

ECMA-376, 5th Edition

 Office Open XML File Formats — Open Packaging

Conventions

December 2021

patrickc
Text Box
Ecma/TC45/2021/004Ecma/GA/2021/120

Table of Contents

 iii

Contents

Foreword .. vii

Introduction ... ix

1 Scope .. 1

2 Normative references .. 2

3 Terms and definitions .. 4

4 Conformance ... 8

5 Overview ... 9

6 Abstract package model ... 10

6.1 General ... 10
6.2 Parts .. 10

6.2.1 General ... 10
6.2.2 Part names .. 10
6.2.3 Media types .. 12
6.2.4 Growth hint .. 12
6.2.5 XML usage ... 12

6.3 Part addressing ... 13
6.3.1 General ... 13
6.3.2 Pack scheme ... 13
6.3.3 Resolving a pack IRI to a resource .. 14
6.3.4 Composing a pack IRI ... 15
6.3.5 Equivalence .. 16

6.4 Resolving relative references ... 16
6.4.1 General ... 16
6.4.2 Base IRIs .. 16
6.4.3 Examples ... 17

6.5 Relationships ... 19
6.5.1 General ... 19
6.5.2 Relationships part ... 20
6.5.3 Relationship markup .. 21
6.5.4 Examples ... 23

7 Physical package model ... 27

7.1 General ... 27
7.2 Physical mapping guidelines... 27

7.2.1 Using features of physical formats ... 27
7.2.2 Mapped components .. 27
7.2.3 Mapping media types to parts .. 27
7.2.4 Interleaving .. 31
7.2.5 Mapping part names to physical package item names ... 32

7.3 Mapping to a ZIP file ... 33
7.3.1 General ... 33
7.3.2 Mapping part data ... 34
7.3.3 ZIP item names ... 34

ECMA-376 Part 2

iv

7.3.4 Mapping logical item names to ZIP item names .. 34
7.3.5 Mapping ZIP item names to logical item names .. 35
7.3.6 ZIP package limitations ... 35
7.3.7 Mapping the Media Types stream ... 35
7.3.8 Mapping the growth hint .. 36

8 Core properties ... 37

8.1 General ... 37
8.2 Core Properties part ... 38
8.3 Core properties markup ... 38

8.3.1 General ... 38
8.3.2 Support for versioning and extensibility ... 39
8.3.3 coreProperties element ... 39

8.3.4 Core property elements .. 39

9 Thumbnails ... 44

10 Digital signatures ... 45

10.1 General ... 45
10.2 Overview of OPC-specific restrictions and extensions to “XML-Signature Syntax and Processing” . 45
10.3 Choosing content to sign .. 45
10.4 Digital signature parts ... 45

10.4.1 General ... 45
10.4.2 Digital Signature Origin part ... 46
10.4.3 Digital Signature XML Signature part .. 46
10.4.4 Digital Signature Certificate part ... 46

10.5 Digital signature markup .. 47
10.5.1 General ... 47
10.5.2 Support for versioning and extensibility ... 47
10.5.3 Signature element ... 47

10.5.4 SignedInfo element .. 48

10.5.5 CanonicalizationMethod element .. 48

10.5.6 SignatureMethod element .. 48

10.5.7 Reference element ... 49

10.5.8 Transform element ... 49

10.5.9 RelationshipReference element ... 50

10.5.10 RelationshipsGroupReference element ... 50

10.5.11 DigestMethod element ... 51

10.5.12 Object element .. 51

10.5.13 Manifest element .. 51

10.5.14 SignatureProperty element .. 52

10.5.15 SignatureTime element .. 52

10.5.16 Format element .. 52

10.5.17 Value element ... 52

10.5.18 XPath element ... 52

10.6 Relationships transform algorithm .. 52
10.7 Digital signature example .. 54
10.8 Generating signatures .. 56
10.9 Validating signatures ... 58

Table of Contents

 v

Annex A (informative) Preprocessing for generating relative references ... 61

Annex B (normative) Constraints and clarifications on the use of ZIP features 63

B.1 General ... 63
B.2 Archive file header consistency ... 63
B.3 Data descriptor signature .. 63
B.4 Requirements on package implementers .. 63

Annex C (normative) Schemas - W3C XML .. 74

C.1 General ... 74
C.2 Media Types stream ... 74
C.3 Core Properties part ... 74
C.4 Digital signature XML signature markup ... 74
C.5 Relationships part ... 74

Annex D (informative) Schemas - RELAX NG ... 75

D.1 General ... 75
D.2 Media Types stream ... 75
D.3 Core Properties part ... 75
D.4 Digital signature XML signature markup ... 75
D.5 Relationships part ... 75
D.6 Additional resources .. 75

D.6.1 XML .. 75
D.6.2 XML digital signature core ... 75

Annex E (normative) Standard namespaces and media types .. 76

Annex F (informative) Physical package model design considerations .. 78

F.1 General ... 78
F.2 Access styles .. 79

F.2.1 General ... 79
F.2.2 Direct access consumption .. 79
F.2.3 Streaming consumption .. 79
F.2.4 Streaming creation .. 79
F.2.5 Simultaneous creation and consumption .. 79

F.3 Layout styles .. 80
F.3.1 General ... 80
F.3.2 Simple ordering .. 80
F.3.3 Interleaved ordering .. 80

F.4 Communication styles ... 81
F.4.1 General ... 81
F.4.2 Sequential delivery ... 81
F.4.3 Random access .. 81

Annex G (informative) Differences between ECMA-376-2021 and ECMA-376:2006 82

G.1 General ... 82
G.2 XML elements .. 82
G.3 XML attributes .. 82
G.4 XML enumeration values .. 82
G.5 XML simple types ... 82
G.6 Part names .. 82

ECMA-376 Part 2

vi

Annex H (informative) Package example ... 83

H.1 General ... 83
H.2 Abstract package .. 83
H.3 Physical package .. 84

Bibliography .. 85

Foreword

 vii

Foreword

This edition cancels and replaces the previous edition (ECMA-376-2:2012), which has been technically

revised.

The main changes compared to the previous edition are as follows:

• Where appropriate, normative references have been updated to use undated or more recent versions of

other standards.

• Clause 3 (Terms and definitions) has been revised by removing terms not used by any normative

clauses and then reorganizing terms into groups.

• The subclause for diagram notes (5.1 in the preceding editions) has been removed, since core

properties are now defined by prose and schemas rather than by diagrams.

• The clause for acronyms and abbreviations (Clause 6 in the preceding editions) has been removed,

since it does not make sense for an ISO/IEC standard to define "ISO" and "IEC".

• Clause 6 (Abstract package model, Clause 8 in the previous edition) has been completely rewritten. In

particular, (1) pack IRIs have been defined in this clause rather than in an annex, (2) a new subclause,

"Resolving relative references", has been added; (3) part Relationships parts and package Relationships

parts have been distinguished; (4) base IRIs have been clearly defined; and (5) handling of non-ASCII

characters in part names has been clarified on the basis of RFC 3987.

• The option for media type to be an empty string has been removed, as this conflicts with the definition

of media type in RFC 2046 and the existing regular expression defined in the schema referenced by C.2.

• Clause 7 (Physical package model, Clause 9 in the previous edition) has been slightly revised.

Interleaving has been introduced before logical item names. Percent-encoding and un-percent encoding

of non-ASCII characters have been explicitly introduced in 7.3.4 and 7.3.5.

• Clause 8 (Core properties, Clause 10 in the previous edition) has been rewritten by using prose and

schemas rather than diagrams.

• Clause 10 (Digital signatures, Clause 12 in the previous edition) has been thoroughly revised. In

particular, this clause now makes clear a convention for the choice of algorithms for signature and

digest methods, which reflects the ongoing development of algorithms since the first edition of this

document.

• Annex A has been made informative.

• The normative annex that defined pack IRIs (Annex B in the preceding editions) has been dropped.

Pack IRIs are now defined in Clause 6.

• Annex C and Annex D (Annexes D and E in the preceding editions) no longer define schemas but

reference externally defined schemas.

• Guidelines for meeting conformance requirements (Annex H in the preceding editions) have been

dropped.

• Requirements around streaming consumption have been dropped.

• Wherever possible, requirements on programs have been rewritten as those on data.

ECMA-376 Part 2

viii

• Annex H has been added to depict an example package.

• The Index (Annex J in the preceding editions) has been deleted.

• Bibliography has been added.

Introduction

 ix

Introduction

ECMA-376 (all Parts) specifies a family of XML schemas, collectively called Office Open XML, which define

the XML vocabularies for word-processing, spreadsheet, and presentation documents, as well as the

packaging of documents that conform to these schemas.

The goal is to enable the implementation of the Office Open XML formats by the widest set of tools and

platforms, fostering interoperability across office productivity applications and line-of-business systems, as

well as to support and strengthen document archival and preservation, all in a way that is fully compatible

with the existing corpus of Microsoft® Office1 documents.

This document includes two annexes (Annex C and Annex D) that refer to data files provided in electronic

form.

The document representation formats defined by this document are different from the formats defined in

the corresponding Part of ECMA-376:2006. Some of the differences are reflected in schema changes, as

shown in Annex G.

This fifth edition preserves all previous functionality and adds no new functionality.

1 This information is given for the convenience of users of this document and does not constitute an endorsement by
Ecma of the product named. Equivalent products may be used if they can be shown to lead to the same results.

1. Scope

 1

1 Scope

This document defines a set of conventions for packaging one or more interrelated byte streams (parts) as

a single resource (package). These conventions are applicable not only to Office Open XML specifications as

described in ECMA-376-1 and ECMA-376-4, but also to other markup specifications.

ECMA-376 Part 2

2

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content

constitutes requirements of this document. For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including any amendments) applies.

ANSI/INCITS 4-1986 [R2017] - Information Systems - Coded Character Sets - 7-Bit American National

Standard Code For Information Interchange (7-Bit ASCII), American National Standards Institute (ANSI).

2017

FIPS 186-4, Digital Signature Standard (DSS), National Institute of Standards and Technology, US

Department of Commerce, July 2013

ECMA-376-3, Information technology — Document description and processing languages — Office Open XML

File Formats, Part 3: Markup Compatibility and Extensibility

ISO/IEC 9594-8/ITU-T Rec. X.509, Information technology — Open systems interconnection — Part 8— The

Directory: Public-key and attribute certificate frameworks

ISO 15836-1, Information and documentation — The Dublin Core metadata element set — Part 1: Core

elements

ISO 15836-2, Information and documentation — The Dublin Core metadata element set — Part 2: DCMI

Properties and classes

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, The Internet Society,

November 1996, N. Freed and N. Borenstein. Available at https://www.rfc-editor.org/info/rfc2046

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, January 2005, Berners-

Lee, T., R. Fielding, and L. Masinter. Available at https://www.rfc-editor.org/info/rfc3986

RFC 3987, Internationalized Resource Identifiers (IRIs), The Internet Society, January 2005, Duerst, M. and

M. Suignard. Available at https://www.rfc-editor.org/info/rfc3987

RFC 5234, Augmented BNF for Syntax Specifications: ABNF, The Internet Society, January 2008, D. Crocker

and P.Overell, (editors). Available at https://www.rfc-editor.org/info/rfc5234

RFC 6931, Additional XML Security Uniform Resource Identifiers (URIs), The Internet Society, April 2013, D.

Eastlake 3rd. Available at https://www.rfc-editor.org/info/rfc6931

RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, The Internet Society, June 2014,

R. Fielding and J. Reschke. Available at https://www.rfc-editor.org/info/rfc7231

https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6931
https://www.rfc-editor.org/info/rfc7231

2. Normative references

 3

Unicode, The Unicode Standard, The Unicode Consortium. Available at

http://www.unicode.org/standard/standard.html

The XML 1.0 specification, Extensible Markup Language (XML) 1.0, Fourth Edition. World Wide Web

Consortium, 2006, Tim Bray, Jean Paoli, Eve Maler, C. M. Sperberg-McQueen, and François Yergeau

(editors). Available at http://www.w3.org/TR/2006/REC-xml-20060816/2

XML Namespaces, Namespaces in XML 1.0 (Third Edition), 8 December 2009. World Wide Web Consortium,

Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin (editors). Available at

http://www.w3.org/TR/2009/REC-xml-names-20091208/

XML Base, XML Base (Second Edition), World Wide Web Consortium , 28 January 2009. Jonathan Marsh and

Richard Tobin (editors). Available at https://www.w3.org/TR/2009/REC-xmlbase-20090128/

W3C XML Schema Structures, XML Schema Part 1: Structures (Second Edition), World Wide Web

Consortium, 28 October 2004, Henry Thompson, David Beech, Murray Maloney and Noah Mendelsohn

(editors). Available at https://www.w3.org/TR/xmlschema-1/

W3C XML Schema Datatypes, XML Schema Part 2: Datatypes (Second Edition), World Wide Web Consortium,

28 October 2004, Paul Biron and Ashok Malhotra (editors). Available at

https://www.w3.org/TR/xmlschema-2/

XML-Signature Syntax and Processing, World Wide Web Consortium, 12 February 2002, Donald Eastlake,

Joseph Reagle and David Solo (editors). Available at http://www.w3.org/TR/2002/REC-xmldsig-core-

20020212/

ZIP Appnote, ZIP File Format Specification Version 6.2.0, PKWARE Inc., 2004. Available at

http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt

2A further correction of the normative reference to XML to refer to the 5th Edition will be necessary when
the related Reference Specifications to which this document also makes normative reference, and which
also depend upon XML, such as XML Namespaces and XML Base, are all aligned with the 5th Edition.

