

47 48
reserved

ExtendedFeatureID
0 15 16 31 32
0b0000000000000000 reserved

47 48
reserved

63

63

63
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ity of the RapidIO Trade Association.

The AssyIdentity field is intended to uniquely identify the type of assembly from the vendor specified by the AssyVen-
dorIdentity field. The values for the AssyIdentity field are assigned and managed by the respective vendor. See Table
4-5. 

4.4.4 Assembly Information CAR (Offset 0x8 Word 1)
This register contains additional information about the assembly; see Table 4-6.

4.4.5 Processing Element Features CAR (Offset 0x10 Word 0)
This register identifies the major functionality provided by the processing element; see Table 4-7

Table 4-5. Bit Settings for Assembly Identity CAR

Bit Field Name Description

0–15 AssyIdentity Assembly identifier

16–31 AssyVendorIdentity Assembly vendor identifier

Table 4-6. Bit Settings for Assembly Information CAR

Bit Field Name Description

0–15 AssyRev Assembly revision level

16–31 ExtendedFeaturesPtr Pointer to the first entry in the extended features list

Table 4-7. Bit Settings for Processing Element Features CAR

Bit Field Name Description

0 Bridge PE can bridge to another interface. Examples are PCI, proprietary 
processor buses, DRAM, etc. 

1 Memory PE has physically addressable local address space and can be accessed as 
an end point through non-maintenance (i.e. non-coherent read and write) 
operations. This local address space may be limited to local configuration 
registers, or could be on-chip SRAM, etc. 

2 Processor PE physically contains a local processor or similar device that executes 
code. A device that bridges to an interface that connects to a processor 
does not count (see bit 0 above). 

3 Switch PE can bridge to another external RapidIO interface - an internal port to a 
local end point does not count as a switch port. For example, a device with 
two RapidIO ports and a local end point is a two port switch, not a three 
port switch, regardless of the internal architecture.

4–27 — Reserved

28 Extended features PE has extended features list; the extended features pointer is valid

29-31 Extended addressing support Indicates the number address bits supported by the PE both as a source and 
target of an operation. All PEs shall at minimum support 34 bit addresses.
0b111 - PE supports 66, 50, and 34 bit addresses
0b101 - PE supports 66 and 34 bit addresses
0b011 - PE supports 50 and 34 bit addresses
0b001 - PE supports 34 bit addresses
All other encodings reserved
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4.4.6 Switch Port Information CAR (Offset 0x10 Word 1)
This register defines the switching capabilities of a processing element. This register is only valid if bit 3 is set in the
processing element features CAR; see Table 4-8

4.4.7 Source Operations CAR (Offset 0x18 Word 0)
This register defines the set of RapidIO IO logical operations that can be issued by this processing element; see Table
4-9. It is assumed that a processing element can generate I/O logical maintenance read and write requests if it is
required to access CARs and CSRs in other processing elements. The Source Operations CAR is applicable for end
point devices only. RapidIO switches shall be able to route any packet. 

4.4.8  Destination Operations CAR (Offset 0x18 Word 1)
This register defines the set of RapidIO I/O operations that can be supported by this processing element; see Table 4-
10.  It is required that all processing elements can respond to maintenance read and write requests in order to access

Table 4-8. Bit Settings for Switch Port Information CAR

Bit Field Name Description

0–15 — Reserved

16–23 PortTotal The total number of RapidIO ports on the processing element
0b00000000 - Reserved
0b00000001 - 1 port
0b00000010 - 2 ports
0b00000011 - 3 ports
0b00000100 - 4 ports
...
0b11111111 - 255 ports

24–31 PortNumber This is the port number from which the maintenance read operation 
accessed this register. Ports are numbered starting with 0x00.

Table 4-9. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-22 — Reserved

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 — Reserved

29 Port-write PE can support a port-write operation

30–31 Implementation Defined Defined by the device implementation
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these registers. The Destination Operations CAR is applicable for end point devices only. RapidIO switches shall be
able to route any packet. 

4.5 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs) that allows an external processing ele-
ment to control and determine the status of its internal hardware. All registers are 32 bits wide and are organized and
accessed in the same way as the CARs. Refer to Table 4-2 for the required behavior for accesses to reserved registers and
register bits. 

4.5.1 Write Port CSR (Offset 0x40 Word 1)
The write port CSR is accessed if an external processing element wishes to determine the status of this processing ele-
ment’s write port hardware if the target processing element supports the port-write maintenance operation. It is not
necessary to examine this register before sending a port-write transaction since the protocol will behave appropriately
depending upon the status of the hardware. This register is read-only. See Table 4-11 for the bit settings for the write
port CSR.

Table 4-10. Bit Settings for Destination Operations CAR

Bit Field Name Description

0-13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16 Read PE can support a read operation

17 Write PE can support a write operation

18 Streaming-write PE can support a streaming-write operation

19 Write-with-response PE can support a write-with-response operation

20-22 — Reserved

23 Atomic (test-and-swap) PE can support an atomic test-and-swap operation

24 Atomic (increment) PE can support an atomic increment operation

25 Atomic (decrement) PE can support an atomic decrement operation

26 Atomic (set) PE can support an atomic set operation

27 Atomic (clear) PE can support an atomic clear operation

28 — Reserved

29 Port-write PE can support a port-write operation

30-31 Implementation Defined Defined by the device implementation

Table 4-11. Bit Settings for Write Port CSR

Bit Field Name Description

0–23 — Reserved

24 Write Port Available Write port hardware is initialized and ready to accept a port-write 
transaction. If not available, all incoming port-write transactions will be 
discarded. 

25 Write Port Full Write port hardware is full. All incoming port-write transactions will be 
discarded. 

26 Write Port Empty Write port hardware has no outstanding port-write transactions
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4.5.2 Processing Element Logical Layer Control CSR (Offset 0x48 Word 1)
The Processing Element Logical Layer Control CSR is used for general command and status information for the logi-
cal interface.

4.5.3 Local Configuration Space High Base Address CSR (Offset 0x58 Word 0) 
The local configuration space high base address register (LCSHBAR) specifies the most significant bytes of a local
physical address offset for the processing element’s configuration register space if the local address space is greater
than 32 bits. See Section 4.5.4  below for a detailed description. 

4.5.4 Local Configuration Space Base Address CSR (Offset 0x58 Word 1)
The local configuration space base address register (LCSBAR) specifies the local physical address offset for the
processing element’s configuration register space, causing the configuration register space to be physically mapped in
the processing element. This register allows configuration and maintenance of a processing element through regular
read and write operations rather than maintenance configuration operations. 

27 Write Port Busy Write port hardware is busy queueing a port-write transaction. Incoming 
port-write transactions may or may not be discarded depending upon the 
implementation of the write port hardware in the PE.

28 Write Port Failed Write port hardware has had an internal fault or error condition and is 
waiting for assistance. All incoming port-write transactions will be 
discarded. 

29 Write Port Error Write port hardware has encountered a port-write transaction that is found 
to be illegal for some reason. All incoming port-write transactions will be 
discarded. 

30-31 — Reserved

Table 4-12. Bit Settings for Processing Element Logical Layer Control CSR

Bit Field Name Description

0–28 — Reserved

29-31 Extended addressing control Controls the number of address bits generated by the PE as a source and 
processed by the PE as the target of an operation.
0b100 - PE supports 66 bit addresses
0b010 - PE supports 50 bit addresses
0b001 - PE supports 34 bit addresses (default)
All other encodings reserved

Table 4-13. Bit Settings for Local Configuration Space High Base Address CSR

Bit Field Name Description

0-31 LCSHBAR Local Configuration Space High Base Address 
Register

Table 4-14. Bit Settings for Local Configuration Space Low Base Address Register CSR

Bit Field Name Description

0-31 LCSBAR Local Configuration Space Base Address Register

Table 4-11. Bit Settings for Write Port CSR(Continued)

Bit Field Name Description
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II Partition II

Partition II is intended for users who need to understand the message passing architecture of the RapidIO interconnect. 

II.1 Overview
The Message Passing Logical Specification is part of RapidIO’s logical layer specifications that define the interconnect’s
overall protocol and packet formats. This layer contains the transaction protocols necessary for end points to process a
transaction. Another RapidIO logical layer specification is explained in Partition I: Input/Output Logical Specification.

The logical specifications do not imply a specific transport or physical interface, therefore they are specified in a bit
stream format. Necessary bits are added to the logical encoding for the transport and physical layers lower in the RapidIO
three-layer hierarchy.

RapidIO is targeted toward memory mapped distributed memory systems. A message passing programming model is sup-
ported to enable distributed I/O processing. 

II.2 Contents
Following are the contents of Partition II: Message Passing Logical Specification:

• Chapter 1, “System Models,” introduces some possible devices that might participate in a RapidIO message 
passing system environment. The chapter also explains the message passing model, detailing the data and doorbell 
message types used in a RapidIO system. System issues such as the lack of transaction ordering and deadlock 
prevention are presented. 

• Chapter 2, “Operation Descriptions,” describes the set of operations and transactions supported by the RapidIO 
message passing protocols. 

• Chapter 3, “Packet Format Descriptions,” contains the packet format definitions for the message passing 
specification. The two basic types, request and response packets, and their fields and sub-fields are explained. 

• Chapter 4, “Message Passing Registers,” displays the RapidIO register map that allows an external processing 
element to determine the message passing capabilities, configuration, and status of a processing element using this 
logical specification. Only registers or register bits specific to the message passing logical specification are 
explained. Refer to the other RapidIO logical, transport, and physical specifications of interest to determine a 
complete list of registers and bit definitions.

1 Chapter 1 - System Models

This overview introduces some possible devices in a RapidIO system. 

1.1 Processing Element Models
Figure 1-1describes a possible RapidIO-based system. The processing element is a computer device such as a processor
attached to local memory and a RapidIO interconnect. The bridge part of the system provides I/O subsystem services
such as high-speed PCI interfaces and Gbit ethernet ports, interrupt control, and other system support functions.
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The following sections describe several possible processing elements.

1.1.1 Processor-Memory Processing Element Model
Figure 1-2 shows an example of a processing element consisting of a processor connected to an agent device. The
agent carries out several services on behalf of the processor. Most importantly, it provides access to local memory. It
also provides an interface to the RapidIO interconnect to service message requests that are used for communications
with other processing elements.

1.1.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated component that is designed specifically
to connect to a RapidIO interconnect system, Figure 1-3. This type of device integrates a memory system and other-
support logic with a processor on the same piece of silicon or within the same package.

Figure 1-1. A Possible RapidIO-Based Computing System

Figure 1-2. Processor-Memory Processing Element Example
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1.1.3  Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a memory-only device as in Figure 1-4.
This type of device is much simpler than a processor in that it is only responsible for responding to requests from the
external system, not from local requests as in the processor-based model. As such, its memory is remote for all proces-
sors in the system.

1.1.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory. A processor-only processing ele-
ment is shown in Figure 1-5.. 

1.1.5 I/O Processing Element
This type of processing element is shown as the bridge in Figure 1-1. This device has distinctly different behavior than
a processor or a memory. An I/O device only needs to move data into and out of local or remote memory. 

Figure 1-3. Integrated Processor-Memory Processing Element Example

Figure 1-4. Memory-Only Processing Element Example

Figure 1-5. Processor-Only Processing Element Example
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1.1.6 Switch Processing Element
A switch processing element is a device that allows communication with other processing elements through the switch.
A switch may be used to connect a variety of RapidIO-compliant processing elements. A possible switch is shown in
Figure 1-6.  Behavior of the switches, and the interconnect fabric in general, is addressed in the RapidIO Common
Transport Specification.

1.2 Message Passing System Model
RapidIO supports a message passing programming model. Message passing is a programming model commonly used in
distributed memory system machines. In this model, processing elements are only allowed to access memory that is local
to themselves, and communication between processing elements is handled through specialized hardware manipulated
through application or OS software. For two processors to communicate, the sending processor writes to a local message
passing device that reads a section of the sender’s local memory and moves that information to the receiving processor’s
local message passing device. The recipient message passing device then stores that information in local memory and
informs the recipient processor that a message has arrived, usually via an interrupt. The recipient processor then accesses
its local memory to read the message.

For example, referring to Figure 1-1, processing element A can only access the memory attached to it, and cannot access
the memory attached to processing elements B, C, or D. Correspondingly, processing element B can only access the
memory attached to it and cannot access the memory attached to processing element A, C, or D, and so on. If processing
element A needs to communicate with processing element B, the application software accesses special message passing
hardware (also called mailbox hardware) through operating system calls or API libraries and configure it to assemble the
message and send it to processing element B. The message passing hardware for processing element B receives the mes-
sage and puts it into local memory at a predetermined address, then notifies processing element B.

Many times a message is required to be larger than a single packet allows, so the source needs to break up the message
into multiple packets before transmitting it. At times it may also be useful to have more than one message being transmit-
ted at a time. RapidIO has facilities for both of these features.

1.2.1 Data Message Operations
A source may generate a single message operation of up to 16 individual packets containing as much as 256 data bytes
per packet. A variety of data payload sizes exist, allowing a source to choose a smaller size data payload if needed for
an application. RapidIO defines all data message packets as containing the same amount of data with the exception of
the last one, which can contain a smaller data payload if desired. The packets are formatted with three fields:

• One field specifies the size of the data payload for all except the last packet for the data message operation. 
• The second field specifies the size of the data payload for that packet, and 
• The third field contains the packet sequence order information. 
The actual packet formats are shown in Chapter 3, “Packet Format Descriptions.” 

Because all packets except the last have the same data payload size, the receiver is able to calculate the local memory
storage addresses if the packets are received out of order, allowing operation with an interconnect fabric that does not
guarantee packet delivery ordering. 

A letter field and a mailbox field allow a source to simultaneously have up to four data message operations (or “let-

Switch Processing Element Example

Switch
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ters”) in progress to each of four different mailboxes, allowing up to sixteen concurrent data message operations
between a sender and a receiver. The mailbox field can be used to indicate the priority of a data message, allowing a
higher priority message to interrupt a lower priority one at the sender, or it can be used as a simple mailbox identifier
for a particular receiver if the receiver allows multiple mailbox addresses. If the mailbox number is used as a priority
indicator, mailbox number 0 is the highest priority and mailbox 3 is the lowest. 

The number of packets comprising a data message operation, the maximum data payload size, the number of concur-
rent letters, and the number of mailboxes that can be sent or received is determined by the implementation of a partic-
ular processing element. For example, a processing element could be designed to generate two concurrent letters of at
most four packets with a maximum 64-byte data payload. That same processing element could also be designed to
receive data messages in two mailboxes with two concurrent letters for each, all with the maximum data payload size
and number of packets. 

There is further discussion of the data message operation programming model and the necessary hardware support in
Annex A, “Message Passing Interface”. 

1.2.2 Doorbell Message Operations
RapidIO supports a second message type, the doorbell message operation. The doorbell message operation sends a
small amount of software-defined information to the receiver and the receiver controls all local memory addressing as
with the data message operation. It is the responsibility of the processor receiving the doorbell message to determine
the action to undertake by examining the ID of the sender and the received data. All information supplied in a doorbell
message is embedded in the packet header so the doorbell message never has a data payload. 

The generation, transmission, and receipt of a doorbell message packet is handled in a fashion similar to a data mes-
sage packet. If processing element A wants to send a doorbell message to processing element B, the application soft-
ware accesses special doorbell message hardware through operating system calls or API libraries and configures it to
assemble the doorbell message and send it to processing element B. The doorbell message hardware for processing
element B receives the doorbell message and puts it into local memory at a predetermined address, then notifies
processing element B, again, usually via an interrupt. 

There is further discussion of the doorbell message operation programming model and the necessary hardware support
in Annex A, “Message Passing Interface”. 

1.3 System Issues
The following sections describe transaction ordering and system deadlock considerations in a RapidIO system.

1.3.1 Operation Ordering
The RapidIO Message Passing Logical Specification requires no special system operation ordering. Message opera-
tion completion is managed by the overlying system software. 

It is important to recognize that systems may contain a mix of transactions that are maintained under the message pass-
ing model as well as under another model. As an example, I/O traffic may be interspersed with message traffic. In this
case, the shared I/O traffic may require strong ordering rules to maintain coherency. This may set an operation order-
ing precedence for that implementation, especially in the case where the connection fabric cannot discern between one
type of operation and another.

1.3.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO processing elements: unordered and
ordered. The RapidIO logical protocols assume that all outstanding transactions to another processing element are
delivered in an arbitrary order. In other words, the logical protocols do not rely on transaction interdependencies for
operation. RapidIO also allows completely ordered delivery systems to be constructed. Each type of system puts dif-
ferent constraints on the implementation of the source and destination processing elements and any intervening hard-
ware. 

A message operation may consist of several transactions. It is possible for these transactions to arrive at a target mail-
box in an arbitrary order. A message transaction contains explicit tagging information to allow the message to be
reconstructed as it arrives at the target processing element.
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1.3.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation where a loop of buffering devices
is formed, in which forward progress at each device is dependent upon progress at the next device. If no device in the
loop can make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases resources in the network and allows
forward progress to be made. RapidIO is designed to be a reliable fabric for use in real time tightly coupled systems,
therefore discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a deadlock free topology be provided for
response-less operations. Dependency loops to single direction packets can exist in unconstrained switch topologies.
Often the dependency loop can be avoided with simple routing rules. Topologies like hypercubes or three-dimensional
meshes, physically contain loops. In both cases, routing is done in several dimensions (x,y,z). If routing is constrained
to the x dimension, then y, then z (dimension ordered routing) then topology related dependency loops are avoided in
these structures. 

In addition, a processing element design must not form dependency links between its input and output port. A depend-
ency link between input and output ports occurs if a processing element is unable to accept an input packet until a wait-
ing packet can be issued from the output port. 

RapidIO supports operations, such as read operations, that require responses to complete. These operations can lead to
a dependency link between an processing element’s input port and output port. 

As an example of a input to output port dependency, consider a processing element where the output port queue is full.
The processing element cannot accept a new request at its input port since there is no place to put the response in the
output port queue. No more transactions can be accepted at the input port until the output port is able to free entries in
the output queue by issuing packets to the system.

The method by which a RapidIO system maintains a deadlock free environment is described in the appropriate Physi-
cal Layer specification.

2 Chapter 2 - Operation Descriptions

This chapter describes the set of operations and transactions supported by the RapidIO message passing protocols. The
opcodes and packet formats are described in Chapter 3, “Packet Format Descriptions”. 

The RapidIO operation protocols use request/response transaction pairs through the interconnect fabric. A processing ele-
ment sends a request transaction to another processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been completed or if an error condition is
encountered. Each transaction is sent as a packet through the interconnect fabric. For example, a processing element that
needs to send part of a message operation to another processing element sends a MESSAGE request packet to that process-
ing element, which processes the message packet and returns a DONE response packet. 

Three possible response transactions can be received by a requesting processing element:

• A DONE response indicates to the requestor that the desired transaction has completed. 
• A RETRY response shall be generated for a message transaction that attempts to access a mailbox that is busy servicing 

another message operation, as can a doorbell transaction that encounters busy doorbell hardware. All transactions that are 
retried for any reason shall be retransmitted by the sender. This prevents a transaction from partially completing and then 
leaving the system in an unknown state. 

• An ERROR response means that the target of the transaction encountered an unrecoverable error and could not complete 
the transaction.

Packets may contain additional information that is interpreted by the interconnect fabric to route the packets through the fab-
ric from the source to the destination, such as a device number. These requirements are described in the appropriate RapidIO
transport layer specification, and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of the physical layer protocol to manage
flow control, errors, etc. Flow control and other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.

Each request transaction sent into the system is marked with a transaction ID that is unique for each requestor and responder
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processing element pair. This transaction ID allows a response to be easily matched to the original request when it is
returned to the requestor. An end point cannot reuse a transaction ID value to the same destination until the response from
the original transaction has been received by the requestor. The number of outstanding transactions that may be supported is
implementation dependent. 

2.1 Message Passing Operations Cross Reference
Table 2.1 contains a cross-reference list of the message passing operations defined in this RapidIO specification and their
system usage.

2.2 Message Passing Operations 
The two kinds of message passing transactions are described in this section and defined as follows:

• Doorbell
• Data Message

2.2.1 Doorbell Operations
The doorbell operation, consisting of the DOORBELL and RESPONSE transactions (typically a DONE response) as
shown in Figure 2-1, is used by a processing element to send a very short message to another processing element
through the interconnect fabric. The DOORBELL transaction contains the info field to hold information and does not
have a data payload. This field is software-defined and can be used for any desired purpose; see Section 3.1.4, “Type
10 Packet Formats (Doorbell Class),” for information about the info field.

A processing element that receives a doorbell transaction takes the packet and puts it in a doorbell message queue
within the processing element. This queue may be implemented in hardware or in local memory. This behavior is sim-
ilar to that of typical message passing mailbox hardware. The local processor is expected to read the queue to deter-
mine the sending processing element and the info field and determine what action to take based on that information.

Figure 2-1. Doorbell Operation

2.2.2 Data Message Operations
The data message operation,  consisting of the MESSAGE and RESPONSE transactions (typically a DONE response)
as shown in Figure 2-2, is used by a processing element’s message passing support hardware to send a data message to
other processing elements. Completing a data message operation can consist of up to 16 individual MESSAGE trans-
actions. MESSAGE transaction data payloads are always multiples of doubleword quantities.

Table 2-1. Message Passing Operations Cross Reference

Operation Transactions
Used Possible System Usage Description Packet Format

Doorbell DOORBELL, 
RESPONSE

Section  Type 10 
Section 3.1.4 

Data 
Message

MESSAGE, 
RESPONSE

Section  Type 11 
Section 3.1.5 

DOORBELL1

Requestor Destination

DONE2
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Figure 2-2. 22Message Operation

The processing element’s message passing hardware that is the recipient of a data message operation examines a
number of fields in order to place an individual MESSAGE packet data in local memory:

• Message length (msglen) field—Specifies the number of transactions that comprise the data message operation. 
• Message segment (msgseg) field—Identifies which part of the data message operation is contained in this 

transaction. The message length and segment fields allow the individual packets of a data message to be sent or 
received out of order. 

• Mailbox (mbox) field—Specifies which mailbox is the target of the data message. 
• Letter (letter) field —Allows receipt of multiple concurrent data message operations from the same source to the 

same mailbox. 
• Standard size (ssize) field—Specifies the data size of all of the transactions except (possibly) the last transaction in 

the data message. 
From this information, the message passing hardware of the recipient processing element can calculate to which local
memory address the transaction data should be placed. 

For example, assume that the mailbox starting addresses for the recipient processing element are at addresses 0x1000
for mailbox 0, 0x2000 for mailbox 1, 0x3000 for mailbox 2, and 0x4000 for mailbox 3, and that the processing ele-
ment receives a message transaction with the following fields:

• message length of 6 packets
• message segment is 3rd packet
• mailbox is mailbox 2
• letter is 1
• standard size is 32 bytes
• data payload is 32 bytes (it shall be 32 bytes since this is not the last transaction)
Using this information, the processing element’s message passing hardware can determine that the 32 bytes contained
in this part of the data message shall be put into local memory at address 0x3040.

The message passing hardware may also snoop the local processing element’s caching hierarchy when writing local
memory if the mailbox memory is defined as being cacheable by that processing element.

2.3 Endian, Byte Ordering, and Alignment
RapidIO has double-word (8-byte) aligned big-endian data payloads. This means that the RapidIO interface to devices
that are little-endian shall perform the proper endian transformation at the output to format a data payload. 

Operations that specify data quantities that are less than 8 bytes shall have the bytes aligned to their proper byte position
within the big-endian double-word, as in the examples shown in Figure  2-3 through Figure 2-5.

Figure 2-3. Byte Alignment Example

MESSAGEs, data1

Requestor Destination

DONEs2

Byte 0 1 2 3 4 5 6 7

Byte address 0x0000_0002, the proper byte position is shaded.
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3 Chapter 3 - Packet Format Descriptions

This chapter contains the packet format definitions for the RapidIO Message Passing Logical Specification. There are four
types of message passing packet formats:

• Request
• Response
• Implementation-defined
• Reserved
The packet formats are intended to be interconnect fabric independent so the system interconnect can be anything required
for a particular application. Reserved formats, unless defined in another logical specification, shall not be used by a device. 

3.1 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing element to accomplish some activity
on its behalf, such as a doorbell operation. The request packet format types and their transactions for the RapidIO Mes-
sage Passing Logical Specification are shown in Table .3-1

3.1.1 Field Definitions for All Request Packet Formats
The field definitions in Table 3-2 apply to all of the request packet formats. Fields that are unique to type 10 and type
11 formats are defined in the sections that describe each type. Bit fields that are defined as “reserved” shall be assigned
to logic 0s when generated and ignored when received. Bit field encodings that are defined as “reserved” shall not be
assigned when the packet is generated. A received reserved encoding is regarded as an error if a meaningful encoding
is required for the transaction and function, otherwise it is ignored. Implementation-defined fields shall be ignored
unless the encoding is understood by the receiving device. All packets described are bit streams from the first bit to the

Figure 2-4. Half-Word Alignment Example

Figure 2-5. Word Alignment Example

Table 3-1. Request Packet Type to Transaction Type Cross Reference

Request Packet 
Format Type Transaction Type Definition Document Section 

Number

Type 0 Implementation-
defined

Defined by the device implementation Section 3.1.2

Type 1–9 — Reserved Section 3.1.3

Type 10 DOORBELL Send a short message Section 3.1.4

Type 11 MESSAGE Send a message Section 3.1.5

Byte 0 1 2 3 4 5 6 7

Half-word address 0x0000_0002, the proper byte positions are shaded.

MSB LSB

Byte 0 1 2 3 4 5 6 7

Word address 0x0000_0004, the proper byte positions are shaded.

MSB LSB
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last bit, represented in the figures from left to right respectively. 

3.1.2 Type 0 Packet Format (Implementation-Defined) 
The type 0 packet format is reserved for implementation-defined functions such as flow control.

3.1.3 Type 1–9 Packet Formats (Reserved)
The type 1–9 formats are reserved.

3.1.4 Type 10 Packet Formats (Doorbell Class)
The type 10 packet format is the DOORBELL transaction format. Type 10 packets never have data payloads. The field
value 0b1010 in Figure  specifies that the packet format is of type 10. 

Definitions and encodings of fields specific to type 10 packets are provided in Table .3-3 Fields that are not specific to
type 10 packets are described in Table .3-2.

Figure  3-1displays a type 10 packet with all its fields.

3.1.5 Type 11 Packet Format (Message Class)
The type 11 packet is the MESSAGE transaction format. Type 11 packets always have a data payload. Sub-double-
word messages are not specifiable and must be managed in software. 

Definitions and encodings of fields specific to type 11 packets are provided in Table .3-4. Fields that are not specific to
type 11 packets are described in Table .3-2.  

Table 3-2. General Field Definitions for All Request Packets

Field Definition

ftype Format type—Represented as a 4-bit value; is always the first four bits in the logical packet stream.

rsrv Reserved

Table 3-3. Specific Field Definitions for Type 10 Packets

Field Encoding Definition

info — Software-defined information field

Figure 3-1. Type 10 Packet Bit Stream Format

Table 3-4. Specific Field Definitions and Encodings for Type 11 Packets

Field Encoding Definition

msglen — Total number of packets comprising this message operation. A value of 0 indicates a 
single-packet message. A value of 15 (0xF) indicates a 16-packet message, etc. See 
example in Section 2.2.2, “Data Message Operations”. 

msgseg — Specifies the part of the message supplied by this packet. A value of 0 indicates that 
this is the first packet in the message. A value of 15 (0xF) indicates that this is the 
sixteenth packet in the message, etc. See example in Section 2.2.2, “Data Message 
Operations”. 

1 0 1 0

4 8 8

rsrv srcTID

8

info (msb)

8

info (lsb)
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Figure 3-2 displays a type 11 packet with all its fields. The value 0b1011 in Figure  3-2 specifies that the packet format
is of type 11.

The combination of the letter, mbox, and msgseg fields uniquely identifies the message packet in the system for each
requestor and responder processing element pair in the same way as the transaction ID is used for other request types. 

3.2 Response Packet Formats
A response transaction is issued by a processing element when it has completed a request made by a remote processing
element. Response packets are always directed and are transmitted in the same way as request packets. Currently two

ssize — Standard message packet data size. This field informs the receiver of a message the 
size of the data payload to expect for all of the packets for a single message operations 
except for the last packet in the message. This prevents the sender from having to pad 
the data field excessively for the last packet and allows the receiver to properly put the 
message in local memory. See example in Section 2.2.2, “Data Message Operations”. 

0b0000–
1000

Reserved

0b1001 8 bytes

0b1010 16 bytes

0b1011 32 bytes

0b1100 64 bytes

0b1101 128 bytes

0b1110 256 bytes

0b1111 Reserved

mbox — Specifies the recipient mailbox in the target processing element

letter — Identifies a slot within a mailbox. This field allows a sending processing element to 
concurrently send up to four messages to the same mailbox on the same processing 
element.

Figure 3-2. Type 11 Packet Bit Stream Format 

Table 3-4. Specific Field Definitions and Encodings for Type 11 Packets(Continued)

Field Encoding Definition

letter

2

double-word 0

64

double-word 1

64

double-word n

64

•  •  •

1 0 1 1

4 4 4

msglen ssize msgseg

4

mbox

2
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response packet format types exist, as shown in 3-5.. 

3.2.1 Field Definitions for All Response Packet Formats
The field definitions in Table 3-6 apply to more than one of the response packet formats. Fields that are unique to the
type 13 format are defined in Section , “3.2.3 Type 13 Packet Format (Response Class).” 

3.2.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

3.2.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status and the requestor’s transaction ID or message segment and mailbox informa-
tion. The type 13 format is used for response packets to all request packets. Responses to message and doorbell packets
never contain data. 

Table 3-5. Response Packet Type to Transaction Type Cross Reference

Response Packet 
Format Type Transaction Type Definition Document Section 

Number

Type 12 — Reserved Section 3.2.2

Type 13 RESPONSE Issued by a processing element when it completes a 
request by a remote element.

Section 3.2.3

Type 14 — Reserved Section 3.2.4

Type 15 Implementation-
defined

Defined by the device implementation Section 3.2.5

Table 3-6. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001 Message RESPONSE transaction

0b0010–1111 Reserved

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001–0010 — Reserved

0b0011 RETRY Requested transaction is not accepted; must retry the request

0b0100–0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional 
information such as an error code
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Definitions and encodings of fields specific to type 13 packets are provided in Table .3-7.  Fields that are not specific
to type 13 packets are described in Table .3-6. 

Figure  3-3 shows the format of the target_info field for message responses.

Figure  3-4 displays a type 13 packet with all its fields. The value 0b1101 in Figure  specifies that the packet format is
of type 13.

3.2.4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

3.2.5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as flow control.

4 Chapter 4 - Message Passing Registers

This chapter describes the visible register set that allows an external processing element to determine the capabilities, con-
figuration, and status of a processing element using this logical specification. This chapter only describes registers or regis-
ter bits defined by this specification. Refer to the other RapidIO logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions. All registers are 32-bits and aligned to a 32-bit boundary. 

4.1 Register Summary
Table  4-1 shows the register map for this RapidIO specification. These capability registers (CARs) and command and
status registers (CSRs) can be accessed using Partition I: Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless otherwise stated. Other registers
required for a processing element are defined in other applicable RapidIO specifications and by the requirements of the

Table 3-7. Specific Field Definitions for Type 13 Packets

Field Sub-Field Definition

target_info As shown in Figure 3.3, when the response is the target_info field, these three sub-fields are used:

msgseg Specifies the part of the message supplied by the corresponding message packet. 
A value of 0 indicates that this is the response for the first packet in the message. 
A value of 15 (0xF) indicates that this is the response for the sixteenth (and last) 
packet in the message, etc.

mbox Specifies the recipient mailbox from the corresponding message packet.

letter Identifies the slot within the target mailbox. This field allows a sending processing 
element to concurrently send up to four messages to the same mailbox on the 
same processing element.

targetTID — Transaction ID of the request that caused this response (except for message 
responses defined in Figure 3.3). 

Figure 3.3. target_info Field for Message Responses

Figure 3-4. Type 13 Packet Bit Stream Format 

mbox

2

letter

2

msgseg

4

1 1 0 1

4 4 4 8

transaction status target_info/targetTID
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specific device and are beyond the scope of this specification. Read and write accesses to reserved register offsets shall
terminate normally and not cause an error condition in the target device. Writes to CAR (read-only) space shall terminate
normally and not cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only. Bits that are reserved in this specifi-
cation may be defined in another RapidIO specification. 

4.2 Reserved Register and Bit Behavior
Table  4-2 describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO
register space, 

Table 4-1. Message Passing Register Map

Configuration 
Space Byte 

Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0-8 Reserved

0x10 Processing Element Features CAR Reserved

0x18 Source Operations CAR Destination Operations CAR

0x20–38 Reserved

0x40 Mailbox CSR Doorbell CSR

0x48–F8 Reserved

0x100–
FFF8 Extended Features Space

0x10000–
FFFFF8 Implementation-defined Space

Table 4-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register 
Space (CAR Space - this 
space is read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - write - ignored

 Reserved 
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status 
Register Space (CSR 
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored
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4.3 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external processing element to determine its capa-
bilities using the I/O logical maintenance read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow larger accesses. CARs are read-only.
Refer to Table 4-2 for the required behavior for accesses to reserved registers and register bits. 

CARs are big-endian with bit 0 and Word 0 respectively the most significant bit and word. 

4.3.1 Processing Element Features CAR (Offset 0x10 Word 0)
This register identifies the major functionality provided by the processing element; see Table . 4-3.

4.3.2 Source Operations CAR (Offset 0x18 Word 0)
This register defines the set of RapidIO message passing logical operations that can be issued by this processing ele-
ment; see Table .4-4. It is assumed that a processing element can generate I/O logical maintenance read and write
requests if it is required to access CARs and CSRs in other processing elements. The Source Operations CAR is appli-
cable for end point devices only. RapidIO switches shall be able to route any packet.

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined 
Space

Reserved bit and 
register

All behavior implementation-defined

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 
2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 

for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

Table 4-3. Bit Settings for Processing Element Features CAR

Bit Field Name Description

0–7 — Reserved

8 Mailbox 0 PE supports inbound mailbox #0

9 Mailbox 1 PE supports inbound mailbox #1

10 Mailbox 2 PE supports inbound mailbox #2

11 Mailbox 3 PE supports inbound mailbox #3

12 Doorbell PE supports inbound doorbells

13–31 — Reserved

Table 4-2. Configuration Space Reserved Access Behavior(Continued)

Byte Offset Space Name Item Initiator behavior Target behavior
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4.3.3 Destination Operations CAR (Offset 0x18 Word 1)
This register defines the set of RapidIO message passing operations that can be supported by this processing element;
see Table .4-5.  It is required that all processing elements can respond to I/O logical maintenance read and write
requests in order to access these registers. The Destination Operations CAR is applicable for end point devices only.
RapidIO switches shall be able to route any packet. 

4.4 Command and Status Registers (CSRs)
A processing element shall contain a set of command and status registers (CSRs) that allows an external processing ele-
ment to control and determine the status of its internal hardware. All registers are 32 bits wide and are organized and
accessed in the same way as the CARs. Refer to Table  for the required behavior for accesses to reserved registers and
register bits. 

4.4.1 Mailbox CSR (Offset 0x40 Word 0)
The mailbox command and status register is accessed if an external processing element wishes to determine the status
of this processing elements’s mailbox hardware, if any is present. It is not necessary to examine this register before
sending a message since the RapidIO protocol shall accept, retry, or send an error response message depending upon
the status of the addressed mailbox. This register is read-only. Table  4-6 shows bit settings for the mailbox status reg-
ister (CSR).

Table 4-4. Bit Settings for Source Operations CAR

Bit Field Name Description

0–13 — Reserved
14–15 Implementation Defined Defined by the device implementation
16–19 — Reserved

20 Data message PE can support a data message operation
21 Doorbell PE can support a doorbell operation
22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation

Table 4-5. Bit Settings for Destination Operations CAR

Bit Field Name Description

0–13 — Reserved

14–15 Implementation Defined Defined by the device implementation

16–19 — Reserved

20 Data message PE can support a data message operation

21 Doorbell PE can support a doorbell operation

22–29 — Reserved

30–31 Implementation Defined Defined by the device implementation

Table 4-6. Bit Settings for Mailbox CSR

Bit Field Name Description

0 Mailbox 0 Available Mailbox 0 is initialized and ready to accept messages. If not available, all 
incoming message transactions return error responses. 

1 Mailbox 0 Full Mailbox 0 is full. All incoming message transactions return retry 
responses.

2 Mailbox 0 Empty Mailbox 0 has no outstanding messages. 



- 47 -

3 Mailbox 0 Busy Mailbox 0 is busy receiving a message operation. New message operations 
return retry responses. 

4 Mailbox 0 Failed Mailbox 0 had an internal fault or error condition and is waiting for 
assistance. All incoming message transactions return error responses. 

5 Mailbox 0 Error Mailbox 0 encountered a message operation or transaction of an 
unacceptable size. All incoming message transactions return error 
responses. 

6–7 — Reserved

8 Mailbox 1 Available Mailbox 1 is initialized and ready to accept messages. If not available, all 
incoming message transactions return error responses. 

9 Mailbox 1 Full Mailbox 1 is full. All incoming message transactions return retry 
responses.

10 Mailbox 1 Empty Mailbox 1 has no outstanding messages. 

11 Mailbox 1 Busy Mailbox 1 is busy receiving a message operation. New message operations 
return retry responses. 

12 Mailbox 1 Failed Mailbox 1 had an internal fault or error condition and is waiting for 
assistance. All incoming message transactions return error responses. 

13 Mailbox 1 Error Mailbox 1 encountered a message operation or transaction of an 
unacceptable size. All incoming message transactions return error 
responses. 

14-15 — Reserved

16 Mailbox 2 Available Mailbox 2 is initialized and ready to accept messages. If not available, all 
incoming message transactions return error responses. 

17 Mailbox 2 Full Mailbox 2 is full. All incoming message transactions return retry 
responses.

18 Mailbox 2 Empty Mailbox 2 has no outstanding messages. 

19 Mailbox 2 Busy Mailbox 2 is busy receiving a message operation. New message operations 
return retry responses. 

20 Mailbox 2 Failed Mailbox 2 had an internal fault or error condition and is waiting for 
assistance. All incoming message transactions return error responses. 

21 Mailbox 2 Error Mailbox 2 encountered a message operation or transaction of an 
unacceptable size. All incoming message transactions return error 
responses. 

22-23 — Reserved

24 Mailbox 3 Available Mailbox 3 is initialized and ready to accept messages. If not available, all 
incoming message transactions return error responses. 

25 Mailbox 3 Full Mailbox 3 is full. All incoming message transactions return retry 
responses.

26 Mailbox 3 Empty Mailbox 3 has no outstanding messages. 

27 Mailbox 3 Busy Mailbox 3 is busy receiving a message operation. New message operations 
return retry responses. 

Table 4-6. Bit Settings for Mailbox CSR(Continued)

Bit Field Name Description
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4.4.2 Doorbell CSR (Offset 0x40 Word 1)
The doorbell CSR is accessed if an external processing element wishes to determine the status of this processing ele-
ment’s doorbell hardware if the target processing element supports these operations. It is not necessary to examine this
register before sending a doorbell message since the protocol shall behave appropriately depending upon the status of
the hardware. This register is read-only. See 4-7 for the bit settings for the doorbell status register.

28 Mailbox 3 Failed Mailbox 3 had an internal fault or error condition and is waiting for 
assistance. All incoming message transactions return error responses. 

29 Mailbox 3 Error Mailbox 3 encountered a message operation or transaction of an 
unacceptable size. All incoming message transactions return error 
responses. 

30-31 — Reserved

Table 4-7. Bit Settings for Doorbell CSR

Bit Field Name Description

0 Doorbell Available Doorbell hardware is initialized and ready to accept doorbell messages. If 
not available, all incoming doorbell transactions return error responses. 

1 Doorbell Full Doorbell hardware is full. All incoming doorbell transactions return retry 
responses.

2 Doorbell Empty Doorbell hardware has no outstanding doorbell messages

3 Doorbell Busy Doorbell hardware is busy queueing a doorbell message. Incoming 
doorbell transactions may or may not return a retry response depending 
upon the implementation of the doorbell hardware in the PE.

4 Doorbell Failed Doorbell hardware has had an internal fault or error condition and is 
waiting for assistance. All incoming doorbell transactions return error 
responses. 

5 Doorbell Error Doorbell hardware has encountered an Doorbell transaction that is found 
to be illegal for some reason. All incoming doorbell transactions return 
error responses. 

6–31 — Reserved

Table 4-6. Bit Settings for Mailbox CSR(Continued)

Bit Field Name Description
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Annex A

Interface Management (Informative)

This annex contains state machine descriptions that illustrate a number of behaviors that are described in the RapidIO Physical Layer
8/16 LP-LVDS Specification. They are included as examples and are believed to be correct, however, actual implementations should
not use the examples directly. 

A.1 Link Initialization and Maintenance Mechanism
This section contains the link training and initialization state machine referred to in Section 2.6.1.1, “Sampling Window
Alignment.” Training takes place in two circumstances; when coming out of reset and after the loss of reliable input port
sampling during system operation. 

Link initialization and maintenance actually requires two inter-dependent state machines in order to operate, one associ-
ated with the input port and the other with the output port. The two state machines work together to complete the link
training. The state machines are intended for a device with an 8-bit port or a device with a 16-bit port. The port can only
transition from the “Port uninitialized” state to the “Port ready” state when both halves of the state machine are in their
“ready” state.

A.1.1 Input port training state machine
Figure A-1 illustrates the input port training state machine. Error conditions are only detectable while in the “ready”
states (ready and ready_maint_trn). The optional ready_maint_trn state, shaded in Figure A-1, is used to adjust the
device input port sampling circuitry during system operation. 

Figure A-1. Input port training state machine

Table A-1 describes the state transition arcs for Figure A-1. 

wait_good_pttn

wait_for_idle

ready

ready_maint_trn

reset
1

2
3

5

6

8

912

11

10

13

47
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Table A-1. Input port training state machine transition table

Arc Current State Next state cause Comments

1 reset reset Start training condition not met. Remain in the reset state until the 
start training condition is met. 
Typically, this is after reset has 
been applied to the device and all 
other necessary initialization 
activity has completed.

2 reset wait_good_pttn Start training condition met. This state is entered after all 
initialization activity has 
completed for the device.

3 wait_good_pttn wait_good_pttn The defined training pattern has 
not been detected yet. Wait for the 
sampling circuitry to indicate that 
the defined training pattern has 
been received and the sampling 
circuitry is calibrated.

Remain in this state until the 
defined training pattern is 
detected. 

4 wait_good_pttn wait_for_idle Sampling circuitry is calibrated 
and the defined training pattern 
has been received.

Upon recognizing the defined 
training pattern, a 16-bit port can 
decide whether it’s output port 
needs to be downgraded to drive 
in 8-bit mode. Request the output 
port to start sending idle control 
symbols. 

5 wait_for_idle wait_for_idle Remain in this state until an exit 
condition occurs.

In this state, only training patterns 
and the idle and link-request/
send-training control symbols are 
legal. 

6 wait_for_idle ready Idle control symbol has been 
received and the output port is in 
the “send_idles” state. 

This transition indicates that the 
input port is ready to start 
receiving packets and other 
control symbols.

7 wait_for_idle wait_good_pttn The input port receives something 
besides a training pattern, idle, or 
link-request/send-training control 
symbol, or the sampling circuitry 
is no longer calibrated. 

Receiving something unexpected 
or when the sampling circuitry is 
no longer able to reliably sample 
the device pins causes both the 
input port and output port to start 
restart the training sequence. 

8 ready ready Sampling circuitry remains 
calibrated and is not drifting.

This is a functional state in which 
packets and control symbols can 
be accepted. Errors are also 
reported in this state.

9 ready ready_maint_trn Sampling circuitry drift. This transition takes place when 
the sampling circuitry can still 
reliably sample the device pins, 
but adjustment is required to 
prevent eventual loss of 
calibration.
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A.1.2 Output port training state machine
Figure A-2  illustrates the output port training state machine. Packets can only be transmitted when both the input port
and output port are in their “ready” states (ready and ready_maint_trn for the input port, and ready, ready_trn_req and
ready_send_pttn for the output port). The 8-bit mode adjustment state for a 16-bit port is heavily shaded in igure A-2
and is not required for 8-bit ports. The optional ready_maint_trn state, lightly shaded in Figure A-2, is used to adjust
the device input port sampling circuitry during system operation, and is associated with the ready_maint_trn state in
the input port state machine.

10 ready wait_good_pttn Sampling circuitry is no longer 
calibrated.

Both the input port and output 
port restart the training sequence 
when the sampling circuitry is no 
longer able to reliably sample the 
device pins. This error invokes 
the error recovery algorithm 
when the ready state is re-entered 
to attempt to recover possible lost 
data. 

11 ready_maint_trn ready_maint_trn The complete sequence of 256 
training patterns has not been 
received, and the sampling 
circuitry is still calibrated.

This is a functional state in which 
packets and control symbols can 
be accepted. Errors are also 
reported in this state. In this state, 
the device adjusts the sampling 
circuitry when the training 
patterns are received. 

12 ready_maint_trn ready The complete sequence of 256 
training patterns has been 
received and the sampling 
circuitry is still calibrated.

Sampling circuitry has been 
adjusted. 

13 ready_maint_trn wait_good_pttn Sampling circuitry is no longer 
calibrated.

Both the input port and output 
port restart the training sequence 
when the sampling circuitry is no 
longer able to reliably sample the 
device pins. This error invokes 
the error recovery algorithm 
when the ready state is re-entered 
to attempt to recover possible lost 
data. 

Table A-1. Input port training state machine transition table(Continued)

Arc Current State Next state cause Comments
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Figure A-2. Output port training state machine

Table A-2 describes the state transition arcs for Figure A-2.

Table A-2. Output port training state machine transition table

Arc Current State Next state cause Comments

1 reset reset Start training condition not met. Remain in the reset state until the 
start training condition is met. 
Typically, this is after reset has 
been applied to the device and all 
other necessary initialization 
activity has completed.

2 reset send_trn_req Start training condition met. This state is entered after all 
initialization activity has 
completed for the device. The 
output port will send a link-
request/send-training control 
symbol

3 send_trn_req send_trn_pttn Unconditional transition. The output port will send 256 
iterations of the training pattern 

4 send_trn_pttn send_trn_pttn The 256 iterations of the training 
pattern is not completed.

The input port is waiting to 
calibrate and receive the defined 
training pattern. The output port 
is sending training patterns. 

17 15

send_trn_req

reset

send_trn_pttn

send_idles

ready

1

2

3 4

5

6

7

10

9

8
11

16

12
ready_send_pttn

18

13
ready_trn_req

14



- 53 -

5 send_trn_pttn send_idles The 256 iterations of the training 
pattern is completed and the input 
port has requested to send idle 
control symbols.

The input port sampling circuitry 
is calibrated and the input port 
has received the defined training 
pattern. In the send_idles state, 
idle control symbols are sent out 
on the output port.

6 send_trn_pttn send_trn_req The 256 iterations of the training 
pattern are completed but the 
input port has not requested to 
send idle control symbols. 

Remain in the send_trn_req - 
send_trn_pttn loop until the input 
port sampling circuitry is 
calibrated and the input port 
recognizes the defined training 
pattern and then requests to send 
idle control symbols. A link-
request/send-training control 
symbol is sent out in state 
send_trn_req.

7 send_idles send_idles Remain in this state until an exit 
condition occurs. 

A reset to the beginning of the 
training sequence occurs on input 
port transitions into the 
wait_good_pttn state. Idle control 
symbols are sent on the output 
port in this state.

8 send_idles ready The input port is in state 
wait_for_idle and has received an 
idle control symbol.

Ready to start sending packets 
and any control symbol.

9 send_idles send_trn_pttn A link-request/send-training is 
received on the input port.

The output port will send 256 
iterations of the of the training 
pattern as requested.

10 send_idles send_trn_req The input port asks for a reset 
back to the beginning of the 
training sequence. 

Transition to send_trn_req and 
start over.

11 ready ready A link-request/send-training is 
not received on the input port and 
the input port does not ask for a 
reset to the beginning of the 
training sequence.

This is a functional state in which 
packets and control symbols are 
transmitted. Errors are detected 
and reported in this state.

12 ready ready_send_pttn link-request/send-training is 
received on the input port.

This transition occurs when in the 
ready state and a training request 
is received from the attached 
device. 

13 ready ready_trn_req The input port wants the attached 
device to send 256 iterations of 
the training pattern. 

This transition occurs when in the 
ready state and input port 
sampling circuitry needs to be 
adjusted, and is associated with 
the optional input port 
ready_maint_trn state. 

Table A-2. Output port training state machine transition table(Continued)

Arc Current State Next state cause Comments
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A.2 Packet Retry Mechanism
This section contains the example packet retry mechanism state machine referred to in Section 1.2.3, “Transaction and
Packet Delivery”. 

Packet retry recovery actually requires two inter-dependent state machines in order to operate, one associated with the
input port and the other with the output port on the two connected devices. The two state machines work together to
attempt recovery from a retry condition. 

A.2.1 Input port retry recovery state machine
If a packet cannot be accepted by a receiver for reasons other than error conditions, such as a full input buffer, the
receiver follows the state sequence shown in Figure A-3. 

14 ready send_trn_req The input port asks for a reset to 
the beginning of the training 
sequence.

Transition to send_trn_req and 
start over. This occurs when the 
sampling circuitry is no longer 
able to reliably sample the device 
pins.

15 ready_send_pttn ready_send_pttn The 256 iterations of the training 
pattern is not completed.

The output port is sending 
training patterns. Errors are 
detected and reported in this state. 
Must send at least one idle control 
symbol after the 256 iterations. 

16 ready_send_pttn ready The 256 iterations of the training 
pattern are completed and 
followed by at least one idle 
control symbol.

This is a normal operating case 
where the attached device 
requested that we send training 
patterns. 

17 ready_trn_req ready_trn_req Waiting to send the 
link-request/send-training

Might have to wait for the end of 
the current packet because link-
request control symbols can not 
be embedded. Errors are detected 
and reported in this state.

18 ready_trn_req ready link-request/send-training sent 
out on the output port as 
requested by the input port.

Input port is requesting training 
patterns from the other end to 
adjust its sampling circuitry.

Table A-2. Output port training state machine transition table(Continued)

Arc Current State Next state cause Comments
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Table A-3 describes the state transition arcs for Figure A-3. The states referenced in the comments in quotes are the
RapidIO 8/16 LP-LVDS defined status states, not states in this state machine. 

Figure A-3. Input port retry recovery state machine

Table A-3. Input port retry recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the 
input port is enabled to receive 
packets.

This is the initial state after reset. 
The input port can’t be enabled 
before the training sequence has 
been completed, and may be 
controlled through other 
mechanisms as well, such as a 
software enable bit.

2 recovery_disabled wait_for_retry Input port is enabled. 

3 wait_for_retry wait_for_retry Remain in this state until a packet 
retry situation has been detected. 

4 wait_for_retry stop_input A packet retry situation has been 
detected. 

Usually this is due to an internal 
resource problem such as not 
having packet buffers available 
for low priority packets. 

5 wait_for_retry recovery_disabled Input port is disabled. 

6 stop_input stop_input Remain in this state until 
described input port stop activity 
is completed.

Send a packet-retry control 
symbol with the expected ackID, 
discard the packet, and don’t 
change the expected ackID. This 
will force the attached device to 
initiate recovery starting at the 
expected ackID. Clear the “Port 
ready” state and set the “Input 
Retry-stopped” state.
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A.2.2 Output port retry recovery state machine
On receipt of an error-free packet-retry acknowledge control symbol, the attached output port follows the behavior
shown in Figure A-4. The states referenced in the comments in quotes are the RapidIO 8/16 LP-LVDS defined status
states, not states in this state machine. 

Table A-4 describes the state transition arcs for Figure A-4.

7 stop_input retry_stopped Input port stop activity is 
complete.

8 retry_stopped retry_stopped Remain in this state until a 
restart-from-retry or restart-from-
error control symbol is received 
or an input port error is 
encountered. 

The “Input Retry-stopped” state 
causes the input port to silently 
discard all incoming packets and 
not change the expected ackID 
value. 

9 retry_stopped wait_for_retry Received a restart-from-retry or a 
restart-from-error control symbol 
or an input port error is 
encountered. 

The restart-from-error control 
symbol is a link-request/input-
status control symbol. Clear the 
“Input Retry-stopped” state and 
set the “Port ready” state. An 
input port error shall cause a 
clean transition between the retry 
recovery state machine and the 
error recovery state machine.

Figure A-4. Output port retry recovery state machine

Table A-3. Input port retry recovery state machine transition table(Continued)

Arc Current State Next state cause Comments
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A.3 Error Recovery 
This section contains the error recovery state machine referred to in Section 1.3.5, “Link Behavior Under Error.” 

Error recovery actually requires two inter-dependent state machines in order to operate, one associated with the input port
and the other with the output port on the two connected devices. The two state machines work together to attempt recov-
ery. 

Table A-4. Output port retry recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the 
output port is enabled to receive 
packets.

This is the initial state after reset. 
The output port can’t be enabled 
before the training sequence has 
been completed, and may be 
controlled through other 
mechanisms as well, such as a 
software enable bit. 

2 recovery_disabled wait_for_retry Output port is enabled. 

3 wait_for_retry wait_for_retry Remain in this state until a 
packet-retry control symbol is 
received. 

The packet-retry control symbol 
shall be error free. 

4 wait_for_retry stop_output A packet-retry control symbol has 
been received.

 Start the output port stop 
procedure. 

5 wait_for_retry recovery_disabled Output port is disabled.

6 stop_output stop_output Remain in this state until the 
output port stop procedure is 
completed. 

Clear the “Port ready” state, set 
the “Output Retry-stopped” state, 
and stop transmitting new 
packets.

7 stop_output recover Output port stop procedure is 
complete. 

8 recover recover Remain in this state until the 
internal recovery procedure is 
completed. 

The packet sent with the ackID 
value returned in the packet-retry 
control symbol and all subsequent 
packets shall be re-transmitted. 
Output port state machines and 
the outstanding ackID scoreboard 
shall be updated with this 
information, then clear the 
“Output Retry-stopped” state and 
set the “Port ready” state to restart 
the output port.
Receipt of a packet-not-accepted 
control symbol or other output 
port error during this procedure 
shall cause a clean transition 
between the retry recovery state 
machine and the error recovery 
state machine. 

9 recover wait_for_retry Internal recovery procedure is 
complete. 

Re-transmission has started, so 
return to the wait_for_retry state 
to wait for the next packet-retry 
control symbol. 
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A.3.1 Input port error recovery state machine
There are a variety of recoverable error types described in detail in Section 1.3.5, “Link Behavior Under Error”. The
first group of errors are associated with the input port, and consists mostly of corrupt packet and control symbols. An
example of a corrupt packet is a packet with an incorrect CRC. An example of a corrupt control symbol is a control
symbol where the second 16 bits are not an inversion of the first 16 bits. The recovery state machine for the input port
of a RapidIO link is shown inFigure A-5.

Table A-5 describes the state transition arcs for Figure A-5. The states referenced in the comments in quotes are the
RapidIO 8/16 LP-LVDS defined status states, not states in this state machine. 

Figure A-5. Input port error recovery state machine

Table A-5. Input port error recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error 
recovery is enabled.

This is the initial state after reset. 
Error recovery can’t be enabled 
before the training sequence has 
been completed, and may be 
controlled through other 
mechanisms as well, such as a 
software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a 
recoverable error is detected. 

Detected errors and the level of 
coverage is implementation 
dependent.

4 wait_for_error stop_input A recoverable error has been 
detected.

An output port associated error 
will not cause this transition, only 
an input port associated error. 

5 wait_for_error recovery_disabled Error recovery is disabled. 
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A.3.2 Output port error recovery state machine
The second recoverable group of errors described in Section 1.3.5, “Link Behavior Under Error” is associated with the
output port, and is comprised of control symbols that are error-free and indicate that the attached input port has
detected a transmission error or some other unusual situation has occurred. An example of this situation is indicated by
the receipt of a packet-not-accepted control symbol. Another example is the receipt of a link-request/send-training
control symbol, which should cause the error recovery procedure to be followed after responding to the request. The
state machine for the output port is shown in Figure A-6.

6 stop_input stop_input Remain in this state until 
described input port stop activity 
is completed. 

Send a packet-not-accepted 
control symbol and, if the error 
was on a packet, discard the 
packet and don’t change the 
expected ackID value. This will 
force the attached device to 
initiate recovery. Clear the “Port 
ready” state and set the “Input 
Error-stopped” state. 

7 stop_input error_stopped Input port stop activity is 
complete. 

8 error_stopped error_stopped Remain in this state until a 
restart-from-error control symbol 
is received.

The “Input Error-stopped” state 
causes the input port to silently 
discard all subsequent incoming 
packets and ignore all subsequent 
input port errors.

9 error_stopped wait_for_error Received a restart-from-error 
control symbol.

The restart-from-error control 
symbol is a link-request/input-
status control symbol. Clear the 
“Input Error-stopped” state and 
set the “Port ready” state, which 
will put the input port back in 
normal operation. 

Table A-5. Input port error recovery state machine transition table(Continued)

Arc Current State Next state cause Comments
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Figure A-6. Output port error recovery state machine

Table A-6 describes the state transition arcs for Figure A-6. The states referenced in the comments in quotes are the
RapidIO 8/16 LP-LVDS defined status states, not states in this state machine. 

Table A-6. Output port error recovery state machine transition table

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error 
recovery is enabled.

This is the initial state after reset. 
Error recovery can’t be enabled 
before the training sequence has 
been completed, and may be 
controlled through other 
mechanisms as well, such as a 
software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a 
recoverable error is detected. 

Detected errors and the level of 
coverage is implementation 
dependent.

4 wait_for_error stop_output A recoverable error has been 
detected.

An input port associated error 
will not cause this transition, only 
an output port associated error. 

5 wait_for_error recovery_disabled Error recovery is disabled. 
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6 stop_output stop_output Remain in this state until an exit 
condition occurs. 

Clear the “Port ready” state, set 
the “Output Error-stopped” state, 
stop transmitting new packets, 
and send a link-request/input-
status control symbol. Ignore all 
subsequent output port errors. 
The input on the attached device 
is in the “Input Error-stopped” 
state and is waiting for a link-
request/input-status in order to be 
re-enabled to receive packets. 
An implementation may wish to 
time-out several times before 
regarding a time-out as fatal using 
a threshold counter or some other 
mechanism. 

7 stop_output recover The link-response is received and 
returned an outstanding ackID 
value

An outstanding ackID is a value 
sent out on a packet that has not 
been acknowledged yet. In the 
case where no ackIDs are 
outstanding the returned ackID 
value shall match the next 
expected/next assigned ackID 
value, indicating that the devices 
are synchronized. 
Recovery is possible, so follow 
recovery procedure.

8 stop_output fatal_error The link-response is received and 
returned an ackID value that is 
not outstanding, or timed out 
waiting for the link-response. 

Recovery is not possible, so start 
error shutdown procedure.

9 recover recover Remain in this state until the 
internal recovery procedure is 
completed. 

The packet sent with the ackID 
value returned in the link-
response and all subsequent 
packets shall be re-transmitted. 
All packets transmitted with 
ackID values preceding the 
returned value were received by 
the attached device, so they are 
treated as if packet-accepted 
control symbols have been 
received for them. Output port 
state machines and the 
outstanding ackID scoreboard 
shall be updated with this 
information, then clear the 
“Output Error-stopped” state and 
set the ‘Port ready” state to restart 
the output port. 

Table A-6. Output port error recovery state machine transition table(Continued)

Arc Current State Next state cause Comments
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10 recover wait_for_error The internal recovery procedure 
is complete. 

Re-transmission (if any was 
necessary) has started, so return 
to the wait_for_error state to wait 
for the next error. 

11 fatal_error fatal_error Remain in this state until error 
shutdown procedure is 
completed. 

Clear the “Output Error-stopped” 
state, set the “Port Error” state, 
and signal a system error.

12 fatal_error wait_for_error Error shutdown procedure is 
complete.

Return to the wait_for_error state 
even though the output port is 
shut off. 

Table A-6. Output port error recovery state machine transition table(Continued)

Arc Current State Next state cause Comments
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Partition III:  Common Transport Specification
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III Partition III

Partition III is intended for users who need to understand the common transport architecture of the RapidIO interconnect.

III.1 Overview
The Common Transport Specification defines a standard transport mechanism. In doing so, it specifies the header infor-
mation added to a RapidIO logical packet and the way the header information is interpreted by a switching fabric. The
RapidIO interconnect defines this mechanism independent of a physical implementation. The physical features of an
implementation using RapidIO are defined by the requirements of the implementation, such as I/O signaling levels, inter-
connect topology, physical layer protocol, and error detection. These requirements are specified in the appropriate
RapidIO physical layer specification. 

This transport specification is also independent of any RapidIO logical layer specification.

III.2 Contents
Partition III: Common Transport Specification contains two chapters:

• Chapter 1, “Transport Format Description,” describes the routing methods used in RapidIO for sending packets 
across the systems of switches described in this chapter.

• Chapter 2, “Common Transport Registers,” describes the visible register set that allows an external processing 
element to determine the capabilities, configuration, and status of a processing element using this RapidIO 
transport layer definition.

1 Chapter 1 - Transport Format Description

This chapter contains the transport format definition for the RapidIO Common Transport Specification. Three transport
fields are added to the packet formats described in the RapidIO logical specifications. The transport formats are intended to
be fabric independent so the system interconnect can be anything required for a particular application; therefore all descrip-
tions of the transport fields and their relationship with the logical packets are shown as bit streams.

1.1 System Topology
RapidIO is intended to be interconnect fabric independent. This section describes several of the possible system topolo-
gies and routing methodologies allowed by the processing element models described in the Models chapters of the differ-
ent Logical Specifications.

1.1.1 Switch-Based Systems
A RapidIO system can be organized around the concept of switches. Figure  1-1 shows a small system in which five
processing elements are interconnected through two switches. A logical packet sent from one processing element to
another is routed through the interconnect fabric by the switches by interpreting the transport fields. Because a request
usually requires a response, the transport fields must somehow indicate the return path from the requestor to the
responder.
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1.1.2 Ring-Based Systems
A simplification of the switch structure is a ring as shown in Figure .1-2. A ring is a point-to-point version of a com-
mon bus; therefore, it is required to have a unique identifier for each processing element in the system. A packet put
onto the ring contains the source and destination identifier in the transport fields. Each packet issued is examined by
the downstream processing element. If that processing element’s identifier matches that of the destination, it removes
the packet from the ring for processing. If the destination identifier does not match the packet, it is passed to the next
processing element in the ring.

1.2 System Packet Routing
There are many algorithms that can be used for routing through a system. The RapidIO Common Transport Specification
requires device identifier based packet routing. Each directly addressable device in the system shall have one or more

Figure 1-1.  A Small Switch-Based System

 Figure 1-2. A Small Ring-Based System
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unique device identifiers. When a packet is generated, the device ID of the destination of the packet is put in the packet
header. The device ID of the source of the packet is also put in the packet header for use by the destination when generat-
ing response packets. When the destination of a request packet generates a response packet, it swaps the source and desti-
nation fields from the request, making the original source the new destination and itself the new source. Packets are
routed through the fabric based on the destination device ID.

One method of routing packets in a switch fabric using device ID information incorporates routing tables. Each switch in
the interconnect fabric contains a table that tells the switch how to route every destination ID from an input port to the
proper output port. The simplest form of this method allows only a single path from every processing element to every
other processing element. More complex forms of this method may allow adaptive routing for redundancy and congestion
relief. However, the actual method by which packets are routed between the input of a switch and the output of a switch is
implementation dependent. 

1.3 Field Alignment and Definition
The RapidIO Common Transport Specification adds a transport type (tt) field to the logical specification packet that
allows four different transport packet types to be specified. The tt field indicates which type of additional transport fields
are added to the packet. 

The three fields (tt, destinationID, and sourceID) added to the logical packets allow for two different sizes of the device
ID fields, a large (16-bit), and a small (8-bit), as shown in Table 1-1. The two sizes of device ID fields allow two different
system scalability points to optimize packet header overhead, and only affix additional transport field overhead if the
additional addressing is required. The small device ID fields allow a maximum of 256 devices to be attached to the fabric.
The large device ID fields allow systems with up to 65,536 devices. 

Figure 1-3 shows the transport header definition bit stream. The shaded fields are the bits associated with the logical
packet definition that are related to the transport bits. Specifically, the field labeled “Logical ftype” is the format type
field defined in the logical specifications. This field comprises the first four bits of the logical packet. The second logical
field shown (“Remainder of logical packet”) is the remainder of the logical packet of a size determined by the logical
specifications, not including the logical ftype field which has already been included in the combined bit stream. The
unshaded fields (tt=0b00 or tt=0b01 and destinationID and sourceID fields) are the transport fields added to the logical
packet by the RapidIO Common Transport Specification. 

1.3.1 Routing Maintenance Packets
Routing maintenance packets in a switch-based network may be difficult because a switch processing element may not
have its own device ID. An alternative method of addressing for maintenance packets for these devices uses an addi-
tional hop_count field in the packet to specify the number of switches (or hops) into the network from the issuing
processing element that is being addressed. Whenever a switch processing element that does not have as associated
device ID receives a maintenance packet it examines the hop_count field. If the received hop_count is zero, the access

Table 1-1. tt Field Definition

tt Definition

0b00 8-bit deviceID fields

0b01 16-bit deviceID fields

0b10 Reserved

0b11 Reserved

Figure 1-3.  Destination-Source Transport Bit Stream
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is for that switch. If the hop_count is not zero, it is decremented and the packet is sent out of the switch according to
the destinationID field. This method allows easy access to any intervening switches in the path between two addressa-
ble processing elements. However, since maintenance response packets are always targeted at an end point, the
hop_count field shall always be assigned a value of 0xFF by the source of the packets to prevent them from being inad-
vertently accepted by an intervening device. Figure  1-4 shows the transport layer fields added to a maintenance logi-
cal packet. Maintenance logical packets can be found in the Partition I: Input/Output Logical Specification. 

2 Chapter 2 - Common Transport Registers

This chapter describes the visible register set that allows an external processing element to determine the capabilities, con-
figuration, and status of a processing element using this transport layer definition. This chapter only describes registers or
register bits defined by this specification. Refer to the other RapidIO logical, transport, and physical specifications of inter-
est to determine a complete list of registers and bit definitions. All registers are 32-bits and aligned to a 32-bit boundary. 

2.1 Register Summary
Table 2-1 shows the register address map for this RapidIO specification. These capability registers (CARs) and command
and status registers (CSRs) can be accessed using Partition I: Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless otherwise stated. Other registers
required for a processing element are defined in other applicable RapidIO specifications and by the requirements of the
specific device and are beyond the scope of this specification. Read and write accesses to reserved register offsets shall
terminate normally and not cause an error condition in the target device. Writes to CAR (read-only) space shall terminate
normally and not cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only. Bits that are reserved in this specifi-
cation may be defined in another RapidIO specification. 

Figure 1-4. Maintenance Packet Transport Bit Stream

Table 2-1. Common Transport Register Map

Configuration 
Space Byte 

Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0-8 Reserved

0x10 Processing Element Features CAR Reserved

0x18–58 Reserved

0x60 Base Device ID CSR Reserved

0x68 Host Base Device ID Lock CSR Component Tag CSR

0x70–F8 Reserved

Logical transaction, dsize/status, TID fields

16
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2.2 Reserved Register and Bit Behavior
Table  2-2 describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO
register space, 

0x100–
FFF8 Extended Features Space

0x10000–
FFFFF8 Implementation-defined Space

Table 2-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0–3C Capability Register 
Space (CAR Space - this 
space is read-only)

Reserved bit read - ignore returned value1 read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - write - ignored

 Reserved 
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40–FC Command and Status 
Register Space (CSR 
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current value2 write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000–
FFFFFC

Implementation-defined 
Space

Reserved bit and 
register

All behavior implementation-defined

Table 2-1. Common Transport Register Map(Continued)

Configuration 
Space Byte 

Offset

Register Name
(Word 0)

Register Name
(Word 1)
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2.3 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external processing element to determine its capa-
bilities using the I/O logical maintenance read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow larger accesses. CARs are read-only.
Refer to Table 2-2 for the required behavior for accesses to reserved registers and register bits. 

CARs are big-endian with bit 0 and Word 0 respectively the most significant bit and word. 

2.3.1 Processing Element Features CAR (Offset 0x10 Word 0)
The processing element features CAR identifies the major functionality provided by the processing element. The bit
settings are shown in Table .2-3.

2.4 Command and Status Registers (CSRs)
A processing element shall contain a set of registers that allows an external processing element to control and determine
status of its internal hardware. All registers are 32 bits wide and are organized and accessed in the same way as the CARs.
Refer to Table  2-2 for the required behavior for accesses to reserved registers and register bits. 

2.4.1 Base Device ID CSR (Offset 0x60 Word 0)
The base device ID CSR contains the base device ID values for the processing element. A device may have multiple
device ID values, but these are not defined in a standard CSR. The bit settings are shown in Table 2-4.

2.4.2 Host Base Device ID Lock CSR (Offset 0x68 Word 0)
The host base device ID lock CSR contains the base device ID value for the processing element in the system that is
responsible for initializing this processing element. The Host_base_deviceID field is a write-once/reset-able field
which provides a lock function. Once the Host_base_deviceID field is written, all subsequent writes to the field are
ignored, except in the case that the value written matches the value contained in the field. In this case, the register is re-
initialized to 0xFFFF. After writing the Host_base_deviceID field a processing element must then read the Host Base

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 
2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 

for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

Table 2-3. Bit Settings for Processing Element Features CAR

Bits Name Description

0–26 — Reserved

27 Common transport large 
system support

0b0 - PE does not support common transport large systems
0b1 - PE supports common transport large systems

28–31 — Reserved

Table 2-4. Bit Settings for Base Device ID CSR

Bits Name Reset 
Value Description

0-7 — Reserved

8-15 Base_deviceID see 
footnote
1

1. The Base_deviceID reset value is implementation dependent

This is the base ID of the device in a small common transport system 
(end point devices only)

16–31 Large_base_deviceID see 
footnote
2

2. The Large_base_deviceID reset value is implementation dependent

This is the base ID of the device in a large common transport system 
(only valid for end point device and if bit 27 of the Processing 
Element Features CAR is set)
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Device ID Lock CSR to verify that it owns the lock before attempting to initialize this processing element. The bit set-
tings are shown in Table 2-5.

2.4.3 Component Tag CSR (Offset 0x68 Word 1)
The component tag CSR contains a component tag value for the processing element and can be assigned by software
when the device is initialized. It is especially useful for labeling and identifying devices that are not end points and do
not have device ID registers. The bit settings are shown in Table .2-6.

Table 2-5. Bit Settings for Host Base Device ID Lock CSR

Bits Name Reset 
Value Description

0-15 — Reserved

16–31 Host_base_deviceID 0xFFFF This is the base device ID for the PE that is initializing this PE. 

Table 2-6. Bit Settings for Component ID CSR

Bits Name Reset 
Value Description

0–31 component_tag All 0s This is a component tag for the PE.
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Partition IV
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IV Partition IV

Partition IV is intended for users who need to understand the physical 8/16 LP-LVDS architecture of the RapidIO intercon-
nect.

IV.1 Overview
The Physical Layer 8/16 LP-LVDS Specification is RapidIO’s physical layer specification that addresses the physical
layer requirements for a RapidIO device. 

This specification defines a full duplex interface with 8-bit or 16-bit unidirectional low voltage differential signaling
(LVDS) differential ports, assuming that the interface (called a link) only communicates directly with one other device on
that interface. Systems are built out of switch processing elements as described in Partition III: Common Transport Spec-
ification, and packets are sent between electrically connected devices through the network one link at a time. The flow
control, error management, and signal acknowledgement protocols between linked devices are handled through control
symbols.

RapidIO is targeted toward memory-mapped distributed memory systems. A message passing programming model is
supported to enable distributed I/O processing and is described in Partition II: Message Passing Logical Specification.
Partition I: Input/Output Logical Specification defines the basic input/output system architecture of RapidIO.

IV.2 Contents
Following are the contents of Partition IV: Physical Layer 8/16 LP-LVDS Specification:

• Chapter 1, “Physical Layer Protocol,” describes the physical layer protocol for packet delivery to the RapidIO 
fabric, including packet transmission, flow control, error management, and link maintenance protocols.

• Chapter 2, “Packet and Control Symbol Transmission,” defines packet and control symbol delineation and 
alignment on the physical port and mechanisms to control the pacing of a packet.

• Chapter 3, “Control Symbol Formats,” explains the physical layer control formats that manage the packet delivery 
protocols mentioned in Chapter 2.

• Chapter 4, “8/16 LP-LVDS Registers,” describes the register set that allows an external processing element to 
determine the physical capabilities and status of an 8/16 LP-LVDS RapidIO implementation.

• Chapter 5, “System Clocking Considerations,” discusses the RapidIO synchronous clock and how it is distributed 
in a typical switch configuration.

• Chapter 6, “Board Routing Guidelines,” explains board layout guidelines and application environment 
considerations for the RapidIO architecture.

• Chapter 7, “Signal Descriptions,” contains the signal pin descriptions for a typical RapidIO end point device.
• Chapter 8, “Electrical Specifications,” describes the LVDS electrical specifications of the RapidIO 8/16 LP-LVDS 

device.
• Annex A, “Interface Management (Informative),” contains information pertinent to interface management in a 

RapidIO system, including SECDED error tables, error recovery flowcharts, and link initialization and packet 
retry mechanisms. 

1 Chapter 1 - Physical Layer Protocol

This chapter describes the physical layer protocol for packet delivery to the interconnect fabric including packet transmis-
sion, flow control, error management, and other system functions. See the user’s manual or implementation specification for
specific implementation details of a device. 

1.1 Packet Exchange Protocol
This physical layer 8/16 LP-LVDS specification defines an exchange of packet and acknowledgment control symbols in
which a destination or intermediate processing element (such as a switch) acknowledges receipt of a request or response
packet from a source. 

If a packet cannot be accepted for any reason, an acknowledgment control symbol indicates that the original packet and
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any already transmitted subsequent packets should be resent. This behavior provides a flow control and transaction order-
ing mechanism between processing elements. Figure 1-1 shows an example of transporting a request and response packet
pair across an interconnect fabric with acknowledgments between the link transmitter/receiver pairs along the way. This
allows flow control and error handling to be managed between each electrically connected device pair rather than
between the original source and final target of the transaction. A device shall transmit an acknowledge control symbol for
a request before the response transaction corresponding to that request.

1.1.1 Packet and Control Alignment
All packets defined by the combination of this specification and the appropriate logical and transport specifications are
aligned to 16-bit boundaries, however, all packets and control symbols sent over the 8-bit and 16-bit ports are aligned
to 32-bit boundaries. This alignment allows devices to work on packets using a larger internal width thus requiring
lower core operating frequencies. Packets that are not naturally aligned to a 32-bit boundary are padded. 
See Figure  1-11 and Figure 1-12 for examples of padded packets. Control symbols are nominally 16-bit quantities, but
are defined as a 16-bit control symbol followed by a bit-wise inverted copy of itself to align it to the 32-bit boundary.
This, in turn, adds error detection capability to the interface. These 32-bit quantities are referred to as aligned control
symbols.

The 16-bit wide port is compatible with an 8-bit wide port. If an 8-bit wide port is properly connected to a 16-bit wide
port, the port will function as an 8-bit interface between the devices. Port width connections are described in
Chapter 7, “Signal Descriptions”. 

1.1.2 Acknowledge Identification
A packet requires an identifier to uniquely identify its acknowledgment. This identifier, known as the acknowledge
ID (or ackID), is three bits, allowing for a range of one to eight outstanding unacknowledged request or response pack-
ets between adjacent processing elements, however only up to seven outstanding unacknowledged packets are allowed

Figure 1-1. Example Transaction with Acknowledge
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at any one time. The ackIDs are assigned sequentially (in increasing order, wrapping back to 0 on overflow) to indi-
cate the order of the packet transmission. The acknowledgments themselves are a number of aligned control symbols
defined in Chapter 3, “Control Symbol Formats.”

1.2 Field Placement and Definition
This section contains the 8/16 LP-LVDS specification for the additional physical layer bit fields and control symbols
required to implement the flow control, error management, and other specified system functions.

1.2.1 Flow Control Fields Format
The fields used to control packet flow in the system are described in Table 1-1.

Table 1-1. Fields that Control Packet Flow

Field Description

S 0b0 - RapidIO request or response packet
0b1 - Physical layer control symbol

S Inverse of S-bit for redundancy (odd parity bit)

ackID Acknowledge ID is the packet identifier for acknowledgments back to the packet 
sender—see Section 

prio Sets packet priority:
0b00 - lowest priority
0b01 - medium priority
0b10 - high priority
0b11 - highest priority
See Section  for an explanation of prioritizing packets

buf_status Specifies the number of available packet buffers in the receiving device. See Section  
and Table 0-1.

stype Control symbol type—see Chapter 3, “Control Symbol Formats” for definition.

rsrv Reserved
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Figure 1-2 shows the format for the physical layer fields for packets. In order to pad packets to the 16-bit boundary
there are three reserved bits in a packet’s physical layer fields. These bits are assigned to logic 0 when generated and
ignored when received. 

Figure 1-2. Packet Physical Layer Fields Format

Figure 1-3 shows the basic format for the physical layer fields for control symbols. In order to pad the control symbol
to the 16-bit boundary there are four reserved bits in the control symbol. These bits are assigned to logic 0 when gener-
ated and ignored when received. The field formats for all control symbols are defined in Chapter 3, “Control Symbol
Formats.”