http://www.unicode.org/standard/standard.html
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2009/REC-xml-names-20091208/
https://www.w3.org/TR/2009/REC-xmlbase-20090128/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.pkware.com/documents/APPNOTE/APPNOTE_6.2.0.txt

ECMA-376 Part 2

4

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 Basics

3.1.1

byte

sequence of 8 bits treated as a unit

3.1.2

stream

linearly ordered sequence of bytes (3.1.1)

3.2 Abstract package model

3.2.1

part

stream (3.1.2) with a name, a MIME media type and associated common properties

3.2.2

abstract package

logical entity that holds a collection of parts (3.2.1) and relationships (3.2.3)

3.2.3

relationship

package relationship (3.2.4) or part relationship (3.2.5)

3.2.4

package relationship

connection from a package to a specific part (3.2.1) in the same package, or to an external resource

3.2.5

part relationship

connection from a part (3.2.1) in a package to another part in the same package, or to an external resource

3.2.6

source

part (3.2.1) or package from which a connection is established by a relationship (3.2.3)

3.2.7

target

part (3.2.1) or external resource to which a connection is established by a relationship (3.2.3)

3. Terms and definitions

 5

3.2.8

relationship type

absolute IRI for specifying the role of a relationship (3.2.3)

3.2.9

Relationships part

part (3.2.1) containing an XML representation of relationships (3.2.3)

3.2.10

abstract package model

abstract model that defines abstract packages (3.2.2)

3.2.11

growth hint

suggested number of bytes (3.1.1) to reserve for a part (3.2.1) to grow in place

3.2.12

pack scheme

URI scheme that allows IRIs to be used as a uniform mechanism for addressing parts (3.2.1) within a

package

3.2.13

pack IRI

IRI that conforms to the pack scheme (3.2.12)

3.2.14

part name

string that uniquely identifies a part (3.2.1) within a package

3.2.15

relationship identifier

string that consists of XML name characters and uniquely identifies a relationship (3.2.3) among those from

the same source (3.2.6)

3.2.16

target mode

mode of resolution of relative references to targets (3.2.7)

3.2.17

I18N segment

Unicode string in a part name (3.2.14)

Note 1 to entry: The constraints on the value of the Unicode string shall be stated when the term is used in

6.2.2.2.

ECMA-376 Part 2

6

3.3 Physical package model

3.3.1

physical format

specific file format, or other persistence or transport mechanism

3.3.2

physical package

result of mapping an abstract package (3.2.2) to a physical format (3.3.1)

3.3.3

physical package model

pair of a physical format (3.3.1) and a mapping between the abstract package model (3.2.10) and that

physical format

3.3.4

piece

portion of a part (3.2.1)

3.3.5

logical item

non-interleaved part (3.2.1), non-interleaved Media Types stream (3.3.12), piece (3.3.4) of an interleaved

part, or piece of an interleaved Media Types stream

3.3.6

physical package item

atomic set of data in a physical package (3.3.2)

3.3.7

ZIP item

atomic set of data in a ZIP file (3.3.8) that becomes a file when the archive is uncompressed

3.3.8

ZIP file

file as defined in the ZIP Appnote

3.3.9

simple ordering

defined ordering for laying out the parts (3.2.1) in a package in which all the bits comprising each part are

stored contiguously

3.3.10

interleaved ordering

defined ordering for laying out the parts (3.2.1) in a package in which parts are broken into pieces (3.3.4)

and “mixed-in” with pieces from other parts

3. Terms and definitions

 7

3.3.11

ASCII case-insensitive matching

comparing a sequence of code points as if all ASCII code points in the range 0x41 to 0x5A (A to Z) were

mapped to the corresponding code points in the range 0x61 to 0x7A (a to z)

Note 1 to entry: The ASCII code points shall be as defined by ANSI/INCITS 4-1986.

3.3.12

Media Types stream

stream (3.1.2) in a physical package (3.3.2) representing an XML document that specifies the media type of

each part (3.2.1) in the package

3.4 Digital signature and thumbnail

3.4.1

signature policy

specification of what parts (3.2.1) and relationships (3.2.3) are included in a signature and what additional

behaviors are required for generating and validating signatures

3.4.2

thumbnail

small image that is a graphical representation of a part (3.2.1) or the package as a whole

3.5 Implementations

3.5.1

package implementer

software that implements physical input-output operations on a package according to the requirements

and recommendations of this document

3.6 Core properties

3.6.1

core property

property of a package

ECMA-376 Part 2

8

4 Conformance

A package is of conformance class OPC if it obeys all syntactic constraints specified in this document.

OPC conformance is purely syntactic.

5. Overview

 9

5 Overview

This document describes an abstract package model (Clause 6) and a physical package model (Clause 7) for

the use of XML, Unicode, ISO/IEC 10646 (see Reference [7]), ZIP, and other relevant technologies and

specifications to organize the content and resources of a document within a package. The package structure

is intended to support the organization of constituent resources for various applications and categories of

content. An example package is shown in Annex H.

The abstract package model is a package abstraction that holds a collection of parts and relationships. The

parts are composed, processed, and persisted according to a set of rules. Parts can have relationships to

other parts or external resources, and the package as a whole can have relationships to parts it contains or

to external resources. Parts have MIME media types and are uniquely identified using the well-defined

naming rules provided in this document.

The physical package model defines the mapping of the components of the abstract package model to the

features of a specific physical format, namely a ZIP file.

This document also describes other features, including core properties for package metadata, a thumbnail

for graphical representation of a package, and digital signatures of package contents. This document relies

on ECMA-376-3 to allow future extensions of OPC without introducing compatibility problems.

This document specifies requirements for packages. Conformance requirements are identified throughout

this document. A formal conformance statement is given in Clause 4.

ECMA-376 Part 2

10

6 Abstract package model

6.1 General

This clause introduces abstract packages in terms of parts (6.2) and relationships (6.5). It also introduces

the pack scheme (6.3.2).

The purpose of an abstract package is to aggregate constituent components of a document (or other type of

content) into a single object. For example, an abstract package holding a document with a picture can

contain an XML markup part representing the text of the document and another part representing the

picture.

An example abstract package is shown in H.2.

6.2 Parts

6.2.1 General

A part is analogous to a file in a file system or to a resource on an HTTP server.

6.2.2 Part names

6.2.2.1 General

A part shall have a part name, which shall uniquely identify a part within an abstract package.

6.2.2.2 Syntax

A part name shall be a Unicode string that matches the following production rules in the ABNF syntax

defined in RFC 5234

part_name = 1*("/" isegment-nz)

isegment-nz = <isegment-nz, see RFC3987, Section 2.2>

and that further satisfies the constraints listed below, where an I18N segment is a Unicode string that

matches the non-terminal isegment-nz and percent-encoding represents a character by the percent

character "%" followed by two hexadecimal digits, as specified in RFC 3986

• No I18N segments shall contain percent-encoded forward slash (“/”), or backward slash (“\”)

characters.

• No I18N segments shall contain percent-encoded characters that match the non-terminal

iunreserved in RFC 3987.

• No I18N segments shall end with a dot (“.”) character.

6. Abstract package model

 11

The part name "/_rels/.rels" shall be reserved (6.5.2.2). Part names in which the second-to-last I18N

segment is equivalent to "_rels" and the final segment is equivalent to any string ending with ".rels"

shall be reserved (6.5.2.3).

EXAMPLE 1 The part name "/hello/world/doc.xml" contains three path segments, namely, "hello",

"world", and "doc.xml".

EXAMPLE 2 The part name "/é" contains a path segment "é" where é is 'LATIN SMALL LETTER E WITH ACUTE'

(U+00E9).

NOTE Path segments are not explicitly represented as folders in the abstract package model, and no directory of

folders exists in the abstract package model.

A package implementer is not required to support non-ASCII part names, although doing so is

recommended.

6.2.2.3 Part name equivalence and integrity in an abstract package

Equivalence of part names shall be determined by ASCII case-insensitive matching. Such matching

compares a sequence of code points as if all ASCII code points in the range 0x41–0x5A (A–Z) were mapped

to the corresponding code points in the range 0x61–0x7A (a–z). See Reference [1].

The names of two different parts within an abstract package shall not be equivalent.

EXAMPLE 1 If an abstract package contains a part named "/a", the name of another part in that abstract package

cannot be "/a" or "/A".

For each part name N and string S, let the result of concatenating N, the forward slash, and S be denoted

by N[S]. A part name N1 is said to be derivable from another part name N2 if, for some string S, N1 is

equivalent to N2[S].

EXAMPLE 2 "/a/b" is derivable from "/a", where N is "/a" and S is "b".

The name of a part shall not be derivable from the name of another part.

EXAMPLE 3 Suppose that an abstract package contains a part named "/segment1/segment2/…/segmentn".

For it not to be derivable, other parts in that abstract package cannot have names such as "/segment1",

"/SEGMENT1", "/segment1/segment2", "/segment1/SEGMENT2", or

"/segment1/segment2/…/segmentn-1".

This subclause further introduces recommendations, so that Unicode Normalization Form C (NFC) and

Unicode Normalization Form D (NFD) of part names do not cause part-name collisions. Note that some

implementations of directory structures always apply NFD normalization.

The application of NFC or NFD normalization to the names of two different parts within an abstract

package should not yield equivalent strings.

If an abstract package contains a part named "/é", where é is 'LATIN SMALL LETTER E' (U+0065) followed

by 'COMBINING ACUTE ACCENT' (U+0301), the name of another part in that abstract package should not

ECMA-376 Part 2

12

be "/é", where é is 'LATIN SMALL LETTER E WITH ACUTE' (U+00E9), or "/É", where É is 'LATIN CAPITAL

LETTER E WITH ACUTE '(U+00C9).

If an abstract package contains a part named "/Å", where Å is 'ANGSTROM SIGN' (U+212B), the name of

another part in that abstract package should not be "/Å" where Å is 'LATIN CAPITAL LETTER A WITH RING

ABOVE' (U+00C5) because U+212B and U+00C5 are normalized to the same character sequence.

A part name N1 is said to be weakly derivable from another part name N2 if, for some string S, the result of

applying NFC or NFD to N1 is equivalent to the result of applying NFC or NFD to N2[S].

EXAMPLE 4 Consider a part name "/é", where é is 'LATIN SMALL LETTER E WITH ACUTE' (U+00E9). Another part

name "/é/a", where é is 'LATIN SMALL LETTER E' (U+0065) followed by 'COMBINING ACUTE ACCENT' (U+0301) is

weakly derivable from "/é". Another part name "/É/a", where É is 'LATIN CAPITAL LETTER E' (U+0045) followed

by 'COMBINING ACUTE ACCENT' (U+0301) is also weakly derivable.

The name of a part should not be weakly derivable from the name of another part.

Suppose that an abstract package contains a part named "/é/Å/foo", where é is 'LATIN SMALL LETTER E

WITH ACUTE' (U+00E9) and Å is 'ANGSTROM SIGN' (U+212B). For it not to be weakly derivable, no other

parts in that abstract package should have names such as "/É" and "/É/Å", where É is 'LATIN CAPITAL

LETTER E' (U+0045) followed by 'COMBINING ACUTE ACCENT' (U+0301) and Å is 'LATIN CAPITAL

LETTER A WITH RING ABOVE' (U+00C5).

6.2.3 Media types

Each part shall have a MIME media type, as defined in RFC 2046, to identify the type of content in that part,

consisting of a top-level media type and a subtype, optionally qualified by a set of parameters. Media types

of OPC-specific parts defined in this document shall not contain parameters.

Media types for parts defined in this document are listed in Annex E.

6.2.4 Growth hint

A part may have a growth hint.

Sometimes a part in a physical package is modified and needs to become larger. For some physical formats,

creating a new physical package that contains the larger part is an expensive operation. To allow the part to

grow in place, moving as few bytes as possible, the growth hint may be used to reserve space in a mapping

to a particular physical format.

6.2.5 XML usage

XML content in parts and streams defined in this document (specifically, the Media Types stream, the Core

Properties part, Digital Signature XML Signature parts, and Relationships parts) shall conform to the

following:

6. Abstract package model

 13

a) XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding

declaration, as defined in 4.3.3 of the XML 1.0 specification, that declaration shall not name any

encoding other than UTF-8 or UTF-16.

b) The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable

Denial of Service attacks, typically through the use of an internal entity expansion technique. As

mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined

in this document.

c) XML documents shall conform to XML Namespaces.

d) XML content shall be schema-valid, as defined by W3C XML Schema Structures and W3C XML

Schema Datatypes, with respect to the corresponding XSD schema defined in Annex C of this

document. In particular, the XML content shall not contain elements or attributes drawn from

namespaces that are not explicitly defined in the corresponding XSD schema unless the XSD schema

allows elements or attributes drawn from any namespace to be present in particular locations in

the XML markup.

e) XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless

they are explicitly defined in the XSD schema or by other means described in this document.

6.3 Part addressing

6.3.1 General

This document provides the pack scheme as a way to use IRIs (RFC 3987) to reference part resources

inside a package.

Schemes are represented in an IRI by the prefix before the colon. A well-known example is "http".

EXAMPLE An example of an IRI in the pack scheme is:

"pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml"

The substring between the double slash and the first single slash represents an IRI in the http scheme for a

package, transformed to allow embedding within an IRI in the pack scheme.

References from outside of a package are absolute IRIs of the pack scheme, while those from inside are

relative IRIs, which are resolved to absolute IRIs of this scheme.

6.3.2 Pack scheme

This document defines a specific scheme used to refer to parts in a package: the pack scheme. An IRI that

uses the pack scheme is called a pack IRI.

The syntax of pack IRIs is defined in EBNF (see RFC 5234) as follows:

pack_IRI = "pack://" iauthority ["/" | ipath]

iauthority = *(iunreserved | sub-delims | pct-encoded)

ipath = 1*("/" isegment)

isegment = 1*(ipchar)

ipchar = <ipchar, see [RFC3987], Section 2.2>

ECMA-376 Part 2

14

iunreserved = <iunreserved, see [RFC3987], Section 2.2>

sub-delims = <sub-delims, see [RFC3986], Section 2.2>

pct-encoded = <pct-encoded, see [RFC3986], Section 2.1>

The authority component (iauthority) contains an embedded IRI that points to a package. (See 6.3.4 for

the procedure for transforming the IRI for the package to permit embedding in the pack IRI as the authority

component.) The authority component shall not reference a package embedded in another package.

NOTE The definition of the authority component requires that the colon character (:) be escaped as %3c. However, in

the proposed registration of the pack scheme, an unescaped colon (:) character was mistakenly used. Due to this

mistake, the provisional pack scheme was registered by IANA as a historical scheme. The pack scheme can be

inspected in the IANA-maintained registry of schemes (see Reference [8]).

The optional path component (ipath) identifies a particular part within the package. When the path

component is missing, the resource identified by the pack IRI is the package as a whole.

A pack IRI can have a query component (as specified in RFC 3986). A query component in a pack IRI is not

used when resolving the IRI to a part.

A pack IRI can have a fragment component (as specified in RFC 3986). If present, this fragment applies to

whatever resource the pack IRI identifies.

EXAMPLE 1 Using the pack IRI to identify a part

The following IRI identifies the "/a/b/foo.xml" part within the

"http://www.openxmlformats.org/my.container" package resource:

"pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml"

EXAMPLE 2 Equivalent pack IRIs

The following pack IRIs are equivalent:

"pack://http%3c,,www.openxmlformats.org,my.container"

"pack://http%3c,,www.openxmlformats.org,my.container/"

EXAMPLE 3 A pack IRI with percent-encoded characters

The following IRI identifies the "/c/d/bar.xml" part within the

"http://myalias:pswr@www.my.com/containers.aspx?my.container" package:

"pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.containe

r/c/d/bar.xml"

6.3.3 Resolving a pack IRI to a resource

The following algorithm shall be used to resolve a pack IRI to a resource (either a package or a part):

a) Parse the pack IRI into the potential three components: scheme, authority, path, as well as any

fragment identifier.

6. Abstract package model

 15

b) In the authority component, replace all commas (“,”) with forward slashes (“/”).

c) Un-percent-encode ASCII characters in the resulting authority component.

d) The resultant authority component shall be a valid IRI for the package as a whole. If it is not, the

pack IRI is invalid.

e) If the path component is empty, the pack IRI resolves to the package as a whole and the resolution

process is complete.

f) A non-empty path component shall be a valid part name. If it is not, the pack IRI is invalid.

g) The pack IRI resolves to the part with this part name in the package identified by the authority

component.

EXAMPLE Resolving a pack IRI to a resource

Given the pack IRI:

"pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml"

The components:

"<authority>= http%3c,,www.my.com,packages.aspx%3fmy.package"

"<path>= /a/b/foo.xml"

are converted to the package IRI:

"http://www.my.com/packages.aspx?my.package"

and the path:

"/a/b/foo.xml"

Therefore, this IRI refers to a part named "/a/b/foo.xml" in the package at the following IRI:

"http://www.my.com/packages.aspx?my.package".

6.3.4 Composing a pack IRI

The following algorithm shall be used to compose a pack IRI from the absolute IRI of an entire package and

a part name:

a) Remove the fragment identifier from the absolute package IRI, if present.

b) Percent-encode all percent signs (“%”), question marks (“?”), at signs (“@”), colons (“:”) and

commas (“,”) in the package IRI.

c) Replace all forward slashes (“/”) with commas (“,”) in the resulting string.

d) Append the resulting string to the string "pack://".

e) Append a forward slash (“/”) to the resulting string. The constructed string represents a pack IRI

with a blank path component.

f) Using this constructed string as a base IRI and the part name as a relative reference, apply the rules

defined in RFC 3986 for resolving relative references against the base IRI.

EXAMPLE Composing a pack IRI

ECMA-376 Part 2

16

Given the package IRI:

"http://www.my.com/packages.aspx?my.package"

and the part name:

"/a/foo.xml"

The pack IRI is:

"pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/foo.xml"

6.3.5 Equivalence

Two pack IRIs shall be treated as equivalent if:

a) The scheme components are octet-by-octet identical after they are both converted to lowercase;

and

b) The IRIs, decoded as described in 6.3.3 from the authority components, are equivalent (the

equivalency rules by scheme), as specified in RFC 3986; and

c) The path components are equivalent part names, as specified in 6.2.2.

NOTE In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack IRIs

are equivalent without resolving them.

6.4 Resolving relative references

6.4.1 General

Relative references in parts shall be resolved as specified in RFC 3986 (5 Reference Resolution), as

extended in RFC 3987 (6.5 Relative IRI References).

This document introduces no changes to the resolution procedure, but Annex A introduces a suggested

preprocessing method for generating relative references.

6.4.2 Base IRIs

This subclause defines a procedure for determining base IRIs for resolving relative references within parts

in packages.

NOTE RFC 3986, 5.1 Establishing a Base URI, provides four general methods, in order of precedence, for establishing

base IRIs for resolving relative references. The procedure in this subclause provides an OPC-specific method

corresponding to the second general method (RFC 3986, 5.1.2 Base URI from the Encapsulating Entity).

The base IRI depends on where that reference occurs within the package. This subclause covers the case

where a relative reference occurs in a part that is not a Relationships part. 6.5.2 covers the case where a

relative reference occurs in a Relationships part.

The base IRI shall be the pack IRI created from the IRI of the package and the name of the part within which

the relative reference occurs.

6. Abstract package model

 17

EXAMPLE

Consider a part /a/b/foo.xml in a package located at

"http://www.mysite.com/my.package"

The base IRI is

"pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

6.4.3 Examples

6.4.3.1 General

This subclause shows examples of resolving relative references. For each example, this subclause considers

three cases.

Case 1: the base IRI is a pack IRI,

"pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml", which is constructed from an

absolute IRI of the package and a part name.

Case 2: the base IRI is a pack IRI, "pack://http%3c,,www.mysite.com,my.package/", which is

created from an absolute IRI of the package.

Case 3: the base IRI is the absolute IRI of the package, "http://www.mysite.com/my.package".

6.4.3.2 Leading slash: "/b/bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml".

Since this relative reference begins with the slash character, the path component of the base IRI

("/a/b/foo.xml") is ignored by the algorithm in 5.2.2 of RFC 3986. The scheme and authority of the

resulting IRI are the same as those of the base pack IRI. Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

Likewise, the path component of the base IRI ("/") is ignored. The rest is the same.

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") is ignored. Thus, the resulting IRI is:

"http://www.mysite.com/b/bar.xml"

6.4.3.3 No leading slash: "bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

http://www.mysite.com/my.package
http://www.mysite.com/my.package
http://www.mysite.com/

ECMA-376 Part 2

18

Since this relative reference does not begin with the slash character, the path component of the base IRI

("/a/b/foo.xml") and that of the relative reference ("bar.xml") are merged. The merge routine in 5.2.3

of RFC 3986 first removes "foo.xml" from the path component of the base IRI, and emits

"/a/b/bar.xml". Thus, the resulting IRI is:

 "pack://http%3c,,www.mysite.com,my.package/a/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

Likewise, the path component of the base IRI ("/") and that of the relative reference ("bar.xml") are

merged. The merge routine emits "/bar.xml". Thus, the resulting IRI is:

 "pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference

("bar.xml") are merged. The merge routine first removes "my.package" from the path component of

the base IRI, and emits "/bar.xml". Thus, the resulting IRI is:

"http://www.mysite.com/bar.xml"

6.4.3.4 Dot segment: "./bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

As in 6.4.3.3, the merge routine removes "foo.xml" from the path component of the base IRI, and emits

"/a/b/./bar.xml". But the remove_dot_segments routine in 5.2.4 of RFC 3986 removes "./" and emits

"/a/b/bar.xml". Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/a/b/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

The merge routine emits "/./bar.xml" but the remove_dot_segments routine removes "./" and emits

"/bar.xml". Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference

("./bar.xml") are merged. The merge routine first removes "my.package" from the path component of

the base IRI, and emits "/./bar.xml". But the remove_dot_segments routine removes "./" and emits

"/bar.xml". Thus, the resulting IRI is:

"http://www.mysite.com/bar.xml"

http://www.mysite.com/my.package
http://www.mysite.com/
http://www.mysite.com/my.package

6. Abstract package model

 19

6.4.3.5 Dot segment: "../bar.xml"

Case 1: The base IRI is "pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

The merge routine emits "/a/b/../bar.xml" but the remove_dot_segments routine removes "b/..".

Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/a/bar.xml"

Case 2: The base IRI is "pack://http%3c,,www.mysite.com,my.package/"

The merge routine emits "/../bar.xml", but the remove_dot_segments routine replaces "/../" by "/".

Thus, the resulting IRI is:

"pack://http%3c,,www.mysite.com,my.package/bar.xml"

Case 3: The base IRI is "http://www.mysite.com/my.package"

Likewise, the path component of the base IRI ("/my.package") and that of the relative reference

("../bar.xml") are merged. The merge routine first removes "my.package" from the path component

of the base IRI, and emits "/../bar.xml". The remove_dot_segments routine replaces "/../" by "/" and

emits "/bar.xml". The resulting IRI is:

"http://www.mysite.com/bar.xml"

6.5 Relationships

6.5.1 General

Parts may contain references to other parts in the package and to resources outside of the package. These

references are represented inside the referring part in ways that are specific to the media type of the part,

that is, in arbitrary markup or an application-defined encoding. This effectively hides the links between

parts from applications that do not understand the media types of the parts containing such references.

This document introduces an indirect mechanism to describe references from parts to other parts or

external resources, namely, relationships. Relationships represent connections from a source part or

source package to a target part or target resource. Relationships from parts are called part relationships,

while those from packages are called package relationships. Relationships make the connection directly

discoverable without looking at the part contents, so they are independent of content-specific schemas and

are quick to resolve.

There are two target modes to resolve relative references to targets. Resolution in the internal target mode

provides parts and that in the external target mode provides external resources.

Relationships have relationship identifiers. These identifiers allow relationships to be distinguished from

one another. An identifier can also be used to associate the target of a relationship with a specific point in a

source part (for example, to represent a hyperlink), by embedding the relationship identifier at that point.

http://www.mysite.com/my.package

ECMA-376 Part 2

20

A relationship has a relationship type.

Relationships are represented in XML in Relationships parts. If the package itself or any part in the package

is the source of one or more relationships, there is an associated Relationships part. This part holds the list

of relationships for the source. The Relationships namespace and relationship types for parts defined in

this document are listed in Annex E.

Relationships have a second important function: providing additional information about parts without

modifying their content. Note that some scenarios require information to be attached to an existing part

without modifying that part, for example, because the part is encrypted and cannot be decrypted, or

because it is digitally signed and changing it would invalidate the signature.

6.5.2 Relationships part

6.5.2.1 Relationships part

Media Type: "application/vnd.openxmlformats-package.relationships+xml"

Root
Namespace:

"http://schemas.openxmlformats.org/package/2006/relationships"

Each set of relationships sharing a common source is represented by a Relationships part. There shall be no

relationships from or to a Relationships part.

A Relationships part shall be either a package Relationships part (6.5.2.2) or a part Relationships part

(6.5.2.3).

6.5.2.2 Package Relationships part

A package Relationships part shall be a Relationships part containing package relationships and no other

relationships.

The name of a package Relationships part shall be "/_rels/.rels".

When a relative reference occurs in a package Relationships part, the base IRI depends on the target mode

of the relationship. If the target mode is external, the base IRI shall be the absolute IRI of the package. If the

target mode is internal, the base IRI shall be the pack IRI created from the absolute IRI of the package.

EXAMPLE Consider the package Relationships part for a package located at

"http://www.mysite.com/my.package".

If the target mode is external, the base IRI is

"http://www.mysite.com/my.package"

If the target mode is internal, the base IRI is

"pack://http%3c,,www.mysite.com,my.package/"

6. Abstract package model

 21

6.5.2.3 Part Relationships part

A part Relationships part shall be a Relationships part containing part relationships from the same source

part and no other relationships.

The name of a part Relationships part shall be constructed from the name of the source part by adding

".rels" to the end of the last I18N segment and inserting an I18N segment “_rels” immediately before the

last I18N segment.

EXAMPLE 1 If the source part name is "/foo", the part Relationships part name is "/_rels/foo.rels".

Conversely, if the name of a part is "/_rels/foo.rels", it is a part Relationships part for the source part "/foo".

If the source part name is "/foo/bar.xml", the part Relationships part name is

"/foo/_rels/bar.xml.rels". Conversely, if the name of a part is "/foo/_rels/bar.xml.rels", it is a

part Relationships part for the source part "/foo/bar.xml".

When a relative reference occurs in a part Relationships part, the base IRI depends on the target mode of

the relationship. If the target mode is external, the base IRI shall be the absolute IRI of the package. If the

target mode is internal, the base IRI shall be the pack IRI created from the absolute IRI of the package and

the source part name.