Figure 1-4 shows how the physical layer fields are prefixed to the combined transport and logical layer packet. 

The unshaded fields are the physical layer fields defined by this physical specification. The shaded fields are the bits

Table 0-1. buf_status Field Definition

buf_status 
Encoding

Value
Description

0b0000

Specifies the number of maximum length packets that the port can accept 
without issuing a retry due to a lack of resources. The value of buf_status in 
a control symbol is the number of maximum packets that can be accepted, 
inclusive of the effect of the packet being accepted or retried.
Value 0-13: The encoding value specifies the number of new maximum 
sized packets the receiving device can receive. The value 0, for example, 
signifies that the downstream device has no available packet buffers (thus is 
not able to hold any new packets). 
Value 14: The value 14 signifies that the downstream device can receive 14 
or more new maximum sized packets.
Value 15: The downstream device can receive an undefined number of 
maximum sized packets, and relies on the retry protocol for flow control.

0b0001

0b0010

0b0011

0b0100

0b0101

0b0110

0b0111

0b1000

0b1001

0b1010

0b1011

0b1100

0b1101

0b1110

0b1111

Figure 1-3. Control Symbol Physical Layer Fields Format

Figure 1-4. Flow Control Fields Bit Stream
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associated with the combined transport and logical transaction definitions. The first transport and logical field shown
is the two bit tt field specified in the RapidIO Common Transport Specification. The second field is the four bit format
type (ftype) defined in the logical specifications. The third combined field is the remainder of the transport and logical
packet of a size determined by those specifications. 

1.2.2 Packet Priority and Transaction Request Flows
Each packet has a priority that is assigned by the end point processing element that is the source of (initiates) the
packet. The priority is carried in the prio field of the packet and has four possible values, 0, 1, 2 or 3. Packet priority
increases with the priority value with 0 being the lowest priority and 3 being the highest. Packet priority is used in
Rapid IO for several purposes which include transaction ordering and deadlock prevention.

When a transaction is encapsulated in a packet for transmission, the transaction request flow indicator (flowID) of the
transaction is mapped into the prio field of the packet. Transaction request flows A and B are mapped to priorities 0
and 1 respectively and transaction request flows C and above are mapped to priority 2 as specified in Table 1-3.

The mapping of transaction request flow onto packet priority (prio) allows a Rapid IO transport fabric to maintain
transaction request flow ordering without the fabric having any knowledge of transaction types or their interdependen-
cies. This allows a Rapid IO fabric to be forward compatible as the types and functions of transactions evolve. A fabric
can maintain transaction request flow ordering by simply maintaining the order of packets with the same priority for
each path through the fabric and can maintaining transaction request flow priority by never allowing a lower priority
packet to pass a higher priority packet taking the same path through the fabric.

Table 1-3. Transaction Request Flow to Priority Mapping 

1.2.3 Transaction and Packet Delivery
Certain physical layer fields and a number of control symbols are used for handling flow control. One physical layer
field contains the ackID field (Table ), which is assigned by the sending processing element, and expected by the
receiving processing element, in a sequential fashion. 

Packets shall be accepted by the receiving processing element only when ackID values of successive packets occur in
the specified sequence. The receiving processing element signals the acceptance of a packet by returning a packet-
accepted control symbol to the sender. This order allows a device to detect when a packet has been lost and also pro-
vides a mechanism to maintain ordering. 

A device that retries a packet (by returning a packet-retry control symbol to the sender) due to some temporary internal
condition shall silently discard all new incoming packets until it receives a restart-from-retry control symbol from the
sender. The sender then retransmits all packets starting from the retried ackID, reestablishing the proper ordering
between the devices. The packet sent with the retried ackID may be the original retried packet or a higher priority
packet, if one is available, allowing higher priority packets to bypass lower priority packets across the link. This
behavior is shown in an example state machine in Section A.2, “Packet Retry Mechanism.” 

Similarly, if a receiving processing element encounters an error condition, it shall return a packet-not-accepted control
symbol, indicating an error condition, to the sender. It shall also silently discard all new incoming packets. If the error
condition is due to a transmission error the sender may able to recover from the effects of the error condition. The error
recovery mechanism is described in Section 1.3.5. 

A retried transaction shall eventually be retransmitted by the sending device.

1.2.3.1 Transaction and Packet Delivery Ordering Rules
The rules specified in this section are required for the physical layer to support the transaction ordering rules speci-
fied in the logical layer specifications.

Transaction Delivery Ordering Rules:

Flow System Priority Request
Packet Priority

Response
Packet Priority

C or higher Highest 2 3

B Next 1 2 or 3

A Lowest 0 1, 2, or 3
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1. The physical layer of an end point processing element port shall encapsulate in packets and forwarded to the RapidIO 
fabric transactions comprising a given transaction request flow in the same order that the transactions were received 
from the transport layer of the processing element.

2. The physical layer of an end point processing element port shall ensure that a higher priority request transaction that 
it receives from the transport layer of the processing element before a lower priority request transaction with the same 
sourceID and the same destinationID is forwarded to the fabric before the lower priority transaction.

3. The physical layer of an end point processing element port shall deliver transactions to the transport layer of the 
processing element in the same order that the packetized transactions were received by the port.

Packet Delivery Ordering Rules:

1. A packet initiated by a processing element shall not be considered committed to the RapidIO fabric and does not 
participate in the packet delivery ordering rules until the packet has been accepted by the device at the other end of 
the link. (RapidIO does not have the concept of delayed or deferred transactions. Once a packet is accepted into the 
fabric, it is committed.)

2. A switch shall not alter the priority of a packet.

3. Packet forwarding decisions made by a switch processing element shall provide a consistent output port selection 
which is based solely on the value of the destinationID field carried in the packet.

4. A switch processing element shall not change the order of packets comprising a transaction request flow (packets with 
the same sourceID, the same destinationID, the same priority and ftype != 8) as the packets pass through the switch.

5. A switch processing element shall not allow lower priority non-maintenance packets (ftype != 8) to pass higher 
priority non-maintenance packets with the same sourceID and destinationID as the packets pass through the switch.

6. A switch processing element shall not allow a priority N maintenance packet (ftype = 8) to pass another maintenance 
packet of priority N or greater that takes the same path through the switch (same switch input port and same switch 
output port).

1.2.4 Resource Allocation
This section defines RapidIO LP-LVDS link level flow control. The flow control operates between each pair of ports
connected by an LP-LVDS link. The purpose of link level flow control is to prevent the loss of packets due to a lack of
buffer space in a link receiver.

The LP-LVDS protocol defines two methods or modes of flow control. These are named receiver-controlled flow con-
trol and transmitter-controlled flow control. Every RapidIO LP-LVDS port shall support receiver-controlled flow con-
trol. LP-LVDS ports may optionally support transmitter-controlled flow control. 

1.2.4.1 Receiver-Controlled Flow Control
Receiver-controlled flow control is the simplest and most basic method of flow control. In this method, the input
side of a port controls the flow of packets from its link partner by accepting or rejecting (retrying) packets on a
packet by packet basis. The receiving port provides no information to its link partner about the amount of buffer
space it has available for packet reception. 

As a result, its link partner transmits packets with no a priori expectation as to whether a given packet will be
accepted or rejected. A port signals its link partner that it is operating in receiver-controlled flow control mode by
setting the buf_status field to all 1’s in every control symbol containing the field that the port transmits. This method
is named receiver-controlled flow control because the receiver makes all of the decisions about how buffers in the
receiver are allocated for packet reception.

A port operating in receiver-controlled flow control mode accepts or rejects each inbound error-free packet based on
whether the receiving port has enough buffer space available at the priority level of the packet. If there is enough
buffer space available, the port accepts the packet and transmits a packet-accepted control symbol to its link partner
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that contains the ackID of the accepted packet in its packet_ackID field. This informs the port’s link partner that the
packet has been received without detected errors and that it has been accepted by the port. On receiving the packet-
accepted control symbol, the link partner discards its copy of the accepted packet freeing buffer space in the partner.

If buffer space is not available, the port rejects the packet. When a port rejects (retries) an error-free packet, it
behaves as described in Section 1.2.3, “Transaction and Packet Delivery”.  As part of the recovery process, the port
sends a packet-retry control symbol to its link partner indicating that the packet whose ackID is in the packet_ackID
field of the control symbol and all packets subsequently transmitted by the port have been discarded by the link
partner and must all be retransmitted. The control symbol also indicates that the link partner is temporarily out of
buffers for packets of priority less than or equal to the priority of the retried packet.

A port that receives a packet-retry control symbol also behaves as described in Section 1.2.3.  As part of the recov-
ery process, the port receiving the packet-retry control symbol sends a restart-from-retry control symbol which
causes its link partner to resume packet reception. The ackID assigned to that first packet transmitted after the
restart-from-retry control symbol is the ackID of the packet that was retried.

Figure 1.5 shows an example of receiver-controlled flow control operation. In this example the transmitter is capa-
ble of sending packets faster than the receiver is able to absorb them. Once the transmitter has received a retry for a
packet, the transmitter may elect to cancel any packet that is presently being transmitted since it will be discarded
anyway. This makes bandwidth available for any higher priority packets that may be pending transmission.

Figure 1-5. Receiver-Controlled Flow Control

1.2.4.2 Transmitter-Controlled Flow Control
In transmitter-controlled flow control, the receiving port provides information to its link partner about the amount
of buffer space it has available for packet reception. With this information, the sending port can allocate the use of
the receiving port’s receive buffers according to the number and priority of packets that the sending port has waiting
for transmission without concern that one or more of the packets shall be forced to retry. 

A port signals its link partner that it is operating in transmitter-controlled flow control mode by setting the
buf_status field to a value different from all 1’s in every control symbol containing the field that the port transmits.
This method is named transmitter-controlled flow control because the transmitter makes almost all of the decisions
about how the buffers in the receiver are allocated for packet reception.

The number of free buffers that a port has available for packet reception is conveyed to its link partner by the value
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of the buf_status field in control symbols that the port transmits. The value conveyed by the buf_status field is the
number of maximum length packet buffers currently available for packet reception up to the limit that can reported
in the field. If a port has more buffers available than the maximum value that can be reported in the buf_status field,
the port sets the field to that maximum value. A port may report a smaller number of buffers than it actually has
available, but it shall not report a greater number.

A port informs its link partner when the number of free buffers available for packet reception changes. The new
value of buf_status is conveyed in the buf_status field in every control symbol containing the field that the port
transmits. Each change in the number of free buffers a port has available for packet reception need not be conveyed
to the link partner. 

A port whose link partner is operating in transmitter-control flow control mode should never receive a packet-retry
control symbol from its link partner unless the port has transmitted more packets than its link partner has receive
buffers, violated the rules that all input buffer may not be filled with low priority packets or there is some fault con-
dition. If a port whose link partner is operating in transmitter-control flow control mode receives a packet-retry con-
trol symbol, the output side of the port behaves as described in Section 1.2.3. 

A simple example of transmitter-controlled flow control is shown in Figure 1-6.

Figure 1-6. Transmitter-Controlled Flow Control

1.2.4.3 Receive Buffer Management
In transmitter-controlled flow control, the transmitter manages the packet receive buffers in the receiver. This may
be done in a number of ways, but the selected method shall not violate the rules in Section 1.2.2, “Packet Priority
and Transaction Request Flows” concerning the acceptance of packets by ports. 

One possible implementation to organize the buffers is establish watermarks and use them to progressively limit the
packet priorities that can be transmitted as the effective number of free buffers in the receiver decreases. For exam-
ple, RapidIO LP-LVDS has four priority levels. Three non-zero watermarks are needed to progressively limit the
packet priorities that may be transmitted as the effective number of free buffers decreases. Designate the three
watermarks as WM0, WM1, and WM2 where WM0 > WM1 > WM2 > 0 and employ the following rules.

If free_buffer_count >= WM0, all priority packets may be transmitted.

If WM0 > free_buffer_count >= WM1, only priority 1, 2, and 3 packets may be transmitted.

If WM1 > free_buffer_count >= WM2, only priority 2 and 3 packets may be transmitted.
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If WM2 > free_buffer_count, only priority 3 packets may be transmitted.

If this method is implemented, the initial values of the watermarks may be set by the hardware at reset as follows.

WM0 = 4

WM1 = 3

WM2 = 2

These initial values may be modified by hardware or software. The modified watermark values shall be based on
the number of free buffers reported in the buf_status field of idle control symbols received by the port following
link initialization and before the start of packet transmission.

The three watermark values and the number of free buffers reported in the buf_status field of idle control symbols
received by the port following link initialization and before the start of packet transmission may be stored in a CSR.
Since the maximum value of each of these four items is 14, each will fit in an 8-bit field and all four will fit in a sin-
gle 32-bit CSR. If the watermarks are software setable, the three watermark fields in the CSR should be writable.
For the greatest flexibility, a watermark register should be provided for each port on a device.

1.2.4.4 Effective Number of Free Receive Buffers
The number of buffers available in a port’s link partner for packet reception is typically less than the value of the
buf_status field most recently received from the link partner. The value in the buf_status field does not account for
packets that have been transmitted by the port but not acknowledged by its link partner. The variable
free_buffer_count is defined to be the effective number of free buffers available in the link partner for packet recep-
tion. The value of free_buffer_count shall be determined according to the following rules.

The port shall maintain a count of the packets that it has transmitted but that have not been acknowledged by its link
partner. This count is named the outstanding_packet_count.

After link initialization and before the start of packet transmission,

If (received_buf_status < 15) {

flow_control_mode = transmitter;

free_buffer_count = received_buf_status;

outstanding_packet_count = 0;

}

else

flow_control_mode = receiver;

When a packet is transmitted by the port,

outstanding_packet_count =

outstanding_packet_count + 1;

When a control symbol containing a buf_status field is received by the port,

free_buffer_count = received_buf_status -

outstanding_packet_count;

When a packet-accepted control symbol is received by the port indicating that a packet has been accepted by the
link partner,

Outstanding_packet_count = 

Outstanding_packet_count - 1;

free_buffer_count = received_buf_status -

outstanding_packet_count;

When a packet-retry control symbol is received by the port indicating that a packet has been forced by the link part-
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ner to retry,

Outstanding_packet_count = 0;

free_buffer_count = received_buf_status;

When a packet-not-accepted control symbol is received by the port indicating that a packet has been rejected by the
link partner because of one or more detected errors,

Outstanding_packet_count = 0;

free_buffer_count = 0;

The port then transmits a link-request/input-status (for input-status) control symbol and waits for the link partner to
respond with a link-response control symbol. When the link-response control symbol is received, 

free_buffer_count = received_buf_status;

1.2.4.5 Speculative Packet Transmission
A port whose link partner is operating in transmitter-controlled flow control mode may send more packets than the
number of free buffers indicated by the link partner. Packets transmitted in excess of the free_buffer_count are
transmitted on a speculative basis and are subject to retry by the link partner. The link partner accepts or rejects
these packets on a packet by packet basis in exactly the same way it would if operating in receiver-controlled flow
control mode. A port may use such speculative transmission in an attempt to maximize the utilization of the link.
However, speculative transmission that results in a significant number of retries and discarded packets can reduce
the effective bandwidth of the link.

1.2.5 Flow Control Mode Negotiation
Immediately following the initialization of a link, each port begins sending idle control symbols to its link partner. The
value of the buf_status field in these control symbols indicates to the link partner the flow control mode supported by
the sending port.

The flow control mode negotiation rule is as follows:

If the port and its link partner both support transmitter-controlled flow control, then both ports shall use transmitter-
controlled flow control. Otherwise, both ports shall use receiver-controlled flow control.

1.3 Error Detection and Recovery
Error detection and recovery is becoming a more important issue for many systems as operational frequencies increase
and system electrical margins are reduced. The 8/16 LP-LVDS specification provides extensive error detection and recov-
ery by combining retry protocols, cyclic redundancy codes, and single and multiple error detect capabilities, thereby tol-
erating all single-bit errors and many multiple bit errors. One goal of the error protection strategy is to keep the
interconnect fabric from having to regenerate a CRC value as the packet moves through the fabric. All RapidIO ports
require error checking. 

1.3.1 Control Symbol Protection
The control symbols defined in this specification are protected in two ways:

• The S bit, distinguishing a control symbol from a packet header, has an odd parity bit to protect a control symbol 
from being interpreted as a packet. 

• The entire aligned control symbol is protected by the bit-wise inversion of the control symbol used to align it to the 
32-bit boundary described in Sectin 1.1.1. This allows extensive error detection.

A transmission error in the buf_status field, regardless of the control symbol type, may optionally not be treated as an
error condition because it is always a reserved or an information only field that is not critical for proper system behav-
ior. For example, if a corrupt value of buf_status is used, a low value may temporarily prevent a packet from being
issued, or a high value may result in a packet being issued when it should not have been, causing a retry. In either case
the problems are temporary and will properly resolve themselves through the existing protocol. 

1.3.2 Packet Protection
The packets specified in the RapidIO Common Transport Specification and the RapidIO Logical Specification are pro-
tected with a CRC code that also covers the two bit priority field of this specification. The S bit is duplicated as in the
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control symbols to protect the packet from being interpreted as a control symbol, and the packet is also protected by
protocol as described below. 

Figure 1.7 shows the error coverage for the first 16 bits of a packet header. CRC protects the prio, tt, and ftype fields
and two of the reserved bits as well as the remainder of the transport and logical fields. Since a new packet has an
expected value for the ackID field at the receiver, bit errors on this field are easily detected and the packet is not
accepted due to the unexpected value. An error on the S bit is detected with the redundant inverted S parity bit. 

This structure does not require that a packet’s CRC value be regenerated when the uncovered physical fields are
assigned in the fabric. 

NOTE
All packets defined in the combination of this specification and the RapidIO interconnect logical and common transport
specifications are now evenly divisible by 16 bits, or the complete packets are now naturally 16-bit aligned. This is
illustrated in Figure 1.8. The leading 16 bits of the packet are referred to as the first symbol of the packet. The first sym-
bol of a packet shall always land on the most significant half of the 32-bit boundary. Other aligned 16-bit packet quan-
tities are also referred to as symbols. 

1.3.3 Lost Packet Detection 
Some types of errors, such as a lost request or response packet or a lost acknowledgment, result in a system with hung
resources. To detect this type of error there shall be time-out counters that expire when sufficient time has elapsed
without receiving the expected response from the system. Because the expiration of one of these timers should indicate
to the system that there is a problem, this time interval should be set long enough so that a false time-out is not sig-
naled. The response to this error condition is implementation dependent. 

The RapidIO specifications assume an implementation has time-out counters for the physical layer, the port link time-
out counters, and counters for the logical layer, the port response time-out counters. The logical layer timers are dis-
cussed here in the physical layer specification because the packet delivery mechanism is an artifact of the physical
layer. The values for these counters are specified in the physical layer registers in Chapter  4, “8/16 LP-LVDS Regis-
ters,” on page 55. The interpretation of the values is implementation dependent, based on a number of factors includ-
ing link clock rate, the internal clock rate of the device, and the desired system behavior.

The physical layer time-out occurs between the transmission of a packet and the receipt of an acknowledgment control
symbol. This time-out interval is likely to be comparatively short because the packet and acknowledgment pair must
only traverse a single link. For the purpose of error recovery, a port link time-out should be treated as an unexpected
acknowledge control symbol. 

The logical layer time-out occurs between the issuance of a request packet that requires a response packet and the
receipt of that response packet. This time-out is counted from the time that the logical layer issues the packet to the
physical layer to the time that the associated response packet is delivered from the physical layer to the logical layer.
Should the physical layer fail to complete the delivery of the packet, the logical layer time-out will occur. This time-
out interval is likely to be comparatively long because the packet and response pair have to traverse the fabric at least
twice and be processed by the target. Error handling for a response time-out is implementation dependent. 

Figure 1-7. Error Coverage of First 16 Bits of Packet Header

Figure 1-8. Naturally Aligned Packet Bit Stream
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Certain GSM operations may require two response transactions, and both must be received for the operation to be con-
sidered complete. In the case of a device implementation with multiple links, one response packet may be returned on
the same link where the operation was initiated and the other response packet may be returned on a different link. If
this is behavior is supported by the issuing processing element, the port response time-out implementation must look
for both responses, regardless of which links they are returned on.

1.3.4 Implementation Note: Transactional Boundaries
A system address map usually contains memory boundaries that separate one type of memory space from another.
Memory spaces are typically allocated with a preset minimum granularity. These spaces are often called page bounda-
ries. Page boundaries allow the operating system to manage the entire address space through a standard mechanism.
These boundaries are often used to mark the start and end of read-only space, peripheral register space, data space, and
so forth. 

RapidIO allows DMA streaming of data between two processing elements. Typically, in system interfaces that allow
streaming, the targeted device of the transaction has a way to disconnect from the master once a transactional boundary
has been crossed. The RapidIO specifications do not define a page boundary, nor a mechanism by which a target can
disconnect part way through a transaction. Therefore, it is up to the system software and/or hardware implementation
to guarantee that a transaction can complete gracefully to the address space requested.

As an example, a RapidIO write transaction does not necessarily have a size associated with it. Given a bus error con-
dition whereby a packet delimiting control symbol is missed, the target hardware could continue writing data beyond
the intended address space, thus possibly corrupting memory. Hardware implementations should set up page bounda-
ries so this condition does not occur. In such an implementation, should a transaction cross the boundary, an error
should be indicated and the transaction discarded.

1.3.5 Link Behavior Under Error
Transmission error detection is done at the input port, and all transmission error recovery is also initiated at the input
port. Error detection can be done in a number of ways and at differing levels of complexity depending upon the
requirements and implementation of a device. 

1.3.5.1 Recoverable Errors
Four basic types of errors are detected by a port: an error on a packet, an error on a control symbol, an indeterminate
error (an S bit parity failure), and a time-out waiting for a control symbol. A detailed state machine description of
the behavior described in the sections below is included in Section A.2, "Error Recovery". The error recovery mech-
anism requires that a copy of each transmitted data packet be retained by the sending port so that the packet can be
retransmitted if it is not accepted by the receiving port. The copy is retained until the sending port either receives a
packet-accepted control symbol for the packet or determines that the packet has encountered an unrecoverable error
condition.

When a sending port detects that the receiving port has not accepted a packet because one or more of the errors
listed above has occurred (or the port has received a retry control symbol), the sending port resets the link time-out
counters for the affected packet and all subsequently transmitted data packets. This prevents the generation of spuri-
ous time-out errors. 

Any awaiting higher priority data packets are transmitted and all unaccepted data packets are retransmitted by the
sending port. The number of times a data packet is retransmitted due to a recoverable error before the sending port
declares an unrecoverable error condition exists is implementation dependent.

1.3.5.1.1 Packet Errors
Three types of packet errors exist: a packet with an unexpected ackID value, a corrupted packet indicated by a bad
CRC value, and a packet that overruns some defined boundary such as the maximum data payload or a transac-
tional boundary as described in Section 1.3.4. A processing element that detects a packet error immediately tran-
sitions into an “Input Error-stopped” state and silently discards all new packets until it receives a restart-from-
error control symbol from the sender. The device also sends a packet-not-accepted control symbol with the
received ackID value back to the sender. The sender then initiates recovery as described in Section  1.3.5.1.2  for
unexpected control symbols. 

1.3.5.1.2 Control Symbol Errors
The two types of control symbol errors are uncorrupted protocol violating control symbols, such as a packet-
accepted, packet-retry, or packet-not-accepted control symbol which is either unsolicited or has an unexpected
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ackID value, or a corrupt control symbol. A corrupt control symbol is detected as a mismatch between the true
and complement 16-bit halves of the aligned control symbol. A time-out on an acknowledge control symbol for a
packet is treated like an acknowledge control symbol with an unexpected ackID value. An example of the first
case, an uncorrupted protocol violating acknowledgment control symbol which has an unexpected ackID value,
causes the receiving device to enter an “Output Error-stopped” state, immediately stop transmitting new packets,
and issue a restart-from-error control symbol. The restart-from-error control symbol receives a response contain-
ing interesting receiver internal state, including the expected ackID. This expected ackID indicates to the sender
where to begin re-transmission because the interface may have gotten out of sequence. The sender then backs up
to the appropriate unaccepted packet and begins re-transmission. 

For example, the sender transmits packets labeled ackID 2, 3, 4, and 5. It receives acknowledgments for packets
2, 4 and 5, indicating a probable error associated with ackID 3. The sender then stops transmitting new packets
and sends a restart-from-error control symbol to the receiver. The receiver then returns a response control symbol
indicating which packets it has received properly. These are the possible responses and the sender’s resulting
behavior:

• expecting ackID = 3 - sender must re-transmit packets 3, 4, and 5
• expecting ackID = 4 - sender must re-transmit packets 4 and 5
• expecting ackID = 5 - sender must re-transmit packet 5
• expecting ackID = 6 - receiver got all packets, resume operation
• expecting ackID = anything else - fatal (non-recoverable) error
The second case, a corrupt control symbol, causes the receiver to enter the “Input Error-stopped” state and send a
packet-not-accepted control symbol with an undefined ackID value to the sender. This informs the sending device
that a transmission error has occurred and it will enter the recovery process described in the first control symbol
error case described above. 

1.3.5.1.3 Indeterminate Errors
An indeterminate error is an S bit parity error in which it is unclear whether the information being received is for
a packet or a control symbol. These errors shall be handled as a corrupt con1trol symbols. 

1.3.6 CRC Operation
A 16-bit CRC is selected as the method of error detection for the 8/16 LP-LVDS physical layer. This CRC is generated
over all of a packet header, and all of the data payload except the first 6 bits of the added physical layer fields as shown
in Figure 1-7. This checksum is appended to a packet in one of two ways. For a packet that has up to 80 bytes of header
(including all logical, transport, and 8/16 LP-LVDS fields) and logical data payload, a single CRC value is appended to
the packet. For packets with greater than 80 bytes of header and logical data payload, a CRC value is inserted after the
first 80 bytes, aligning it to the first half of the 32-bit alignment boundary, and a second CRC value is appended at the
end of the packet. The second CRC value is a continuation of the first and included in the running calculation, meaning
that the running CRC value is not re-initialized after it is inserted after the first 80 bytes of the packet. This allows
intervening devices to regard the embedded CRC value as 2 bytes of packet payload for CRC checking purposes. 

NOTE
The embedded CRC value is itself used in the running CRC. As a result, from the CRC generator’s point of view the run-
ning CRC value is guaranteed to be all logic 0’s because the running CRC is XORed with itself. This fact may be useful
in an implementation.
The early CRC value can be used by the receiving processing element to validate the header of a large packet and start
processing the data before the entire packet has been received, freeing up resources earlier and reducing transaction
completion latency. If the final appended CRC value does not cause the total packet to align to the 32-bit boundary, a 2
byte pad of all logic 0s is postpended to the packet. The pad of logic 0s allows the CRC check to always be done at the
32-bit boundary. 

NOTE
While the embedded CRC value can be used by a processing element to start processing the data within a packet before
receiving the entire packet, it is possible that upon reception of the end of the packet the final CRC value for the packet
is incorrect. This would result in a processing element that has processed data that may have been corrupted. Outside
of the error recovery mechanism described in Section 1.3.5, the RapidIO Interconnect Specification does not address
the occurrence of such situations nor does it suggest a means by which a processing element would handle such situa-
tions. Instead, the mechanism for handling this situation is left to be addressed by the device manufacturers for devices
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that implement the functionality of early processing of packet data.
Switch devices shall maintain the packet error coverage internally in order to preserve the integrity of the packets
though the fabric. This will prevent undetected device internal errors such as SRAM bit errors from silently corrupting
the system. The simplest method for preserving error coverage is to pass the CRC values through the switch as part of
the packet. This works well for all non-maintenance packets whose CRC does not change as the packets are trans-
ported from source to destination thought the fabric. Maintaining error detection coverage is more complicated for
maintenance packets as their hop_count and CRC change every time they pass through a switch. 

Figure 1-9  is an example of a naturally 32-bit aligned packet of less than or equal to 80 bytes. 

Figure 1-10  is an example of a naturally 32-bit aligned packet of greater than 80 bytes. 

  Figure 1-11 is an example of a padded 32-bit aligned packet of less than or equal to 80 bytes. 

Figure 1-12 is an example of a padded 32-bit aligned packet of greater than 80 bytes. 

Figure 1-9. Naturally Aligned Packet Bit Stream Example 1

Figure 1-10. Naturally Aligned Packet Bit Stream Example 2

Figure 1-11. added Aligned Packet Bit Stream Example 1
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Figure 1-12. Padded Aligned Packet Bit Stream Example 2
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1.3.7 CRC Code

The CCITT polynomial X16+X12+X5+1 is a popular CRC code. The initial value of the CRC is 0xFFFF (all logic 1s).
For the CRC calculation, the uncovered 6 bits are treated as logic 0s. As an example, a 16-bit wide parallel calculation
is described in the equations in Table 1-4. Equivalent implementations of other widths can be employed. 

where:

C00–C15 contents of the new check symbol

e00–e15 contents of the intermediate value symbol
e00 = d00 XOR c00
e01 = d01 XOR c01
through 
e15 = d15 XOR c15

d00–d15 contents of the next 16 bits of the packet

c00–c15 contents of the previous check symbol

assuming the pipeline described in Figure 1-13.

Table 1-4. Parallel CRC Intermediate Value Equations
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C00 x x x x

C01 x x x x

C02 x x x x

C03 x x x x x

C04 x x x x x

C05 x x x x x

C06 x x x x x x

C07 x x x x x x x

C08 x x x x x x x x

C09 x x x x x x x x

C10 x x x x x x x x

C11 x x x x

C12 x x x x x

C13 x x x x x

C14 x x x x x

C15 x x x x x
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1.3.8 Maximum Packet Size
The maximum packet size permitted by the 8/16 LP-LVDS specification is 276 bytes. This includes all packet logical,
transport, and physical layer header information, data payload, and required CRC bytes. 

1.4 Link Maintenance Protocol
To initialize, explore, and recover from errors it is necessary to have a secondary mechanism to communicate between
connected system devices. This mechanism is used to establish communications between connected devices (described in
Section 2.6.1, “Link Initialization”), attempt automatic error recovery as described above in Section 1.3.5, “Link Behav-
ior Under Error”, and allows software-managed link maintenance operations. 

This protocol involves a request and response pair between electrically connected (linked) devices in the system. For soft-
ware management, the request is generated through ports in the configuration space of the sending device. An external
processing element write of a command to the link-request register with a Partition I: Input/Output Logical Specification
maintenance write transaction causes an aligned link-request control symbol to be issued onto the output port of the
device, but only one link-request can be outstanding on a link at a time. The device that is linked to the sending device
shall respond with an aligned link-response control symbol if the link-request command required it to do so. The external
processing element retrieves the link-response by polling the link-response register with I/O logical maintenance read
transactions. A device with multiple RapidIO interfaces has a link-request and a link-response register pair for each cor-
responding RapidIO interface. 

The automatic recovery mechanism relies on the hardware generating link-request control symbols under the transmis-
sion error conditions described in Section 1.3.5.1 and using the corresponding link-response information to attempt
recovery. 

Automatic link initialization also depends upon hardware generation of the appropriate link-requests and link-responses. 

1.4.1 Command Descriptions
Table 1-5 contains a summary of the link maintenance commands that use the link maintenance protocol described
above. Three link request commands are defined currently. The input-status command generates a paired link-response
control symbol; the reset and send-training commands do not. 

Figure 1-13. CRC Generation Pipeline

Table 1-5. Secondary Link Maintenance Command Summary

Command Description

Reset Resets the device

Input-status Returns input port status; functions as a restart-from-error control symbol under error 
conditions. 
Generates a paired link-response control symbol.

Send-training Stops normal operation and transmits 256 training pattern iterations
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1.4.1.1 Reset and Safety Lockouts
The reset command causes the receiving device to go through its hard reset or power up sequence. All state
machines and the configuration registers reset to the original power on states. The reset command does not generate
a link-response control symbol. 

Due to the undefined reliability of system designs it is necessary to put a safety lockout on the reset function of the
link request control symbol. A device receiving a reset command in a link-request control symbol shall not perform
the reset function unless it has received four reset commands in a row without any other intervening packets or con-
trol symbols, except idle control symbols. This will prevent spurious reset commands inadvertently resetting a
device.

1.4.1.2 Input-status
The input-status command requests the receiving device to return the ackID value it expects to next receive from the
sender on its input port and the current input port operational status for informational purposes. This command
causes the receiver to flush its output port of all control symbols generated by packets received before the input-sta-
tus command. The receiver then responds with a link-response control symbol. 

The input-status command is the command used by the hardware to recover from transmission errors. If the input
port had stopped due to a transmission error that generated a packet-not-accepted control symbol back to the sender,
this input-status command acts as a restart-from-error control symbol, and the receiver is re-enabled to receive new
packets after generating the link-response control symbol. This restart-from-error control symbol may also be used
to restart the receiving device if it is waiting for a restart-from-retry control symbol after retrying a packet. This sit-
uation can occur if transmission errors are encountered while trying to re-synchronize the sending and receiving
devices after the retry.

1.4.1.3 Send-training
The send-training command causes the recipient device to suspend normal operation and begin transmitting a spe-
cial training pattern. The receiving device transmits a total of 256 iterations of the training pattern followed by at
least one idle control symbol and then resumes operation. The usage of this command is described in
Section 2.6.1.1, “Sampling Window Alignment.” The send-training command does not generate a link-response
control symbol. 

1.4.2 Status Descriptions
The input-status request generates two pieces of information that are returned in the link-response:

• link status
• ackID usage
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The first type of data is the current operational status of the interface. These status indicators are described in Table    
1-6.

The retry-stopped state indicates that the port has retried a packet and is waiting to be restarted. This state is cleared
when a restart-from-retry (or a link-request/input-status) control symbol is received. The error-stopped state indicates
that the port has encountered a transmission error and is waiting to be restarted. This state is cleared when a link-
request/input-status control symbol is received.

The second field returned in the link-response control symbol is state information about the acknowledge identifier
usage. The input port returns a value indicating the next ackID expected to be received by the port. The automatic error
recovery mechanism uses this information to determine where to begin packet re-transmission after a transmission
error condition has been encountered. 

2 Chapter 2 - Packet and Control Symbol Transmission

This RapidIO chapter defines packet and control symbol delineation and alignment on the physical port and mechanisms to
control the pacing of a packet. Each input and output port is either one or two bytes wide. All 8/16 LP-LVDS defined proto-
cols are used identically for both the 8- and 16-bit wide versions of the physical interface. The only difference is the number
of pins used to transmit the packets and aligned control symbols. 

2.1 Packet Start and Control Symbol Delineation
The control framing signal used to delineate the start of a packet or a control symbol on the physical port is a no-return-
to-zero, or NRZ signal. This frame signal is toggled for the first symbol (see the Note in Section 1.3.2, “Packet Protec-
tion”) of each packet and for the first control symbol of each aligned control symbol. Therefore, if a 16-bit symbol con-
tains a RapidIO logical packet format type (the ftype field in the RapidIO logical specifications) or a control symbol
(ttype) field, the frame signal shall toggle. In order for the receiving processing element to sample the data and frame sig-
nals, a data reference signal is supplied that toggles on all possible transitions of the interface pins. This type of data ref-
erence signal is also known as a double-data-rate clock. These received clocks on devices with multiple RapidIO ports
have no required frequency or phase relationship. 

The framing signal is not toggled for other symbols such as those containing remaining packet header and data bytes.
However, it is toggled for all idle control symbols between packets. This means that the maximum toggle rate of the con-
trol framing signal is every 4 bytes, and the framing signal is only allowed to toggle on every fourth byte. Therefore, the
framing signal is aligned to a 32-bit boundary as are all of the packets and aligned control symbols. Additionally, the data
reference signal shall transition from low to high on this same boundary. Examples of these constraints are shown in Fig-
ure 2-1 and Figure 2-3  for an 8-bit port and Figure 2-2  and Figure 2-4 for a 16-bit port. 

Table 1-6. Link Status Indicators

Status Indicator Description

OK The port is working properly.

Error The port has encountered an unrecoverable error and has shut down. 

Retry-stopped1

1. Valid only with the Stopped indicator

The port has been stopped due to a retry. 

Error-stopped1 The port has been stopped due to a transmission error. 
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Figure 2-1. Framing Signal Maximum Toggle Rate for 8-bit Port

Figure 2-2. Framing Signal Maximum Toggle Rate for 16-bit Port

Figure 2-3. Control Symbol Delineation Example for 8-bit Port
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Errors on the framing and data reference signals can be detected either directly by verifying that the signals transition
only when they are allowed and expected to transition, or indirectly by depending upon detection of packet header or
CRC or control symbol corruption, etc. if these signals behave improperly. Either method of error detection on the fram-
ing and data reference signals allows error recovery by following the mechanisms described in Section 1.3.5.1, “Recover-
able Errors” and Section A.3, “Error Recovery.” 

For simplicity, the data reference signal will not be included in any additional figures in this document. It is always rising
on the 32-bit boundary when it is legal for the frame signal to toggle as shown in Figure 2-1 through Figure 2-4. 

2.2 Packet Termination
A packet is terminated in one of two ways: 

• The beginning of a new packet marks the end of a previous packet. 

• The end of a packet may be marked with one of the following: an aligned end-of-packet (eop), restart-from-retry, 
link-request, or stomp control symbol.

The stomp control symbol is used if a transmitting processing element detects a problem with the transmission of a
packet. It may choose to cancel the packet by sending the stomp control symbol instead of terminating it in a different,
possibly system fatal, fashion like corrupting the CRC value. 
The restart-from-retry control symbol can cancel the current packet as well as be transmitted on an idle link. This control
symbol is used to enable the receiver to start accepting packets after the receiver has retried a packet. 

The link-request control symbol can cancel the current packet as well as be transmitted on an idle link and has several
applications. It can be used by software for system observation and maintenance, and it can be used by software or hard-
ware to enable the receiver to start accepting packets after the receiver has refused a packet due to a transmission error as
described in Section 1.3, “Error Detection and Recovery.”

A receiver shall drop a canceled packet without generating any errors and shall then respond with a packet-retry acknowl-
edgment control symbol unless an acknowledgment has already been sent for that packet or the receiver is stopped due to
an earlier retry or error. If the receiver is not already stopped it shall follow the packet retry mechanism if the packet was
canceled with a control symbol other than a restart-from-retry or a link-request/input-status control symbol. 

Figure 2-5 is an example of a new packet marking the end of a packet. 

Figure 2-4. Control Symbol Delineation Example for 16-bit Port

Figure 2-5. Header Marked End of Packet (8-bit Port)
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Figure 2-6 is an example of an aligned end-of-packet control symbol marking the end of a packet. The stomp, link-
request, and restart-from-retry control symbol cases look similar. 

2.3 Packet Pacing
If a device cannot transmit a packet as a contiguous stream of control symbols, it may force wait states by inserting idle
control symbols called pacing idles. As with the other control symbols, the pacing idle control symbols are always fol-
lowed by a bit-wise inverted copy and are then called aligned pacing idle control symbols. Any number of aligned pacing
idle control symbols can be inserted, up to some implementation defined limit, at which point the sender should instead
send a stomp control symbol and cancel the packet in order to attempt to transmit a different packet. figure 2-7 shows an
example of packet pacing. These idle control symbols are ignored by the receiving device, and more data is sent when it
becomes available. Pacing idle control symbols can be embedded anywhere in a packet where they can be legally deline-
ated. 

The receiver of a packet may request that the sender insert pacing idle control symbols on its behalf by sending a throttle
control symbol specifying the number of aligned pacing idle control symbols to delay. The packet sender then inserts that
number of aligned pacing idles into the packet stream. If additional delay is needed, the receiver can send another throttle
control symbol. 

If the receiver requests too many aligned pacing idles indicating an excessive delay, determined by some implementation
defined limit, it should terminate the packet transmission by issuing a packet-retry acknowledge control symbol. Alterna-
tively, the sender may issue a stomp control symbol to cancel the packet if too many aligned pacing idle control symbols
are requested by the receiver. The throttle control symbol shall be honored because it is used to force insertion of idle
control symbols for clock re-synchronization in the receiver as described in Chapter 5, “System Clocking Considera-
tions.”

The maximum allowed response time from the receipt of the last byte of an aligned throttle control symbol at the input
pins to the appearance of the first byte of an aligned pacing idle control symbol on the output pins is 40 interface clocks
(80 data ticks).

Note that for CRC values for a packet, the aligned pacing idle control symbols are not included in the calculation.

2.4 Embedded Control Symbols
Control symbols can be embedded anywhere in a packet in the same fashion as pacing idle control symbols, as long as all
delineation and alignment rules are followed.

Figure 2-6. End-Of-Packet Control Symbol Marked End of Packet (16-bit Port)

Figure 2-7. Pacing Idle Insertion in Packet (8-bit Port)
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As with the pacing idle control symbols, the embedded aligned control symbols are not included in the CRC value calcu-
lation for the packet. 

A special error case exists when a corrupt embedded control symbol is detected. In this case a packet-not-accepted con-
trol symbol shall be generated and the embedding packet is discarded. 

2.5 Packet to Port Alignment
This section shows examples of packet transmission over the 8-bit and 16-bit interfaces. The corresponding control sym-
bol alignment is shown in Section 3.6, “Control Symbol to Port Alignment.” 

Figure 2-10 shows the byte transmission ordering on a port through time using a small transport format ftype 2 packet
from the RapidIO Input/Output Logical Specification and RapidIO Common Transport Specification. Note that for this
example the two bytes following the CRC would indicate some form of packet termination such as a new packet or an
eop.

Figure 2-8. Embedded Control Symbols for 8-bit Port

Figure 2-9. Embedded Control Symbols for 16-bit Port
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Figure 2-11 shows the same packet transmitted over a 16-bit port. 

Figure 2-12 shows the same example again but with the large transport format over the 8-bit port. Note that for this exam-

Figure 2-10. Request Packet Transmission Example 1

Figure 2-11. Request Packet Transmission Example 2
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ple the two bytes following the CRC of the packet are all logic 0 pads. 

Figure 2-13  is the same packet as for Figure  but over the 16-bit port. 

Figure 2-14 and Figure 2-15 show the ftype 13 response packet for request example—the small transport format packet.

Figure 2-12. Request Packet Transmission Example 3

Figure 2-13. Request Packet Transmission Example 4
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Note that the two bytes following the packet CRC may be logic 0 pads depending on the size of the packet. 

Figure 2-14. Response Packet Transmission Example 1

Figure 2-15. Response Packet Transmission Example 2
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2.6 System Maintenance
A necessary part of any system are methods for initializing, configuring, and maintaining the system during operation. 

2.6.1 Link Initialization
Because the RapidIO 8/16 LP-LVDS interface is source synchronous, it is necessary to initialize the input ports so that
packets and control symbols can be accurately received. 

There are two procedures needed for initializing an 8/16 LP-LVDS input port:

• Aligning the sampling window of the input clock and data signals for reliable sampling of incoming data 
• Aligning the input to the 32-bit boundary for proper packet and control symbol extraction
These two procedures can be done in parallel by the receiver. 

2.6.1.1 Sampling Window Alignment
Depending upon the device implementation, the data sampling window of the receiver may need to be adjusted to
accomplish reliable data sampling. Adjusting the sampling window for an input port requires that a special pre-
defined signal pattern, or training pattern, be applied on the input pins during initialization. Such a training pattern
allows the receiver to align the input signals to properly sample the data and frame signals. The 8/16 LP-LVDS
training pattern is defined in Section 3.5, “Training Pattern Format.” It is aligned to the 32-bit boundary, and it is
easily distinguishable from control symbols and packet headers. 

The initialization procedure described here applies for system power-up and normal operation, such as system reset
and error recovery. Sampling window alignment is needed for a device when it is reset or when it has lost previ-
ously established alignment due to events such as excessive system noise or power fluctuations. The reception of an
unsolicited training pattern by a port is a link protocol violation. It causes the port to enter the “Output Error-
stopped” state and indicates that the attached port has lost input data sampling window alignment and has most
likely lost some previously sent packets and control symbols. The port shall execute the “Output Error-stopped”
recovery sequence specified in Section 1.3.5.1.2 after communication with the attached port is re-established. Link
initialization for other scenarios (such as hot swap) are not specifically addressed. The actual method implemented
by a device to adjust its internal sampling window is beyond the scope of this specification. 

Following are the events of an alignment sequence coming out of reset or upon losing synchronization: 

• The port begins the alignment sequence by transmitting the link-request/send-training control symbol followed by 
transmitting the training pattern 256 times to the attached port. 

• At the same time, the port tries to detect and align its input sampling window to the training pattern that is (or will 
eventually be) sent from the attached port. If the port has completed transmitting the 256 iterations of the training 
pattern but has not yet successfully adjusted its input sampling window, it again sends a link-request/send-training 
control symbol and another 256 iterations of the training pattern, and continues trying to align its input sampling 
window to the pattern coming from the attached port.

• Eventually, if the attached port is operating, the port will finish adjusting its input sampling window to the training 
pattern coming from the attached port. At this point, the port shall send one idle control symbol (instead of sending 
a link-request/send-training control symbol) between sending 256 iterations of its training pattern. 

• The port shall continue to send one idle control symbol after sending 256 iterations of its training pattern until it 
has received an idle control symbol.

The port signals that it no longer requires the training pattern by replacing the transmission of link-request/send-
training control symbol with one idle control symbol. The link is regarded as operational when the port is transmit-
ting one idle control symbol between sending the 256 iterations of the training pattern and is successfully receiving
one idle control symbol in between the 256 iterations of the training pattern, and the port can transition into normal
operation (“OK”) mode.

A port that does not require sampling window adjustment does not follow this sequence out of reset and instead
shall begin to transmit idle control symbols immediately upon leaving reset. If a port that does not require sampling
window adjustment is connected to a port that does require adjustment, then the port that requires training shall
begin the alignment sequence by transmitting a link-request/send-training control symbol followed by 256 itera-
tions of the training pattern to indicate that the alignment sequence is required. The port that does not require train-
ing shall respond with 256 iterations of the training pattern followed by one idle control symbol and continue the
alignment sequence until it has received one idle control symbol.

Periodically a port may need to adjust its sampling window to maintain proper window alignment. In such a case, a
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port shall issue a link-request/send-training control symbol to indicate to the attached port that the port requires
maintenance training. Since this is a request for maintenance training, the link-request/send-training control symbol
is followed by normal link traffic, not by the training pattern. When maintenance training is requested, the output of
the port receiving the request shall end the transmission of packets and control symbols as quickly as possible with-
out violating the link protocol and then transmit 256 iterations of the training pattern followed by at least one idle
control symbol and resume normal operation. 

Because an 8-bit wide port can be connected to a 16-bit wide port, the training pattern is also used to detect the usa-
ble width of the 16-bit interface. If the training pattern is discovered on data bits 0-7 of a 16-bit interface and not on
data bits 8-15, it is assumed that the connected port is an 8-bit port. The operation of the corresponding 16-bit out-
put port shall then degrade to 8-bit mode, with the port treating bits 8-15 of its output port as a replication of bits 0-
7. Operation of an 8-bit interface connected to the data bits 8-15 of a 16-bit interface is undefined. 

The example state machine in Section A.1, “Link Initialization and Maintenance Mechanism” shows how the
required behavior may be implemented. 

2.6.1.2 32-Bit Boundary Alignment
The input port shall be aligned to the 32-bit boundary of the connected output port. To accomplish this alignment,
all control symbols are delineated on the 32-bit boundary, thereby providing a steady stream of properly aligned
frame signal transitions. 

2.6.2 Multicast-Event
The Multicast-Event control symbol provides a mechanism through which notice that some system defined event has
occurred, can be selectively multicast throughout the system. Refer to Section 3.2 for the format of the multicast-event
control symbol.

When a switch processing element receives a Multicast-Event control symbol, the switch shall forward the Multicast-
Event by issuing a Multicast-Event control symbol from each port that is designated in the port's CSR as a Multicast-
Event output port. A switch port shall never forward a Multicast-Event control symbol back to the device from which
it received a Multicast-Event control symbol regardless of whether the port is designated a Multicast-Event output or
not.

It is intended that at any given time, Multicast-Event control symbols will be sourced by a single device. However, the
source device can change (in case of failover, for example). In the event that two or more Multicast-Event control sym-
bols are received by a switch processing element close enough in time that more than one is present in the switch at the
same time, at least one of the Multicast-Event control symbols shall be forwarded. The others may be forwarded or
discarded (device dependent). 

The system defined event whose occurrence Multicast-Event gives notice of has no required temporal characteristics.
It may occur randomly, periodically, or anything in between. For instance, Multicast-Event may be used for a heartbeat
function or for a clock synchronization function in a multiprocessor system.

In an application such as clock synchronization in a multiprocessor system, both the propagation time of the notifica-
tion through the system and the variation in propagation time from Multicast-Event to Multicast-Event are of concern.
For these reasons and the need to multicast, control symbols are used to convey Multicast-Events as control symbols
have the highest priority for transmission on a link and can be embedded in packets.

While this specification places no limits on Multicast-Event forwarding delay or forwarding delay variation, switch
functions should be designed to minimize these characteristics. In addition, switch functions shall include in their
specifications the maximum value of Multicast-Event forwarding delay (the maximum value of Multicast-Event for-
warding delay through the switch) and the maximum value of Multicast-Event forwarding delay variation (the maxi-
mum value of Multicast-Event forwarding delay through the switch minus the minimum value of Multicast-Event
forwarding delay through the switch).

2.7 Power Management
Power management is currently beyond the scope of this specification and is implementation dependent. A device that
supports power management features can make these features accessible to the rest of the system in the device’s local
configuration registers. 
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3 Chapter 3 - Control Symbol Formats

This chapter defines the RapidIO physical layer control symbols described in Chapter 1, “Physical Layer Protocol.” Note
that the S bit defined in Section 1.2.1 is always set to logic 1 and the S bit (also defined in Section 1.2.1) is always set to
logic 0 for the physical layer control symbols. All control symbols are aligned to 32 bits with the last 16 bits as a bit-wise
inverse of the first 16. A device receiving an undefined control symbol shall treat the control symbol as an idle control sym-
bol for forward compatibility. 

3.1 Acknowledgment Control Symbol Formats
An acknowledgment control symbol is a transmission status indicator issued by a processing element when it has
received a packet from another processing element to which it is electrically connected. Acknowledgment control sym-
bols are used for flow control and resource de-allocation between adjacent devices. The following are the different
acknowledgment control symbols that can be transmitted back to sending elements from receiving elements: 

• Packet-accepted 
• Packet-retry 
• Packet-not-accepted 
Because receipt of an acknowledgment control symbol does not imply the end of a packet, a control symbol can be
embedded in a packet, as well as sent when the interconnect is idle. Embedded control symbols are discussed in
Section 2.4, “Embedded Control Symbols.” 

Field definitions for the acknowledgment control symbols are shown in Table 3-1.

3.1.1 Packet-Accepted Control Symbol
The packet-accepted acknowledgment control symbol indicates that the adjacent device in the interconnect fabric has
taken responsibility for sending the packet to its final destination and that resources allocated by the sending device
can be released. This control symbol shall be generated only after the entire packet has been received and found to be
free of detectable errors. This control symbol format is displayed in Figure 3-1.

Figure 3-1. Type 0 Packet-Accepted Control Symbol Format

3.1.2  Packet-Retry Control Symbol
A packet-retry acknowledgment control symbol indicates that the adjacent device in the interconnect fabric was not
able to accept the packet due to some temporary resource conflict such as insufficient buffering and the source should

Table 3-1. Field Definitions for Acknowledgment Control Symbols

Field Definition

packet_ackID Acknowledgment ID is the packet identifier for acknowledgments back to the 
request or response packet sender.

buf_status buf_status field indicates the number of maximally sized packets that can be 
received, described in Section 1.2.1

cause cause field indicates the type of error encountered by an input port, defined in 
Table 3-2
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retransmit the packet. This control symbol can be generated at any time after the start of a packet, which allows the
sender to cancel the packet and try sending a packet with a different priority or destination. This will avoid wasting
bandwidth by transmitting all of the rejected packet. This control symbol format is displayed in Figure 3-2.

Figure 3-2. Type 1 Packet-Retry Control Symbol Format

3.1.3 Packet-Not-Accepted Control Symbol
A packet-not-accepted acknowledgment control symbol means that the receiving device could not accept the packet
due to an error condition, and that the source should retransmit the packet. This control symbol can be generated at any
time after the start of a packet, which allows the sender to cancel the packet and try sending a packet with a different
priority or destination. Generating this control symbol at any point in packet transmission avoids wasting bandwidth
by transmitting all of the rejected packet. The packet-not-accepted control symbol contains a field describing the cause
of the error condition, shown in  If the receiving device is not able to specify the cause for some reason, or the cause is
not one of defined options, the general error encoding shall be used. This control symbol format is displayed in figure
3-3. 

Figure 3-3. Type 2 Packet-Not-Accepted Control Symbol Format
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3.1.4 Canceling Packets
A packet-retry or packet-not-accepted acknowledgment control symbol that is received for a packet that is still being
transmitted may result with the sender canceling the packet. 

The sending device can use the stomp (see Chapter 2, “Packet and Control Symbol Transmission”), restart-from-retry
(in response to a packet-retry control symbol), or link-request (in response to a packet-not-accepted control symbol)
control symbol to cancel the packet. Because the receiver has already rejected the packet, it will not detect any induced
error. Alternatively, the sending device can choose to complete transmission of the packet normally.

3.2 Packet Control Symbol Formats
Packet control symbols are used for packet delineation, transmission, pacing, and other link interface control functions as
described in Chapter 2, “Packet and Control Symbol Transmission.”

The packet control symbols are the throttle, stomp, restart-from-retry control symbols, idle, end-of-packet (eop), and mul-
ticast-event control symbols, which are specified in the sub_type field of the type 4 control symbol format. The packet
control symbols also have a contents field, which has a different meaning depending upon the particular control symbol.
Of these control symbols, all control symbols that are not defined as terminating a packet may be embedded within a
packet.

This control symbol format is displayed in Figure 3-4. 

Figure 3-4. Type 4 Packet Control Symbol Format

Table 3-3 shows how sub_type values function with values of the contents field. For the idle, eop, and multicast-event
control symbols the contents field is used as the buf_status field described in Section 1.2.1, whose encodings are specified
in Table 1-2. For a throttle control symbol, the contents field specifies the number of aligned pacing idle control symbols
that the sender should insert in the packet. One of the specified encodings indicates to the sender that it can immediately
begin to resume packet transmission, as can be seen in Table 3-4. For the stomp and restart-from-retry control symbols,
the contents field is unused and shall be tied to all logic 0’s and ignored by the receiving device. 

Table 3-3. sub_type and contents Field Definitions

sub_type Field 
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packets that can be received. Described in Section 1.2.1, encodings are 
defined in Table 1-2.

stomp 0b001 Unused, contents=0b0000

eop 0b010 Used as a buf_status field that indicates the number of maximum-sized 
packets that can be received. Described in Section 1.2.1, encodings are 
defined in Table 1-2.

restart-from-retry 0b011 Unused, contents=0b0000

throttle 0b100 Specifies the number of aligned pacing idles that the sender inserts in a 
packet. The encodings are defined in Table 9-4.
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The pacing idle count content field for a throttle control symbol is defined in Table 3-4

3.3 Link Maintenance Control Symbol Formats
Maintenance of a link is controlled by link-request/link-response control symbol pairs as described in the link mainte-
nance protocol of  Section 1.4. Each of the control symbols is described below:

• A link-request control symbol issues a command to or requests status from the device that is electrically connected, 
or linked, to the issuing device. The link-request control symbol is followed by a complemented version of itself as 
with the other control symbols. A link-request control symbol cannot be embedded in a packet, but can be used to 
cancel the packet. Under error conditions a link-request/input-status control symbol acts as a restart-from-error 
control symbol as described in Section 1.3.5.1, “Recoverable Errors.” This control symbol format is displayed in 
Figure 3-5. 

Multicast-event 0b101 Used as a buf_status field that indicates the number of maximally sized 
packets that can be received. Described in Section 1.2.1, encodings are 
defined in Table 1-2.

Reserved 0b110-111

Table 3-4. Throttle Control Symbol contents Field Definition

Encoding Definition

0b0000 1 aligned pacing idle control symbol

0b0001 2 aligned pacing idle control symbols

0b0010 4 aligned pacing idle control symbols

0b0011 8 aligned pacing idle control symbols

0b0100 16 aligned pacing idle control symbols

0b0101 32 aligned pacing idle control symbols

0b0110 64 aligned pacing idle control symbols

0b0111 128 aligned pacing idle control symbols

0b1000 256 aligned pacing idle control symbols

0b1001 512 aligned pacing idle control symbols

0b1010 1024 aligned pacing idle control symbols

0b1011-
1101

Reserved

0b1110 1 aligned pacing idle control symbol for oscillator 
drift compensation

0b1111 Stop transmitting pacing idles, can immediately 
resume packet transmission

Table 3-3. sub_type and contents Field Definitions(Continued)

sub_type Field 
Definition

sub_type 
Encoding contents Field Definition
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Figure 3-5. Type 5 Link-Request Control Symbol Format

The cmd, or command, field of the link-request control symbol format is defined in Table 3-5. 

• The link-response control symbol is used by a device to respond to a link-request control symbol as described in the 
link maintenance protocol described in Section 1.4. The link-response control symbol is the same as all other control 
symbols in that the second 16 bits are a bit-wise inversion of the first 16 bits. A link-response control symbol can be 
embedded in a packet. This control symbol format is displayed in Figure 3-6. 

Figure 3-6. Type 6 Link-Response Control Symbol Format

The ackID_status field of the link-response format is defined in table 3-6.
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The link_status field is defined in Table 3-7. Note that the ackID information is included in both fields for additional error
coverage if the receiver is working properly (encodings 8-15). 

3.4 Reserved Symbol Formats
The control symbols corresponding to stypes 0b011 and 0b111 are reserved.

3.5 Training Pattern Format
A training pattern is needed in order to properly set up the input port to sample information coming in off of the wires.
The training pattern is not delineated in the same way as are control symbols and packets, but is a special bit pattern that
can be easily recognized by the input port logic and is ignored by the input once the device can reliably sample informa-
tion from its input port. 

A training pattern can not be embedded in a packet or used to terminate a packet. All ongoing activity shall be stopped
gracefully before training patterns can be issued. 

Notice that the training pattern is a 64-bit pattern for 8-bit ports and a 128-bit pattern for 16-bit ports, with the frame sig-
nal switching at the same time as the data bits. This format provides 4 beats of logic 1 alternating with 4 beats of logic 0
for both the data bits and the frame signal for both port widths. The frame signal does not have to transition high to low or
low to high in phase with the data bits. The behavior of a device connected to an 8/16 LP-LVDS port with regards to the

0b101 Expecting ackID 5

0b110 Expecting ackID 6

0b111 Expecting ackID 7

Table 3-7. link_status Field Definition

link_status 
Encoding Port Status Description

0b0000 -
0b0001

Reserved

0b0010 Error Unrecoverable error encountered.

0b0011 Reserved

0b0100 Retry-stopped The port has been stopped due to a retry.

0b0101 Error-stopped The port has been stopped due to a transmission 
error; this state is cleared after the link-request/
input-status command is completed.

0b0110 -
0b0111

Reserved

0b1000 OK, ackID0 Working properly, expecting ackID 0. 

0b1001 OK, ackID1 Working properly, expecting ackID 1. 

0b1010 OK, ackID2 Working properly, expecting ackID 2. 

0b1011 OK, ackID3 Working properly, expecting ackID 3. 

0b1100 OK, ackID4 Working properly, expecting ackID 4. 

0b1101 OK, ackID5 Working properly, expecting ackID 5. 

0b1110 OK, ackID6 Working properly, expecting ackID 6. 

0b1111 OK, ackID7 Working properly, expecting ackID 7. 

Table 3-6. ackID_status Field Definition(Continued)

Encoding Description
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training pattern is described in Section 2.6.1.1, “Sampling Window Alignment.” 

Figure 3-7. Type 7 TRAINING Pattern Format

3.6 Control Symbol to Port Alignment
This section shows examples of control symbol transmission over the 8-bit and 16-bit interfaces. The corresponding
packet transmission alignment is shown in Section 2.5, “Packet to Port Alignment.” 

Figure 3-8 shows the byte transmission ordering on an 8-bit port through time using an aligned packet-accepted control
symbol as an example. 

16 or 32

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32-bit boundary

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 or 32

16 or 32

16 or 32

32-bit boundary (for 16-bit port only)

32-bit boundary (for 16-bit port only)

32-bit boundary

32-bit boundary

Frame signal

Preceding bits

Following bits
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Figure 3-8. Control Symbol Transmission Example 1

Figure 3-9 shows the same control symbol over the 16-bit interface. 

Figure 3-9. Control Symbol Transmission Example 2

4 Chapter 4 - 8/16 LP-LVDS Registers 

This chapter describes the Command and Status Register (CSR) set that allows an external processing element to determine
the capabilities, configuration, and status of a processing element using this physical layer specification. This chapter only
describes registers or register bits defined by this specification. Refer to the other RapidIO logical, transport, and physical
specifications of interest to determine a complete list of registers and bit definitions. All registers are 32-bits and aligned to
a 32-bit boundary. 

These registers utilize the Extended Features blocks and can be accessed using Partition I: Input/Output Logical Specifica-
tion maintenance operations. Any register offsets not defined are considered reserved for this specification unless otherwise
stated. Other registers required for a processing element are defined in other applicable RapidIO specifications and by the
requirements of the specific device and are beyond the scope of this specification. Read and write accesses to reserved reg-
ister offsets shall terminate normally and not cause an error condition in the target device. The Extended Features pointer
(EF_PTR) defined in the RapidIO logical specifications contains the offset of the first Extended Features block in the
Extended Features data structure for a device. The 8/16 LP-LVDS physical features block shall exist in any position in the
Extended Features data structure and shall exist in any portion of the Extended Features Space in the register address map
for the device. 

Table 4-1 describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO
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Extended Features register space, 

This chapter is divided up into three sections, each addressing a different type of RapidIO device. 

4.1 Generic End Point Devices
This section describes the 8/16 LP-LVDS registers for a general end point device. This Extended Features register block
is assigned Extended Features block ID=0x0001. 

4.1.1 Register Map
Table 4-2 shows the register map for generic RapidIO 8/16 LP-LVDS end point devices. The Block Offset is the offset
based on the Extended Features pointer (EF_PTR) to this block. This register map is currently only defined for devices
with up to 16 RapidIO ports, but can be extended or shortened if more or less port definitions are required for a device.
For example, a device with four RapidIO ports is only required to use register map space corresponding to offsets
[EF_PTR + 0x00] through [EF_PTR + 0x98]. Register map offset [EF_PTR + 0xA0] can be used for another Extended
Features block.

Table 4-1. Extended Feature Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned value1

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 

read - return logic 0

write - preserve current 
value2

2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 
for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

Table 4-2. Physical 8/16 LP-LVDS Register Map

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 8/16 LP-LVDS Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Port Response Time-Out Control CSR

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Reserved

0x48 Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

G
en

er
al

Po
rt 

0
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4.1.2 Command and Status Registers (CSRs)
Refer to table 4-1 for the required behavior for accesses to reserved registers and register bits. 

4.1.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-
fies this as the generic end point port maintenance block header. 

4.1.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

4.1.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge, and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents

0x60 Reserved

0x68 Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs

0x220 Reserved

0x228 Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR

Table 4-3. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0001 Hard wired Extended Features ID

Table 4-4. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 4-2. Physical 8/16 LP-LVDS Register Map(Continued)

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

Po
rt 

1
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between 3 and 5 seconds. 

4.1.2.4 Port Response Time-out Control CSR (Block Offset 0x20 Word 1)
The port response time-out control register contains the time-out timer count for all ports on a device. This time-out
is for sending a request packet to receiving the corresponding response packet.The reset value is the maximum
time-out interval, and represents between 3 and 5 seconds. 

4.1.2.5 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

4.1.2.6 Port n Error and Status CSRs (Block Offsets 0x58, 78, ..., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information. 

Table 4-5. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out_value All 1s time-out interval value

24-31 — Reserved

Table 4-6. Bit Settings for Port Response Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out_value All 1s time-out interval value

24-31 — Reserved

Table 4-7. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0 Host see 
footnote1

1. The Host reset value is implementation dependent

A Host device is a device that is responsible for system 
exploration, initialization, and maintenance. Agent or slave devices 
are typically initialized by Host devices. 
0b0 - agent or slave device
0b1 - host device

1 Master Enable see 
footnote2

2. The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed 
to issue requests into the system. If the Master Enable is not set, the 
device may only respond to requests. 
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see 
footnote3

3. The Discovered reset value is implementation dependent

This device has been located by the processing element responsible 
for system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing 
element

3-31 — Reserved
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Table 4-8. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition. This bit is set when 
bit 13 is set. Once set remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only). 

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set 
remains set until written with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation.This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port. 

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the 
adjacent device. This bit and bit 31 are mutually exclusive (read-
only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. 
This bit and bit 30 are mutually exclusive (read-only).
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4.1.2.7 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

Table 4-9. Bit Settings for Port n Control CSRs (continued)

Bit Name Reset 
Value Description

0 Output Port Width see 
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see 
footnote2

Output port transmit enable: 
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

2 Output Port Driver 
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins 
normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see 
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver 
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to 
any packets or control symbols

7 — Reserved

8 Error Checking 
Disable

0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and 
an error condition occurs is undefined

9 Multicast-event 
Participant

see 
footnote5

Send incoming multicast-event control symbols to this port 
(multiple port devices only) 

10-30 — Reserved

31 Port Type 0b0 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port
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4.2 Generic End Point Devices, software assisted error recovery option
This section describes the 8/16 LP-LVDS registers for a general end point device that supports software assisted error
recovery. This is most useful for devices that for whatever reason do not want to implement error recovery in hardware
and to allow software to generate link request control symbols and see the results of the responses. This Extended Fea-
tures register block is assigned Extended Features block ID=0x0002. 

4.2.1 Register Map
Table 4.10 shows the register map for generic RapidIO 8/16 LP-LVDS end point devices with software assisted error
recovery. The Block Offset is the offset based on the Extended Features pointer (EF_PTR) to this block. This register
map is currently only defined for devices with up to 16 RapidIO ports, but can be extended or shortened if more or less
port definitions are required for a device. For example, a device with four RapidIO ports is only required to use register
map space corresponding to offsets [EF_PTR + 0x00] through [EF_PTR + 0x98]. Register map offset [EF_PTR +
0xA0] can be used for another Extended Features block. 

1. The output port width reset value is implementation dependent
2. The output port enable reset value is implementation dependent
3. The input port width reset value is implementation dependent
4. The Input port enable reset value is implementation dependent
5. The multicast-event participant reset value is implementation dependent

Table 4-10. Physical 8/16 LP-LVDS Register Map

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 8/16 LP-LVDS Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Port Response Time-Out Control CSR

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Port 0 Link Maintenance Request CSR Port 0 Link Maintenance Response CSR

0x48 Port 0 Local ackID Status CSR Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

0x60 Port 1 Link Maintenance Request CSR Port 1Link Maintenance Response CSR

0x68 Port 1 Local ackID Status CSR Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs
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4.2.2 Command and Status Registers (CSRs)
Refer to Table 4-1 for the required behavior for accesses to reserved registers and register bits. 

4.2.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-
fies this as the generic end point port maintenance block header. 

4.2.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

4.2.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents
between 3 and 5 seconds. 

4.2.2.4 Port Response Time-out Control CSR (Block Offset 0x20 Word 1)
The port response time-out control register contains the time-out timer count for all ports on a device. This time-out
is for sending a request packet to receiving the corresponding response packet.The reset value is the maximum

0x220 Port 15 Link Maintenance Request CSR Port 15 Link Maintenance Response CSR

0x228 Port 15 Local ackID Status CSR Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR

Table 4-11. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0002 Hard wired Extended Features ID

Table 4-12. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 4-13. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out_value All 1s time-out interval value

24-31 — Reserved

Table 4-10. Physical 8/16 LP-LVDS Register Map(Continued)

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

Po
rt 

15
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time-out interval, and represents between 3 and 5 seconds. 

4.2.2.5 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

4.2.2.6 Port n Link Maintenance Request CSRs (Block Offsets 0x40, 60, ..., 220 Word 0)
The port link maintenance request registers are accessible both by a local processor and an external device. A write
to one of these registers generates a link-request control symbol on the corresponding RapidIO port interface. 

4.2.2.7 Port n Link Maintenance Response CSRs (Block Offsets 0x40, 60, ..., 220 Word 1)
The port link maintenance response registers are accessible both by a local processor and an external device. A read
to this register returns the status received in a link-response control symbol. The link_status and ackID_status fields

Table 4-14. Bit Settings for Port Response Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out_value All 1s time-out interval value

24-31 — Reserved

Table 4-15. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0 Host see 
footnote1

1. The Host reset value is implementation dependent

A Host device is a device that is responsible for system 
exploration, initialization, and maintenance. Agent or slave devices 
are initialized by Host devices. 
0b0 - agent or slave device
0b1 - host device

1 Master Enable see 
footnote2

2. The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed 
to issue requests into the system. If the Master Enable is not set, the 
device may only respond to requests. 
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see 
footnote3

3. The Discovered reset value is implementation dependent

This device has been located by the processing element responsible 
for system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing 
element

3-31 — Reserved

Table 4-16. Bit Settings for Port n Link Maintenance Request CSRs

Bit Name Reset 
Value Description

0–28 — Reserved

29-31 Command 0b000 Command to be sent in the link-request control symbol. If read, this 
field returns the last written value.
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are defined in Section 3.3, “Link Maintenance Control Symbol Formats.” This register is read-only. 
Table 4-17. Bit Settings for Port n Link Maintenance Response CSRs

Bit Name Reset 
Value Description

0 response_valid 0b0 If the link-request causes a link-response, this bit indicates that the 
link-response has been received and the status fields are valid.
If the link-request does not cause a link-response, this bit indicates 
that the link-request has been transmitted.
This bit automatically clears on read.

1-24 — Reserved

25-27 ackID_status 0b000 ackID status field from the link-response control symbol

28-31 link_status 0b0000 link status field from the link-response control symbol
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4.2.2.8 Port n Local ackID Status CSRs (Block Offsets 0x48, 68, ..., 228 Word 0)
The port link local ackID status registers are accessible both by a local processor and an external device. A read to
this register returns the local ackID status for both the out and input ports of the device. 

4.2.2.9 Port n Error and Status CSRs (Block Offsets 0x58, 78, ..., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information. 

 

Table 4-18. Bit Settings for Port n Local ackID Status CSRs

Bit Name Reset 
Value Description

0-4 — Reserved

5-7 Inbound_ackID 0b000 Input port next expected ackID value

8-15 — Reserved

16-23 Outstanding_ackID 0x00 Output port unacknowledged ackID status. A set bit indicates that the 
corresponding ackID value has been used to send a packet to an 
attached device but a corresponding acknowledge control symbol has 
not been received. 0b1xxx_xxxx indicates ackID 0, 0bx1xx_xxxx 
indicates ackID 1, 0bxx1x_xxxx indicates ackID 2, etc. This field is 
read-only. 

24-28 — Reserved

29-31 Outbound_ackID 0b000 Output port next transmitted ackID value. Software writing this value 
can force re-transmission of outstanding unacknowledged packets in 
order to manually implement error recovery. 

Table 4-19. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition. This bit is set when 
bit 13 is set. Once set remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only). 

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set 
remains set until written with a logic 1 to clear.
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4.2.2.10 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation.This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port. 

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the 
adjacent device. This bit and bit 31 are mutually exclusive (read-
only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. 
This bit and bit 30 are mutually exclusive (read-only).

Table 4-20. Bit Settings for Port n Control CSRs

Bit Name Reset 
Value Description

0 Output Port Width see 
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see 
footnote2

Output port transmit enable: 
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

2 Output Port Driver 
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins 
normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

4 Input Port Width see 
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

Table 4-19. Bit Settings for Port n Error and Status CSRs(Continued)

Bit Name Reset 
Value Description
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4.3 Generic End Point Free Devices
This section describes the 8/16 LP-LVDS registers for a general devices that do not contain end point functionality. Typi-
cally these devices are switches. This Extended Features register block uses extended features block ID=0x0003. 

4.3.1 Register Map
Table 4-21 shows the register map for generic RapidIO 8/16 LP-LVDS end point-free devices. The Block Offset is the
offset based on the Extended Features pointer (EF_PTR) to this block. This register map is currently only defined for
devices with up to 16 RapidIO ports, but can be extended or shortened if more or less port definitions are required for
a device. For example, a device with four RapidIO ports is only required to use register map space corresponding to
offsets [EF_PTR + 0x00] through [EF_PTR + 0x98]. Register map offset [EF_PTR + 0xA0] can be used for another
Extended Features block.

5 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver 
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to 
any packets or control symbols

7 — Reserved

8 Error Checking 
Disable

0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and 
an error condition occurs is undefined

9 Multicast-event 
Participant

see 
footnote5

Send incoming multicast-event control symbols to this port 
(multiple port devices only) 

10-30 — Reserved

31 Port Type 0b0 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port

1. The output port width reset value is implementation dependent
2. The output port enable reset value is implementation dependent
3. The input port width reset value is implementation dependent
4. The Input port enable reset value is implementation dependent
5. The multicast-event participant reset value is implementation dependent

Table 4-20. Bit Settings for Port n Control CSRs(Continued)

Bit Name Reset 
Value Description
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4.3.2 Command and Status Registers (CSRs)
Refer to Table 4-1 for the required behavior for accesses to reserved registers and register bits. 

4.3.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-
fies this as the generic end point port maintenance block header. 

Table 4-21. Physical 8/16 LP-LVDS Register Map

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 8/16 LP-LVDS Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Reserved

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Reserved

0x48 Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

0x60 Reserved

0x68 Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs

0x220 Reserved

0x228 Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR

Table 4-22. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0003 Hard wired Extended Features ID
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4.3.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

4.3.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents
between 3 and 5 seconds. 

4.3.2.4 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

4.3.2.5 Port n Error and Status CSRs (Block Offsets 0x58, 78, ..., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information.

 

Table 4-23. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 4-24. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out_value All 1s time-out interval value

24-31 — Reserved

Table 4-25.  Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0-31 — Reserved

Table 4-26. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition. This bit is set when 
bit 13 is set. Once set remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output port is in the “output error-stopped” state (read-only).
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4.3.2.6 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only). 

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set 
remains set until written with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation.This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 Port Present 0b0 The port is receiving the free-running clock on the input port. 

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 Input and output ports are initialized and can communicate with the 
adjacent device. This bit and bit 31 are mutually exclusive (read-
only).

31 Port Uninitialized 0b1 Input and output ports are not initialized and is in training mode. 
This bit and bit 30 are mutually exclusive (read-only).

Table 4-27. Bit Settings for Port n Control CSRs

Bit Name Reset 
Value Description

0 Output Port Width see 
footnote1

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

1 Output Port Enable see 
footnote2

Output port transmit enable: 
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

2 Output Port Driver 
Disable

0b0 Output port driver disable:
0b0 - output port drivers are turned on and will drive the pins 
normally
0b1 - output port drivers are turned off and will not drive the pins
This is useful for power management.

3 — Reserved

Table 4-26. Bit Settings for Port n Error and Status CSRs(Continued)

Bit Name Reset 
Value Description
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4 Input Port Width see 
footnote3

Operating width of the port (read-only):
0b0 - 8-bit port
0b1 - 16-bit port

5 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

6 Input Port Receiver 
Disable

0b0 Input port receiver enable:
0b0 - input port receivers are enabled
0b1 - input port receivers are disabled and are unable to receive to 
any packets or control symbols

7-8 — Reserved

9 Multicast-event 
Participant

see 
footnote5

Send incoming multicast-event control symbols to this output port 
(multiple port devices only) 

10-30 — Reserved

31 Port Type 0b0 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port

1. The output port width reset value is implementation dependent
2. The output port enable reset value is implementation dependent
3. The input port width reset value is implementation dependent
4. The Input port enable reset value is implementation dependent
5. The multicast-event participant reset value is implementation dependent

Table 4-27. Bit Settings for Port n Control CSRs(Continued)

Bit Name Reset 
Value Description
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5 Chapter 5 - System Clocking Considerations

The RapidIO parallel physical interface can be deployed in a variety of system configurations. A fundamental aspect to the
successful deployment of RapidIO is clock distribution. This section is provided to point out the issues of distributing clocks
in a system.

5.1 Example Clock Distribution
Clock distribution in a small system is straightforward. It is assumed that clocking is provided from a single clock source-
Figure 5-1).-

In this case the timing budget must account for any skew and jitter component between each point. Skew and jitter are
introduced owing to the end point clock regeneration circuitry (PLL or DLL) and to transmission line effects.

Distributing a clock from a central source may not be practical in larger or more robust systems. In these cases it may be
desirable to have multiple clock sources or to distribute the clock through the interconnect. Figure 5-2 displays the clock
distribution in a larger system.

In such a system the clock sources may be of the same relative frequency; however, they are not guaranteed to be always 
at exact frequency. Clock sources will drift in phase relationship with each other over time. This adds an additional com-
ponent because it is possible that one device may be slightly faster than its companion device. This requires a packet elas-
ticity mechanism. If the clock is transported through the interconnect as shown in Figure 5-3, then additive clock jitter 
must be taken into account. 

Figure 5-1. Clock Distribution in a Small System

Figure 5-2. Clock Distribution in a Larger System
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Assuming that each device gets a clock that was regenerated by its predecessor, and each device adds a certain jitter com-
ponent to the clock, the resulting clock at the end point may be greatly unstable. This factor must be added to the timing
budget.

5.2 Elasticity Mechanism
In systems with multiple clock sources, clocks may be of the same relative frequency but not exact. Their phase will drift
over time. An elasticity mechanism is therefore required to keep devices from missing data beats. For example, if the
received clock is faster than the internal clock, then it may be necessary to delete an inbound symbol. If the received
clock is slower than the internal clock, then it may be necessary to insert an inbound symbol.

This RapidIO 8/16 LP-LVDS interface is source synchronous; therefore, it is guaranteed that a data element will have an
associated clock strobe with which to synchronize. A clock boundary is crossed in the receive logic of the end point as the
inbound data is synchronized to the internal clock. It must be guaranteed in the end point that a drift between the two
clock sources does not cause a setup hold violation resulting in metastability in capturing the data.

To ensure that data is not missed, an end point implements an elasticity buffer. RapidIO uses idle control symbols as the
elasticity mechanism. If a receiver needs to skip a symbol during receipt of a large packet, it can issue a throttle control
symbol to cause the sender to insert an aligned pacing idle control symbol in the byte stream.

A data beat is clocked into the elasticity buffer with the external clock. The data beat is pulled out of the elasticity buffer
using the internal clock delayed by a number of clocks behind the external clock event. This allows the data to become
stable before it is synchronized to the internal clock. If the two clock events drift too close together then it is necessary for
the synchronization logic to reset the tap and essentially skip a symbol. By guaranteeing a periodic idle control symbol, it
is possible for the receive logic to skip a data beat and not miss a critical symbol element.

6 Chapter 6 - Board Routing Guidelines

This chapter contains board design guidelines for RapidIO based systems. The information here is presented as a guide for
implementing a RapidIO board design. It is noted that the board designer may have constraints such as standard design prac-
tices, vendor selection criteria, and design methodology that must be followed. Therefore appropriate diligence must be
applied by the designer.

RapidIO is a source-synchronous differential point-to-point interconnect, so routing considerations are minimal. The very
high clock rate places a premium on minimizing skew and discontinuities, such as vias and bends. Generally, layouts should
be as straight and free of vias as possible using controlled impedance differential pairs.

6.1 Impedance
Interconnect design should follow standard practice for differential pairs. To minimize reflections from the receiver’s 100
Ohm termination, the differential pair should have an differential impedance of 50 Ohms. The two signals forming the
differential pair should be tightly coupled. The differential pairs should be widely spaced, consistent with skew control
and quality routing, so that the crosstalk noise is common mode.

Figure 5-3. Clock Distribution Through the Interconnect
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6.2 Skew
To minimize the skew on a RapidIO channel the total electrical length for each trace within each unidirectional channel
should be equal. Several layouts are suggested in Figure 6-1.

Because the RapidIO model is source synchronous, the total length is not critical. Best signal integrity is achieved using a
clean layout between opposed parts due to routing on a single layer. 

The side-by-side layout requires two routing layers and has reduced signal integrity due to the vias between layers. To
keep the total electrical length equal, both layers must have the same phase velocity. 

Finally, right angle routing requires meandering to equalize delay, and meandered sections reduce signal integrity while
increasing radiation. It may be necessary to place meandered sections on a second routing layer to keep the routing clean.

All skew calculations should be taken to the edge of the package. The package layout and PCB breakout are co-designed
to minimize skew, and a recommended PCB breakout is provided.

6.3 PCB Stackup
PCB stackup has a significant effect on EMI generated by the high frequency of operation of a RapidIO channel, so EMI
control must be planned from the start. Several stackups are shown in Figure 6-2.

The traditional four-layer stackup provides equal phase velocities on the two routing layers, but the placement of routing
on the outside layers allows for easier radiation. This stackup is suitable for very short interconnects or for applications
using an add-on shield.

The four-layer stackup can be rearranged to help with EMI control by placing the power and ground layers on the outside.
Each routing layer still has equal phase velocities, but orthogonal routing can degrade signal integrity at very high speeds.
The power distribution inductance is approximately tripled due to the larger spacing between the power and ground
planes, so applications using this stackup should plan on using more and higher quality bypass capacitance.

The six-layer stackup shows one of many possible stackups. High-speed routing is on S1 and S2 in stripline, so signal

Figure 6-1. Routing for Equalized Skew for Several Placements

Figure 6-2. Potential PCB Stackups

Side-by-Side Right Angle Opposed

S1

GND

PWR

S2

GND

S1

S2

PWR

GND

S1

PWR

S2

GND

S3

St
rip

lin
e

St
rip

lin
e

Traditional
four layer

EMI-control
four layer

EMI-control
high signal integrity
six layer



- 130 -

quality is excellent with EMI control. S3 is for low-speed signals. Both S1 and S2 have equal phase velocities, good
impedance control, and excellent isolation. Power distribution inductance is comparable to the four-layer stackup since
the extra GND plane makes up for the extra (2X) spacing between PWR and GND. This example stackup is not balanced
with respect to metal loading.

6.4 Termination
RapidIO is source terminated within the driver and differentially terminated within the receiver. No additional termina-
tion is needed.

6.5 Additional Considerations
The application environment for a RapidIO channel may place additional constraints on the PCB design. 

6.5.1 Single Board Environments
A RapidIO channel completely constructed onto a single board offers the highest performance in terms of clock rate
and signal integrity. The primary issues are clean routing with minimal skew. Higher clock rates put greater emphasis
on the use of quality sockets (in terms of electrical performance) or on eliminating sockets altogether.

6.5.2 Single Connector Environments
The high clock rate of the 8/16 LP-LVDS physical layer requires the use of an impedance-controlled edge connector.
The number of pins dedicated to power should equal the number dedicated to ground, and the distribution of power
and ground pins should be comparable. If ground pins greatly outnumber power pins, then bypass capacitors along the
length of each side of the connector should be provided. Place the connector as close to one end of the RapidIO inter-
connect as possible.

6.5.3 Backplane Environments
With two connectors, the design considerations from the single connector environment apply but with greater urgency.
The two connectors should either be located as close together or as far apart as possible.

6.6 Recommended pin escape ordering
Given the source-synchronous nature of the 8/16 LP-LVDS physical layer and the clock to data pin skew concern for
maximum operating frequency, the recommended bit escape ordering (assuming the device and port orientation shown in
Figure 6-1) is shown graphically in Figure 6-3 and Figure 6-4. The figures assume that the device is being viewed from
the top. For BGA-style packaged devices the recommended bit escape wire route should be supplied to the board
designer. The signal names are defined in Chapter 7, “Signal Descriptions”. 

Figure 6-3. Recommended device pin escape, input port, top view of device
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Figure 6-4. Recommended device pin escape, output port, top view of device

These pin escapes allow clean board routes that provide maximum performance connections between two devices as can
be seen in the example in Figure 6-5 below. 

Figure 6-5. Opposed orientation, same side of board

If the attached devices are mounted with certain device orientations the bit wires become crossed. An example of this sit-
uation is shown in Figure 6-6. It is permissible for a device to also allow a bit-reversing option on the output (or input)
port to support these orientations, as shown in Figure 6-6 and Figure 6-7. 
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Figure 6-6.  Opposed orientation, opposite sides of board

Figure 6-7. Recommended device pin escape, output port reversed, top view of device
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Figure 6-8. Opposed orientation, output port reversed, opposite sides of board

7 Chapter 7 - Signal Descriptions

This chapter contains the signal pin descriptions for a RapidIO 8/16 LP-LVDS port. The interface is defined as a parallel 10
bit full duplex point-to-point interface using differential LVDS signaling. The LVDS electrical details are described in
Chapter 8, “Electrical Specifications.” 

7.1 Signal Definitions
Table 7-1 provides a summary of the RapidIO signal pins as well as a short description of their functionality. 

Table 7-1. Memory Interface Signal Description

Signal Name I/O Signal Meaning Timing Comments

TCLK0 O Transmit Clock—Free-running clock for the 
8-bit port and the most significant half of 
the 16-bit port. TCLK0 connects to RCLK0 
of the receiving device. 

TCLK0 O Transmit Clock complement—This signal is 
the differential pair of the TCLK0 signal.

TD[0-7] O Transmit Data—The transmit data is a 
unidirectional point to point bus designed to 
transmit the packet information along with 
the associated TCLK0 and TFRAME. The 
TD bus of one device is connected to the 
RD bus of the receiving device.

Assertion of TD[0-7] is always 
done with a fixed relationship to 
TCLK0 as defined in the AC 
section 

TD[0-7] O Transmit Data complement—This vector is 
the differential pair of TD[0-7].

Same as TD
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TFRAME O Transmit framing signal—When issued as 
active this signal indicates a packet control 
event. TFRAME is connected to RFRAME 
of the receiving device.

Assertion of TFRAME is always 
done with a fixed relationship to 
TCLK0 as defined in the AC 
section

TFRAME O Transmit frame complement—This signal is 
the differential pair of the TFRAME signal.

Same as TFRAME

TCLK1 O Transmit Clock—Free-running clock for the 
least significant half of the 16-bit port 
(TD[8-15]). TCLK1 connects to RCLK1 of 
the receiving device. This signal is not used 
when connected to an 8-bit device.

TCLK1 O Transmit Clock complement—This signal is 
the differential pair of the TCLK1 signal.

TD[8-15] O Transmit Data—least significant half of the 
16-bit port. These signals are not used when 
connected to an 8-bit device.

Assertion of TD[8-15] is always 
done with a fixed relationship to 
TCLK0 and TCLK1 as defined in 
the AC section 

TD[8-15] O Transmit Data complement—This vector is 
the differential pair of TD[8-15]

Same as TD[8-15]

RCLK0 I Receive Clock—Free-running input clock 
for the 8-bit port and the most significant 
half of the 16-bit port. RCLK0 connects to 
TCLK0 of the transmitting device.

RCLK0 I Receive Clock complement—This signal is 
the differential pair of the RCLK signal. 
RCLK0 connects to TCLK0 of the 
transmitting device.

RD[0-7] I Receive Data—The Receive data is a 
unidirectional packet data input bus. It is 
connected to the TD bus of the transmitting 
device.

RD[0-7] I Receive Data complement—This vector is 
the differential pair of the RD vector.

RFRAME I Receive Frame—This control signal 
indicates a special packet framing event on 
the RD pins.

RFRAME is sampled with respect 
to RCLK0

RFRAME I Receive Frame complement—This signal is 
the differential pair of the RFRAME signal.

Same as RFRAME

RCLK1 I Receive Clock—Free-running input clock 
for the least significant half of the 16-bit 
port (RD[8-15]). RCLK1 connects to 
TCLK1 of the transmitting device. This 
signal is not used when connected to an 8-
bit device. 

RCLK1 I Receive Clock complement—This signal is 
the differential pair of the RCLK1 signal. 

Table 7-1. Memory Interface Signal Description(Continued)

Signal Name I/O Signal Meaning Timing Comments
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7.2 RapidIO Interface Diagrams
Figure 7-1 shows the signal interface diagram connecting two 8-bit devices together with the RapidIO 8/16 LP-LVDS
interconnect. 

RD[8-15] I Receive Data—Least significant half of the 
16-bit port. These signals are not used when 
connected to an 8-bit device. 

RD[8-15] I Receive Data complement—This vector is 
the differential pair of the RD[8-15] vector.

Figure 7-1 RapidIO 8-bit Device to 8-bit Device Interface Diagram

Table 7-1. Memory Interface Signal Description(Continued)

Signal Name I/O Signal Meaning Timing Comments
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TFRAME
TD[0–7]
TD[0–7]

DEVICE B
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Figure 7-2 shows the connections between an 8-bit wide 8/16 LP-LVDS device and a 16-bit wide device. 

Figure 7-3 shows the connections between two 16-bit wide 8/16 LP-LVDS devices. 

Figure 7-2. RapidIO 8-bit Device to 16-bit Device Interface Diagram

Figure 7-3. RapidIO 16-bit Device to 16-bit Device Interface Diagram

TCLK0
TCLK0

TFRAME
TFRAME

TD[0–7]
TD[0–7]

RCLK0
RCLK0

RFRAME
RFRAME

RD[0–7]
RD[0–7]

DEVICE A

RCLK0
RCLK0
RFRAME
RFRAME
RD[0–7]
RD[0–7]

TCLK0
TCLK0
TFRAME
TFRAME
TD[0–7]
TD[0–7]

DEVICE B

TCLK1
TCLK1

TD[8-15]
TD[8-15]

RCLK1
RCLK1

RD[8-15]
RD[8-15]

N.C.

N.C.

TCLK0
TCLK0

TFRAME
TFRAME

TD[0–7]
TD[0–7]

RCLK0
RCLK0

RFRAME
RFRAME

RD[0–7]
RD[0–7]

DEVICE A

RCLK0
RCLK0
RFRAME
RFRAME
RD[0–7]
RD[0–7]

TCLK0
TCLK0
TFRAME
TFRAME
TD[0–7]
TD[0–7]

DEVICE B

TCLK1
TCLK1

TD[8-15]
TD[8-15]

RCLK1
RCLK1

RD[8-15]
RD[8-15]

RCLK1
RCLK1
RD[8-15]
RD[8-15]

TCLK1
TCLK1
TD[8-15]
TD[8-15]
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8 Chapter 8 - Electrical Specifications

This chapter contains the driver and receiver AC and DC electrical specifications for a RapidIO 8/16 LP-LVDS device. The
interface defined is a parallel differential low-power high-speed signal interface. 

8.1 Overview
To allow more general compatibility with a variety of silicon solutions, the RapidIO parallel interface builds on the low
voltage differential signaling (LVDS) standard. For reference refer to ANSI/TIA/EIA-644-A, Electrical Characteristics
of Low Voltage Differential Signaling (LVDS) Interface Circuits. The goal of the interface is to allow two devices to com-
municate with each other within a monolithic system, and key factors in choosing an interface are electrical performance,
power consumption (both at the end point and in the switch fabric), signal robustness, circuit complexity, pin count,
future scalability, and industry acceptance. LVDS satisfies these requirements.

Although differential signaling requires twice as many signals as single-ended signaling, the total pin count including
power and ground pins for high-speed differential and single-ended interfaces are more comparable. Single-ended inter-
faces require large numbers of power and ground pins to provide a low-impedance AC return path. Since LVDS uses con-
stant-current drivers, a low-impedance AC return path is not needed, allowing for a dramatic reduction in the number of
power and ground pins dedicated to the interface. The constant-current drivers also generate very small switching tran-
sients leading to lower noise and lower EMI. Differential signaling is also not as susceptible to imperfections in transmis-
sion lines and connectors.

LVDS provides for a low-voltage swing (less than 1 Volt), process independent, point-to-point differential interface. The
intent of this signaling specification is for device-to-device and board-to-board applications, but it may not be suitable for
cable applications owing to the stringent signal-to-signal skew requirements. 

LVDS is an end point self-terminated interface. It is assumed that each receiver provides its own termination resistors.
LVDS can tolerate ground potential differences between transmitter and receiver of +/- 1V.

8.2 DC Specifications
RapidIO driver and receiver DC specifications are displayed in Table 8-1 and Table 8-2 Power variation is +/- 5%. Resis-
tor tolerances are +/- 1%.

Table 8-1. RapidIO 8/16 LP-LVDS Driver Specifications (DC)

Characteristic Symbol Min Max Unit Notes

Differential output high voltage VOHD 247 454 mV Bridged 100Ω load
See Figure 2-7(a)

Differential output low voltage VOLD -454 -247 mV Bridged 100Ω load
See Figure 2-7(a)

Differential offset voltage ∆VOD 50 mV Bridged 100Ω load 
|VOHD+VOLD|. See 
Figure 2-7(b)

Output high common mode voltage VOSH 1.125 1.375 V Bridged 100Ω load

Output low common mode voltage VOSL 1.125 1.375 V Bridged 100Ω load

Common mode offset voltage ∆VOS 50 mV Bridged 100Ω load 
|VOSH-VOSL|. See Figure 
2-7(c)

Differential termination RTERM 90 220 W

Short circuit current
(either output)

|ISS| 24 mA Outputs shorted to VDD 
or VSS

Bridged short circuit current |ISB| 12 mA Outputs shorted together
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DC driver signal levels are displayed in Figure 8-1.

8.3 AC Specifications 
This section contains the AC electrical specifications for a RapidIO 8/16 LP-LVDS interface. The interface defined is a
parallel differential low-power high-speed signal interface. RapidIO specifies operation at specific nominal frequencies
only. Correct operation at other frequencies is not implied, even if the frequency is lower than the specified frequency.

8.3.1 Concepts and Definitions
This section specifies signals using differential voltages. Figure  shows how the signals are defined. The figure shows
waveforms for either a transmitter output (TD and TD) or a receiver input (RD and RD). Each signal swings between
A volts and B volts where A > B. Using these waveforms, the definitions are as follows:

1) The transmitter output and receiver input signals TD, TD, RD and RD each have a peak-to-peak swing of A-B Volts.

Table 8-2. RapidIO 8/16 LP-LVDS Receiver Specifications (DC)

Characteristic Symbol Min Max Unit Notes

Voltage at either input VI 0 2.4 V

Differential input high voltage VIHD 100 600 mV Over the common
mode range

Differential input low voltage VILD -600 -100 mV Over the common
mode range

Common mode input range

(referenced to receiver ground)

VIS 0.050 2.350 V Limited by VI

Input differential resistance RIN 90 110 W

Figure 8-1. DC driver signal levels

Vod = Voa - Vob

100Ω V Vod = Voa - Vob

Voa

Vob

247mV

454mV

-247mV

-454mV

Vos = (Voa + Vob)/2

VOSH

VOSL
1.125V

1.375V

or

∆VOS

0

(a)

RTERM

(nom)

(b)

VOHD

VOLD

Differential Specification Common-mode Specifications

(c)

v

-v
-v-∆Vod

-v+∆Vod
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2) The differential output signal of the transmitter, VOD, is defined as VTD-VTD.

3) The differential input signal of the receiver, VID, is defined as VRD-VRD.

4) The differential output signal of the transmitter, or input signal of the receiver, ranges from A - B Volts to -(A - B)
Volts.

5) The peak differential signal of the transmitter output, or receiver input, is A - B Volts.

6) The peak to peak differential signal of the transmitter output, or receiver input, is 2*(A - B) Volts.

Figure 8-2. Differential Peak-Peak Voltage of Transmitter or Receiver

To illustrate these definitions using numerical values, consider the case where a LVDS transmitter has a common mode
voltage of 1.2V and each signal has a swing that goes between 1.4V and 1.0V. Using these values, the peak-to-peak
voltage swing of the signals TD, TD, RD and RD is 400 mV. The differential signal ranges between 400mV and -
400mV. The peak differential signal is 400mV, and the peak to peak differential signal is 800mV.

A timing edge is the zero-crossing of a differential signal. Each skew timing parameter on a parallel bus is synchro-
nously measured on two signals relative to each other in the same cycle, such as data to data, data to clock, or clock to
clock. A skew timing parameter may be relative to the edge of a signal or to the middle of two sequential edges.

Static skew represents the timing difference between signals that does not vary over time regardless of system activity
or data pattern. Path length differences are a primary source of static skew.

Dynamic skew represents the amount of timing difference between signals that is dependent on the activity of other
signals and varies over time. Crosstalk between signals is a source of dynamic skew.

Eye diagrams and compliance masks are a useful way to visualize and specify driver and receiver performance. This
technique is used in several serial bus specifications. An example compliance mask is shown in Figure 8-3. The key
difference in the application of this technique for a parallel bus is that the data is source synchronous to its bus clock
while serial data is referenced to its embedded clock. Eye diagrams reveal the quality (“cleanness”, “openness”,
“goodness”) of a driver output or receiver input. An advantage of using an eye diagram and a compliance mask is that
it allows specifying the quality of a signal without requiring separate specifications for effects such as rise time, duty
cycle distortion, data dependent dynamic skew, random dynamic skew, etc. This allows the individual semiconductor
manufacturer maximum flexibility to trade off various performance criteria while keeping the system performance
constant. 

In using the eye pattern and compliance mask approach, the quality of the signal is specified by the compliance mask.
The mask specifies the maximum permissible magnitude of the signal and the minimum permissible eye opening. The
eye diagram for the signal under test is generated according to the specification. Compliance is determined by whether
the compliance mask can be positioned over the eye diagram such that the eye pattern falls entirely within the
unshaded portion of the mask.

Serial specifications have clock encoded with the data, but the LP-LVDS physical layer defined by RapidIO is a source
synchronous parallel port so additional specifications to include effects that are not found in serial links are required.
Specifications for the effect of bit to bit timing differences caused by static skew have been added and the eye dia-
grams specified are measured relative to the associated clock in order to include clock to data effects. With the transmit
output (or receiver input) eye diagram, the user can determine if the transmitter output (or receiver input) is compliant
with an oscilloscope with the appropriate software. 

A Volts TD or RD

TD or RDB Volts
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Figure 8-3. Example Compliance Mask

Y = Minimum data valid amplitude

Z = Maximum amplitude

1 UI = 1 Unit Interval = 1/Baud rate

X1 = End of zero crossing region

X2 = Beginning of Data Valid window

DV = Data Valid window = 1 - 2*X2

The waveform of the signal under test must fall within the unshaded area of the mask to be compliant. Different masks
are used for the driver output and the receiver input allowing each to be separately specified.

8.3.2 Driver Specifications
Driver AC timing specifications are given in Table 8-3 through Table 8-7 below. A driver shall comply with the speci-
fications for each data rate/frequency for which operation of the driver is specified. Unless otherwise specified, these
specifications are subject to the following conditions.

The specifications apply over the supply voltage and ambient temperature ranges specified by the device vendor. 

The specifications apply for any combination of data patterns on the data signals.

The output of a driver shall be connected to a 100 Ohm, +/- 1%, differential (bridged) resistive load.

Clock specifications apply only to clock signals (CLK0 and, if present, CLK1).

Data specifications apply only to data signals (FRAME, D[0-7], and, if present, D[8-15]).

FRAME and D[0-7] are the data signals associated with CLK0, D[8-5] are the data signals associated with CLK1.

Volts D
ifferential

0

Y

Z

-Y

-Z

0 X1 X2

DV

1-X2 1-X1 1
Time in UI
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Table 8-3. Driver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 8-4

Differential output low voltage VOLD -540 -200 mV See Figure 8-4

Unit interval UI 2000 2000 ps Requires +/-100ppm 
long term frequency 
stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to 
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80%of the peak to 
peak differential signal swing

tRISE .1 UI

Data Valid DV .63 UI Measured using the 
RapidIO Transmit 
Mask shown in 
Figure 8-4

Allowable static skew between any 
two data outputs within a 8 bit/9 bit 
group

tDPAIR .09 UI See Figure 8-10

Allowable static skew of data 
outputs to associated clock 

tSKEW,PAIR -.09 .09 UI See Figure , Figure 8-
10

Clock to clock static skew tCSKEW, PAIR .09 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.2 UI See Figure 8-9

Table 8-4. Driver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 8-4

Differential output low voltage VOLD -540 -200 mV See Figure 8-4

Unit interval 1333 1333 ps Requires +/-100ppm 
long term frequency 
stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to 
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80%of the peak to 
peak differential signal swing

tRISE .1 UI
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Data Valid DV .6 UI Measured using the 
RapidIO Transmit 
Mask shown in 
Figure 8-4

Allowable static skew between any 
two data outputs within a 8 bit/9 bit 
group

tDPAIR .1 UI See Figure 8-10

Allowable static skew of data 
outputs to associated clock 

tSKEW,PAIR -.1 .1 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.2 UI See Figure 8-9

Table 8-5. Driver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 8-4

Differential output low voltage VOLD -540 -200 mV See Figure 8-4

Unit interval 1000 1000 ps Requires +/-100ppm 
long term frequency 
stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to 
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80%of the peak to 
peak differential signal swing

tRISE .1 UI

Data Valid DV .575 UI Measured using the 
RapidIO Transmit 
Mask shown in 
Figure 8-4

Allowable static skew between any 
two data outputs within a 8 bit/9 bit 
group

tDPAIR .1 UI See Figure 8-10

Allowable static skew of data 
outputs to associated clock 

tSKEW,PAIR -.1 .1 UI See Figure ,8-8 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.2 UI See Figure 8-9

Table 8-4. Driver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max
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Table 8-6. Driver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 8-4

Differential output low voltage VOLD -540 -200 mV See Figure 8-4

Unit interval 667 667 ps Requires +/-100ppm 
long term frequency 
stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to 
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80% of the peak to 
peak differential signal swing

tRISE .1 UI

Data Valid DV .525 UI Measured using the 
RapidIO Transmit 
Mask shown in 
Figure 8-4

Allowable static skew between any 
two data outputs within a 8 bit/9 bit 
group

tDPAIR .2 UI See Figure 8-10

Allowable static skew of data 
outputs to associated clock 

tSKEW,PAIR -.2 .2 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .15 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.2 UI See Figure 8-9

Table 8-7. Driver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

Differential output high voltage VOHD 200 540 mV See Figure 8-4

Differential output low voltage VOLD -540 -200 mV See Figure 8-4

Unit interval 500 500 ps Requires +/-100ppm 
long term frequency 
stability

Duty cycle of the clock output DC 48 52 % Measured at VOD=0V

VOD fall time, 20-80% of the peak to 
peak differential signal swing

tFALL .1 UI

VOD rise time, 20-80% of the peak to 
peak differential signal swing

tRISE .1 UI
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The compliance of driver output signals TD[0-15] and TFRAME with their minimum Data Valid window (DV) speci-
fication shall be determined by generating an eye pattern for each of the data signals and comparing the eye pattern of
each data signal with the RapidIO Transmit Mask shown in Figure 8-4. The value of X2 used to construct the mask
shall be (1 - DVmin)/2. A signal is compliant with the Data Valid window specification if and only if the Transmit
Mask can be positioned on the signal’s eye pattern such that the eye pattern falls entirely within the unshaded portion
of the mask. 

Figure 8-4. RapidIO Transmit Mask

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying
the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the
number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO
Transmit Mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data
when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat

Data Valid DV .5 UI Measured using the 
RapidIO Transmit 
Mask shown in 
Figure 8-4

Allowable static skew between any 
two data outputs within a 8 bit/9 bit 
group

tDPAIR .2 UI See Figure 8-10

Allowable static skew of data 
outputs to associated clock 

tSKEW,PAIR -.2 .2 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.2 UI See Figure 8-9

Table 8-7. Driver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

0

VOHDmin

VOHDmax

VOLDmax

VOLDmin

V
O

D
 in m

V

0

DV

X2 1-X2 1Time in UI
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length) shall be long enough that increasing the length of the sequence does not cause the resulting eye pattern to
change from one that complies with the RapidIO Transmit Mask to one that does not comply with the mask. The data
carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in
the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for
aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method
used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a dig-
ital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated
with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and
roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure
that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock
zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more
complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of
the trigger point is the eye used for compliance testing. 

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 8-5.
In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings.
If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

.

Figure 8-5. Example Driver Output Eye Pattern

8.3.3 Receiver Specifications
Receiver AC timing specifications are given in Table 8-1 through Table 8-5 below. A receiver shall comply with the
specifications for each data rate/frequency for which operation of the receiver is specified. Unless otherwise specified,
these specifications are subject to the following conditions.

The specifications apply over the supply voltage and ambient temperature ranges specified by the device vendor. 

The specifications apply for any combination of data patterns on the data signals.

The specifications apply over the receiver common mode and differential input voltage ranges.

Clock specifications apply only to clock signals (CLK0 and, if present, CLK1).

Data specifications apply only to data signals (FRAME, D[0-7], and, if present, D[8-15]).

FRAME and D[0-7] are the data signals associated with CLK0, D[8-5] are the data signals associated with CLK1.

1 UI 1 UI0.5 UI
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Table 8-1. Receiver AC Timing Specifications - 500Mbps Data Rate/250MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V 

Data Valid DV .54 UI Measured using the 
RapidIO Receive Mask 
shown in Figure 8-6

Allowable static skew between any 
two data inputs within a 8 bit/9 bit 
group

tDPAIR .19 UI  See Figure 8-10

Allowable static skew of data inputs 
to associated clock 

tSKEW,PAIR -.15 .15 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .14 UI  See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.3 UI See Figure 8-9

Table 8-2. Receiver AC Timing Specifications - 750Mbps Data Rate/375MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V 

Data Valid DV .45 UI Measured using the 
RapidIO Receive Mask 
shown in Figure  8-6

Allowable static skew between any 
two data inputs within a 8 bit/9 bit 
group

tDPAIR .3 UI See Figure 8-10

Allowable static skew of data inputs 
to associated clock 

tSKEW,PAIR -.2 .2 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.3 UI See Figure 8-9

Table 8-3. Receiver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V 

Data Valid DV .425 UI Measured using the 
RapidIO Receive Mask 
shown in Figure  8-6
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Allowable static skew between any 
two data inputs within a 8 bit/9 bit 
group

tDPAIR .3 UI See Figure 8-10

Allowable static skew of data inputs 
to associated clock 

tSKEW,PAIR -.2 .2 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .2 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.3 UI See Figure 8-9

Table 8-4. Receiver AC Timing Specifications - 1500Mbps Data Rate/750MHz Clock Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V 

Data Valid DV .375 UI Measured using the 
RapidIO Receive Mask 
shown in Figure  8-6

Allowable static skew between any 
two data inputs within a 8 bit/9 bit 
group

tDPAIR .4 UI See Figure 8-10

Allowable static skew of data inputs 
to associated clock 

tSKEW,PAIR -.25 .25 UI See Figure 8-8, 
Figure 8-10

Clock to clock static skew tCSKEW, PAIR .3 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.3 UI See Figure 8-9

Table 8-5. Receiver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

Duty cycle of the clock input DC 47 53 % Measured at VID=0V 

Data Valid DV .35 UI Measured using the 
RapidIO Receive Mask 
shown in Figure  8-6

Allowable static skew between any 
two data inputs within a 8 bit/9 bit 
group

tDPAIR .4 UI See Figure 8-10

Allowable static skew of data inputs 
to associated clock 

tSKEW,PAIR -.25 .25 UI See Figure 8-8, 
Figure 8-10

Table 8-3. Receiver AC Timing Specifications - 1000Mbps Data Rate/500MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max
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The compliance of receiver input signals RD[0-15] and RFRAME with their minimum Data Valid window (DV) spec-
ification shall be determined by generating an eye pattern for each of the data signals and comparing the eye pattern of
each data signal with the RapidIO Receive Mask shown in Figure . The value of X2 used to construct the mask shall be
(1 - DVmin)/2. The +/- 100mV minimum data valid and +/- 600mV maximum input voltage values are from the DC
specification. A signal is compliant with the Data Valid window specification if and only if the Receive Mask can be
positioned on the signal’s eye pattern such that the eye pattern falls entirely within the unshaded portion of the mask. 

Figure 8-6. RapidIO Receive Mask

The eye pattern for a data signal is generated by making a large number of recordings of the signal and then overlaying
the recordings. The number of recordings used to generate the eye shall be large enough that further increasing the
number of recordings used does not cause the resulting eye pattern to change from one that complies with the RapidIO
Receive Mask to one that does not. Each data signal in the interface shall be carrying random or pseudo-random data
when the recordings are made. If pseudo-random data is used, the length of the pseudo-random sequence (repeat
length) shall be long enough that increasing the length of the sequence does not cause the resulting eye pattern to
change from one that complies with the RapidIO Receive Mask to one that does not comply with the mask. The data
carried by any given data signal in the interface may not be correlated with the data carried by any other data signal in
the interface. The zero-crossings of the clock associated with a data signal shall be used as the timing reference for
aligning the multiple recordings of the data signal when the recordings are overlaid.

While the method used to make the recordings and overlay them to form the eye pattern is not specified, the method
used shall be demonstrably equivalent to the following method. The signal under test is repeatedly recorded with a dig-
ital oscilloscope in infinite persistence mode. Each recording is triggered by a zero-crossing of the clock associated
with the data signal under test. Roughly half of the recordings are triggered by positive-going clock zero-crossings and
roughly half are triggered by negative-going clock zero-crossings. Each recording is at least 1.9 UI in length (to ensure

Clock to clock static skew tCSKEW, PAIR .3 UI See Figure 8-9

Clock to clock dynamic skew tCSKEW, 
PAIRD

.3 UI See Figure 8-9

Table 8-5. Receiver AC Timing Specifications - 2000Mbps Data Rate/1000MHz Clock Rate (continued)

Characteristic Symbol
Range

Unit Notes
Min Max

Time in UI

600

100

-100

0

V
ID  in m

V

-600

0 X2 1-X2 1

DV
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that at least one complete eye is formed) and begins 0.5 UI before the trigger point (0.5 UI before the associated clock
zero-crossing). Depending on the length of the individual recordings used to generate the eye pattern, one or more
complete eyes will be formed. Regardless of the number of eyes, the eye whose center is immediately to the right of
the trigger point is the eye used for compliance testing. 

An example of an eye pattern generated using the above method with recordings 3 UI in length is shown in Figure 8-7.
In this example, there is no skew between the signal under test and the associated clock used to trigger the recordings.
If skew was present, the eye pattern would be shifted to the left or right relative to the oscilloscope trigger point.

. 

Figure 8-7. Example Receiver Input Eye Pattern

Figure 8-8 shows the definitions of the data to clock static skew parameter tSKEW,PAIR and the Data Valid window
parameter DV. The data and frame bits are those that are associated with the clock. The figure applies for all zero-
crossings of the clock. All of the signals are differential signals. VD represents VOD for the transmitter and VID for the
receiver. The center of the eye is defined as the midpoint of the region in which the magnitude of the signal voltage is
greater than or equal to the minimum DV voltage.
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Figure 8-8. Data to Clock Skew

Figure 8-10 shows the definitions of the clock to clock static skew parameter tCSKEW, PAIR and the clock to clock
dynamic skew parameter tCSKEW, PAIRD . All of the signals shown are differential signals. VD represents VOD for the
transmitter and VID for the receiver. These two parameters, tCSKEW, PAIR and tCSKEW, PAIRD, only apply to 16 bit inter-
faces.

Figure 8-9. Clock to Clock Skew
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Figure 8-10 shows the definition of the data to data static skew parameter tDPAIR and how the skew parameters are
applied.

Figure 8-10. Static Skew Diagram

tDPAIR

CLK0(CLK1)

1 UI nominal

tDPAIR

0.5 UI

tSKEW,PAIR

tSKEW,PAIR

center point of the data valid window of the
earliest allowed data bit for data grouped

center point for clock

FRAME, D[0-7](D[8-15])

FRAME, D[0-7]([D8-15])

late with respect to clock

center point of the data valid window of the
latest allowed data bit for data grouped
late with respect to clock

center point of the data valid window of the
latest allowed data bit for data grouped
early with respect to clock

center point of the data valid window of the
earliest allowed data bit for data grouped
early with respect to clock



- 152 -



- 153 -

Annex A

Message Passing Interface

The RapidIO Message Passing Logical Specification defines several packet formats that are useful for sending messages
from a source device to a destination. These formats do not describe a specific programming model but are instantiated as an
example packetizing mechanism. Because the actual programming models for message passing can vary greatly in both
capability and complexity, they have been deemed beyond the scope of the RapidIO Logical Message Passing Specification.
This annex is provided as a reference model for message passing and is not intended to be all encompassing.

A.1  Definitions and Goals
A system may be made up of several processors and distributed memory elements. These processors may be tightly cou-
pled and operating under a monolithic operating system in certain applications. When this is true the operating system is
tasked with managing the pool of processors and memory to solve a set of tasks. In most of these cases, it is most efficient
for the processors to work out of a common hardware-maintained coherent memory space. This allows processors to
communicate initialization and completion of tasks through the use of semaphores, spin locks, and inter-process inter-
rupts. Memory is managed centrally by the operating system with a paging protection scheme. 

In other such distributed systems, processors and memory may be more loosely coupled. Several operating systems or
kernels may be coexistent in the system, each kernel being responsible for a small part of the entire system. It is necessary
to have a communication mechanism whereby kernels can communicate with other kernels in a system of this nature.
Since this is a shared nothing environment, it is also desirable to have a common hardware and software interface mecha-
nism to accomplish this communication. This model is typically called message passing.

In these message passing systems, two mechanisms typically are used to move data from one portion of memory space to
another. The first mechanism is called direct memory access (DMA), the second is messaging. The primary difference
between the two models is that DMA transactions are steered by the source whereas messages are steered by the target.
This means that a DMA source not only requires access to a target but must also have visibility into the target’s address
space. The message source only requires access to the target and does not need visibility into the target’s address space. In
distributed systems it is common to find a mix of DMA and messaging deployed.

The RapidIO architecture contains a packet transport mechanism that can aid in the distributed shared nothing environ-
ment. The RapidIO message passing model meets several goals:

• A message is constructed of one or more transactions that can be sent and received through a possibly unordered 
interconnect

• A sender can have a number of outstanding messages queued for sending
• A sender can send a higher priority message before a lower priority message and can also preempt a lower priority 

message to send a higher priority one and have the lower priority message resume when the higher is complete 
(prioritized concurrency)

• A sender requires no knowledge of the receiver’s internal structure or memory map
• A receiver of a message has complete control over it’s local address space
• A receiver can have a number of outstanding messages queued for servicing if desired
• A receiver can receive a number of concurrent multiple-transaction messages if desired

A.2 Message Operations
The RapidIO Message Passing Logical Specification defines the type 11 packet as the MESSAGE transaction format.
The transaction may be used in a number of different ways dependent on the specific system architecture. The transaction
header contains the following field definitions:
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For a detailed description of the message packet format, refer to Section 3.1.5, “Type 11 Packet Format (Message Class).”

The second type of message packet is the type 10 doorbell transaction packet. The doorbell transaction is a lightweight
transaction that contains only a 16-bit information field that is completely software defined. The doorbell is intended to
be an in-band mechanism to send interrupts between processors. In this usage the information field would be used to con-
vey interrupt level and target information to the recipient. For a more detailed description of the doorbell packet format,
refer to Section 3.1.4, “Type 10 Packet Formats (Doorbell Class).”

There are two transaction format models described in this annex, a simple model and an extended model. The simple
model is recommended for both the type 10 (doorbell) and type 11 (message) packet format messages. The extended
model is only recommended for the type 11 (message) packet format messages.

A.3 Inbound Mailbox Structure
RapidIO provides two message transaction packet formats. By nature of having such formats it is possible for one device
to pass a message to another device without a specific memory mapped transaction. The transaction allows for the con-
cept of a memory map independent port. As mentioned earlier, how the transactions are generated and what is done with
them at the destination is beyond the scope of the RapidIO Message Passing Logical Specification. There are, however, a
few examples as to how they could be deployed. First, look at the destination of the message.

A.3.1 Simple Inbox
Probably the most simple inbound mailbox structure is that of a single-register port or direct map into local memory
space (see figure A-1).

mbox Specifies the recipient mailbox in the target processing element. RapidIO allows up 
to four mailbox ports in each target device. This can be useful for defining blocks of 
different message frame sizes or different local delivery priority levels.

letter A RapidIO message operation may be made up of several transactions. It may be
desirable in some systems to have more than one multi-transaction message concur-
rently in transit to the target mailbox. The letter identifies the specific message within
the mailbox. This field allows a sending of up to four messages to the same mailbox
in the same target device.

multi-transaction fields In cases where message operations are made up of multiple transactions, the follow-
ing fields allow reconstruction of a message transported through an unordered inter-
connect fabric:

msglen Specifies the total number of transactions comprising this message. A value of 0 indi-
cates a single transaction message. A value of 15 (0xF) indicates a 16 transaction
message, and so forth.

msgseg Specifies the part of the message operation supplied by this transaction. A value of 0
indicates that this is the first transaction in the message. A value of 15 (0xF) indicates
that this is the sixteenth transaction in the message, and so on.

ssize Standard message transaction data size. This field tells the receiver to expect a mes-
sage the size of the data field for all of the transactions except the last one. This pre-
vents the sender from having to pad the data field excessively for the last transaction
and allows the receiver to properly put the message in local memory; otherwise, if the
last transaction is the first one received, the address calculations will be in error when
writing the transaction to memory.
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In this structure, the inbound single transaction message is posted to either a register, set of registers, or circular queue
in local memory. In the case of the circular queue, hardware maintains a head and tail pointer that points at a fixed win-
dow of pre-partitioned message frames in memory. Whenever the head pointer equals the tail pointer, no more mes-
sages can be accepted and they are retried on the RapidIO interface. When messages are posted, the local processor is
interrupted. The interrupt service routine reads the mailbox port that contains the message located at the tail pointer.
The message frame is equal to the largest message operation that can be received.

The RapidIO MESSAGE transaction allows up to four such inbound mailbox ports per target address. The DOOR-
BELL transaction is defined as a single mailbox port.

A.3.2 Extended Inbox
A second more extensible structure similar to that used in the intelligent I/O (I2O) specification, but managed differ-
ently, also works for the receiver (see figure A-2).

Figure A-1. Simple Inbound Mailbox Port Structure
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One of these structures is required for each priority level supported in an implementation. There are inbound post and
free list FIFOs which function as circular queues of a fixed size. The message frames are of a size equal to the maxi-
mum message size that can be accepted by the receiver. Smaller messages can be accepted if allowed by the overlaying
software. The sender only specifies the mailbox and does not request the frame pointer and perform direct memory
access as with I2O, although the I2O model can be supported in software with this structure. All pointers are managed
by the inbound hardware and the local processor. Message priority and letter number are managed by software.

The advantage of the extended structure is that it allows local software to service message frames in any order. It also
allows memory regions to be moved in and out of the message structure instead of forcing software to copy the mes-
sage to a different memory location.

A.3.3 Received Messages
When a message transaction is received, the inbound mailbox port takes the message frame address (MFA) pointed at
by the inbound free list tail pointer and increments that pointer (this may cause a memory read to prefetch the next
MFA), effectively taking the MFA from the free list. Subsequent message transactions from a different sender or with
a different letter number are now retried until all of the transactions for this message operation have been received,
unless there is additional hardware to handle multiple concurrent message operations for the same mailbox, differenti-
ated by the letter slots. 

The inbound mailbox port uses the MFA to write the transaction data into local memory at that base address with the
exact address calculated as described in Section 1.2.1, “Data Message Operations” and Section 2.2.2, “Data Message
Operations.” When the entire message is received and written into memory, the inbound post list pointer is incre-
mented and the MFA is written into that location. If the queue was previously empty, an interrupt is generated to the
local processor to indicate that there is a new message pending. This causes a window where the letter hardware is
busy and cannot service a new operation between the receipt of the final transaction and the MFA being committed to
the local memory.

When the local processor services a received message, it reads the MFA indicated by the inbound post FIFO tail
pointer and increments the tail pointer. When the message has been processed (or possibly deferred), it puts a new
MFA in the memory address indicated by the inbound free list head pointer and increments that pointer, adding the
new MFA to the free list for use by the inbound message hardware.

If the free list head and tail pointer are the same, the FIFO is empty and there are no more MFAs available and all new

Figure A-2 Inbound Mailbox Structure
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messages are retried. If the post list head and tail pointers are the same, there are no outstanding messages awaiting
service from the local processor. Underflow conditions are fatal since they indicate improper system behavior. This
information can be part of an associated status register.

A.4 Outbound Message Queue Structure
Queuing messages in RapidIO is accomplished either through a simple or a more extended outbox.

A.4.1 Simple Outbox
Generation of a message can be as simple as writing to a memory-mapped descriptor structure either in local registers
or memory. The outbound message queue (see Figure A-3) looks similar to the inbox.

The local processor reads a port in the outbound mailbox to obtain the position of a head pointer in local memory. If
the read results in a pre-determined pattern the message queue is full. The processor then writes a descriptor structure
and message to that location. When it is done, it writes the message port to advance the head point and mark the mes-
sage as queued. The outbound mailbox hardware then reads the messages pointed to by the tail pointer and transfers
them to the target device pointed at by the message descriptor. 

One of these structures is required for each priority level of outbound messages supported.

A.4.2 Extended Outbox
A more extensible method of queueing messages is again a two-level approach (see Figure A-4). Multiple structures
are required if concurrent operation is desired in an implementation. The FIFO is a circular queue of some fixed size.
The message frames are of a size that is equal to the maximum message operation size that can be accepted by the
receivers in the system. Smaller message operations can be sent if allowed by the hardware and the overlaying soft-
ware. As with the receive side, the outbound slots can be virtual and any letter number can be handled by an arbitrary
letter slot.

Figure A-3. Outbound Message Queue

Figure A-4. Extended Outbound Message Queue
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When the local processor wishes to send a message, it stores the message in local memory, writes the message frame
descriptor (MFD) to the outbound mailbox port (which in-turn writes it to the location indicated by the outbound post
FIFO head pointer), and increments the head pointer. 

The advantage of this method is that software can have pre-set messages stored in local memory. Whenever it needs to
communicate an event to a specific end point it writes the address of the message frame to the outbound mailbox, and
the outbound mailbox generates the message transactions and completes the operation.

If the outbound post list FIFO head and tail pointers are not equal, there is a message waiting to be sent. This causes
the outbound mailbox port to read the MFD pointed to by the outbound post list tail pointer and then decrement the
pointer (this may cause a memory read to prefetch the next MFD). The hardware then uses the information stored in
the MFD to read the message frame, packetize it, and transmit it to the receiver. Multiple messages can be transmitted
concurrently if there is hardware to support them, differentiated by the letter slots in Figure A-4.

If the free list head and tail pointer are the same, the FIFO is empty and there are no more MFDs to be processed.
Underflow conditions are fatal because they indicate improper system behavior. This information can also be part of a
status register.

Because the outbound and inbound hardware are independent entities, it is possible for more complex outbound mail-
boxes to communicate with less complex inboxes by simply reducing the complexity of the message descriptor to
match. Likewise simple outboxes can communicate with complex inboxes. Software can determine the capabilities of
a device during initial system setup. The capabilities of a devices message hardware are stored in the port configura-
tion registers.
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Partition V: Globally Shared Memory
Logical Specification
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V  Partition V

1  Chapter 1 - Globally Shared Memory

This chapter provides an overview of the RapidIO™ Interconnect Globally Shared Memory Logical Specification, including
a description of the relationship between the GSM specifications and the other specifications of the RapidIO interconnect.

1.1 Overview
Although RapidIO is targeted toward the message passing programming model, it supports a globally shared distributed
memory (GSM) model as defined by this specification. The globally shared memory programming model is the preferred
programming model for modern general-purpose multiprocessing computer systems, which requires cache coherency
support in hardware. This addition of GSM enables both distributed I/O processing and general purpose multiprocessing
to co-exist under the same protocol.

The RapidIO Interconnect Globally Shared Memory Logical Specification is one of the RapidIO logical layer specifica-
tions that define the interconnect’s overall protocol and packet formats. This layer contains the information necessary for
end points to process a transaction. Other RapidIO logical layer specifications include Partition I: Input/Output
Logical Specification and Partition II: Message Passing Logical Specification of the RapidIO Interconnect Specification.

The logical specifications do not imply a specific transport or physical interface, therefore they are specified in a bit
stream format. Necessary bits are added to the logical encodings for the transport and physical layers lower in the specifi-
cation hierarchy.

RapidIO is a definition of a system interconnect. System concepts such as processor programming models, memory
coherency models and caching are beyond the scope of the RapidIO architecture. The support of memory coherency
models, through caches, memory directories (or equivalent, to hold state and speed up remote memory access) is the
responsibility of the end points (processors, memory, and possibly I/O devices), using RapidIO operations. RapidIO pro-
vides the operations to construct a wide variety of systems, based on programming models that range from strong consist-
ency through total store ordering to weak ordering. Inter-operability between end points supporting different coherency/
caching/directory models is not guaranteed. However, groups of end-points with conforming models can be linked to oth-
ers conforming to different models on the same RapidIO fabric. These different groups can communicate through
RapidIO messaging or I/O operations. Any reference to these areas within the RapidIO architecture specification are for
illustration only.

The RapidIO Interconnect Globally Shared Memory Logical Specification assumes that the reader is familiar with the
concepts and terminology of cache coherent systems in general and with CC-NUMA systems in specific. Further infor-
mation on shared memory concepts can be found in:

Daniel E. Lenoski and Wolf-Dietrich Weber, “Scalable Shared-Memory Multiprocessing”, Morgan Kaufmann, 1995.

and

David Culler, Jaswinder Pal Singh, and Anoop Gupta: “Parallel Computer Architecture: A Hardware/Software
Approach”, Morgan Kaufmann, 1998

1.1.1 Memory System
Under the globally shared distributed memory programming model, memory may be physically located in different
places in the machine yet may be shared amongst different processing elements. Typically, mainstream system archi-
tectures have addressed shared memory using transaction broadcasts sometimes known as bus-based snoopy protocols.
These are usually implemented through a centralized memory controller for which all devices have equal or uniform
access. Figure  1-1 shows a typical bus-based shared memory system.
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Super computers, massively parallel, and clustered machines that have distributed memory systems must use a differ-
ent technique from broadcasting for maintaining memory coherency. Because a broadcast snoopy protocol in these
machines is not efficient given the number of devices that must participate and the latency and transaction overhead
involved, coherency mechanisms such as memory directories or distributed linked lists are required to keep track of
where the most current copy of data resides. These schemes are often referred to as cache coherent non-uniform mem-
ory access (CC-NUMA) protocols. A typical distributed memory system architecture is shown in Figure .1-2 

For RapidIO, a relatively simple directory-based coherency scheme is chosen. For this method each memory controller
is responsible for tracking where the most current copy of each data element resides in the system. RapidIO furnishes
a variety of ISA specific cache control and operating system support operations such as block flushes and TLB syn-
chronization mechanisms.

To reduce the directory overhead required, the architecture is optimized around small clusters of 16 processors known
as coherency domains. With the concept of domains, it is possible for multiple coherence groupings to coexist in the
interconnect as tightly coupled processing clusters.

1.2 Features of the Globally Shared Memory Specification

The following are features of the RapidIO GSM specification designed to satisfy the needs of various applications and
systems:

Figure 1-1. A Snoopy Bus-Based System

Figure 1-2. A Distributed Memory System
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1.2.1 Functional Features
• A cache coherent non-uniform memory access (CC-NUMA) system architecture is supported to provide a globally 

shared memory model because physics is forcing component interfaces in many high-speed designs to be point-to-
point instead of traditional bus-based.

• The size of processor memory requests are either in the cache coherence granularity, or smaller. The coherence 
granule size may be different for different processor families or implementations.

• Instruction sets in RapidIO support a variety of cache control and other operations such as block flushes. These 
functions are supported to run legacy applications and operating systems. 

1.2.2 Physical Features
• RapidIO packet definition is independent of the width of the physical interface to other devices on the interconnect 

fabric.
• The protocols and packet formats are independent of the physical interconnect topology. The protocols work whether 

the physical fabric is a point-to-point ring, a bus, a switched multi-dimensional network, a duplex serial connection, 
and so forth.

• RapidIO is not dependent on the bandwidth or latency of the physical fabric.
• The protocols handle out-of-order packet transmission and reception.
• Certain devices have bandwidth and latency requirements for proper operation. RapidIO does not preclude an 

implementation from imposing these constraints within the system.

1.2.3 Performance Features
• Packet headers must be as small as possible to minimize the control overhead and be organized for fast, efficient 

assembly and disassembly.
• 48- and 64-bit addresses are required in the future, and must be supported initially.
• An interventionist (non-memory owner, direct-to-requestor data transfer, analogous to a cache-to-cache transfer) 

protocol saves a large amount of latency for memory accesses that cause another processing element to provide the 
requested data.

• Multiple transactions must be allowed concurrently in the system, otherwise a majority of the potential system 
throughput is wasted.

1.3 Contents
Following are the contents of the RapidIO Interconnect Globally Shared Memory Logical Specification:

• Chapter 1, “Overview,” describes the set of operations and transactions supported by the RapidIO globally shared 
memory protocols. 

• Chapter 2, “System Models,” introduces some possible devices that could participate in a RapidIO GSM system 
environment. The chapter explains the memory directory-based mechanism that tracks memory accesses and 
maintains cache coherence. Transaction ordering and deadlock prevention are also covered.

• Chapter 3, “Operation Descriptions,” describes the set of operations and transactions supported by the RapidIO 
globally-shared memory (GSM) protocols.

• Chapter 4, “Packet Format Descriptions,” contains the packet format definitions for the GSM specification. The 
two basic types, request and response packets, with their sub-types and fields are defined. The chapter explains 
how memory read latency is handled by RapidIO. 

• Chapter 5, “Globally Shared Memory Registers,” describes the visible register set that allows an external 
processing element to determine the globally shared memory capabilities, configuration, and status of a processing 
element using this logical specification. Only registers or register bits specific to the GSM logical specification 
are explained. Refer to the other RapidIO logical, transport, and physical specifications of interest to determine a 
complete list of registers and bit definitions.

• Chapter 6, “Communication Protocols,” contains the communications protocol definitions for this GSM 
specification.

• Chapter 7, “Address Collision Resolution Tables,” explains the actions necessary under the RapidIO GSM model 
to resolve address collisions. 
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1.4 Terminology
Refer to the Glossary at the back of this document. 

1.5 Conventions
||Concatenation, used to indicate that two fields are physically associated as consecutive bits

ACTIVE_HIGHNames of active high signals are shown in uppercase text with no overbar. Active-high signals are
asserted when high and not asserted when low.

ACTIVE_LOWNames of active low signals are shown in uppercase text with an overbar. Active low signals are asserted
when low and not asserted when high. 

italicsBook titles in text are set in italics.

REG[FIELD]Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields, or ranges appear
in brackets. 

TRANSACTIONTransaction types are expressed in all caps.

operationDevice operation types are expressed in plain text. 

nA decimal value. 

[n-m]Used to express a numerical range from n to m. 

0bnnA binary value, the number of bits is determined by the number of digits.

0xnnA hexadecimal value, the number of bits is determined by the number of digits or from the surrounding context; for
example, 0xnn may be a 5, 6, 7, or 8 bit value

2 Chapter 2 - System Models

This overview introduces some possible devices in a RapidIO system.

2.1Processing Element Models
Figure  2-1 describes a possible RapidIO-based computing system. The processing element is a computer device such as
a processor attached to a local memory and also attached to a RapidIO system interconnect. The bridge part of the system
provides I/O subsystem services such as high-speed PCI interfaces and gigabit ethernet ports, interrupt control, and other
system support functions. Multiple processing elements require cache coherence support in the RapidIO protocol to pre-
serve the traditional globally shared memory programming model (discussed in Section, “2.2.1 Globally Shared Memory
System Model”).

Figure 2-1. A Possible RapidIO-Based Computing System
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A processing element containing a processor typically has associated with it a caching hierarchy to improve system per-
formance. The RapidIO protocol supports a set of operations sufficient to fulfill the requirements of a processor with a
caching hierarchy and associated support logic such as a processing element.

RapidIO is defined so that many types of devices can be designed for specific applications and connected to the system
interconnect. These devices may participate in the cache coherency protocol, act as a DMA device, utilize the message
passing facilities to communicate with other devices on the interconnect, and so forth. A bridge could be designed, for
example, to use the message passing facility to pass ATM packets to and from a processing element for route processing.
The following sections describe several possible processing elements.

2.1.1 Processor-Memory Processing Element Model
Figure  2-2 shows an example of a processing element consisting of a processor connected to an agent device. The
agent carries out several services on behalf of the processor. Most importantly, it provides access to a local memory
that has much lower latency than memory that is local to another processing element (remote memory accesses). It also
provides an interface to the RapidIO interconnect to service those remote memory accesses.

In support of the remote accesses, the agent maintains a cache of remote accesses that includes all remote data currently
residing in and owned by the local processor. This cache may be either external or internal to the agent device. 

Agent caching is necessary due to the construction of the RapidIO cache coherence protocol combined with the cache
hierarchy behavior in modern processors. Many modern processors have multiple level non-inclusive caching structures
that are maintained independently. This implies that when a coherence granule is cast out of the processor, it may or may
not be returning ownership of the granule to the memory system. The RapidIO protocol requires that ownership of a
coherence granule be guaranteed to be returned to the system on demand and without ambiguous cache state changes as
with the castout behavior. The remote cache can guarantee that a coherence granule requested by the system is owned
locally and can be returned to the home memory (the physical memory containing the coherence granule) on demand. A
processing element that is fully integrated would also need to support this behavior.

2.1.2 Integrated Processor-Memory Processing Element Model
Another form of a processor-memory processing element is a fully integrated component that is designed specifically
to connect to a RapidIO interconnect system as shown in Figure .2-3.  This type of device integrates a memory system
and other support logic with a processor on the same piece of silicon or within the same package. Because such a
device is designed specifically for RapidIO, a remote cache is not required because the proper support can be designed
into the processor and its associated logic rather than requiring an agent to compensate for a stand alone processor’s
behavior.

Figure 2-2 Processor-Memory Processing Element Example
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2.1.3 Memory-Only Processing Element Model
A different processing element may not contain a processor at all, but may be a memory-only device as in Figure 2-4.
This type of device is much simpler than a processor as it is only responsible for responding to requests from the exter-
nal system, not from local requests as in the processor-based model. As such, its memory is remote for all processors in
the system.

2.1.4 Processor-Only Processing Element
Similar to a memory-only element, a processor-only element has no local memory. A processor-only processing ele-
ment is shown in Figure .2-5.

2.1.5 I/O Processing Element 
This type of processing element is shown as the bridge in Figure 0-1. This device has distinctly different behavior than
a processor or a memory. An I/O device only needs to move data into and out of local or remote memory in a cache

Figure 2-3.  Integrated Processor-Memory Processing Element Example

Figure 2-4. Memory-Only Processing Element Example

Figure 2-5. Processor-Only Processing Element Example
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coherent fashion. This means that if the I/O device needs to read from memory, it only needs to obtain a known good
copy of the data to write to the external device (such as a disk drive or video display). If the I/O device needs to write
to memory, it only needs to get ownership of the coherence granule returned to the home memory and not take owner-
ship for itself. Both of these operations have special support in the RapidIO protocol.

2.1.6 Switch Processing Element
A switch processing element is a device that allows communication with other processing elements through the switch.
A switch may be used to connect a variety of RapidIO compliant processing elements. A possible switch is shown in
Figure . Behavior of the switches, and the interconnect fabric 0.1in general, is addressed in the RapidIO Common
Transport Specification.

2.2 Programming Models
RapidIO supports applications developed under globally shared memory and software-managed cache coherence pro-
gramming models.

2.2.1 Globally Shared Memory System Model
The preferred programming model for modern computer systems provides memory that is accessible from all proces-
sors in a cache coherent fashion. This model is also known as GSM, or globally shared memory. For traditional bus-
based computer systems this is not a difficult technical problem to solve because all participants in the cache coher-
ence mechanism see all memory activity simultaneously, meaning that communication between processors is very fast
and handled without explicit software control. However, in a non-uniform memory access system, this simultaneous
memory access visibility is not the case.

With a distributed memory system, cache coherence needs to be maintained through some tracking mechanism that
keeps records of memory access activity and explicitly notifies specific cache coherence participant processing ele-
ments when a cache coherence hazard is detected. For example, if a processing element wishes to write to a memory
address, all participant processing elements that have accessed that coherence granule are notified to invalidate that
address in their caches. Only when all of the participant processing elements have completed the invalidate operation
and replied back to the tracking mechanism is the write allowed to proceed.

The tracking mechanism preferred for the RapidIO protocol is the memory directory based system model. This system
model allows efficient, moderate scalability with a reasonable amount of information storage required for the tracking
mechanism.

Cache coherence is defined around the concept of domains. The RapidIO protocol assumes a memory directory based
cache coherence mechanism. Because the storage requirements for the directory can be high, the protocol was opti-
mized assuming a 16-participant domain size as a reasonable coherence scalability limit. With this limit in mind, a
moderately scalable system of 16 participants can be designed, possibly using a multicast mechanism in the transport
layer for better efficiency. This size does not limit a system designer from defining a larger or a smaller coherent sys-
tem such as the four processing element system in Figure 2.1 since the number of domains and the number of partici-
pants is flexible. The total number of coherence domains and the scalability limit are determined by the number of
transport bits allowed by the appropriate transport layer specification. 

Table 2.1 describes an example of the directory states assumed for the RapidIO protocol for a small four-processing
element cache coherent system (the table assumes that processor 0 is the local processor). Every coherence granule

Figure 2-6. Switch Processing Element ExFigure 0.1. ample

Switch
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that is accessible by a remote processing element has this 4-bit field associated with it, so some state storage is
required for each globally shared granule. The least significant bit (the right most, bit 3) indicates that a processing ele-
ment has taken ownership of a coherence granule. The remaining three bits indicate that processing elements have
accessed that coherence granule, or the current owner if the granule has been modified, with bit 0 corresponding to
processor 3, bit 1 corresponding to processor 2, and bit 2 corresponding to processor 1. These bits are also known as
the sharing mask or sharing list. 

Owing to the encoding of the bits, the local processing element is always assumed to have accessed the granule even if
it has not. This definition allows us to know exactly which processing elements have participated in the cache coher-
ency protocol for each shared coherence granule at all times. Other state definitions can be implemented as long as
they encompass the MSL (modified, shared, local) state functionality described here. 

When a coherence granule is referenced, the corresponding 4-bit coherence state is examined by the memory control-
ler to determine if the access can be handled in memory, or if data must be obtained from the current owner (a shared
granule is owned by the home memory). Coherence activity in the system is started using the cache coherence proto-
col, if it is necessary to do so, to complete the memory operation.

2.2.2 Software-Managed Cache Coherence Programming Model
The software-managed cache coherence programming model depends upon the application programmer to guarantee
that the same coherence granule is not resident in more than one cache in the system simultaneously if it is possible for
that coherence granule to be written by one of the processors. The application software allows sharing of written data
by using cache manipulation instructions to flush these coherence granules to memory before they are read by another
processor. This programming model is useful in transaction and distributed processing types of systems.

2.3 System Issues 
The following sections describe transaction ordering and system deadlock considerations in a RapidIO GSM system.

2.3.1 Operation Ordering
Operation completion ordering in a globally shared memory system is managed by the completion units of the process-

Table 2-1. RapidIO Memory Directory Definition

State Description

0000 Processor 0 (local) shared

0001 Processor 0 (local) modified

0010 Processor 1, 0 shared

0011 Processor 1 modified

0100 Processor 2, 0 shared

0101 Processor 2 modified

0110 Processor 2, 1, 0 shared

0111 Illegal

1000 Processor 3, 0 shared

1001 Processor 3 modified

1010 Processor 3, 1, 0 shared

1011 Illegal

1100 Processor 3, 2, 0 shared

1101 Illegal

1110 Processor 3, 2, 1, 0 shared

1111 Illegal
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ing elements participating in the coherence protocol and by the coherence protocol itself.

2.3.2 Transaction Delivery
There are two basic types of delivery schemes that can be built using RapidIO processing elements: unordered and
ordered. The RapidIO logical protocols assume that all outstanding transactions to another processing element are
delivered in an arbitrary order. In other words, the logical protocols do not rely on transaction interdependencies for
operation. RapidIO also allows completely ordered delivery systems to be constructed. Each type of system puts dif-
ferent constraints on the implementation of the source and destination processing elements and any intervening hard-
ware. The specific mechanisms and definitions of how RapidIO enforces transaction ordering are discussed in the
appropriate physical layer specification.

2.3.3 Deadlock Considerations
A deadlock can occur if a dependency loop exists. A dependency loop is a situation where a loop of buffering devices
is formed, in which forward progress at each device is dependent upon progress at the next device. If no device in the
loop can make progress then the system is deadlocked.

The simplest solution to the deadlock problem is to discard a packet. This releases resources in the network and allows
forward progress to be made. RapidIO is designed to be a reliable fabric for use in real time tightly coupled systems,
therefore, discarding packets is not an acceptable solution.

In order to produce a system with no chance of deadlock it is required that a deadlock free topology be provided for
response-less operations. Dependency loops to single direction packets can exist in unconstrained switch topologies.
Often the dependency loop can be avoided with simple routing rules. Topologies like hypercubes or three-dimensional
meshes, physically contain loops. In both cases, routing is done in several dimensions (x,y,z). If routing is constrained
to the x dimension, then y, then z (dimension ordered routing), then topology related dependency loops are avoided in
these structures. 

In addition, a processing element design shall not form dependency links between its input and output port. A depend-
ency link between input and output ports occurs if a processing element is unable to accept an input packet until a wait-
ing packet can be issued from the output port. 

RapidIO supports operations, such as coherent read-for-ownership operations, that require responses to complete.
These operations can lead to a dependency link between an processing element’s input port and output port. 

As an example of an input to output port dependency, consider a processing element where the output port queue is
full. The processing element can not accept a new request at its input port since there is no place to put the response in
the output port queue. No more transactions can be accepted at the input port until the output port is able to free entries
in the output queue by issuing packets to the system.

A further consideration is that of the read-for-ownership operation colliding with a castout of the requested memory
address by another processing element. In order for the read-for-ownership operation to complete the underlying
castout operation must complete. Therefore the castout must be given higher preference in the system in order to move
ahead of other operations in order to break up the dependency. 

The method by which a RapidIO system maintains a deadlock free environment is described in the appropriate Physi-
cal Layer specification.

3 Chapter 3 - Operation Descriptions 

This chapter describes the set of operations and transactions supported by the RapidIO globally-shared memory (GSM) pro-
tocols. The opcodes and packet formats are described in Chapter 4, “Packet Format Descriptions.” The complete protocols
are described in Chapter 6, “Communication Protocols.”

The RapidIO operation protocols use request/response transaction pairs through the interconnect fabric. A processing ele-
ment sends a request transaction to another processing element if it requires an activity to be carried out. The receiving
processing element responds with a response transaction when the request has been completed or if an error condition is
encountered. Each transaction is sent as a packet through the interconnect fabric. For example, a processing element that
requires data from home memory in another processing element sends a READ_HOME transaction in a request packet. The
receiving element then reads its local memory at the requested address and returns the data in a DONE transaction via a
response packet. Note that not all requests require responses; some requests assume that the desired activity will complete



- 170 -

properly.

A number of possible response transactions can be received by a requesting processing element:

• A DONE response indicates to the requestor that the desired transaction has completed and also returns data for read-type 
transactions as described above. 

• The INTERVENTION, DONE_INTERVENTION, and DATA_ONLY responses are generated as part of the processing 
element-to-processing element (as opposed to processing element-to-home memory) data transfer mechanism defined by 
the cache coherence protocol. The INTERVENTION and DONE_INTERVENTION responses are abbreviated as INTERV 
and DONE_INTERV in this chapter.

• The NOT_OWNER and RETRY responses are received when there are address conflicts within the system that need 
resolution. 

• An ERROR response means that the target of the transaction encountered an unrecoverable error and could not complete 
the transaction. 

Packets may contain additional information that is interpreted by the interconnect fabric to route the packets through the fab-
ric from the source to the destination, such as a device number. These requirements are described in the appropriate RapidIO
transport layer specification and are beyond the scope of this specification.

Depending upon the interconnect fabric, other packets may be generated as part of the physical layer protocol to manage
flow control, errors, etc. Flow control and other fabric-specific communication requirements are described in the appropriate
RapidIO physical layer specification and are beyond the scope of this document.

Each request transaction sent into the system is marked with a transaction ID that is unique for each requestor and responder
processing element pair. This transaction ID allows a response to be easily matched to the original request when it is
returned to the requestor. An end point cannot reuse a transaction ID value to the same destination until the response from
the original transaction has been received by the requestor. The number of outstanding transactions that may be supported is
implementation dependent. 

The transaction behaviors are also described as state machine behavior in Chapter 6, “Communication Protocols”.

3.1 GSM Operations Cross Reference
Table  3-1contains a cross reference of the GSM operations defined in this RapidIO specification and their system usage.

Table 3-1. GSM Operations Cross Reference

Operation Transactions
Used Possible System Usage Description Packet Format Protocol

Read READ_HOME, 
READ_OWNER, 
RESPONSE

CC-NUMA operation Section 6.3 Types 1 and 2: 
Section 4.1.5 
and Section 
4.1.6

Section 6.3

Instruction 
read

IREAD_HOME, 
READ_OWNER, 
RESPONSE

Combination of CC-
NUMA and software-
maintained coherence of 
instruction caches

Section 6.3 Type 2: 
Section 4.1.6

Section 6.3

Read-for-
ownership

READ_TO_OWN
_HOME, 
READ_TO_OWN
_OWNER, 
DKILL_SHARER 
RESPONSE

CC-NUMA operation Section 3.2.3 Types 1 and 2: 
Section 4.1.5 
and Section 
4.1.6

Section 6.5

Data cache 
invalidate

DKILL_HOME, 
DKILL_SHARER
, RESPONSE

CC-NUMA operation;
software-maintained 
coherence operation

Section 3.2.4 Type 2:
 Section 4.1.6

Section 6.6

Castout CASTOUT, 
RESPONSE

CC-NUMA operation Section 3.2.5 Type 5: 
Section 4.1.8

Section 6.7
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3.2 GSM Operations
A set of transactions are used to support GSM (cache coherence) operations to cacheable memory space. The following
descriptions assume that all requests are to system memory rather than to some other type of device. 

GSM operations occur based on the size of the coherence granule. Changes in the coherence granule for a system do not
change any of the operation protocols, only the data payload size. The only exception to this is a flush operation, which
may have a double-word or sub-double-word data payload to support coherent I/O and write-through caches and no data
payload to support cache manipulation instructions.

Some transactions are sent to multiple recipients in the process of completing an operation. These transactions can be sent
either as a number of directed transactions or as a single transaction if the transport layer has multicast capability. Multi-
cast capability and operation is defined in the appropriate RapidIO transport layer specification.

3.2.1 Read Operations
The READ_HOME, READ_OWNER, and RESPONSE transactions are used during a read operation by a processing
element that needs a shared copy of cache-coherent data from the memory system. A read operation always returns one
coherence granule-sized data payload. 

The READ_HOME transaction is used by a processing element that needs to read a shared copy of a coherence gran-
ule from a remote home memory on another processing element.

The READ_OWNER transaction is used by a home memory processing element that needs to read a shared copy of a
coherence granule that is owned by a remote processing element.

The following types of read operations are possible:

If the requested data exists in the memory directory as shared, the data can be returned immediately from memory with
a DONE RESPONSE transaction and the requesting processing element’s device ID is added to the sharing mask as

TLB 
invalidate-
entry

TLBIE, 
RESPONSE

Software-maintained 
coherence of page table 
entries

Section 3.2.6 Type 2: 
Section 4.1.6

Section 6.8

TLB 
invalidate-
entry 
synchronize

TLBSYNC, 
RESPONSE

Software-maintained 
coherence of page table 
entries

Section 3.2.7 Type 2: 
Section 4.1.6

Section 6.8

Instruction 
cache 
invalidate

IKILL_HOME, 
IKILL_SHARER, 
RESPONSE,

Software-maintained 
coherence of instruction 
caches

Section 3.2.8 Type 2: 
Section 4.1.6

Section 6.6

Data cache 
flush

FLUSH, 
DKILL_SHARER
, 
READ_TO_OWN
_OWNER, 
RESPONSE

CC-NUMA flush 
instructions;
CC-NUMA write-through 
cache support;
CC-NUMA DMA I/O 
device support;
software-maintained 
coherence operation.

Section 3.2.9 Types 2 and 5: 
Section 4.1.6 
and Section 
4.1.8 

Section 6.9

I/O read IO_READ_HOM
E, IO_READ_ 
OWNER, 
INTERV, 
RESPONSE

CC-NUMA DMA, I/O 
DMA device support

Section 3.2.10 Types 1 and 2: 
Section 4.1.5 
and Section 
4.1.6

Section 6.10

Table 3-1. GSM Operations Cross Reference(Continued)

Operation Transactions
Used Possible System Usage Description Packet Format Protocol
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shown in Figure 3-1. 

• If the requested data exists in the memory directory as modified, the up-to-date (current) data must be obtained from 
the owner. The home memory then sends a READ_OWNER request to the processing element that owns the 
coherence granule. The owner passes a copy of the data to the original requestor and to memory, memory is updated, 
and the directory state is changed from modified and owner to shared by the previous owner and the requesting 
processing element’s device ID as shown in Figure . 3-2.

• If the processing element requesting a modified coherence granule happens to be the home for the memory, some of 
the transactions can be eliminated as shown in Figure .3-3. 

Figure 0.1

3.2.2 Instruction Read Operations 
Some processors have instruction caches that do not participate in the system cache coherence mechanism. Addition-
ally, the instruction cache load may also load a shared instruction and data cache lower in the cache hierarchy. This can
lead to a situation where the instruction cache issues a shared read operation to the system for a coherence granule that
is owned by that processor’s data cache, resulting in a cache coherence paradox to the home memory directory.

Due to this situation, an instruction read operation must behave like a coherent shared read relative to the memory
directory and as a non-coherent operation relative to the requestor. Therefore, the behavior of the instruction read oper-
ation is nearly identical to a data read operation with the only difference being the way that the apparent coherence par-
adox is managed. 

The IREAD_HOME and RESPONSE transactions are used during an instruction read operation by a processing ele-
ment that needs a copy of sharable instructions from the memory system. An instruction read operation always returns
one coherence granule-sized data payload. Use of the IREAD_HOME transaction rather than the READ_HOME
transaction allows the memory directory to properly handle the paradox case without sacrificing coherence error detec-
tion in the system. The IREAD_HOME transaction participates in address collision detection at the home memory but
does not participate in address collision detection at the requestor. 

Figure 3-1. Read Operation to Remote Shared CoherencFie Granule

Figure 3-2.  Read Operation to Remote Modified Coherence Granule

 

Figure 3-3. Read Operation to Local Modified Coherence Granule
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The following types of instruction read operations are possible: 

• If the requested instructions exists in the memory directory as shared, the instructions can be returned immediately 
from memory and the requesting processing element’s device ID is added to the sharing mask as shown in Figure . 
3-4.

• If the requested data exists in the memory directory as modified, the up-to-date (current) data must be obtained from 
the owner. The home memory then sends a READ_OWNER request to the processing element that owns the 
coherence granule. The owner passes a copy of the data to the original requestor and to memory, memory is updated, 
and the directory state is changed from modified and owner to shared by the previous owner and the requesting 
processing element’s device ID as shown in Figure .3-5. 

• If the processing element requesting a modified coherence granule happens to be the home for the memory the 
READ_OWNER transaction is used to obtain the coherence granule as shown in Figure .3-6. 

• The apparent paradox case is if the requesting processing element is the owner of the coherence granule as shown in 
Figure 3.7. The home memory sends a READ_OWNER transaction back to the requesting processing element with 
the source and secondary ID set to the home memory ID, which indicates that the response behavior should be an 
INTERVENTION transaction rather than an INTERVENTION and a DATA_ONLY transaction as shown in 
Figure .3.5. 

Figure 3-4. Instruction Read Operation to Remote Shared Coherence Granule

Figure 3-5. Instruction Read Operation to Remote Modified Coherence Granule

Figure 3-6. Instruction Read Operation to Local Modified Coherence Granule
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3.2.3 Read-for-Ownership Operations
The READ_TO_OWN_HOME, READ_TO_OWN_OWNER, DKILL_SHARER, and RESPONSE transactions are
used during read-for-ownership operations by a processing element that needs to write to a coherence granule that does
not exist in its caching hierarchy. A read-for-ownership operation always returns one coherence granule-sized data
payload. These transactions are used as follows:

The READ_TO_OWN_HOME transaction is used by a processing element that needs to read a writable copy of a
coherence granule from a remote home memory on another processing element. This transaction causes a copy of the
data to be returned to the requestor, from memory if the data is shared, or from the owner if it is modified.

• The READ_TO_OWN_OWNER transaction is used by a home memory processing element that needs to read a 
writable copy of a coherence granule that is owned by a remote processing element. 

• The DKILL_SHARER transaction is used by the home memory processing element to invalidate shared copies of 
the coherence granule in remote processing elements.

• Following are descriptions of the read-for-ownership operations:
• If the coherence granule is shared, DKILL_SHARER transactions are sent to the participants indicated in the sharing 

mask, which results in a cache invalidate operation for the recipients as shown in Figure .3-8. 

• If the coherence granule is modified, a READ_TO_OWN_OWNER transaction is sent to the owner, who sends a 
copy of the data to the requestor (intervention) and marks the address as invalid as shown in Figure .3-9. The final 
memory directory state shows that the coherence granule is modified and owned by the requestor’s device ID.

• Because the coherence granule in the memory directory was marked as modified, home memory does not necessarily 
need to be updated. However, the RapidIO protocol requires that a processing element return the modified data and 
update the memory, allowing some attempt for data recovery if a coherence problem occurs.

Figure 3-7. Instruction Read Operation Paradox Case

Figure 3-8. Read-for-Ownership Operation to Remote Shared Coherence Granule

Figure 3-9. Read-for-Ownership Operation to Remote Modified Coherence Granule
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If the requestor is on the same processing element as the home memory and the coherence granule is shared, a
DKILL_SHARER transaction is sent to all sharing processing elements (see Figure 3-10). The final directory state is
marked as modified and owned by the local requestor. 

If the requestor is on the same processing element as the home memory and the coherence granule is owned by a
remote processing element, a READ_TO_OWN_OWNER transaction is sent to the owner (see Figure 3-11). The final
directory state is marked as modified and owned by the local requestor. 

3.2.4 Data Cache Invalidate Operations
The DKILL_HOME, DKILL_SHARER, and RESPONSE transactions are requests to invalidate a coherence granule
in all of the participants in the coherence domain as follows: 

• The DKILL_HOME transaction is used by a processing element to invalidate a data coherence granule that has home 
memory in a remote processing element.

• The DKILL_SHARER transaction is used by the home memory processing element to invalidate shared copies of 
the data coherence granule in remote processing elements.