EXAMPLE 2 Consider a part Relationships part "/a/b/_rels/foo.xml.rels" in a package located at

"http://www.mysite.com/my.package"

If the target mode is external, the base IRI is

"http://www.mysite.com/my.package"

If the target mode is internal, the base IRI is

"pack://http%3c,,www.mysite.com,my.package/a/b/foo.xml"

6.5.3 Relationship markup

6.5.3.1 General

The content of a Relationships part shall be an XML document. After the removal of any extensions by an

MCE processor as specified in ECMA-376-3, a Relationships part shall be a schema-valid XML document

against opc-relationships.xsd (C.5). For this MCE processing, the markup configuration shall be empty and

the application configuration shall contain the Relationships namespace only.

The output document resulting from any MCE processing of the Relationships part shall not contain an

xml:base attribute, as specified by XML Base.

6.5.3.2 Support for versioning and extensibility

Relationships parts may use the versioning and extensibility mechanisms defined in ECMA-376-3 to

incorporate elements and attributes drawn from other XML namespaces.

ECMA-376 Part 2

22

6.5.3.3 Relationships element

A Relationships element is the root element of a Relationships part. It is the container for zero or more

Relationship elements. It has no attributes. The W3C XML Schema definition of this element’s content

model is the complex type CT_Relationships, which is defined in the schema opc-relationships.xsd

(C.5).

6.5.3.4 Relationship element

A Relationship element shall represent a relationship. The source of a relationship shall be either a

package or part with which the Relationships part containing this Relationship element is associated.

Attributes Description

TargetMode This attribute specifies the target mode of a relationship.

This attribute is optional, and the default value is Internal.

The possible values for this attribute are Internal and External, as defined by

the simple type ST_TargetMode, which is defined in the schema opc-

relationships.xsd (C.5).

Target This attribute specifies the target of a relationship.

This attribute is required.

If the value of the TargetMode attribute is Internal, the Target attribute shall

be a relative reference to a part. If the value of the TargetMode attribute is

External, the Target attribute shall be a relative reference or an absolute IRI.

Base IRIs for resolving relative references are defined in 6.4.

The range of values for this attribute shall be as defined by the xsd:anyURI

simple type of W3C XML Schema Datatypes.

Type This attribute specifies the relationship type of a relationship.

This attribute is required.

Relationship types can be compared to determine whether two Relationship

elements are of the same type. This comparison is conducted in the same way as
when comparing URIs that identify XML namespaces: the two URIs are treated as
strings and considered identical if and only if the strings have the same sequence of
characters. The comparison is case-sensitive, and no escaping is done or undone.

EXAMPLE 1

Type="http://schemas.openxmlformats.org/package/2006/rela

tionships/digital-signature/signature"

The range of values for this attribute shall be as defined by the xsd:anyURI

simple type of W3C XML Schema Datatypes.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships_CT_Relationships.html

6. Abstract package model

 23

Attributes Description

Id This attribute specifies the identifier of a relationship. The value of the Id attribute

shall be unique within the Relationships part.

This attribute is required.

EXAMPLE 2

Id="A5FFC797514BC"

The range of values for this attribute shall be as defined by the xsd:ID simple type

of W3C XML Schema Datatypes.

The W3C XML Schema definition of this element’s content model is the complex type CT_Relationship,

which is defined in the schema opc-relationships.xsd (C.5).

6.5.4 Examples

6.5.4.1 Relationships part associated with the entire package

Consider a package located at "http://www.example.com/ex.opc". Suppose that the package

contains a Relationships part "/_rels/.rels". This Relationships part is a package Relationships part,

which is associated with the entire package.

Also, suppose that the content of this package Relationships part is the XML document shown below:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="a.xml"

 Id="IDI1"

 Type="http://example.com/relTypeInt1"/>

 <Relationship

 Target="a.xml"

 TargetMode="External"

 Id="IDE1"

 Type="http://example.com/relTypeExt1"/>

</Relationships>

The two Relationship elements in this package Relationships part specify two relationships. The source

of each relationship is the package.

The first relationship:

• The target mode is Internal (default). Thus, the base IRI for resolving "a.xml" is the pack IRI

("pack://http%3c,,www.example.com,ex.opc") created from the IRI of the package

("http://www.example.com/ex.opc").

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-relationships/opc-relationships_CT_Relationship.html
http://www.example.com/ex.opc

ECMA-376 Part 2

24

• The result of resolving "a.xml" is "pack://http%3c,,www.example.com,ex.opc/a.xml". The

target of this relationship is thus the part "/a.xml" in this package.

• The relationship type of this relationship is "http://example.com/relTypeInt1".

• The identifier of this relationship is "IDI1".

The second relationship:

• The target mode is External. Thus, the base IRI for resolving "a.xml" is the IRI

("http://www.example.com/ex.opc") of the package.

• The target of this relationship is thus the resource at "http://www.example.com/a.xml".

• The relationship type of this relationship is "http://example.com/relTypeExt1".

• The identifier of this relationship is "IDE1".

6.5.4.2 Relationships part associated with a part

Consider a package located at "http://www.example.com/ex.opc". Suppose that the package

contains a Relationships part "/foo/_rels/test.xml.rels". This Relationships part is a part

Relationships part, the source of which is a part "/foo/test.xml".

Also, suppose that the content of this part Relationships part is the XML document shown below:

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="b.xml"

 Id="IDI2"

 Type="http://example.com/relTypeInt2"/>

 <Relationship

 Target="b.xml"

 TargetMode="External"

 Id="IDE2"

 Type="http://example.com/relTypeExt2"/>

</Relationships>

The two Relationship elements in this part Relationships part specify two relationships. The source of

each relationship is the part "/foo/test.xml".

The first relationship:

• The mode of the first relationship is Internal (default). Thus, the base IRI

("pack://http%3c,,www.example.com,ex.opc/foo/test.xml") is the pack IRI created from

the IRI ("http://www.example.com/ex.opc") of the package and the part name

"/foo/test.xml".

• The result of resolving "b.xml" is

"pack://http%3c,,www.example.com,ex.opc/foo/b.xml". The target of this relationship is

thus the part "/foo/b.xml" in this package.

http://www.example.com/ex.opc

6. Abstract package model

 25

• The relationship type of this relationship is "http://example.com/relTypeInt2".

• The identifier of this relationship is "IDI2".

The second relationship:

• The mode of the second relationship is External. Thus, the base IRI is the IRI

("http://www.example.com/ex.opc") of the package.

• The target of this relationship is thus the resource at "http://www.example.com/b.xml".

• The relationship type of this relationship is "http://example.com/relTypeExt2".

• The identifier of this relationship is "IDE2".

6.5.4.3 Relationships parts related to digital signature markup

The Digital Signature Origin part (10.4.2) is targeted by a package relationship, which is stored in the

package Relationships part, "/_rels/.rels".

EXAMPLE 1

A Relationship element representing the package relationship to the Digital Signature Origin part:

<Relationship Id="rId4"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/origin"

 Target="_xmlsignatures/origin.sigs"/>

The connection from the Digital Signature Origin to the Digital Signature XML Signature part is represented by a part

relationship, which is stored in a part Relationships part,

"/_xmlsignatures/_rels/origin.sigs.rels".

EXAMPLE 2

An XML document representing the content of "/_xmlsignatures/_rels/origin.sigs.rels":

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="sig1.xml"

 Id="rId1"

 Type="http://schemas.openxmlformats.org/package/2006/relationships/

 digital-signature/signature"/>

</Relationships>

6.5.4.4 Relationships targeting external resources

Relationships can target resources outside the package at an absolute location and resources located

relative to the current location of the package. The following Relationships part specifies relationships that

connect a package or part to pic1.jpg at an external absolute location, and to my_house.jpg at an external

location relative to the location of the package:

ECMA-376 Part 2

26

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"

 <Relationship

 TargetMode="External"

 Id="A9EFC627517BC"

 Target="http://www.example.com/images/pic1.jpg"

 Type="http://www.example.com/external-resource"/>

 <Relationship

 TargetMode="External"

 Id="A5EFC797514BC"

 Target="images/my_house.jpg"

 Type="http://www.example.com/external-resource"/>

</Relationships>

6.5.4.5 Multiple relationships that have the same target

The following Relationships part contains two relationships, each using a unique Id value. The

relationships share the same Target, but have different relationship types.

<Relationships

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship

 Target="Signature.xml"

 Id="A5FFC797514BC"

 Type="http://schemas.openxmlformats.org/package/2006/

 relationships/digital-signature/signature"/>

 <Relationship

 Target="Signature.xml"

 Id="B5F32797CC4B7"

 Type="http://www.example.com/internal-resource"/>

</Relationships>

7. Physical package model

 27

7 Physical package model

7.1 General

This clause introduces a physical package model in terms of a physical format (such as the ZIP format) and

a mapping from the abstract package model to this physical format. See Annex F for additional discussion of

physical package model design considerations.

This clause further specifies general guidelines and common mechanisms for physical package models and

defines a ZIP-based physical package model. The interleaving mechanism (see 7.2.4) is such a common

mechanism.

An example physical package is described in H.3.

7.2 Physical mapping guidelines

7.2.1 Using features of physical formats

Many physical formats have features that partially match components in the abstract package model. A

mapping from the abstract package model to a physical format should take advantage of any similarities in

capabilities between the abstract package model and the physical format while using layers of mapping to

provide additional capabilities not inherently present in the physical format. For example, some physical

formats store parts as individual files in a file system, in which case, it is advantageous to map many part

names directly to corresponding physical file names.

7.2.2 Mapped components

A physical package model is required to represent packages, parts (including Relationships parts), part

names, and part media types, but is not required to represent a growth hint.

7.2.3 Mapping media types to parts

7.2.3.1 General

A physical format can have a native mechanism for associating media types with parts. For example, the

Content-Type field in the header of a MIME entity associates a media type with that MIME entity. For such a

physical format, mappings from the abstract package model should use the native mechanism.

For all other physical formats, the package shall include an XML stream that is referred to in this document

as the Media Types stream. The Media Types stream shall not represent a part. This stream shall not be

URI-addressable. However, it may be interleaved in the physical package using the same mechanisms used

for interleaving parts.

ECMA-376 Part 2

28

7.2.3.2 Media Types stream markup

7.2.3.2.1 General

The content of the Media Types stream shall be a schema-valid XML document against opc-

contentTypes.xsd (C.2). This XML document shall have a top-level Types element, and one or more

Default and Override child elements. Default elements shall define default mappings from the

extensions of part names to media types. Override elements shall specify media types on parts that are

not covered by, or are not consistent with, the default mappings. Note that Default elements can be used

to reduce the number of Override elements on a part.

For all parts of the package other than Relationships parts (6.5.2), the Media Types stream shall specify

either:

• One matching Default element, or

• One matching Override element, or

• Both a matching Default element and a matching Override element, in which case, the Override

element takes precedence.

There shall not be more than one Default element for any given extension, and there shall not be more

than one Override element for any given part name.

The order of Default and Override elements in the Media Types stream shall not be significant.

The Media Types stream may define Default elements even though no parts use them.

7.2.3.2.2 Support for versioning and extensibility

The Media Types stream shall not use the versioning and extensibility mechanisms defined in ECMA-376-3.

7.2.3.2.3 Types element

A Types element shall be the root element of the XML document contained in the Media Types stream.

This element shall have no attributes.

The W3C XML Schema definition of this element’s content model is the complex type CT_Types, which is

defined in the schema opc-contentTypes.xsd (C.2).

7.2.3.2.4 Default element

A Default element shall specify the default mappings from the extensions of part names to media types.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Types.html

7. Physical package model

 29

Attributes Description

Extension This attribute specifies a string as a file extension.

This attribute is required.

A Default element shall match any part whose name ends with a period (“.”)

followed by the value of this attribute.

The possible values for this attribute are defined by the simple type
ST_Extension, which is defined in the schema opc-contentTypes.xsd (C.2).

ContentType This attribute specifies a media type using the syntax defined in RFC 7231, 3.1.1.1.

This attribute is required.

The specified media type shall apply to any matching parts (unless overridden by
Override elements).

The possible values for this attribute are defined by the simple type
ST_ContentType, which is defined in the schema opc-contentTypes.xsd (C.2).

The W3C XML Schema definition of this element’s content model is the complex type CT_Default, which

is defined in the schema opc-contentTypes.xsd (C.2).

7.2.3.2.5 Override element

An Override element shall specify a media type for a part that is not covered by, or is not consistent with,

the default mappings.

Attributes Description

ContentType This attribute specifies a media type using the syntax defined in RFC 7231, 3.1.1.1.

This attribute is required.

The specified media type shall apply to the part named in the attribute PartName.

The possible values for this attribute are defined by the simple type
ST_ContentType, which is defined in the schema opc-contentTypes.xsd (C.2).

PartName This attribute specifies a part name.

This attribute is required.

An Override element shall match a part whose name is equal to the value of this

attribute.

The range of values for this attribute shall be as defined by the xsd:anyURI

simple type of W3C XML Schema Datatypes.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_Extension.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_ContentType.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Default.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_ST_ContentType.html

ECMA-376 Part 2

30

The W3C XML Schema definition of this element’s content model is the complex type CT_Override, which

is defined in the schema opc-contentTypes.xsd (C.2).

7.2.3.3 Media Types stream markup example

EXAMPLE Media Types stream markup

<Types

 xmlns="http://schemas.openxmlformats.org/package/2006/content-types">

 <Default Extension="txt" ContentType="text/plain" />

 <Default Extension="jpeg" ContentType="image/jpeg" />

 <Default Extension="picture" ContentType="image/gif" />

 <Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The Types element is a container for media types used within the package.