Data cache invalidate operations are also useful for systems that implement software-maintained cache coherence. In
this case, a requestor may send DKILL_HOME and DKILL_SHARER transactions directly to other processing ele-
ments without going through home memory as in a CC-NUMA system. The transactions used for the data cache inval-
idate operation depend on whether the requestor is on the same processing element as the home memory of the
coherence granule as follows:

• If the requestor is not on the same processing element as the home memory of the coherence granule, a 
DKILL_HOME transaction is sent to the remote home memory processing element. This causes the home memory 
for the shared coherence granule to send a DKILL_SHARER to all processing elements marked as sharing the 
granule in the memory directory state except for the requestor (see Figure 3-12). The final memory state shows that 
the coherence granule is modified and owned by the requesting processing element’s device ID.

Figure 3-10. Read-for-Ownership Operation to Local Shared Coherence Granule

Figure 3-11. Read-for-Ownership Operation to Local Modified Coherence Granule

Figure 3-12.  Data Cache Invalidate Operation to Remote Shared Coherence Granule
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• If the requestor is on the same processing element as the home memory of the coherence granule, the home memory 
sends a DKILL_SHARER transaction to all processing elements marked as sharing the coherence granule in the 
memory directory. The final memory state shows the coherence granule modified and owned by the local processor 
(see Figure 3-13).. 

3.2.5 Castout Operations
The CASTOUT and RESPONSE transactions are used in a castout operation by a processing element to relinquish its
ownership of a coherence granule and return it to the home memory. The CASTOUT can be treated as a low-priority
transaction unless there is an address collision with an incoming request, at which time it must become a high-priority
transaction. The CASTOUT causes the home memory to be updated with the most recent data and changes the direc-
tory state to owned by home memory and shared (or owned, depending upon the default directory state) by the local
processing element (see Figure 3-14).

A CASTOUT transaction does not participate in address collision detection at the home memory to prevent deadlocks
or cache paradoxes caused by packet-to-packet timing in the interconnect fabric. For example, consider a case where
processing element A is performing a CASTOUT that collides with an incoming READ_OWNER transaction. If the
CASTOUT is not allowed to complete at the home memory, the system will deadlock. If the read operation that caused
the READ_OWNER completes (through intervention) before the CASTOUT transaction is received at the home mem-
ory, the CASTOUT will appear to be illegal because the directory state will have changed.

3.2.6 TLB Invalidate-Entry Operations
The TLBIE and RESPONSE transactions are used for TLB invalidate-entry operations. If the processor TLBs do not
participate in the cache coherence protocol, the TLB invalidate-entry operation is used when page table translation
entries need to be modified. The TLBIE transaction is sent to all participants in the coherence domain except for the
original requestor. A TLBIE transaction has no effect on the memory directory state for the specified address and does
not participate in address collisions (see Figure 3-15).. 

3.2.7 TLB Invalidate-Entry Synchronization Operations
The TLBSYNC and RESPONSE transactions are used for TLB invalidate-entry synchronization operations. It is used
to force the completion of outstanding TLBIE transactions at the participants. The DONE response for a TLBSYNC

Figure 3-13.  Data Cache Invalidate Operation to Local Shared Coherence Granule

Figure 3-14. Castout Operation on Remote Modified Coherence Granule

Figure 3-15. TLB Invalidate-Entry Operation
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transaction is only sent when all preceding TLBIE transactions have completed. This operation is necessary due to
possible indeterminate completion of individual TLBIE transactions when multiple TLBIE transactions are being exe-
cuted simultaneously. The TLBSYNC transaction is sent to all participants in the coherence domain except for the
original requestor. The transaction has no effect on the memory directory state for the specified address and does not
participate in address collisions (see Figure 3-16).

3.2.8 Instruction Cache Invalidate Operations
The IKILL_HOME, IKILL_SHARER, and RESPONSE transactions are used during instruction cache invalidate
operations to invalidate shared copies of an instruction coherence granule in remote processing elements. Instruction
cache invalidate operations are needed if the processor instruction caches do not participate in the cache coherence
protocol, requiring instruction cache coherence to be maintained by software. 

An instruction cache invalidate operation has no effect on the memory directory state for the specified address and
does not participate in address collisions. Following are descriptions of the instruction cache invalidate operations:

• If the requestor is not on the same processing element as the home memory of the coherence granule, an 
IKILL_HOME transaction is sent to the remote home memory processing element. This causes the home memory 
for the shared coherence granule to send an IKILL_SHARER to all processing element participants in the coherence 
domain because the memory directory state only properly tracks data, not instruction, accesses. (See Figure .3-17). 

• If the requestor is on the same processing element as the home memory of the coherence granule, the home memory 
sends an IKILL_SHARER transaction to all processing element participants in the coherence domain as shown in 
Figure . 3-18.

3.2.9 Data Cache Flush Operations
The FLUSH, DKILL_SHARER, READ_TO_OWN_OWNER, and RESPONSE transactions are used for data cache
flush operations, which return ownership of a coherence granule back to the home memory if it is modified and inval-
idate all copies if the granule is shared. A flush operation with associated data can be used to implement an I/O system
write operation and to implement processor write-through and cache manipulation operations. These transactions are
used as follows:

Figure 3-16. TLB Invalidate-Entry Synchronization Operation

Figure 3-17. Instruction Cache Invalidate Operation to Remote Sharable Coherence Granule

Figure 3-18. Instruction Cache Invalidate Operation to Local Sharable Coherence Granule
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• The FLUSH transaction is used by a processing element to return the ownership and current data of a coherence 
granule to home memory. The data payload for the FLUSH transaction is typically the size of the coherence granule 
for the system but may be multiple double-words or one double-word or less. FLUSH transactions without a data 
payload are used to support cache manipulation operations. The memory directory state is changed to owned by home 
memory and shared (or modified, depending upon the processing element’s normal default state) by the local 
processing element. 

• The DKILL_SHARER transaction is used by the home memory processing element to invalidate shared copies of 
the data coherence granule in remote processing elements.

• The READ_TO_OWN_OWNER transaction is used by a home memory processing element that needs to retrieve 
ownership of a coherence granule that is owned by a remote processing element. 

The FLUSH transaction is able to specify multiple double-word and sub-double-word data payloads; however, they
must be aligned to byte, half-word, word, or double-word boundaries. Multiple double-word FLUSH transactions can-
not exceed the number of double-words in the coherence granule. The write size and alignment for the FLUSH trans-
action are specified in Table 4-8. Unaligned and non-contiguous operations are not supported and must be broken into
multiple FLUSH transactions by the sending processing element.

A flush operation internal to a processing element that would cause a FLUSH transaction for a remote coherence gran-
ule owned by that processing element (for example, attempting a cache write-through operation to a locally owned
remote coherence granule) must generate a CASTOUT rather than a FLUSH transaction to properly implement the
RapidIO protocol. Issuing a FLUSH under these circumstances generates a memory directory state paradox error in the
home memory processing element. 

Following are descriptions of the flush operations:

• If a flush operation is to a remote shared coherence granule, the FLUSH transaction is sent to the home memory, 
which sends a DKILL_SHARER transaction to all of the processing elements marked in the sharing list except for 
the requesting processing element. The processing elements that receive the DKILL_SHARER transaction invalidate 
the specified address if it is found shared in their caching hierarchy (see Figure 3-19). 

• If the coherence granule is owned by a remote processing element, the home memory sends a 
READ_TO_OWN_OWNER transaction to it with the secondary (intervention) ID set to the home memory ID 
instead of the requestor ID. The owner then invalidates the coherence granule in its caching hierarchy and returns the 
coherence granule data (see Figure 3-20). 

If the requestor and the home memory for the coherence granule are in the same processing element,
DKILL_SHARER transactions are sent to all participants marked in the sharing list (see Figure 3-21).

Figure 3-19. Flush Operation to Remote Shared Coherence Granule

Figure 3-20. Flush Operation to Remote Modified Coherence Granule

Requestor Home
Memory

DONE

Sharers

4

FLUSH, data (opt.)1 DKILL_SHARER2

DONEs3

Requestor Home
Memory

DONE

Owner

4

FLUSH, data (opt.)1 READ_TO_OWN_OWNER2

INTERV, data3



- 179 -

• If the requestor and the home memory for the coherence granule are in the same processing element but the coherence 
granule is owned by a remote processing element, a READ_TO_OWN_OWNER transaction is sent to the owner (see 
Figure 3-22).

3.2.10 I/O Read Operations
The IO_READ_HOME, IO_READ_OWNER, and RESPONSE transactions are used during I/O read operations by a
processing element that needs a current copy of cache-coherent data from the memory system, but does not need to be
added to the sharing list in the memory directory state. The I/O read operation is most useful for DMA I/O devices. An
I/O read operation always returns one coherence granule-sized data payload. These transactions are used as follows:

• The IO_READ_HOME transaction is used by a requestor that is not in the same processing element as the home 
memory for the coherence granule.

• The IO_READ_OWNER transaction is used by a home memory processing element that needs to read a copy of a 
coherence granule owned by a remote processing element.

Following are descriptions of the I/O operations:

• If the requested data exists in the memory directory as shared, the data can be returned immediately from memory 
and the sharing mask is not modified  (see Figure3-23). 

• If the requested data exists in the memory directory as modified, the home memory sends an IO_READ_OWNER 
transaction to the processing element that owns the coherence granule. The owner passes a copy of the data to the 
requesting processing element (intervention) but retains ownership of and responsibility for the coherence granule 
(see Figure 3-24 and Figure 3-25). 

Figure 3-21. Flush Operation to Local Shared Coherence Granule

Figure 3-22. Flush Operation to Local Modified Coherence Granule

Figure 3-23. I/O Read Operation to Remote Shared Coherence Granule
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3.3 Endian, Byte Ordering, and Alignment

RapidIO has double-word (8-byte) aligned big-endian data payloads. This means that the RapidIO interface to devices
that are little-endian shall perform the proper endian transformation to format a data payload. 

Operations that specify data quantities that are less than 8 bytes shall have the bytes aligned to their proper byte position
within the big-endian double-word, as in the examples shown in Figure  3-26 through  Figure 3-27. 

For write operations, a processing element shall properly align data transfers to a double-word boundary for transmission
to the destination. This alignment may require breaking up a data stream into multiple transactions if the data is not natu-

Figure 3-24. I/O Read Operation to Remote Modified Coherence Granule

Figure 3-25. I/O Read Operation to Local Modified Coherence Granule

Figure 3-26. Byte Alignment Example

Figure 3-27. Half-Word Alignment Example

Figure 3-28. Word Alignment Example
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rally aligned. A number of data payload sizes and double-word alignments are defined to minimize this burden. Figure
shows a 48-byte data stream that a processing element wishes to write to another processing element through the inter-
connect fabric. The data displayed in the figure is big-endian and double-word aligned with the bytes to be written shaded
in grey. Because the start of the stream and the end of the stream are not aligned to a double-word boundary, the sending
processing element shall break the stream into three transactions as shown in the figure. 

The first transaction sends the first three bytes (in byte lanes 5, 6, and 7) and indicates a byte lane 5, 6, and 7 three-byte
write. The second transaction sends all of the remaining data except for the final sub-double-word. The third transaction
sends the final 5 bytes in byte lanes 0, 1, 2, 3, and 4 indicating a five-byte write in byte lanes 0, 1, 2, 3, and 4. 

4 Chapter 4 - Packet Format Descriptions

This chapter contains the packet format definitions for the RapidIO Interconnect Globally Shared Memory Logical Specifi-
cation. There are four types of globally shared memory packet formats:

• Request
• Response
• Implementation-defined
• Reserved
The packet formats are intended to be interconnect fabric independent, so the system interconnect can be anything required
for a particular application. Reserved formats, unless defined in another logical specification, shall not be used by a device. 

4.1 Request Packet Formats
A request packet is issued by a processing element that needs a remote processing element to accomplish some activity
on its behalf, such as a memory read operation. The request packet format types and their transactions for the RapidIO
Interconnect Globally Shared Memory Logical Specification are shown in Table .

 

Figure 3-29. Data Alignment Example

Table 4-1. Request Packet Type to Transaction Type Cross Reference
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Type 0 Implementation-defined Defined by the device implementation Section 4.1.4

Type 1 READ_OWNER Read shared copy of remotely owned coherence 
granule

Section 4.1.5

READ_TO_OWN_OWNER Read for store of remotely owned coherence 
granule

IO_READ_OWNER Read for I/O of remotely owned coherence granule
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4.4.1 Addressing and Alignment
The size of the address is defined as a system-wide parameter; thus the packet formats do not support mixed local
physical address fields simultaneously. The least three significant bits of all addresses are not specified and are
assumed to be logic 0. 

The coherence-granule-sized cache-coherent write requests and read responses are aligned to a double-word boundary
within the coherence granule, with the specified data payload size matching that of the coherence granule. Sub-double-
word data payloads must be padded and properly aligned within the 8-byte boundary. Non-contiguous or unaligned
transactions that would ordinarily require a byte mask are not supported. A sending device that requires this behavior
must break the operation into multiple request transactions. An example of this is shown in Section 3.3, “Endian, Byte
Ordering, and Alignment.” 

4.1.2 Data Payloads
Cache coherent systems are very sensitive to memory read latency. One way of reducing the latency is by returning the
requested, or critical, double-word first upon a read request. Subsequent double-words are then returned in a sequential

Type 2 READ_TO_OWN_HOME Read for store of home memory for coherence 
granule

Section 4.1.6

READ_HOME Read shared copy of home memory for coherence 
granule

IO_READ_HOME Read for I/O of home memory for coherence 
granule

DKILL_HOME Invalidate to home memory of coherence granule

IKILL_HOME Invalidate to home memory of coherence granule

TLBIE Invalidate TLB entry

TLBSYNC Synchronize TLB invalidates

IREAD_HOME Read shared copy of home memory for instruction 
cache

FLUSH Force return of ownership of coherence granule to 
home memory, no update to coherence granule

IKILL_SHARER Invalidate cached copy of coherence granule

DKILL_SHARER Invalidate cached copy of coherence granule

Type 3–4 — Reserved 4.1.7

Type 5 CASTOUT Return ownership of coherence granule to home 
memory

4.1.8

FLUSH (with data) Force return of ownership of coherence granule to 
home memory, update returned coherence granule

Type 6–11 — Reserved 4.1.9

Table 4-1. Request Packet Type to Transaction Type Cross Reference(Continued)

Request 
Packet 

Format Type
Transaction Type Definition Document 

Section No.
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fashion. Table 4-2 and Table 4-3 show the return ordering for 32- and 64-byte coherence granules. 

 

Data payloads for cache coherent write-type transactions are always linear starting with the specified address at the
first double-word to be written, (including flush transactions that are not the size of the coherence granule). Data pay-
loads that cross the coherence granule boundary can not be specified. This implies that all castout transactions start
with the first double-word in the coherence granule. Table 4-4 and Table 4-5 show the cache-coherent write-data order-
ing for 32- and 64-byte coherence granules, respectively.

4.1.3 Field Definitions for All Request Packet Formats
Fields that are unique to type 1, type 2, and type 5 formats are defined in their sections. Bit fields that are defined as
“reserved” shall be assigned to logic 0s when generated and ignored when received. Bit field encodings that are
defined as “reserved” shall not be assigned when the packet is generated. A received reserved encoding is regarded as
an error if a meaningful encoding is required for the transaction and function, otherwise it is ignored. Implementation-
defined fields shall be ignored unless the encoding is understood by the receiving device. All packets described are bit
streams from the first bit to the last bit, represented in the figures from left to right respectively. 

The following field definitions in Table  apply to all of the request packet formats.

Table 4-2. Coherent 32-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3

1 1, 2, 3, 0

2 2, 3, 0, 1

3 3, 0, 1, 2

Table 4-3. Coherent 64-Byte Read Data Return Ordering

Requested Double-word Double-word Return Ordering

0 0, 1, 2, 3, 4, 5, 6, 7

1 1, 2, 3, 0, 4, 5, 6, 7

2 2, 3, 0, 1, 4, 5, 6, 7

3 3, 0, 1, 2, 4, 5, 6, 7

4 4, 5, 6, 7, 0, 1, 2, 3

5 5, 6, 7, 4, 0, 1, 2, 3

6 6, 7, 4, 5, 0, 1, 2, 3

7 7, 4, 5, 6, 0, 1, 2, 3

Table 4-6. General Field Definitions for All Request Packets

Field Definition

ftype Format type, represented as a 4-bit value; is always the first four bits in the logical packet stream.

wdptr Word pointer, used in conjunction with the data size (rdsize and wrsize) fields—see Table , Table , 
and Section 3.3: "Endian, Byte Ordering, and Alignment". 

rdsize Data size for read transactions, used in conjunction with the word pointer (wdptr) bit—see Table  and 
Section 3.3: "Endian, Byte Ordering, and Alignment". 

wrsize Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) 
bit—see Table  and Section 3.3: "Endian, Byte Ordering, and Alignment". For writes greater than one 
double-word, the size is the maximum payload. 

rsrv Reserved
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srcTID The packet’s transaction ID.

transaction The specific transaction within the format class to be performed by the recipient; also called type or 
ttype.

extended 
address

Optional. Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit 
physical address.

xamsbs Extended address most significant bits. Further extends the address specified by the address and 
extended address fields by 2 bits. This field provides 34-, 50-, and 66-bit addresses to be specified in 
a packet with the xamsbs as the most significant bits in the address.

address Least significant 29 bits (bits [0-28] of byte address [0-31]) of the double-word physical address

Table 4-7. Read Size (rdsize) Definitions

wdptr rdsize Number of 
Bytes Byte Lanes

0b0-1 0b0000-1011 Reserved

0b0 0b1100 32

0b1 0b1100 64

0b0-1 0b1101-1111 Reserved

Table 4-8. Write Size (wrsize) Definitions

wdptr  wrsize Number of 
Bytes Byte Lanes

0b0 0b0000 1 0b10000000

0b0 0b0001 1 0b01000000

0b0 0b0010 1 0b00100000

0b0 0b0011 1 0b00010000

0b1 0b0000 1 0b00001000

0b1 0b0001 1 0b00000100

0b1 0b0010 1 0b00000010

0b1 0b0011 1 0b00000001

0b0 0b0100 2 0b11000000

0b0 0b0101 3 0b11100000

0b0 0b0110 2 0b00110000

0b0 0b0111 5 0b11111000

0b1 0b0100 2 0b00001100

0b1 0b0101 3 0b00000111

0b1 0b0110 2 0b00000011

0b1 0b0111 5 0b00011111

0b0 0b1000 4 0b11110000

Table 4-6. General Field Definitions for All Request Packets(Continued)

Field Definition
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4.1.4 Type 0 Packet Format (Implementation-Defined)
The type 0 packet format is reserved for implementation-defined functions such as flow control. 

4.1.5 Type 1 Packet Format (Intervention-Request Class)
Type 1 request packets never include data. They are the only request types that can cause an intervention, so the sec-
ondary domain, secondary ID, and secondary transaction ID fields are required. The total number of bits available for
the secondary domain and secondary ID fields (shown in Figure 4-1) is determined by the size of the transport field
defined in the appropriate transport layer specification, so the size (labeled m and n, respectively) of these fields are
not specified. The division of the bits between the logical coherence domain and device ID fields is determined by the
specific application. For example, an 8 bit transport field allows 16 coherence domains of 16 participants. 

The type 1 packet format is used for the READ_OWNER, READ_TO_OWN_OWNER, and IO_READ_OWNER
transactions that are specified in the transaction sub-field column defined in Table .4-9. Type 1 packets are issued only
by a home memory controller to allow the third party intervention data transfer. 

Definitions and encodings of fields specific to type 1 packets are displayed in Table 4-9. Fields that are not specific to
type 1 packets are described in Table 4-6. 

0b1 0b1000 4 0b00001111

0b0 0b1001 6 0b11111100

0b1 0b1001 6 0b00111111

0b0 0b1010 7 0b11111110

0b1 0b1010 7 0b01111111

0b0 0b1011 8 0b11111111

0b1 0b1011 16 
maximum

0b0 0b1100 32 
maximum

0b1 0b1100 64 
maximum

0b0-1 0b1101-1111 Reserved

Table 4-9. Specific Field Definitions and Encodings for Type 1 Packets

Field Encoding Sub-Field Definition

secID — Original requestor’s, or secondary, ID for intervention

secTID — Original requestor’s, or secondary, transaction ID for 
intervention

sec_domain — Original requestor’s, or secondary, domain for 
intervention

transaction 0b0000 READ_OWNER

0b0001 READ_TO_OWN_OWNE
R

0b0010 IO_READ_OWNER

0b0011–1111 Reserved

Table 4-8. Write Size (wrsize) Definitions(Continued)

wdptr  wrsize Number of 
Bytes Byte Lanes
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Figure 4-1 displays a type 1 packet with all its fields. The field value 0b0001 in Figure 4-1 specifies that the packet for-
mat is of type 1. 

4.1.6 Type 2 Packet Format (Request Class) 
Type 2 request packets never include data. They cannot cause an intervention so the secondary domain and ID fields
specified in the intervention-request format are not required. This format is used for the READ_HOME,
IREAD_HOME, READ_TO_OWN_HOME, IO_READ_HOME, DKILL_HOME, DKILL_SHARER,
IKILL_HOME, IKILL_SHARER, TLBIE, and TLBSYNC transactions as specified in the transaction field defined in
Table . Type 2 packets for READ_HOME, IREAD_HOME, READ_TO_OWN_HOME, IO_READ_HOME, FLUSH
without data, DKILL_HOME, and IKILL_HOME transactions are issued to home memory by a processing element.
DKILL_SHARER and IKILL_SHARER transactions are issued by a home memory to the sharers of a coherence gran-
ule. DKILL_HOME, DKILL_SHARER, IKILL_HOME, IKILL_SHARER, FLUSH without data, and TLBIE are
address-only transactions so the rdsize and wdptr fields are ignored and shall be set to logic 0. TLBSYNC is a transac-
tion-type-only transaction so both the address, xamsbs, rdsize, and wdptr fields shall be set to logic 0.

The transaction field encodings for type 2 packets are displayed in Table 4-10. Fields that are not specific to type 2
packets are described in Table .

Figure  4-2 displays a type 2 packet with all its fields. The field value 0b0010 in Figure  specifies that the packet for-
mat is of type 2.

Figure 4-1. Type 1 Packet Bit Stream Format 
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0b0011 DKILL_HOME
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0b0110 TLBIE

0b0111 TLBSYNC

0b1000 IREAD_HOME

0b1001 FLUSH without data

0b1010 IKILL_SHARER

0b1011 DKILL_SHARER
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Figure 4-2. Type 2 Packet Bit Stream Format 

4.1.7 Type 3–4 Packet Formats (Reserved)
The type 3–4 packet formats are reserved.

4.1.8 Type 5 Packet Format (Write Class)
Type 5 packets always contain data. A data payload that consists of a single double-word or less has sizing information
as defined in Table 4-8. The wrsize field specifies the maximum size of the data payload for multiple double-word
transactions. The FLUSH with data and CASTOUT transactions use type 5 packets as defined in Table 4-11. Note that
type 5 transactions always contain data. 

Fields that are not specific to type 5 packets are described in Table 4-6..

Figure  4-3 displays a type 5 packet with all its fields. The field value 0b0101 in Figure 4.3 specifies that the packet
format is of type 5. 

4.1.9 Type 6–11 Packet Formats (Reserved)
The type 6–11 packet formats are reserved.

4.2 Response Packet Formats
A response transaction is issued by a processing element when it has completed a request made by a remote processing
element. Response packets are always directed and are transmitted in the same way as request packets. Currently two
response packet format types exist, as shown in Table . 

Table 4-11. Transaction Field Encodings for Type 5 Packets

Encoding Transaction Field

0b0000 CASTOUT

0b0001 FLUSH with data

0b0010–1111 Reserved

Figure 4-3. Type 5 Packet Bit Stream Format 
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4.2.1 Field Definitions for All Response Packet Formats 
The field definitions in Table 4-13 apply to more than one of the response packet formats.

4.2.2 Type 12 Packet Format (Reserved)
The type 12 packet format is reserved.

4.2.3 Type 13 Packet Format (Response Class)
The type 13 packet format returns status, data (if required), and the requestor’s transaction ID. A RESPONSE packet
with an “ERROR” status or a response that is not expected to have a data payload never has a data payload. The type
13 format is used for response packets to all request transactions. 

Note that type 13 packets do not have any special fields.

Figure  4-4 illustrates the format and fields of type 13 packets. The field value 0b1101 in Figure 4-4  specifies that the

Table 4-12. Request Packet Type to Transaction Type Cross Reference

Request 
Packet 

Format Type
Transaction Type Definition Document 

Section No.

Type 12 — Reserved Section 4.2.2

Type 13 RESPONSE Issued by a processing element when it completes a 
request by a remote element.

Section 4.2.3

Type 14 — Reserved Section 4.2.4

Type 15 Implementation-defined Defined by the device implementation Section 4.2.5

Table 4-13. Field Definitions and Encodings for All Response Packets

Field Encoding Sub-Field Definition

transaction 0b0000 RESPONSE transaction with no data payload

0b0001–0111 Reserved

0b1000 RESPONSE transaction with data payload

0b1001–1111 Reserved

targetTID — The corresponding request packet’s transaction ID

status Type of status and encoding

0b0000 DONE Requested transaction has been successfully completed

0b0001 DATA_ONLY This is a data only response

0b0010 NOT_OWNER Not owner of requested coherence granule

0b0011 RETRY Requested transaction is not accepted; must retry the 
request

0b0100 INTERVENTION Update home memory with intervention data

0b0101 DONE_INTERVENTION Done for a transaction that resulted in an intervention

0b0110 — Reserved

0b0111 ERROR Unrecoverable error detected

0b1000–1011 — Reserved

0b1100–1111 Implementation Implementation defined—Can be used for additional 
information such as an error code
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packet format is of type 13. 
0.0.1

4-2-4 Type 14 Packet Format (Reserved)
The type 14 packet format is reserved.

4-2-5 Type 15 Packet Format (Implementation-Defined)
The type 15 packet format is reserved for implementation-defined functions such as flow control. 

5 Chapter 5 - Globally Shared Memory Registers

This chapter describes the visible register set that allows an external processing element to determine the capabilities, con-
figuration, and status of a processing element using this logical specification. This chapter only describes registers or regis-
ter bits defined by this specification. Refer to the other RapidIO logical, transport, and physical specifications of interest to
determine a complete list of registers and bit definitions. All registers are 32-bits and aligned to a 32-bit boundary.

5.1 Register Summary
Table 5-1 shows the register map for this RapidIO specification. These capability registers (CARs) and command and sta-
tus registers (CSRs) can be accessed using the Partition I: Input/Output Logical Specification maintenance operations.
Any register offsets not defined are considered reserved for this specification unless otherwise stated. Other registers
required for a processing element are defined in other applicable RapidIO specifications and by the requirements of the
specific device and are beyond the scope of this specification. Read and write accesses to reserved register offsets shall
terminate normally and not cause an error condition in the target device. Writes to CAR (read-only) space shall terminate
normally and not cause an error condition in the target device.

Register bits defined as reserved are considered reserved for this specification only. Bits that are reserved in this specifi-
cation may be defined in another RapidIO specification. 

Figure 4-4. Type 13 Packet Bit Stream Format 

Table 5-1. GSM Register Map
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(Word 0)
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0x0-10 Reserved

0x18 Source Operations CAR Destination Operations CAR
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0x100-
FFF8 Extended Features Space

0x10000-
FFFFF8 Implementation-defined Space

1 1 0 1

4 4 4 8
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64
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5.2 Reserved Register and Bit Behavior
Table  5.2 describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO reg-
ister space, 

5.3 Capability Registers (CARs)
Every processing element shall contain a set of registers that allows an external processing element to determine its capa-
bilities using the I/O logical maintenance read operation. All registers are 32 bits wide and are organized and accessed in
32-bit (4 byte) quantities, although some processing elements may optionally allow larger accesses. CARs are read-only.
Refer to Table 5-2  for the required behavior for accesses to reserved registers and register bits. 

Table 5-2. Configuration Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x0-3C Capability Register 
Space (CAR Space - this 
space is read-only)

Reserved bit read - ignore returned value1

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read 
value. 

read - return logic 0

write - write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - write - ignored

 Reserved 
register

read - ignore returned value read - return logic 0s

write - write - ignored

0x40-FC Command and Status 
Register Space (CSR 
Space)

Reserved bit read - ignore returned value read - return logic 0

write - preserve current 
value2

2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the 
desired values for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x100-
FFFC

Extended Features Space Reserved bit read - ignore returned value read - return logic 0

write - preserve current value write - ignored

Implementation-
defined bit

read - ignore returned value 
unless implementation-
defined function understood

read - return implementation-
defined value

write - preserve current value 
if implementation-defined 
function not understood

write - implementation-
defined

Reserved register read - ignore returned value read - return logic 0s

write - write - ignored

0x10000-
FFFFFC

Implementation-defined 
Space

Reserved bit and 
register

All behavior implementation-defined
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CARs are big-endian with bit 0 and Word 0 respectively the most significant bit and word. 

5.3.1 Source Operations CAR (Offset 0x18 Word 0) 
This register defines the set of RapidIO GSM logical operations that can be issued by this processing element; see
Table 5-3. It is assumed that a processing element can generate I/O logical maintenance read and write requests if it is
required to access CARs and CSRs in other processing elements. The Source Operations CAR is applicable for end
point devices only. RapidIO switches shall be able to route any packet.  

5.3.2 Destination Operations CAR (Offset 0x18 Word 1)
This register defines the set of RapidIO GSM operations that can be supported by this processing element; see Table 5-
4. It is required that all processing elements can respond to I/O logical maintenance read and write requests in order to
access these registers. The Destination Operations CAR is applicable for end point devices only. RapidIO switches
shall be able to route any packet. 

Table 5-3. Bit Settings for Source Operations CAR

Bit Field Name Description

0 Read PE can support a read operation
1 Instruction read PE can support an instruction read operation
2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation
4 Castout PE can support a castout operation
5 Data cache flush PE can support a data cache flush operation

6 I/O read PE can support an I/O read operation
7 Instruction cache invalidate PE can support an instruction cache invalidate 

operation
8 TLB invalidate-entry PE can support a TLB invalidate-entry operation
9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync 

operation
10–13 — Reserved
14–15 Implementation Defined Defined by the device implementation
16–29 — Reserved
30–31 Implementation Defined Defined by the device implementation

Table 5-4. Bit Settings for Destination Operations CAR

Bit Field Name Description

0 Read PE can support a read operation

1 Instruction read PE can support an instruction read operation

2 Read-for-ownership PE can support a read-for-ownership operation

3 Data cache invalidate PE can support a data cache invalidate operation

4 Castout PE can support a castout operation

5 Data cache flush PE can support a flush operation

6 I/O read PE can support an I/O read operation

7 Instruction cache invalidate PE can support an instruction cache invalidate 
operation

8 TLB invalidate-entry PE can support a TLB invalidate-entry operation
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6 Chapter 6 - Communication Protocols

This chapter contains the RapidIO globally shared memory (GSM) communications protocol definitions. Three state
machines are required for a processing element on the RapidIO interface: one for local system accesses to local and remote
space, one for remote accesses to local space, and one for handling responses made by the remote system to requests from
the local system. The protocols are documented as pseudo-code partitioned by operation type. The RapidIO protocols as
defined here assume a directory state definition that uses a modified bit with the local processor always sharing as described
in Chapter 2, “System Models.” The protocols can be easily modified to use an alternate directory scheme that allows break-
ing the SHARED state into a REMOTE_SHARED and a REMOTE_AND_LOCAL_SHARED state pair. 

Similarly, it may be desirable for an implementation to have an UNOWNED state instead of defaulting to
LOCAL_SHARED or LOCAL_MODIFIED. These optimizations only affect the RapidIO transaction issuing behavior
within a processing element, not the globally shared memory protocol itself. This flexibility allows a variety of local proces-
sor cache state coherence definitions such as MSI or MESI.

Some designs may not have a source of local system requests, for example, the memory only processing element described
in Section 2.1.3, “Memory-Only Processing Element Model”. The protocols for these devices are much less complicated,
only requiring the external request state machine and a portion of the response state machine. Similarly, a design may not
have a local memory controller, which is also a much less complicated device, requiring only a portion of the internal
request and response state machines. The protocols assume a processor element and memory processing element as
described in Figure 2-2.

6.1 Definitions
The general definitions of  Section 6.1.1 apply throughout the protocol, and the requests and responses of state machines
are defined in Section  6.2.1 “Request and Response Definitions”. 

6.1.1 General Definitions
address_collision An address match between the new request and an address currently being serviced by the state
machines or some other address-based internal hazard. This frequently causes a retry of the new request.

assign_entry() Assign resources (such as a queue entry) to service a request, mark the address as able to participate in
address collision detection (if appropriate), and assign a transaction ID

dataAny data associated with the transaction; this field is frequently null

directory_state The memory directory state for the address being serviced

error() Signal an error (usually through an interrupt structure) to software, usually to indicate a coherence violation
problem

free_entry() Release all resources assigned to this transaction, remove it from address collision detection, and deallo-
cate the transaction ID

localMemory local to the processing element

local_request(m,n,...) A local request to a local processor caused by an incoming external request that requires a snoop
of the processor’s caches

9 TLB invalidate-entry sync PE can support a TLB invalidate-entry sync 
operation

10–13 — Reserved

14-15 Implementation Defined Defined by the device implementation

16-29 — Reserved

30-31 Implementation Defined Defined by the device implementation

Table 5-4. Bit Settings for Destination Operations CAR(Continued)

Bit Field Name Description
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local_response(m,n,.) A local response to a local request; usually indicates the cache state for the requesting processor
to mark the requested data

LOCAL_RTYPEThis is the response from the local agent to the local processor in response to a local request.

LOCAL_TTYPEThis is the transaction type for a request passed from the RapidIO interconnect to a local device.

(mask <= (mask ~= received_srcid))
“Assign the mask field to the old mask field with the received ID bit cleared.” This result is generated when a response
to a multicast is received and it is not the last one expected.

((mask ~= (my_id OR received_id)) == 0)
“The mask field not including my ID or the received ID equals 0.” This result indicates that we have received all of the
expected responses to a multicast request.

(mask ~= my_id)“The sharing mask not including my ID.” This result is used for multicast operations where the
requestor is in the sharing list but does not need to be included in the multicast transaction because it is the source of
the transaction.

(mask <= (participant_list ~= my_id))
“The sharing mask includes all participants except my ID.” This result is used for the IKILL operation, which does not
use the memory directory information. 

(mask <= (participant_list ~= (received_srcid AND my_id)))
“The sharing mask includes all participants except the requestor’s and my IDs.” This result is used for the IKILL oper-
ation, which does not use the memory directory information. 

(mask == received_srcid)
“The sharing mask only includes the requestor’s ID.” This result is used for the DKILL operation to detect a write-hit-
on-shared case where the requestor has the only remote copy of the coherence granule. 

original_srcid The ID of the initial requestor for a transaction, saved in the state associated with the transaction ID

received_data The response contained data 

received_data_only_message
Flag set by set_received_data_only_message()

received_done_message
Flag set by set_received_done_message() 

remote_request (m,n,...) 
Make a request to the interconnect fabric 

remote_response (m,n,...) 
Send a response to the interconnect fabric 

RESPONSE_TTYPE 
This is the RapidIO transaction type for a response to a request 

return_data()  Return data to the local requesting processor, either from memory or from a interconnect fabric buffer;
the source can be determined from the context 

secondary_id  The third party identifier for intervention responses; the processing element ID concatenated with the
processing element domain. 

set_received_data_only_message() 
Remember that a DATA_ONLY response was received for this transaction ID 

set_received_done_message() 
Remember that a DONE response was received for this transaction ID 

source_idThe source device identifier; the processing element ID concatenated with the processing element domain

target_idThe destination device identifier; the processing element ID concatenated with the processing element
domain
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TRANSACTIONThe RapidIO transaction type code for the request

update_memory()Write memory with data received from a response

update_state(m,n,...)Modify the memory directory state to reflect the new system status

6.2.1 Request and Response Definitions
Following are the formats used in the pseudocode to describe request and response transactions sent between process-
ing elements and the formats of local requests and responses between the cache coherence controller and the local
cache hierarchy and memory controllers.

6.1.2.1 System Request
The system request format is:

emote_request(TRANSACTION, target_id, source_id, secondary_id, data)

which describes the necessary RapidIO request to implement the protocol. 

6.1.2.2 Local Request
The local request format is:

local_request(LOCAL_TTYPE)

that is the necessary local processor request to implement the protocol; the pseudocode assumes a generic local bus.
A local request also examines the remote cache as part of the processing element’s caching hierarchy. The local
transactions are defined as:

DKILL Causes the processor to transition the coherence granule to invalid regardless of the current state; data is not
pushed if current state is modified 

IKILL Causes the processor to invalidate the coherence granule in the instruction cache 

READ Causes the processor to transition the coherence granule to shared and push data if necessary 

READ_LATEST Causes the processor to push data if modified but not transition the cache state 

READ_TO_OWN Causes the processor to transition the coherence granule to invalid and push data 

TLBIE Causes the processor to invalidate the specified translation look-aside buffer entry

TLBSYNC Causes the processor to indicate when all outstanding TLBIEs have completed

6.1.2.3 System Response
The system response format is:

remote_response(RESPONSE_TTYPE, target_id, source_id, data (opt.))

which is the proper response to implement the protocol.

6.1.2.4 Local Response
The local response format is:

local_response(LOCAL_RTYPE)

In general, a transaction ID (TID) is associated with each device ID in order to uniquely identify a request. This TID
is frequently a queue index in the source processing element. These TIDs are not explicitly called out in the pseu-
docode below. The local responses are defined as:

EXCLUSIVEThe processor has exclusive access to the coherence granule

OK  The transaction requested by the processor has or will complete properly 

RETRY Causes the processor to re-issue the transaction; this response may cause a local bus spin loop until the pro-
tocol allows a different response

SHARED The processor has a shared copy of the coherence granule

6.2 Operation to Protocol Cross Reference
Table  6-1 contains a cross reference of the operations defined in the RapidIO Interconnect Globally Shared Memory Log-
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ical Specification and their system usage.

6.3 Read Operations
This operation is a coherent data cache read; refer to the description in Section 3.2.1: "Read Operations".

6.3.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor. 

if (address_collision)   // this is due to an external request
// in progress or a cache
local_response(RETRY);  // index hazard from a previous request
elseif (local)  // our local memory
switch (directory_state)
case LOCAL_MODIFIED:   // local modified is OK if we default 
//local memory to owned
local_response(EXCLUSIVE);
return_data();
case LOCAL_SHARED,// local, owned by memory
case SHARED:  // shared local and remote
local_response(SHARED);
return_data();// keep directory state 
// the way it was
case REMOTE_MODIFIED:
local_response(SHARED);
assign_entry();// this means to assign 
// a transaction ID,
// usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);
default:
error();
else // remote - we’ve got to go 
// to another processing element
assign_entry();
local_response(RETRY);// can’t guarantee data before a
// snoop yet
remote_request(READ_HOME, mem_id, my_id);
endif;

Table 6-1. Operation to Protocol Cross Reference

Operations Protocol

Read Section : "6.3 Read Operations" 6.3

Instruction read Section : "6.3 Read Operations" 6.3

Read for ownership Section  6.5

Data cache invalidate Section 6.6

Instruction cache invalidate Section 6.6

Castout Section 6.7

TLB invalidate entry Section 6.8

TLB invalidate entry 
synchronize

Section 6.8

Data cache flush Section 6.9

I/O read Section 6.10
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6.3.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

if (my_id == mem_id == original_srcid)// original requestor is home memory
switch(remote_response)// matches my_id only for 
// REMOTE_MODIFIED case
case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
return_data();
free_entry();
case NOT_OWNER,// due to address collision or
case RETRY:// passing requests
switch (directory_state)
case LOCAL_MODIFIED:
local_response(EXCLUSIVE);
// when processor re-requests
return_data();
free_entry();
case LOCAL_SHARED:
local_response(SHARED);
// when processor re-requests
return_data();
free_entry();
case REMOTE_MODIFIED: // mask_id must match received_srcid

//or error; spin or wait for castout
remote_request(READ_OWNER, received_srcid,
my_id, my_id);
default:
error();
default
error();
elseif(my_id == mem_id ~== original_id// i’m home memory working for
//a third party
switch(remote_response)
case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();
case NOT_OWNER,// data comes from memory, 
// mimic intervention
case RETRY:
switch(directory_state)
case LOCAL_SHARED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,
my_id, data);
emote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,
my_id, data);
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remote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case REMOTE_MODIFIED:// spin or wait for castout
remote_request(READ_OWNER, received_srcid,
my_id, my_id);
default:
error();
default:
error();
else// my_id ~= mem_id - I’m 
// requesting a remote 
// memory location
switch(remote_response)
case DONE:
local_response(SHARED);  // when processor re-requests
return_data();
free_entry();
case DONE_INTERVENTION:// must be from third party
set_received_done_message();
if (received_data_only_message)
free_entry();
else
// wait for a DATA_ONLY
endif;
case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately
local_response(SHARED);
set_received_data_only_message();
if (received_done_message)
return_data();
free_entry();
else
return_data(); // OK for weak ordering
endif;
case RETRY:
remote_request(READ_HOME, received_srcid, my_id);
default
error();
endif;

6.3.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests.

if (address_collision)// use collision tables in
// Chapter 7, “Address Collision Resolution Tables”
elseif (READ_HOME)// remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:
local_request(READ);
update_state(SHARED, received_srcid);
//after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();
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case LOCAL_SHARED,
case SHARED:
update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
// intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);
else
error();// he already owned it; 
// cache paradox (or I-fetch after d-
// store if not fixed elsewhere)
endif;
default:
error();
else// READ_OWNER request to our caches
assign_entry();
local_request(READ);// spin until a valid response
// from caches 
switch (local_response) 
case MODIFIED: // processor indicated a push;
// wait for it
cache_state(SHARED or INVALID);
//surrender ownership
if (received_srcid == received_secid)
//original requestor is also home
remote_response(INTERVENTION, received_srcid,
my_id, data);
else 
remote_response(DATA_ONLY, received_secid,
my_id, data);
remote_response(INTERVENTION, received_srcid,
my_id, data);
endif;
case INVALID: // must have cast it out
remote_response(NOT_OWNER, received_srcid, my_id);
default;
error();
free_entry();
endif;

6.4 Instruction Read Operations
This operation is a partially coherent instruction cache read; refer to the description in Section 3.2.2: "Instruction Read
Operations".

6.4.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor.

if (address_collision)// this is due to an external 
// request in progress or a cache
local_response(RETRY); // index hazard from a previous request
elseif (local)// our local memory
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default
// local memory to owned
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local_response(EXCLUSIVE);
return_data();
case LOCAL_SHARED,// local, owned by memory
case SHARED: // shared local and remote
local_response(SHARED);
return_data();// keep directory state the way it was
case REMOTE_MODIFIED:
local_response(SHARED);
assign_entry();// this means to assign a transaction
// ID, usually a queue entry
remote_request(READ_OWNER, mask_id, my_id, my_id);
default:
error();
else// remote - we’ve got to go
//to another processing element
assign_entry();
local_response(RETRY);
// can’t guarantee data before a
// snoop yet
remote_request(IREAD_HOME, mem_id, my_id);
endif;

6.4.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

if (my_id == mem_id == original_srcid)// original requestor is home memory
error();
elseif(my_id == mem_id ~== original_id)// i’m home memory working for a
// third party
switch(remote_response)
case INTERVENTION:
update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();
case NOT_OWNER,// data comes from memory, 
// mimic intervention
case RETRY:
switch(directory_state)
case LOCAL_SHARED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();
case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();
case REMOTE_MODIFIED:// spin or wait for castout
remote_request(READ_OWNER, received_srcid,
my_id, my_id);
default:
error();
default:
error();
else // my_id ~= mem_id - I’m requesting
// a remote memory location
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switch(remote_response)
case DONE:
local_response(SHARED);// when processor re-requests
return_data();
free_entry();
case DONE_INTERVENTION:// must be from third party
set_received_done_message();
if (received_data_only_message)
free_entry();
else
// wait for a DATA_ONLY
endif;
case DATA_ONLY:// this is due to an intervention; a
// DONE_INTERVENTION should come
// separately
local_response(SHARED);
set_received_data_only_message();
if (received_done_message)
return_data();
free_entry();
else
return_data(); // OK for weak ordering
endif;
case RETRY:
remote_request(IREAD_HOME, received_srcid, my_id);
default
error();
endif;

6.4.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests. 

if (address_collision)// use collision tables in
// Chapter 7, “Address Collision Resolution Tables”
elseif(IREAD_HOME)// remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:
local_request(READ);
update_state(SHARED, received_srcid);
// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case LOCAL_SHARED,
case SHARED:
update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
// intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);
else// he already owned it in his 
//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);
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endif;
default:
error();
endif;

6.5 Read for Ownership Operations
This is the coherent cache store miss operation.

6.5.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor. 

if (address_collision) // this is due to an external request
// in progress or a cache index
local_response(RETRY);// hazard from a previous request
elseif (local)// our local memory
switch (directory_state
case LOCAL_MODIFIED, // local modified is OK if we
// default memory to owned locally
case LOCAL_SHARED:
local_response(EXCLUSIVE);  // give ownership to processor
return_data();
if (directory_state == LOCAL_SHARED)
update_state(LOCAL_MODIFIED)
endif;
case REMOTE_MODIFIED:// owned by another, get a copy
// and ownership
assign_entry();
local_response(RETRY);// retry
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);
case SHARED:// invalidate the sharing list
assign_entry();
local_response(RETRY); // retry
remote_request(DKILL_SHARER, (mask ~= my_id), my_id, my_id);
default:
error();
else // remote - we’ve got to go to another
// processing element
assign_entry();
local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);
endif;

6.5.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party. 

if (my_id == mem_id == original_srcid)// original requestor is home memory
switch (received_response)
case DONE:// SHARED, so invalidate case
if ((mask ~= (my_id OR received_id)) == 0)  
// this is the last DONE
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
else
mask <= (mask ~= received_srcid);
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// flip the responder’s shared
// bit and wait for next DONE
endif;
case NOT_OWNER:// due to address collision with
// CASTOUT or FLUSH
switch(directory_state)
case LOCAL_MODIFIED,:
local_response(EXCLUSIVE);
return_data();
free_entry();
case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case REMOTE_MODIFIED: 
// spin or wait for castout
remote_request(READ_TO_OWN_OWNER, mask_id,
my_id, my_id);
default:
error();
case INTERVENTION:// remotely owned
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:
local_response(EXCLUSIVE);
return_data();
free_entry();
case LOCAL_SHARED:
local_response(EXCLUSIVE);
return_data();
update_state(LOCAL_MODIFIED);
free_entry();
case REMOTE_MODIFIED: //mask_id must match received_srcid
//or error condition
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
default:
error();
default:
error();
elseif (my_id == mem_id ~= original_srcid)
// i’m home memory working
// for a third party
switch(received_response)
case DONE: // invalidates for shared 
// directory states
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
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update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();
else
mask <= (mask ~= received_srcid);
// flip the responder’s shared bit
endif;// and wait for next DONE
case INTERVENTION:
// remote_modified case
update_memory();// for possible coherence error
// recovery
update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, original_id, my_id);
free_entry();
case NOT_OWNER:// data comes from memory, mimic
// intervention
switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,
data);
remote_response(DONE, original_srcid, my_id);
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, original_srcid);
default:
error();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,
data);
remote_response(DONE, original_srcid, my_id);
free_entry();
case REMOTE_MODIFIED:// mask_id must match received_srcid
// or error condition
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
default:
error();
default:
error();
else // my_id ~= mem_id - I’m requesting
// a remote memory location
switch (received_response)
case DONE:
local_response(EXCLUSIVE);
return_data();
free_entry();
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case DONE_INTERVENTION:
set_received_done_message();
if (received_data_message)
free_entry();
else
// wait for DATA_ONLY
endif;
case DATA_ONLY:
set_received_data_message();
local_response(EXCLUSIVE);
if (received_done_message)
return_data();
free_entry();
else
return_data();// OK for weak ordering
endif;// and wait for a DONE
case RETRY:// lost at remote memory so retry
remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:
error();
endif;

6.5.3 External Request State Machine
This state machine handles requests from the interconnect to the local memory or the local system. This may require
making further external requests.

if (address_collision)// use collision tables
// in Chapter 7, “Address Collision Resolution Tables”
elseif (READ_TO_OWN_HOME) // remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);
// after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();
case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)
// intervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
received_srcid);
else
error();// he already owned it!
endif;
case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)
//requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
// from memory
free_entry();
else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid),
my_id, my_id);
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endif;
default:
error();
elseif(READ_TO_OWN_OWNER) // request to our caches
assign_entry();
local_request(READ_TO_OWN);// spin until a valid response from
// the caches
switch (local_response)
case MODIFIED:// processor indicated a push
cache_state(INVALID);
//surrender ownership
if(received_srcid == received_secid)
// the original request is from the home
remote_response(INTERVENTION, received_srcid, my_id,
data);
else // the original request is from a
// third party
remote_response(DATA_ONLY, received_secid, my_id,
data);
remote_response(INTERVENTION, received_srcid, my_id,
data);
endif;
free_entry();
case INVALID:// castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);
default:
error();
endif;

6.6 Data Cache and Instruction Cache Invalidate Operations
This operation is used with coherent cache store-hit-on-shared, cache operations; refer to the description in Section 3.2.4:
"Data Cache Invalidate Operations". 

6.6.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor. 

if (address_collision)// this is due to an external request in 
// progress or a cache index
local_response(RETRY);// hazard from a previous request
elseif (local)// our local memory and we won
if (DKILL)// DKILL checks the directory
switch (directory_state)
case LOCAL_MODIFIED, // local modified is OK if we default
// memory to owned locally
case LOCAL_SHARED:
local_response(EXCLUSIVE);
if (LOCAL_SHARED)
update_state(LOCAL_MODIFIED, my_id);
endif;
case REMOTE_MODIFIED:// cache paradox; DKILL is
// write-hit-on-shared
error();
case SHARED:
local_response(RETRY);
assign_entry();// Multicast if possible otherwise 
// issue direct to each sharer
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);
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default:
error();
else // IKILL always goes to everyone
remote_request(IKILL_SHARER,
mask <= (participant_list ~= my_id)), my_id);
endif;
else // remote - we’ve got to go to another
// processing element
assign_entry();
local_response(RETRY);
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id);
endif;

6.6.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

if (my_id == mem_id == original_srcid)// original requestor is home memory
switch (received_response)
case DONE:// shared cases
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
update_state(LOCAL_MODIFIED);
free_entry();
else
mask <= (mask ~= received_srcid);
// flip the responder’s shared bit and
endif; // wait for next DONE
case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,
my_id); // retry the transaction
default:
error();
elseif (my_id == mem_id ~= original_srcid)
// i’m home memory working
// for a third party
switch(received_response)
case DONE // invalidates for shared 
// directory states
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();
else
mask <= (mask ~= received_srcid);
// flip the responder’s shared bit
endif;// and wait for next DONE
case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,
my_id);// retry
default:
error();
else // my_id ~= mem_id - I’m requesting
// a remote memory location
switch (received_response)
case DONE:
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local_response(EXCLUSIVE);
free_entry();
case RETRY:
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid,
my_id);// retry the transaction
default:
error();
endif;

6.6.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests.

if (address_collision)   use collision tables in
// Chapter 7, “Address Collision Resolution Tables”
elseif (DKILL_HOME || IKILL_HOME)// remote request to our local memory
assign_entry();
if (DKILL_HOME)
switch (directory_state)
case LOCAL_MODIFIED,// cache paradoxes; DKILL is
// write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:
error();
case SHARED: // this is the right case, send
// invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid
// requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id);
free_entry();
else// there are other remote sharers
remote_request(DKILL_SHARER,
mask ~= received_srcid), my_id, NULL);
endif;
default:
error();
else  // KILL goes to everyone except the
// requestor
remote_request(IKILL_SHARER,
mask <= (participant_list ~=
received_srcid AND my_id), my_id);
else  // DKILL_SHARER or IKILL_SHARER to our caches
assign_entry();
local_request({READ_TO_OWN, IKILL});
// spin until a valid response from the
// caches
switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases
cache_state(INVALID);// surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();
default:
error();
endif;



- 208 -

6.7 Castout Operations
This operation is used to return ownership of a coherence granule to home memory, leaving it invalid in the cache; refer
to the description in Section 3.2.5: "Castout Operations". 

6.7.1 Internal Request State Machine
A castout is always done to remote memory space. A castout may require local activity to flush all caches in the hier-
archy.

if (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED: // if the processor is doing a castout
// this is the only legal state
local_response(OK);
update_memory();
update_state(LOCAL_SHARED);
default:
error();
else // remote - we’ve got to go to another
// processing element
assign_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);
endif;

6.7.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

switch (received_response)
case DONE:
free_entry();
default:
error();

6.7.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests.

assign_entry();
update_memory();
state_update(LOCAL_SHARED, my_id);// may be LOCAL_MODIFIED if the
//default is owned locally
remote_response(DONE, received_srcid, my_id);
free_entry();

6.8 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
These operations are used for software coherence management of the TLBs; refer to the descriptions in Section 3.2.6:
"TLB Invalidate-Entry Operations" and Section 3.2.7: "TLB Invalidate-Entry Synchronization Operations". 

6.8.1 Internal Request State Machine
The TLBIE and TLBSYNC transactions are always sent to all domain participants except the sender and are always to
the processor not home memory.

assign_entry();
remote_request({TLBIE, TLBSYNC}, participant_id, my_id);
endif;
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6.8.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system. The
responses are always from a coherence participant, not a home memory. 

switch (received_response)
case DONE:
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
free_entry();
else
mask <= (mask ~= received_srcid);
// flip the responder’s participant
// bit and wait for next DONE
endif;
case RETRY:
remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default
error();

6.8.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. The requests are always
to the local caching hierarchy.

assign_entry();
local_request({TLBIE, TLBSYNC});// spin until a valid response
// from the caches
remote_response(DONE, received_srcid, my_id);
free_entry();

6.9 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and performs a coherent write; refer to the
description in Section 3.2.9: "Data Cache Flush Operations". 

6.9.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor. 

if (address_collision)// this is due to an external
// request in progress or a cache index
local_response(RETRY);// hazard from a previous request
else if (local) // our local memory
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
local_response(OK);
update_memory();
case REMOTE_MODIFIED:
assign_entry();
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);
case SHARED:
assign_entry();
remote_request(DKILL_SHARER, (mask ~= my_id), my_id);
default:
error();
else // remote - we’ve got to go to 
// another processing element
assign_entry();
remote_request(FLUSH, mem_id, my_id, data);
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// data is optional
endif;

6.9.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

if (my_id == mem_id == original_srcid)// original requestor is home memory 
switch (received_response)
case DONE:
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
if (received_data) 
// with local request or response
update_memory();
endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
local_response(OK);
free_entry();
else
mask <= (mask ~= received_srcid);
// flip responder’s shared bit
endif;// and wait for next DONE
case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
if (received_data)
// with local request from memory
update_memory();
endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
local_response(OK);
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, mask_id, my_id, my_id);
default:
error();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
if (received_data)
// with local request
update_memory();
// if there was some write data
endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
local_response(OK);
free_entry();
case REMOTE_MODIFIED: // mask_id must match 
// received_srcid or error
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,
my_id);
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default:
error();
default:
error();
elseif (my_id == mem_id ~= original_srcid)
// i’m home memory working for a third
// party
switch(received_response)
case DONE:// invalidates for shared directory
// states
if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)
// with original request or response
update_memory();
endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
free_entry();
else
mask <= (mask ~= received_srcid);
// flip responder’s shared bit
endif; //and wait for next DONE
case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
remote_response(DONE, original_srcid, my_id);
if (received_data)
// with original request
update_memory();
endif;
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
default:
error();
case RETRY:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:
remote_response(DONE, original_srcid, my_id);
if (received_data)
// with original request
update_memory();
endif;
free_entry();
case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);
case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id);
default:
error();
default:



- 212 -

error();
else   // my_id ~= mem_id - I’m requesting
// a remote memory location
switch (received_response)
case DONE:
local_response(OK);
free_entry();
case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);
// data is optional
default:
error();
endif;

6.9.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests.

if (address_collision)// use collision table in
// Chapter 7, “Address Collision Resolution Tables”
elseif (FLUSH) // remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);
// after snoop completes
if (received_data)// from request or local response
update_memory();
endif;
update_state(LOCAL_SHARED, my_id);
// or LOCAL_MODIFIED
free_entry();
case REMOTE_MODIFIED:
if  (mask_id ~= received_srcid) // owned elsewhere
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
my_id); // secondary TID is a don’t care since data is
// not forwarded to original requestor
else // requestor owned it; shouldn’t
// generate a flush
error();
endif;
case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)  // requestor is only remote sharer
remote_response(DONE, received_srcid, my_id);
// after snoop completes
if (received_data)// from request or response
update_memory();
endif;
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED
free_entry();
else//there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id,
my_id);
endif;
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default:
error();
endif;

6.10 I/O Read Operations
This operation is used for I/O reads of globally shared memory space; refer to the description in Section 3.2.10: "I/O Read
Operations". 

6.10.1 Internal Request State Machine
This state machine handles requests to both local and remote memory from the local processor.

if (address_collision)   // this is due to an external request
// in progress or a cache index hazard
local_response(RETRY);   // from a previous request
elseif (local)   // our local memory
local_response(OK);
switch (directory_state)
case LOCAL_MODIFIED: // local modified is OK if we default
// local memory to owned
local_request(READ_LATEST);
return_data())// after possible push
case LOCAL_SHARED,
case SHARED:
return_data(); // keep directory state the way it was
case REMOTE_MODIFIED:
assign_entry();
remote_request(IO_READ_OWNER, mask_id, my_id, my_id);
default:
error();
else   // remote - we’ve got to go to 
 // another processing element
assign_entry();
local_response(OK);
remote_request(IO_READ_HOME, mem_id, my_id);
endif;

6.10.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local system or a
third party.

if (my_id == mem_id == original_srcid)
// original requestor is home memory
switch(remote_response)// matches my_id only for 
// REMOTE_MODIFIED case
case INTERVENTION:
return_data();
free_entry();
case NOT_OWNER,// due to address collision or 
// passing requests
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED:
case LOCAL_SHARED
return_data();
free_entry();
case REMOTE_MODIFIED: // mask_id must match received_srcid or
// error; spin or wait for castout
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remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);
default:
error();
default
error();
elseif(my_id == mem_id ~== original_id)  // i’m home memory working for a third
  // party
switch(remote_response)
case INTERVENTION:
update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();
case NOT_OWNER,  // data comes from memory, mimic
  // intervention
case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:
remote_response(DATA_ONLY, original_srcid, my_id,
data);
remote_response(DONE_INTERVENTION, original_srcid,
my_id);
free_entry();
case REMOTE_MODIFIED:// spin or wait for castout
remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);
default:
error();
default:
error();
else // my_id ~= mem_id - I’m requesting a
// remote memory location
switch(remote_response)
case DONE:
return_data();
free_entry();
case DONE_INTERVENTION:// must be from third party
set_received_done_message();
if (received_data_only_message)
free_entry();
else
// wait for a DATA_ONLY
endif;
case DATA_ONLY:// this is due to an intervention, a
// DONE_INTERVENTION should come
// separately
set_received_data_only_message();
if (received_done_message)
return_data();
free_entry();
else
return_data(); // OK for weak ordering
endif;
case RETRY:
remote_request(IO_READ_HOME, received_srcid, my_id);
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default
error();
endif;

6.10.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local system. This may require making
further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”
elseif (IO_READ_HOME)  // remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:
local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);
// after push completes
free_entry();
case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();
case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);
case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();
default:
error();
else  // IO_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST);// spin until a valid response from
// the caches
switch (local_response)
case MODIFIED:// processor indicated a push;
// wait for it
if (received_srcid == received_secid)
// original requestor is also home
// memory
remote_response(INTERVENTION, received_srcid, my_id,
data);
else
remote_response(DATA_ONLY, received_secid, my_id,
data);
remote_response(INTERVENTION, received_srcid, my_id);
endif;
case INVALID:   // must have cast it out during
// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);
default:
error();
free_entry();
endif;
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7 Chapter 7 - Address Collision Resolution Tables

Address collisions are conflicts between incoming cache coherence requests to a processing element and outstanding cache
coherence requests within it. A collision is usually due to a match between the associated addresses, but also may be because
of a conflict for some internal resource such as a cache index. Within a processing element, actions taken in response to an
address collision vary depending upon the outstanding request and the incoming request. These actions are described in
Table  7-1 through Table .7-17. Non-cache coherent transactions (transactions specified in other RapidIO logical specifica-
tions) do not cause address collisions. 

Some of the table entries specify that an outstanding request should be canceled at the local processor and that the incoming
transaction then be issued immediately to the processor. This choosing between transactions is necessary to prevent dead-
lock conditions between multiple processing elements vying for ownership of a coherence granule. 

7.1 Resolving an Outstanding READ_HOME Transaction
Table  7-1 describes the address collision resolution for an incoming transaction that collides with an outstanding
READ_HOME transaction. 

Table 7-1. Address Collision Resolution for READ_HOME

Outstanding Request Incoming Request Resolution

READ_HOME READ_HOME Generate “ERROR” response

READ_HOME IREAD_HOME Generate “ERROR” response

READ_HOME READ_OWNER Generate “NOT_OWNER” response

READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response

READ_HOME DKILL_HOME Generate “ERROR” response

READ_HOME DKILL_SHARER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward DKILL_SHARER to 
processor then generate a “DONE” response. If 
final response is “RETRY”, cancel the read at the 
processor and forward DKILL_SHARED to 
processor then generate a “DONE” response
If no outstanding request, cancel the read at the 
processor and forward DKILL_SHARER to 
processor then generate a “DONE” response (this 
case should be very rare).

READ_HOME CASTOUT Generate “ERROR” response

READ_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_HOME IKILL_HOME Generate “ERROR” response

READ_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

READ_HOME FLUSH Generate “ERROR” response
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7.2 Resolving an Outstanding IREAD_HOME Transaction
Table 7-2 describes the address collision resolution for an incoming transaction that collides with an outstanding
IREAD_HOME transaction. 

7.3 Resolving an Outstanding READ_OWNER Transaction
Table 7.3 describes the address collision resolution for an incoming transaction that collides with an outstanding

READ_HOME IO_READ_HOME Generate “ERROR” response

READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response

Table 7-2. Address Collision Resolution for IREAD_HOME

Outstanding Request Incoming Request Resolution

IREAD_HOME READ_HOME Generate “ERROR” response

IREAD_HOME IREAD_HOME Generate “ERROR” response

IREAD_HOME READ_OWNER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IREAD_HOME READ_TO_OWN_HOME Generate “ERROR” response

IREAD_HOME READ_TO_OWN_OWNER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IREAD_HOME DKILL_HOME Generate “ERROR” response

IREAD_HOME DKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IREAD_HOME CASTOUT Generate “ERROR” response

IREAD_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IREAD_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IREAD_HOME IKILL_HOME Generate “ERROR” response

IREAD_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IREAD_HOME FLUSH Generate “ERROR” response

IREAD_HOME IO_READ_HOME Generate “ERROR” response

IREAD_HOME IO_READ_OWNER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

Table 7-1. Address Collision Resolution for READ_HOME(Continued)

Outstanding Request Incoming Request Resolution
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READ_OWNER transaction. 

7.4 Resolving an Outstanding READ_TO_OWN_HOME Transaction
Table 7.4 describes the address collision resolution for an incoming transaction that collides with an outstanding
READ_TO_OWN_HOME transaction. 

Table 7-3. Address Collision Resolution for READ_OWNER

Outstanding Request Incoming Request Resolution

READ_OWNER READ_HOME Generate “RETRY” response

READ_OWNER IREAD_HOME Generate “RETRY” response

READ_OWNER READ_OWNER Generate “ERROR” response

READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_OWNER DKILL_HOME Generate “RETRY” response

READ_OWNER DKILL_SHARER Generate “ERROR” response

READ_OWNER CASTOUT No collision, update directory state, generate 
“DONE” response (CASTOUT bypasses address 
collision detection)

READ_OWNER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_OWNER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_OWNER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

READ_OWNER IKILL_SHARER Generate “ERROR” response

READ_OWNER FLUSH Generate “RETRY” response

READ_OWNER IO_READ_HOME Generate “RETRY” response

READ_OWNER IO_READ_OWNER Generate “ERROR” response

Table 7.4. Address Collision Resolution for READ_TO_OWN_HOME

Outstanding Request Incoming Request Resolution

READ_TO_OWN_HOME READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IREAD_HOME Generate “ERROR” response
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READ_TO_OWN_HOME READ_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward READ_OWNER to 
processor and generate an 
“DONE_INTERVENTION” with data response and 
a “DATA_ONLY” to originator as in Section 3.2.1: 
"Read Operations". If final response is “RETRY” 
generate an “ERROR” response
If no outstanding request generate an 
“NOT_OWNER” response.

READ_TO_OWN_HOME READ_TO_OWN_HOME Generate “ERROR” response

READ_TO_OWN_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward 
READ_TO_OWN_OWNER to processor and 
generate an “DONE_INTERVENTION” with data 
response and a “DATA_ONLY” to originator as in 
Section 3.2.3: "Read-for-Ownership Operations". If 
final response is “RETRY” generate an “ERROR” 
response

READ_TO_OWN_HOME DKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME DKILL_SHARER If outstanding request, wait for all expected 
responses. If final response is “DONE” generate an 
“ERROR” response (we own the coherence granule 
and should never see a DKILL). If final response is 
“RETRY” generate a “DONE” response and 
continue the READ_TO_OWN_HOME.
If no outstanding request generate a “DONE” 
response.

READ_TO_OWN_HOME CASTOUT Generate “ERROR” response

READ_TO_OWN_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_TO_OWN_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_TO_OWN_HOME IKILL_HOME Generate “ERROR” response

READ_TO_OWN_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

Table 7.4. Address Collision Resolution for READ_TO_OWN_HOME(Continued)

Outstanding Request Incoming Request Resolution
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7-5 Resolving an Outstanding READ_TO_OWN_OWNER Transaction
Table 7-5 describes the address collision resolution for an incoming transaction that collides with an outstanding
READ_TO_OWN_OWNER transaction. 

READ_TO_OWN_HOME FLUSH If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward FLUSH to processor and 
generate a “DONE” with data response as in 
Section 3.2.9: "Data Cache Flush Operations". If 
final response is “RETRY” generate an “ERROR” 
response (we didn’t own the data and we lost at 
home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

READ_TO_OWN_HOME IO_READ_HOME Generate “ERROR” response

READ_TO_OWN_HOME IO_READ_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward IO_READ_OWNER to 
processor then generate a “DONE” with data 
response, etc. as in Section 3.2.10: "I/O Read 
Operations". If final response is “RETRY” generate 
an “ERROR” response (we didn’t own the data and 
we lost at home memory)
If no outstanding request generate an 
“NOT_OWNER” response.

Table 7-5.  Address Collision Resolution for READ_TO_OWN_OWNER

Outstanding Request Incoming Request Resolution

READ_TO_OWN_OWNER READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IREAD_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER READ_TO_OWN_HOME Generate “RETRY” response

READ_TO_OWN_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

READ_TO_OWN_OWNER DKILL_HOME Generate “RETRY” response

READ_TO_OWN_OWNER DKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER CASTOUT No collision, update directory state, generate 
“DONE” response (CASTOUT bypasses address 
collision detection)

READ_TO_OWN_OWNER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

READ_TO_OWN_OWNER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

Table 7.4. Address Collision Resolution for READ_TO_OWN_HOME(Continued)

Outstanding Request Incoming Request Resolution
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7.6 Resolving an Outstanding DKILL_HOME Transaction
Table 7-6 describes the address collision resolution for an incoming transaction that collides with an outstanding
DKILL_HOME transaction. 

READ_TO_OWN_OWNER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

READ_TO_OWN_OWNER IKILL_SHARER Generate “ERROR” response

READ_TO_OWN_OWNER FLUSH Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_HOME Generate “RETRY” response

READ_TO_OWN_OWNER IO_READ_OWNER Generate “ERROR” response

Table 7-6. Address Collision Resolution for DKILL_HOME

Outstanding Request Incoming Request Resolution

DKILL_HOME READ_HOME Generate “ERROR” response

DKILL_HOME IREAD_HOME Generate “ERROR” response

DKILL_HOME READ_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward READ_OWNER to 
processor and generate a 
“DONE_INTERVENTION” with data response and 
a “DATA_ONLY” to originator as in Section 3.2.1: 
"Read Operations". If final response is “RETRY” 
generate an “ERROR” response (we didn’t own the 
data and we lost at home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

DKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

DKILL_HOME READ_TO_OWN_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE” forward 
READ_TO_OWN_OWNER to processor and 
generate a “DONE_INTERVENTION” with data 
response and a “DATA_ONLY” to originator as in 
Section 3.2.3: "Read-for-Ownership Operations". If 
final response is “RETRY” generate an “ERROR” 
response (we didn’t own the data and we lost at 
home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

DKILL_HOME DKILL_HOME Generate “ERROR” response

Table 7-5.  Address Collision Resolution for READ_TO_OWN_OWNER(Continued)

Outstanding Request Incoming Request Resolution
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7.7 Resolving an Outstanding DKILL_SHARER Transaction
Table 7-7 describes the address collision resolution for an incoming transaction that collides with an outstanding
DKILL_SHARER transaction. 

DKILL_HOME DKILL_SHARER If outstanding request, wait for all expected 
responses. If final response is “DONE” generate an 
“ERROR” response (we should never see a 
DKILL_SHARER if we own the coherence 
granule). If final response is “RETRY” cancel the 
data cache invalidate at the processor and forward 
DKILL_SHARER to processor then generate a 
“DONE” response
If no outstanding request, cancel the data cache 
invalidate at the processor and forward 
DKILL_SHARER to processor then generate a 
“DONE” response.

DKILL_HOME CASTOUT Generate “ERROR” response (cache paradox, can’t 
have a SHARED granule also MODIFIED in 
another processing element)

DKILL_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

DKILL_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

DKILL_HOME IKILL_HOME Generate “ERROR” response

DKILL_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

DKILL_HOME FLUSH Generate “ERROR” response

DKILL_HOME IO_READ_HOME Generate “ERROR” response

DKILL_HOME IO_READ_OWNER If outstanding request, wait for all expected 
responses. If final response is “DONE” forward 
IO_READ_OWNER to processor then generate a 
“DONE” with data response, etc. as in Section 
3.2.10: "I/O Read Operations". If final response is 
“RETRY” generate an “ERROR” response (we 
didn’t own the data and we lost at home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

Table 7-7Address Collision Resolution for DKILL_SHARER

Outstanding Request Incoming Request Resolution

DKILL_SHARER READ_HOME Generate “RETRY” response

DKILL_SHARER IREAD_HOME Generate “RETRY” response

DKILL_SHARER READ_OWNER Generate “ERROR” response

Table 7-6. Address Collision Resolution for DKILL_HOME(Continued)

Outstanding Request Incoming Request Resolution
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7.8 Resolving an Outstanding IKILL_HOME Transaction
Table 7-8 describes the address collision resolution for an incoming transaction that collides with an outstanding
IKILL_HOME transaction. 

DKILL_SHARER READ_TO_OWN_HOME Generate “RETRY” response

DKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

DKILL_SHARER DKILL_HOME Generate “RETRY” response

DKILL_SHARER DKILL_SHARER Generate “ERROR” response

DKILL_SHARER CASTOUT Generate “ERROR” response (cache paradox, can’t 
have a SHARED granule also MODIFIED in 
another processing element)

DKILL_SHARER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

DKILL_SHARER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

DKILL_SHARER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

DKILL_SHARER IKILL_SHARER Generate “ERROR” response

DKILL_SHARER FLUSH Generate “RETRY” response

DKILL_SHARER IO_READ_HOME If processing element is HOME: generate a 
“RETRY” response
If processing element is not HOME: If outstanding 
request, wait for all expected responses. If final 
response is “DONE” forward IO_READ to 
processor then generate a “DONE” with data 
response, etc. as in Section 3.2.10: "I/O Read 
Operations". If final response is “RETRY” generate 
an “ERROR” response (we didn’t own the data and 
we lost at home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

DKILL_SHARER IO_READ_OWNER Generate “ERROR” response

Table 7-8. Address Collision Resolution for IKILL_HOME

Outstanding Request Incoming Request Resolution

IKILL_HOME READ_HOME Generate “ERROR” response

IKILL_HOME IREAD_HOME Generate “ERROR” response

IKILL_HOME READ_OWNER No collision, process normally

IKILL_HOME READ_TO_OWN_HOME Generate “ERROR” response

IKILL_HOME READ_TO_OWN_OWNER No collision, process normally

Table 7-7Address Collision Resolution for DKILL_SHARER(Continued)

Outstanding Request Incoming Request Resolution
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7.9 Resolving an Outstanding IKILL_SHARER Transaction
Table 7-9 describes the address collision resolution for an incoming transaction that collides with an outstanding
IKILL_SHARER transaction. 

IKILL_HOME DKILL_HOME Generate “ERROR” response

IKILL_HOME DKILL_SHARER No collision, process normally

IKILL_HOME CASTOUT No collision, process normally

IKILL_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IKILL_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IKILL_HOME IKILL_HOME Generate “ERROR” response

IKILL_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IKILL_HOME FLUSH Generate “ERROR” response

IKILL_HOME IO_READ_HOME Generate “ERROR” response

IKILL_HOME IO_READ_OWNER No collision, process normally

Table 7-9. Address Collision Resolution for IKILL_SHARER

Outstanding Request Incoming Request Resolution

IKILL_SHARER READ_HOME No collision, process normally

IKILL_SHARER IREAD_HOME No collision, process normally

IKILL_SHARER READ_OWNER Generate “ERROR” response

IKILL_SHARER READ_TO_OWN_HOME No collision, process normally

IKILL_SHARER READ_TO_OWN_OWNER Generate “ERROR” response

IKILL_SHARER DKILL_HOME No collision, process normally

IKILL_SHARER DKILL_SHARER Generate “ERROR” response

IKILL_SHARER CASTOUT No collision, process normally

IKILL_SHARER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IKILL_SHARER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IKILL_SHARER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

IKILL_SHARER IKILL_SHARER Generate “ERROR” response

Table 7-8. Address Collision Resolution for IKILL_HOME(Continued)

Outstanding Request Incoming Request Resolution
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7.10 Resolving an Outstanding CASTOUT Transaction
Table 7-10 describes the address collision resolution for an incoming transaction that collides with an outstanding
CASTOUT transaction. 

IKILL_SHARER FLUSH No collision, process normally

IKILL_SHARER IO_READ_HOME If processing element is HOME: generate a 
“RETRY” response
If processing element is not HOME: If outstanding 
request, wait for all expected responses. If final 
response is “DONE” forward IO_READ to 
processor then generate a “DONE” with data 
response, etc. as in Section 3.2.10: "I/O Read 
Operations". If final response is “RETRY” generate 
an “ERROR” response (we didn’t own the data and 
we lost at home memory)
If no outstanding request generate an “ERROR” 
response (we didn’t own the data).

IKILL_SHARER IO_READ_OWNER Generate “ERROR” response

Table 7-10. Address Collision Resolution for CASTOUT

Outstanding Request Incoming Request Resolution

CASTOUT READ_HOME Generate “ERROR” response

CASTOUT IREAD_HOME Generate “ERROR” response

CASTOUT READ_OWNER Generate “RETRY” response; the CASTOUT will 
bypass address collision at home memory and 
modify the directory state

CASTOUT READ_TO_OWN_HOME Generate “ERROR” response

CASTOUT READ_TO_OWN_OWNER Generate “RETRY” response; the CASTOUT will 
bypass address collision at home memory and 
modify the directory state

CASTOUT DKILL_HOME Generate “ERROR” response

CASTOUT DKILL_SHARER Generate “ERROR” response

CASTOUT CASTOUT Generate “ERROR” response

CASTOUT TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

CASTOUT TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

CASTOUT IKILL_HOME Generate “ERROR” response

CASTOUT IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

CASTOUT FLUSH Generate “ERROR” response

Table 7-9. Address Collision Resolution for IKILL_SHARER(Continued)

Outstanding Request Incoming Request Resolution
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7.11 Resolving an Outstanding TLBIE or TLBSYNC Transaction
Table  7.11 describes the address collision resolution for an incoming transaction that collides with an outstanding TLBIE
or TLBSYNC transaction.

7.12 Resolving an Outstanding FLUSH Transaction
The flush operation has two distinct versions. The first is for processing elements that participate in the coherence proto-
col such as a processor and it’s associated agent, which may also have a local I/O device. The second is for processing
elements that do not participate in the coherence protocols such as a pure I/O device that does not have a corresponding
bit in the directory sharing mask. Table  7-12 describes the address collision resolution for an incoming transaction that
collides with an outstanding participant FLUSH transaction. 

CASTOUT IO_READ_HOME Generate “ERROR” response

CASTOUT IO_READ_OWNER Generate “RETRY” response; the CASTOUT will 
bypass address collision at home memory and 
modify the directory state

Table 7-11. Address Collision Resolution for Software Coherence Operations

Outstanding Request Incoming Request Resolution

TLBIE,
TLBSYNC

ANY No collision, process request as described in 
Chapter 6, “Communication Protocols”

Table 7-12. Address Collision Resolution for Participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response

FLUSH IREAD_HOME Generate “ERROR” response

FLUSH READ_OWNER Generate “NOT_OWNER” response (we are not 
allowed to issue FLUSH to an owned coherence 
granule - should be a CASTOUT)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response

FLUSH READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we are not 
allowed to issue FLUSH to an owned coherence 
granule - should be a CASTOUT)

FLUSH DKILL_HOME Generate “ERROR” response

FLUSH DKILL_SHARER If outstanding request, wait for all expected 
responses. If final response is “DONE” generate an 
“ERROR” response (we should never see a 
DKILL_SHARER if we own the coherence 
granule). If final response is “RETRY” cancel the 
flush at the processor and forward 
DKILL_SHARER to processor then generate a 
“DONE” response
If no outstanding request, cancel the data cache 
invalidate at the processor and forward 
DKILL_SHARER to processor then generate a 
“DONE” response.

FLUSH CASTOUT Generate “ERROR” response

Table 7-10. Address Collision Resolution for CASTOUT(Continued)

Outstanding Request Incoming Request Resolution
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Table  7-13 describes the address collision resolution for an incoming transaction that collides with an outstanding non-
participant FLUSH transaction. 

FLUSH TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

FLUSH TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

FLUSH FLUSH Generate “ERROR” response

FLUSH IO_READ_HOME Generate “ERROR” response

FLUSH IO_READ_OWNER Generate “NOT_OWNER” response (we are not 
allowed to issue FLUSH to an owned coherence 
granule - should be a CASTOUT)

Table 7-13. Address Collision Resolution for Non-participant FLUSH

Outstanding Request Incoming Request Resolution

FLUSH READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

FLUSH IREAD_HOME Generate “ERROR” response (should never receive 
coherent operation)

FLUSH READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

FLUSH READ_TO_OWN_HOME Generate “ERROR” response (should never receive 
coherent operation)

FLUSH READ_TO_OWN_OWNER Generate “ERROR” response (should never receive 
coherent operation)

FLUSH DKILL_HOME Generate “ERROR” response (should never receive 
coherent operation)

FLUSH DKILL_SHARER Generate “ERROR” response (should never receive 
coherent operation)

FLUSH CASTOUT Generate “ERROR” response (should never receive 
coherent operation)

FLUSH TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - non-participant may have page 
table hardware.

Table 7-12. Address Collision Resolution for Participant FLUSH(Continued)

Outstanding Request Incoming Request Resolution
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7.13 Resolving an Outstanding IO_READ_HOME Transaction
The I/O read operation is used by processing elements that do not want to participate in the coherence protocol but do
want to get current copies of cached data. There are two versions of this operation, one for processing elements that have
both processors and I/O devices, the second for pure I/O devices that do not have a corresponding bit in the directory
sharing mask. Table  7-14 describes the address collision resolution for an incoming transaction that collides with an out-
standing participant IO_READ_HOME transaction. 

FLUSH TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - non-participant may have page 
table hardware.

FLUSH IKILL_HOME Generate “ERROR” response

FLUSH IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence) - non-participant may 
have software coherence.

FLUSH FLUSH Generate “ERROR” response (should never receive 
coherent operation)

FLUSH IO_READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

FLUSH IO_READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

Table 7-14. Address Collision Resolution for Participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response

IO_READ_HOME IREAD_HOME Generate “ERROR” response

IO_READ_HOME READ_OWNER Generate “NOT_OWNER” response (we don’t own 
the data otherwise we could have obtained a copy 
locally)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response

IO_READ_HOME READ_TO_OWN_OWNER Generate “NOT_OWNER” response (we don’t own 
the data otherwise we could have obtained a copy 
locally)

IO_READ_HOME DKILL_HOME Generate “ERROR” response

IO_READ_HOME DKILL_SHARER If outstanding request, wait for all expected 
responses. If final response is “DONE”, return data 
if necessary and forward DKILL_SHARER to 
processor then generate a “DONE” response. If 
final response is “RETRY” forward 
DKILL_SHARED to processor then generate a 
“DONE” response
If no outstanding request forward 
DKILL_SHARER to processor then generate a 
“DONE” response

Table 7-13. Address Collision Resolution for Non-participant FLUSH(Continued)

Outstanding Request Incoming Request Resolution
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Table  7-15 describes the address collision resolution for an incoming transaction that collides with an outstanding non-
participant IO_READ_HOME transaction. 

IO_READ_HOME CASTOUT Generate “ERROR” response

IO_READ_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IO_READ_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence)

IO_READ_HOME FLUSH Generate “ERROR” response

IO_READ_HOME IO_READ_HOME Generate “ERROR” response

IO_READ_HOME IO_READ_OWNER Generate “NOT_OWNER” response (we don’t own 
the data otherwise we could have obtained a copy 
locally)

Table 7-15. Address Collision Resolution for Non-participant IO_READ_HOME

Outstanding Request Incoming Request Resolution

IO_READ_HOME READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME IREAD_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME READ_TO_OWN_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME READ_TO_OWN_OWNER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME DKILL_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME DKILL_SHARER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME CASTOUT Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - broadcast operation and non-
participant may have page table hardware.

Table 7-14. Address Collision Resolution for Participant IO_READ_HOME(Continued)

Outstanding Request Incoming Request Resolution
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7.14 Resolving an Outstanding IO_READ_OWNER Transaction
The I/O read operation is used by processing elements that do not want to participate in the coherence protocol but do
want to get current copies of cached data. There are two versions of this operation, one for processing elements that have
both processors and I/O devices, the second for pure I/O devices that do not have a corresponding bit in the directory
sharing mask. Table  7-16 describes the address collision resolution for an incoming transaction that collides with an out-
standing IO_READ_OWNER transaction. 

 

IO_READ_HOME TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - broadcast operation and non-
participant may have page table hardware.

IO_READ_HOME IKILL_HOME Generate “ERROR” response

IO_READ_HOME IKILL_SHARER No collision, forward to processor then generate 
“DONE” response (software must maintain 
instruction cache coherence) - broadcast operation 
and non-participant may have software coherence.

IO_READ_HOME FLUSH Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME IO_READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_HOME IO_READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

Table 7-16. Address Collision Resolution for Participant 
IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “RETRY” response

IO_READ_OWNER IREAD_HOME Generate “RETRY” response

IO_READ_OWNER READ_OWNER Generate “ERROR” response

IO_READ_OWNER READ_TO_OWN_HOME Generate “RETRY” response

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response

IO_READ_OWNER DKILL_HOME Generate “RETRY” response

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response

IO_READ_OWNER CASTOUT No collision, update directory state and memory, 
generate DONE response (CASTOUT bypasses 
address collision detection)

IO_READ_OWNER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence)

Table 7-15. Address Collision Resolution for Non-participant IO_READ_HOME(Continued)

Outstanding Request Incoming Request Resolution
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Table  7-17 describes the address collision resolution for an incoming transaction that collides with an outstanding non-
participant IO_READ_OWNER transaction. 

IO_READ_OWNER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “RETRY” response

IO_READ_OWNER IO_READ_HOME Generate “RETRY” response

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (we don’t own the 
data otherwise we could have obtained a copy 
locally)

Table 7-17. Address Collision Resolution for Non-participant IO_READ_OWNER

Outstanding Request Incoming Request Resolution

IO_READ_OWNER READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER IREAD_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER READ_TO_OWN_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER READ_TO_OWN_OWNER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER DKILL_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER DKILL_SHARER Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER CASTOUT Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER TLBIE No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - non-participant may have page 
table hardware.

IO_READ_OWNER TLBSYNC No collision, forward to processor then generate 
“DONE” response (software must maintain TLB 
entry coherence) - non-participant may have page 
table hardware.

Table 7-16. Address Collision Resolution for Participant 
IO_READ_OWNER(Continued)

Outstanding Request Incoming Request Resolution
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IO_READ_OWNER IKILL_HOME No collision, forward to processor, send 
IKILL_SHARER to all participants except 
requestor (software must maintain instruction cache 
coherence)

IO_READ_OWNER IKILL_SHARER Generate “ERROR” response

IO_READ_OWNER FLUSH Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER IO_READ_HOME Generate “ERROR” response (should never receive 
coherent operation)

IO_READ_OWNER IO_READ_OWNER Generate “ERROR” response (should never receive 
coherent operation)

Table 7-17. Address Collision Resolution for Non-participant IO_READ_OWNER(Continued)

Outstanding Request Incoming Request Resolution
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Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. 

Address collision An address based conflict between two or more cache coherence operations when referencing the 
same coherence granule.

Agent.  A processing element that provides services to a processor.

Asychronous transfer mode (ATM). A standard networking protocol which dynamically allocates bandwidth using
a fixed-size packet. 

Big-endian. A byte-ordering method in memory where the address n of a word corresponds to the most significant
byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 being the most
significant byte. 

Block flush. An operation that returns the latest copy of a block of data from caches within the system to memory. 

Bridge. A processing element that connects one computer bus to another, allowing a processing element on one bus
to access an processing element on the other. 

Broadcast. The concept of sending a packet to all processing elements in a system. 

Bus-based snoopy protocol. A broadcast cache coherence protocol that assumes that all caches in the system are on
a common bus.

Cache. High-speed memory containing recently accessed data and/or instructions (subset of main memory)
associated with a processor.

Cache coherence. Caches are coherent if a processor performing a read from its cache is supplied with data
corresponding to the most recent value written to memory or to another processor’s cache. In other words,
a write operation to an address in the system is visible to all other caches in the system. Also referred to
as memory coherence.

Cache coherent-non uniform memory access (CC-NUMA). A cache coherent system in which memory accesses
have different latencies depending upon the physical location of the accessed address. 

Cache paradox. A circumstance in which the caches in a system have an undefined or disallowed state for a
coherence granule, for example, two caches have the same coherence granule marked “modified”. 

Capability registers (CARs). A set of read-only registers that allows a processing element to determine another
processing element’s capabilities.

Castout operation. An operation used by a processing element to relinquish its ownership of a coherence granule and
return it to home memory. 

Coherence domain. A logically associated group of processing elements that participate in the globally shared
memory protocol and are able to maintain cache coherence among themselves.

Coherence granule. A contiguous block of data associated with an address for the purpose of guaranteeing cache
coherence.

A

B

C
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Command and status registers (CSRs). A set of registers that allows a processing element to control and determine
the status of another processing element’s internal hardware.

Deadlock. A situation in which two processing elements that are sharing resources prevent each other from accessing
the resources, resulting in a halt of system operation.

Destination. The termination point of a packet on the RapidIO interconnect, also referred to as a target. 

Device. A generic participant on the RapidIO interconnect that sends or receives RapidIO transactions, also called a
processing element.

Device ID. The identifier of an end point processing element connected to the RapidIO interconnect.

Direct Memory Access (DMA). The process of accessing memory in a device by specifying the memory address
directly.

Distributed memory. System memory that is distributed throughout the system, as opposed to being centrally located.

Domain. A logically associated group of processing elements.

Double-word. An eight byte quantity, aligned on eight byte boundaries.

End point. A processing element which is the source or destination of transactions through a RapidIO fabric. 

Ethernet. A common local area network (LAN) technology.

Exclusive. A processing element has the only cached copy of a sharable coherence granule. The exclusive state
allows the processing element to modify the coherence granule without notifying the rest of the system.

Field or Field name. A sub-unit of a register, where bits in the register are named and defined. 

Flush operation. An operation used by a processing element to return the ownership and current data of a coherence
granule to home memory. 

Globally shared memory (GSM). Cache coherent system memory that can be shared between multiple processors
in a system.

Half-word. A two byte or 16 bit quantity, aligned on two byte boundaries.

Home memory. The physical memory corresponding to the physical address of a coherence granule.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to as a source.

Instruction cache. High-speed memory containing recently accessed instructions (subset of main memory)
associated with a processor. 

Instruction cache invalidate operation. An operation that is used if the instruction cache coherence must be
maintained by software. 
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Instruction read operation. An operation used to obtain a globally shared copy of a coherence granule specifically
for an instruction cache. 

Instruction set architecture (ISA). The instruction set for a certain processor or family of processors.

Intervention. A data transfer between two processing elements that does not go through the coherence granule’s
home memory, but directly between the requestor of the coherence granule and the current owner.

Invalidate operation. An operation used to remove a coherence granule from caches within the coherence domain.

I/O. Input-output.

I/O read operation. An operation used by an I/O processing element to obtain a globally shared copy of a coherence
granule without disturbing the coherence state of the granule. 

Little-endian. A byte-ordering method in memory where the address n of a word corresponds to the least significant
byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the most
significant byte.

Local memory. Memory associated with the processing element in question. 

LSB. Least significant byte.

Memory coherence. Memory is coherent if a processor performing a read from its cache is supplied with data
corresponding to the most recent value written to memory or to another processor’s cache. In other words,
a write operation to an address in the system is visible to all other caches in the system. Also referred to
as cache coherence. 

Memory controller. The point through which home memory is accessed. 

Memory directory. A table of information associated with home memory that is used to track the location and state
of coherence granules cached by coherence domain participants.

Message passing. An application programming model that allows processing elements to communicate via
messages to mailboxes instead of via DMA or GSM. Message senders do not write to a memory address
in the receiver.

Modified. A processing element has written to a locally cached coherence granule and so has the only valid copy of
the coherence granule in the system.

Modified exclusive shared invalid (MESI). A standard 4 state cache coherence definition.

Modified shared invalid (MSI). A standard 3 state cache coherence definition.

Modified shared local (MSL). A standard 3 state cache coherence definition.

MSB. Most significant byte.

Multicast. The concept of sending a packet to more than one processing elements in a system.

KL
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Non-coherent. A transaction that does not participate in any system globally shared memory cache coherence
mechanism.

Operation. A set of transactions between end point devices in a RapidIO system (requests and associated responses)
such as a read or a write.

Ownership. A processing element has the only valid copy of a coherence granule and is responsible for returning it
to home memory.

Packet. A set of information transmitted between devices in a RapidIO system.

Peripheral component interface (PCI). A bus commonly used for connecting I/O devices in a system. 

Priority. The relative importance of a packet; in most systems a higher priority packet will be serviced or transmitted
before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect that sends or receives RapidIO
transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic instructions that drive a computer. 

Read operation. An operation used to obtain a globally shared copy of a coherence granule.

Read-for-ownership operation. An operation used to obtain ownership of a coherence granule for the purposes of
performing a write operation.

Remote access. An access by a processing element to memory located in another processing element.

Remote memory. Memory associated with a processing element other than the processing element in question. 

Shared. A processing element has a cached copy of a coherence granule that may be cached by other processing
elements and is consistent with the copy in home memory. 

Sharing mask. The state associated with a coherence granule in the memory directory that tracks the processing
elements that are sharing the coherence granule. 

Source. The origin of a packet on the RapidIO interconnect, also referred to as an initiator. 

Sub-double-word. Aligned on eight byte boundaries.

Switch. A multiple port processing element that directs a packet received on one of its input ports to one of its output
ports.

Target. The termination point of a packet on the RapidIO interconnect, also referred to as a destination.

Transaction. A specific request or response packet transmitted between end point devices in a RapidIO system.

Translation look-aside buffer (TLB).  Part of a processor’s memory management unit; a TLB contains a set of
virtual to physical page address translations, along with a set of attributes that describe access behavior
for that portion of physical memory.

N

O

P

R

S

T



- 237 -

Write-through. A cache policy that passes all write operations through the caching hierarchy directly to home
memory. 

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

W
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VI Partition VI - Physical Layer 1x/4x LP-Serial Specification

1 Chapter 1 - Overview

The RapidIOTM 1x/4x LP-Serial (Link Protocol - Serial) architecture was developed to address the need for a high-perform-
ance, low pin-count, and low-power serial packet-switched system level interconnect to be used in a variety of applications
as an open standard. The architecture is targeted toward networking, telecom, and high performance embedded applications.
It is intended primarily as an intra-system interface, allowing chip-to-chip and boar-to-board communications at Gigabytes
per second performance levels. 

The RapidIO Physical Layer 1x/4x LP-Serial Specification addresses the physical layer requirements for devices utilizing an
electrical serial connection medium. This specification defines a full duplex serial physical layer interface (link) between
devices using unidirectional differential signals in each direction. Further, it allows ganging of four serial links for applica-
tions requiring higher link performance. It also defines a protocol for link management and packet transport over a link. 

RapidIO systems are comprised of end point processing elements and switch processing elements. The RapidIO intercon-
nect architecture is partitioned into a layered hierarchy of specifications which includes the Logical, Common Transport,
and Physical layers. The Logical layer specifications define the operations and associated transactions by which end point
processing elements communicate with each other. The Common Transport layer defines how transactions are routed from
one end point processing element to another through switch processing elements. The Physical Layer defines how adjacent
processing elements electrically connect to each other. RapidIO packets are formed through the combination of bit fields
defined in the Logical, Common Transport, and Physical Layer specifications.

The RapidIO Physical Layer 1x/4x LP-Serial specification defines a protocol for packet delivery between serial RapidIO
devices including packet and control symbol transmission, flow control, error management, and other device to device func-
tions. A particular device may not implement all of the mode selectable features found in this document. See the appropriate
user’s manual or implementation specification for specific implementation details of a device. 

The 1x/4x LP-Serial physical layer specification has the following properties:

• Embeds the transmission clock with data using an 8B/10B encoding scheme.
• Supports one serial differential pair, referred to as one lane, or four ganged serial differential pairs, referred to as four lanes, 

in each direction.
• Allows switching packets between RapidIO 1x/4x LP-Serial Ports and RapidIO Physical Layer 8/16 LP-LVDS ports 

without requiring packet manipulation.
• Employs similar retry and error recovery protocols as the RapidIO Physical Layer 8/16 LP-LVDS specification.
• Supports transmission rates of 1.25, 2.5, and 3.125 Gbaud (data rates of 1.0, 2.0, and 2.5 Gbps) per lane.

This specification first defines the individual elements that make up the link protocol such as packets, control 
symbols, and the serial bit encoding scheme. This is followed by a description of the link protocol. Finally, the 
control and status registers, signal descriptions, and electrical specifications are specified.

1.1 Packets
Chapter 2, “Packets” defines how a RapidIO 1x/4x LP-Serial packet is formed by prefixing a 10-bit physical layer header
to the combined RapidIO transport and logical layer bit fields followed by an appended 16-bit CRC field. 

This chapter shows the packet header format, the packet field definitions, the CRC error detection mechanism, and the
packet alignment rules necessary to form LP-Serial packets.

1.2 Control Symbols
Chapter 3, “Control Symbols” defines the format of the two classes of control symbols (stype0 and stype1) used for
packet acknowledgment, link utility functions, link maintenance, and packet delineation. A control symbol is a 24-bit
entity (including a 5-bit CRC code). The control symbol is used for packet delineation and may also be embedded within
a packet as well as sent when the link is idle. 

Acknowledgment control symbols are used by processing elements to indicate packet transmission status. Utility control
symbols are used to communicate buffer status and link recovery synchronization. Link maintenance control symbols are
used by adjacent devices to communicate physical layer status, synchronization requests, and device reset.
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1.3 PCS and PMA Layers
Chapter 4, “PCS and PMA Layers” describes the Physical Coding Sublayer (PCS) functionality as well as the Physical
Media Attachment (PMA) functionality. The PCS layer functionality includes 8B/10B encoding scheme for embedding
clock with data. It also gives transmission rules for the 1x and 4x interfaces and defines the link initialization sequence
for clock synchronization. 

The PMA (Physical Medium Attachment) function is responsible for serializing the 10-bit code-groups to and from the
serial bitstream(s).

1.4 LP-Serial Protocol

Chapter 5, “LP-Serial Protocol” describes in detail how packets, control symbols, and the PCS/PMA layers are 
used to implement the physical layer protocol. This includes topics such as link initialization, link mainte-
nance, error detection and recovery, flow control, and transaction delivery ordering.

1.5 LP-Serial Registers

Chapter 6, “LP-Serial Registers” describes the physical layer control and status register set. By accessing these 
registers a processing element may query the capabilities and status and configure another 1x/4x LP-Serial 
RapidIO processing element.

These registers utilize the Extended Features blocks and are accessed using Part I: Input/Output Logical Spec-
ification Maintenance operations. Three types of RapidIO devices are defined in this section as follows:
• Generic End Point Processing Elements
• Generic End Point Processing Elements with software assisted error recovery
• Generic End Point Free Processing Elements (typically switch processing elements)

1.6 Signal Descriptions

Chapter 7, “Signal Descriptions” contains the signal pin descriptions for a RapidIO LP-Serial end point device 
and shows connectivity between processing elements with 1x ports and processing elements with 4x ports.

1.7 AC Electrical Specifications

Chapter 8, “AC Electrical Specifications” describes the electrical specifications for the RapidIO 1x/4x LP-
Serial device. This section defines two transmission types; short run and long run, as well as three speed grades 
(1.25 GHz, 2.5 GHz, and 3.125 GHz). This section also shows the required receiver eye diagrams for each link 
speed.

1.8 Interface Management
Appendix A, “Interface Management (Informative)” contains information pertinent to interface management in a
RapidIO system, including error recovery, link initialization, and packet retry state machines. 

A decimal value. 

[n-m]         Used to express a numerical range from n to m. 

0bnn         A binary value, the number of bits is determined by the number of digits.

0xnn    A hexadecimal value, the number of bits is determined by the number of digits or from the surrounding context;
for example, 0xnn may be a 5, 6, 7, or 8 bit value.2

2 Chapter 2 - Packets 

This chapter specifies the LP-Serial packet format and the fields that are added by LP-Serial physical layer. These packets
are fed into the PCS function explained in Chapter 4, “PCS and PMA Layers”.

2.1 Packet Field Definitions
This section specifies the bit fields added to a packet by the LP-Serial physical layer. These fields are required to imple-
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ment the flow control, error management, and other specified system functions of the LP-Serial specification. The fields
are specified in Table .

2.2 Packet Format
This section specifies the format of a LP-Serial packets. Figure  shows the format of the LP-Serial packet and how the
physical layer ackID, rsvd, and prio fields are prefixed at the beginning of the packet and the 16-bit CRC field is
appended to the end of the packet. 

The unshaded fields are the fields added by the physical layer. The shaded field is the combined logical and 
transport layer bits and fields that are passed to the physical layer. The 3-bit rsvd field is required to make the 
packet length an integer multiple of 16 bits.

LP-Serial packets shall have a length that is an integer multiple of 32 bits. This sizing simplifies the design of 
port logic whose internal data paths are an integer multiple of 32 bits in width. Packets, as defined in this spec-
ification and the appropriate logical and transport layer specifications, have a length that is an integer multiple 
of 16 bits. This is illustrated in Figure . If the length of a packet defined by the above combination of specifica-
tions is an odd multiple of 16 bits, a 16-bit pad whose value is 0 (0x0000) shall be appended at the end of the 
packet such that the resulting padded packet is an integer multiple of 32 bits in length.

Figure 2.2. Packet Alignment

2.3 Packet Protection
A 16-bit CRC code is added to each packet by the LP-Serial physical layer to provide error detection. The code covers the

Table 2.1 - Packet Field Definitions

Field Description

ackID[0-4] Acknowledge ID is the packet identifier for acknowledgments back to the packet 
sender—see Section 5.3.2: "Acknowledgment Identifier" for details concerning ackID 
functionality.

rsvd[0-2] The reserved bits are set to logic 0 when the packet is generated and ignored when a 
packet is received. 

prio[0-1] Sets packet priority:
0b00 - lowest priority
0b01 - medium priority
0b10 - high priority
0b11 - highest priority
See Section 5.3.3: "Packet Priority and Transaction Request Flows" for an explanation 
of prioritizing packets

crc[0-15] 16-bit code used to detect transmission errors in the packet. See Section : "2.3.1 
Packet CRC Operation" for details on the CRC error detection scheme.

Figure 2-1. Packet Format
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entire packet except for the ackID field and one bit of the rsvd field, which are considered to be zero for the CRC calcula-
tions. Figure  2-3 shows the CRC coverage for the first 16 bits of the packet which contain the bits not covered by the
code.

This structure allows the ackID to be changed on a link-by-link basis as the packet is transported across the fabric without
requiring that the CRC be recomputed for each link. Since ackIDs on each link are assigned sequentially for each subse-
quent transmitted packet, an error in the ackID field is easily detected.

2.3.1 Packet CRC Operation
The CRC is appended to a packet in one of two ways. For a packet whose length, exclusive of CRC, is 80 bytes or less,
a single CRC is appended at the end of the logical fields. For packets whose length, exclusive of CRC, is greater than
80 bytes, a CRC is added after the first 80 bytes and a second CRC is appended at the end of the logical layer fields.

The second CRC value is a continuation of the first. The first CRC is included in the running calculation, 
meaning that the running CRC value is not reinitialized after it is inserted after the first 80 bytes of the 
packet. This allows intervening devices to regard the embedded CRC value as two bytes of packet pay-
load for CRC checking purposes. If the CRC appended to the end of the logical layer fields does not 
cause the end of the resulting packet to align to a 32-bit boundary, a two byte pad of all logic 0s is post-
pended to the packet. The pad of logic 0s allows the CRC check to always be done at the 32-bit boundary.

The early CRC value can be used by the receiving processing element to validate the header of a large 
packet and start processing the data before the entire packet has been received, freeing up resources ear-
lier and reducing transaction completion latency. 

NOTE:

While the embedded CRC value can be used by a processing element to start processing the 
data within a packet before receiving the entire packet, it is possible that upon reception of the 
end of the packet the final CRC value for the packet is incorrect. This would result in a process-
ing element that has processed data that may have been corrupted. Outside of the error recov-
ery mechanism described in Section 5.10.2: "Link Behavior Under Error", the RapidIO 
Interconnect Specification does not address the occurrence of such situations nor does it sug-
gest a means by which a processing element would handle such situations. Instead, the mech-
anism for handling this situation is left to be addressed by the device manufacturers for devices 
that implement the functionality of early processing of packet data. 
Figure 2-4  is an example of an unpadded packet of length less than or equal to 80 bytes. 

Figure 2.3. Error Coverage of First 16 Bits of Packet Header

Figure 2-4. Unpadded Packet of Length 80 Bytes or Less
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Figure 2-5  is an example of a padded packet of length less than or equal to 80 bytes. 

Figure 2-6 is an example of an unpadded packet of length greater than 80 bytes. 

Figure  2-7 is an example of a padded packet of length greater than 80 bytes. 

Figure 2-5. Padded Packet of Length 80 Bytes or Less

Figure 2-6. Unpadded Packet of Length Greater than 80 Bytes

Figure 2-7. Padded Packet of Length Greater than 80 Bytes
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2.3.2 16-Bit Packet CRC Code

The ITU polynomial X16+X12+X5+1 shall be used to generate the 16-bit CRC for packets. The value of the CRC shall
be initialized to 0xFFFF (all logic 1s) at the beginning of each packet. For the CRC calculation, the uncovered six bits
are treated as logic 0s. As an example, a 16-bit wide parallel calculation is described in the equations in Table 2-2.
Equivalent implementations of other widths can be employed. 

The following nomenclature is used in the diagram below:

C00–C15 contents of the new check half-word

e00–e15 contents of the intermediate value half-word
e00 = d00 XOR c00
e01 = d01 XOR c01

through
e15 = d15 XOR c15

d00–d15 contents of the next 16 bits of the packet

c00–c15 contents of the previous check half-word

Table 2-2. Parallel CRC Intermediate Value Equations

Check 
Bit

e
0
0

e
0
1

e
0
2

e
0
3

e
0
4

e
0
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e
0
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0
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e
0
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e
0
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e
1
0

e
1
1

e
1
2

e
1
3

e
1
4

e
1
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C00 x x x x

C01 x x x x

C02 x x x x

C03 x x x x x

C04 x x x x x

C05 x x x x x

C06 x x x x x x

C07 x x x x x x x

C08 x x x x x x x x

C09 x x x x x x x x

C10 x x x x x x x x

C11 x x x x

C12 x x x x x

C13 x x x x x

C14 x x x x x

C15 x x x x x
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2.4 Maximum Packet Size
The maximum packet size permitted by the LP-Serial specification is 276 bytes. This includes all packet logical, trans-
port, and physical layer header information, data payload, and required CRC bytes.

The maximum packet size of 276 bytes is achieved as shown below:

Figure 2-8. CRC Generation Pipeline

Table 2-3. Maximum Packet Size

Field Size 
(bytes) Layer Notes

Header 2 Physical, 
Transport, 
Logical

Source ID 2 Transport 

Destination ID 2 Transport 

Trans/wrsize 1 Logical 

srcTID 1 Logical 

Address 8 Logical Includes 
Extended_address, 
Address, Wdptr, and 
Xambs

Payload 256 Logical 

CRC 4 Physical Extra two CRC bytes for 
packets greater than 80 
bytes

Total 276

c XOR d

XOR

d00–d15

e00–e15

C00–C15

c00–c15

equations network
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3 Chapter 3 - Control Symbols

This chapter specifies RapidIO physical layer control symbols. Control symbols are the message elements used by ports connected by 
an LP-Serial link to manage all aspects of LP-Serial link operation. They are used for link maintenance, packet delimiting, packet 
acknowledgment, error reporting, and error recovery.

3.1 Control Symbol Field Definitions

3.2 Control Symbol Format
This section describes the general format of the LP-Serial control symbols. Figure  shows the control symbol format.

All control symbols follow the 24-bit control symbol format as detailed above. The fields parameter0 and parameter1 are
used by the functions encoded in the stype0 field. The cmd field is a modifier for the functions encoded in the stype1
field. 

Control symbols can carry two functions, one encoded in the stype0 field and one encoded in the stype1 field. The func-
tions encoded in stype0 are “status” functions that convey some type of status about the port transmitting the control sym-
bol. The functions encoded in stype1 are requests to the receiving port or transmission delimiters.

A control symbol carrying one function is referred to using the name of the function it carries. A control symbol carrying
two functions may be referred to using the name of either function that it carries. For example, a control symbol with
stype0 set to packet-accepted and stype1 set to NOP is referred to a packet-accepted control symbol. A control symbol
with stype0 set to packet-accepted and stype1 set to restart-from-retry is referred to as either a packet-accepted control
symbol or a restart-from-retry control symbol depending on which name is appropriate for the context.

Control symbols are specified with the ability to carry two functions so that a packet acknowledgment and a packet
delimiter can be carried in the same control symbol. Packet acknowledgment and packet delimiter control symbols con-
stitute the vast majority of control symbol traffic on a busy link. Carrying an acknowledgment (or status) and a packet
delimiter whenever possible in a single control symbol allows a significant reduction in link overhead traffic and an
increase in the link bandwidth available for packet transmission.

3.3 Stype0 Control Symbols
The encoding and function of stype0 and the information carried in parameter0 and parameter1 for each stype0 encoding

Table 3-1. Control Symbol Field Definitions

Field Description

stype0
[0-2]

Encoding for control symbols that make use of parameter0 and parameter1. Eight 
encodings are defined in Table .

parameter0
[0-4]

Used in conjunction with stype0 encodings. Reference Table  for the description of 
parameter0 encodings.

parameter1
[0-4]

Used in conjunction with stype0 encodings. Reference Table  for the description of 
parameter1 encodings.

stype1
[0-2]

Encoding for control symbols which make use of the cmd field. The eight encodings 
are defined in Table .

cmd
[0-2]

Used in conjunction with the stype1 field to define the link maintenance commands. 
Refer to Table  for the cmd field descriptions.

CRC
[0-4]

5-bit code used to detect transmission errors in control symbols. See Section : "3.5 
Control Symbol Protection" for details on the CRC error detection scheme.

0 2 3 7 8 12 13 15 16 18 19 23

stype0
[0-2]

parameter0
[0-4]

parameter1
[0-4]

stype1
[0-2]

cmd
[0-2]

CRC
[0-4]

Figure 3-1. Control Symbol Format
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shall be as specified in Table 3-2.

The status control symbol is the default stype0 encoding and is used when the control symbol does not convey 
another stype0 function. The following table defines the parameters valid for stype0 control symbols.

Table 3-2. Stype0 Control Symbol Encoding

stype0
[0-2] Function

Contents of
Reference

Parameter0 Parameter1

0b000 Packet-accepted packet_ackID buf_status Section : "3.3.1 
Packet-Accepted 
Control Symbol"

0b001 Packet-retry packet_ackID buf_status Section : "3.3.2 
Packet-Retry 
Control Symbol"

0b010 Packet-not-accepted packet_ackID cause Section : "3.3.3 
Packet-Not-
Accepted Control 
Symbol"

0b011 Reserved - - -

0b100 Status ackID_status buf_status Section : "3.3.4 
Status Control 
Symbol"

0b101 Reserved - - -

0b110 Link-response ackID_status port_status Section : "3.3.5 
Link-Response 
Control Symbol"

0b111 Reserved - - -

Table 3-3. Stype0 Parameter Definitions

Parameter Definition

packet_ackID
[0-4]

The ackID of the packet being acknowledged by an acknowledgment control 
symbol.

ackID_status
[0-4]

The value of ackID expected in the next packet the port receives. For example, a 
value of 0b00001 indicates the device is expecting to receive ackID 1.

buf_status
[0-4]

Specifies the number of maximum length packets that the port can accept without 
issuing a retry due to a lack of resources. The value of buf_status in a packet-
accepted, packet-retry, or status control symbol is the number of maximum packets 
that can be accepted, inclusive of the effect of the packet being accepted or retried.
Value 0-29: The encoding value specifies the number of new maximum sized 
packets the receiving device can receive. The value 0, for example, signifies that 
the downstream device has no available packet buffers (thus is not able to hold any 
new packets). 
Value 30: The value 30 signifies that the downstream device can receive 30 or 
more new maximum sized packets.
Value 31: The downstream device can receive an undefined number of maximum 
sized packets, and relies on the retry protocol for flow control.
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NOTE:

The following sections depict various control symbols. Since control symbols can contain one or two 
functions, shading in the figures is used to indicate which fields are applicable to that specific control 
symbol function.

3.3.1 Packet-Accepted Control Symbol
The packet-accepted control symbol indicates that the receiving device has taken responsibility for sending the packet
to its final destination and that resources allocated by the sending device can be released. This control symbol shall be
generated only after the entire packet has been received and found to be free of detectable errors. The packet-accepted
control symbol format is displayed in Figure 3-2.

Figure 3-2. Packet-Accepted Control Symbol Format

3.3.2 Packet-Retry Control Symbol
A packet-retry control symbol indicates that the receiving device was not able to accept the packet due to some tempo-
rary resource conflict such as insufficient buffering and the sender should retransmit the packet. This control symbol
format is displayed in Figure 3-3.

Figure 3-3. Packet-Retry Control Symbol Format

3.3.3 Packet-Not-Accepted Control Symbol
The packet-not-accepted control symbol is used to indicate to the sender of a packet why the packet was not accepted
by the receiving port. As shown in Figure 3-4, the control symbol contains a cause field that indicates the reason for
not accepting the packet and a packet_ackID field. If the receiving device is not able to specify the cause, or the cause
is not one of defined options, the general error encoding shall be used.

Figure 3-4. Packet-Not-Accepted Control Symbol Format

The cause field shall be used to display informational fields useful for debug. Table  displays the reasons a packet may
not be accepted, indicated by the cause field.

Table 3-4. Cause Field Definition (continued)

Cause
[0-4] Definition

0b00000 Reserved

0b00001 Received unexpected ackID on packet

0b00010 Received a control symbol with bad CRC

0b00011 Non-maintenance packet reception is stopped

0b00100 Received packet with bad CRC

0b00101 Received invalid character, or valid but illegal character

0b000

3

packet_ackID

5

stype1

3

buf_status

5

cmd

3

CRC

5

0b001

3

packet_ackID

5
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3
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5
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CRC

5

0b010

3

packet_ackID

5

stype1

3

cause

5

cmd

3

CRC

5
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3.3.4 Status Control Symbol
The status control symbol is the default stype0 encoding and is used when the control symbol does not convey another
stype0 function. The status control symbol contains the ackID_status and the buf_status fields. The buf_status field
indicates to the receiving port the number of maximum length packet buffers the sending port had available for packet
reception at the time the control symbol was generated. The ackID_status field allows the receiving port to determine
if it and the sending port are in sync with respect to the next ackID value the sending port expects to receive. The status
control symbol format is shown in Figure 3-5 below.

Figure 3-5. Status Control Symbol Format

3.3.5 Link-Response Control Symbol 
The link-response control symbol is used by a device to respond to a link-request control symbol as described in the
link maintenance protocol described in Section 5.4: "Link Maintenance Protocol". The status reported in the status
field is the status of the port at the time the associated input-status link-request control symbol was received.

Figure 3-6. Link-Response Control Symbol Format

The port_status field of the link-response control symbol is defined in Table 3-5. 

0b00110 - 0b11110 Reserved

0b11111 General error

Table 3-5. Port_status Field Definitions

Port_status
[0-4]

Status Description

0b00000 Reserved

0b00001 Reserved

0b00010 Error The port has encountered an unrecoverable error and is unable to 
accept packets.

0b00011 Reserved

0b00100 Retry-stopped The port has retried a packet and is waiting in the input retry-
stopped state to be restarted.

0b00101 Error-stopped The port has encountered a transmission error and is waiting in 
the input error-stopped state to be restarted.

0b00110 - 0b01111 Reserved

0b10000 OK The port is accepting packets

0b10001 - 0b11111 Reserved

Table 3-4. Cause Field Definition (continued)

Cause
[0-4] Definition

0b100

3

ackID_status

5

stype1

3

buf_status

5

cmd

3

CRC

5

0b110

3

ackID_status

5

stype1

3

port_status

5

cmd

3

CRC

5



- 252 -

3.4 Stype1 Control Symbols

The encoding of stype1 and the function of the cmd field are defined in Table 3-6.

NOTE:
* denotes that restart-from-retry and link-request control symbols may only be packet delimiters if a packet is
in progress.

** NOP (Ignore) is not defined as a control symbol, but is the default value when the control 
symbol does not convey another stype1 function.

The following sections depict various control symbols. Since control symbols can contain one or 
two functions, shading in the figures is used to indicate which fields are applicable to that spe-
cific control symbol function.

3.4.1 Start-of-Packet Control Symbol
The start-of-packet control symbol format is shown in Figure  below.

Table 3-6. Stype1 Control Symbol Encoding

stype1
[0-2]

stype1
Function

cmd
[0-2]

cmd
Function

Packet 
Delimiter Reference

0b000 Start-of-packet 0b000 Reserved yes Section : "3.4.1 
Start-of-Packet 
Control Symbol"

0b001 Stomp 0b000 Reserved yes Section : "3.4.2 
Stomp Control 
Symbol"

0b010 End-of-packet 0b000 Reserved yes Section : "3.4.3 
End-of-Packet 
Control Symbol"

0b011 Restart-from-retry 0b000 Reserved * Section : "3.4.4 
Restart-From-
Retry Control 
Symbol"

0b100 Link-request 0b000 - 0b010 - * -

0b011 Reset-device Section : "3.4.5.1 
Reset-Device 
Command"

0b100 Input-status Section : "3.4.5.2 
Input-Status 
Command"

0b101- 0b111 - -

0b101 Multicast-event 0b000 Reserved No Section : "3.4.6 
Multicast-Event 
Control Symbol"

0b110 Reserved 0b000 Reserved No -

0b111 NOP (Ignore) ** 0b000 Reserved No -

stype0

3

parameter0

5

0b000

3

parameter1

5

0b000

3

CRC

5
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Figure 3-7. Start-of-Packet Control Symbol Format

3.4.2 Stomp Control Symbol
The stomp control symbol is used to cancel a partially transmitted packet. The protocol for packet cancellation is spec-
ified in Section 5.7: "Canceling Packets". The stomp control symbol format is shown in Figure 3-8 below.

Figure 3-8. Stomp Control Symbol Format

3.4.3 End-of-Packet Control Symbol
The end-of-packet control symbol format is shown in Figure 3-9 below.

Figure 3-9. End-of-Packet Control Symbol Format

3.4.4 Restart-From-Retry Control Symbol
The restart-from-retry control symbol cancels a current packet and may also be transmitted on an idle link. This con-
trol symbol is used to mark the beginning of packet retransmission, so that the receiver knows when to start accepting
packets after the receiver has requested a packet to be retried. The control symbol format is shown in Figure 3-10
below.

Figure 3-10. Restart-From-Retry Control Symbol Format

3.4.5 Link-Request Control Symbol 
A link-request control symbol is used by a device to either issue a command to the connected device or request its
input port status. A link-request control symbol cancels a current packet and can be sent between packets. Under error
conditions, a link-request/input-status control symbol acts as a link-request/restart-from-error control symbol as
described in Section 5.10.2.1, “Recoverable Errors.” This control symbol format is displayed in Figure 3-11. 

Figure 3-11. Link-Request Control Symbol Format

The cmd, or command, field of the link-request control symbol format is defined in Table 3-7 below.

Table 3-7.  Cmd Field Definitions

cmd[0-2] 
Encoding

Command 
Name Description Reference

0b000-0b010 - Reserved

0b011 Reset-device Reset the receiving device Section : "3.4.5.1 
Reset-Device 
Command"

stype0

3

parameter0

5

0b001

3

parameter1

5

0b000

3

CRC

5

stype0

3

parameter0

5

0b010

3

parameter1

5

0b000

3

CRC

5

stype0

3

parameter0

5

0b011

3

parameter1

5

0b000

3

CRC

5

stype0

3

parameter0

5

0b100

3

parameter1

5

cmd

3

CRC

5
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3.4.5.1 Reset-Device Command
The reset-device command causes the receiving device to go through its reset or power-up sequence. All state
machines and the configuration registers reset to the original power on states. The reset-device command does not
generate a link-response control symbol. 

Due to the undefined reliability of system designs it is necessary to put a safety lockout on the reset function of the
link-request control symbol. A device receiving a reset-device command in a link-request control symbol shall not
perform the reset function unless it has received four reset-device commands in a row without any other intervening
packets or control symbols, except status control symbols. This will prevent spurious reset commands from inad-
vertently resetting a device.

3.4.5.2 Input-Status Command
The input-status command requests the receiving device to return the ackID value it expects to next receive from the
sender on its input port and the current input port operational status for informational purposes. This command
causes the receiver to flush its output port of all control symbols generated by packets received before the input-sta-
tus command. Flushing the output port is implementation dependent and may result in either discarding the contents
of the receive buffers or sending the control symbols on the link. The receiver then responds with a link-response
control symbol. 

3.4.6 Multicast-Event Control Symbol
The multicast-event control symbol differs from other control symbols in that it carries information not related to the
link carrying the control symbol. The multicast-event control symbol allows the occurrence of a user-defined system
event to be multicast throughout a system. Refer to Section 5.2.4: "Multicast-Event Control Symbols" for more details
on Multicast-Events.

The multicast-event control symbol format is shown in Figure 3-12 below.

Figure 3-12. Multicast-Event Control Symbol Format

3.5 Control Symbol Protection
The 5-bit CRC shall be computed over control symbol bits 0 through 18 and provides 5-bit burst error detection for the
entire 24-bit control symbol.

3.5.1 CRC-5 Code

The ITU polynomial X5+X4+X2+1 shall be used to generate the 5-bit CRC for control symbols. The CRC check bits
c0, c1, c2, c3, and c4 occupy the last 5 bits of a control symbol. It should be noted that the 5-bit CRC must be gener-
ated by each transmitter and verified by each receiver. Before the 5-bit CRC is computed, the CRC should be set to all
1’s or 0b11111. In order to provide maximum implementation flexibility for all types of designs, a 20th bit has been
added. For all computations, the 20th bit shall be the last bit applied and shall be set to a logic 0 (0b0).

3.5.2 CRC-5 Parallel Code Generation
Since it is often more efficient to implement a parallel CRC algorithm rather than a serial, examples of the equations
for a complete, 19-bit single-stage parallel implementation is shown in shown in Table . Since only a single stage is

0b100
Input-status Return input port status; functions as a link 

request (restart-from-error) control symbol 
under error conditions

Section : "3.4.5.2 
Input-Status 
Command"

0b101-0b111 - Reserved

cmd[0-2] 
Encoding

Command 
Name Description Reference

stype0

3

parameter0

5

0b101

3

parameter1

5

0b000

3

CRC

5
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used, the effect of both setting the initial CRC to all 1’s (0b11111) and a 20th bit set to logic 0 (0b0) have been included
in the equations. 

In Table , an “x” means that the data input should be an input to the Exclusive-OR necessary to compute that particular
bit of the CRC. A “!x”, means that bit 18 being applied to the CRC circuit must be inverted. Figure  shows the 19-bits
that the CRC covers and how they should be applied to the circuit. As seen in Figure , bits are labeled with 0 on the left
and 18 on the right. Bit 0, from the stype0 field, would apply to D0 in Table  and bit 18, from the cmd field, would
apply to D18 in Table . Once completed, the 5-bit CRC is appended to the control symbol.

Parallel CRC Equations

Figure 3-13. 5-bit CRC Implementation4Chapter 4 - PCS and PMA Layers

This chapter specifies the functions provided by the Physical Coding Sublayer (PCS) and Physical Media Attachment
(PMA) sublayer. (The PCS and PMA terminology is adopted from IEEE 802.3). The topics include 8B/10B encoding, char-
acter representation, serialization of the data stream, code-groups, columns, link transmission rules, idle sequences, and link
initialization.

The concept of lanes is used to describe the width of a LP-Serial link. A lane is defined as one unidirectional differential pair
in each direction. RapidIO LP-Serial defines two link widths. The 1x LP-Serial link is a one-lane link and the 4x LP-Serial
link is a 4-lane link. Wider links are possible, but are left for future work.

CRC
Checksum Control Symbol Data For CRC

Bits D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

4 x x x x x x x x x x

3 x x x x x x x x x !x

2 x x x x x x x x x !x

1 x x x x x x x x x x !x

0 x x x x x x x x x x

stype0 parameter0 stype1parameter1 cmd CRC

Function From Equations

0 18

5-bit CRC (C0:C4)

In Table 3-8
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4 Chapter 4 - Layer Functions

4.1 PCS Layer Functions
The Physical Coding Sublayer (PCS) function is responsible for idle sequence generation, lane striping, and encoding for
transmission and decoding, lane alignment, and destriping on reception. The PCS uses an 8B/10B encoding for transmis-
sion over the link. See reference #5 of the bibliography section on page 243 for the source of the 8B/10B encoding
scheme.

The PCS layer also provides mechanisms for determining the operational mode of the port as 4-lane or 1-lane operation,
and means to detect link states. It provides for clock difference tolerance between the sender and receiver without requir-
ing flow control.

The PCS layer performs the following transmit functions:

• Dequeues packets and delimited control symbols awaiting transmission as a character stream.
• Stripes the transmit character stream across the available lanes.
• Generates the idle sequence and inserts it into the transmit character stream for each lane when no packets or 

delimited control symbols are available for transmission.
• Encodes the character stream of each lane independently into 10-bit parallel code-groups.
• Passes the resulting 10-bit parallel code-groups to the PMA.

The PCS layer performs the following receive functions:

• Decodes the received stream of 10-bit parallel code-groups for each lane independently into characters.
• Marks characters decoded from invalid code-groups as invalid.
• If the link is using more than one lane, aligns the character streams to eliminate the skew between the lanes and 

reassembles (destripes) the character stream from each lane into a single character stream.
• Delivers the decoded character stream of packets and delimited control symbols to the higher layers. 

4.2 PMA Layer Functions

The PMA (Physical Medium Attachment) function is responsible for serializing 10-bit parallel code-groups to/
from a serial bitstream on a lane-by-lane basis. Upon receiving data, the PMA function provides alignment of 
the received bitstream to 10-bit code-group boundaries, independently on a lane-by-lane basis. It then provides 
a continuous stream of 10-bit code-groups to the PCS, one stream for each lane. The 10-bit code-groups are not 
observable by layers higher than the PCS. 

4.3 Definitions
Definitions of terms used in this specification are provided below.

Byte: An 8-bit unit of information. Each bit of a byte has the value 0 or 1.

Character: A 9-bit entity comprised of an information byte and a control bit that indicates whether the information byte
contains data or control information. The control bit has the value D or K indicating that the information byte contains
respectively data or control information.

D-character: A character whose control bit has the value “D”.

K-character: A character whose control bit has the value “K”. Also referred to as a special character.

Code-group: A 10-bit entity that is the result of 8B/10B encoding a character.

Column: A group of four characters that are transmitted simultaneously on a 4x (4 lane) link. 

Comma: A 7-bit pattern, unique to certain 8B/10B special code-groups, that is used by a receiver to determine code-
group boundaries. See more in “Section , 4.4.7.4 Sync (/K/)” on page 270 and Table , “Table 4-2. Special Character
Encodings,” on page 268.

Idle sequence: The sequence of characters (code-groups after encoding) that is transmitted when a packet or control
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symbol is not being transmitted. The idle sequence allows the receiver to maintain bit synchronization and code-group
alignment in between packets and control symbols. 

Lane Alignment: The process of eliminating the skew between the lanes of a 4-lane LP-Serial link such that the charac-
ters transmitted as a column by the sender are output by the alignment process of receiver as a column. Without lane
alignment, the characters transmitted as a column might be scattered across several columns output by the receiver. The
alignment process uses the columns of “A” special characters transmitted as part of the idle sequence.

Striping: The method used on a 4x link to send data across four lanes simultaneously. The character stream is striped
across the lanes, on a character-by-character basis, starting with lane 0, to lane 1, to lane 2, to lane3, and wrapping back
with the 5th character to lane 0.

4.4 8B/10B Transmission Code
The 8B/10B transmission code used by the PCS encodes 9-bit characters (8 bits of information and a control bit) into 10-
bit code-groups for transmission and reverses the process on reception. Encodings are defined for 256 data characters and
12 special (control) characters.

The code-groups used by the code have either an equal number of ones and zeros (balanced) or the number of ones differs
from the number of zeros by two (unbalanced). This selection of code-groups guarantees a minimum of two transitions, 0
to 1 or 1 to 0, within each code-group and it also eases the task of maintaining balance. Characters are encoded into either
a single balanced code-group or a pair of unbalanced code-groups. The members of each code-group pair are the logical
complement of each other. This allows the encoder, when selecting an unbalanced code-group, to select a code-group
unbalanced toward ones or unbalanced toward zeros, depending on which is required to maintain the 0/1 balance of the
encoder output code-group stream.

The 8B/10B code has the following properties.

• Sufficient bit transition density (3 to 8 transitions per code-group) to allow clock recovery by the receiver.
• Special code-groups that are used for establishing the receiver synchronization to the 10-bit code-group boundaries, 

delimiting control symbols and maintaining receiver bit and code-group boundary synchronization.
• Balanced. (can be AC coupled)
• Detection of single and some multiple-bit errors.

4.4.1 Character and Code-Group Notation
The description of 8B/10B encoding and decoding uses the following notation for characters, code-group and their
bits.

The information bits ([0-7]) of an unencoded character are denoted with the letters “A” through “H” where the letter
“H” denotes the most significant information bit (RapidIO bit 0) and the letter “A” denotes the least significant infor-
mation bit (RapidIO bit 7). This is shown in Figure .Each data character has a representation of the form Dx.y where x
is the decimal value of the least significant 5 information bits EDCBA, and y is the decimal value of the most signifi-
cant 3 information bits HGF as shown in Figure 4-1. Each special character has a similar representation of theform
Kx.y. 

Figure 4-1. Character Notation Example (D25.3)

The output of the 8B/10B encoding process is a 10-bit code-group. The bits of a code-group are denoted with the let-
ters “a” through “j”. The bits of a code-group are all of equal significance, there is no most significant or least signifi-
cant bit. The ordering of the code-group bits is shown in Figure 4-2.

The code-groups corresponding to the data character Dx.y is denoted by /Dx.y/. The code-groups corresponding to the

HGF EDCBA
011 11001

X=25Y=3

D25.3
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special character Kx.y is denoted by /Kx.y/.

Figure 4-2. Code-Group Notation Example (/D25.3/)

4.4.2 Running Disparity
The 8B/10B encoding and decoding functions use a binary variable called running disparity. The variable can have a
value of either positive (RD+) or negative (RD-). The encoder and decoder each have a running disparity variable for
each lane which are all independent of each other.

The primary use of running disparity in the encoding process is to keep track of whether the decoder has output more
ones or more zeros. The current value of encoder running disparity is used to select the which unbalanced code-group
will be used when the encoding for a character requires a choice between two unbalanced code-groups.

The primary use of running disparity in the decoding process is to detect errors. Given a value of decoder running dis-
parity, only (256 + 12) = 268 of the 1024 possible code-group values have defined decodings. The remaining 756 pos-
sible code-group values have no defined decoding and represent errors, either in that code-group or in an earlier code-
group.

4.4.3 Running Disparity Rules
After power-up and before the port is operational, both the transmitter (encoder) and receiver (decoder) must establish
current values of running disparity.

The transmitter shall use a negative value as the initial value for the running disparity for each lane.

The receiver may use either a negative or positive initial value of running disparity for each lane.

The following algorithm shall be used for calculating the running disparity for each lane. In the encoder, the algorithm
operates on the code-group that has just been generated by the encoder. In the receiver, the algorithm operates on the
received code-group that has just been decoded by the decoder.

Each code-group is divided to two sub-blocks as shown in Figure , where the first six bits (abcdei) form one sub-block
(6-bit sub-block) and the second four bits (fghj) form a second sub-block (4-bit sub-block). Running disparity at the
beginning of the 6-bit sub-block is the running disparity at the end of the previous code-group. Running disparity at the
beginning of the 4-bit sub-block is the running disparity at the end of the 6-bit sub-block. Running disparity at the end
of the code-group is the running disparity at the end of the 4-bit sub-block.

The sub-block running disparity shall be calculated as follows:

1.     The running disparity is positive at the end of any sub-block if the sub-block contains more 1s than 0s. It is also
positive at the end of a 4-bit sub-block if the sub-block has the value 0b0011 and at the end of a 6-bit sub-block if
the sub-block has the value 0b000111.

2.     The running disparity is negative at the end of any sub-block if the sub-block contains more 0s than 1s. It is also
negative at the end of a 4-bit sub-block if the sub-block has the value 0b1100 and at the end of a 6-bit sub-block
if the sub-block has the value 0b111000.

3.     In all other cases, the value of the running disparity at the end of the sub-block is running disparity at the begin-
ning of the sub-block (the running disparity is unchanged).

4.4.4 8B/10B Encoding
The 8B/10B encoding function encodes 9-bit characters into 10-bit code-groups.

The encodings for the 256 data characters (Dx.y) are specified in Table . The encodings for the 12 special characters
(Kx.y) are specified in Table . Both tables have two columns of encodings, one marked RD- and one marked RD+.
When encoding a character, the code-group in the RD- column is selected if the current value of encoder running dis-
parity is negative and the code-group in the RD+ column is selected if the current value of encoder running disparity is

abcdei fghj
100110 1100/D25.3/



- 259 -

positive.

Data characters (Dx.y) shall be encoded according to Table  and the current value of encoder running disparity. Special
characters (Kx.y) shall be encoded according to Table  and the current value of encoder running disparity. After each
character is encoded, the resulting code-group shall be used by the encoder to update the running disparity according
to the rules in Section , “4.4.3 Running Disparity Rules.

4.4.5 Transmission Order
The parallel 10-bit code-group output of the encoder shall be serialized and transmitted with bit “a” transmitted first
and a bit ordering of “abcdeifghj”. This is shown in Figure 4-3.

Figure 4-3 gives an overview of a character passing through the encoding, serializing, transmission, deserializing, and
decoding processes. The left side of the figure shows the transmit process of encoding a character stream using 8B/
10B encoding and the 10-bit serialization. The right side shows the reverse process of the receiver deserializing and
using 8B/10B decoding on the received code-groups.

The dotted line shows the functional separation between the PCS layer, that provides 10-bit code-groups, and the PMA
layer that serializes the code-groups.

The drawing also shows on the receive side the bits of a special character containing the comma pattern that is used by
the receiver to establish 10-bit code-boundary synchronization.

Figure 4-3. Lane Encoding, Serialization, Deserialization, and Decoding Process

4.4.6 8B/10B Decoding
The 8B/10B decoding function decodes received 10-bit code-groups into 9-bit characters, detects received code-
groups that have no defined decoding and marks the resulting characters in the output stream of the decode as invalid
character (INVALID).

The decoding function uses Table , Table  and the current value of the decoder running disparity. To decode a received
code-group, the decoder shall select the RD- column of Table  and Table  if the current value of the decoder running
disparity is negative or shall select the RD+ column if the value is positive. The decoder shall then compare the
received code-group with the code-groups in the selected column of both tables. If a match is found, the code-group is
decoded to the associated character. If no match is found, the code-group is decoded to a character that is flagged in
some manner as invalid. After each code-group is decoded, the decoded code-group shall be used by the decoder to

Input to the 
H G F E D C B A
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a b c d e i f g h j

8 + control
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0 1 2 3 4 5 6 7 8 9
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0 1 2 3 4 5 6 7
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Lane bitstream
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8B/10B
Decoder
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Bit 0 received first
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update the decoder running disparity according to the rules in Section , “4.4.3 Running Disparity Rules.
Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits 
HGF EDCBA

 Current RD –  Current RD +

abcdei fghj abcdei fghj

D0.0 00 000 00000 100111 0100 011000 1011

D1.0 01 000 00001 011101 0100 100010 1011

D2.0 02 000 00010 101101 0100 010010 1011

D3.0 03 000 00011 110001 1011 110001 0100

D4.0 04 000 00100 110101 0100 001010 1011

D5.0 05 000 00101 101001 1011 101001 0100

D6.0 06 000 00110 011001 1011 011001 0100

D7.0 07 000 00111 111000 1011 000111 0100

D8.0 08 000 01000 111001 0100 000110 1011

D9.0 09 000 01001 100101 1011 100101 0100

D10.0 0A 000 01010 010101 1011 010101 0100

D11.0 0B 000 01011 110100 1011 110100 0100

D12.0 0C 000 01100 001101 1011 001101 0100

D13.0 0D 000 01101 101100 1011 101100 0100

D14.0 0E 000 01110 011100 1011 011100 0100

D15.0 0F 000 01111 010111 0100 101000 1011

D16.0 10 000 10000 011011 0100 100100 1011

D17.0 11 000 10001 100011 1011 100011 0100

D18.0 12 000 10010 010011 1011 010011 0100

D19.0 13 000 10011 110010 1011 110010 0100

D20.0 14 000 10100 001011 1011 001011 0100

D21.0 15 000 10101 101010 1011 101010 0100

D22.0 16 000 10110 011010 1011 011010 0100

D23.0 17 000 10111 111010 0100 000101 1011

D24.0 18 000 11000 110011 0100 001100 1011

D25.0 19 000 11001 100110 1011 100110 0100

D26.0 1A 000 11010 010110 1011 010110 0100

D27.0 1B 000 11011 110110 0100 001001 1011

D28.0 1C 000 11100 001110 1011 001110 0100

D29.0 1D 000 11101 101110 0100 010001 1011
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D30.0 1E 000 11110 011110 0100 100001 1011

D31.0 1F 000 11111 101011 0100 010100 1011

D0.1 20 001 00000 100111 1001 011000 1001

D1.1 21 001 00001 011101 1001 100010 1001

D2.1 22 001 00010 101101 1001 010010 1001

D3.1 23 001 00011 110001 1001 110001 1001

D4.1 24 001 00100 110101 1001 001010 1001

D5.1 25 001 00101 101001 1001 101001 1001

D6.1 26 001 00110 011001 1001 011001 1001

D7.1 27 001 00111 111000 1001 000111 1001

D8.1 28 001 01000 111001 1001 000110 1001

D9.1 29 001 01001 100101 1001 100101 1001

D10.1 2A 001 01010 010101 1001 010101 1001

D11.1 2B 001 01011 110100 1001 110100 1001

D12.1 2C 001 01100 001101 1001 001101 1001

D13.1 2D 001 01101 101100 1001 101100 1001

D14.1 2E 001 01110 011100 1001 011100 1001

D15.1 2F 001 01111 010111 1001 101000 1001

D16.1 30 001 10000 011011 1001 100100 1001

D17.1 31 001 10001 100011 1001 100011 1001

D18.1 32 001 10010 010011 1001 010011 1001

D19.1 33 001 10011 110010 1001 110010 1001

D20.1 34 001 10100 001011 1001 001011 1001

D21.1 35 001 10101 101010 1001 101010 1001

D22.1 36 001 10110 011010 1001 011010 1001

D23.1 37 001 10111 111010 1001 000101 1001

D24.1 38 001 11000 110011 1001 001100 1001

D25.1 39 001 11001 100110 1001 100110 1001

D26.1 3A 001 11010 010110 1001 010110 1001

D27.1 3B 001 11011 110110 1001 001001 1001

Table 4-1. Data Character Encodings

Character
Name

Character
Value
(hex)

 Character Bits 
HGF EDCBA

 Current RD –  Current RD +

abcdei fghj abcdei fghj



- 262 -

D28.1 3C 001 11100 001110 1001 001110 1001

D29.1 3D 001 11101 101110 1001 010001 1001

D30.1 3E 001 11110 011110 1001 100001 1001

D31.1 3F 001 11111 101011 1001 010100 1001

D0.2 40 010 00000 100111 0101 011000 0101

D1.2 41 010 00001 011101 0101 100010 0101

D2.2 42 010 00010 101101 0101 010010 0101

D3.2 43 010 00011 110001 0101 110001 0101

D4.2 44 010 00100 110101 0101 001010 0101

D5.2 45 010 00101 101001 0101 101001 0101

D6.2 46 010 00110 011001 0101 011001 0101

D7.2 47 010 00111 111000 0101 000111 0101

D8.2 48 010 01000 111001 0101 000110 0101

D9.2 49 010 01001 100101 0101 100101 0101

D10.2 4A 010 01010 010101 0101 010101 0101

D11.2 4B 010 01011 110100 0101 110100 0101

D12.2 4C 010 01100 001101 0101 001101 0101

D13.2 4D 010 01101 101100 0101 101100 0101

D14.2 4E 010 01110 011100 0101 011100 0101

D15.2 4F 010 01111 010111 0101 101000 0101

D16.2 50 010 10000 011011 0101 100100 0101

D17.2 51 010 10001 100011 0101 100011 0101

D18.2 52 010 10010 010011 0101 010011 0101

D19.2 53 010 10011 110010 0101 110010 0101

D20.2 54 010 10100 001011 0101 001011 0101

D21.2 55 010 10101 101010 0101 101010 0101

D22.2 56 010 10110 011010 0101 011010 0101

D23.2 57 010 10111 111010 0101 000101 0101

D24.2 58 010 11000 110011 0101 001100 0101

D25.2 59 010 11001 100110 0101 100110 0101
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D26.2 5A 010 11010 010110 0101 010110 0101

D27.2 5B 010 11011 110110 0101 001001 0101

D28.2 5C 010 11100 001110 0101 001110 0101

D29.2 5D 010 11101 101110 0101 010001 0101

D30.2 5E 010 11110 011110 0101 100001 0101

D31.2 5F 010 11111 101011 0101 010100 0101

D0.3 60 011 00000 100111 0011 011000 1100

D1.3 61 011 00001 011101 0011 100010 1100

D2.3 62 011 00010 101101 0011 010010 1100

D3.3 63 011 00011 110001 1100 110001 0011

D4.3 64 011 00100 110101 0011 001010 1100

D5.3 65 011 00101 101001 1100 101001 0011

D6.3 66 011 00110 011001 1100 011001 0011

D7.3 67 011 00111 111000 1100 000111 0011

D8.3 68 011 01000 111001 0011 000110 1100

D9.3 69 011 01001 100101 1100 100101 0011

D10.3 6A 011 01010 010101 1100 010101 0011

D11.3 6B 011 01011 110100 1100 110100 0011

D12.3 6C 011 01100 001101 1100 001101 0011

D13.3 6D 011 01101 101100 1100 101100 0011

D14.3 6E 011 01110 011100 1100 011100 0011

D15.3 6F 011 01111 010111 0011 101000 1100

D16.3 70 011 10000 011011 0011 100100 1100

D17.3 71 011 10001 100011 1100 100011 0011

D18.3 72 011 10010 010011 1100 010011 0011

D19.3 73 011 10011 110010 1100 110010 0011

D20.3 74 011 10100 001011 1100 001011 0011

D21.3 75 011 10101 101010 1100 101010 0011

D22.3 76 011 10110 011010 1100 011010 0011

D23.3 77 011 10111 111010 0011 000101 1100
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D24.3 78 011 11000 110011 0011 001100 1100

D25.3 79 011 11001 100110 1100 100110 0011

D26.3 7A 011 11010 010110 1100 010110 0011

D27.3 7B 011 11011 110110 0011 001001 1100

D28.3 7C 011 11100 001110 1100 001110 0011

D29.3 7D 011 11101 101110 0011 010001 1100

D30.3 7E 011 11110 011110 0011 100001 1100

D31.3 7F 011 11111 101011 0011 010100 1100

D0.4 80 100 00000 100111 0010 011000 1101

D1.4 81 100 00001 011101 0010 100010 1101

D2.4 82 100 00010 101101 0010 010010 1101

D3.4 83 100 00011 110001 1101 110001 0010

D4.4 84 100 00100 110101 0010 001010 1101

D5.4 85 100 00101 101001 1101 101001 0010

D6.4 86 100 00110 011001 1101 011001 0010

D7.4 87 100 00111 111000 1101 000111 0010

D8.4 88 100 01000 111001 0010 000110 1101

D9.4 89 100 01001 100101 1101 100101 0010

D10.4 8A 100 01010 010101 1101 010101 0010

D11.4 8B 100 01011 110100 1101 110100 0010

D12.4 8C 100 01100 001101 1101 001101 0010

D13.4 8D 100 01101 101100 1101 101100 0010

D14.4 8E 100 01110 011100 1101 011100 0010

D15.4 8F 100 01111 010111 0010 101000 1101

D16.4 90 100 10000 011011 0010 100100 1101

D17.4 91 100 10001 100011 1101 100011 0010

D18.4 92 100 10010 010011 1101 010011 0010

D19.4 93 100 10011 110010 1101 110010 0010

D20.4 94 100 10100 001011 1101 001011 0010

D21.4 95 100 10101 101010 1101 101010 0010
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D22.4 96 100 10110 011010 1101 011010 0010

D23.4 97 100 10111 111010 0010 000101 1101

D24.4 98 100 11000 110011 0010 001100 1101

D25.4 99 100 11001 100110 1101 100110 0010

D26.4 9A 100 11010 010110 1101 010110 0010

D27.4 9B 100 11011 110110 0010 001001 1101

D28.4 9C 100 11100 001110 1101 001110 0010

D29.4 9D 100 11101 101110 0010 010001 1101

D30.4 9E 100 11110 011110 0010 100001 1101

D31.4 9F 100 11111 101011 0010 010100 1101

D0.5 A0 101 00000 100111 1010 011000 1010

D1.5 A1 101 00001 011101 1010 100010 1010

D2.5 A2 101 00010 101101 1010 010010 1010

D3.5 A3 101 00011 110001 1010 110001 1010

D4.5 A4 101 00100 110101 1010 001010 1010

D5.5 A5 101 00101 101001 1010 101001 1010

D6.5 A6 101 00110 011001 1010 011001 1010

D7.5 A7 101 00111 111000 1010 000111 1010

D8.5 A8 101 01000 111001 1010 000110 1010

D9.5 A9 101 01001 100101 1010 100101 1010

D10.5 AA 101 01010 010101 1010 010101 1010

D11.5 AB 101 01011 110100 1010 110100 1010

D12.5 AC 101 01100 001101 1010 001101 1010

D13.5 AD 101 01101 101100 1010 101100 1010

D14.5 AE 101 01110 011100 1010 011100 1010

D15.5 AF 101 01111 010111 1010 101000 1010

D16.5 B0 101 10000 011011 1010 100100 1010

D17.5 B1 101 10001 100011 1010 100011 1010

D18.5 B2 101 10010 010011 1010 010011 1010

D19.5 B3 101 10011 110010 1010 110010 1010
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D20.5 B4 101 10100 001011 1010 001011 1010

D21.5 B5 101 10101 101010 1010 101010 1010

D22.5 B6 101 10110 011010 1010 011010 1010

D23.5 B7 101 10111 111010 1010 000101 1010

D24.5 B8 101 11000 110011 1010 001100 1010

D25.5 B9 101 11001 100110 1010 100110 1010

D26.5 BA 101 11010 010110 1010 010110 1010

D27.5 BB 101 11011 110110 1010 001001 1010

D28.5 BC 101 11100 001110 1010 001110 1010

D29.5 BD 101 11101 101110 1010 010001 1010

D30.5 BE 101 11110 011110 1010 100001 1010

D31.5 BF 101 11111 101011 1010 010100 1010

D0.6 C0 110 00000 100111 0110 011000 0110

D1.6 C1 110 00001 011101 0110 100010 0110

D2.6 C2 110 00010 101101 0110 010010 0110

D3.6 C3 110 00011 110001 0110 110001 0110

D4.6 C4 110 00100 110101 0110 001010 0110

D5.6 C5 110 00101 101001 0110 101001 0110

D6.6 C6 110 00110 011001 0110 011001 0110

D7.6 C7 110 00111 111000 0110 000111 0110

D8.6 C8 110 01000 111001 0110 000110 0110

D9.6 C9 110 01001 100101 0110 100101 0110

D10.6 CA 110 01010 010101 0110 010101 0110

D11.6 CB 110 01011 110100 0110 110100 0110

D12.6 CC 110 01100 001101 0110 001101 0110

D13.6 CD 110 01101 101100 0110 101100 0110

D14.6 CE 110 01110 011100 0110 011100 0110

D15.6 CF 110 01111 010111 0110 101000 0110

D16.6 D0 110 10000 011011 0110 100100 0110

D17.6 D1 110 10001 100011 0110 100011 0110
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D18.6 D2 110 10010 010011 0110 010011 0110

D19.6 D3 110 10011 110010 0110 110010 0110

D20.6 D4 110 10100 001011 0110 001011 0110

D21.6 D5 110 10101 101010 0110 101010 0110

D22.6 D6 110 10110 011010 0110 011010 0110

D23.6 D7 110 10111 111010 0110 000101 0110

D24.6 D8 110 11000 110011 0110 001100 0110

D25.6 D9 110 11001 100110 0110 100110 0110

D26.6 DA 110 11010 010110 0110 010110 0110

D27.6 DB 110 11011 110110 0110 001001 0110

D28.6 DC 110 11100 001110 0110 001110 0110

D29.6 DD 110 11101 101110 0110 010001 0110

D30.6 DE 110 11110 011110 0110 100001 0110

D31.6 DF 110 11111 101011 0110 010100 0110

D0.7 E0 111 00000 100111 0001 011000 1110

D1.7 E1 111 00001 011101 0001 100010 1110

D2.7 E2 111 00010 101101 0001 010010 1110

D3.7 E3 111 00011 110001 1110 110001 0001

D4.7 E4 111 00100 110101 0001 001010 1110

D5.7 E5 111 00101 101001 1110 101001 0001

D6.7 E6 111 00110 011001 1110 011001 0001

D7.7 E7 111 00111 111000 1110 000111 0001

D8.7 E8 111 01000 111001 0001 000110 1110

D9.7 E9 111 01001 100101 1110 100101 0001

D10.7 EA 111 01010 010101 1110 010101 0001

D11.7 EB 111 01011 110100 1110 110100 1000

D12.7 EC 111 01100 001101 1110 001101 0001

D13.7 ED 111 01101 101100 1110 101100 1000

D14.7 EE 111 01110 011100 1110 011100 1000

D15.7 EF 111 01111 010111 0001 101000 1110
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D16.7 F0 111 10000 011011 0001 100100 1110

D17.7 F1 111 10001 100011 0111 100011 0001

D18.7 F2 111 10010 010011 0111 010011 0001

D19.7 F3 111 10011 110010 1110 110010 0001

D20.7 F4 111 10100 001011 0111 001011 0001

D21.7 F5 111 10101 101010 1110 101010 0001

D22.7 F6 111 10110 011010 1110 011010 0001

D23.7 F7 111 10111 111010 0001 000101 1110

D24.7 F8 111 11000 110011 0001 001100 1110

D25.7 F9 111 11001 100110 1110 100110 0001

D26.7 FA 111 11010 010110 1110 010110 0001

D27.7 FB 111 11011 110110 0001 001001 1110

D28.7 FC 111 11100 001110 1110 001110 0001

D29.7 FD 111 11101 101110 0001 010001 1110

D30.7 FE 111 11110 011110 0001 100001 1110

D31.7 FF 111 11111 101011 0001 010100 1110
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K28.0 1C 000 11100 001111 0100 110000 1011

K28.1 3C 001 11100 001111 1001 110000 0110 1,2

K28.2 5C 010 11100 001111 0101 110000 1010 1

K28.3 7C 011 11100 001111 0011 110000 1100

K28.4 9C 100 11100 001111 0010 110000 1101 1

K28.5 BC 101 11100 001111 1010 110000 0101 2

K28.6 DC 110 11100 001111 0110 110000 1001 1

K28.7 FC 111 11100 001111 1000 110000 0111 1,2

K23.7 F7 111 10111 111010 1000 000101 0111 1
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1 - Reserved code-groups.
2 - The code-groups /K28.5/, /K28.7/, and /K28.1/ contain a comma.

4.4.7 Special Characters and Columns

4.4.7.1 Packet Delimiter Control Symbol (/PD/)
PD and /PD/ are aliases for respectively the K28.3 character and the /K28.3/ code-group which are used to delimit
the beginning of a control symbol that contains a packet delimiter.

4.4.7.2 Start of Control Symbol (/SC/)
SC and /SC/ are aliases for respectively the K28.0 character and the /K28.0/ code-group which are used to delimit
the beginning of a control symbol that does not contain a packet delimiter. 

4.4.7.3 Idle (/I/)
I and /I/ are aliases for respectively any of the idle sequence characters (A, K, or R) and idle sequence code-groups
(/A/, /K/, or /R/).

K27.7 FB 111 11011 110110 1000 001001 0111

K29.7 FD 111 11101 101110 1000 010001 0111

K30.7 FE 111 11110 011110 1000 100001 0111 1

Table  4-3 defines the special characters and columns of special characters used by 1x and 4x LP-Serial links. Special 
characters are used for the following functions:

1.     Alignment to code-group (10-bit) boundaries on lane-by-lane basis.

2.     Alignment of the receive data stream across four lanes.

3.     Clock rate compensation between receiver and transmitter.

4.     Control symbol delimiting.

Table 4-3. Special Characters and Columns

Code-Group/Column
Designation

Code-Group/Column
Use

Number of 
Code-groups Encoding

/PD/ Packet_Delimiter Control 
Symbol

1 /K28.3/

/SC/ Start_of_Control_Symbol 1 /K28.0/

/I/ Idle

/K/ 1x Sync 1 /K28.5/

/R/ 1x Skip 1 /K29.7/

/A/ 1x Align 1 /K27.7/

||I|| Idle column

||K|| 4x Sync column 4 /K28.5/K28.5/K28.5/K28.5/

||R|| 4x Skip column 4 /K29.7/K29.7/K29.7/K29.7/

||A|| 4x Align column 4 /K27.7/K27.7/K27.7/K27.7/
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4.4.7.4 Sync (/K/)
K and /K/ are aliases for respectively the K28.5 character and the /K28.5/ code-group which is used in the idle
sequence to provide the receiver with the information its requires to achieve and maintain bit and 10-bit code-group
boundary synchronization. The /K28.5/ code-group was selected as the Sync character for the following reasons:

1.     It contains the comma pattern in bits abcdeif which can be easily found in the code-group bit stream and marks
the code-group boundary.

2.     The bits ghj provide the maximum number of transitions (i.e. 101 or 010).

A comma is a 7-bit string defined as either b’0011111’ (comma+) or b’1100000’ (comma-). Within the code-group
set it is a singular bit pattern, which, in the absence of transmission errors, cannot appear in any other location of a
code-group and cannot be generated across the boundaries of any two adjacent code-groups with the following
exception:

NOTE:
The /K28.7/ special code-group when followed by any of the data code-groups /D3.y/, /D11.y/, /D12.y/, /D19.y/, 

/D20.y/, /D28.y/, or /K28.y/, where y is an integer in the range 0 through 7, may (depending on the value of running
disparity) cause a comma to be generated across the boundary of the two code-groups. A comma that is generated
across the boundary between two adjacent code-groups may cause the receiver to change the 10-bit code-group
alignment. As a result, the /K28.7/ special code-group may be used for test and diagnostic purposes only.

4.4.7.5 Skip (/R/)

R and /R/ are aliases for respectively the K29.7 character and the /29.7/ code-group which are used in the idle
sequence and are also used in the clock compensation sequence.

4.4.7.6 Align (/A/)
A and /A/ are aliases for respectively the K27.7 character and the /27.7/ code-group which are used in the idle
sequence and are used for lane alignment on 4x links.

4.4.8 Effect of Single Bit Code-Group Errors
Single bit code-group errors will be the dominant code-group error by many orders of magnitude. It is therefore useful
to know the variety of code-group corruptions that can be caused by a single bit error.

Table  lists all possible code-group corruptions that can be caused by a single-bit error. The notation /X/ => /Y/ means
that the code-group for the character X has been corrupted by a single-bit error into the code-group for the character Y.
If the corruption results in a code-group that is invalid for the current receiver running disparity, the notation /X/ => /
INVALID/ is used. The table provides the information required to deterministically detect all isolated single bit trans-
mission errors.
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4.4.9 Idle Sequence
The idle sequence is a sequence of code-groups that shall be transmitted continuously over each lane of an LP-Serial
link whenever neither packets nor control symbols are not being transmitted. An idle sequence may not be inserted in
a packet or delimited control symbol. The idle sequence is transmitted over each lane as part of the port initialization
process as required in Section : "4.6.3.5 1x Mode Initialization State Machine" and Section : "4.6.3.6 1x/4x Mode Ini-
tialization State Machine". An idle sequence containing a special clock compensation sequence shall be transmitted at
least once every 5000 code-groups even when there are packets or control symbols available to transmit to allow clock
rate compensation.