The following is a sample list of parts and their corresponding media types as defined by the Media Types stream

markup above.

Part name Media type

/a/b/sample1.txt text/plain

/a/b/sample2.jpg image/jpeg

/a/b/sample3.picture image/gif

/a/b/sample4.picture image/jpeg

7.2.3.4 Setting a part media type in the Media Types stream

When adding a new part to a package, the package implementer shall ensure that a media type for that part

is specified in the Media Types stream. The package implementer shall perform the following steps to do

so:

a) Get the extension from the part name by taking the substring to the right of the rightmost

occurrence of the dot character (“.”) from the rightmost segment.

b) If a part name has no extension, a corresponding Override element shall be added to the Media

Types stream.

c) Compare the resulting extension with the values specified for the Extension attributes of the

Default elements in the Media Types stream. The comparison shall be ASCII case-insensitive

matching.

d) If there is a Default element with a matching Extension attribute, then the media type of the

new part shall be compared with the value of the ContentType attribute. The comparison shall be

case-insensitive and include every character regardless of the role it plays in the content-type

grammar of RFC 7231.

1) If the media types match, no further action is required.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-contentTypes/opc-contentTypes_CT_Override.html

7. Physical package model

 31

2) If the media types do not match, a new Override element shall be added to the Media

Types stream.

e) If there is no Default element with a matching Extension attribute, a new Default element or

Override element shall be added to the Media Types stream.

7.2.3.5 Determining a part media type from the Media Types stream

To get the media type of a part, the package implementer shall perform the following steps:

a) Compare the part name with the values specified for the PartName attribute of the Override

elements. The comparison shall be ASCII case-insensitive matching.

b) If there is an Override element with a matching PartName attribute, return the value of its

ContentType attribute. No further action is required.

c) If there is no Override element with a matching PartName attribute, then

1) Get the extension from the part name by taking the substring to the right of the rightmost

occurrence of the dot character (“.”) from the rightmost segment.

2) Check the Default elements of the Media Types stream, comparing the extension with the

value of the Extension attribute. The comparison shall be ASCII case-insensitive

matching.

d) If there is a Default element with a matching Extension attribute, return the value of its

ContentType attribute. No further action is required.

NOTE Given a conformant package, either an Override element is found by step b) or a Default element is found by

step c).

7.2.4 Interleaving

When mapping an abstract package to a physical package, the data stream of a part or the Media Types

stream may be broken into pieces. Each piece shall represent a data stream, which may be empty. Pieces

can later be joined together, forming the original stream, based on piece names, as specified in 7.2.5.2.

A physical package may contain both interleaved parts and non-interleaved parts. Interleaved parts shall

be parts broken into pieces. Non-interleaved parts shall be parts not broken into pieces.

Pieces shall exist only in the physical package and shall not be addressable in the abstract package model.

Pieces shall occur in their natural piece-number order and may be interleaved with pieces of other parts or

with non-interleaved parts.

Because of the performance benefits it provides, package implementers should support interleaving but are

not required to do so.

For further discussion of performance benefits of interleaving see F.3.

ECMA-376 Part 2

32

7.2.5 Mapping part names to physical package item names

7.2.5.1 General

A mapping from an abstract package to a physical package shall use logical items as intermediate objects in

order to permit interleaving (7.2.4). If a part or the Media Types stream is interleaved, each piece

constructed from it shall be a logical item; otherwise, the part or Media Types stream shall be a logical item.

See Figure 1.

/foo.xaml

/bar.xaml

Part names
(Public, case-insensitive)

Logical item
names

/foo.xaml

/bar.xaml/[0].piece

/bar.xaml/[1].piece

/bar.xaml/[2].piece

/bar.xaml/[3].piece

/bar.XAML/[4].last.piece

/[ContentTypes].xml

Figure 1 — Mapping Part names to logical item names

7.2.5.2 Logical item names

Names of logical items shall be Unicode strings. The support of non-ASCII characters is not required.

If a logical item is a piece, its name shall have suffixes of the following syntax:

SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber = "0" | NonZeroDigit [1*Digit]

Digit = "0" | NonZeroDigit

NonZeroDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

The prefix of a logical item name is the result of removing a suffix, if any, from the logical item name.

7. Physical package model

 33

Equivalence of prefixes, and of suffixes shall be determined by ASCII case-insensitive matching. Logical

names shall be equivalent if their prefixes and suffixes are equivalent. A physical package shall not contain

equivalent logical item names.

Logical item names that use suffix names shall form a complete sequence if and only if:

a) the prefix names of all logical item names in the sequence are equivalent, and

b) the suffix names of the sequence start with "/[0].piece" and end with "/[n].last.piece"

and include a piece for every piece number between 0 and n, without gaps, when the piece numbers

are interpreted as decimal integer values.

7.2.5.3 Mapping part names to logical item names

Names of non-interleaved parts shall be mapped to logical item names that have an equivalent prefix and

no suffix.

Names of interleaved parts shall be mapped to the complete sequence of logical item names with an

equivalent prefix.

7.2.5.4 Mapping logical item names and physical package item names

The mapping of logical item names and physical package item names shall be specific to the particular

physical package.

7.2.5.5 Mapping logical item names to part names

A logical item name without a suffix shall be mapped to a part name with an equivalent prefix, provided

that the prefix name conforms to the part name syntax.

A complete sequence of logical item names shall be mapped to the part name that is equal to the prefix of

the logical item name having the suffix "/[0].piece", provided that the prefix name conforms to the part

name syntax.

A physical package may contain logical item names and complete sequences of logical item names that

cannot be mapped to a part name because the logical item name does not follow the part naming grammar.

Such logical items or complete sequences of logical items shall not be mapped to parts.

EXAMPLE A logical item name "/[trash]/0000.dat" cannot be mapped to a part item. Thus, this logical item

does not represent a part.

7.3 Mapping to a ZIP file

7.3.1 General

This document defines a mapping for the ZIP file format.

A ZIP file representing a physical package shall satisfy the requirements of Annex B and should follow

the recommendations of Annex B.

ECMA-376 Part 2

34

Physical package items of ZIP files shall be ZIP items. Note that when users unzip a ZIP-based package, they

see a set of files and folders that reflects the parts in the package and their hierarchical naming structure.

Table 1 shows the various components of the abstract package model and their corresponding physical

representation in a ZIP file.

Table 1 — Abstract package model components and their physical representations

Abstract package
model

component

Physical representation

Package ZIP file

Part ZIP item

Part name Stored in item header (and ZIP central directory as appropriate). See
7.3.4 for conversion rules.

Part media type Stored in the ZIP item containing the Media Types stream described in
7.2.3.2. See 7.3.7 for details about the ZIP item name.

Growth hint Padding reserved in the ZIP Extra field in the local header that
precedes the item. See 7.3.8 for a detailed description of the data
structure.

7.3.2 Mapping part data

Each non-interleaved part shall be represented as a single ZIP item. Each piece of an interleaved part, as

described in 7.2.4, shall be represented as a single ZIP item.

7.3.3 ZIP item names

ZIP item names shall conform to the ZIP Appnote. A mapping from an abstract package to a ZIP file shall

only use ASCII ZIP item names. ZIP item names shall be unique within a given ZIP file.

EXAMPLE The following ZIP item names in a ZIP file are mapped to part pieces and whole parts:

"spine.xml/[0].piece"

"pages/page0.xml"

"spine.xml/[1].piece"

"pages/page1.xml"

"spine.xml/[2].last.piece"

"pages/page2.xml"

7.3.4 Mapping logical item names to ZIP item names

For each logical item, the process of mapping of logical item names to ZIP item names shall involve the

following steps, in order:

a) Remove the leading forward slash (“/”) from the logical item name or, in the case of interleaved

parts, from each of the logical item names within the complete sequence.

b) Percent-encode every non-ASCII character.

7. Physical package model

 35

7.3.5 Mapping ZIP item names to logical item names

The names of all ZIP items shall be mapped to logical item names, except for items that do not represent

files.

NOTE For some file systems, the ZIP Appnote provides further information on ZIP items that are recognized as files.

For each ZIP item, the process of mapping of ZIP item names to logical item names shall involve the

following steps, in order:

a) Un-percent-encode every non-ASCII character.

b) Add a forward slash (“/”).

7.3.6 ZIP package limitations

This document requires that a file header in the central directory structure within a ZIP file shall not exceed

65 535 bytes (see "F. Central directory structure" in the ZIP Appnote). Each file header contains a zip item

name, Extra field (including bytes representing growth hint as specified in 6.2.4), File Comment, and 42

more bytes representing miscellaneous fields.

Package implementers should restrict part naming to accommodate file system limitations when naming

parts to be stored as ZIP items.

EXAMPLE Examples of these limitations are:

• On MS Windows® file systems, the asterisk (“*”) is not supported, so parts named with this character do not

unzip successfully.

• On MS Windows® file systems, many programs can handle only file names that are less than 256 characters

including the full path; they cannot handle parts with longer names once the parts are unzipped.

ZIP-based packages shall not include encryption as described in the ZIP Appnote.

ZIP-based packages shall not use compression algorithms except DEFLATE, as described in the ZIP

Appnote.

7.3.7 Mapping the Media Types stream

In ZIP files, the Media Types stream shall be stored in an item with the name "[Content_Types].xml"

or, in the interleaved case, in the complete sequence of ZIP items

"[Content_Types].xml/[0].piece", "[Content_Types].xml/[1].piece", …, and

"[Content_Types].xml/[n].last.piece".

NOTE Bracket characters "[" and "]" were chosen for the Media Types stream name specifically because these

characters violate the part naming grammar, thus reinforcing the requirement that the ZIP item names constructed

from the Media Types stream are always distinguishable from those constructed from part names.

ECMA-376 Part 2

36

7.3.8 Mapping the growth hint

The additional space suggested by growth hint is stored in the Extra field, as defined in the ZIP Appnote. If

the growth hint is used for an interleaved part, the padding is stored in the Extra field of the ZIP item

representing the first piece of the part.

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 2.

Table 2 — Structure of the Extra field for growth hints

Field component Size Value

Header ID 2 bytes 0xA220

Length of Extra field 2 bytes The length in bytes of the remaining
components of the Extra field: Signature
component length + Padding Initial Length
component length + Padding component length

Signature (for
verification)

2 bytes 0xA028

Padding Initial Length 2 bytes The length in bytes of the Padding component
set by a package implementer when the item is
created

Padding variable Filled with 0x00 bytes

8. Core properties

 37

8 Core properties

8.1 General

Users can associate core properties with packages. Such core properties enable users to get and set well-

known and common sets of property metadata to packages. The core properties and the specifications that

describe them are shown in Table 3:

Table 3 — Core properties

Property Specification Description

category Open Packaging
Conventions

A categorization of the content of this package.

contentStatus Open Packaging
Conventions

The status of the content.

created DCMI Metadata
Terms

Date of creation of the resource.

creator Dublin Core
Metadata Element
Set

An entity primarily responsible for making the content of
the resource.

description Dublin Core
Metadata Element
Set

An explanation of the content of the resource.

identifier Dublin Core
Metadata Element
Set

An unambiguous reference to the resource within a given
context.

keywords Open Packaging
Conventions

A delimited set of keywords to support searching and
indexing. This is typically a list of terms that are not
available elsewhere in the properties.

language Dublin Core
Metadata Element
Set

The language of the intellectual content of the resource.
Note that IETF RFC 3066 provides guidance on encoding to
represent languages.

lastModifiedBy Open Packaging
Conventions

The user who performed the last modification. The
identification is environment-specific.

lastPrinted Open Packaging
Conventions

The date and time of the last printing.

modified DCMI Metadata
Terms

Date on which the resource was changed.

revision Open Packaging
Conventions

The revision number.

ECMA-376 Part 2

38

Property Specification Description

subject Dublin Core
Metadata Element
Set

The topic of the content of the resource.

title Dublin Core
Metadata Element
Set

The name given to the resource.

version Open Packaging
Conventions

The version number.

8.2 Core Properties part

A package shall contain at most one Core Properties part.

A Core Properties part within the package shall be referenced by a core properties relationship from the

package, as listed in Annex E. A package shall contain at most one core properties relationship.

The media type of a Core Properties part shall be the Core Properties part media type, as defined in Annex

E.

8.3 Core properties markup

8.3.1 General

The content of the Core Properties part shall be a schema-valid XML document against opc-

coreProperties.xsd (C.3).

Unless specified otherwise, elements representing a Core Properties part shall be of the namespace as

defined in Annex E.

EXAMPLE

An example of a Core Properties part is shown below.

<coreProperties

 xmlns="http://schemas.openxmlformats.org/package/2006/metadata/

 core-properties"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <dc:creator>Alan Shen</dc:creator>

 <dcterms:created xsi:type="dcterms:W3CDTF">

 2005-06-12

 </dcterms:created>

 <dc:title>OPC Core Properties</dc:title>

8. Core properties

 39

 <dc:description>Spec defines the schema for OPC Core Properties and

their location within the package</dc:description>

 <dc:language>eng</dc:language>

 <version>1.0</version>

 <lastModifiedBy>Alan Shen</lastModifiedBy>

 <dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-

23</dcterms:modified>

 <contentStatus>Reviewed</contentStatus>

 <category>Specification</category>

</coreProperties>

In this example dc:creator, dcterms:created, dc:title, dc:description, dc:language, version, lastModifiedBy,

dcterms:modified, contentStatus, and category are core property elements.

8.3.2 Support for versioning and extensibility

A Core Properties part shall not contain elements or attributes of the Markup Compatibility namespace as

defined in ECMA-376-3.

NOTE Versioning and extensibility functionality is accomplished by creating a new part and using a relationship with

a new type to point from the Core Properties part to the new part. This document does not provide any requirements

or guidelines for new parts or relationship types that are used to extend core properties. ISO/IEC TR 30114-1 (see

Reference [4]) provides such a guideline.

8.3.3 coreProperties element

A coreProperties element is the root element of a Core Properties part.

This element shall have no attributes.

Children of this element shall be core property elements, as defined in 8.3.4.

The content of this element is defined by the complex type CT_CoreProperties, which is defined in the

schema opc-coreProperties.xsd (C.3).

8.3.4 Core property elements

8.3.4.1 General

Core property elements shall be elements representing core properties. Core property elements are non-

repeatable. They can be empty or omitted.

8.3.4.2 Core property elements as defined by ISO 15836-1

This document allows creator, description, identifier, language, subject, and title

elements as core property elements. If any of these elements are included, they shall be as specified by ISO

15836-1.

NOTE These elements belong to the namespace "http://purl.org/dc/elements/1.1/".

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_CoreProperties.html

ECMA-376 Part 2

40

These elements shall not have child elements and shall not have the xsi:type attribute or the xml:lang

attribute.

EXAMPLE

The example in 8.3.1 contains four elements from ISO 15836-1.

<dc:creator>Alan Shen</dc:creator>

<dc:title>OPC Core Properties</dc:title>

<dc:description>Spec defines the schema for OPC Core Properties and their

location within the package</dc:description>

<dc:language>eng</dc:language>

8.3.4.3 Core property elements as defined by ISO 15836-2

This document allows created and modified elements as core property elements. If either or both of

these elements are included, they shall be as specified by ISO 15836-2.

NOTE These elements belong to the namespace "http://purl.org/dc/terms/".

This document introduces further requirements. These elements shall not have child elements and shall

not have the xml:lang attribute. These elements shall have the xsi:type attribute whose value is

"dcterms:W3CDTF" (see Reference [2]) and dcterms shall be declared as the prefix of the Dublin Core

namespace "http://purl.org/dc/terms/".

EXAMPLE

The example in 8.3.1 contains two elements from DCMI Metadata Terms.

<dcterms:created xsi:type="dcterms:W3CDTF">2005-06-12</dcterms:created>

<dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>

8.3.4.4 Core property elements defined in this document

8.3.4.4.1 category element

A category element specifies the category of the content of the package.

This element can have values such as “Resume”, “Letter”, “Financial Forecast”, “Proposal”, and “Technical

Presentation”. This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

The W3C XML Schema definition of this element is in the schema opc-coreProperties.xsd (C.3).

EXAMPLE

A category element is in the example in 8.3.1.

<category>Specification</category>

http://purl.org/dc/terms/
http://purl.org/dc/terms/

8. Core properties

 41

8.3.4.4.2 contentStatus element

A contentStatus element specifies the status of the content of the package.

This element can have values such as “Draft”, “Reviewed”, and “Final”.This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

The W3C XML Schema definition of this element is in the schema opc-coreProperties.xsd (C.3).

EXAMPLE

The example in 8.3.1 contains

<contentStatus>Reviewed</contentStatus>

8.3.4.4.3 keywords element

A keywords element specifies the keywords for the content of the package.

A keywords element shall have an optional attribute xml:lang, as defined by XML 1.0. A keywords

element has a mixed content model such that each keyword can be wrapped by a value element having an

xml:lang attribute individually.

EXAMPLE The following instance of the keywords element has keywords in English (Canada), English (U.S.), and

French (France):

<keywords xml:lang="en-US">

 color

 <value xml:lang="en-CA">colour</value>

 <value xml:lang="fr-FR">couleur</value>

</keywords>

The W3C XML Schema definition of this element's content model in the complex type CT_Keywords,

which is defined in the schema opc-coreProperties.xsd (C.3).

8.3.4.4.4 value element

A value element specifies a keyword for the content of the package.

A value element shall have an optional attribute xml:lang, as defined by the XML 1.0 specification.

The W3C XML Schema definition of this element's content model is the complex type CT_Keyword, which

is defined in the schema opc-coreProperties.xsd (C.3).

8.3.4.4.5 lastModifiedBy element

A lastModifiedBy element specifies who modified the content of the package.

EXAMPLE 1 A name, email address, or employee ID.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_Keywords.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-coreProperties/opc-coreProperties_CT_Keyword.html

ECMA-376 Part 2

42

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

The W3C XML Schema definition of this element is the schema opc-coreProperties.xsd (C.3).

EXAMPLE 2 The example in 8.3.1 contains

<lastModifiedBy>Alan Shen</lastModifiedBy>

8.3.4.4.6 lastPrinted element

A lastPrinted element specifies when the content of the package was printed last time.

This element shall have no attributes.

The content of this element is defined by the xsd:dateTime simple type.

The W3C XML Schema definition of this element is the schema opc-coreProperties.xsd (C.3).

EXAMPLE 1 The example in 8.3.1 contains

<lastPrinted>2017-01-01</lastPrinted>

EXAMPLE 2

<lastPrinted>2017-04-17T14:20:10+09:00</lastPrinted>

8.3.4.4.7 revision element

A revision element specifies the revision number of the content of the package.

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

The W3C XML Schema definition of this element is the schema opc-coreProperties.xsd (C.3).

EXAMPLE

<revision>4</revision>

8.3.4.4.8 version element

A version element specifies the version of the content of the package.

This element shall have no attributes.

The content of this element is defined by the xsd:string simple type.

The W3C XML Schema definition of this element is the schema opc-coreProperties.xsd (C.3).

8. Core properties

 43

EXAMPLE

 <version>1.0</version>

ECMA-376 Part 2

44

9 Thumbnails

Thumbnail parts shall be image parts identified by either a part relationship or a package relationship. This

relationship shall have a relationship type for Thumbnail parts, as defined in Annex E.

NOTE Thumbnail parts can be used to help end-users identify parts of a package or a package as a whole.

10. Digital signatures

 45

10 Digital signatures

10.1 General

A package may include markup specifying that parts of a package have been signed. This clause describes

how OPC applies the W3C Recommendation “XML-Signature Syntax and Processing” in the construction of

this markup.

10.2 Overview of OPC-specific restrictions and extensions to “XML-

Signature Syntax and Processing”

Digital signatures are represented as separate OPC parts. In other words, digital signatures are detached

from the content to be signed.

This document introduces markup for specifying when a signature is created. This markup appears in an

Object element.

This document introduces markup (10.5.8.2) and a transform algorithm (10.6) for flexibly defining the

relationships to be signed.

This document mandates the use of the Manifest element as a child of an Object element for

enumerating parts to be signed.

10.3 Choosing content to sign

It is assumed that there is a signature policy to determine which parts and relationships to sign.

This clause provides flexibility in defining the content to be signed, thus allowing other content to be

mutable. For further information on how to define which content is to be signed, see 10.5.6 and 10.5.8.2.

10.4 Digital signature parts

10.4.1 General

Digital signatures in packages use the Digital Signature Origin part, Digital Signature XML Signature parts,

and Digital Signature Certificate parts. Relationship types and media types relating to the use of digital

signatures in packages are specified in Annex E. Note that an example relationship from the Digital

Signature Origin part to a Digital Signature XML Signature part is provided in 6.5.4.3.

Figure 2 shows a signed package with signature parts, signed parts, and an X.509 certificate part. The

example Digital Signature Origin part has relationships to two Digital Signature XML Signature parts, each

containing a signature. The signatures relate to the signed parts.

ECMA-376 Part 2

46

Figure 2 — A signed package

10.4.2 Digital Signature Origin part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. No

more than one Digital Signature Origin part shall exist in a package and that part shall be the target of a

Digital Signature Origin relationship, as specified in Annex E, from the package. This part shall exist if the

package contains any Digital Signature XML Signature parts, and shall be optional otherwise. The content of

the Digital Signature Origin part shall be empty.

10.4.3 Digital Signature XML Signature part

A Digital Signature XML Signature part shall contain a signature, represented by digital signature markup

(see 10.5). Each Digital Signature XML Signature part shall be the target of a Digital Signature relationship,

as specified in Annex E, from the Digital Signature Origin part. A package may contain more than one Digital

Signature XML Signature part.

NOTE If future versions of this document specify distinct relationship types for revised signature parts, packages

would be able to contain different signature information for different versions. For reference validation and signature

validation it would be possible to choose the appropriate XML digital signatures.

10.4.4 Digital Signature Certificate part

The content of a Digital Signature Certificate part shall be a digital certificate as defined in X.509.

The X.509 certificate used for signature validation can:

— be contained within a Digital Signature XML Signature part;

10. Digital signatures

 47

— form a separate Digital Signature Certificate part; or

— be stored outside the package.

If the certificate is represented as a separate part within the package, that certificate shall be the target of a

Digital Signature Certificate part relationship, as specified in Annex E, from the appropriate Digital

Signature XML Signature part. The part containing the certificate may be signed. The media type of the

Digital Signature Certificate part and the relationship targeting it from the Digital Signature XML Signature

part are defined in Annex E. A Digital Signature Certificate part may be used to create more than one

signature. A Digital Signature Certificate part should be the target of at least one Digital Signature

Certificate relationship from a Digital Signature XML Signature part.

10.5 Digital signature markup

10.5.1 General

The content of a Digital Signature XML Signature part shall be an XML document. The requirements

specified in 6.2.5 apply.

The content of each Digital Signature XML Signature part shall be a schema-valid XML document against

xmldsig-core-schema.xsd, as specified in the W3C Recommendation “XML-Signature Syntax and

Processing”, and opc-digSig.xsd (see C.4). Algorithms shall be identified by URIs as shown in this W3C

recommendation or RFC 6931.

10.5.2 to 10.5.18 cover OPC-specific restrictions and extensions to “XML-Signature Syntax and Processing”.

Subclauses are provided for elements defined for OPC-specific use or for which OPC introduces restrictions.

Elements defined in “XML-Signature Syntax and Processing” (such as X509Certificate) for which no

subclause is provided below are allowed in OPC packages without restriction.

OPC-specific elements belong to the namespace for Digital Signatures (see Table E.1). Their schema

definitions are reached via C.4.

NOTE For a general example of XML digital signature markup, see Section 2 of “XML-Signature Syntax and

Processing”. For a complete example of an OPC-specific digital signature, see 10.7.

10.5.2 Support for versioning and extensibility

A Digital Signature XML Signature part shall not contain elements or attributes of the Markup Compatibility

namespace as defined in ECMA-376-3.

10.5.3 Signature element

This document introduces further requirements to those defined in 4.1 of “XML-Signature Syntax and

Processing”.

A Signature element shall contain exactly one OPC-specific Object element and zero or more

application-defined Object elements.

ECMA-376 Part 2

48

10.5.4 SignedInfo element

This document introduces further requirements to those defined in 4.3 of “XML-Signature Syntax and

Processing”

A SignedInfo element shall contain exactly one Reference element referencing an OPC-specific

Object element. The SignedInfo element may also contain one or more Reference elements

referencing other data objects.

10.5.5 CanonicalizationMethod element

This document introduces further requirements to those defined in 4.3.1 of “XML-Signature Syntax and

Processing”.

Packages shall use only the following canonicalization methods:

• XML Canonicalization (c14n)

• XML Canonicalization with Comments (c14n with comments)

10.5.6 SignatureMethod element

This document introduces further requirements to those defined in 4.3.2 of “XML-Signature Syntax and

Processing”.

A SignatureMethod element should specify one of the following algorithms:

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

The key length of RSA SHA algorithms shall be equal to or longer than 1 024 bits, and should be longer than

or equal to 2 048 bits. ECDSA algorithms shown in NIST SP 800-56A Rev. 3, Appendix D (see Reference [6]),

should be used. The maximum target security strength should be greater than or equal to 128.

This element should not specify

• http://www.w3.org/2000/09/xmldsig#dsa-sha1

• http://www.w3.org/2000/09/xmldsig#rsa-sha1

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

This element may specify other algorithms.

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

10. Digital signatures

 49

10.5.7 Reference element

10.5.7.1 General

This document introduces further requirements to those defined in 4.3.3 of “XML-Signature Syntax and

Processing”.

10.5.7.2 Reference element as a child of a SignedInfo element

Reference elements within a SignedInfo element shall reference elements only within the same

Signature element, and should reference an Object element.

10.5.7.3 Reference element as a child of a Manifest element

Each Reference element that is a child of a Manifest element shall only reference parts in the package.

The value of the URI attribute shall be a part name without a fragment identifier.

References to package parts shall include the part media type as a query component. The syntax of the

relative reference is as follows:

/page1.xml?ContentType=value

where value is the (case-insensitive) media type of the targeted part.

EXAMPLE Part reference with query component

In the following example, the media type is "application/vnd.openxmlformats-

package.relationships+xml":

URI="/_rels/document.xml.rels?ContentType=application/vnd.openxmlformats-

package.relationships+xml"

10.5.8 Transform element

10.5.8.1 General

This document introduces further requirements to those defined in 4.3.3.4 of “XML-Signature Syntax and

Processing”.