The 1x idle sequence consists of a sequence of the code-groups /K/, /A/, and /R/ (the idle code-groups) and shall be
used by ports in operating is 1x mode. The 4x idle sequence consists of a sequence of the columns ||K||, ||A||, ||R|| (the
idle columns) and shall be used by ports operating in 4x mode. Both sequences shall comply with the following
requirements:

1.     The first code-group (column) of an idle sequence generated by a port operating in 1x mode (4x mode) shall be a
/K/ (||K||). The first code-group (column) shall be transmitted immediately following the last code-group (col-
umn) of a packet or delimited control symbol.

2.    At least once every 5000 code-groups (columns) transmitted by a port operating in 1x mode (4x mode), an idle
sequence containing the /K/R/R/R/ code-group sequence (||K||R||R||R|| column sequence) shall be transmitted by

Table 4-4. Code-Group Corruption Caused by Single Bit Errors

Corruption Detection

/SC/ => /INVALID/ Detectable as an error when decoding the code-group.
When this error occurs within a packet, it is indistinguishable 
from a /Dx.y/ => /INVALID/.
When this error occurs outside of a packet, the type of error can 
be inferred from whether the /INVALID/ is followed by the 
three /Dx.y/ that comprise the control symbol data.

/PD/ => /INVALID/ Detectable as an error when decoding the code-group.
When this error occurs within a packet, it is indistinguishable 
from a /Dx.y/ => /INVALID/.
When this error occurs outside of a packet, the type of error can 
be inferred from whether the /INVALID/ is followed by the 
three /Dx.y/ that comprise the control symbol data.

/A/, /K/ or /R/ => /Dx.y/ Detectable as an error as /Dx.y/ is illegal outside of a packet or 
control symbol and /A/, /K/ and /R/ are illegal within a packet 
or control symbol.

/A/, /K/ or /R/ => /INVALID/ Detectable as an error when decoding the code-group.

/Dx.y/ => /A/, /K/ or /R/ Detectable as an error as /A/, /K/ and /R/ are illegal within a 
packet or control symbol and /Dx.y/ is illegal outside of a 
packet or control symbol.

/Dx.y/ => /INVALID/ Detectable as an error when decoding the code-group.

/Dx.y/ => /Du.v/ Detectable as an error by the packet or control symbol CRC. 
The error will also result in a subsequent unerrored code-group 
being decoded as INVALID, but that resulting INVALID code-
group may occur an arbitrary number of code-groups after the 
errored code-group.
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the port. This sequence is referred to as the “compensation sequence”.

3.     When not transmitting the compensation sequence, all code-groups (columns) following the first code-group (col-
umn) of an idle sequence generated by a port operating in 1x mode (4x mode) shall be a pseudo-randomly
selected sequence of /A/, /K/, and /R/ (||A||, ||K||, and ||R||) based on a pseudo-random sequence generator of 7th
order or greater and subject to the minimum and maximum /A/ (||A||) spacing requirements.

4.    The number of non /A/ code-groups (non ||A|| columns) between /A/ code-groups (||A|| columns) in the idle
sequence of a port operating in 1x mode (4x mode) shall be no less than 16 and no more than 32. The number
shall be pseudo-randomly selected, uniformly distributed across the range and based on a pseudo-random
sequence generator of 7th order or greater.

There are no requirements on the length of an idle sequence. An idle sequence may be of any length.

The idle sequence is transmitted on each lane of a link when neither packets nor delimited control symbols are being
transmitted to allow each lane receiver to maintain bit and 10-bit code-group boundary synchronization.

The pseudo-random selection of code-groups in the idle sequence results in an idle sequence whose spectrum has no
discrete lines which minimizes the EMI of long idle sequences.

The compensation sequence allows retiming repeaters (discussed in Section : "4.5 Retimers and Repeaters") to com-
pensate for up to a +/- 200 ppm difference between input bit rate and output bit rate, each of which have a +/-100 ppm
tolerance. It may also be used to allow the input side of a port to compensate for up to a +/-200 ppm difference
between the input bit rate and the bit rate of the device core which may be running off a different clock. This is done by
dropping or adding an /R/ or ||R|| as needed to avoid overrun/underrun. Since a packet or delimited control symbol may
not be interrupted by an idle sequence, designers must be careful to guarantee that no more than 5000 code-groups are
transmitted between compensation sequences.

4.4.9.1 Idle Sequence Generation 
The 7th order polynomial x7+x6+x1 is recommended as the generating polynomial for the pseudo-random sequence
that is used in the generation of the idle sequence. The pseudo-random sequence generator is clocked (generates a
new pseudo-random sequence value) once per idle sequence code-group (column). Four of the pseudo-random
sequence generator state bits may be selected as the pseudo-random value for /A/ (||A||) spacing and any other state
bit or logical function of state bits may be selected as the /K/ vs. /R/ selector.

Figure  shows an example circuit illustrating how this may be done. The clock ticks whenever a code-group or col-
umn is transmitted. Send_idle is asserted whenever an idle sequence begins. The equations indicate the states in
which to transmit the indicated idle code-group, except when the compensation sequence is being transmitted. Any
equivalent method is acceptable.
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Figure 4-4. Example of a Pseudo-Random Idle Code-Group Generator

4.4.10 1x Link Transmission Rules
A 1x LP-Serial link has a single lane (differential pair) in each direction. A 1x LP-Serial port shall be encoded and
transmit the character stream of delimited control symbols and packets received from the upper layers over the differ-
ential pair in the order the characters were received from the upper layers. When neither control symbols nor packets
are available from the upper layers for transmission, the 1x idle sequence shall be fed to the input of the encoder for
encoding and transmission. On reception, the code-group stream is decoded and passed to the upper layers.

When a 4x port is operating in 1x mode, the character stream from the upper layers is not striped across the lanes
before encoding as is done when operating in 4x mode. The entire character stream from the upper layers is fed in par-
allel to both lanes 0 and 2. A 4x LP-Serial port operating in 1x mode shall encoded and transmit the character stream of
delimited control symbols and packets received from the upper layers over both lanes 0 and 2 in the order the charac-
ters were received from the upper layers. 

When neither delimited control symbols nor packets are available from the upper layers for transmission, the 1x idle
sequence shall be fed in parallel to the input of the lane 0 and lane 2 encoders for encoding and transmission on lanes 0
and 2. On reception, the code-group stream from either lane 0 or 2 is selected according to the state of the 1x/
4x_Initialization state machine (Section , “4.6.3.6 1x/4x Mode Initialization State Machine), decoded and passed to the
upper layers.

Figure  shows the encoding and transmission order for a control symbol transmitted over a 1x LP-Serial link.
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Figure 4-5. 1x Mode Control Symbol Encoding and Transmission Order

Figure  shows the encoding and transmission order for a packet transmitted over a 1x LP-Serial link.

Figure 4-6. 1x Mode Packet Encoding and Transmission Order
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Figure 4-7 shows an example of control symbol, packet, and idle sequence transmission on a 1x LP-Serial link.

Figure 4-7. 1x Typical Data Flow
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4.4.11 4x Link Striping and Transmission Rules
A LP-Serial port operating in 4x mode shall stripe the character stream of delimited control symbols and packets that it
receives from the upper layers across the four lanes before 8B/10B encoding as follows:

Packets and delimited control symbols shall be striped across the four lanes beginning with lane 0. The first char-
acter of each packet, or delimited control symbol, is placed in lane 0, the second character is placed in lane1, the
third character is placed in lane 2, and the fourth character is placed in lane 3. The fifth character and subsequent
characters wrap around and continue beginning in lane 0.

As a result of their defined lengths, delimited control symbols will form a column after striping and a packet will form
an integer number of contiguous columns.

After striping, each of the 4 streams of characters shall be independently 8B/10B encoded and transmitted.

When neither delimited control symbols nor packets are available from the upper layers for transmission, the 4x idle
sequence shall be transmitted. This can be achieved by feeding the 1x idle sequence in parallel to the inputs of the
encoders for all four lanes for encoding and transmission on the four lanes. Feeding the 1x idle sequence in parallel to
the input of all four lane encoders converts each 1x idle sequence character in to a 4x idle sequence column. The 1x
sequence is not striped across the four lanes.

On reception, each lane shall be 8B/10B decoded. After decoding, the four lanes shall be aligned. The ||A|| columns
transmitted as part of the 4x idle sequence provide the information needed to perform alignment. After alignment, the
columns are destriped into a single character stream and passed to the upper layers.

The lane alignment process eliminates the skew between lanes so that after destriping, the ordering of characters in the
received character stream is the same as the ordering of characters before striping and transmission. Since the mini-
mum number of non ||A|| columns between ||A|| columns is 16, the maximum lane skew that can be unambiguously
corrected is the time it takes for to transmit 7 code-groups on a lane. 

Figure 4-8. shows an example of idle sequence, packet, and delimited control symbol transmission on a 4x link.
Figure 4-8. Typical 4x Data Flow
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4.5 Retimers and Repeaters
The LP-Serial Specification allows “retimers” and “repeaters”. Retimers amplify a weakened signal, but do not transfer
jitter to the next segment. Repeaters also amplify a weakened signal, but transfer jitter to the next segment. Retimers
allow greater distances between end points at the cost of additional latency. Repeaters support less distance between end
points than retimers, only add a small amount of latency. 

4.5.1 Retimers
A retimer shall comply with all AC specifications found in Chapter 8, “AC Electrical Specifications”. This includes
resetting the jitter budget thus extending the transmission distance for the link. The retimer repeats the received code-
groups after performing code-group synchronization and serializes the bitstream again on transmission, based on a
local clock reference. Up to two retimers are allowed between two end nodes.

A retimer is not RapidIO protocol-aware or addressable in any way. The only awareness a retimer has is to the syn-
chronization on the /K/ code-group and the function of /R/ insertion and removal. A retimer may insert up to one /R/
code-group immediately following a /K/ code-group sequence, or remove one /R/ code-group that immediately fol-
lows a /K/ code-group sequence. Note that the /R/ code-group is disparity neutral and therefore its insertion or deletion
does not affect the running disparity. 

A 4-lane retimer must perform lane synchronization and deskew, in exactly the same way a RapidIO device imple-
menting this physical layer does when synchronizing inputs during initialization and startup. A 4-lane retimer will syn-
chronize and align all lanes that are driven to it. Therefore, such a retimer allows for the degradation of an input 4x link
to a 1x link on either lane 0 or 2. If any link drops out, the retimer must merely continue to pass the active links, mon-
itoring for the compensation sequence and otherwise passing through whatever code-groups appear on its inputs. A
retimer may optionally not drive any outputs whose corresponding inputs are not active. 

Any insertion or removal of a /R/ code-groups in a 4-lane retimer must be done on a full column. A retimer may retime
links operating at the same width only (i.e. cannot connect a link operating at 1x to a link operating at 4x). A retimer
may connect a 1x link to a 4x link that is operating at 1x. Retimers perform clock tolerance compensation between the
receive and transmit clock. The transmit clock is usually derived from a local reference.

Retimers do not check for code violations. Code-groups received on one port are transmitted on the other regardless of
code violations or running disparity errors.

4.5.2 Repeaters
A repeater is used to amplify the signal, but does not retime the signal, and therefore can add additional jitter to the sig-
nal. It does not compensate for clock rate variation. The repeater repeats the received code-groups as the bits are
received by sampling the incoming bits with a clock derived from the bit stream, and then retransmitting them based
on that clock. Repeaters may be used with 4x links but lane-to-lane skew may be amplified. Repeaters do not interpret
or alter the bit stream in any way.

4.6 Port Initialization
This section specifies the port initialization process. The process includes detecting the presence of a partner at the other
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end of the link (a link partner), establishing bit synchronization and code-group boundary alignment and if the port is
capable of supporting both 1x and 4x modes (a 1x/4x port), discovering whether the link partner is capable of 4x mode (4-
lane) operation, selecting 1x or 4x mode operation and if 1x mode is selected, selecting lane 0 or lane 2 for link reception. 

The initialization process is controlled by several state machines. The number and type of state machines depends on
whether the port supports only 1x mode (a 1x port) or supports both 1x and 4x modes (a 1x/4x port). In either case, there
is a primary state machine and one or more secondary state machines. The use of multiple state machines results in a sim-
pler overall design. As might be expected, the initialization process for a 1x port is simpler than and a subset of the initial-
ization process for a 1x/4x port.

The initialization process for 1x and 1x/4x ports is both described in text and specified with state machine diagrams. In
the case of conflict between the text and a state machine diagram, the state machine diagram takes precedence.

4.6.1 1x Mode Initialization
The initialization process for ports that support only 1x mode shall be controlled by two state machines,
1x_Initialization and Lane_Synchronization. 1x_Initialization is the primary state machine and Lane_Synchronization
is the secondary state machine. The operation of these state machines is described and specified in Section : "4.6.3.5
1x Mode Initialization State Machine" and Section : "4.6.3.3 Lane Synchronization State Machine" respectively.

After a 1x port has been initialized, the port is required to receive seven error-free status control symbols without inter-
vening detected errors to verify link operation before transmitting any packets.

4.6.2 1x/4x Mode Initialization
The initialization process for ports that support both 1x and 4x modes shall be controlled by six state machines, 1x/
4x_Initialization, Lane_Synchronization[0-3] (one for each of the four lanes) and Lane_Alignment. 1x/
4x_Initialization is the primary state machine. Lane_Synchronization[0-3] and Lane_Alignment are the secondary
state machines. The operation of these state machines is described and specified in Section : "4.6.3.6 1x/4x Mode Ini-
tialization State Machine", Section : "4.6.3.3 Lane Synchronization State Machine" and Section 0.2.3.4: "Lane Align-
ment State Machine" respectively.

After a 4x port has been initialized, the port is required to receive seven error-free status control symbols without inter-
vening detected errors to verify link operation before transmitting any packets.

4.6.3 State Machines
4.6.3.1 State Machine Conventions

A state machine state is persistent until an exit condition occurs.

A state machine variable that is listed in the body of a state but is not part of an assignment statement is asserted for
the duration of that state only.

A state machine variable that is assigned a value in the body of a state retains that value until assigned a new value
in another state.

A state machine function that is listed in the body of a state is executed once during the state.

4.6.3.2 State Machine Variables and Functions
A state machine variable is asserted when its value is 1 and deasserted when it value is 0.

The functions used in the state machines are defined as follows.

change( )

Asserted when the variable on which it operates changes state.

next_code_group( )

Gets the next 10 bit code-group for the lane when it becomes available.

next_column( )

Gets the next column of 4 code-groups when it becomes available.

The variables used in the state machines are defined as follows.

4x-mode
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Asserted when the port is operating in 4x mode

||A||

Asserted when the current column contains all /A/s.

Acounter

A counter used in the Lane Alignment state machine to count received alignment columns (||A||s).

align_error

Asserted when the current column contains at least one /A/, but not all /A/s.

all_lane_sync

Asserted when all four lanes of a 4x mode receiver are in bit synchronization and code-group boundary align-
ment. (all_lane_sync = lane_sync[0] & lane_sync[1] & lane_sync[2] & lane_sync[3])

discovery_timer_done

Asserted when discovery_timer_en has been continuously asserted for 12 +/- 4 msec.

discovery_timer_en

When asserted, the discovery_timer runs. When deasserted, the discovery_timer is reset to and maintains its
initial value.

force_1x_mode

When asserted, forces the 1x/4x Initialization state machine to use 1x mode.

force_lane2

When asserted in 1x mode, forces the 1x/4x Initialization state machine to use lane 2 for reception.

Icounter

Counter used in the Lane_Synchronization state machine to count INVALID received code-groups. There is
one Icounter for each lane in a 4x mode receiver.

/K28.5/

Asserted when the current code-group is /K28.5/

Kcounter

Counter used in the Lane_Synchronization state machine to count received /K.28.5/ code-groups. There is
one Kcounter for each lane in a 4x mode receiver.

lane02_drvr_oe

The output enable for the lane 0 and the lane 2 output drivers of a 1x/4x mode port.

lane13_drvr_oe

The output enable for the lane 1 and the lane 3output drivers of a 1x/4x mode port.

lanes_aligned

Asserted by the Lane_Alignment state machine when it determines that all four lanes are in sync and aligned.

lane_sync

Asserted by the Lane_Synchronization state machine when it determines that the lane it is monitoring is in
bit synchronization and code-group boundary alignment. The is a lane_sync signal for each lane in a 4x mode
receiver.

link_drvr_oe
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When asserted, the output link driver of a 1x port is enabled.

Mcounter

Mcounter is used in the Lane_Alignment state machine to count columns received that contain at least one /
A/, but not all /A/s.

Vcounter

Vcounter is used in the Lane_Synchronization state machine to count VALID received code-groups. There is
one Vcounter for each lane in a 4x mode receiver.

port_initialized

When asserted, port_initialized indicates that the link is initialized and is available for transmitting control
symbols and packets. When deasserted, the link is not initialized and is not available for transmitting control
symbols and packets.

receive_lane2

In a 1x/4x capable port that is initialized and is operating in 1x mode (4x_mode deasserted), receive_lane2
indicates which lane the port has selected for input. When asserted, the port input is from lane 2. When deas-
serted the port input is from lane 0. When the port is operating in 4x mode (4x_mode asserted), receive_lane2
is undefined and shall be ignored.

signal_detect

Asserted when a lane receiver is enabled and a signal meeting an implementation defined criteria is present at
the input of the receiver. The use of signal_detect is implementation dependent. It may be continuously
asserted or it may be used to require that some implementation defined additional condition be met before the
Lane_Synchronization state machine is allowed to exit the NO_SYNC state. Signal_detect might for exam-
ple be used to ensure that the input signal to a lane receiver meet some minimum AC input power require-
ment so that the receiver can not lock up on crosstalk from an output of the same port.

silence_timer_done

Asserted when silence_timer_en has been continuously asserted for 120 +/- 40 µs.

silence_timer_en

When asserted, the silence_timer runs. When deasserted, the silence_timer is reset to and maintains its initial
value.

/VALID/

When asserted, /VALID/ indicates that the current code-group is a valid code-group given the current run-
ning disparity.

/INVALID/

When asserted, /INVALID/ indicates that the current code-group is an invalid code-group given the current
running disparity.

4.6.3.3 Lane Synchronization State Machine
The Lane_Synchronization state machine monitors the bit synchronization and code-group boundary alignment for
a lane receiver. A port that supports only 1x mode has one Lane_Synchronization state machine. A port that sup-
ports both 1x and 4x modes has four Lane_Synchronization state machines, one for each lane
(Lane_Synchronization[0] through Lane_Synchronization[3]).

The state machine determines the bit synchronization and code-group boundary alignment state of a lane receiver
by monitoring the received code-groups and looking for /K28.5/s, other valid code-groups and invalid code-groups.
The code-group /K28.5/ contains the “comma” bit sequence that is used to establish code-group boundary align-
ment. When a lane is error free, the “comma” pattern occurs only in the /K28.5/ code-group. Several counters are
used to provide hysteresis so that occasional bit errors do not cause spurious lane_sync state changes.

The state machine does not specify how bit synchronization and code-group boundary alignment is to be achieved.
The methods used by a lane receiver to achieve bit synchronization and code-group boundary alignment are imple-
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mentation dependent. However, isolated single bit errors shall not cause the code-group boundary alignment mech-
anism to change alignment. For example, a isolated single bit error that results in a “comma” pattern across a code-
group boundary may not cause the code-group boundary alignment mechanism to change alignment.

The state machine starts in the NO_SYNC state and sets the variables Kcounter[0] and lane_sync[n] to 0 (lane n is
out of code-group boundary sync). It then looks for a /K28.5/ code-group. When it finds one and the signal
signal_detect[n] is asserted, the machine moves to the NO_SYNC_1 state.

The NO_SYNC_1 state in combination with the NO_SYNC_2 state looks for 127 /K28.5/ code-groups without any
intervening /INVALID/ code-groups. When this condition achieves, machine goes to state SYNC. If an intervening
/INVALID/ code-group is detected, the machine goes back to the NO_SYNC state. There is no magic is the number
127. It was selected to be large enough that it would be highly unlikely that SYNC would be falsely achieved and it
fits in a 7-bit counter. Since the /K28.5/ code-group comprises slightly less than half of the code-groups in the idle
sequence, something more than 256 code-groups must be received after the first /K28.5/ to achieve the 128 /K28.5/
code-group criteria to transition to the SYNC state.

In the SYNC state, the machine sets the variable lane_sync[n] to 1 (lane n is in code-group boundary sync), set the
variable Icounter[n] to 0 and begins looking for /INVALID/ code-groups. If an /INVALID/ code-group is detected,
the machine goes to state SYNC_1.

The SYNC_1 state in combination with the SYNC_2, SYNC_3, and SYNC_4 states look for 255 consecutive 
/VALID/ code-groups without any /INVALID/ code-groups. If this achieves, the machine returns to the SYNC state. 
If it does not, the machine goes to the NO_SYNC state and starts over. This algorithm tolerates isolated single bit 
errors in that an isoled single bit error will not cause the machine to change the variable lane_snc[n] FROM 1 TO 0 
(in sync to out of sync). Two errors within 256 code-groups will result in an out-of-sync indication.
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Figure 4-9. Lane_Synchronization State
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4.6.3.4 Lane Alignment State Machine
The Lane_Alignment state machine monitors the alignment of the output of the four lane receivers 
in a port operating in 4x mode. A port supporting 4x mode has one Lane_alignment state machine, 
a port supporting only 1x mode does not have a Lane_Alignment state machine. (Lane alignment is 
required in a 4x port receiver to compensate for unequal propagation delays through the four lanes.)

The state machine determines the alignment state by monitoring the fours lanes for columns con-
taining all /A/s (||A||), columns containing at least one but not all /A/s and columns containing no /
A/s. Several counters are used to provide hysteresis so that occasional bit errors do not cause spuri-
ous lanes_aligned state changes.

The state machine does not specify how lane alignment is to be achieved. The methods used by a 4x 
port receiver to achieve lane alignment are implementation dependent. However, isolated single bit 
errors shall not cause the lane alignment mechanism to change lane alignment. For example, a iso-
lated single bit error that results in a column that contains at least one /A/ but not all /A/s may not 
cause the lane alignment mechanism to change the lane alignment.

The state machine starts in the NOT_ALIGNED state where the variables Acounter and 
lanes_aligned are set to 0 (all lanes are not aligned). The machine then waits for all (four) lanes to 
achieve code-group boundary alignment (all_lanes_sync asserted) and the reception of an ||A|| (a 
column of all /A/s). When this obtains, the machine goes to NOT_ALIGNED_1 state.

The NOT_ALIGNED_1 state in combination with the NOT_ALIGNED_2 state looks for the 
reception of four ||A||s without the intervening reception of a misaligned column (a column with at 
least one /A/ but not all /A/s which causes the signal align_error to be asserted). When this obtains, 
the machine goes to the ALIGNED state. If an intervening misaligned column is received, the 
machine goes back to the NOT_ALIGNED state.

In the ALIGNED state, the machine sets the variable lanes_aligned to 1 (all lanes are aligned) and 
the variable Mcounter to 0 and looks for a misaligned column (align_error asserted). If a misaligned 
column is detected, the machine goes to the ALIGNED_1 state.

The ALIGNED_1 stte in combination with the ALIGNED_2 and ALIGNED_3 states look for the 
reception of four ||A||s without the intervening reception of misaligned column. If this condition 
obtains, the machine returns to the ALIGNED state. If an intervening misaligned column occurs, 
the machine goes to the NOT_ALIGNED state and starts over. This algorithm tolerates isolated sin-
gle bit errors in that an isolated single bit error will not cause the machine to change the variable 
lanes_aligned from 1 to 0 ( in lane alignment to out of lane alignment). The Lane_Alignment state 
machine is specified in Figure 4-10. 
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Figure 4-10. Lane_Alignment State Machine
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must be long enough to ensure that the link partner detects the silence (as a loss of lane_sync) and is forced to ini-
tialize but short enough that it is readily distinguished from a link break. When the silent interval is complete, the
SEEK state is entered.

In the SEEK state, the link output driver is enabled, the idle sequence is transmitted, and the port waits for
lane_sync to be asserted indicating the presence of a link partner. While lane_sync as defined indicates the bit and
code-group boundary alignment synchronization state of the link receiver, it may also be thought of as indicating
the presence of a link partner. When lane-sync is asserted, the 1X_MODE state is entered.

The input signal force_reinit allows the port to force link initialization at any time.

The variable port_initialized is asserted only in the 1X_MODE state. When port_initialized is deasserted, the port
shall transmit a continuous idle sequence uninterrupted by control symbols or packets. When port_initialized is
asserted, the port shall transmit control symbols and packets when they are offered for transmission. To maintain
receiver bit synchronization and code-group alignment, the port shall transmit the idle sequence when no control
symbol or packet is being transmitted.

The 1x_Initialization state machine is specified in Figure . 

Figure 4-11. 1x_Initialization State Machine

4.6.3.6 1x/4x Mode Initialization State Machine
The 1x/4x_Initialization state machine shall be used by ports that support both 1x and 4x mode (1x/4x ports). In
addition to determining when the link is initialized, the state machine controls whether the port receiver operates in
1x or 4x mode and in 1x mode whether lane 0 or lane 2 is selected as the inbound lane.

The machine starts in SILENT state. All four lane output drivers are disabled to force the link partner to initialize
regardless of its current state. The duration of the SILENT state is controlled by the silence_timer. The duration
must be long enough to ensure that the link partner detects the silence (as a loss of lane_sync) and is forced to ini-
tialize but short enough that it is readily distinguished from a link break. When the silent interval is complete, the
SEEK state is entered.

In the SEEK state, a 1x/4x port transmits the idle sequence on lanes 0 and 2 (the lane 1 and lane 3 output drivers
remain disabled to save power) and waits for an indication that a link partner is present. While lane_sync as defined
indicates the bit and code-group boundary alignment synchronization state of a lane receiver, it is also used to indi-
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cate the presence of a link partner. A link partner is declared to be present when either lane_sync[0] or lane_sync[2]
is asserted which causes the state machine to enter the DISCOVERY state.

In the DISCOVERY state, the port enables the output drivers for lanes 1 and 3 and transmits the idle sequence on all
four lanes. The discovery_timer is also started. The discovery_timer allows time for the link partner to enter its
DISCOVERY state and if the link partner is supporting 4x mode, for all four local lane receivers to acquire bit syn-
chronization and code-group boundary alignment and for all four lanes to be aligned.

If four lane alignment is achieved (lane_aligned asserted) and the variable force_1x_mode is not asserted, the
machine enters the 4X_MODE state. It remains in this state until lane alignment or at least one lane_sync is lost
(lane_aligned deasserted) or reinitialization is forced (force_reinit is asserted).

When the time allowed for discovery is over (discovery_timer_done is asserted), if four- lane alignment has not
been achieved (lane_aligned not asserted) or if the variable force_1x_mode is asserted, the machine enters one of
the 1x mode states. If code-group alignment has been achieved on lane 0 (lane0_sync asserted) and the variable
force_lane2 is not asserted, the machine enters 1X_MODE_LANE0 and remains in that state until code-group
boundary alignment is lost (lane0_sync deasserted) or reinitialization is forced (force_reinit is asserted). If the vari-
able force_lane2 is asserted or if code-group alignment has not been achieved on lane 0 (lane0_sync not asserted)
but has been achieved on lane 2 (lane2_sync asserted), the machine enters 1X_MODE_LANE2 and remains in that
state until code-group boundary alignment is lost (lane2_sync deasserted) or reinitialization is forced (force_reinit is
asserted).

The input signals force_1x_mode and force_lane2 allow the state of the machine to be forced during initialization
into 1x mode, and in 1x mode to be forced to receive on lane 2. The input signal force_reinit allows the port to force
link initialization at any time.

The variable port_initialized is asserted only in the 1X_MODE_LANE0, 1X_MODE_LANE2 and 4X_MODE
states. When port_initialized is deasserted, the port shall transmit a continuous idle sequence uninterrupted by con-
trol symbols or packets. When port_initialized is asserted, the port shall transmit control symbols and packets when
they are offered for transmission. To maintain receiver bit synchronization and code-group alignment, the port shall
transmit the idle sequence when no control symbol or packet is being transmitted. The 1x/4x_Initialization state
machine is specified in Figure 4-12.
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.

Figure 4-12. 1x/4x_Initialization State Machine

5 Chapter 5 - LP-Serial Protocol

This chapter specifies the LP-serial protocol. The protocol provides the reliable delivery of packets between two RapidIO
devices that are connected by an LP-Serial link.

Packet priority, the mapping of transaction request flows onto packet priority, buffer management, and the use of control
symbols in managing the delivery of packets between two devices is explained in this chapter.

5.1 Packet Exchange Protocol
This physical layer LP-Serial specification defines a protocol for devices connected by a LP-Serial link in which each
packet transmitted by one device is acknowledged by control symbols transmitted by the other device. If a packet cannot
be accepted for any reason, an acknowledgment control symbol indicates the reason and that the original packet and any
transmitted subsequent packets must be resent. This behavior provides a flow control and error control mechanism
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between connected processing elements.

Figure  shows an example of transporting a request and response packet pair across an interconnect fabric with 
acknowledgments between the link transmitter/receiver pairs along the way. This allows flow control and error 
handling to be managed between each electrically connected device pair rather than between the original 
source and final target of the packet. A device shall transmit an acknowledgment control symbol for a request 
packet before transmitting the response packet corresponding to that request.

5.2 Control Symbols
Control Symbols are the message elements used by ports connected by an LP-Serial link to manage all aspects of LP-
Serial link operation. They are used for link maintenance, packet delimiting, packet acknowledgment, error reporting, and
error recovery.

5.2.1 Control Symbol Delimiting
LP-Serial control symbols are delimited for transmission by a single 8B/10B special (control) character. The control
character marks the beginning of the control symbol and immediately precedes the first bit of the control symbol. The
control symbol delimiting special character is added to the control symbol before the control symbol is passed to the
PCS sublayer for lane striping (if applicable) and 8B/10B encoding. Since control symbol length is constant and
known, control symbols do not need end delimiters. The combined delimiter and control symbol is referred to as a
delimited control symbol.

One of two special characters is used to delimit a control symbol. If the control symbol contains a packet delimiter, the

Figure 5-1. Example Transaction with Acknowledgment
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special character PD (K28.3) is used. If the control symbol does not contain a packet delimiter, the special character
SC (K28.0) is used. This use of special characters provides the receiver with an “early warning” of the content of the
control symbol.

5.2.2 Control Symbol Transmission
After an LP-Serial link is initialized, each port connected by the link shall transmit status control symbols at least once
every 1024 code-groups whenever the port has nothing else (no control symbols and no packets) to transmit. The time
required to transmit 1024 code-groups shall be computed based on the aggregate unidirectional baud rate of the link
and is independent of the number of lanes. For example, a 4x link with each lane operating at 3.125 GB has an aggre-
gate unidirectional baud rate of (4*3.125) = 12.5 GB. The time required to transmit 1024 code-groups is (1024*10/
12.5*10^9) = 819.2 ns. Hence on such a link, a status control symbol must be transmitted by each port at least one
every 819.2 ns if the port has nothing else to transmit.

After an LP-Serial link is initialized, each port connected by the link shall not begin packet transmission until the port
has received 7 error-free status control symbols with no intervening detected errors. This provides a degree of link ver-
ification before packet transmission begins.

After an LP-Serial port begins packet transmission, it shall transmit a control symbol containing the buf_status field
once every 1024 code-groups.

5.2.3 Embedded Control Symbols
Any control symbol that does not contain a packet delimiter may be embedded in a packet. An embedded control sym-
bol may contain any defined encoding of stype0 and an stype1 encoding of “multicast-event” or “NOP”. Control sym-
bols with stype1 encodings of start-of-packet, end-of-packet, stomp, restart-from-retry, or link-request/input-status
cannot be embedded as they would terminate the packet.

The manner and degree to which control symbol embedding is used on a link impacts both link and system perform-
ance. For example, embedding multicast-event control symbols allows their propagation delay and delay variation
through switch processing elements to be minimized and is highly desirable for some multicast-event applications. On
the other hand, embedding all packet acknowledgment control symbols rather than combining as many of them as pos-
sible with packet delimiter control symbols reduces the link bandwidth available for packet transmission and may be
undesirable.

5.2.4 Multicast-Event Control Symbols

The Multicast-Event control symbol provides a mechanism through which notice that some system 
defined event has occurred, can be selectively multicast throughout the system. Refer to Section 3.4.6: 
"Multicast-Event Control Symbol" for the format of the multicast-event control symbol.

When a switch processing element receives a Multicast-Event control symbol, the switch shall forward 
the Multicast-Event by issuing a Multicast-Event control symbol from each port that is designated in the 
port's CSR as a Multicast-Event output port. A switch port shall never forward a Multicast-Event control 
symbol back to the device from which it received a Multicast-Event control symbol regardless of whether 
the port is designated a Multicast-Event output or not.

It is intended that at any given time, Multicast-Event control symbols will be sourced by a single device. 
However, the source device can change (in case of failover, for example). In the event that two or more 
Multicast-Event control symbols are received by a switch processing element close enough in time that 
more than one is present in the switch at the same time, at least one of the Multicast-Event control sym-
bols shall be forwarded. The others may be forwarded or discarded (device dependent). 

The system defined event whose occurrence Multicast-Event gives notice of has no required temporal 
characteristics. It may occur randomly, periodically, or anything in between. For instance, Multicast-
Event may be used for a heartbeat function or for a clock synchronization function in a multiprocessor 
system.
In an application such as clock synchronization in a multiprocessor system, both the propagation time of the notifica-
tion through the system and the variation in propagation time from Multicast-Event to Multicast-Event are of concern.
For these reasons and the need to multicast, control symbols are used to convey Multicast-Events as control symbols
have the highest priority for transmission on a link and can be embedded in packets.
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While this specification places no limits on Multicast-Event forwarding delay or forwarding delay variation, switch
functions should be designed to minimize these characteristics. In addition, switch functions shall include in their
specifications the maximum value of Multicast-Event forwarding delay (the maximum value of Multicast-Event for-
warding delay through the switch) and the maximum value of Multicast-Event forwarding delay variation (the maxi-
mum value of Multicast-Event forwarding delay through the switch minus the minimum value of Multicast-Event
forwarding delay through the switch).

5.3 Packets

5.3.1 Packet Delimiting
LP-Serial packets are delimited for transmission by control symbols. Since packet length is variable, both start-of-
packet and end-of-packet delimiters are required. The control symbol marking the end of a packet (packet termination)
follows the end of the packet or the end of an embedded control symbol.

The following control symbols are used to delimit packets.

• Start-of-packet
• End-of-packet
• Stomp
• Restart-from-retry
• Link-request/input-status

5.3.1.1 Packet Start
The beginning of a packet (packet start) shall be marked by a start-of-packet control symbol.

5.3.1.2 Packet Termination
A packet shall be terminated in one of the following three ways:

• The end of a packet is marked with an end-of-packet control symbol.
• The end of a packet is marked with a start-of-packet control symbol that also marks the beginning of a new packet.
• The packet is canceled by a restart-from-retry, link-request/input-status, or stomp control symbol

5.3.2 Acknowledgment Identifier
Each packet requires an identifier to uniquely identify its acknowledgment control symbol. This identifier, the
acknowledge ID (ackID), is five bits long, allowing for a range of one to thirty two outstanding unacknowledged
request or response packets between adjacent processing elements, however only up to thirty one outstanding unac-
knowledged packets are allowed at any one time. The first value of ackID assigned after a reset shall be 0b00000. Sub-
sequent values of ackID shall be assigned sequentially (in increasing numerical order, wrapping back to 0 on
overflow) to indicate the order of the packet transmission. The acknowledgments themselves are a number of control
symbols defined in Chapter 3, “Control Symbols.

5.3.3 Packet Priority and Transaction Request Flows
Each packet has a priority that is assigned by the end point processing element that is the source of (initiates) the
packet. The priority is carried in the prio field of the packet and has four possible values: 0, 1, 2, or 3. Packet priority
increases with the priority value with 0 being the lowest priority and 3 being the highest. Packet priority is used in
Rapid IO for several purposes which include transaction ordering and deadlock prevention.

When a transaction is encapsulated in a packet for transmission, the transaction request flow indicator (flowID) of the
transaction is mapped into the prio field of the packet. Transaction request flows A and B are mapped to priorities 0
and 1 respectively and transaction request flows C and above are mapped to priority 2 as specified in Table .

The mapping of transaction request flow onto packet priority (prio) allows a Rapid IO transport fabric to 
maintain transaction request flow ordering without the fabric having any knowledge of transaction types 
or their interdependencies. This allows a Rapid IO fabric to be forward compatible as the types and func-
tions of transactions evolve. A fabric can maintain transaction request flow ordering by simply maintain-
ing the order of packets with the same priority for each path through the fabric and can maintaining 
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transaction request flow priority by never allowing a lower priority packet to pass a higher priority packet 
taking the same path through the fabric.

Table 5-1. Transaction Request Flow to Priority Mapping

5.4 Link Maintenance Protocol
The link maintenance protocol involves a request and response pair between ports connected by an LP-Serial link. For
software management, the request is generated through ports in the configuration space of the sending device. An exter-
nal host write of a command to the link-request register with a Partition I: Input/Output Logical Specification mainte-
nance write transaction causes an link-request control symbol to be issued onto the output port of the device, but only one
link-request can be outstanding on a link at a time. 

The device that is linked to the sending device shall respond with an link-response control symbol if the link-request
command required it to do so. The external host retrieves the link-response by polling the link-response register with I/O
logical maintenance read transactions. A device with multiple RapidIO interfaces has a link-request and a link-response
register pair for each corresponding RapidIO interface. 

The automatic error recovery mechanism relies on the hardware generating link-request/input-status control symbols
under the transmission error conditions described in Section , “5.10.2.1 Recoverable Errors and using the corresponding
link-response information to attempt recovery. 

Due to the undefined reliability of system designs, it is necessary to put a safety lockout on the reset function of the link-
request/reset-device control symbol. A device receiving a link-request/reset-device control symbol shall not perform the
reset function unless it has received four link-request/reset-device control symbols in a row without any intervening pack-
ets or other control symbols, except status control symbols. This will prevent spurious reset-device commands inadvert-
ently resetting a device. The link-request/reset-device control symbol does not require a response.

The input-status command of the link-request/input-status control symbol is used by the hardware to recover from trans-
mission errors. If the input port had stopped due to a transmission error that generated a packet-not-accepted control sym-
bol back to the sender, the link-request/input-status control symbol acts as a link-request/restart-from-error control
symbol, and the receiver is re-enabled to receive new packets after generating the link-response control symbol. The link-
request/input-status control symbol may also be used to restart the receiving device if it is waiting for a restart-from-retry
control symbol after retrying a packet. This situation can occur if transmission errors are encountered while trying to
resynchronize the sending and receiving devices after the retry.

The link-request/input-status control symbol requires a response. A port receiving a link-request/input-status control
symbol returns a link-response control symbol containing two pieces of information:

• port_status
• ackID_status
These status indicators are described in Table 3-5.

The retry-stopped state indicates that the port has retried a packet and is waiting to be restarted. This state is cleared when
a restart-from-retry (or a link-request/input-status) control symbol is received. The error-stopped state indicates that the
port has encountered a transmission error and is waiting to be restarted. This state is cleared when a link-request/input-
status control symbol is received.

Flow System 
Priority

Request
Packet Priority

Response
Packet Priority

C or higher Highest 2 3

B Next 1 2 or 3

A Lowest 0 1, 2, or 3
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5.5 Packet Transmission Protocol

The LP-Serial protocol for packet transmission provides link level flow and error detection and recovery.

The LP-Serial link protocol uses control symbols to delimit packets when they are transmitted across an LP-
Serial link as specified in Section , “5.3.1 Packet Delimiting.

The LP-Serial link protocol uses acknowledgment to monitor packet transmission. Each packet transmitted 
across an LP-Serial link packet shall be acknowledged by the receiving port with a packet acknowledgment 
control symbol. To associate packet acknowledgment control symbols with transmitted packets, each packet 
shall be assigned an ackID value that is carried in the ackID field of the packet and the packet_ackID field of 
the associated acknowledgment control symbol. AckID values are assigned to packets sequentially in increas-
ing numerical order wrapping to 0 on overflow. The ackID value carried by packets indicates their order of 
transmission.

The LP-Serial link protocol uses retransmission to recover from packet transmission errors. To enable packet 
retransmission, a copy of each packet transmitted across an LP-Serial link shall kept by the sending port until 
either a packet-accepted packet acknowledgment control symbol is received for the packet from the receiving 
port indicating that the port has received the packet without detected error and has accepted responsibility for 
the packet or the port determines that the packet has an encountered an unrecoverable error condition.

The LP-Serial link protocol uses the ackID value carried in each packet to ensure that no packets are lost due to 
transmission errors. A port shall accept packets from an LP-Serial link only in sequential ackID order, i.e. if the 
ackID value of the last packet accepted was N, the ackID value of the next packet that is accepted must be 
(N+1) modulo32.

An LP-Serial port accepts or rejects each error-free packet it receives depending on whether the port has input 
buffer space available at the priority level of the packet. The use of the packet-accepted, packet-retry, and 
restart-from-retry control symbols and the buf_status field in packet acknowledgment control symbols to con-
trol the flow of packets across an LP-Serial link is cover in Section , “5.6 Flow Control.

The LP-Serial link protocol allows a packet that is being transmitted to be canceled at any point during its 
transmission. Packet cancellation is covered in Section , “If the port and its link partner both support transmit-
ter-controlled flow control, then both ports shall use transmitter-controlled flow control. Otherwise, both ports 
shall use receiver-controlled flow control.Canceling Packets.

The LP-Serial link protocol provides detection and recovery processes for both transmission errors and proto-
col violations. The enumeration of detectable errors, the detection of errors and the associated error recovery 
processes are covered in Section , “As an example, suppose an end point processing element has a blocked 
input port because all available resources are being used for a response packet that the processing element is 
trying to send. If the response packet is retried by the downstream processing element, raising the priority of 
the response packet until it is accepted allows the processing element’s input port to unblock so the system can 
make forward progress..

In order to prevent internal switch processing element internal errors, such as SRAM soft bit errors, from 
silently corrupting a packet and the system, switch processing elements shall maintain packet error detection 
coverage while a packet is passing though the switch. The simplest method for maintain packet error detection 
coverage is pass the packet CRC through the switch as part of the packet. This works well for all non-mainte-
nance packets whose CRC does not change as the packets are transported from source to destination through 
the fabric. Maintaining error detection coverage is more complicated for maintenance packets as their 
hop_count and CRC change every time they pass through a switch.

In order to support transaction ordering requirements of the I/O Logical Layer specification, the LP-Serial pro-
tocol imposes packet delivery ordering requirements within the physical layer and transaction delivery order-
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ing requirements between the physical layer and the transport layer in end point processing elements. These 
requirements are covered in Section , “5.8 Transaction and Packet Delivery Ordering Rules.

In order to prevent deadlock, the LP-Serial protocol imposes a set of deadlock prevention rules. These rules are 
covered in Section , “5.9 Deadlock Avoidance.

The LP-Serial specification does not require the use of fair bandwidth allocation mechanisms within the trans-
port fabric, therefore, it is possible that traffic associated with higher flow levels can starve traffic associated 
with lower flow levels. Any sort of starvation prevention, flow level bandwidth allocation, or fairness mecha-
nisms are device and system dependent and are beyond the scope of this specification.

5.6 Flow Control

This section defines RapidIO LP-Serial link level flow control. The flow control operates between each pair of 
ports connected by an LP-Serial link. The purpose of link level flow control is to prevent the loss of packets 
due to a lack of buffer space in a link receiver.

The LP-Serial protocol defines two methods or modes of flow control. These are named receiver-controlled 
flow control and transmitter-controlled flow control. Every RapidIO LP-Serial port shall support receiver-con-
trolled flow control. LP-Serial ports may optionally support transmitter-controlled flow control. 

5.6.1 Receiver-Controlled Flow Control

Receiver-controlled flow control is the simplest and basic method of flow control. In this method, the 
input side of a port controls the flow of packets from its link partner by accepting or rejecting (retrying) 
packets on a packet by packet basis. The receiving port provides no information to its link partner about 
the amount of buffer space it has available for packet reception. 

As a result, its link partner transmits packets with no a priori expectation as to whether a given packet 
will be accepted or rejected. A port signals its link partner that it is operating in receiver-controlled flow 
control mode by setting the buf_status field to all 1’s in every control symbol containing the field that the 
port transmits. This method is named receiver-controlled flow control because the receiver makes all of 
the decisions about how buffers in the receiver are allocated for packet reception.

A port operating in receiver-controlled flow control mode accepts or rejects each inbound error-free 
packet based on whether the receiving port has enough buffer space available at the priority level of the 
packet. If there is enough buffer space available, the port accepts the packet and transmits a packet-
accepted control symbol to its link partner that contains the ackID of the accepted packet in its 
packet_ackID field. This informs the port’s link partner that the packet has been received without 
detected errors and that it has been accepted by the port. On receiving the packet-accepted control sym-
bol, the link partner discards its copy of the accepted packet freeing buffer space in the partner.

If buffer space is not available, the port rejects the packet. When a port rejects (retries) an error-free 
packet, it immediately enters the Input Retry-stopped state and follows the Input Retry-stopped recovery 
process specified in Section , “5.6.2.1 Input Retry-Stopped Recovery Process. As part of the Input Retry-
stopped recovery process, the port sends a packet-retry control symbol to its link partner indicating that 
the packet whose ackID is in the packet_ackID field of the control symbol and all packets subsequently 
transmitted by the port have been discarded by the link partner and must all be retransmitted. The control 
symbol also indicates that the link partner is temporarily out of buffers for packets of priority less than or 
equal to the priority of the retried packet.

A port that receives a packet-retry control symbol immediately enters the Output Retry-stopped state and 
follows the Output Retry-stopped recovery process specified in Section , “5.6.2.2 Output Retry-Stopped 
Recovery Process. As part of the Output Retry-stopped recovery process, the port receiving the packet-
retry control symbol sends a restart-from-retry control symbol which causes its link partner to exit the 
Input Retry-stopped state and resume packet reception. The ackID assigned to that first packet transmit-
ted after the restart-from-retry control symbol is the ackID of the packet that was retried.

Figure  shows an example of receiver-controlled flow control operation. In this example the transmitter is 
capable of sending packets faster than the receiver is able to absorb them. Once the transmitter has 
received a retry for a packet, the transmitter may elect to cancel any packet that is presently being trans-
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mitted since it will be discarded anyway. This makes bandwidth available for any higher priority packets 
that may be pending transmission.

Figure 5-2. Receiver-Controlled Flow Control

5.6.2 Transmitter-Controlled Flow Control

In transmitter-controlled flow control, the receiving port provides information to its link partner about the 
amount of buffer space it has available for packet reception. With this information, the sending port can 
allocate the use of the receiving port’s receive buffers according to the number and priority of packets 
that the sending port has waiting for transmission without concern that one or more of the packets shall 
be forced to retry. 

A port signals its link partner that it is operating in transmitter-controlled flow control mode by setting 
the buf_status field to a value different from all 1’s in every control symbol containing the field that the 
port transmits. This method is named transmitter-controlled flow control because the transmitter makes 
almost all of the decisions about how the buffers in the receiver are allocated for packet reception.

The number of free buffers that a port has available for packet reception is conveyed to its link partner by 
the value of the buf_status field in the control symbols that the port transmits. The value conveyed by the 
buf_status field is the number of maximum length packet buffers currently available for packet reception 
up to the limit that can reported in the field. If a port has more buffers available than the maximum value 
that can be reported in the buf_status field, the port sets the field to that maximum value. A port may 
report a smaller number of buffers than it actually has available, but it shall not report a greater number.

A port informs its link partner when the number of free buffers available for packet reception changes. 
The new value of buf_status is conveyed in the buf_status field of a packet-accepted, packet-retry, or sta-
tus control symbol. Each change in the number of free buffers a port has available for packet reception 
need not be conveyed to the link partner. However, a port shall send a control symbol containing the 
buf_status field to its link partner no less often than the minimum rate specified in Section , “5.2.2 Con-
trol Symbol Transmission.

A port whose link partner is operating in transmitter-control flow control mode should never receive a 
packet-retry control symbol from its link partner unless the port has transmitted more packets than its link 
partner has receive buffers, violated the rules that all input buffer may not be filled with low priority 
packets or there is some fault condition. If a port whose link partner is operating in transmitter-control 
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flow control mode receives a packet-retry control symbol, the output side of the port immediately enters 
the Output Retry-stopped state and follows the Output Retry-stopped recovery process specified in 
Section , “5.6.2.2 Output Retry-Stopped Recovery Process.
A simple example of transmitter-controlled flow control is shown in Figure .

Figure 5-3. Transmitter-Controlled Flow Control

5.6.2.1 Input Retry-Stopped Recovery Process
When the input side of a port retries a packet, it immediately enters the Input Retry-stopped state. To recover from
this state, the input side of the port takes the following actions.

• Discards the rejected packet and ignores all subsequently received packets while the port is in the Input Retry-
stopped state.

Causes the output side of the port to issue a packet-retry control symbol containing the ackID value of the retried
packet in the packet_ackID field of the control symbol. (The packet-retry control symbol causes the output side of
the link partner to enter the Output Retry-stopped state and send a restart-from-retry control symbol.)

• When a restart-from-retry control symbol is received, exit the Input Retry-stopped state and resume packet 
reception.

An example state machine with the behavior described in this section is included in Section A.1, “Packet Retry
Mechanism".”

5.6.2.2 Output Retry-Stopped Recovery Process
To recover from the Output Retry-stopped state, the output side of a port takes the following actions.

• Immediately stops transmitting new packets. Resets the link packet acknowledgment timers for all transmitted but 
unacknowledged packets. (This prevents the generation of spurious time-out errors.)

• Transmits a restart-from-retry control symbol.
• Backs up to the first unaccepted packet (the retried packet) which is the packet whose ackID value is specified by 

the packet_ackID value contained in the packet-retry control symbol. (The packet_ackID value is also the value 
of ackID field the port retrying the packet expects in the first packet it receives after receiving the restart-from-
retry control symbol.)

• Exits the Output Retry-stopped state and resumes transmission with either the retried packet or a higher priority 
packet which is assigned the ackID value contained in the packet_ackID field of the packet-retry control symbol.

Time Write 0

Write 1
Ack 0, 2 buffers avail

Write 2

Ack 1, 1 buffer avail

Write 3
Write 4
Write 5

Ack 2, 0 buffers avail

Ack 3, 3 buffers avail

Ack 4, 2 buffers avail

Ack 5, 1 buffers avail

Transmitter Receiver

Idle, 0 buffers avail
Idle, 0 buffers avail

Idle, 2 buffers avail
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An example state machine with the behavior described in this section is included in Section A.1, 
“Packet Retry Mechanism".”

5.6.2.3 Receive Buffer Management
In transmitter-controlled flow control, the transmitter manages the packet receive buffers in the receiver. This may
be done in a number of ways, but the selected method shall not violate the rules in Section , “5.9 Deadlock Avoid-
ance concerning the acceptance of packets by ports

One possible implementation to organize the buffers is establish watermarks and use them to progressively limit the
packet priorities that can be transmitted as the effective number of free buffers in the receiver decreases. For exam-
ple, RapidIO LP-Serial has four priority levels. Three non-zero watermarks are needed to progressively limit the
packet priorities that may be transmitted as the effective number of free buffers decreases. Designate the three
watermarks as WM0, WM1, and WM2 where WM0 > WM1 > WM2 > 0 and employ the following rules.

If free_buffer_count >= WM0, all priority packets may be transmitted.

If WM0 > free_buffer_count >= WM1, only priority 1, 2, and 3 packets may be transmitted.

If WM1 > free_buffer_count >= WM2, only priority 2 and 3 packets may be transmitted.

If WM2 > free_buffer_count, only priority 3 packets may be transmitted.

If this method is implemented, the initial values of the watermarks may be set by the hardware at reset as follows.

WM0 = 4

WM1 = 3

WM2 = 2

These initial values may be modified by hardware or software. The modified watermark values shall be based on
the number of free buffers reported in the buf_status field of status control symbols received by the port following
link initialization and before the start of packet transmission.

The three watermark values and the number of free buffers reported in the buf_status field of status control symbols
received by the port following link initialization and before the start of packet transmission may be stored in a CSR.
Since the maximum value of each of these four items is 30, each will fit in an 8-bit field and all four will fit in a sin-
gle 32-bit CSR. If the watermarks are software setable, the three watermark fields in the CSR should be writable.
For the greatest flexibility, a watermark register should be provided for each port on a device.

5.6.2.4 Effective Number of Free Receive Buffers
The number of buffers available in a port’s link partner for packet reception is typically less than the value of the
buf_status field most recently received from the link partner. The value in the buf_status field does not account for
packets that have been transmitted by the port but not acknowledged by its link partner. The variable
free_buffer_count is defined to be the effective number of free buffers available in the link partner for packet recep-
tion. The value of free_buffer_count shall be determined according to the following rules.

The port shall maintain a count of the packets that it has transmitted but that have not been acknowledged by its link
partner. This count is named the outstanding_packet_count.

After link initialization and before the start of packet transmission,

If (received_buf_status < 31) {
flow_control_mode = transmitter;
free_buffer_count = received_buf_status;
outstanding_packet_count = 0;

}
else

flow_control_mode = receiver;
When a packet is transmitted by the port,

outstanding_packet_count =
outstanding_packet_count + 1;

When a status control symbol is received by the port,

free_buffer_count = received_buf_status -
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outstanding_packet_count;
When a packet-accepted control symbol is received by the port indicating that a packet has been accepted by the
link partner,

Outstanding_packet_count = 
Outstanding_packet_count - 1;

free_buffer_count = received_buf_status -
outstanding_packet_count;

When a packet-retry control symbol is received by the port indicating that a packet has been forced by the link part-
ner to retry,

Outstanding_packet_count = 0;
free_buffer_count = received_buf_status;

When a packet-not-accepted control symbol is received by the port indicating that a packet has been rejected by the
link partner because of one or more detected errors,

Outstanding_packet_count = 0;
free_buffer_count = 0;

The port then transmits a link-request/input-status (for input-status) control symbol and waits for the link partner to
respond with a link-response control symbol. When the link-response control symbol is received, 

free_buffer_count = received_buf_status;
5.6.2.5 Speculative Packet Transmission

A port whose link partner is operating in transmitter-controlled flow control mode may send more packets than the
number of free buffers indicated by the link partner. Packets transmitted in excess of the free_buffer_count are
transmitted on a speculative basis and are subject to retry by the link partner. The link partner accepts or rejects
these packets on a packet by packet basis in exactly the same way it would if operating in receiver-controlled flow
control mode. A port may use such speculative transmission in an attempt to maximize the utilization of the link.
However, speculative transmission that results in a significant number of retries and discarded packets can reduce
the effective bandwidth of the link.

5.6.3 Flow Control Mode Negotiation
Immediately following the initialization of a link, each port begins sending status control symbols to its link partner.
The value of the buf_status field in these control symbols indicates to the link partner the flow control mode supported
by the sending port.

The flow control mode negotiation rule is as follows:

If the port and its link partner both support transmitter-controlled flow control, 
then both ports shall use transmitter-controlled flow control. 
Otherwise, both ports shall use receiver-controlled flow control.Canceling Pack-
ets

5.7 Cancelling Packets
When a port becomes aware of some condition that will require the packet it is currently transmitting to be retransmitted,
the port may cancel the packet. This allows the port to avoid wasting bandwidth by not completing the transmission of a
packet that the port knows must be retransmitted. Alternatively, the sending port may choose to complete transmission of
the packet normally.

A port may cancel a packet if the port detects a problem with the packet as it is being transmitted or if the port receives a
packet-retry or packet-not-accepted control symbol for a packet that is still being transmitted or that was previously trans-
mitted. A packet-retry or packet-not-accepted control symbol can be transmitted by a port for a packet at any time after
the port begins receiving the packet. 

The sending device shall use the stomp control symbol, the restart-from-retry control symbol (in response to a packet-
retry control symbol), or link-request/input-status control symbol (in response to a packet-not-accepted control symbol)
to cancel a packet. 

A port receiving a cancelled packet shall drop the packet. The cancellation of a packet shall not result in the generation of
any errors. If the packet was cancelled because the sender received a packet-not-accepted control symbol, the error that
caused the packet-not-accepted to be sent shall be reported in the normal manner. 
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If a port receiving a cancelled packet has not previously acknowledged the packet and is not in an “Input Stopped” State
(Retry-Stopped or Error-Stopped), the port shall immediately enter the Input Retry-stopped state and follow the Input
Retry-stopped recovery process specified in Section , “5.6.2.1 Input Retry-Stopped Recovery Process if the packet was
canceled with a control symbol other than a restart-from-retry or a link-request/input-status control symbol. As part of the
Input Retry-stopped recovery process, the port sends a packet-retry control symbol to the sending port indicating that the
stomped packet was not accepted.

5.8 Transaction and Packet Delivery Ordering Rules
The rules specified in this section are required for the physical layer to support the transaction ordering rules specified in
the logical layer specifications.

Transaction Delivery Ordering Rules:

1. The physical layer of an end point processing element port shall encapsulate in packets and forwarded to the 
RapidIO fabric transactions comprising a given transaction request flow in the same order that the 
transactions were received from the transport layer of the processing element.

2. The physical layer of an end point processing element port shall ensure that a higher priority request 
transaction that it receives from the transport layer of the processing element before a lower priority request 
transaction with the same sourceID and the same destinationID is forwarded to the fabric before the lower 
priority transaction.

3. The physical layer of an end point processing element port shall deliver transactions to the transport layer of 
the processing element in the same order that the packetized transactions were received by the port.

Packet Delivery Ordering Rules:

1. A packet initiated by a processing element shall not be considered committed to the RapidIO fabric and does 
not participate in the packet delivery ordering rules until the packet has been accepted by the device at the 
other end of the link. (RapidIO does not have the concept of delayed or deferred transactions. Once a packet 
is accepted into the fabric, it is committed.)

2. A switch shall not alter the priority of a packet.

3. Packet forwarding decisions made by a switch processing element shall provide a consistent output port 
selection which is based solely on the value of the destinationID field carried in the packet.

4. A switch processing element shall not change the order of packets comprising a transaction request flow 
(packets with the same sourceID, the same destinationID, the same priority and ftype != 8) as the packets 
pass through the switch.

5. A switch processing element shall not allow lower priority non-maintenance packets (ftype != 8) to pass 
higher priority non-maintenance packets with the same sourceID and destinationID as the packets pass 
through the switch.

6. A switch processing element shall not allow a priority N maintenance packet (ftype = 8) to pass another 
maintenance packet of priority N or greater that takes the same path through the switch (same switch input 
port and same switch output port).

5.9 Deadlock Avoidance
To allow a RapidIO protocol to evolve without changing the switching fabric, switch processing elements are not
required, with the sole exception of ftype 8 maintenance transactions, to discern between packet types, their functions or
their interdependencies. Switches, for instance, are not required to discern between packets carrying request transactions
and packets carrying response transactions. As a result, it is possible for two end points, A and B to each fill all of their
output buffers, the fabric connecting them and the other end point’s input buffers with read requests. This would result in
an input to output dependency loop in each end point in which there would be no buffer space to hold the responses nec-
essary to complete any of the outstanding read requests.

To break input to output dependencies, end point processing elements must have the ability to issue outbound response
packets even if outbound request packets awaiting transmission are congestion blocked by the connected device. Two
techniques are provided to break input to output dependencies. First, a response packet (a packet carry a response transac-
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tion) is always assigned an initial priority one priority level greater than the priority of the associated request packet (the
packet carrying the associated request transaction). 

This requirement is specified in Table . It breaks the dependency cycle at the request flow level. Second, the end point
processing element that is the source of the response packet may additionally raise the priority of the response packet to a
priority higher than the minimum required by Table  if necessary for the packet to be accepted by the connected device.
This additional increase in response packet priority above the minimum required by Table  is called promotion. An end
point processing element may promote a response packet only to the degree necessary for the packet to be accepted by the
connected device.

The following rules define the deadlock prevention mechanism:

Deadlock Prevention Rules:

1. A RapidIO fabric shall be dependency cycle free for all operations that do not require a response. (This rule 
is necessary as there are no mechanisms provided in the fabric to break dependency cycles for operations not 
requiring responses.)

2. A packet carrying a request transaction that requires a response shall not be issued at the highest priority. 
(This rule ensures that an end point processing element can issue a response packet at a priority higher then 
the priority of the associated request. This rule in combination with rule 3 are basis for the priority 
assignments in Table .)

3. A packet carrying a response shall have a priority at least one priority level higher than the priority of the 
associated request. (This rule in combination with rule 2 are basis for the priority assignments in Table .)

4. A switch processing element port shall accept an error-free packet of priority N if there is no packet of 
priority greater than or equal to N that was previously received by the port and is still waiting in the switch to 
be forwarded. (This rule has multiple implications which include but are not limited to the following. First, a 
switch processing element port must have at least as many maximum length packet input buffers as there are 
priority levels. Second, a minimum of one maximum length packet input buffer must be reserved for each 
priority level. A input buffer reserved for priority N might be restricted to only priority N packets or might be 
allowed to hold packets of priority greater than or equal to N, either approach complies with the rule.)

5. A switch processing element port that transmits a priority N packet that is forced to retry by the connected 
device shall select a packet of priority greater than N, if one is available, for transmission. (This guarantees 
that packets of a given priority will not block higher priority packets.)

6. An end point processing element port shall accept an error-free packet of priority N if the port has enough 
space for the packet in the input buffer space of the port allocated for packets of priority N. (Lack of input 
buffer space is the only reason an end point may retry a packet.)

7. The decision of an end point processing element to accept or retry an error-free packet of priority N shall not 
dependent on the ability of the end point to issue request packets of priority less than or equal to N from any 
of its ports. (This rule works in conjunction with rule 6. It prohibits a device’s inability to issue packets of 
priority less than or equal to N, due to congestion in the connected device, from resulting in a lack of buffers 
to receive inbound packets of priority greater than or equal to N which in turn would result in packets of 
priority greater than or equal to N being forced to retry. The implications and some ways of complying with 
this rule are presented in the following paragraphs.)

One implication of Rule 7 is that a port may not fill all of its buffers that can be used to hold packets awaiting transmis-
sion with packets carrying request transactions. If this situation was allowed to occur and the output was blocked due to
congestion in the connected device, read transactions could not be processed (no place to put the response packet), input
buffer space would become filled and all subsequent inbound request packets would be forced to retry violating Rule 7.

Another implication is that a port must have a way of preventing output blockage at priority less than or equal to N, due
to congestion in the connected device, from resulting in a lack of input buffer space for inbound packets of priority
greater than or equal to N. There are multiple ways of doing this.

One way is to provide a port with input buffer space for at least four maximum length packets and reserve input buffer
space for higher priority packets in a manner similar to that required by Rule 4 for switches. In this case, output port
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blockage at priority less than or equal to N will not result is blocking inbound packets of priority greater than or equal to
N as any responses packets they generate will be of priority greater than N which is not congestion blocked. The port
must however have the ability to select packets of priority greater than N for transmission from the packets awaiting
transmission. This approach does not require the use of response packet priority promotion.

Alternatively, a port that does not have enough input buffer space for at least four maximum length packets or that does
not reserve space for higher priority packets can use the promotion mechanism to increase the priority of response pack-
ets until they are accepted by the connected device. This allows output buffer space containing response packets to be
freed even though all request packets awaiting transmission are congestion blocked.

As an example, suppose an end point processing element has a blocked input port because all available resources are
being used for a response packet that the processing element is trying to send. If the response packet is retried by the
downstream processing element, raising the priority of the response packet until it is accepted allows the processing ele-
ment’s input port to unblock so the system can make forward progress.

5.10 Error Detection and Recovery
Error detection and recovery is becoming a more important issue for many systems. The LP-Serial specification provides
extensive error detection and recovery by combining retry protocols with cyclic redundancy codes, the selection of delim-
iter control characters and response timers.

One feature of the error protection strategy is that with the sole exception of maintenance packets, the CRC value carried
in a packet remains unchanged as the packet moves through the fabric. The CRC carried in a maintenance packet must be
regenerated at each switch as the hop count changes.

5.10.3 Lost Packet Detection 
Some types of errors, such as a lost request or response packet or a lost acknowledgment, result in a system with hung
resources. To detect this type of error there shall be time-out counters that expire when sufficient time has elapsed
without receiving the expected response from the system. Because the expiration of one of these timers should indicate
to the system that there is a problem, this time interval should be set long enough so that a false time-out is not sig-
naled. The response to this error condition is implementation dependent. 

The RapidIO specifications require time-out counters for the physical layer, the port link time-out counters, and
counters for the logical layer, the port response time-out counters. The interpretation of the counter values is imple-
mentation dependent, based on a number of factors including link clock rate, the internal clock rate of the device, and
the desired system behavior.

The physical layer time-out occurs between the transmission of a packet and the receipt of an acknowledgment control
symbol. This time-out interval is likely to be comparatively short because the packet and acknowledgment pair must
only traverse a single link. For the purpose of error recovery, a port link time-out should be treated as an unexpected
acknowledgment control symbol. 

Certain GSM operations may require two response transactions, and both must be received for the operation to be con-
sidered complete. In the case of a device implementation with multiple links, one response packet may be returned on
the same link where the operation was initiated and the other response packet may be returned on a different link. If
this behavior is supported by the issuing processing element, the port response time-out implementation must look for
both responses, regardless on which links they are returned.

5.10.2 Link Behavior Under Error
The LP-Serial link uses an error detection and retransmission protocol to protect against and recover from transmission
errors. Transmission error detection is done at the input port, and all transmission error recovery is also initiated at the
input port.

The protocol requires that each packet transmitted be acknowledged by the receiving port and that a copy of each
transmitted packet be retained by the sender until the sender receives a packet-accepted control symbol acknowledg-
ment for the packet or the sending port determines that the packet has encountered an unrecoverable error. If the
receiving ports detects a transmission error in a packet, the port sends a packet-not-accepted control symbol acknowl-
edgment back to the sender indicating that the packet was corrupted as received. After a link-request/input-status and
link-response control symbol exchange, the sender begins retransmission with either the packet that was corrupted dur-
ing transmission or a higher priority packet if one is awaiting transmission.
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All packets corrupted in transmission are retransmitted. The number of times a packet may be retransmitted before the
sending port determines that the packet has encountered an unrecoverable condition is implementation dependent.

5.10.2.1 Recoverable Errors
The following four basic types of errors are detected by an LP-Serial port: 

• An idle sequence error
• A control symbol error
• A packet error
• A time-out waiting for an acknowledgment control symbol

5.10.2.2 Idle Sequence Errors
The idle sequence is comprised of A, K, and R (8B/10B special) characters. If an input port detects an invalid char-
acter or any valid character other then A, K, or R in an idle sequence, it shall enter the Input Error-stopped state and
follow the Input Error-stopped recovery process specified in Section , “5.10.2.6 Input Error-Stopped Recovery
Process.

To limit input port complexity, the port is no required to determine the specific error that resulted in an idle
sequence error. Following are several examples of idle sequence errors.

• A single bit transmission error can change an /A/, /K/, or /R/ code-group into a /Dx.y/ (data) code-group which is 
illegal in an idle sequence.

• A single bit transmission error can change an /A/, /K/, or /R/ code-group into an invalid code-group.
• A single bit transmission error can change an /SP/ or /PD/ (control symbol delimiters) into an invalid code-group.

5.10.2.3 Control Symbol Errors
There are three types of detectable control symbol errors

• An uncorrupted control symbol with a reserved encoding of an stype field
• An uncorrupted control symbol that violates the link protocol
• A corrupted control symbol

5.10.2.3.1 Reserved Stype Field Encodings
A control symbol with no detected corruption but with a reserved encoding of stype0 or stype1 shall be ignored
for forward compatibility.

5.10.2.3.2 Link Protocol Violations
The reception of a control symbol with no detected corruption but that violates the link protocol shall cause the
receiving port to immediately enter the Output Error-stopped state and follow the Output Error-stopped recovery
process specified in Section , “An example state machine with the behavior described in this section is included in
Section A.2, “Error Recovery"”.Output Error-Stopped Recovery Process.

Link protocol violations include the following:

• Unexpected packet-accepted, packet-retry, or packet-not-accepted control symbol
• Packet acknowledgment control symbol with an unexpected packet_ackID value
• Link time-out while waiting for an acknowledgment control symbol
The following is an example of a link protocol violation and recovery. A sender transmits packets labeled ackID
2, 3, 4, and 5. It receives acknowledgments for packets 2, 4, and 5, indicating a probable error associated with
ackID 3. The sender then stops transmitting new packets and sends a link-request/input-status (restart-from-error)
control symbol to the receiver. The receiver then returns a link- response control symbol indicating which packets
it has received properly. These are the possible responses and the sender’s resulting behavior:

• expecting ackID = 3 - sender must retransmit packets 3, 4, and 5
• expecting ackID = 4 - sender must retransmit packets 4 and 5
• expecting ackID = 5 - sender must retransmit packet 5
• expecting ackID = 6 - receiver got all packets, resume operation
• expecting ackID = anything else - fatal (non-recoverable) errorCorrupted Control symbols
The reception of a control symbol with detected corruption shall cause the receiving port to immediately enter the
Input Error-stopped state and follow the Input Error-stopped recovery process specified in Section , “5.10.2.6
Input Error-Stopped Recovery Process. For this type of error, the packet-not-accepted control symbol sent by the
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output side of the port as part of the recovery process shall have an unexpected packet_ackID value.

Input ports detect the following types of control symbol corruption.

• A control symbol containing invalid characters or valid but non-data characters
• A control symbol with an incorrect CRC valuePacket Errors

The reception of a packet with detected corruption shall cause the receiving port to immedi-
ately enter the Input Error-stopped state and follow the Input Error-stopped recovery process 
specified in Section , “5.10.2.6 Input Error-Stopped Recovery Process.

Input ports detect the following types of packet corruption
• Packet with an unexpected ackID value
• Packet with a incorrect CRC value
• Packet containing invalid characters or valid non-data characters
• Packet that overruns some defined boundary such as the maximum data payload. 

5.10.2.5 Link Time-Out
A link time-out while waiting for an acknowledgment control symbol is handled as link protocol violation as
described in Section , “5.10.2.3.2 Link Protocol Violations

5.10.2.6 Input Error-Stopped Recovery Process
When the input side of a port detects a transmission error, it immediately enters the Input Error-stopped state. To
recover from this state, the input side of the port takes the following actions.

• Record the error(s) that caused the port to enter the Input Error-stopped state.
• If the detected error(s) occurred in a control symbol or packet, discard the control symbol or packet.
• Ignore all subsequently received packets while the port is in the Input Error-stopped state.
• Cause the output side of the port to issue a packet-not-accepted control symbol. If the error occurred in a packet, 

the control symbol packet_ackID field contains the ackID value from the errored packet. Otherwise, the control 
symbol packet_ackID field contains an unexpected ackID value. (The packet-not-accepted control symbol causes 
the output side of the receiving port to enter the Output Error-stopped state and send a link-request/input-status 
control symbol.)

• When an link-request/input-status control symbol is received, cause the output side of the port to issue a link-
response control symbol, exit the Input Error-stopped state and resume packet reception.

An example state machine with the behavior described in this section is included in Section A.2, “Error Recov-
ery"”.Output Error-Stopped Recovery Process

To recover from the Output Error-stopped state, the output side of a port takes the following actions.

• Immediately stops transmitting new packets.
• Resets the link packet acknowledgment timers for all transmitted but unacknowledged packets. (This prevents the 

generation of spurious time-out errors.)
• Transmits an input-status link-request/input-status (restart-from-error) control symbol. (The input status link-

request/input-status control symbol causes the receiving port to transmit a link-response control symbol that 
contains the input_status and ackID_status of the input side of the port. The ackID_status is the ackID value that 
is expected in the next packet that the port receives.)

• When the link-response is received, the port backs up the first unaccepted packet, exits the Output Error-stopped 
state and resumes transmission with either the first unaccepted packet or a higher priority packet.

An example state machine with the behavior described in this section is included in Section A.2, “Error Recov-
ery"”.

5.11 Power Management
Power management is currently beyond the scope of this specification and is implementation dependent. A device that
supports power management features can make these features accessible to the rest of the system using the device’s local
configuration registers.
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6 Chapter 6 - LP-Serial Registers 

This chapter specifies the 1x/4x LP-Serial Command and Status Register (CSR) set. All registers in the set are 32-bits long
and aligned to a 32-bit boundary. These registers allow an external processing element to determine the capabilities, config-
uration, and status of a processing element using this 1x/4x LP-Serial physical layer. The registers can be accessed using the
maintenance operations defined in  Part I: Input/Output Logical Specification. 

These registers are located in the 1x/4x LP-Serial physical features block which is an Extended Features block in the
Extended Features Space. The block may exist in any position in the Extended Features data structure and may exist in any
portion of the Extended Features address space implemented by a device. (The Extended Features Space is located at byte
offsets 0x0100 through 0xFFFC of the device Configuration Space.)

Register offsets into the block that are not defined are reserved for this specification unless otherwise stated. Read and write
accesses to reserved register offsets shall terminate normally and shall not cause an error condition in the target device.

This chapter specifies only the registers and register bits that comprise the 1x/4x LP-Serial Command and Status Register
set. Refer to the other applicable RapidIO logical and transport specifications for the specification of the complete set of reg-
isters and register bits required for a given device.

Table  describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO Extended
Features register space.

This chapter is divided up into three sections, each addressing a different type of RapidIO device. 

6.1 Generic End Point Devices
This section describes the 1x/4x LP-Serial registers for a general end point device. This Extended Features register block
is assigned Extended Features block ID=0x0004. 

6.1.1 Register Map
Table 6-2 shows the register map for generic RapidIO 1x/4x LP-Serial end point devices. The Block Offset is the offset
relative to the 16-bit Extended Features Pointer (EF_PTR) that points to the beginning of the block. 

Table 6-1. Extended Feature Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned 
value1

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 

read - return logic 0

write - preserve current 
value2

2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 
for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

write - ignored

Implementation
-defined bit

read - ignore returned 
value unless 
implementation-defined 
function understood

read - return 
implementation-defined 
value

write - preserve current 
value if implementation-
defined function not 
understood

write - implementation-
defined

Reserved 
register

read - ignore returned 
value

read - return logic 0s

write - write - ignored
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The address of a byte in the block is calculated by adding the block byte offset to EP_PTR that points to the beginning
of the block. This is denoted as [EF_PTR+xx] where xx is the block byte offset in hexadecimal.

This register map is currently only defined for devices with up to 16 RapidIO ports, but can be extended or shortened
if more or less port definitions are required for a device. For example, a device with four RapidIO ports is only
required to use register map space corresponding to offsets [EF_PTR + 0x00] through [EF_PTR + 0xB8]. Register map
offset [EF_PTR + 0xC0] can be used for another Extended Features block.

6.1.2 Command and Status Registers (CSRs)
Refer to Table 6-1  for the required behavior for accesses to reserved registers and register bits. 

6.1.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-

Table 6-2. LP-Serial Register Map  - Generic End Point Device

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 1x/4x LP-Serial Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Port Response Time-Out Control CSR

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Reserved

0x48 Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

0x60 Reserved

0x68 Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs

0x220 Reserved

0x228 Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR
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fies this as the generic end point port maintenance block header. 

6.1.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

6.1.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge, and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents
between 3 and 6 seconds. 

6.1.2.4 Port Response Time-out Control CSR (Block Offset 0x20 Word 1)
The port response time-out control register contains the time-out timer count for all ports on a device. This time-out
is for sending a request packet to receiving the corresponding response packet.The reset value is the maximum
time-out interval, and represents between 3 and 6 seconds. 

Table 6-3. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0004 Hard wired Extended Features ID

Table 6-4. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 6-5. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out value All 1s time-out interval value

24-31 — Reserved

Table 6-6. Bit Settings for Port Response Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out value All 1s time-out interval value

24-31 — Reserved
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6.1.2.5 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

6.1.2.6 Port n Error and Status CSRs (Offsets 0x58, 78, ..., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information. 

 

Table 6-7. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0 Host see 
footnote1

1. The Host reset value is implementation dependent

A Host device is a device that is responsible for system 
exploration, initialization, and maintenance. Agent or slave devices 
are typically initialized by Host devices. 
0b0 - agent or slave device
0b1 - host device

1 Master Enable see 
footnote2

2. The Master Enable reset value is implementation dependent

The Master Enable bit controls whether or not a device is allowed 
to issue requests into the system. If the Master Enable is not set, the 
device may only respond to requests. 
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests

2 Discovered see 
footnote3

3. The Discovered reset value is implementation dependent

This device has been located by the processing element responsible 
for system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing 
element

3-31 — Reserved

Table 6-8. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition.This bit is set when 
bit 13 is set. Once set, remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set, 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output is in the “output error-stopped” state (read-only).

16-20 — Reserved
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6.1.2.7 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set, 
remains set until written with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved 

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 — Reserved

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set, remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 The input and output ports are initialized and the port is 
exchanging error-free control symbols with the attached device 
(read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized. This bit and bit 30 are 
mutually exclusive (read-only).

Table 6-9. Bit Settings for Port n Control CSRs

Bit Name Reset 
Value Description

0-1 Port Width see 
footnote1

Hardware width of the port (read-only):
0b00 - Single-lane port
0b01 - Four-lane port
0b10 - 0b11 - Reserved

2-4 Initialized Port Width see 
footnote2

Width of the ports after initialized (read only):
0b000 - Single-lane port, lane 0
0b001 - Single-lane port, lane 2
0b010 - Four-lane port
0b011 - 0b111 - Reserved

5-7 Port Width Override 0b000 Soft port configuration to override the hardware size:
0b000 - No override
0b001 - Reserved
0b010 - Force single lane, lane 0
0b011 - Force single lane, lane 2
0b100 - 0b111 - Reserved

Table 6-8. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description
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6.2 Generic End Point Devices, software assisted error recovery option
This section describes the 1x/4x LP-Serial registers for a general end point device that supports software assisted error
recovery. This is most useful for devices that for whatever reason do not want to implement error recovery in hardware
and to allow software to generate link-request control symbols and see the results of the responses. This Extended Fea-
tures register block is assigned Extended Features block ID=0x0005. 

6.2.1 Register Map
Table 6-10 shows the register map for generic RapidIO 1x/4x LP-Serial end point devices with software assisted error
recovery. The Block Offset is the offset based on the Extended Features pointer (EF_PTR) to this block. This register
map is currently only defined for devices with up to 16 RapidIO ports, but can be extended or shortened if more or less
port definitions are required for a device. For example, a device with four RapidIO ports is only required to use register

8 Port Disable 0b0 Port disable:
0b0 - port receivers/drivers are enabled
0b1 - port receivers/drivers are disabled and are unable to receive/
transmit to any packets or control symbols

9 Output Port Enable see 
footnote3

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

10 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

11 Error Checking 
Disable

0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and 
an error condition occurs is undefined

12 Multicast-event 
Participant

see 
footnote5

Send incoming Multicast-event control symbols to this port 
(multiple port devices only) 

13-30 — Reserved

31 Port Type 0b1 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port

1. The Port Width reset value is implementation dependent
2. The Initialized Port Width reset value is implementation dependent
3. The Output Port Enable reset value is implementation dependent
4. The Input Port Enable reset value is implementation dependent
5. The Multicast-event Participant reset value is implementation dependent

Table 6-9. Bit Settings for Port n Control CSRs

Bit Name Reset 
Value Description
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map space corresponding to offsets [EF_PTR + 0x00] through [EF_PTR + 0xB8]. Register map offset [EF_PTR +
0xC0] can be used for another Extended Features block.

6.2.2 Command and Status Registers (CSRs)
Refer to Table 6-1 for the required behavior for accesses to reserved registers and register bits. 

6.2.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-
fies this as the generic end point port maintenance block header. 

Table 6-10. LP-Serial Register Map - Generic End Point Devices (SW assisted)

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 1x/4x LP-Serial Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Port Response Time-Out Control CSR

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Port 0 Link Maintenance Request CSR Port 0 Link Maintenance Response CSR

0x48 Port 0 Local ackID Status CSR Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

0x60 Port 1 Link Maintenance Request CSR Port 1Link Maintenance Response CSR

0x68 Port 1 Local ackID Status CSR Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs

0x220 Port 15 Link Maintenance Request CSR Port 15 Link Maintenance Response CSR

0x228 Port 15 Local ackID Status CSR Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR

Table 6-11. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0005 Hard wired Extended Features ID
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6.2.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

6.2.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents
between 3 and 6 seconds. 

6.2.2.4 Port Response Time-out Control CSR (Block Offset 0x20 Word 1)
The port response time-out control register contains the time-out timer count for all ports on a device. This time-out
is for sending a request packet to receiving the corresponding response packet.The reset value is the maximum
time-out interval, and represents between 3 and 6 seconds. 

6.2.2.5 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

Table 6-12. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 6-13. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out value All 1s time-out interval value

24-31 — Reserved

Table 6-14. Bit Settings for Port Response Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out value All 1s time-out interval value

24-31 — Reserved

Table 6-15. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0 Host see 
footnote1

A Host device is a device that is responsible for system 
exploration, initialization, and maintenance. Agent or slave devices 
are initialized by Host devices. 
0b0 - agent or slave device
0b1 - host device

1 Master Enable see 
footnote2

The Master Enable bit controls whether or not a device is allowed 
to issue requests into the system. If the Master Enable is not set, the 
device may only respond to requests. 
0b0 - processing element cannot issue requests
0b1 - processing element can issue requests
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6.2.2.6 Port n Link Maint. Request CSRs (Offsets 0x40, 60, ..., 220 Word 0)
The port link maintenance request registers are accessible both by a local processor and an external device. A write
to one of these registers generates a link-request control symbol on the corresponding RapidIO port interface. 

6.2.2.7 Port n Link Maintenance Response CSRs (0x40, 60, ..., 220 Word 1)
The port link maintenance response registers are accessible both by a local processor and an external device. A read
to this register returns the status received in a link-response control symbol. The ackID_status and port_status fields
are defined in Table 3-3 and Table 3-5. This register is read-only. 

6.2.2.8 Port n Local ackID CSRs (Block Offsets 0x48, 68, ..., 228 Word 0)
The port link local ackID status registers are accessible both by a local processor and an external device. A read to

2 Discovered see 
footnote3

This device has been located by the processing element responsible 
for system configuration
0b0 - The device has not been previously discovered
0b1 - The device has been discovered by another processing 
element

3-31 — Reserved

1. The Host reset value is implementation dependent
2. The Master Enable reset value is implementation dependent
3. The Discovered reset value is implementation dependent

Table 6-6. Bit Settings for Port n Link Maintenance Request CSRs

Bit Name Reset 
Value Description

0–28 — Reserved

29-31 Command 0b000 Command to be sent in the link-request control symbol. If read, this 
field returns the last written value.

Table 6-17. Bit Settings for Port n Link Maintenance Response CSRs

Bit Name Reset Value Description

0 response_valid 0b0 If the link-request causes a link-response, this bit indicates that the 
link-response has been received and the status fields are valid.
If the link-request does not cause a link-response, this bit indicates 
that the link-request has been transmitted.
This bit automatically clears on read.

1-21 — Reserved

22-26 ackID_status 0b00000 ackID status field from the link-response control symbol

27-31 link_status 0b00000 link status field from the link-response control symbol

Table 6-15. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description
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this register returns the local ackID status for both the out and input ports of the device. 

6.2.2.9 Port n Error and Status CSRs (Block Offset 0x58, 78, ..., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information. 

 

Bit Settings for Port n Local ackID Status CSRs

Bit Name Reset 
Value Description

0-2 — Reserved

3-7 Inbound_ackID 0b0000
0

Input port next expected ackID value

8-15 — Reserved

19-23 Outstanding_ackID 0x0000
0

Output port unacknowledged ackID status. Next expected 
acknowledge control symbol ackID field that indicates the ackID 
value expected in the next received acknowledge control symbol. 

24-26 — Reserved

27-31 Outbound_ackID 0b0000
0

Output port next transmitted ackID value. Software writing this value 
can force retransmission of outstanding unacknowledged packets in 
order to manually implement error recovery. 

Table 6-19. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition.This bit is set when 
bit 13 is set. Once set, remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set, 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output is in the “output error-stopped” state (read-only).

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set, 
remains set until written with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved 
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6.2.2.10 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

Table 6-20. Bit Settings for Port n Control CSRs

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 — Reserved

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set, remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 The input and output ports are initialized and the port is 
exchanging error-free control symbols with the attached device 
(read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized. This bit and bit 30 are 
mutually exclusive (read-only).

Bit Name Reset 
Value Description

0-1 Port Width see 
footnote1

Hardware width of the port (read-only):
0b00 - Single-lane port
0b01 - Four-lane port
0b10 - 0b11 - Reserved

2-4 Initialized Port Width see 
footnote2

Width of the ports after initialized (read only):
0b000 - Single-lane port, lane 0
0b001 - Single-lane port, lane 2
0b010 - Four-lane port
0b011 - 0b111 - Reserved

5-7 Port Width Override 0b000 Soft port configuration to override the hardware size:
0b000 - No override
0b001 - Reserved
0b010 - Force single lane, lane 0
0b011 - Force single lane, lane 2
0b100 - 0b111 - Reserved

8 Port Disable 0b0 Port disable:
0b0 - port receivers/drivers are enabled
0b1 - port receivers/drivers are disabled and are unable to receive/
transmit to any packets or control symbols

Table 6-19. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description
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6.3 Generic End Point Free Devices
This section describes the 1x/4x LP-Serial registers for a general devices that do not contain end point functionality (i.e.
switches). This Extended Features register block uses extended features block ID=0x0006. 

6.3.1 Register Map
Table 6-21 shows the register map for generic RapidIO 1x/4x LP-Serial end point-free devices. The Block Offset is the
offset based on the Extended Features pointer (EF_PTR) to this block. This register map is currently only defined for
devices with up to 16 RapidIO ports, but can be extended or shortened if more or less port definitions are required for
a device. For example, a device with four RapidIO ports is only required to use register map space corresponding to
offsets [EF_PTR + 0x00] through [EF_PTR + 0xB8]. Register map offset [EF_PTR + 0xC0] can be used for another
Extended Features block.

9 Output Port Enable see 
footnote3

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

10 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

11 Error Checking 
Disable

0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and 
an error condition occurs is undefined

12 Multicast-event 
Participant

see 
footnote5

Send incoming Multicast-event control symbols to this port 
(multiple port devices only) 

13-30 — Reserved

31 Port Type 0b1 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port

1. The Port Width reset value is implementation dependent
2. The Initialized Port Width reset value is implementation dependent
3. The Output Port Enable reset value is implementation dependent
4. The Input Port Enable reset value is implementation dependent
5. The Multicast-Event Participant reset value is implementation dependent

Bit Name Reset 
Value Description
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6.3.2 Command and Status Registers (CSRs)
Refer to Table 6-1 for the required behavior for accesses to reserved registers and register bits. 

6.3.2.1 Port Maintenance Block Header 0 (Block Offset 0x0 Word 0)
The port maintenance block header 0 register contains the EF_PTR to the next EF_BLK and the EF_ID that identi-
fies this as the generic end point port maintenance block header. 

Table 6-21. LP-Serial Register Map - Generic End Point Free

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 1x/4x LP-Serial Port Maintenance Block Header

0x8–18 Reserved

0x20 Port Link Time-Out Control CSR Reserved

0x28 Reserved

0x30 Reserved

0x38 Reserved Port General Control CSR

0x40 Reserved

0x48 Reserved

0x50 Reserved

0x58 Port 0 Error and Status CSR Port 0 Control CSR

0x60 Reserved

0x68 Reserved

0x70 Reserved

0x78 Port 1 Error and Status CSR Port 1 Control CSR

0x80–218 Assigned to Port 2-14 CSRs

0x220 Reserved

0x228 Reserved

0x230 Reserved

0x238 Port 15 Error and Status CSR Port 15 Control CSR

Table 6-22. Bit Settings for Port Maintenance Block Header 0

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0006 Hard wired Extended Features ID

G
en

er
al

Po
rt 

0
Po

rt 
1

Po
rt 

2-
14

Po
rt 

15



- 316 -

6.3.2.2 Port Maintenance Block Header 1 (Block Offset 0x0 Word 1)
The port maintenance block header 1 register is reserved. 

6.2.2.3 Port Link Time-out Control CSR (Block Offset 0x20 Word 0)
The port link time-out control register contains the time-out timer value for all ports on a device. This time-out is for
link events such as sending a packet to receiving the corresponding acknowledge and sending a link-request to
receiving the corresponding link-response. The reset value is the maximum time-out interval, and represents
between 3 and 6 seconds. 

6.3.2.4 Port General Control CSR (Block Offset 0x38 Word 1)
The port general control register contains control register bits applicable to all ports on a processing element. 

6.3.2.5 Port n Error and Status CSRs (Block Offsets 0x58, 78, .., 238 Word 0)
These registers are accessed when a local processor or an external device wishes to examine the port error and status
information. 

 

Table 6-23. Bit Settings for Port Maintenance Block Header 1

Bit Name Reset 
Value Description

0-31 — Reserved

Table 6-24. Bit Settings for Port Link Time-out Control CSR

Bit Name Reset 
Value Description

0–23 time-out value All 1s time-out interval value

24-31 — Reserved

Table 6-25. Bit Settings for Port General Control CSRs

Bit Name Reset 
Value Description

0-31 — Reserved

Table 6-26. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

0-10 — Reserved

11 Output Retry-
encountered

0b0 Output port has encountered a retry condition.This bit is set when 
bit 13 is set. Once set, remains set until written with a logic 1 to 
clear.

12 Output Retried 0b0 Output port has received a packet-retry control symbol and can not 
make forward progress. This bit is set when bit 13 is set and is 
cleared when a packet-accepted or a packet-not-accepted control 
symbol is received (read-only).

13 Output Retry-stopped 0b0 Output port has received a packet-retry control symbol and is in the 
“output retry-stopped” state (read-only).

14 Output Error-
encountered

0b0 Output port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 15 is set. Once set, 
remains set until written with a logic 1 to clear.

15 Output Error-stopped 0b0 Output is in the “output error-stopped” state (read-only).
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6.3.2.6 Port n Control CSR (Block Offsets 0x58, 78, ..., 238 Word 1)
The port n control registers contain control register bits for individual ports on a processing element. 

Table 6-27. Bit Settings for Port n Control CSRs

16-20 — Reserved

21 Input Retry-stopped 0b0 Input port is in the “input retry-stopped” state (read-only).

22 Input Error-
encountered

0b0 Input port has encountered (and possibly recovered from) a 
transmission error. This bit is set when bit 23 is set. Once set, 
remains set until written with a logic 1 to clear.

23 Input Error-stopped 0b0 Input port is in the “input error-stopped” state (read-only). 

24-26 — Reserved 

27 Port-write Pending 0b0 Port has encountered a condition which required it to initiate a 
Maintenance Port-write operation This bit is only valid if the 
device is capable of issuing a maintenance port-write transaction. 
Once set remains set until written with a logic 1 to clear.

28 — Reserved

29 Port Error 0b0 Input or output port has encountered an error from which hardware 
was unable to recover. Once set, remains set until written with a 
logic 1 to clear.

30 Port OK 0b0 The input and output ports are initialized and the port is 
exchanging error-free control symbols with the attached device 
(read-only).

31 Port Uninitialized 0b1 Input and output ports are not initialized. This bit and bit 30 are 
mutually exclusive (read-only).

Bit Name Reset 
Value Description

0-1 Port Width see 
footnote1

Hardware width of the port (read-only):
0b00 - Single-lane port
0b01 - Four-lane port
0b10 - 0b11 - Reserved

2-4 Initialized Port Width see 
footnote2

Width of the ports after initialized (read only):
0b000 - Single-lane port, lane 0
0b001 - Single-lane port, lane 2
0b010 - Four-lane port
0b011 - 0b111 - Reserved

5-7 Port Width Override 0b000 Soft port configuration to override the hardware size:
0b000 - No override
0b001 - Reserved
0b010 - Force single lane, lane 0
0b011 - Force single lane, lane 2
0b100 - 0b111 - Reserved

Table 6-26. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description
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7 Chapter 7 - Signal Descriptions

This chapter contains the signal pin descriptions for a RapidIO 1x/4x LP-Serial port. The interface is defined either as a sin-
gle- or four-lane, full duplex, point-to-point interface using differential signaling. A single-lane implementation consists of 4
wires and a four-lane implementation consists of 16 wires. The electrical details are described in Chapter 8, “AC Electrical
Specifications.” 

7.1 Signal Definitions
Table 7-1 provides a summary of the RapidIO 1x/4x LP-Serial signal pins as well as a short description of their function-

8 Port Disable 0b0 Port disable:
0b0 - port receivers/drivers are enabled
0b1 - port receivers/drivers are disabled and are unable to receive/
transmit to any packets or control symbols

9 Output Port Enable see 
footnote3

Output port transmit enable:
0b0 - port is stopped and not enabled to issue any packets except to 
route or respond to I/O logical MAINTENANCE packets, 
depending upon the functionality of the processing element. 
Control symbols are not affected and are sent normally.
0b1 - port is enabled to issue any packets

10 Input Port Enable see 
footnote4

Input port receive enable: 
0b0 - port is stopped and only enabled to route or respond I/O 
logical MAINTENANCE packets, depending upon the 
functionality of the processing element. Other packets generate 
packet-not-accepted control symbols to force an error condition to 
be signaled by the sending device. Control symbols are not affected 
and are received and handled normally.
0b1 - port is enabled to respond to any packet

11 Error Checking 
Disable

0b0 This bit disables all RapidIO transmission error checking
0b0 - Error checking and recovery is enabled
0b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is disabled and 
an error condition occurs is undefined

12 Multicast Event 
Participant

see 
footnote5

Send incoming Multicast-event control symbols to this port 
(multiple port devices only) 

13-30 — Reserved

31 Port Type 0b1 This indicates the port type, parallel or serial (read only)
0b0 - Parallel port
0b1 - Serial port

1. The Port Width reset value is implementation dependent
2. The Initialized Port Width reset value is implementation dependent
3. The Output Port Enable reset value is implementation dependent
4. The Input Port Enable reset value is implementation dependent
5. The Multicast-event Participant reset value is implementation dependent

Bit Name Reset 
Value Description
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ality. 

7.2 Serial RapidIO Interface Diagrams
Figure  shows the signal interface diagram connecting two 1x devices together with the RapidIO 1x/4x LP-Serial inter-
connect. 

Figure 7-2 shows the signal interface diagram connecting two 4x devices together with the RapidIO 1x/4x LP-Serial
interconnect. 

Table 7-1. 1x/4x LP-Serial Signal Description

Signal Name I/O Signal Meaning Timing Comments

TD[0-3] O Transmit Data - The transmit data is a 
unidirectional point to point bus designed to 
transmit the packet information. The TD 
bus of one device is connected to the RD 
bus of the receiving device. TD[0] is used in 
1x mode.

Clocking is embedded in data 
using 8B/10B encoding.

TD[0-3] O Transmit Data complement—These signals 
are the differential pairs of the TD signals.

RD[0-3] I Receive Data - The receive data is a 
unidirectional point to point bus designed to 
receive the packet information. The RD bus 
of one device is connected to the TD bus of 
the receiving device. RD[0] is used in 1x 
mode.

RD[0-3] I Receive Data complement—These signals 
are the differential pairs of the RD signals.

Figure 7-1. RapidIO 1x Device to 1x Device Interface Diagram

Figure 7-2. RapidIO 4x Device to 4x Device Interface Diagram
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Figure 7-3 shows the connections between a 4x LP-Serial device and a 1x LP-Serial device. 

8 Chapter 8 - AC Electrical Specifications

8.1 Overview
The AC specifications covers both single and multiple links. The specifications define two types of transmitters and a sin-
gle receiver. Baud rates of 1.25, 2.5, and 3.125 Gbps are specified. This chapter specifies differential signaling in quanti-
ties that represent the voltage difference between the true and complement signals. This known as the peak-peak voltage.
The peak-peak voltage is twice that of the peak voltage of either the true or the complement signal. Specific definitions
are given in Section : "8.2 Signal Definition".

Two transmitter specifications allow for solutions ranging from simple board-to-board interconnect to driving two con-
nectors across a backplane. A single receiver specification is given that will accept signals from both the short run and
long run transmitter specifications.

The short run transmitter should be used mainly for chip-to-chip connections on either the same printed circuit board or
across a single connector. This covers the case where connections are made to a mezzanine (daughter) card. The mini-
mum swings of the short run specification reduce the overall power used by the transceivers. A user can further reduce
the power by lowering the termination voltages.

The long run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes.
This allow a user to drive signals across two connectors and a backplane. The specifications allow a distance of at least 50
cm at all frequencies.

All unit intervals are specified at +/- 100 ppm. The worst case frequency difference between any transmit and receive
clock shall be 200 ppm.

To ensure interoperability between drivers and receivers of different vendors and technologies, AC coupling at the
receiver input must be used.

8.2 Signal Definition
LP-serial protocol using differential signaling between ports. This section specifies signals using peak-to-peak differen-
tial voltages. Figure  shows how the signals are defined. The figures shows waveforms for both a transmitter (TD and
TD) or a receiver (RD and RD). Each signals swings between A volts and B volts. Using these waveforms, the definitions
are as follows:

(1) The transmitter, or receiver, has a peak-to-peak range of A - B

(2) The differential signal of the transmitter, or receiver, ranges from +|A - B| to -|A - B|

(3) The peak differential signal of the transmitter, or receiver, is A - B

(4) The differential peak-to-peak signal of the transmitter, or receiver, is 2 * (A - B)

The term PEAK-TO-PEAK always means the difference between the most positive and the most negative readings of a
particular signal. In this case we have (A - B) - (-(A - B)) = 2 * (A - B).

Figure 7-3. RapidIO 4x Device to 1x Device Interface Diagram
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Figure 8-1. Differential Peak-Peak Voltage of Transmitter or Receiver

To illustrate this concept using real values, consider the case where a CML (Current Mode Logic) transmitter has a termi-
nation voltage of 2.5 V and has a swing that goes between 2.5V and 2.0V. Using these values, the peak-to-peak range is
500 mV. The differential signal ranges between 500 mV and -500 mV. The peak differential signal is 500 mV. The differ-
ential peak-to-peak signal is 1000 mV.Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects
such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade
the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equaliza-
tion can be used. The most common equalization techniques that can be used are:

• A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
• The use of active circuits in the receiver. This is often referred to as adaptive equalization.

8.4 Transmitter Specifications
Driver AC timing specifications are displayed in the tables below. 

1. AC coupling is required for interoperability between vendors.

Table 8-1. Short Run Transmitter AC Timing Specifications - 1.25 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 500 2000 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.12 UI

Total Jitter JT 0.24 UI

Output skew SO 25 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 800 800 ps  +/- 100 ppm

Differential Peak-Peak = 2 * (A-B)

A Volts TD or RD

TD or RDB Volts
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1. AC coupling is required to guarantee interoperability between vendors.

1. AC coupling is required for interoperability between vendors.

Table 8-2. Short Run Transmitter AC Timing Specifications - 2.5 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 500 1000 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.17 UI

Total Jitter JT 0.35 UI

Output skew SO 20 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple Output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 400 400 ps  +/- 100 ppm

Table 8-3. Short Run Transmitter AC Timing Specifications - 3.125 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 500 1000 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.17 UI

Total Jitter JT 0.35 UI

Output Skew SO 15 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 320 320 ps  +/- 100 ppm
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1. AC coupling is required to guarantee interoperability between vendors.

1. AC coupling is required for interoperability between vendors.

Table 8-4. Long Run Transmitter AC Timing Specifications - 1.25 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 800 2000 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.12 UI

Total Jitter JT 0.24 UI

Output skew SO 25 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 800 800 ps  +/- 100 ppm

Table 8-5. Long Run Transmitter AC Timing Specifications - 2.5 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 1000 1600 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.17 UI

Total Jitter JT 0.35 UI

Output skew SO 20 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 400 400 ps  +/- 100 ppm
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1. AC coupling is required for interoperability between vendors.

The output eye pattern of a LP-Serial transmitter shall fall entirely within the unshaded portion of the Transmitter Output
Compliance Mask shown in igure 8-2 with the parameters specified in Table  when measured at the output pins of the
device. 

Figure 8-2. Transmitter Output Compliance Mask

Table 8-6. Long Run Transmitter AC Timing Specifications - 3.125 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Output Voltage VDIFFPP 1000 1600 mV, 
pp

Rise/Fall time (20% to 80%) ΤRF 40 ps At driver output

Deterministic Jitter JD 0.17 UI

Total Jitter JT 0.35 UI

Output skew SO 15 ps Skew at a transmitter out-
put between the two sig-
nals comprising a 
differential pair

Multiple output skew SMO 1000 ps Skew at the transmitter 
output between lanes of a 
multilane link

Unit Interval UI 320 320 ps  +/- 100 ppm

0

VDIFFmin

VDIFFmax

-VDIFFmin

-VDIFFmax

0 B 1-B 1Time in UI

Transmitter
differential
output at
device pins

A 1-A
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NOTES:

The values for B for 1.25 GBaud were taken from the values at TP2 for 10000BASE-CX in IEEE 802.3z. The parameter for
B for 1.25 GBuad was previously unspecified by the LP-Serial Specification.

The values for B for 2.5 and 3.125 GBuad were taken from the values for output of a XAUI transmitter in IEEE 802.3ae.
The parameter B for 2.50 and 3.125 GBuad was previously unspecified by the LP_Serial Specification. 

8.5 Receiver Specifications
Receiver AC timing specifications are displayed in the tables below.

Table 8-7. Transmitter Differential Output Eye Diagram Parameters

Transmitter Type VDIFFmin 
(mV)

VDIFFmax 
(mV) A (UI) B (UI)

1.25 GBaud short range 250 1000 0.12 0.34

1.25 GBaud long range 400 1000 0.12 0.34

2.5 GBaud short range 250 500 0.175 0.39

2.5 GBaud long range 500 800 0.175 0.39

3.125 GBaud short range 250 500 0.175 0.39

3.125 GBaud long range 500 800 0.175 0.39

Table 8-8. Receiver AC Timing Specifications - 1.25 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VΙΝ 175 2000 mV Peak-peak differential 
input voltage

Deterministic Jitter JD 0.45 UI Measured at receiver

Total Jitter JT 0.71 UI Measured at receiver

Input Skew SI 75 ps Skew at a receiver input 
between the two signals 
comprising a differential 
pair

Multiple Input Skew SMI 24 ns Skew at the receiver input 
between lanes of a multi-
lane link

Bit Error Rate BER 10-12

Unit Interval UI 800 800 ps +/- 100 ppm
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1. AC coupling is required to guarantee interoperability between vendors.

1. AC coupling is required to guarantee interoperability between vendors.

1. AC coupling is required to guarantee interoperability between vendors.

8.6 Receiver Eye Diagrams
The following receiver eye openings are required to ensure proper operation. 

Table 8-9. Receiver AC Timing Specifications - 2.5 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VΙΝ 175 1600 mV Peak-peak differential 
input voltage

Deterministic Jitter JD 0.41 UI Measured at receiver

Total Jitter JT 0.65 UI Measured at receiver

Input Skew SI 75 ps Skew at a receiver input 
between the two signals 
comprising a differential 
pair

Multiple Input Skew SMI 24 ns Skew at the receiver input 
between lanes of a multi-
lane link

Bit Error Rate BER 10-12

Unit Interval UI 400 400 ps +/- 100 ppm

Table 8-10. Receiver AC Timing Specifications - 3.125 Gbps Baud Rate

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VΙΝ 175 1600 mV Peak-peak differential 
input voltage

Deterministic Jitter JD 0.36 UI Measured at receiver

Total Jitter JT 0.6 UI Measured at receiver

Input Skew SI 75 ps Skew at a receiver input 
between the two signals 
comprising a differential 
pair

Multiple Input Skew SMI 22 ns Skew at the receiver input 
between lanes of a multi-
lane link

Bit Error Rate BER 10-12

Unit Interval UI 320 320 ps +/- 100 ppm
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Figure 8-3. 1.25 Gbps Baud Rate Receiver Eye Diagram
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Figure 8.4. 2.5 Gbps Baud Rate Receiver Eye Diagram
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Figure 8-5. 3.125 Gbps Baud Rate Receiver Eye Diagram
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 A - Interface Management 

(Informative)

This annex contains state machine descriptions that illustrate a number of behaviors that are described in the RapidIO Physical Layer
1x/4x LP-Serial Specification. They are included as examples and are believed to be correct, however, actual implementations should
not use the examples directly. 

A.1 Packet Retry Mechanism
This section contains the example packet retry mechanism state machine referred to in Section 5.5, “Packet Transmission
Protocol”. 

Packet retry recovery actually requires two inter-dependent state machines in order to operate, one associated with the
input port and the other with the output port on the two connected devices. The two state machines work together to Aat-
tempt recovery from a retry condition. 

A.1.1 Input port retry recovery state machine
If a packet cannot be accepted by a receiver for reasons other than error conditions, such as a full input buffer, the
receiver follows the state sequence shown in Figure . 

Table A-1 describes the state transition arcs for Figure . The states referenced in the comments in quotes are the
RapidIO 1x/4x LP-Serial defined status states, not states in this state machine. 

Figure A-1. Input Port Retry Recovery State Machine
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A.1.2 Output port retry recovery state machine
On receipt of an error-free packet-retry control symbol, the attached output port follows the behavior shown in Figure .
The states referenced in the comments in quotes are the RapidIO 8/16 LP-LVDS defined status states, not states in this

Table A-1. Input Port Retry Recovery State Machine Transition Table (continued)

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the input 
port is enabled to receive packets.

This is the initial state after reset. The
input port can’t be enabled before the
initialization sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit.

2 recovery_disabled wait_for_retry Input port is enabled. 

3 wait_for_retry wait_for_retry Remain in this state until a packet 
retry situation has been detected. 

4 wait_for_retry stop_input A packet retry situation has been 
detected. 

Usually this is due to an internal
resource problem such as not having
packet buffers available for low
priority packets. 

5 wait_for_retry recovery_disabled Input port is disabled. 

6 stop_input stop_input Remain in this state until described 
input port stop activity is completed.

Send a packet-retry control symbol
with the expected ackID, discard the
packet, and don’t change the expected
ackID. This will force the attached
device to initiate recovery starting at
the expected ackID. Clear the “Port
Normal” state and set the “Input
Retry-stopped” state.

7 stop_input retry_stopped Input port stop activity is complete.

8 retry_stopped retry_stopped Remain in this state until a restart-
from-retry or link request (restart-
from-error) control symbol is 
received or an input port error is 
encountered. 

The “Input Retry-stopped” state
causes the input port to silently
discard all incoming packets and not
change the expected ackID value. 

9 retry_stopped wait_for_retry Received a restart-from-retry or a 
link request (restart-from-error) 
control symbol or an input port error 
is encountered. 

Clear the “Input Retry-stopped” state
and set the “Port Normal” state. An
input port error shall cause a clean
transition between the retry recovery
state machine and the error recovery
state machine.
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state machine. 

Table  A-2 describes the state transition arcs for Figure A-2. 

Figure A-2. Output Port Retry Recovery State Machine

Table A-2. Output Port Retry Recovery State Machine Transition Table (continued)

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until the output 
port is enabled to receive packets.

This is the initial state after reset. The
output port can’t be enabled before
the initialization sequence has been
completed, and may be controlled
through other mechanisms as well,
such as a software enable bit. 

2 recovery_disabled wait_for_retry Output port is enabled. 

3 wait_for_retry wait_for_retry Remain in this state until a packet-
retry control symbol is received. 

The packet-retry control symbol shall
be error free. 

4 wait_for_retry stop_output A packet-retry control symbol has 
been received.

 Start the output port stop procedure. 

5 wait_for_retry recovery_disabled Output port is disabled.

6 stop_output stop_output Remain in this state until the output 
port stop procedure is completed. 

Clear the “Port Normal” state, set the
“Output Retry-stopped” state, and
stop transmitting new packets.

7 stop_output recover Output port stop procedure is 
complete. 

stop_output
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reset
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A.2 Error Recovery 

This section contains the error recovery state machine referred to in Section 5.10.2, “Link Behavior Under Error.” 

Error recovery actually requires two inter-dependent state machines in order to operate, one associated with the input port
and the other with the output port on the two connected devices. The two state machines work together to attempt recov-
ery. 

A.2.1 Input port error recovery state machine
There are a variety of recoverable error types described in detail in Section 5.10.2, “Link Behavior Under Error”. The
first group of errors are associated with the input port, and consists mostly of corrupt packet and control symbols. An
example of a corrupt packet is a packet with an incorrect CRC. An example of a corrupt control symbol is a control
symbol with error on the 5-bit CRC control symbol. The recovery state machine for the input port of a RapidIO link is
shown in Figure A-3. 

8 recover recover Remain in this state until the internal 
recovery procedure is completed. 

The packet sent with the ackID value
returned in the packet-retry control
symbol and all subsequent packets
shall be retransmitted. Output port
state machines and the outstanding
ackID scoreboard shall be updated
with this information, then clear the
“Output Retry-stopped” state and set
the “Port Normal” state to restart the
output port.
Receipt of a packet-not-accepted
control symbol or other output port
error during this procedure shall
cause a clean transition between the
retry recovery state machine and the
error recovery state machine. 
Send restart-from-retry control
symbol.

9 recover wait_for_retry Internal recovery procedure is 
complete. 

Retransmission has started, so return
to the wait_for_retry state to wait for
the next packet-retry control symbol. 

Table A-2. Output Port Retry Recovery State Machine Transition Table (continued)

Arc Current State Next state cause Comments
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Table A-3 describes the state transition arcs for figure A-3. The states referenced in the comments in quotes are the
RapidIO 1x/4x LP-Serial defined status states, not states in this state machine. 

Figure A-3. Input Port Error Recovery State Machine

Table A-3. Input Port Error Recovery State Machine Transition 

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error 
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the initialization sequence has
been completed, and may be
controlled through other mechanisms
as well, such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a 
recoverable error is detected. 

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_input A recoverable error has been 
detected.

An output port associated error will
not cause this transition, only an input
port associated error. 

5 wait_for_error recovery_disabled Error recovery is disabled. 

6 stop_input stop_input Remain in this state until described 
input port stop activity is completed. 

Send a packet-not-accepted control
symbol and, if the error was on a
packet, discard the packet and don’t
change the expected ackID value.
This will force the attached device to
initiate recovery. Clear the “Port
Normal” state and set the “Input
Error-stopped” state. 

7 stop_input error_stopped Input port stop activity is complete. 
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A.2.2 Output port error recovery state machine
The second recoverable group of errors described in Section 5.10.2, “Link Behavior Under Error” is associated with
the output port, and is comprised of control symbols that are error-free and indicate that the attached input port has
detected a transmission error or some other unusual situation has occurred. An example of this situation is indicated by
the receipt of a packet-not-accepted control symbol. The state machine for the output port is shown in Figure A-4.

8 error_stopped error_stopped Remain in this state until a link 
request (restart-from-error) control 
symbol is received.

The “Input Error-stopped” state
causes the input port to silently
discard all subsequent incoming
packets and ignore all subsequent
input port errors.

9 error_stopped wait_for_error Received a link request (restart-from-
error) control symbol.

Clear the “Input Error-stopped” state
and set the “Port Normal” state,
which will put the input port back in
normal operation. 

Figure A-4. Output Port Error Recovery State Machine

Table A-3. Input Port Error Recovery State Machine Transition 

Arc Current State Next state cause Comments
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Table A-4 describes the state transition arcs for figure A-4. The states referenced in the comments 
in quotes are the RapidIO 8/16 LP-LVDS defined status states, not states in this state machine. 

Table A-4. Output Port Error Recovery State Machine Transition

Arc Current State Next state cause Comments

1 recovery_disabled recovery_disabled Remain in this state until error 
recovery is enabled.

This is the initial state after reset.
Error recovery can’t be enabled
before the initialization sequence has
been completed, and may be
controlled through other mechanisms
as well, such as a software enable bit.

2 recovery_disabled wait_for_error Error recovery is enabled.

3 wait_for_error wait_for_error Remain in this state until a 
recoverable error is detected. 

Detected errors and the level of
coverage is implementation
dependent.

4 wait_for_error stop_output A recoverable error has been 
detected.

An input port associated error will not
cause this transition, only an output
port associated error. 

5 wait_for_error recovery_disabled Error recovery is disabled. 

6 stop_output stop_output Remain in this state until an exit 
condition occurs. 

Clear the “Port Normal” state, set the
“Output Error-stopped” state, stop
transmitting new packets, and send a
link-request/input-status control
symbol. Ignore all subsequent output
port errors. 
The input on the attached device is in
the “Input Error-stopped” state and is
waiting for a link-request/input-status
in order to be re-enabled to receive
packets. 
An implementation may wish to time-
out several times before regarding a
time-out as fatal using a threshold
counter or some other mechanism. 

7 stop_output recover The link-response is received and 
returned an outstanding ackID value

An outstanding ackID is a value sent
out on a packet that has not been
acknowledged yet. In the case where
no ackID is outstanding the returned
ackID value shall match the next
expected/next assigned ackID value,
indicating that the devices are
synchronized. 
Recovery is possible, so follow
recovery procedure.

8 stop_output fatal_error The link-response is received and 
returned an ackID value that is not 
outstanding, or timed out waiting for 
the link-response. 

Recovery is not possible, so start
error shutdown procedure.
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9 recover recover Remain in this state until the internal 
recovery procedure is completed. 

The packet sent with the ackID value
returned in the link-response and all
subsequent packets shall be
retransmitted. All packets transmitted
with ackID values preceding the
returned value were received by the
attached device, so they are treated as
if packet-accepted control symbols
have been received for them. Output
port state machines and the
outstanding ackID scoreboard shall
be updated with this information,
then clear the “Output Error-stopped”
state and set the ‘Port Normal” state
to restart the output port. 

10 recover wait_for_error The internal recovery procedure is 
complete. 

retransmission (if any was necessary)
has started, so return to the
wait_for_error state to wait for the
next error. 

11 fatal_error fatal_error Remain in this state until error 
shutdown procedure is completed. 

Clear the “Output Error-stopped”
state, set the “Port Error” state, and
signal a system error.

12 fatal_error wait_for_error Error shutdown procedure is 
complete.

Return to the wait_for_error state.

Table A-4. Output Port Error Recovery State Machine Transition

Arc Current State Next state cause Comments
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Annex B
(Informative)

Critical Resource Performance Limits 

The RapidIO LP-Serial layer is intended for use over links whose length ranges from centimeters to tens of meters. The shortest 
length links will almost certainly use copper printed circuit board traces. The longer lengths will require the use of fiber optics (optical 
fiber and electro-optical converters) to overcome the high frequency losses of long copper printed circuit board traces or cable. The 
longer lengths will also have significant propagation delay which can degrade the usable bandwidth of a link.

The serial protocol is a handshake protocol. Each packet transmitted by a port is assigned an ID (the ackID) and a copy of the packet 
is retained by the port in a holding buffer until the packet is accepted by the port’s link partner. The number of packets that a port can 
transmit without acknowledgment is limited to the lesser of the number of distinct ackIDs and the number of buffers available to hold 
unacknowledged packets. Which ever is the limiting resource, ackIDs or holding buffers, will be called the “critical resource”.

The concern is the time between the assignment of a critical resource to a packet and the release of that resource as a consequence of 
the packet being accepted by the link partner. Call this time the resource_release_delay. When the resource_release_delay is less than 
the time it takes to transmit a number of packets equal to the number of distinct critical resource elements, there is no degradation of 
link performance. When the resource_release_delay is greater than the time it takes to transmit a number of packets equal to the num-
ber of distinct critical resource elements, the transmitter may have to stall from time to time waiting for a free critical resource. This 
will degraded the usable link bandwidth. The onset of degradation will depend on the average length of transmitted packets and the 
physical length of the link as reflected in the resource_release_delay.

The following example provides some idea of the impact on link performance of the interaction between link length and a critical 
resource. For purposes of this example, the following assumptions are made.

1. The link is a 4 lane (4x) link.
2. The link uses optical fiber and electro-optical transceivers to allow link lengths of tens of meters. The propagation delay of 

the optical fiber is 0.45c.
3. The width of the data path within the port is 4 bytes.
4. The data path and logic within the port run at a clock rate equal to the aggregate unidirectional data rate of the link divided by 

32. This is referred to as the logic clock. One cycle of this clock is referred to a one logic clock cycle. (If the aggregate 
unidirectional baud rate of the link was used to compute the logic clock, the baud rate would be divided by 40. With 8B/10B 
encoding, the baud rate is 1.25 times the data rate.) 

5. The minimum length packet header is used. Write request packets have a length of 12 bytes plus a payload containing an 
integer multiple of 8 bytes. Read request packets have a length of 12 bytes. Read response packets have a length of 8 bytes 
plus a payload containing an integer multiple of 8 bytes.

6. The beginning and end of each packet is delimited by a control symbol. A single control symbol may delimit both the end of 
one packet and the beginning of the next packet.

7. Packet acknowledgments are carried in packet delimiter control symbols when ever possible to achieve the efficiency 
provided by the dual stype control symbol. This implies that a packet acknowledgment must wait for an end-of-packet control 
symbol if packet transmission is in progress when the packet acknowledgment becomes available.

8. The logic and propagation delay in the packet transmission direction is comprised of the following components.
Table B-11. Packet Transmission Delay Components

Item Time required

Generate start-of-packet control symbol
(critical resource is available)

1 logic clock cycle

Generate start-of-packet control symbol CRC 1 logic clock cycle

8B/10B encode delimiter and start-of-packet control symbol 1 logic clock cycle

Serialize and transmit delimiter and start-of-packet control symbol 1 logic clock cycle
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9. The logic and propagation delay in the packet acknowledgment direction is comprised of the following.

The packet times in the above tables depend on packet length which in turn depends on packet type and payload size. Since packet
traffic will typically involve a mixture of packet types and payload sizes, the traffic in each direction will be assumed to contain an
equal number of read, write and response packets and average payloads of 8, 32, and 64 bytes.

The number of logic clock cycles required to transmit or receive a packet is given in the following table as a function of packet type
and payload size.

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length/0.45c

Electro-optical receiver and pcb copper delay 2 ns

Receive and deserialize delimiter and start-of-packet control symbol 0.5 logic clock cycles

Receive and deserialize packet depends on packet

Receive and deserialize delimiter and end-of-packet control symbol 1 logic clock cycle

8B/10B decode delimiter and end-of-packet control symbol 1 logic clock cycle

Check CRC of end-of-packet control symbol 1 logic clock cycle

Make packet acceptance decision 1 logic clock cycle

Table B-12. Packet Acknowledgment Delay Components

Item Time required

Wait for end-of-packet if packet transmission is in progress, generate 
packet-acknowledgment control symbol and control symbol CRC

depends on packet
>= 2 logic clock 
cycles

8B/10B encode delimiter and packet-acknowledgment control symbol 1 logic clock cycle

Serialize and transmit delimiter and packet-acknowledgment control 
symbol

1 logic clock cycle

PCB copper and electro-optical transmitter delay 2 ns

Optical fiber delay fiber_length/0.45c

Electro-optical receiver and pcb copper delay 2 ns

Receive and deserialize delimiter and packet-acknowledgment control 
symbol

0.5 logic clock cycles

8B/10B decode delimiter and packet-acknowledgment control symbol 1 logic clock cycle

Check CRC of packet-acknowledgment control symbol 1 logic clock cycle

Make decision to free critical resource 1 logic clock cycle

Table B-13. Packet Delays

Packet Type Packet Header
bytes

Data Payload
bytes

Transmit/Receive Time
logic clock cycles

Read 12 0 3

Table B-11. Packet Transmission Delay Components

Item Time required
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Using the above table and the assumed equal number of read, write and response packets, the average number of logic clock cycles to
transmit or received a packet is 4, 8, and 13.3 respectively for packet payloads of 8, 32, and 64 bytes. The average wait for the com-
pletion of a packet being transmitted is assumed to be 1/2 the transmit time.

The following table gives the maximum length of the optical fiber before the packet transmission rate becomes limited by the critical
resource for a 4x link operating at unidirectional data rates of 4.0, 8.0 and 10.0 Gb/s.

Response 8 8 4

32 10

64 18

Write 12 8 5

32 11

64 19

Table B-14. Maximum Transmission Distances

Number of 
Critical 

Resources 
Available

Data Payload
(Bytes)

Maximum Fiber Length Before 
Critical Resource Limited (Meters)

4.0 Gb/s link 8.0 Gb/s link 10.0 Gb/s link

4 8 - - -

32 4.3 1.9 1.4

64 11.4 5.5 4.3

8 8 9.7 4.6 3.5

32 23.6 11.5 9.1

64 42.2 20.8 16.6

16 8 31.1 15.3 12.1

32 62.2 30.8 24.6

64 103.7 51.6 41.1

24 8 52.5 26.0 20.7

32 100.8 50.2 40.0

64 165.2 82.3 65.7

32 8 74.0 36.7 29.3

32 139.5 69.5 55.5

64 226.7 113.1 90.3

Table B-13. Packet Delays

Packet Type Packet Header
bytes

Data Payload
bytes

Transmit/Receive Time
logic clock cycles
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Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book.

 AC Coupling. A method of connecting two devices together that does not pass DC.

Agent. A processing element that provides services to a processor.

ANSI. American National Standards Institute.

Big-endian. A byte-ordering method in memory where the address n of a word corresponds to the most significant
byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 being the most
significant byte. 

Bridge. A processing element that connects one computer bus to another, allowing a processing element on one bus
to access an processing element on the other. 

Capability registers (CARs). A set of read-only registers that allow a processing element to determine another
processing element’s capabilities.

Code-group. A 10-bit entity produced by the 8B/10B encoding process and the input to the 8B/10B decoding process.

Command and status registers (CSRs). A set of registers that allow a processing element to control and determine the
status of another processing element’s internal hardware.

Control symbol. A quantum of information transmitted between two linked devices to manage packet flow between
the devices. 

CRC. Cyclic redundancy code

Deadlock. A situation in which two processing elements that are sharing resources prevent each other from accessing
the resources, resulting in a halt of system operation.

Deferred or delayed transaction. The process of the target of a transaction capturing the transaction and completing
it after responding to the the source with a retry. 

Destination. The termination point of a packet on the RapidIO interconnect, also referred to as a target. 

Device. A generic participant on the RapidIO interconnect that sends or receives RapidIO transactions, also called a
processing element.

Device ID. The identifier of a processing element connected to the RapidIO interconnect.

Direct Memory Access (DMA). A process element that can independently read and write system memory.

Distributed memory. System memory that is distributed throughout the system, as opposed to being centrally located.

Double word. An eight byte quantity, aligned on eight byte boundaries.

A

B

C

D
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EMI. Electromagnetic Interference.

End point. A processing element which is the source or destination of transactions through a RapidIO fabric. 

End point device. A processing element which contains end point functionality.

End point free device. A processing element which does not contain end point functionality. 

Ethernet. A common local area network (LAN) technology.

External processing element. A processing element other than the processing element in question. 

Fabric. A series of interconnected switch devices, typically used in reference to a switch fabric.

Field or Field name. A sub-unit of a register, where bits in the register are named and defined. 

FIFO. First in, first out.

Full-duplex. Data can be transmitted in both directions between connected processing elements at the same time.

Globally shared memory (GSM). Cache coherent system memory that can be shared between multiple processors
in a system.

Half-word. A two byte or 16-bit quantity, aligned on two byte boundaries.

Header. Typically the first few bytes of a packet, containing control information.

Initiator. The origin of a packet on the RapidIO interconnect, also referred to as a source.

I/O. Input-output.

IP. Intellectual Property

ITU. International Telecommunication Union.

Little-endian. A byte-ordering method in memory where the address n of a word corresponds to the least significant
byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the most
significant byte.

Local memory. Memory associated with the processing element in question. 

LP. Link Protocol

LSB. Least significant byte.

LVDS. Low voltage differential signaling.

E

F

G

H

I

L
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Message passing. An application programming model that allows processing elements to communicate through
special hardware instead of through memory as with the globally shared memory programming model.

MSB. Most significant byte.

Non-coherent. A transaction that does not participate in any system globally shared memory cache coherence
mechanism.

Operation. A set of transactions between end point devices in a RapidIO system (requests and associated
responses) such as a read or a write.

Packet. A set of information transmitted between devices in a RapidIO system.

Payload. The user data embedded in the RapidIO packet.

PCB. Printed circuit board.

PCS. Physical Coding Sublayer.

PMA. Physical Media Attachment.

Port-write. An address-less write operation.

Priority. The relative importance of a transaction or packet; in most systems a higher priority transaction or packet
will be serviced or transmitted before one of lower priority.

Processing Element (PE). A generic participant on the RapidIO interconnect that sends or receives RapidIO
transactions, also called a device.

Processor. The logic circuitry that responds to and processes the basic instructions that drive a computer. 

Receiver. The RapidIO interface input port on a processing element.

Sender. The RapidIO interface output port on a processing element. 

Semaphore. A technique for coordinating activities in which multiple processing elements compete for the same
resource.

Serializer. A device which converts parallel data (such as 8-bit data) to a single bit-wide datastream.

Source. The origin of a packet on the RapidIO interconnect, also referred to as an initiator. 

SRAM. Static random access memory.

Switch. A multiple port processing element that directs a packet received on one of its input ports to one of its output
ports. 

Target. The termination point of a packet on the RapidIO interconnect, also referred to as a destination.

M

N

O

P

R
S

T
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Transaction. A specific request or response packet transmitted between end point devices in a RapidIO system.

Transaction request flow. A sequence of transactions between two processing elements that have a required
completion order at the destination processing element. There are no ordering requirements between
transaction request flows.

Word. A four byte or 32 bit quantity, aligned on four byte boundaries.

Write port. Hardware within a processing element that is the target of a port-write operation.

W
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VII Partition VII - Inter-operability Specification System and Device

1 Chapter 1 - Overview

This chapter provides an overview of the RapidIO™ System and Device Inter-operability Specification document. This doc-
ument assumes that the reader is familiar with the RapidIO specifications, conventions, and terminology. 

1.1 Overview
The RapidIO Architectural specifications set a framework to allow a wide variety of implementations. This document
provides a standard set of device and system design solutions to provide for inter-operability. The RapidIO System and
Device Inter-operability Specification supplements the RapidIO Architecture Specifications as shown in Figure 1-1. 

Figure 1-1. RapidIO Documentation Hierarchy

Each chapter addresses a different design topic. This revision of the RapidIO System and Device Inter-operability Speci-
fication document covers the following issues:

Chapter 2, “System Exploration and Initialization”

Chapter 3, “8/16 LP-LVDS Device Class Requirements”

Chapter 4, “PCI Considerations”

Chapter 5, “Globally Shared Memory Devices”

2 Chapter 2- System Exploration and Initialization

There are several basic ways of exploring and initializing a RapidIO system. The simplest method is to somehow define the
power-up state of the system components such that all devices have adequate knowledge of the rest of the system to commu-
nicate as needed. This is frequently accomplished by shifting initialization information into all of the devices in the machine
at boot time from serial ROMs or similar devices. This method is most applicable for relatively static systems and systems
where boot-up time is important. A second method, having processors explore and configure the system at boot time,
requires more time but is much more flexible in order to support relatively fast changing plug-and-play or hot-swap systems.
This document describes a simple form of this second method. 

2.1 Boot code access
In most RapidIO applications system initialization requires software for exploring and initializing devices. This is typi-
cally done by a processor or set of processors in the system. The boot code for the processor(s) may reside in a ROM
local to the processor(s) or on a remote RapidIO agent device. A method of accessing the boot code through an uninitial-
ized system is required if the boot code is located on a remote RapidIO agent device.

After resetting, a processor typically vectors to a fixed address and issues a code fetch. The agent hardware between the
processor and the RapidIO fabric is required to take this read request and map it automatically to a NREAD transaction.
The transaction is also mapped to a dedicated device ID at the proper address offset to find the boot code. All devices

System and Device, 
Inter-operability Spec

Logical Specifications, Partitions I–II

Physical Specifications, Partition  IV, 

Message Passing

Transport Specification, Partition  III

System I/O

8/16 LP-LVDS

Transport

GSM ExtensionsGlobally Shared Memory Extensions,

1x/4x LP-Serial

Partition V

Partition VI

Partition VII
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between the processor and the agent device where the boot ROM resides shall default to a state that will route the
NREAD transaction to the boot ROM device and route the response back to the processor. The device ID for the agent
device where the boot ROM resides is device ID=0xFE (0x00FE for 16-bit device IDs). The processor default device IDs
are assigned sequentially starting at 0x00 (0x0000 for 16-bit device IDs). 

Figure 2-1. Example system with boot ROM

Figure 2-2 shows an example system with the boot ROM residing on an Agent device. The default routing state for the
switch device between the processor and the agent shall allow all requests to device ID=0xFE to get to the agent device
and all response packets to get from the agent device back to the processor. This means that the switch may also have to
know the device ID that the processor will be using while fetching boot code (processor device IDs are assigned starting
at 0x00 as described above). For the example in Figure , the system processor defaults to device ID=0x00, and the
switch’s default state routes device ID=0x00 to port 2. 

Figure 2-2. Automatically finding the boot ROM

Once the processor is able to begin running boot code, it can begin executing the exploration and initialization of the rest
of the system.

2.2 Exploration and initialization 
This example algorithm addresses the simple case of a system with a single processor that is responsible for exploring
and initializing a system, termed a Host. The exploration and initialization process starts with a number of rules that the
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component and system designers shall follow. 

2.2.1 Exploration and initialization rules
1. A Host shall be able to “reach” all agent devices that it is to be responsible for. This may require mechanisms to 

generate third party transactions to reach devices that are not transparently visible. 

2. Maintenance responses generated by agent and switch devices shall be sent to the port that the maintenance request 
was received on. For example, consider a device that implements a 5 port switch. The system Host issues a 
maintenance read request to the switch device, which is received on input port 3. The switch, upon generating the 
maintenance response to the maintenance read request, must route it to output port 3 even though the switch may have 
been configured by default to route the response to a port other than port 3 (when the switch is configured it should 
also route the response to port 3).

3. All devices have CSRs to assist with exploration and initialization procedures. The registers used in this example 
contain the following information:

— Base device ID register - This is the default device ID for the device, and it resides in a standard register 
in the CSR space at offset 0x60. At power-up, the base device ID defaults to logic 0xFF for all agent devices 
(0xFFFF for 16-bit route fields), with the exception of the boot code device and the Host device. The boot 
code device (if present) will have it’s device ID default to 0xFE and the Host device will have it’s device 
ID default to 0x00 as described in Section : "2.1 Boot code access". A device may have multiple device IDs, 
but only this architecturally defined device ID is used in the exploration and initialization procedure.

— Master Enable bit - the Master Enable bit is reset at power-up for agent devices and set for Host devices. 
The Master Enable bit is located in the Physical Layer 8/16 LP-LVDS CSR at block offset 0x3C. If the 
Master Enable bit is clear the agent device is not allowed to issue requests and is only able to respond to 
received requests. This bit is used by the system Host to control when agents are allowed to issue 
transactions into the system. Switches are by default enabled and do not have a Master Enable bit. 

— Discovered bit - the Discovered bit is reset at power-up for agent devices and set for the Host device, 
and is located in the Physical Layer 8/16 LP-LVDS Port General Control CSR at block offset 0x3C. The 
system Host device sets this bit when the device has been discovered through the exploration mechanism. 
The Discovered bit is useful for detecting routing loops, and for hot plug or swap environments. 

2.2.2 Exploration and initialization algorithm
If the above rules are followed, all agent devices are now accessible either as an end point that responds to any mainte-
nance transaction or, for switches, via the hop_count mechanism.

The basic algorithm is to explore the system through each end point in sequence by first locating the adjacent device
by sending a maintenance read to device ID=0xFF and hop count= 0x00, which is guaranteed to cause the adjacent
device to respond. That device is then configured to reach the next device by assigning it a unique base device ID other
than 0xFF, setting up route tables to reach the next device, etc.

When all devices in the system have been identified and have unique base device IDs assigned (no devices have a base
device ID value=0xFF), the Host can then complete the final device ID assignment and configuration required for the
application and enable agent devices to issue requests.

2.2.3 Exploration and initialization example
Figure 2-3 shows the previous example of a small single Host system. 

Following the rules defined above, the base device ID value for all devices except the Host and boot ROM device after
reset is applied is 0xFF, the Host has it’s Master Enable and Discovered bits set, and the agent devices have their Mas-
ter Enable and Discovered bits cleared.



- 352 -

Figure 2-3. Example system

Assigning the Host’s base device ID=0x00 is the first step in the process. The next step is to find the adjacent device,
so the Host sends a maintenance read of offset 0x00_0000 to device ID=0xFF and hop_count=0x00. The switch con-
sumes the request because the hop_count field is equal to zero and responds by sending the contents of it’s Device
Identity and Information CARs back to the port the request came from. From the returned information, the software on
the Host can identify this as a switch. The Host then reads the switch port information CAR at offset 0x00_0014 to find
out which port it is connected to. The response indicates a 4 port switch (which the Host may have already known from
the device information register), connected to port 2.

The Host then examines the default routing tables for the switch to find the port route for the boot device ID=0xFE so
it can preserve the path to the boot code (which it may still be running), and discovers that the boot device is located
through port 1 of the switch. It also sets the switch’s Discovered bit.

Figutre 2-4. Finding the adjacent device

The next step is for the Host to configure the switch to route device ID=0xFF to port 0 and device ID=0x00 to port 2
(which it already was because of the boot device in the system) via maintenance write requests to hop_count=0x00.
The Host then issues another maintenance read request, this time to device ID=0xFF and hop_count=0x01. The switch
discovers that it is not the final destination of the maintenance request packet, so it decrements the hop_count and
routes the packet to port 0 and on to the attached agent device. The agent device responds, and the switch routes the
response packet to device ID=0x00 back through port 2 to the Host. Again, software identifies the device, sets its Dis-
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covered bit, configures it as required, and assigns the base device ID=0x01.

Figure 2-5. Finding the device on switch port 0

The Host then modifies the routing tables to now route device ID=0x01 to port 0. Since the boot device is located
through port 1, instead of modifying the routing tables to route device ID=0xFF to port 1, the Host issues a mainte-
nance read of device ID=0xFE (the boot device) and hop_count=0x01. The response identifies the agent on port 1, sets
the agent’s Discovered bit, and configures it as necessary, leaving the base device ID=0xFE so the Host can continue to
execute the boot code.

Figure 2-6. Finding the device on switch port 1

For the next iteration, the Host sets the switch device routing table entry for device ID=0xFF to route to port 3 (the
Host already knows it is directly connected to port 2), and issues the maintenance read transaction as before. 
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Figure 2-7. Finding the device on switch port 3

When the end point only agent responds with the requested CAR information the Host now knows that exploration is
completed (there are no other paths to follow through the fabric), and can finalize configuring the system as shown in
Figure 4-8. The agent devices can then have their Master Enable bits set so they can begin to issue transactions into the
initialized system. The boot device ID can be changed, if desired, when the Host completes executing code from the
boot ROM. 

Figure 2-8. Final initialized system state

Variants to this procedure may be desirable. For example, a system may wish to enable some devices before explora-
tion has been completed. 

More complex systems with multiple Hosts, failed Host recovery, and hot swap requirements can be addressed with
more complex algorithms utilizing the Host base device ID Lock Register and the Component Tag Register in standard
registers in the CSR space at offsets 0x68 and 0x6C.

3 Chapter 3 - 8/16 LP-LVDS Device Class Requirements

3.1 Introduction
The RapidIO Architecture specifications allow for a variety of implementations. In order to form standard points of sup-
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port for RapidIO, this chapter describes the requirements for RapidIO devices adhering to the 8/16 LP-LVDS physical
layer specification and corresponding to different measures of functionality. Three device “classes” are defined, each with
a minimum defined measure of support. The first class defines the functionality of the least capable device, with subse-
quent classes expanding the measure of support, in order to establish levels of inter-operability. 

3.2 Class Partitioning
Each class includes the functionality defined in all previous class devices and defines the minimum additional functional-
ity for that class. A device is not required to comply exactly with a class, but may optionally supply additional features as
a value-add for that device. All functions that are not required in any class list are also optional value-adds for a device.

First is a set of requirements that are applicable to all RapidIO compliant devices, including switch devices without end
point functionality. 

3.2.1 Generic: All devices
3.2.1.1 General requirements

•8 bit wide port
—(refer to Partition IV: PhysicalLayer 8/16 LP-LVDS  Specification, Section IV.1)

•Support for small (8-bit) transport device ID fields 
—(refer to Partition III: Common Transport Specification, Section 1.3)

•Support for recovery from a single corrupt packet or control symbol
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 1.3.5) 

•Support for packet retry protocol
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 1.2.4) 

•Support for throttle based flow control
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 2.3) 

•Support for transaction ordering at flow level 1 
—(end point programmability for all flow levels is recommended)
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 1.2.2) 

•Switch devices maintain error coverage internally
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 1.3.6)

•Support for maximum size (276 byte) packets for switch devices
—(refer to Partition IV: Physical Layer 8/16 LP-LVDS Specification, Section 1.3.9)

•Support for maximum size (256 byte) data payloads for end point devices
—(refer to Partition I: Input/Output Logical Specification)

•Device must contain the following registers:
– Device Identity CAR
– Device Information CAR
– Assembly Identity CAR
– Assembly Information CAR
– Processing Element Features CAR
– Source Operations CAR
– Destination Operations CAR

— (refer to Partition I: Input/Output Logical Specification, Section 4.4)
3.2.1.2 Operation support as target

•Maintenance read 
—(switch targeted by hop_count transport field)
—(refer to Partition I: Input/Output Logical Specification, Section 2.3.1, Section 3.1.10)

•Maintenance write 
—(switch targeted by hop_count transport field)
—(refer to Partition I: Input/Output Logical Specification, Section 2.3.1, Section 3.1.10)
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3.2.1.3 Operation support as source
• <none>

3.2.2 Class 1: Simple target device
3.2.2.1 General requirements

• all Generic requirements
• Support for 34-bit address packet formats

—(refer to Partition I: Input/Output Logical Specification, Section 4.4.5)
3.2.2.2 Operation support as target

• all Generic requirements
• Write

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.2, Section 3.1.7)
• Streaming-write

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.2, Section 3.1.8)
• Write-with-response

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.3, Section 3.1.7)
• Read

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.1, Section 3.1.5)
3.2.2.3 Operation support as source

• all Generic requirements

3.2.3 Class 2: Simple mastering device 
3.2.3.1 General requirements

• all Class 1 requirements
3.2.3.2 Operation support as target

• all Class 1 requirements
3.2.3.3 Operation support as source

• all Class 1 requirements
• Maintenance read

—(refer to Partition I: Input/Output Logical Specification, Section 2.3.1, Section 3.1.10)
• Maintenance write

—(refer to Partition I: Input/Output Logical Specification, Section 2.3.1, Section 3.1.10)
• Write

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.2, Section 3.1.7)
• Write-with-response

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.3, Section 3.1.7)
• Streaming-write

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.2, Section 3.1.8)
• Read

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.1, Section 3.1.5)

3.2.4 Class 3: Complex mastering device
3.2.4.1 General requirements

• all Class 2 requirements
3.2.4.2 Operation support as target

• all Class 2 requirements
• Atomic set

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.4, Section 3.1.7)
• Maintenance port-write

—(refer to Partition I: Input/Output Logical Specification, Section 2.3.1, Section 3.1.10)
• Data message mailbox 0
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—(refer to Partition II: Message Passing Logical Specification, Section 2.2.2, Section 3.1.8)
3.2.4.3 Operation support as source

• all Class 2 requirements
• Atomic set

—(refer to Partition I: Input/Output Logical Specification, Section 2.2.4, Section 3.1.7)
• Data message to mailbox 0

—(refer to Partition II: Message Passing Logical Specification, Section 2.2.2, Section 3.1.8)
4Chapter  4- PCI Considerations

RapidIO contains a rich enough set of operations and capabilities to allow transport of legacy interconnects such as PCI1. While
RapidIO and PCI share similar functionality, the two interconnects have different protocols thus requiring a translation function to
move transactions between them. A RapidIO to PCI bridge processing element is required to make the necessary translation between
the two interconnects. This chapter describes architectural considerations for an implementation of a RapidIO to PCI bridge process-
ing element. This chapter is not intended as an implementation instruction manual, rather, it is to provide direction to the bridge pro-
cessing element architect and aid in the development of interoperable devices. For this chapter it is assumed that the reader has a
thorough understanding of the PCI 2.2 and/or the PCI-X 1.0 specifications.

Figure  shows a typical system with devices connected using various RapidIO and PCI bus segments. A host bridge is connected to
various peripherals via a PCI bus. A RapidIO bridge is used to translate PCI formatted transactions to the equivalent RapidIO opera-
tions to allow access to the rest of the system, including additional subordinate PCI bus segments.

Figure 4-1. Example System with PCI and RapidIO

Where RapidIO is introduced into a legacy system, it is desirable to limit changes to software. For transactions which must travel
between RapidIO and PCI it is necessary to map address spaces defined on the PCI bus to those of RapidIO, translate PCI transaction
types to RapidIO operations, and maintain the producer/consumer requirements of the PCI bus. This chapter will address each of
these considerations for both PCI version 2.2 and PCI-X.

4 Chapter 4 - PCI Considerations

4.1 Address Map Considerations
PCI defines three physical address spaces, specifically, the memory, I/O memory, and configuration spaces. RapidIO, on
the other hand, only addresses memory and configuration space. This section discusses memory space. Configuration
space is discussed in Section : "6.3 RapidIO to PCI Transaction Mapping". Figure  shows a simple example of the PCI
memory and I/O address spaces for a host bus segment. In order for devices on the PCI bus to communicate with those
connected through RapidIO, it is necessary to provide a memory mapping function. The example PCI host memory map

1.For additional information on the Peripheral Component Interconnect PCI refer to the PCI 2.2 and the PCI-X 1.0
 specifications. 
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uses a 32-bit physical address space resulting in 4 Gbytes of total address space. Host memory is shown at the bottom of
the address map and peripheral devices at the top. Consider that the RapidIO to PCI bridge processing element contains a
specified window(s) of address space mapped to it using the PCI base address register(s)1. The example shown in Figure
illustrates the RapidIO bridge address window located in an arbitrary software defined location. Likewise, if it was
desired to communicate with PCI legacy I/O devices over RapidIO an I/O window would be assigned to the RapidIO to
PCI bridge as shown.

Figure 4-2. Host segment PCI Memory Map Example

Any transactions issued to the bus segment with an address that matches the RapidIO bridge window will be captured by
the RapidIO to PCI bridge for forwarding. Once the transaction has been accepted by the RapidIO to PCI bridge process-
ing element it must be translated to the proper RapidIO context as shown in Figure 1-2. For the purposes of this discus-
sion this function is called the Address Mapping and Translation function (AMT). The AMT function is responsible for
translating PCI addresses to RapidIO addresses as well as the translation and assignment of the respective PCI and
RapidIO transaction types. The address space defined by the RapidIO bridge window may represent more than one subor-
dinate RapidIO target device. A device on PCI bus segment 0 shown in Figure  may require access to a peripheral on PCI
bus 1, bus 2, or RapidIO Peripheral 5. Because RapidIO uses source addressing (device IDs), the AMT is responsible for
translating the PCI address to both a target device ID and associated offset address. In addition to address translation,
RapidIO attributes, transaction types, and other necessary delivery information are established.

Similarly, transactions traveling from a RapidIO bus to a PCI bus must also pass through the AMT function. The address
and transaction type are translated back into PCI format, and the AMT selects the appropriate address for the transaction.
Memory mapping is relied upon for all transactions bridged between PCI and RapidIO.

1.Refer to the PCI 2.2 Specification Chapter 6 for a discussion on PCI address maps and configuration registers
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Figure 4-3. AMT and Memory Mapping

4.2 Transaction Flow
In considering the mapping of the PCI bus to RapidIO it is important to understand the transaction flow of PCI transac-
tions through RapidIO. 

4.2.1 PCI 2.2 Transaction Flow
The PCI 2.2 specification defines two classes of transaction types, posted and non-posted. Figure  shows the route
taken by a PCI-RapidIO posted write transaction. Once the request is sent from the PCI Master on the bus, it is claimed
by the bridge processing element which uses the AMT to translate it into a RapidIO request. Only when the transaction
is in RapidIO format can it be posted to the RapidIO target. In some cases it may be desirable to guarantee end to end
delivery of the posted write transaction. For this case the RapidIO NWRITE_R transaction is used which results in a
response as shown in the figure 4-4.

Figure 4-4. PCI Mastered Posted Write Transaction Flow Diagram
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A non-posted PCI transaction is shown in Figure . The transaction is mastered by the PCI agent on the PCI bus and
accepted by the RapidIO to PCI bridge. The transaction is retried on the PCI bus if the bridge is unable to complete it
within the required time-out period. In this case the transaction is completed as a delayed transaction. The transaction
is translated to the appropriate RapidIO operation and issued on the RapidIO port. At some time later a RapidIO
response is received and the results are translated back to PCI format. When the PCI master subsequently retries the
transaction, the delayed results are returned and the operation is completed.

Figure 4-5. PCI Mastered non-posted (delayed) Transaction Flow Diagram

Because PCI allows unbounded transaction data tenures, it may be necessary for the RapidIO to PCI bridge to break
the single PCI transaction into multiple RapidIO operations. In addition, RapidIO does not have byte enables and
therefore does not support sparse byte transactions. For this case the transaction must be broken into multiple opera-
tions as well. “Section , 6.6 Byte Lane and Byte Enable Usage” on page 372 describes this situation in more detail.

A RapidIO mastered operation is shown in Figure . For this case the RapidIO request transaction is received at the
RapidIO to PCI bridge. The bridge translates the request into the appropriate PCI command which is then issued to the
PCI bus. The PCI target may complete the transaction as a posted, non-posted, or delayed non-posted transaction
depending on the command type. Once the command is successfully completed on the PCI bus the results are trans-
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lated back into the RapidIO format and a response transaction is issued back to the RapidIO Master.

Figure 4-6. RapidIO Mastered Transaction

4.2.2 PCI-X Transaction Flow
The flow of transactions described in the previous section applies to the PCI-X bus as well. PCI-X supports split trans-
actions instead of delayed transactions. The example shown in Figure  illustrates a transaction completed with a PCI-X
split completion. The PCI-X master issues a transaction. The RapidIO to PCI-X bridge determines that it must com-
plete the transaction as a split transaction, and responds with a split response. The transaction is translated to RapidIO
and a request is issued on the RapidIO port. The RapidIO target returns a response transaction which is translated to a
PCI-X Split Completion transaction completing the operation. PCI-X allows up to a 4 Kilobyte request. Larger PCI-X
requests must be broken into multiple RapidIO operations. The RapidIO to PCI-X bridge may return the results back to
the PCI-X Master using multiple Split Completion transactions in a pipelined fashion. Since PCI-X only allows
devices to disconnect on 128 byte boundaries it is advantageous to break the large PCI-X request into either 128 or 256
byte RapidIO operations.

PCI
Target

PCI
Translation

RapidIO
Request

RapidIO
Response

RapidIO
Master

RapidIO
Transaction

Request

(Delayed)
Transaction

Results

RapidIO
to

Translation

PCI Bus

Bridge
Processing
Element

PCI

RapidIO

PCI to RapidIO

Request



- 362 -

Figure 6-7. PCI-X Mastered Split Response Transaction

4.3 RapidIO to PCI Transaction Mapping
The RapidIO Logical Input/Output and Globally Shared Memory specifications include the necessary transactions types
to map all PCI transactions. Table  lists the map of transactions between PCI and RapidIO. A mapping mechanism such
as the AMT function described in Section : "6.1 Address Map Considerations" is necessary to assign the proper transac-
tion type based on the address space for which the transaction is targeted.

 

Table 4-1. PCI 2.2 to RapidIO Transaction Mapping

PCI Command RapidIO Transaction Comment

Interrupt-
acknowledge

NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read, 
Memory-Read-Line, 
Memory-Read-
Multiple

NREAD or 
IO_READ_HOME

The PCI memory read transactions can be represented by the 
NREAD operation. If the operation is targeted to hardware 
maintained globally coherent memory address space then the I/O 
Read operation must be used (see “Section , 4.5 Interactions with 
Globally Shared Memory” on page 365.)

Memory-write, 
Memory-write-and-
invalidate

NWRITE, 
NWRITE_R, or 
FLUSH

The PCI Memory Write and Memory-Write-and-Invalidate can 
be represented by the NWRITE operation. If reliable delivery of 
an individual write transaction is desired then the NWRITE_R is 
used. If the operation is targeted to hardware maintained globally 
coherent memory address space then the Data Cache Flush 
operation must be used (refer to “Section , 4.5 Interactions with 
Globally Shared Memory” on page 365.)

Configuration-read NREAD

Configuration-write NWRITE_R
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PCI 2.2 memory transactions do not specify a size. It is possible for a PCI master to read a continuous stream of data from
a target or to write a continuous stream of data to a target. Because RapidIO is defined to have a maximum data payload
of 256 bytes, PCI transactions that are longer than 256 bytes must be broken into multiple RapidIO operations. 

Table-4-2  shows the transaction mapping between PCI-X and RapidIO. 
Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment

Interrupt-
acknowledge

NREAD

Special-cycle NWRITE

I/O-read NREAD

I/O-write NWRITE_R

Memory-read 
DWORD

NREAD or 
IO_READ_HOME

The PCI-X memory read DWORD transactions can be 
represented by the NREAD operation. If the operation is targeted 
to hardware maintained coherent memory address space then the 
I/O Read operation must be used (refer to “Section , 4.5 
Interactions with Globally Shared Memory” on page 365.) This is 
indicated in PCI-X using the No Snoop (NS) bit described in 
Section 2.5 of the PCI-X 1.0 specification.

Memory-write NWRITE, 
NWRITE_R, or 
FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can 
be represented by the NWRITE operation. If reliable delivery of 
an individual write transaction is desired then the NWRITE_R is 
used. If the operation is targeted to hardware maintained coherent 
memory address space then the Data Cache Flush operation must 
be used (refer to “Section , 4.5 Interactions with Globally Shared 
Memory” on page 365.) This is indicated in PCI-X using the No 
Snoop (NS) bit described in Section 2.5 of the PCI-X 1.0 
specification.

Configuration-read NREAD

Configuration-write NWRITE_R

Split Completion -- The Split Completion transaction is the result of a request on the 
PCI-X bus that was terminated by the target with a Split 
Response. In the case of the RapidIO to PCI-X bridge this would 
be the artifact of a transaction that either the bridge mastered and 
received a split response or was the target and issued a split 
response. This command is equivalent to a RapidIO response 
transaction and does not traverse the bridge.
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The PCI-X addendum to the PCI specification adds the ability to do split operations. This results in an operation being
broken into a Split Request and one or more Split Completions. As a target of a PCI-X Split Request, the RapidIO to PCI
bridge may reply with a Split Response and complete the request using multiple RapidIO operations. The results of these
operations are issued on the PCI-X bus as Split Completions. If the RapidIO to PCI-X bridge is the initiator of a Split
Request, the target may also indicate that it intends to run the operation as a split transaction with a Split Response. In this
case the target would send the results to the RapidIO to PCI-X bridge using Split Completions.

4.4 Operation Ordering and Transaction Delivery 
This section discusses what the RapidIO to PCI bridge must do to address the requirements of the ordering rules of the
PCI specifications.

4.4.1 Operation Ordering
Section 1.2.1 of the RapidIO Input/Output Logical Specification describes a set of ordering rules. The rules guarantee
ordered delivery of write data and that results of read operations will contain any data that was previously written to
the same location.

For bridge devices, the PCI 2.2 specification has the additional requirement that the results of a read command push
ahead posted writes in both directions. 

In order for the RapidIO to PCI bridge to be consistent with the PCI 2.2 ordering rules it is necessary to follow the
transaction ordering rules listed in section 1.2.1 of the RapidIO Input/Output Logical Specification. In addition, the
RapidIO to PCI bridge is required to adhere to the following RapidIO rule: 

Read responses must push ahead all write requests and write responses.

4.4.2 Transaction Delivery Ordering
The RapidIO Physical Layer 8/16 LP-LVDS Specification describes the mechanisms by which transaction ordering
and delivery occur through the system. When considering the requirements for the RapidIO to PCI bridge it is first
necessary to follow the transaction delivery ordering rules in section 1.2.4.1 of the RapidIO Physical Layer 8/16 LP-
LVDS Specification. Further, it is necessary to add additional constraints to maintain programming model compatibil-
ity with PCI.

As described in Section : "4.4.1 Operation Ordering" above, PCI has an additional transaction ordering requirement
over RapidIO. In order to guarantee inter-operability, transaction ordering, and deadlock free operation, it is recom-
mended that devices be restricted to utilizing transaction request flow level 0. In addition, it is recommended that
response transactions follow a more strict priority assignment. Table  illustrates the priority assignment requirements

Memory-read-block NREAD or 
IO_READ_HOME

The PCI-X memory read transactions can be represented by the 
NREAD operation. If the operation is targeted to hardware 
maintained globally coherent memory address space then the I/O 
Read operation must be used (refer to “Section , 4.5 Interactions 
with Globally Shared Memory” on page 365.) This is indicated in 
PCI-X using the No Snoop (NS) bit described in Section 2.5 of 
the PCI-X 1.0 specification.

Memory-write-block NWRITE, 
NWRITE_R, or 
FLUSH

The PCI-X Memory Write and Memory-Write-and-Invalidate can 
be represented by the NWRITE operation. If reliable delivery of 
an individual write transaction is desired then the NWRITE_R is 
used. If the operation is targeted to hardware maintained globally 
coherent memory address space then the Data Cache Flush 
operation must be used (refer to “Section , 4.5 Interactions with 
Globally Shared Memory” on page 365.) This is indicated in PCI-
X using the No Snoop (NS) bit described in Section 2.5 of the 
PCI-X 1.0 specification.

Table 4-2. PCI-X to RapidIO Transaction Mapping

PCI-X Command RapidIO Transaction Comment
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for transactions in the PCI to RapidIO environment. 

The PCI transaction ordering model requires that a RapidIO device not issue a read request into the system unless it
has sufficient resources available to receive and process a higher priority write or response packet in order to prevent
deadlock. PCI 2.2 states that read responses cannot pass write transactions. The RapidIO specification provides PCI
ordering by issuing priority 0 to read requests, and priority 1 to read responses and PCI writes. Since read responses
and writes are issued at the same priority, the read responses will not pass writes.

4.4.3 PCI-X Relaxed Ordering Considerations
The PCI-X specification defines an additional ordering feature called relaxed ordering. If the PCI-X relaxed ordering
attribute is set for a read transaction, the results for the read transaction are allowed to pass posted write transactions.
PCI-X read transactions with this bit set allow the PCI-X to RapidIO bridge to ignore the rule described in Section :
"4.4.1 Operation Ordering". Table  shows the results of this additional function.

4.5 Interactions with Globally Shared Memory
Traditional systems have two notions of system or subsystem cache coherence. The first, non-coherent, means that mem-
ory accesses have no effect on the caches in the system. The memory controller reads and writes memory directly, and
any cached address becomes incoherent in the system. This behavior requires that all cache coherence with I/O be man-
aged using software mechanisms, as illustrated in Figure . 