One of the following transform algorithms shall be specified:

• XML Canonicalization (c14n)

• XML Canonicalization with Comments (c14n with comments)

• Relationships transform (OPC-specific)

10.5.8.2 Transform element representing a Relationships transform

A Transform element represents a Relationships transform if the value of its attribute Algorithm is:

"http://schemas.openxmlformats.org/package/2006/RelationshipTransform"

ECMA-376 Part 2

50

Such a Transform element shall:

• contain one or more RelationshipReference or RelationshipsGroupReference elements,

• be a descendant element of a Manifest element,

• be followed by a Transform element specifying either XML Canonicalization (c14n) or XML

Canonicalization with Comments (c14n with comments)

A Relationships transform describes how the Relationship elements from the Relationships part are

selected for signing. Only one Relationships transform shall be specified for a particular Relationships part.

For algorithm details, see 10.6.

10.5.9 RelationshipReference element

The RelationshipReference element specifies which Relationship element is signed, and shall

only occur as a child element of a Transform element representing a Relationships transform (10.5.8.2).

This element is OPC-specific.

Attributes Description

SourceId (Reference to

Relationship)

The value of the Id attribute of the referenced Relationship

element within the given Relationships part.

This attribute is required.

The range of values for this attribute shall be as defined by the
xsd:string simple type of W3C XML Schema Datatypes.

The W3C XML Schema definition of this element’s content model is the complex type

CT_RelationshipReference, which is defined in the schema opc-digSig.xsd (C.2).

10.5.10 RelationshipsGroupReference element

The RelationshipsGroupReference element specifies that the group of Relationship elements

with the specified value for the Type attribute is signed. This element shall only occur as a child element of

a Transform element representing a Relationships transform (10.5.8.2). This element is OPC-specific.

Attributes Description

SourceType (Relationship

Type)

The value of the Type attribute of the Relationship elements

within the given Relationships part.

This attribute is required.

The range of values for this attribute shall be as defined by the
xsd:string simple type of W3C XML Schema Datatypes.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_RelationshipReference.html

10. Digital signatures

 51

The W3C XML Schema definition of this element’s content model is the complex type

CT_RelationshipsGroupReference, which is defined in the schema opc-digSig.xsd (C.2).

10.5.11 DigestMethod element

This document introduces further requirements to those defined in 4.3.3.5 of “XML-Signature Syntax and

Processing”.

A DigestMethod element should specify one of the following algorithms:

• http://www.w3.org/2001/04/xmlenc#sha256

• http://www.w3.org/2001/04/xmldsig-more#sha384

• http://www.w3.org/2001/04/xmlenc#sha512

This element should not specify:

• http://www.w3.org/2000/09/xmldsig#sha1

This element shall not specify:

• http://www.w3.org/2001/04/xmldsig-more#md5

This element may specify other algorithms.

10.5.12 Object element

10.5.12.1 General

This document introduces further requirements to those defined in 4.5 of “XML-Signature Syntax and

Processing”. An Object element shall be either OPC-specific or application-defined.

10.5.12.2 OPC-specific Object element

An OPC-specific Object element shall contain a Manifest element followed by a

SignatureProperties element, and no other elements. The Id attribute of the OPC-specific Object

element shall be specified, and its value shall be "idPackageObject".

10.5.12.3 Application-Defined Object element

An application-defined Object element specifies application-defined information. The Id attribute of the

application-defined Object element shall be absent or have a value other than "idPackageObject".

Implementations should avoid values (such as "idOfficeObject") that are in widespread use.

10.5.13 Manifest element

This document introduces further requirements to those defined in 4.4 of “XML-Signature Syntax and

Processing” only when a Manifest element occurs as a child of an OPC-specific Object element.

Reference elements in such a Manifest element shall satisfy requirements defined in 10.5.7.3.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_RelationshipsGroupReference.html
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/04/xmldsig-more#md5
http://www.w3.org/2001/04/xmldsig-more#md5

ECMA-376 Part 2

52

10.5.14 SignatureProperty element

This document introduces further requirements to those defined in 5.2 of “XML-Signature Syntax and

Processing” only when a SignatureProperty element is a child of a child SignatureProperties

element of an OPC-specific Object element. Such a SignatureProperty element shall specify the Id

attribute to have the value "idSignatureTime", and shall contain a SignatureTime element and no

other elements. The Target attribute value of such a SignatureProperty element shall be either

empty or contain a fragment reference to the value of the Id attribute of the root Signature element.

10.5.15 SignatureTime element

The SignatureTime element contains a claimed date/time stamp for the signature. This element is OPC-

specific.

This element has no attributes.

The W3C XML Schema definition of this element’s content model is the complex type

CT_SignatureTime, which is defined in the schema opc-digSig.xsd (C.2).

10.5.16 Format element

The Format element specifies the format of the date/time stamp. This element is OPC-specific. The

date/time format shall conform to the syntax described in the W3C Note "Date and Time Formats" (see

Reference [2]).

This element has no attributes.

The W3C XML Schema definition of this element’s content model is ST_Format, which is defined in the

schema opc-digSig.xsd (C.2).

10.5.17 Value element

The Value element shall contain the value of the date/time stamp. This element is OPC-specific. The value

shall conform to the format specified in the Format element.

This element has no attributes.

The W3C XML Schema definition of this element’s content model is ST_Value, which is defined in the

schema opc-digSig.xsd (C.2).

10.5.18 XPath element

The XPath element shall not be present. Note that the XPath element is only for XPath filtering, which is

disallowed in OPC.

10.6 Relationships transform algorithm

The Relationships transform takes the XML document from the specified Relationships part and transforms

it to another XML document. This transform shall be supported in generating and validating signatures.

https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_CT_SignatureTime.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_ST_Format.html
https://sc34wg4.github.io/OOXMLSchemas/documentation/Part2/opc-digSig/opc-digSig_ST_Value.html

10. Digital signatures

 53

Note that the output XML document is subsequently canonicalized by the specified canonicalization

algorithm.

The Relationships transform shall have the following steps:

Step 1: Process versioning instructions

Process the Relationships part as specified in ECMA-376-3, where the markup configuration is empty, and

the application configuration contains the Relationships namespace only.

Step 2: Sort and select signed relationships

a) Remove all namespace declarations except the Relationships namespace declaration.

b) Remove the Relationships namespace prefix, if it is present.

c) Sort Relationship elements by Id value in case-sensitive lexicographical order.

Keep only those Relationship elements which either have an Id value that matches a

SourceId value of a RelationshipReference element or have a Type value that matches a

SourceType value of a RelationshipGroupReference element specified in the

Relationships transform. Matching is ASCII case-insensitive.

EXAMPLE Consider a Relationships part

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<rlsps:Relationships

xmlns:rlsps="http://schemas.openxmlformats.org/package/2006/relationships"

xmlns:foo="http://example.com/foo">

 <rlsps:Relationship Id="rId6" Type="http://../relationships/footnotes"

Target="footnotes.xml"/>

 <rlsps:Relationship Id="rId8" Type="http://../relationships/header"

Target="header1.xml"/>

 <rlsps:Relationship Id="rId32" Type="http://../relationships/image"

Target="media/image1.png"/>

 <rlsps:Relationship Id="rId3" Type="http://../relationships/styles"

Target="styles.xml"/>

 <rlsps:Relationship Id="rId21" Type="http://../relationships/image"

Target="media/image2.jpeg"/>

 <rlsps:Relationship Id="rId12" Type="http://../relationships/header"

Target="header1.xml"/>

</rlsps:Relationships>

Given Id="rId6" and Type="http://../relationships/image", Step 2 constructs

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship Id="rId21" Type="http://../relationships/image"

Target="media/image2.jpeg"/>

http://../relationships/image

ECMA-376 Part 2

54

 <Relationship Id="rId32" Type="http://../relationships/image"

Target="media/image1.png"/>

 <Relationship Id="rId6" Type="http://../relationships/footnotes"

Target="footnotes.xml"/>

</Relationships>

Step 3: Prepare for canonicalization

a) Remove all text nodes and comments within the XML document.

b) If the TargetMode attribute is missing from a Relationship element, add it with the default

value "Internal".

10.7 Digital signature example

Digital signature markup for packages is illustrated in this example. For information about namespaces

used in this example, see Annex E. Note that the namespace prefix “pds” refers to the namespace for OPC-

specific elements in digital signatures.

There are two Object elements in this example. The first Object element is OPC-specific since the value

of its Id attribute is "idPackageObject". The second Object element (at the very end of this example)

is application-dependent since the value of its Id attribute is not "idPackageObject".

The OPC-specific Object element contains a Manifest element followed by a SignatureProperties

element. The Manifest element specifies a list of parts by its Reference child elements. The first

Reference element references a part "/document.xml" via the value of the URI attribute. The second

Reference element references a Relationships part "/_rels/document.xml.rels", the source part

of which is "/document.xml".

Children of these Reference elements specify which transform and digest method is used and also

specify obtained digest values. Note that the first transform for the Relationships part is a Relationships

transform.

The SignedInfo element (at the beginning of this example) references the two Object elements. The

OPC-specific Object element including its Manifest and SignatureProperties child elements are

canonicalized and then signed. The application-defined Object element is also signed.

The SignatureValue element contains a signature, while the KeyInfo element contains an X509

certificate.

<Signature Id="SignatureId" xmlns="http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1"/>

 <Reference

10. Digital signatures

 55

 URI="#idPackageObject"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

 URI="#Application"

 Type="http://www.w3.org/2000/09/xmldsig#Object">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>…</SignatureValue>

 <KeyInfo>

 <X509Data>

 <X509Certificate>…</X509Certificate>

 </X509Data>

 </KeyInfo>

 <Object Id="idPackageObject"

xmlns:pds="http://schemas.openxmlformats.org/

 package/2006/digital-signature">

 <Manifest>

 <Reference URI="/document.xml?ContentType=application/

 vnd.ms-document+xml">

 <Transforms>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 <Reference

ECMA-376 Part 2

56

 URI="/_rels/document.xml.rels?ContentType=application/

 vnd.openxmlformats-package.relationships+xml">

 <Transforms>

 <Transform Algorithm="http://schemas.openxmlformats.org/

 package/2006/RelationshipTransform">

 <pds:RelationshipReference SourceId="B1"/>

 <pds:RelationshipReference SourceId="A1"/>

 <pds:RelationshipReference SourceId="A11"/>

 <pds:RelationshipsGroupReference SourceType=

 "http://schemas.example.com/required-resource"/>

 </Transform>

 <Transform Algorithm="http://www.w3.org/TR/2001/

 REC-xml-c14n-20010315"/>

 </Transforms>

 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <DigestValue>…</DigestValue>

 </Reference>

 </Manifest>

 <SignatureProperties>

 <SignatureProperty Id="idSignatureTime" Target="#SignatureId">

 <pds:SignatureTime>

 <pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>

 <pds:Value>2003-07-16T19:20+01:00</pds:Value>

 </pds:SignatureTime>

 </SignatureProperty>

 </SignatureProperties>

 </Object>

 <Object Id="Application">…</Object>

</Signature>

10.8 Generating signatures

Generation of digitally signed packages shall use reference generation and signature generation as

described in 3.1 of “XML-Signature Syntax and Processing”, with some modification for OPC-specific

constructs as specified in this subclause.

NOTE The steps below do not apply to the generation of signatures that contain application-defined Object elements.

The signature policy determines which parts and relationships to sign and the transforms and digest

methods that are applicable in each case.

Reference generation:

a) For each part being signed, create a Reference element following the steps in 3.1.1 of “XML-

Signature Syntax and Processing”.

10. Digital signatures

 57

b) Construct the OPC-specific Object element containing a Manifest element with both the child

Reference elements obtained from the preceding step and a child SignatureProperties

element, which, in turn, contains a child SignatureTime element.

c) Create a reference to the resulting OPC-specific Object element following the steps in 3.1.1 of

“XML-Signature Syntax and Processing”.

Reference generation shall support the following digest algorithms:

• http://www.w3.org/2001/04/xmlenc#sha256

• http://www.w3.org/2001/04/xmldsig-more#sha384

• http://www.w3.org/2001/04/xmlenc#sha512

Reference generation should not support

• http://www.w3.org/2000/09/xmldsig#sha1

Reference generation shall not support

• http://www.w3.org/2001/04/xmldsig-more#md5

Reference generation may support other algorithms.

Signature generation:

Follow the steps in 3.1.2 of “XML-Signature Syntax and Processing”.

Signature generation shall support the following algorithms:

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

In the case of RSA SHA algorithms, signature generation shall support key lengths greater than or equal to

2 048. It should not support key lengths less than 2 048 bits and shall not support key lengths less than

1 024 bits. In the case of ECDSA algorithms, signature generation should support the elliptic curves defined

in FIPS 186-4 as P-256, P-384, and P-521, but should not support P-224.

Signature generation should not support:

• http://www.w3.org/2000/09/xmldsig#dsa-sha1

• http://www.w3.org/2000/09/xmldsig#rsa-sha1

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

Signature generation may support other algorithms.

http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/04/xmldsig-more#md5
http://www.w3.org/2001/04/xmldsig-more#md5
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

ECMA-376 Part 2

58

10.9 Validating signatures

Validation of digitally signed packages shall use reference validation and signature validation as described

in 3.2 of “XML-Signature Syntax and Processing”, with some modification for OPC-specific constructs as

specified in this subclause.

NOTE The steps below do not apply to the validation of signatures that contain application-defined Object elements.

The certificate embedded in the KeyInfo element in the Digital Signature XML Signature part shall be

used when it is specified.

Reference validation:

First, validate the reference to the OPC-specific Object element following the steps in 3.2.2 of “XML-

Signature Syntax and Processing”.