Table 6-3. Packet priority assignments for PCI ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass read 
requests

read response 1 Will force completion of preceding write requests and allows bypass of read 
requests

write response 2 Will prevent NWRITE_R request based deadlocks

Table 4-4. Packet priority assignments for PCI-X ordering

RapidIO packet type priority comment

read request 0 This will push write requests and responses ahead

write request 1 Forces writes to complete in order, but allows write requests to bypass of 
read requests

read response 1 When PCI-X Relaxed Ordering attribute is set to 0. Will force completion of 
preceding write requests and allows bypass of read requests

read response 2, 3 When PCI-X Relaxed Ordering attribute is set to 1. The endpoint may 
promote the read response to higher priority to allow it to move ahead of 
posted writes.

write response 2
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The second notion of system cache coherence is that of global coherence. An I/O access to memory causes a snoop cycle
to be issued on the processor bus, keeping all of the system caches coherent with the memory, as illustrated in Figure 6-9.

With RapidIO globally shared systems, there is no common bus that can be used in order to issue the snoop, so global
coherence requires special hardware support beyond simply snooping the bus. This leads to a third notion of cache coher-
ence, termed local coherence. For local coherence, a snoop on a processor bus local to the targeted memory controller can
be used to keep those caches coherent with that part of memory, but not caches associated with other memory controllers,
as illustrated in Figure . Therefore, what once was regarded in a system as a “coherent access” is no longer globally

Figure 4-8. Traditional Non-coherent I/O Access Example

Figure 4-9. Traditional Globally Coherent I/O Access Example
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coherent, but only locally coherent. Typically, deciding to snoop or not snoop the local processor caches is either deter-
mined by design or system architecture policy (always snoop or never snoop), or by an attribute associated with the phys-
ical address being accessed. In PCI-X, this attribute is the No Snoop (NS) bit described in Section 2.5 of the PCI-X 1.0
specification.

In order to preserve the concept of global cache coherence for a system, the RapidIO Globally Shared Memory Logical
Specification defines several operations that allow a RapidIO to PCI bridge processing element to access data in the glo-
bally shared space without having to implement all of the cache coherence protocol. These operations are the I/O Read
and Data Cache Flush operations (RapidIO Globally Shared Memory Logical Specification, sections 3.2.9 and 3.2.10).
For PCI-X bridging, these operations can also be used as a way to encode the NO SNOOP attribute for locally as well as
globally coherent transactions. The targeted memory controller can be designed to understand the required behavior of
such a transaction. These encodings also are useful for tunneling PCI-X transactions between PCI-X bridge devices. 

The data payload for an I/O Read operation is defined as the size of the coherence granule for the targeted globally shared
memory domain. However, the Data Cache Flush operation allows coherence granule, sub-coherence granule, and sub-
double-word writes to be performed.

The IO_READ_HOME transaction is used to indicate to the GSM memory controller that the memory access is globally
coherent, so the memory controller finds the latest copy of the requested data within the coherence domain (the request-
ing RapidIO to PCI bridge processing element is, by definition, not in the coherence domain) without changing the state
of the participant caches. Therefore, the I/O Read operation allows the RapidIO to PCI bridge to cleanly extract data from
a coherent portion of the system with minimal disruption and without having to be a full participant in the coherence
domain. 

The Data Cache Flush operation has several uses in a coherent part of a system. One such use is to allow a RapidIO to
PCI bridge processing element to write to globally shared portions of the system memory. Analogous to the
IO_READ_HOME transaction, the FLUSH transaction is used to indicate to the GSM memory controller that the access
is globally coherent. The memory controller forces all of the caches in the coherence domain to invalidate the coherence
granule if they have a shared copy (or return the data to memory if one had ownership of the data), and then writes mem-
ory with the data supplied with the FLUSH request. This behavior allows the I/O device to cleanly write data to the glo-
bally shared address space without having to be a full participant in the coherence domain.

Since the RapidIO to PCI bridge processing element is not part of the coherence domain, it is never the target of a coher-
ent operation. 

Figure 4-10. RapidIO Locally Coherent I/O Access Example
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4.5.1 I/O Read Operation Details
Most of the complexity of the I/O Read operation resides in the memory controller. For the RapidIO to PCI Bridge
processing element the I/O Read operation requires some additional attention over the non-coherent read operation.
The necessary portions of the I/O Read state machine description in Section 6.10 of the RapidIO Globally Shared
Memory Logical Specification are extracted below. Refer to Chapter 6 of the GSM specification for state machine def-
initions and conventions. The GSM specification takes precedence in the case of any discrepancies between the corre-
sponding portions of the GSM specification and this description. 

4.5.1.1 Internal Request State Machine
This state machine handles requests to the remote globally shared memory space.

remote_request(IO_READ_HOME, mem_id, my_id);

4.5.1.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect.

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION:// must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default

error();

4.5.2 Data Cache Flush Operation Details
As with the I/O Read operation, the complexity for the Data Cache Flush operation resides in the memory controller.
The necessary portions of the Data Cache Flush state machine description from Section 6.10 of the GSM logical spec-
ification are extracted below. Refer to Chapters 2 and 3 of the GSM specification to determine the size of data pay-
loads for the FLUSH transaction. The GSM specification takes precedence in the case of any discrepancies between
the corresponding portions of the GSM specification and this description. 

4.5.2.1 Internal Request State Machine
This state machine handles requests to the remote globally shared memory space. 

remote_request(FLUSH, mem_id, my_id, data);
4.5.2.2 Response State Machine

This state machine handles responses to requests made to the RapidIO interconnect.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

default:
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error();

4.6 Byte Lane and Byte Enable Usage
PCI makes use of byte enables and allows combining and merging of transactions. This may have the result of write
transactions with sparse valid bytes. In order to save on transaction overhead, RapidIO does not include byte enables.
RapidIO does, however, support a set of byte encodings defined in Chapter 3 of the RapidIO Input/Output Logical Layer
Specification. PCI to RapidIO operations may be issued with sparse bytes. Should a PCI write transaction with byte ena-
bles that do not match a RapidIO byte encoding be issued to a RapidIO to PCI bridge, that operation must be broken into
multiple valid RapidIO operations. 

4.7 Error Management
Errors that are detected on a PCI bus are signaled using side band signals. The treatment of these signals is left to the sys-
tem designer and is outside of the PCI specifications. Likewise, this document does not recommend any practices for the
delivery of error interrupts in the system. 

5 Chapter 5 - Globally Shared Memory Devices

Different processing elements have different requirements when participating in a RapidIO GSM environment. The GSM protocols
and address collision tables are written from the point of view of a fully integrated processing element comprised of a local processor,
a memory controller, and an I/O controller. Obviously, the complexity and implementation requirements for this assumed device are
much greater than required for a typical design. This chapter assumes that the reader is familiar with the RapidIO Globally Shared
Memory Logical Specification. 

Additionally, this chapter contains the Physical Layer 8/16 LP-LVDS and 1x/4x LP-Serial transaction to priority mappings to guaran-
tee that a system maintains cache coherence and is deadlock free.

5.1 Processing Element Behavior
In Chapter 2 of the RapidIO Globally Shared Memory Logical Specification are a number of examples of possible
processing elements:

• A processor-memory processing element
• A memory-only processing element
• A processor-only processing element
• An I/O processing element
• A switch processing element
Of all of these, only the switch processing element does not have to implement anything additional to exist in a GSM sys-
tem or sub-system. All of the remaining processing element types are of interest, and all are likely to exist in some form
in the marketplace. This chapter is intended to define the portions of the protocol necessary to implement each of these
devices. Other processing elements are allowed by the RapidIO Globally Shared Memory Logical Specification, for
example, a memory-I/O processing element. The portions of the protocol necessary to implement these devices are not
addressed in this chapter. 

5.1.1 Processor-Memory Processing Element
This processing element is very nearly the same as the assumed processing element used for the state machine descrip-
tion in Chapter 6, and requires nearly all of the described functionality. The following operation behavior is not
changed from the Chapter 6 descriptions:

• Read
• Instruction read
• Read for ownership
• Data cache and instruction cache invalidate
• Castout
• TLB invalidate entry and TLB invalidate entry synchronize
• Data cache flush
This leaves the I/O Read operation. Since the processor-memory processing element does not contain an I/O device,
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this processing element will not generate the I/O read operation, but is required to respond to it. This removes the inter-
nal request state machine and portions of the response state machine, requiring the behavior described in Section 2.1.1
below. The only exception to this is the special case where there exists multiple coherence domains. It is possible that
a processor in one coherence domain may wish to read data in another coherence domain and thus would require sup-
port of the I/O Read operation.

5.1.1.1 I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.1.1.1.1 Response State Machine
This machine handles responses to requests made to the RapidIO interconnect made on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
my_id);

free_entry();
case REMOTE_MODIFIED:// spin or wait for castout

remote_request(IO_READ_OWNER, received_srcid, my_id,
my_id);

default:
error();

default:
error();

5.1.1.1.2 External Request State Machine
This machine handles requests from the system to the local memory or the local processor. This may require mak-
ing further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

elseif (IO_READ_HOME) // remote request to our local memory
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

default:
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error();
else // IO_READ_OWNER request to our caches

assign_entry();
local_request(READ_LATEST);// spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// module

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID:   // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;

5.1.2 Memory-only Processing Element
This processing element is simpler than the assumed processing element used in Chapter 6, removing all of the internal
request state machines and portions of all of the external request and response state machines. A memory-only
processing element does not receive TLB invalidate entry or TLB invalidate synchronize operations. The required
behavior for each operation is described below.

5.1.2.1 Read Operations
This operation is a coherent data cache read.

5.1.2.1.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, 
// mimic intervention

case RETRY:
switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DATA_ONLY, original_srcid,



- 372 -

my_id, data);
remote_response(DONE_INTERVENTION, original_srcid,

my_id);
free_entry();

case REMOTE_MODIFIED:// spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();

5.1.2.1.2 External Request State Machine
This state machine handles read requests from the system to the local memory. This may require making further
external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // READ_HOME
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);

else
error();// he already owned it; 
// cache paradox (or I-fetch after d-
// store if not fixed elsewhere)

endif;
default:

error();
endif;

5.1.2.2 Instruction Read Operations
This operation is a partially coherent instruction cache read.

5.1.2.2.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, 
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// mimic intervention
case RETRY:

switch(directory_state)
case LOCAL_SHARED:

update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case LOCAL_MODIFIED:
update_state(SHARED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED:// spin or wait for castout
remote_request(READ_OWNER, received_srcid,

my_id, my_id);
default:

error();
default:

error();

5.1.2.2.2 External Request State Machine
This state machine handles instruction read requests from the system to the local memory. This may require mak-
ing further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // IREAD_HOME
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ);
update_state(SHARED, received_srcid);

// after possible push completes
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case LOCAL_SHARED,
case SHARED:

update_state(SHARED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

// intervention case
remote_request(READ_OWNER, mask_id,
my_id, received_srcid);

else // he already owned it in his 
//data cache; cache paradox case
remote_request(READ_OWNER, mask_id, my_id, my_id);

endif;
default:

error();
endif;

5.1.2.3 Read for Ownership Operations
This is the coherent cache store miss operation.

5.1.2.3.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(received_response)
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case DONE: // invalidates for shared 
// directory states

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id, data);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE
case INTERVENTION:

// remote_modified case
update_memory(); // for possible coherence error

// recovery
update_state(REMOTE_MODIFIED, original_id);
remote_response(DONE_INTERVENTION, original_id, my_id);
free_entry();
case NOT_OWNER: // data comes from memory, mimic

// intervention
switch(directory_state)
case LOCAL_SHARED:
case LOCAL_MODIFIED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
default:

error();
case RETRY:
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DATA_ONLY, original_srcid, my_id,

data);
remote_response(DONE, original_srcid, my_id);
free_entry();

case REMOTE_MODIFIED: // mask_id must match received_srcid
// or error condition

remote_request(READ_TO_OWN_OWNER, received_srcid,
my_id, my_id);

case SHARED:
remote_request(DKILL_SHARER, received_srcid, my_id,

my_id);
default:

error();
default:
error();

5.1.2.3.2 External Request State Machine
This state machine handles requests from the interconnect to the local memory. This may require making further
external requests.
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if (address_collision) // use collision tables
// in Chapter 7, “Address Collision Resolution Tables”

else // READ_TO_OWN_HOME
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id, data);

// after possible push
update_state(REMOTE_MODIFIED, received_srcid);
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid)

//intervention case
remote_request(READ_TO_OWN_OWNER, mask_id, my_id,

received_srcid);
else

error(); // he already owned it!
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)

//requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id, data);

// from memory
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid),

my_id, my_id);
endif;

default:
error();

endif;

5.1.2.4 Data Cache and Instruction Cache Invalidate Operations
This operation is used with coherent cache store-hit-on-shared, cache operations.

5.1.2.4.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(received_response)
case DONE: // invalidates for shared 

// directory states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
update_state(REMOTE_MODIFIED, original_srcid);
remote_response(DONE, original_srcid, my_id);
free_entry();

else
mask <= (mask ~= received_srcid);

// flip the responder’s shared bit
endif; // and wait for next DONE
case RETRY:
remote_request({DKILL_SHARER, IKILL_SHARER}, received_srcid,

my_id); // retry
default:
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error();

5.1.2.4.2 External Request State Machine
This state machine handles requests from the system to the local memory. This may require making further exter-
nal requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // DKILL_HOME or IKILL_HOME
assign_entry();
if (DKILL_HOME)

switch (directory_state)
case LOCAL_MODIFIED, // cache paradoxes; DKILL is

// write-hit-on-shared
case LOCAL_SHARED,
case REMOTE_MODIFIED:

error();
case SHARED: // this is the right case, send

// invalidates to the sharing list
local_request(DKILL);
if (mask == received_srcid

// requestor is only remote sharer
update_state(REMOTE_MODIFIED, received_srcid);
remote_response(DONE, received_srcid, my_id);
free_entry();

else // there are other remote sharers
remote_request(DKILL_SHARER,

(mask ~= received_srcid), my_id, NULL);
endif;

default:
error();

else // IKILL goes to everyone except the
// requestor

remote_request(IKILL_SHARER,
(mask <= (participant_list ~=
(received_srcid AND my_id), my_id);

endif;

5.1.2.5 Castout Operations
This operation is used to return ownership of a coherence granule to home memory, leaving it invalid in the cache. 

5.1.2.5.1 External Request State Machine
This machine handles requests from the system to the local memory. This may require making further external
requests.

assign_entry();
update_memory();
state_update(LOCAL_SHARED, my_id); // may be LOCAL_MODIFIED if the

// default is owned locally
remote_response(DONE, received_srcid, my_id);
free_entry();

5.1.2.6 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and performs a coherent write.

5.1.2.6.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(received_response)
case DONE: // invalidates for shared directory
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// states
if ((mask ~= (my_id OR received_id)) == 0)

// this is the last DONE
remote_response(DONE, original_srcid, my_id, my_id);
if (received_data)

// with original request or response
update_memory();

endif;
update_state(LOCAL_SHARED);// or LOCAL_MODIFIED
free_entry();

else
mask <= (mask ~= received_srcid);

// flip responder’s shared bit
endif; // and wait for next DONE

case NOT_OWNER:
switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
default:

error();
case RETRY:

switch(directory_state)
case LOCAL_SHARED,
case LOCAL_MODIFIED:

remote_response(DONE, original_srcid, my_id);
if (received_data)

// with original request
update_memory();

endif;
free_entry();

case REMOTE_MODIFIED:
remote_request(READ_TO_OWN_OWNER, received_srcid,

my_id, original_srcid);
case SHARED:

remote_request(DKILL_SHARER, received_srcid, my_id);
default:

error();
default:

error();

5.1.2.6.2 External Request State Machine
This state machine handles requests from the system to the local memory. This may require making further exter-
nal requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // FLUSH
assign_entry();
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switch (directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

local_request(READ_TO_OWN);
remote_response(DONE, received_srcid, my_id);

// after snoop completes
if (received_data) // from request or local response

update_memory();
endif;
update_state(LOCAL_SHARED, my_id);

// or LOCAL_MODIFIED
free_entry();

case REMOTE_MODIFIED:
if (mask_id ~= received_srcid) // owned elsewhere

remote_request(READ_TO_OWN_OWNER, mask_id, my_id,
received_srcid);

else // requestor owned it; shouldn’t 
// generate a flush

error();
endif;

case SHARED:
local_request(READ_TO_OWN);
if (mask == received_srcid)  // requestor is only remote sharer

remote_response(DONE, received_srcid, my_id);
// after snoop completes

if (received_data)// from request or response
update_memory();

endif;
update_state(LOCAL_SHARED, my_id); // or LOCAL_MODIFIED
free_entry();

else //there are other remote sharers
remote_request(DKILL_SHARER, (mask ~= received_srcid), my_id,

my_id);
endif;

default:
error();

endif;

5.1.2.7 I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.1.2.7.1 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of a third party.

switch(remote_response)
case INTERVENTION:

update_memory();
remote_response(DONE_INTERVENTION, original_srcid, my_id);
free_entry();

case NOT_OWNER, // data comes from memory, mimic
// intervention

case RETRY:
switch(directory_state)
case LOCAL_MODIFIED,
case LOCAL_SHARED:

remote_response(DATA_ONLY, original_srcid, my_id,
data);

remote_response(DONE_INTERVENTION, original_srcid,
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my_id);
free_entry();

case REMOTE_MODIFIED:// spin or wait for castout
remote_request(IO_READ_OWNER, received_srcid, my_id,

my_id);
default:

error();
default:

error();

5.1.2.7.2 External Request State Machine
This machine handles requests from the system to the local memory. This may require making further external
requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // IO_READ_HOME
assign_entry();
switch (directory_state)
case LOCAL_MODIFIED:

local_request(READ_LATEST);
remote_response(DONE, received_srcid, my_id, data);

// after push completes
free_entry();

case LOCAL_SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

case REMOTE_MODIFIED:
remote_request(IO_READ_OWNER, mask_id, my_id, received_srcid);

case SHARED:
remote_response(DONE, received_srcid, my_id, data);
free_entry();

default:
error();

endif;

5.1.3 Processor-only Processing Element
A processor-only processing element is much simpler than the assumed combined processing described in Chapter 6.
Much of the internal request, response, and external request state machines are removed. 

5.1.3.1 Read Operations
This operation is a coherent data cache read. 

5.1.3.1.1 Internal Request State Machine
This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request
// in progress or a cache

local_response(RETRY); // index hazard from a previous request
else // remote - we’ve got to go 

// to another module
assign_entry();
local_response(RETRY); // can’t guarantee data before a

// snoop yet
remote_request(READ_HOME, mem_id, my_id);

endif;

5.1.3.1.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
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sor.

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention, a
// DONE_INTERVENTIONshould come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(READ_HOME, received_srcid, my_id);
default

error();

5.1.3.1.3 External Request State Machine
This state machine handles read requests from the system to the local processor. This may require making further
external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // READ_OWNER
assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out

remote_response(NOT_OWNER, received_srcid, my_id);
default:
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error();
free_entry();

endif;

5.1.3.2 Instruction Read Operations
This operation is a partially coherent instruction cache read. 

5.1.3.2.1 Internal Request State Machine
This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external 
 // request in progress or a cache 

local_response(RETRY); // index hazard from a previous request
else // remote - we’ve got to go

// to another module
assign_entry();
local_response(RETRY);

// can’t guarantee data before a
// snoop yet

remote_request(IREAD_HOME, mem_id, my_id);
endif;

5.1.3.2.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor.

switch(remote_response)
case DONE:

local_response(SHARED); // when processor re-requests
return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
if (received_data_only_message)

free_entry();
else

// wait for a DATA_ONLY
endif;

case DATA_ONLY: // this is due to an intervention; a
// DONE_INTERVENTION should come
// separately

local_response(SHARED);
set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IREAD_HOME, received_srcid, my_id);
default

error();

5.1.3.2.3 External Request State Machine
This state machine handles instruction read requests from the system to the local processor. 

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // READ_OWNER request to our caches
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assign_entry();
local_request(READ); // spin until a valid response

// from caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
cache_state(SHARED or INVALID);

// surrender ownership
if (received_srcid == received_secid)

// original requestor is also home
remote_response(INTERVENTION, received_srcid,

my_id, data);
else

remote_response(DATA_ONLY, received_secid,
my_id, data);

remote_response(INTERVENTION, received_srcid,
my_id, data);

endif;
case INVALID: // must have cast it out

remote_response(NOT_OWNER, received_srcid, my_id);
default:

error();
free_entry();

endif;

5.1.3.3 Read for Ownership Operations
This is the coherent cache store miss operation.

5.1.3.3.1 Internal Request State Machine
This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request
// in progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to another

// module
assign_entry();
local_response(RETRY);
remote_request(READ_TO_OWN_HOME, mem_id, my_id);

endif;

5.1.3.3.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor.

switch (received_response)
case DONE:

local_response(EXCLUSIVE);
return_data();
free_entry();

case DONE_INTERVENTION:
set_received_done_message();
if (received_data_message)

free_entry();
else

// wait for DATA_ONLY
endif;

case DATA_ONLY:
set_received_data_message();
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local_response(EXCLUSIVE);
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif; // and wait for a DONE
case RETRY: // lost at remote memory so retry

remote_request(READ_TO_OWN_HOME, mem_id, my_id);
default:

error();

5.1.3.3.3 External Request State Machine
This state machine handles requests from the interconnect to the local processor. 

if (address_collision) // use collision tables
// in Chapter 7, “Address Collision Resolution Tables”

elseif(READ_TO_OWN_OWNER // request to our caches
assign_entry();
local_request(READ_TO_OWN); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push

cache_state(INVALID);
// surrender ownership

if (received_srcid == received_secid)
//the original request is from the home

remote_response(INTERVENTION, received_srcid, my_id,
data);

else // the original request is from a
// third party

remote_response(DATA_ONLY, received_secid, my_id,
data);

remote_response(INTERVENTION, received_srcid, my_id,
data);

endif;
free_entry();

case INVALID: // castout address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

else // DKILL_SHARER request to our caches
assign_entry();
local_request(READ_TO_OWN);

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID); // surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;
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5.1.3.4 Data Cache and Instruction Cache Invalidate Operations
This operation is used with coherent cache store-hit-on-shared, cache operations.

5.1.3.4.1 Internal Request State Machine
This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external request in 
// progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to another

// module
assign_entry();
local_response(RETRY);
remote_request({DKILL_HOME, IKILL_HOME}, mem_id, my_id);

endif;

5.1.3.4.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor.

switch (received_response)
case DONE:

local_response(EXCLUSIVE);
free_entry();

case RETRY:
remote_request({DKILL_HOME, IKILL_HOME}, received_srcid,
my_id);// retry the transaction

default:
error();

5.1.3.4.3 External Request State Machine
This state machine handles requests from the system to the local processor. 

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // DKILL_SHARER or IKILL_SHARER request to our caches
assign_entry();
local_request({READ_TO_OWN, IKILL});

// spin until a valid response from the
// caches

switch (local_response)
case SHARED,
case INVALID: // invalidating for shared cases

cache_state(INVALID);// surrender copy
remote_response(DONE, received_srcid, my_id);
free_entry();

default:
error();

endif;

5.1.3.5 Castout Operations
This operation is used to return ownership of a coherence granule to home memory, leaving it invalid in the cache.
A processor-only processing element is never the target of a castout operation. 

5.1.3.5.1 Internal Request State Machine
A castout may require local activity to flush all caches in the hierarchy and break possible reservations.

assign_entry();
local_response(OK);
remote_request(CASTOUT, mem_id, my_id, data);
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5.1.3.5.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor.

switch (received_response)
case DONE:

free_entry();
default:

error();

5.1.3.6 TLB Invalidate Entry, TLB Invalidate Entry Synchronize Operations
These operations are used for software coherence management of the TLBs.

5.1.3.6.1 Internal Request State Machine
The TLBIE and TLBSYNC transactions are always sent to all domain participants except the sender and are
always to the processor, not home memory.

assign_entry();
remote_request({TLBIE, TLBSYNC}, participant_id, my_id);
endif;

5.1.3.6.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor. The responses are always from a coherence participant, not a home memory. 

switch (received_response)
case DONE:

if ((mask ~= (my_id OR received_id)) == 0)
// this is the last DONE

free_entry();
else

mask <= (mask ~= received_srcid);
// flip the responder’s participant
// bit and wait for next DONE

endif;
case RETRY:

remote_request({TLBIE, TLBSYNC}, received_srcid, my_id, my_id);
default

error();

5.1.3.6.3 External Request State Machine
This state machine handles requests from the system to the local memory or the local processor. The requests are
always to the local caching hierarchy.

assign_entry();
local_request({TLBIE, TLBSYNC}); // spin until a valid response

// from the caches
remote_response(DONE, received_srcid, my_id);
free_entry();

5.1.3.7 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and performs a coherent write.

5.1.3.7.1 Internal Request State Machine
This state machine handles requests to remote memory from the local processor.

if (address_collision) // this is due to an external
// request in progress or a cache index

local_response(RETRY); // hazard from a previous request
else // remote - we’ve got to go to 

// another module
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assign_entry();
remote_request(FLUSH, mem_id, my_id, data);

// data is optional
endif;

5.1.3.7.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect on behalf of the local proces-
sor.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

// data is optional
default:

error();

5.1.3.7.3 External Request State Machine
This state machine handles requests from the system to the local processor. 

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else if (READ_TO_OWN_OWNER) // remote request to our caches
assign_entry();
local_request(READ_TO_OWN); // spin until a valid response 

// from the caches
switch (local_response)
case MODIFIED: // processor indicated a push, 

// wait for it
cache_state(INVALID);// surrender ownership
remote_response(DONE, received_srcid, my_id, data);

case INVALID:
// must have cast it out during an
// address collision

remote_response(NOT_OWNER, received_srcid, my_id);
default:

error();
free_entry();

else // DKILL_SHARER remote request
// to our caches

assign_entry();
local_request(DKILL); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // cache paradox

remote_response(ERROR, received_srcid, my_id);
case INVALID:

remote_response(DONE, received_srcid, my_id);
default:

error();
free_entry();

endif;

5.1.3.8 I/O Read Operations
This operation is used for I/O reads of globally shared memory space. A processor-only processing element never
initiates an I/O read operation. 
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5.1.3.8.1 External Request State Machine
This machine handles requests from the system to the local memory or the local processor. This may require mak-
ing further external requests.

if (address_collision) // use collision tables in
// Chapter 7, “Address Collision Resolution Tables”

else // IO_READ_OWNER request to our caches
assign_entry();
local_request(READ_LATEST); // spin until a valid response from

// the caches
switch (local_response)
case MODIFIED: // processor indicated a push;

// wait for it
if (received_srcid == received_secid)

// original requestor is also home
// module

remote_response(INTERVENTION, received_srcid, my_id,
data);

else
remote_response(DATA_ONLY, received_secid, my_id,

data);
remote_response(INTERVENTION, received_srcid, my_id);

endif;
case INVALID:   // must have cast it out during

// an address collision
remote_response(NOT_OWNER, received_srcid, my_id);

default:
error();

free_entry();
endif;

5.1.4 I/O Processing Element
The simplest GSM processing element is an I/O device. A RapidIO I/O processing element does not actually partici-
pate in the globally shared memory environment (it is defined as not in the coherence domain), but is able to read and
write data into the GSM address space through special I/O operations that provide for this behavior. These operations
are the I/O Read and Data Cache Flush operations. Other than the ability to read and write into the GSM address space,
an I/O device has no other operational requirements. Since the I/O processing element is not part of the coherence
domain, it is never the target of a coherence transaction and thus does not have to implement any of the related behav-
ior, including the address collision tables. 

Requirements for a specific I/O processing element, a RapidIO to PCI/PCI-X bridge, is discussed in “PCI Considera-
tions,” .

5.1.4.1 I/O Read Operations
This operation is used for I/O reads of globally shared memory space.

5.1.4.1.1 Internal Request State Machine
This state machine handles requests to remote memory.

remote_request(IO_READ_HOME, mem_id, my_id);

5.1.4.1.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect.

switch(remote_response)
case DONE:

return_data();
free_entry();

case DONE_INTERVENTION: // must be from third party
set_received_done_message();
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if (received_data_only_message)
free_entry();

else
// wait for a DATA_ONLY

endif;
case DATA_ONLY: // this is due to an intervention, a

// DONE_INTERVENTION should come
// separately

set_received_data_only_message();
if (received_done_message)

return_data();
free_entry();

else
return_data(); // OK for weak ordering

endif;
case RETRY:

remote_request(IO_READ_HOME, received_srcid, my_id);
default

error();

5.1.4.2 Data Cache Flush Operations
This operation returns ownership of a coherence granule to home memory and performs a coherent write.

5.1.4.2.1 Internal Request State Machine
This state machine handles requests to remote memory.

remote_request(FLUSH, mem_id, my_id, data);

5.1.4.2.2 Response State Machine
This state machine handles responses to requests made to the RapidIO interconnect.

switch (received_response)
case DONE:

local_response(OK);
free_entry();

case RETRY:
remote_request(FLUSH, received_srcid, my_id, data);

default:
error();

5.1.5 Switch Processing Element
A switch processing element is required to be able to route all defined packets. Since it is not necessary for a switch to
analyze a packet in order to determine how it should be treated outside of examining the priority and the destination
device ID, a switch processing element does not have any additional requirements to be used in a globally shared
memory environment.

5.2 Transaction to Priority Mappings
The Globally Shared Memory model does not have the concept of an end point to end point request transaction flow like
the I/O programming model. Instead, all transaction ordering is managed by the load-store units of the processors partici-
pating in the globally shared memory protocol. The GSM logical specification behaviors assume an unordered and
resource unconstrained communication fabric. The ordered fabric of the 8/16 LP-LVDS and the 1x/4x LP-Serial physical
layers requires the proper transaction to priority mappings to mimic the effect of an unordered fabric to suit the GSM
model. These mappings leverage the physical layer ordering and deadlock avoidance rules that are required by the I/O
Logical layer. In addition, it is assumed that the latency-critical GSM operations are of necessity higher priority than non-
coherent I/O traffic, therefore I/O operations are recommended to be assigned to the lowest system priority flow. 

Table  shows the GSM transaction to priority mappings. 
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Table7-1. Transaction to Priority Mapping 

Request transaction Request
Packet Priority

Response
Packet Priority

READ_TO_OWN_HOME 1 2 or 3

READ_HOME 1 2 or 3

IO_READ_HOME 1 2 or 3

IREAD_HOME 1 2 or 3

DKILL_HOME 1 2 or 3

IKILL_HOME 1 2 or 3

FLUSH (without data) 1 2 or 3

FLUSH (with data) 1 2 or 3

TLBIE 1 2 or 3

TLBSYNC 1 2 or 3

READ_OWNER 2 3

READ_TO_OWN_OWNER 2 3

IO_READ_OWNER 2 3

DKILL_SHARER 2 3

IKILL_SHARER 2 3

CASTOUT 2 3
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Partition VIII:

Error Management Extensions Specification
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VIII Partition VIII - Error Management Extensions Specification

1 Chapter 1 - Error Management Extensions

The error management extensions describe added requirements in all physical and logical layers. These extensions add defi-
nitions to bits that were previously reserved in the Port n Control CSR and add new registers that are contained within the
Error Management Extended Features Block. This chapter describes the behavior of a device when an error is detected and
how the new registers and bits are managed by software and hardware.

1.1 Physical Layer Extensions
The following registers and register bit extensions allow software to monitor and control the reporting of transmission
errors:

• Port n Error Detect CSR defined in Section 2.2.2.10: "Port n Error Detect CSR (Block Offset 0x40, 80,..., 400, 
Word 0)"

• Port n Error Rate Enable CSR defined in Section 2.2.2.11: "Port n Error Rate Enable CSR (Block Offset 0x40, 
80,..., 400, Word 1)"

• Port n Error Rate CSR defined in Section 2.2.2.17: "Port n Error Rate CSR (Block Offset 0x68, A8,..., 428, Word 
0)"

• Port n Error Rate Threshold CSR defined in Section 2.2.2.18: "Port n Error Rate Threshold CSR (Block Offset 
0x68, A8,..., 428, Word 1)"

• Port n Error Capture Attributes CSR defined in Section 2.2.2.12: "Port n Error Capture Attributes CSR (Block 
Offset 0x48, 88,..., 408, Word 0)" 

• Port n Error Capture CSR 0-3 defined in Section 2.2.2.13: "Port n Packet/Control Symbol Error Capture CSR 0 
(Block Offset 0x48, 88,..., 408, Word 1)" thru Section 2.2.2.16: "Port n Packet Error Capture CSR 3 (Block Offset 
0x58, 98,..., 418, Word 0)"

• Port-write Target device ID CSR defined in Section 2.2.2.8: "Port-write Target deviceID CSR (Block Offset 0x28 
Word 0)"

• (Extensions to the) Port n Control CSR defined in Section 2.1: "Additions to Existing Registers"
• (Extensions to the) Port n Error and Status CSR defined in Section 2.1: "Additions to Existing Registers"

1.1.1 Port Error Detect, Enable and Capture CSRs
The occurrence of a transmission error shall be logged by hardware by setting the appropriate error indication bit in the
Port n Error Detect CSR. Transmission errors that are enabled for error capture and error counting will have the corre-
sponding bit set by software in the Port n Error Rate Enable CSR. When the Capture Valid Info status bit is not set in
the Port n Error Capture Attributes CSR, information about the next enabled transmission error shall be saved to the
Port n Error Capture CSRs. The Info Type and Error Type fields shall be updated and the Capture Valid Info status bit
shall be set by hardware in the Port n Error Capture Attributes CSR to lock the error capture registers. The first 16
bytes of the packet header or the 4 bytes of the control symbol that have a detected error are saved in the capture CSRs.
Packets smaller than 16 bytes are captured in their entirety. The Port n Error Capture CSRs and the Port n Error Cap-
ture Attributes CSR are not overwritten by hardware with error capture information for subsequent errors until soft-
ware writes a zero to the Capture Valid Info bit.

The Port n Error Detect CSR does not lock so subsequent error indications shall also be logged there by hardware. By
reading the register, software may see the types of transmission errors that have occurred. The Port n Error Detect CSR
is cleared by writing it with all logic 0s.

1.1.2 Error Reporting Thresholds
Transmission errors are normally hidden from system software since they may be recovered with no loss of data and
without software intervention. Two thresholds are defined in the Port n Error Rate Threshold CSR which can be set to
force a report to system software when the link error rate reaches a level that is deemed by the system to be either
degraded or unacceptable. The two thresholds are respectively the Degraded Threshold and the Failed Threshold.
These thresholds are used as follows.
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When the error rate counter is incremented, the Error Rate Degraded Threshold Trigger provides a threshold value
that, when equal to or exceeded by the value in the Error Rate Counter in the Port n Error Rate register, shall cause the
error reporting logic to set the Output Degraded-encountered bit in the Port n Error and Status CSR, and notify the sys-
tem software as described in Section : "8.3 System Software Notification of Error". 

The Error Rate Failed Threshold Trigger, if enabled, shall be larger than the degraded threshold trigger. It provides a
threshold value that, when equal to or exceeded by the value in the Error Rate Counter, shall trigger the error reporting
logic to set the Output Failed-encountered bit in the Port n Error and Status CSR, and notify system software as
described in Section : "8.3 System Software Notification of Error".

No action shall be taken if the Error Rate Counter continues to exceed either threshold value after initial notification
when additional errors are detected. No action shall be taken when the Error Rate Counter drops below either thresh-
old. 

1.1.3 Error Rate Control and Status
The fields in the Port n Error Rate CSR are used to monitor the error rate of the link connected to port n.

The Error Rate Bias field determines the rate at which the Error Rate Counter is decremented and defines the accepta-
ble error rate of the link for error reporting purposes. In the absence of additional counted link errors, this mechanism
allows the system to recover from both Failed and Degraded levels of operation without a software reset of the Error
Rate Counter. If the link error rate is less than the decrement rate specified in the Error Rate Bias field, the value of the
Error Rate counter will rarely be greater than 0x01 or 0x02. 

The Error Rate Counter shall increment when a physical layer error is detected whose associated enable bit is set in the
Port n Error Rate Enable register. The Error Rate Counter shall decrement at the rate specified by the Error Rate Bias
field of the Port n Error Rate CSR. The Error Rate Counter shall not underflow (shall not decrement when equal to
0x00) and shall not overflow (shall not increment when equal to 0xFF). The incrementing and decrementing of the
Error Rate Counter are in no way affected by the values in the Degraded and Failed thresholds. Software may reset the
Error Rate Counter at any time. 

The Error Rate Recovery field defines how far above the Error Rate Failed Threshold Trigger in the Port n Error Rate
Threshold Register the Error Rate Counter is allowed to count. In the absence of additional counted errors, this allows
software to control the length of time required for the value of the Error Rate Counter to drop below both the Failed
and Degraded Thresholds. 

The Peak Error Rate field shall contain the largest value encountered by the Error Rate Counter. This field is loaded
whenever the current value of the Peak Error Rate field is exceeded by the value of the Error Rate Counter. 

1.1.4 Port Behavior When Error Rate Failed Threshold is Reached
The behavior of a port when the Error Rate Counter in the Port n Error Rate CSR reaches the Error Rate Failed Thresh-
old and the threshold is enabled depends upon the values of the Stop on Port Failed-encountered Enable and the Drop
Packet Enable bits in the Port n Control CSR. The Table  I-I below defines the required behavior. 
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1.1.5 Packet Timeout Mechanism in a Switch Device
In some systems, it is either desirable or necessary to bound the length of time a packet can remain in a switch. To ena-
ble this functionality, a switch shall monitor the length of time each packet accepted by one of its ports has been in the
switch. The acceptance of a packet by a port is signaled by the port issuing a packet-accepted control symbol for the
packet. The timing begins when the port accepts the packet.

If a packet remains in a switch longer than the Time-to-Live time specified by the Time-to-Live field of the Packet
Time-to-Live CSR as defined in Section 2.2.2.9: "Packet Time-to-live CSR (Block Offset 0x28 Word 1)", the packet
shall be discarded rather than forwarded, the Output Packet-Dropped bit shall be set in the Port n Error and Status CSR
and the system shall be notified as described in Section : "8.3 System Software Notification of Error".

1.2 Logical and Transport Layer Extensions
While the RapidIO link may be working properly, an end point processing element may encounter logical or transport
layer errors, or other errors unrelated to its RapidIO ports, while trying to complete a transaction. The “ERROR” status
response transaction is the mechanism for the target device to indicate to the source that there is a problem completing the
request. Experiencing a time-out waiting for a response is also a symptom of an end point or switch fabric with a prob-
lem. These types of errors are logged and reporting enabled with a set of registers that are separate from those used for the
Physical Layer errors.

• Logical/Transport Layer Error Detect CSR defined in Section 2.2.2.2: "Logical/Transport Layer Error Detect CSR 
(Block Offset 0x08 Word 0)"

• Logical/Transport Layer Error Enable CSR defined in Section 2.2.2.3: "Logical/Transport Layer Error Enable 
CSR (Block Offset 0x08 Word 1)"

• Logical/Transport Layer Capture CSRs defined in Section 2.2.2.4: "Logical/Transport Layer High Address 
Capture CSR (Block Offset 0x10 Word 0)" to Section 2.2.2.7: "Logical/Transport Layer Control Capture CSR 

Table 1-1. Port Behavior when Error Rate Failed Threshold has been hit

Stop on Port 
Failed 
Encoutered 
Enable

Drop Packet 
Enable Port Behavior Comments

0 0 The port shall continue to attempt to transmit 
packets to the connected device if the Output 
Failed-encountered bit is set and/or if the Error 
Rate Failed threshold has been met or exceeded..

All devices

0 1 The port shall discard packets that receive a 
Packet-not-accepted control symbol when the 
Error Rate Failed Threshold has been met or 
exceeded. Upon discarding a packet, the port 
shall set the Ourput Packet-dropped bit in the 
Port n Error and Status CSR. If the output port 
“heals”, the Error Rate Counter falls below the 
Error Rate Failed Threshold, the output port shall 
continue to attempt to forward all packets.

Switch Device Only

1 0 The port shall stop attempting to send packets to 
the connected device when the Output Failed-
encountered bit is set. The output port will 
congest.

All devices.

1 1 The port shall discard all output packets without 
attempting to send when the port’s Output Failed-
encountered bit is set. Upon discarding a packet, 
the port shall set Output Packet-dropped bit in the 
Port n Error and Status CSR.

All devices.
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(Block Offset 0x18 Word 1)"

1.2.1 Logical/Transport Error Detect, Enable and Capture CSRs
When a logical or transport layer error is detected, the appropriate error bit shall be set by the hardware in the Logical/
Transport Layer Error Detect CSR. If the corresponding bit is also set in the Logical/Transport Layer Error Enable
CSR, the detect register shall lock, the appropriate information is saved in the Logical/Transport Layer Capture regis-
ters, all resources held by the transaction are freed, and system software is notified of the error as described in Section
: "8.3 System Software Notification of Error". If multiple enabled errors occur during the same clock cycle, multiple
bits will be set in the detect register and the contents of the Logical/Transport Layer Capture registers are implementa-
tion dependent. Once locked, subsequent errors will not set another error detect bit. The contents of the Logical/Trans-
port Capture CSRs are valid if the bitwise AND of the Logical/Transport Layer Error Detect CSR and the Logical/
Transport Layer Error Detect Enable CSR is not equal to zero (0x00000000).

Software shall write the Logical/Transport Detect register with all logic 0s to clear the error detect bits or a corre-
sponding enable bit to unlock the register. Any other recovery actions associated with these types of errors are system
dependent and outside the scope of this specification.

1.2.2 Message Passing Error Detection
Message passing is a special case of logical layer error recovery requiring error detection at both the source and desti-
nation ends of the message. The source of the message has the request-to-response time-out (defined in the Port
Response Time-out Control CSR in the RapidIO Physical Layer specifications) to detect lost request or response pack-
ets in the switch fabric. However, in order to not hang the recipient mailbox in the case of a lost request packet for a
multiple packet message, the recipient mailbox shall have an analogous response-to-request time-out. This time-out is
for sending a response packet to receiving the next request packet of a given message operation, and has the same
value as the request-to-response time-out that is already specified. The Logical/Transport Layer Control Capture CSR
contains the ‘msg info’ field to capture the critical information of the last received (or sent) message segment before
time-out. 

1.3 System Software Notification of Error
System software is notified of logical, transport, and physical layer errors in two ways. An interrupt is issued to the local
system by an end point device, the method of which is not defined in this specification, or a Maintenance port-write oper-
ation is issued by a switch device. Maintenance port-write operations are sent to a predetermined system host (defined in
the Port-write Target deviceID CSR in Section 2.2.2.8: "Port-write Target deviceID CSR (Block Offset 0x28 Word 0)").
The sending device sets the Port-write Pending status bit in the Port n Error and Status CSR. A 16 byte data payload of
the Maintenance Port-write packet contains the contents of several CSRs, the port on the device that encountered the error
condition (for port-based errors), and some optional implementation specific additional information as shown in Table .
Software indicates that it has seen the port-write operation by clearing the Port-write Pending status bit.

The Component Tag CSR is defined in the RapidIO Partition III: Common Transport Specification, and is used to
uniquely identify the reporting device within the system. A Port ID field, the Logical/Transport Layer Detect CSR
defined in Section 2.2.2.2: "Logical/Transport Layer Error Detect CSR (Block Offset 0x08 Word 0)", and the Port n Error
Detect CSR defined in Section 2.2.2.10: "Port n Error Detect CSR (Block Offset 0x40, 80,..., 400, Word 0)" are used to
describe the encountered error condition. 

1.4 Mechanisms for Software Debug
In most systems, it is difficult to verify the error handling software. The Error management extensions make some regis-

Table 1-2. Port-write Packet Data Payload for Error Reporting

Data 
Payload 

Byte 
Offset

Word 0 Word 1

0x0 Component Tag CSR Port n Error Detect CSR

0x8 Implementation specific Port ID 
(byte)

Logical/Transport Layer Error Detect CSR
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ters writable for easier debug.

The Logical/Transport Layer Error Detect register and the Logical/Transport Layer Error Capture registers are writable
by software to allow software debug of the system error recovery mechanisms. For software debug, software must write
the Logical/Transport Layer Error capture registers with the desired address and device id information then write the Log-
ical/Transport Layer Error Detect register to set an error bit and lock the registers. When an error detect bit is set, the
hardware will inform the system software of the error using its standard error reporting mechanism. After the error has
been reported, the system software may read and clear registers as necessary to complete its error handling protocol test-
ing.

The Port n Error Detect register and the Port n Error Capture registers are also writable by software to allow software
debug of the system error recovery and thresholding mechanism. For debug, software must write the Port n Attributes
Error Capture CSR to set the Capture Valid Info bit and then the packet/control symbol information in the other capture
registers. Each write of a non-zero value to the Port n Error Detect CSR shall cause the Error Rate Counter to increment
if the corresponding error bit is enabled in the Port n Error Rate Enable CSR. When a threshold is reached, the hardware
will inform the system software of the error using its standard error reporting mechanism. After the error has been
reported, the system software may read and clear registers as necessary to complete its error handling protocol testing.

2 Chapter 2- Error Management Registers

This section describes the Error Management Extended Features block, and adds a number of new bits to the existing stand-
ard physical layer registers. ‘End-point only’ and ‘switch only’ register bits shall be considered reserved when the registers
are implemented on devices for which these bits are not required.

2.1 Additions to Existing Registers
The following bits are added to the parallel and serial logical layer specification Port n Control CSRs. 

The following bits are added to the parallel and serial specification Port n Error and Status CSRs. 

Table 2-1. Bit Settings for Port n Control CSRs

Bit Name Reset 
Value Description

28 Stop on Port Failed-
encountered Enable

0b0 This bit is used with the Drop Packet Enable bit to force certain behavior 
when the Error Rate Failed Threshold has been met or exceeded. See 
Section 1.1.4: "Port Behavior When Error Rate Failed Threshold is 
Reached" of the Partition VIII: Error Management Extensions for detailed 
requirements.

29 Drop Packet Enable 0b0 This bit is used with the Stop on Port Failed-encountered Enable bit to 
force certail behavior when the Error Rate Failed Threshold has been met 
or exceeded. See Section 1.1.4: "Port Behavior When Error Rate Failed 
Threshold is Reached" of the Partition VIII: Error Management Extensions 
for detailed requirements.

30 Port Lockout 0b0 When this bit is cleared, the packets that may be received and issued are 
controlled by the state of the Output Port Enable and Input Port Enable bits 
in the Port n Control CSR.
When this bit is set, this port is stopped and is not enabled to issue or 
receive any packets; the input port can still follow the training procedure 
and can still send and respond to link-requests; all received packets return 
packet-not-accepted control symbols to force an error condition to be 
signaled by the sending device
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2.2 New Error Management Registers
This section describes the Extended Features block (EF_ID=0h0007) that allows an external processing element to man-
age the error status and reporting for a processing element. This chapter only describes registers or register bits defined
by this extended features block. All registers are 32-bits and aligned to a 32-bit boundary. 

Table  describes the required behavior for accesses to reserved register bits and reserved registers for the RapidIO
Extended Features register space, 

2.2.1 Register Map
Table Table shows the register map for the error management registers. This register map is currently only defined for
devices with up to 16 RapidIO ports, but can be extended or shortened if more or less port definitions are required for
a device. For example, a device with four RapidIO ports is only required to use register map space corresponding to
offsets [EF_PTR+0x00] through [EF_PTR+0x138]. Register map offset [EF_PTR+0x140] can be used for another
Extended Features block.

Table 2-2. Bit Settings for Port n Error and Status CSRs

Bit Name Reset 
Value Description

5 Output Packet-dropped 0b0 Output port has discarded a packet. Once set remains set until written with 
a logic 1 to clear.

6 Output Failed-
encountered

0b0 Output port has encountered a failed condition, meaning that the port’s 
failed error threshold has been reached in the Port n Error Rate Threshold 
register. Once set remains set until written with a logic 1 to clear.

7 Output Degraded-
encountered

0b0 Output port has encountered a degraded condition, meaning that the port’s 
degraded error threshold has been reached in the Port n Error Rate 
Threshold register. Once set remains set until written with a logic 1 to 
clear.

Table 2-3. Extended Feature Space Reserved Access Behavior

Byte Offset Space Name Item Initiator behavior Target behavior

0x100–
FFFC

Extended Features Space Reserved bit read - ignore returned 
value1

1. Do not depend on reserved bits being a particular value; use appropriate masks to extract defined bits from the read value. 

read - return logic 0

write - preserve current value2

2. All register writes shall be in the form: read the register to obtain the values of all reserved bits, merge in the desired values 
for defined bits to be modified, and write the register, thus preserving the value of all reserved bits. 

write - ignored

Implementation
-defined bit

read - ignore returned 
value unless 
implementation-defined 
function understood

read - return 
implementation-defined 
value

write - preserve current 
value if implementation-
defined function not 
understood

write - implementation-
defined

Reserved 
register

read - ignore returned 
value

read - return logic 0s

write - write - ignored
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Table 2-4. Error Reporting Register Map

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)

0x0 Error Reporting Block Header Reserved

0x8 Logical/Transport Layer Error Detect CSR Logical/Transport Layer Error Enable CSR

0x10 Logical/Transport Layer High Address Capture 
CSR

Logical/Transport Layer Address Capture CSR

0x18 Logical/Transport Layer Device ID CSR Logical/Transport Layer Control Capture CSR

0x20 Reserved

0x28 Port-write Target deviceID CSR Packet Time-to-live CSR

0x30 Reserved

0x38 Reserved

0x40 Port 0 Error Detect CSR Port 0 Error Rate Enable CSR

0x48 Port 0 Attributes Error Capture CSR Port 0 Packet/Control Symbol Error Capture 
CSR 0

0x50 Port 0 Packet Error Capture CSR 1 Port 0 Packet Error Capture CSR 2

0x58 Port 0 Packet Error Capture CSR 3 Reserved

0x60 Reserved

0x68 Port 0 Error Rate CSR Port 0 Error Rate Threshold CSR

0x70 Reserved

0x78 Reserved

0x80 Port 1 Error Detect CSR Port 1 Error Rate Enable CSR

0x88 Port 1 Error Capture Attributes CSR Port 1 Packet/Control Symbol Error Capture 
CSR 0

0x90 Port 1 Packet Error Capture CSR 1 Port 1 Packet Error Capture CSR 2

0x98 Port 1 Packet Error Capture CSR 3 Reserved

0xA0 Reserved

0xA8 Port 1 Error Rate CSR Port 1 Error Rate Threshold CSR

0xB0 Reserved

0xB8 Reserved

0xC0–
3F8 Assigned to Port 2-14 CSRs

0x400 Port 15 Error Detect CSR Port 15 Error Rate Enable CSR

0x408 Port 15 Error Capture Attributes CSR Port 15 Packet/Control Symbol Error Capture 
CSR 0

0x410 Port 15 Packet Error Capture CSR 1 Port 15 Packet Error Capture CSR 2

0x418 Port 15 Packet Error Capture CSR 3 Reserved
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2.2.2 Command and Status Registers (CSRs)
Refer to Table  for the required behavior for access to reserved registers and register bits.

2.2.2.1 Error Reporting Block Header (Block Offset 0x0 Word 0)
The error reporting block header register contains the EF_PTR to the next EF_BLK and the EF_ID that identifies
this as the error reporting block header. 

2.2.2.2 Logical/Transport Layer Error Detect CSR (Block Offset 0x08 Word 0)
This register indicates the error that was detected by the Logical or Transport logic layer. Multiple bits may get set
in the register if simultaneous errors are detected during the same clock cycle that the errors are logged.

0x420 Reserved

0x428 Port 15 Error Rate CSR Port 15 Error Rate Threshold CSR

0x430 Reserved

0x438 Reserved

Table 2-5. Bit Settings for Port Maintenance Block Header

Bit Name Reset 
Value Description

0-15 EF_PTR Hard wired pointer to the next block in the data structure, if one exists

16-31 EF_ID 0x0007 Hard wired Extended Features ID

Table 2-6. Bit Settings for Logical/Transport Layer Error Detect CSR

Bit Name Reset 
Value Description

0 IO error response 0b0 Received a response of ‘ERROR’ for an IO Logical Layer Request.
(end point device only)

1 Message error response 0b0 Received a response of ‘ERROR’ for an MSG Logical Layer Request.
(end point device only)

2 GSM error response 0b0 Received a response of ‘ERROR’ for a GSM Logical Layer Request.
(end point device only)

3 Message Format Error 0b0 Received MESSAGE packet data payload with an invalid size or segment 
(MSG logical)
(end point device only)

4 Illegal transaction 
decode

0b0 Received illegal fields in the request/response packet for a supported 
transaction (IO/MSG/GSM logical)
(switch or endpoint device)

5 Illegal transaction target 
error

0b0 Received a packet that contained a destination ID that is not defined for this 
end point. End points with multiple ports and a built-in switch function may 
not report this as an error (Transport) 
(end point device only)

6 Message Request Time-
out

0b0 A required message request has not been received within the specified time-
out interval (MSG logical)
(end point device only)

Table 2-4. Error Reporting Register Map(Continued)

Block Byte 
Offset

Register Name
(Word 0)

Register Name
(Word 1)
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2.2.2.3 Logical/Transport Layer Error Enable CSR (Block Offset 0x08 Word 1)
This register contains the bits that control if an error condition locks the Logical/Transport Layer Error Detect and
Capture registers and is reported to the system host. 

7 Packet Response Time-
out

0b0 A required response has not been received within the specified time out 
interval (IO/MSG/GSM logical) 
(end point device only)

8 Unsolicited Response 0b0 An unsolicited/unexpected Response packet was received (IO/MSG/GSM 
logical; only Maintenance response for switches) 
(switch or endpoint device)

9 Unsupported Transaction 0b0 A transaction is received that is not supported in the Destination Operations 
CAR (IO/MSG/GSM logical; only Maintenance port-write for switches)
(switch or endpoint device)

10-23 — Reserved

24-31 Implementation Specific 
error

0x00 An implementation specific error has occurred. 
(switch or end point device)

Table 2-7. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name Reset 
Value Description

0 IO error response enable 0b0 Enable reporting of an IO error response. Save and lock original request 
transaction capture information in all Logical/Transport Layer Capture CSRs. 
(end point device only)

1 Message error response 
enable

0b0 Enable reporting of a Message error response. Save and lock transaction 
capture information in all Logical/Transport Layer Capture CSRs. 
(end point device only)

2 GSM error response 
enable 

0b0 Enable reporting of a GSM error response. Save and lock original request 
address in Logical/Transport Layer Address Capture CSRs. Save and lock 
transaction capture information in all Logical/Transport Layer Device ID and 
Control CSRs. 
(end point device only)

3 Message Format Error 
enable

0b0 Enable reporting of a message format error. Save and lock transaction capture 
information in Logical/Transport Layer Device ID and Control Capture 
CSRs. 
(end point device only)

4 Illegal transaction 
decode enable

0b0 Enable reporting of an illegal transaction decode error Save and lock 
transaction capture information in Logical/Transport Layer Device ID and 
Control Capture CSRs. 
(switch or end-point device)

5 Illegal transaction target 
error enable

0b0 Enable reporting of an illegal transaction target error. Save and lock 
transaction capture information in Logical/Transport Layer Device ID and 
Control Capture CSRs. 
(end point device only)

6 Message Request time-
out enable

0b0 Enable reporting of a Message Request time-out error. Save and lock 
transaction capture information in Logical/Transport Layer Device ID and 
Control Capture CSRs for the last Message request segment packet received.
(end point device only)

Table 2-6. Bit Settings for Logical/Transport Layer Error Detect CSR

Bit Name Reset 
Value Description
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2.2.2.4 Logical/Transport Layer High Address Capture CSR (Block Offset 0x10 Word 0)
This register contains error information. It is locked when a Logical/Transport error is detected and the correspond-
ing enable bit is set. This register is only required for end point devices that support 66 or 50 bit addresses. 

2.2.2.5 Logical/Transport Layer Address Capture CSR (Block Offset 0x10 Word 1)

This register contains error information. It is locked when a Logical/Transport error is detected and the
corresponding enable bit is set. 

2.2.2.6 Logical/Transport Layer Device ID Capture CSR (Block Offset 0x18 Word 0)
This register contains error information. It is locked when an error is detected and the corresponding enable bit is
set. 

7 Packet Response Time-
out error enable 

0b0 Enable reporting of a packet response time-out error. Save and lock original 
request address in Logical/Transport Layer Address Capture CSRs. Save and 
lock original request Destination ID in Logical/Transport Layer Device ID 
Capture CSR.
(end point device only)

8 Unsolicited Response 
error enable

0b0 Enable reporting of an unsolicited response error. Save and lock transaction 
capture information in Logical/Transport Layer Device ID and Control 
Capture CSRs.
(switch or end-point device)

9 Unsupported Transaction 
error enable

0b0 Enable reporting of an unsupported transaction error. Save and lock 
transaction capture information in Logical/Transport Layer Device ID and 
Control Capture CSRs.
(switch or end-point device)

10-23 — Reserved

24-31 Implementation Specific 
error enable

0x00 Enable reporting of an implementation specific error has occurred. Save and 
lock capture information in appropriate Logical/Transport Layer Capture 
CSRs.

Table 2-8. Bit Settings for Logical/Transport Layer High Address Capture CSR

Bit Name Reset 
Value Description

0-31 address[0-31] All 0s Most significant 32 bits of the address associated with the error (for requests, 
for responses if available)

Figure 2-9. Bit Settings for Logical/Transport Layer Address Capture CSR

Bit Name Reset 
Value Description

0-28 address[32-60] All 0s Least significant 29 bits of the address associated with the error (for requests, 
for responses if available)

29 — Reserved

30-31 xamsbs 0b00 Extended address bits of the address associated with the error (for requests, 
for responses if available)

Table 2-7. Bit Settings for Logical/Transport Layer Error Enable CSR

Bit Name Reset 
Value Description
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2.2.2.7 Logical/Transport Layer Control Capture CSR (Block Offset 0x18 Word 1)
This register contains error information. It is locked when a Logical/Transport error is detected and the correspond-
ing enable bit is set. 

2.2.2.8 Port-write Target deviceID CSR (Block Offset 0x28 Word 0)
This register contains the target deviceID to be used when a device generates a Maintenance port-write operation to
report errors to a system host. 

2.2.2.9 Packet Time-to-live CSR (Block Offset 0x28 Word 1)
The Packet Time-to-live register specifies the length of time that a packet is allowed to exist within a switch device.
The maximum value of the Time-to-live variable (0xFFFF) shall correspond to 100 msec. +/-34%. The resolution
(minimum step size) of the Time-to-live variable shall be (maximum value of Time-to-live)/(216-1). The reset value
is all logic 0s, which disables the Time-to-live function so that a packet never times out. This register is not required
for devices without switch functionality. 

Table 2-10. Bit Settings for Logical/Transport Layer Device ID Capture CSR

Bit Name Reset 
Value Description

0-7 MSB destinationID 0x00 Most significant byte of the destinationID associated with the error (large 
transport systems only)

8-15 destinationID 0x00 The destinationID associated with the error

16-23 MSB sourceID 0x00 Most significant byte of the sourceID associated with the error (large 
transport systems only)

24-31 sourceID 0x00 The sourceID associated with the error

Table 2-11. Bit Settings for Logical/Transport Layer Header Capture CSR 1

Bit Name Reset 
Value Description

0-3 ftype 0x0 Format type associated with the error

4-7 ttype 0x0 Transaction type associated with the error

8-15 msg info 0x00 letter, mbox, and msgseg for the last Message request received for the 
mailbox that had an error (Message errors only)

16-31 Implementation specific 0x0000 Implementation specific information associated with the error

Table 2-12. Bit Settings for Port-write Target deviceID CSR

Bit Name Reset 
Value Description

0-7 deviceID_msb 0x00 This is the most significant byte of the port-write target deviceID (large 
transport systems only)

8-15 deviceID 0x00 This is the port-write target deviceID

16-31 — Reserved

 Table 2-13. Bit Settings for Packet Time-to-live CSR

Bit Name Reset 
Value Description

0-15 Time-to-live value 0x0000 Maximum time that a packet is allowed to exist within a switch device

16-31 — Reserved
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2.2.2.10 Port n Error Detect CSR (Block Offset 0x40, 80,..., 400, Word 0)
The Port n Error Detect Register indicates transmission errors that are detected by the hardware. 

2.2.2.11 Port n Error Rate Enable CSR (Block Offset 0x40, 80,..., 400, Word 1)
This register contains the bits that control when an error condition is allowed to increment the error rate counter in
the Port n Error Rate Threshold Register and lock the Port n Error Capture registers. 

Table 2-14. Bit Settings for Port n Error Detect CSR

Bit Name Reset 
Value Description

0 Implementation specific 
error

0b0 An implementation specific error has been detected

1-7 — Reserved

8 Received S-bit error 0b0 Received a packet/control symbol with an S-bit parity error (parallel)

9 Received corrupt 
control symbol

0b0 Received a control symbol with a bad CRC value (serial)
Received a control symbol with a true/complement mismatch (parallel)

10 Received acknowledge 
control symbol with 
unexpected ackID

0b0 Received an acknowledge control symbol with an unexpected ackID 
(packet-accepted or packet_retry)

11 Received packet-not-
accepted control symbol

0b0 Received packet-not-accepted acknowledge control symbol

12 Received packet with 
unexpected ackID

0b0 Received packet with unexpected ackID value - out-of-sequence ackID 

13 Received packet with 
bad CRC

0b0 Received packet with a bad CRC value

14 Received packet 
exceeds 276 Bytes

0b0 Received packet which exceeds the maximum allowed size

15-25 — Reserved

26 Non-outstanding ackID 0b0 Link_response received with an ackID that is not outstanding

27 Protocol error 0b0 An unexpected packet or control symbol was received

28 Frame toggle edge error 0b0 FRAME signal toggled on falling edge of receive clock (parallel)

29 Delineation error 0b0 FRAME signal toggled on non-32-bit boundary (parallel)
Received unaligned /SC/ or /PD/ or undefined code-group (serial)

30 Unsolicited 
acknowledge control 
symbol

0b0 An unexpected acknowledge control symbol was received

31 Link time-out 0b0 An acknowledge or link-response control symbol is not received within the 
specified time-out interval

Table 2-15. Bit Settings for Port n Error Rate Enable CSR

Bit Name Reset 
Value Description

0 Implementation specific 
error enable

0b0 Enable error rate counting of implementation specific errors

1-7 — Reserved

8 Received S-bit error 
enable

0b0 Enable error rate counting of a packet/control symbol with an S-bit parity 
error (parallel)

9 Received control 
symbol with bad CRC 
enable

0b0 Enable error rate counting of a corrupt control symbol
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2.2.2.12 Port n Error Capture Attributes CSR (Block Offset 0x48, 88,..., 408, Word 0)
The error capture attribute register indicates the type of information contained in the Port n error capture registers.
In the case of multiple detected errors during the same clock cycle one of the errors must be reflected in the Error
type field. The error that is reflected is implementation dependent. 

10 Received out-of-
sequence acknowledge 
control symbol enable

0b0 Enable error rate counting of an acknowledge control symbol with an 
unexpected ackID

11 Received packet-not-
accepted control symbol 
enable

0b0 Enable error rate counting of received packet-not-accepted control symbols

12 Received packet with 
unexpected ackID 
enable

0b0 Enable error rate counting of packet with unexpected ackID value - out-of-
sequence ackID 

13 Received packet with 
Bad CRC enable

0b0 Enable error rate counting of packet with a bad CRC value

14 Received packet 
exceeds 276 Bytes 
enable

0b0 Enable error rate counting of packet which exceeds the maximum allowed 
size

15-25 — Reserved

26 Non-outstanding ackID 
enable

0b0 Enable error rate counting of link-responses received with an ackID that is 
not outstanding

27 Protocol error enable 0b0 Enable error rate counting of protocol errors

28 Frame toggle edge error 
enable

0b0 Enable error rate counting of frame toggle edge errors

29 Delineation error 0b0 Enable error rate counting of delineation errors

30 Unsolicited 
acknowledge control 
symbol

0b0 Enable error rate counting of unsolicited acknowledge control symbol 
errors

31 Link time-out 0b0 Enable error rate counting of link time-out errors

 Table 2-16. Bit Settings for Port n Attributes Error Capture CSR

Bit Name Reset 
Value Description

0-1 Info type 0b00 Type of information logged
00 - packet
01 - control symbol (only error capture register 0 is valid)
10 - implementation specific (capture register contents are 
implementation specific)
11 - undefined (S-bit error), capture as if a packet (parallel physical 
layer only)

2 — Reserved

3-7 Error type 0x00 The encoded value of the bit in the Port n Error Detect CSR that 
describes the error captured in the Port n Error Capture CSRs.

8-27 Implementation 
Dependent

All 0s Implementation Dependent Error Information

28-30 — Reserved

Table 2-15. Bit Settings for Port n Error Rate Enable CSR

Bit Name Reset 
Value Description



- 406 -

2.2.2.13 Port n Packet/Control Symbol Error Capture CSR 0 (Block Offset 0x48, 88,..., 408, Word 1)
Captured control symbol information includes the true and complement of the control symbol. This is exactly what
arrives on the RapidIO interface with bits 0-7 of the capture register containing the least significant byte of the 32-
bit quantity. This register contains the first 4 bytes of captured packet symbol information.

2.2.2.14 Port n Packet Error Capture CSR 1 (Block Offset 0x50, 90,..., 410, Word 0)
Error capture register 1 contains bytes 4 through 7 of the packet header.

2.2.2.15 Port n Packet Error Capture CSR 2 (Block Offset 0x50, 90,..., 410, Word 1)
Error capture register 2 contains bytes 8 through 11 of the packet header.

2.2.2.16 Port n Packet Error Capture CSR 3 (Block Offset 0x58, 98,..., 418, Word 0)
Error capture register 3 contains bytes 12 through 15 of the packet header.

2.2.2.17 Port n Error Rate CSR (Block Offset 0x68, A8,..., 428, Word 0)
The Port n Error Rate register is a 32-bit register used with the Port n Error Rate Threshold register to monitor and
control the reporting of transmission errors, shown in Table 2-21. 

31 Capture valid info 0b0 This bit is set by hardware to indicate that the Packet/control 
symbol capture registers contain valid information. For control 
symbols, only capture register 0 will contain meaningful 
information.

 Table 2-17. Bit Settings for Port n Packet/Control Symbol Error Capture CSR 0

Bit Name Reset 
Value Description

0-31 Capture 0 All 0s True and Complement of Control Symbol (parallel) or Control 
Character and Control Symbol (serial) or Bytes 0 to 3 of Packet 
Header

 Table 2-18. Bit Settings for Port n Packet Error Capture CSR 1

Bit Name Reset 
Value Description

0-31 Capture 1 All 0s Bytes 4 thru 7 of the packet header.

 Table 2-19. Bit Settings for Port n Packet Error Capture CSR 2

Bit Name Reset 
Value Description

0-31 Capture 2 All 0s Bytes 8 thru 11of the packet header.

 Table 2-20. Bit Settings for Port n Packet Error Capture CSR 3

Bit Name Reset 
Value Description

0-31 Capture 3 All 0s Bytes 12 thru 15 of the packet header.

 Table 2-16. Bit Settings for Port n Attributes Error Capture CSR

Bit Name Reset 
Value Description
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2.2.2.18 Port n Error Rate Threshold CSR (Block Offset 0x68, A8,..., 428, Word 1)
The Port n Error Rate Threshold register is a 32-bit register used to control the reporting of the link status to the sys-
tem host.

Table 2-21. Bit Settings for Port n Error Rate CSR

Bit Name Reset 
Value Description

0-7 Error Rate Bias 0x80 These bits provide the error rate bias value
0x00 - do not decrement the error rate counter
0x01 - decrement every 1ms (+/-34%)
0x02 - decrement every 10ms (+/-34%)
0x04 - decrement every 100ms (+/-34%)
0x08 - decrement every 1s (+/-34%)
0x10 - decrement every 10s (+/-34%)
0x20 - decrement every 100s (+/-34%)
0x40 - decrement every 1000s (+/-34%)
0x80 - decrement every 10000s (+/-34%)
other values are reserved

8-13 — Reserved

14-15 Error Rate Recovery 0b00 These bits limit the incrementing of the error rate counter above the failed 
threshold trigger.
0b00 - only count 2 errors above
0b01 - only count 4 errors above
0b10 - only count 16 error above
0b11 - do not limit incrementing the error rate count

16-23 Peak Error Rate 0x00 This field contains the peak value attained by the error rate counter.

24-31 Error Rate Counter 0x00 These bits maintain a count of the number of transmission errors that have 
been detected by the port, decremented by the Error Rate Bias mechanism, 
to create an indication of the link error rate.

 Table 2-22. Bit Settings for Port n Error Rate Threshold CSR

Bit Name Reset 
Value Description

0-7 Error Rate Failed 
Threshold Trigger

0xFF These bits provide the threshold value for reporting an error condition due 
to a possibly broken link.
0x00 - Disable the Error Rate Failed Threshold Trigger
0x01 - Set the error reporting threshold to 1
0x02 - Set the error reporting threshold to 2
...
0xFF - Set the error reporting threshold to 255

8-15 Error Rate Degraded 
Threshold Trigger

0xFF These bits provide the threshold value for reporting an error condition due 
to a degrading link.
0x00 - Disable the Error Rate Degraded Threshold Trigger
0x01 - Set the error reporting threshold to 1
0x02 - Set the error reporting threshold to 2
...
0xFF - Set the error reporting threshold to 255

16-31 — Reserved
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Annex A

(Informative)

Error Management

This section is intended to provide useful information/background on the application of the error management capabilities. This sec-
tion is a guideline, not part of the specification.

A.1 Limitations of Error Management 
The RapidIO hardware that implements the Error Management extensions is able to log transmission errors and errors
that occur at a higher level. Some error scenarios require no software intervention and recovery procedures are done
totally by the hardware.

Some error scenarios detected require fault management software for recovery to be successful. For example, some types
of logical layer errors on a Read or Write operation may be recoverable by killing the software process using the affected
memory space and removing the memory space from the available system resource pool. It may also be possible for soft-
ware to retry the operation, possibly through a different path in the switch fabric. Since such fault management software
is typically tightly coupled to a particular system and/or implementation, it is considered outside of the scope of this spec-
ification.

Another area of fault recovery that requires fault management software to be implemented is correcting of system state
after an error during an atomic operation. The swap style Atomic operations are possibly recoverable through software
and require software convention to uniquely identify attempts to take locks. For example, if the request is lost and times
out, software can examine the current lock value to determine if the request or the associated response was the transaction
that was lost in the switch fabric. For all other Atomic operations (such as the Atomic set operation), it is impossible to
correct the system state in the presence of a ‘lost packet’ type of error. 

The use of RapidIO message packets relies on the use of higher layer protocols for error management. Since end points
that communicate via messaging are typically running a variety of higher layer protocols, error reporting of both request
and response time-outs is done locally by the message queue management controller. Note that side effect errors can
occur, for example, ERROR responses or RETRY responses during an active (partially completed) message, which may
complicate the recovery procedure. The recovery strategies for messages lost in this manner are outside of the scope of
this specification. 

Globally Shared Memory systems that encounter a logical or transport layer error are typically not recoverable by any
mechanism as this usually means that the processor caches are no longer coherent with the main memory system. Histor-
ically, recovery from such errors requires a complete reboot of the machine after the component that caused the error is
repaired or replaced. 

A.2 Hot-insertion/extraction 
Hot-insertion can be regarded as an error condition in which a new part of the system is detected, therefore, hot-insertion
of a Field Replaceable Unit (FRU) can be handled utilizing the above described mechanisms. This section describes two
approaches for hot insertion. The first generally applies to high availability systems, or systems where FRUs need to
brought into the system in a controlled manner. The second generally applies to systems where availability is less of a
concern, for example, a trusted system or a system without a system host. 

At system boot time, the system host identifies all of the unattached links in the machine through system discovery and
puts them in a locked mode, whereby all incoming packets are to be rejected, leaving the drivers and receivers enabled.
This is done by setting the Discovered bit in the Port General Control CSR and the Port Lockout bit in the Port n Control
CSR. Note that whenever an FRU is removed, the port lockout bit should be used to ensure that whatever new FRU is
inserted cannot access the system until the system host allows it. When a FRU is hot-inserted connecting to a switch
device, the now connected link will automatically start the training sequence. When training is complete (the Port OK bit



- 410 -

in the Port n Error and Status CSR is now set), the locked port generates a Maintenance port-write operation to notify the
system host of the new connection, and sets the Port-write Pending bit.

On receipt of the port-write, the system host is responsible for bringing the inserted FRU into the system in a controlled
manner. The system host can communicate with the inserted FRU using Maintenance operations after clearing all error
conditions, if any, clearing the Port Lockout bit and clearing the Output and Input Port Enable bits in the Port n Control
CSR. This procedure allows the system host to access the inserted FRU safely, without exposing itself to incorrect behav-
ior by the inserted FRU. 

In order to issue Maintenance operations to the inserted FRU, the system host must first make sure that the ackID values
for both ends are consistent. Since the inserted FRU has just completed a power-up reset sequence, both it’s transmit and
receive ackID values are the reset value of 0x00. The system host can set the switch device’s transmit and receive ackID
values to also be 0x00 through the Port n Local ackID Status CSR if they are not already in that state, and can then issue
packets normally. 

The second method for hot insertion would allow the replaced FRU to bring itself into the system, which is necessary for
a system in which the FRU is the system host itself. In this approach, the Port Lockout bit is not set and instead the Output
and Input Port Enable bits are set for any unconnected port, allowing inserted FRUs free access to the system without reli-
ance on a system host. Also, a port-write operation is not generated when the training sequence completes and the link is
active, so a host is not notified of the event. However, this method leaves the system vulnerable to corruption from a mis-
behaving hot-inserted FRU. 

As with the first case, the system host must make the ackID values for both link partners match in order to begin sending
packets. In order to accomplish this, the system host generates a link-request/link-status to the attached device to obtain
it’s expected receiver value using the Port n Link Maintenance Request and Response CSRs. It can then set its transmit
ackID value to match. Next, the system host generates a Maintenance write operation to set the attached device’s Port n
Local ackID Status CSR to set the transmit ackID value to match the receive ackID value in the system host. Upon receipt
of the maintenance write, the attached device sets it’s transmit ackID value as instructed, and generates the maintenance
response using the new value. Packet transmission can now proceed normally. 

Hot extraction from a port’s point of view behaves identically to a very rapidly failing link and therefore can utilize the
above described error reporting mechanism. Hot extraction is ideally done in a controlled fashion by taking the FRU to be
removed out of the system as a usable resource through the system management software so that extraction does not
cause switch fabric congestion or result in a loss of data. 

The required mechanical aspects of hot-insertion and hot-extraction are not addressed in this specification. 

A.3 Port-write 
The error management specification includes only one destination for port-write operations, while designers of reliable
systems would assume that two is the minimum number. This section explains the rationale for only having one port-
write destination.

It is assumed that in the event of an error on a link that both ends of the link will see the error. Thus, there are two parties
who can be reporting on any error. In the case that the sole link between an end point and a switch fails completely, the
switch is expected to see and report the error. When one of a set of redundant links between an end point and a switch
device fails, it is expected that the switch and possibly the end point will report the failure. 

When a link between two switches fails, it is assumed that there are multiple paths to the controlling entity available for
the port-write to travel. The switches will be able to send at least one, and possibly two, reports to the system host. It is
assumed that it is possible to set up a switch’s routing parameters such that the traffic to the system host will follow sepa-
rate paths from each switch.

In some reliable systems, the system host is implemented as multiple redundant subsystems. It is assumed in RapidIO that
only one subsystem is actually in control at any one time, and so should be the recipient of all port-writes. If the subsys-
tem that should be in control is detected to be insane, it is the responsibility of the rest of the control subsystem to change
the destination for port-writes to be the new subsystem that is in control.
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Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. 

Degraded  threshold.  Bits  8-15 of the Port n Error Rate Threshold CSR. An application-specific  level  that
indicates  an  unacceptable  error  rate resulting in degraded throughput, when equal to the error rate count.

Failed  threshold.  Bits  0-7  of  the  Port n Error Rate Threshold CSR. An application-specific  level  that  indicates
an error rate due to a broken link, when equal to the error rate count.

Hot-insertion.  Hot-insertion is the insertion of a processing element into a powered-up system.

Hot-extraction.  Hot-extraction is the removal of a processing element from a powered-up system.

Logical/Transport error.  A  logical/transport error is one that cannot be resolved using the defined transmission
error recovery sequence, results in permanent  loss  of data or causes system corruption. Recovery may
possible under software control.

Non-reporting   processing  element.  A  non-reporting  processing  element depends  upon  an  attached  device
(usually a switch) to report its logged errors to the system host on its behalf.

Operation. A set of transactions between end point devices in a RapidIO system (requests and associated
responses) such as a read or a write.

Ownership. A processing element has the only valid copy of a coherence granule and is responsible for returning it
to home memory.

Physical error. A physical error occurs only in the physical layer.

Port  healing. The process whereby software resets the error rate count, or allows it to decrement as required by the
error rate bias field of the Port n Error Rate CSR.

Read operation. An operation used to obtain a globally shared copy of a coherence granule.

Reporting  processing element. A reporting processing element is capable of reporting its logged errors to the
system host.

Switch  processing  element.  One  of  three  processing elements, a switch processing  element,  or switch, is capable
of logging and reporting errors to the host system.

Transmission  error. A transmission error is one that can be resolved using the  defined  transmission error recovery
sequence, results in no permanent loss  of  data  and  does not cause system corruption. Recovery may
also be possible  under software  control using mechanisms outside of the scope of this specification.
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