Second, for each reference in the Manifest element:

a) validate the reference following the steps in 3.2.2 of “XML-Signature Syntax and Processing”.

b) validate the media type of the referenced part against the media type specified in the reference

query component. References are invalid if these two values are different. The string comparison

shall be case-insensitive.

Reference validation shall support the following digest algorithms:

• http://www.w3.org/2001/04/xmlenc#sha256

• http://www.w3.org/2001/04/xmldsig-more#sha384

• http://www.w3.org/2001/04/xmlenc#sha512

Reference validation shall not support

• http://www.w3.org/2001/04/xmldsig-more#md5

Reference validation may support other algorithms including

• http://www.w3.org/2000/09/xmldsig#sha1

Signature validation:

Follow the steps in 3.2.2 of “XML-Signature Syntax and Processing”.

Signature validation shall support the following algorithms specified by SignatureMethod elements:

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha384

• http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmldsig-more#sha384
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2001/04/xmldsig-more#md5
http://www.w3.org/2001/04/xmldsig-more#md5
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

10. Digital signatures

 59

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512

In the case of RSA SHA algorithms, signature validation shall support key lengths greater than or equal to

2 048 bits. They shall not support key lengths less than 1 024 bits. They may support key lengths greater

than or equal to 1 024 bits and less than 2 048 bits. In the case of ECDSA algorithms, signature validation

shall support the elliptic curves defined in FIPS 186-4 as P-256, P-384, and P-521, but should not support

P-224.

Signature validation may support other algorithms including:

• http://www.w3.org/2000/09/xmldsig#dsa-sha1

• http://www.w3.org/2000/09/xmldsig#rsa-sha1

• http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

Annex A

 61

Annex A
(informative)

Preprocessing for generating relative
references

Relative references are available for referencing parts. Unicode strings that are similar to but are not

strictly relative references are also used to reference parts. For example, "\a.xml" is not a relative

reference since the backslash character is disallowed in RFC 3986 or RFC 3987.

Some implementations provide preprocessing of such Unicode strings to replace them with relative

references. This preprocessing can involve some of (but is not limited to) the following actions:

• Percent-encode each open bracket (“[”) and close bracket (“]”).

• Percent-encode each space character (U+0020).

• Percent-encode each percent (“%”) character that is not followed by a hexadecimal notation of an octet

value.

• Un-percent-encode each percent-encoded unreserved character.

• Un-percent-encode each forward slash (“/”) and back slash (“\”).

• Convert all back slashes to forward slashes.

• If present in a segment containing non-dot (“.”) characters, remove trailing dot (“.”) characters from

each segment.

• Replace each occurrence of multiple consecutive forward slashes (“/”) with a single forward slash.

• If a single trailing forward slash (“/”) is present, remove that trailing forward slash.

• Remove complete segments that consist of three or more dots.

Examples of Unicode strings converted to relative references are shown below:

Unicode string Relative reference

/A B.xml /A%20B.xml

/%41/%61.xml /A/a.xml

/%25XY.xml /%25XY.xml

/%XY.xml /%25XY.xml

/%2541.xml /%2541.xml

/%2e/%2e/a.xml /a.xml

\a.xml /a.xml

\%41.xml /A.xml

/%D1%86.xml /%D1%86.xml

ECMA-376 Part 2

62

Unicode string Relative reference

\%2e/a.xml /a.xml

Annex B

 63

Annex B
(normative)

Constraints and clarifications on the use of
ZIP features

B.1 General

This annex specifies requirements and recommendations on features of the ZIP format. A ZIP file

representing a physical package shall satisfy the specified requirements and should also follow the

specified recommendations.

This annex is of particular relevance to (consuming, producing, or pass-through) physical package

implementers that choose to use ZIP to represent physical packages.

B.2 Archive file header consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data

Descriptors, and in the File headers within the Central Directory Record. For a ZIP file to be a physical layer

for a package, the package implementer shall ensure that the ZIP file holds equal values in the appropriate

fields of every File Header within the Central Directory and the corresponding Local File Header and Data

Descriptor pair, when the Data Descriptor exists, except as described in Table B.5 for bit 3 of general-

purpose bit flags.

B.3 Data descriptor signature

Packages may contain a 4-byte signature value 0x08074b50 at the beginning of Data Descriptors,

immediately before the crc-32 field. Package implementers should be able to read packages, whether or not

a signature exists.

B.4 Requirements on package implementers

The fields in the tables in this subclause contain the following values:

• “Yes” — During consumption of a package, a “Yes” value for a field in a table in this annex indicates a

package implementer shall not fail to read the ZIP file containing this record or field; however, the field

may be ignored. During production of a package, a “Yes” value for a field in a table in this annex

indicates that the package implementer shall write out this record or field.

• “No” — A “No” value for a field in a table in this annex indicates the package implementer should not

use this record or field.

• “Optional” — An “Optional” value for a record in a table in this annex indicates that package

implementers may write this record during production.

ECMA-376 Part 2

64

• “Partially, details below” — A “Partially, details below” value for a record in a table in this annex

indicates that the record contains fields for which support is not required by package implementers

during production or consumption. See the details in the corresponding table to determine

requirements.

• “Only used when needed” — The value “Only used when needed” associated with a record in a table in

this annex indicates that the package implementer shall use the record only when needed to store data

in the ZIP file.

Table B.1 specifies the requirements for package production, consumption, and editing in regard to

particular top-level records or fields described in the ZIP Appnote. Note that in this context, editing means

in-place modification of individual records. A format specification can require editing applications to

instead modify content in-memory and re-write all parts and relationships on each save in order to

maintain more rigorous control of ZIP record usage.

Table B.1 — Support for records

Record name Supported on
consumption

Supported on
production

Pass through on
editing

Local File Header Yes (partially, details
below)

Yes (partially, details
below)

Yes

File data Yes Yes Yes

Data descriptor Yes Optional Optional

Archive decryption
header

No No No

Archive extra data
record

No No No

Central directory
structure:
File header

Yes (partially, details
below)

Yes (partially, details
below)

Yes

Central directory
structure:
Digital signature

Yes (ignore the
signature data)

Optional Optional

Zip64 end of central
directory record V1
(from spec version
4.5)

Yes (partially, details
below)

Yes (partially, details
below, used only
when needed)

Optional

Zip64 end of central
directory record V2
(from spec version
6.2)

No No No

Zip64 end of central
directory locator

Yes (partially, details
below)

Yes (partially, details
below, used only
when needed)

Optional

Annex B

 65

Record name Supported on
consumption

Supported on
production

Pass through on
editing

End of central
directory record

Yes (partially, details
below)

Yes (partially, details
below, used only
when needed)

Yes

Table B.2 specifies the requirements for package production, consumption, and editing in regard to

individual record components described in the ZIP Appnote.

Table B.2 — Support for record components

Record Field Supported on
consumption

Supported on
production

Pass through
on editing

Local File Header Local file header
signature

Yes Yes Yes

Version needed to
extract

Yes (partially, see
Table B.3)

Yes (partially,
see Table B.3)

Yes (partially,
see Table B.3)

General purpose bit flag Yes (partially, see
Table B.5)

Yes (partially,
see Table B.5)

Yes (partially,
see Table B.5)

Compression method Yes (partially, see
Table B.4)

Yes (partially,
see Table B.4)

Yes (partially,
see Table B.4)

Last mod file time Yes Yes Yes

Last mod file date Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File name (variable
size)

Yes Yes Yes

Extra field (variable
size)

Yes (partially, see
Table B.6)

Yes (partially,
see Table B.6)

Yes (partially,
see Table B.6)

Central directory
structure: File
header

Central file header
signature

Yes Yes Yes

version made by: high
byte

Yes Yes (0 = MS-DOS
is default
publishing
value)

Yes

Version made by: low
byte

Yes Yes Yes

ECMA-376 Part 2

66

Record Field Supported on
consumption

Supported on
production

Pass through
on editing

Version needed to
extract (see Table B.3
for details)

Yes (partially, see
Table B.3)

Yes (1.0, 1.1, 2.0,
4.5)

Yes

General purpose bit flag Yes (partially, see
Table B.5)

Yes (partially,
see Table B.5)

Yes (partially,
see Table B.5)

Compression method Yes (partially, see
Table B.4)

Yes (partially,
see Table B.4)

Yes (partially,
see Table B.4)

Last mod file time (Pass
through, no
interpretation)

Yes Yes Yes

Last mod file date (Pass
through, no
interpretation)

Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File comment length Yes Yes
(always set to 0)

Yes

Disk number start Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

Internal file attributes Yes Yes Yes

External file attributes
(Pass through, no
interpretation)

Yes Yes
(MS DOS default
value)

Yes

Relative offset of local
header

Yes Yes Yes

File name (variable
size)

Yes Yes Yes

Extra field (variable
size)

Yes (partially, see
Table B.6)

Yes (partially,
see Table B.6)

Yes (partially,
see Table B.6)

File comment (variable
size)

Yes Yes (always set
to empty)

Yes

Zip64 end of central
directory V1 (from
spec version 4.5,

Zip64 end of central
directory signature

Yes Yes Yes

Size of zip64 end of
central directory

Yes Yes Yes

Annex B

 67

Record Field Supported on
consumption

Supported on
production

Pass through
on editing

only used when
needed)

Version made by: high
byte (Pass through, no
interpretation)

Yes Yes (0 = MS-DOS
is default
publishing
value)

Yes

Version made by: low
byte

Yes Yes (always 4.5
or above)

Yes

Version needed to
extract (see Table B.3
for details)

Yes (4.5) Yes (4.5) Yes (4.5)

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

Total number of entries
in the central directory
on this disk

Yes Yes Yes

Total number of entries
in the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect
to the starting disk
number

Yes Yes Yes

Zip64 extensible data
sector

Yes No Yes

Zip64 end of central
directory locator
(only used when
needed)

Zip64 end of central dir
locator signature

Yes Yes Yes

Number of the disk with
the start of the zip64
end of central directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

Relative offset of the
zip64 end of central
directory record

Yes Yes Yes

Total number of disks Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

End of central
directory record

End of central dir
signature

Yes Yes Yes

ECMA-376 Part 2

68

Record Field Supported on
consumption

Supported on
production

Pass through
on editing

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial
— no multi
disk archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archive)

Yes (always 1
disk)

Yes (partial
— no multi
disk archive)

Total number of entries
in the central directory
on this disk

Yes Yes Yes

Total number of entries
in the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect
to the starting disk
number

Yes Yes Yes

ZIP file comment length Yes Yes Yes

ZIP file comment Yes No Yes

Table B.3 specifies the detailed production, consumption, and editing requirements for the Version Needed

to Extract field, which is fully described in the ZIP Appnote.

Table B.3 — Support for Version Needed to Extract field

Version Feature Supported
on

consumption

Supported on
production

Pass through on
editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is a folder (directory) Yes (do not
interpret as a
part)

No (rewrite/remove)

2.0 File is compressed using
Deflate compression

Yes Yes Yes

2.0 File is encrypted using
traditional PKWARE
encryption

No No No

Annex B

 69

Version Feature Supported
on

consumption

Supported on
production

Pass through on
editing

2.1 File is compressed using
Deflate64™

No No No

2.5 File is compressed using
PKWARE DCL Implode

No No No

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format
extensions

Yes Yes Yes

4.6 File is compressed using
BZIP2 compression

No No No

5.0 File is encrypted using DES No No No

5.0 File is encrypted using
3DES

No No No

5.0 File is encrypted using
original RC2 encryption

No No No

5.0 File is encrypted using RC4
encryption

No No No

5.1 File is encrypted using AES
encryption

No No No

5.1 File is encrypted using
corrected RC2 encryption

No No No

5.2 File is encrypted using
corrected RC2-64
encryption

No No No

6.1 File is encrypted using
non-OAEP key wrapping

No No No

6.2 Central directory
encryption

No No No

Table B.4 specifies the detailed production, consumption, and editing requirements for the Compression

Method field, which is fully described in the ZIP Appnote.

Table B.4 — Support for Compression Method field

Code Method Supported
on

consumption

Supported
on

production

Pass
through

on
editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

ECMA-376 Part 2

70

Code Method Supported
on

consumption

Supported
on

production

Pass
through

on
editing

2 The file is Reduced with compression
factor 1

No No No

3 The file is Reduced with compression
factor 2

No No No

4 The file is Reduced with compression
factor 3

No No No

5 The file is Reduced with compression
factor 4

No No No

6 The file is Imploded No No No

7 Reserved for Tokenizing compression
algorithm

No No No

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library
Imploding

No No No

11 Reserved by PKWARE No No No

Table B.5 specifies the detailed production, consumption, and editing requirements when utilizing the

general-purpose bit flags within records.

Table B.5 — Support for modes/structures defined by general-purpose bit flags

Bit Feature Supported
on

consumption

Supported
on

production

Pass
through

on
editing

0 If set, indicates that the file is encrypted. No No No

1,2 0 0: Normal (-en) compression option was
used.

Yes Yes Yes

1,2 0 1: Maximum (-exx/-ex) compression option
was used.

Yes Yes Yes

1,2 1 0: Fast (-ef) compression option was used. Yes Yes Yes

1,2 1 1: Super Fast (-es) compression option was
used.

Yes Yes Yes

Annex B

 71

Bit Feature Supported
on

consumption

Supported
on

production

Pass
through

on
editing

3 If this bit is set, the fields crc-32, compressed
size, and uncompressed size are set to zero in
the local header. The correct values are put in
the data descriptor immediately following the
compressed data.

Yes Yes Yes

4 Reserved for use with method 8, for enhanced
deflating

No Bits set to 0 Yes

5 If this bit is set, this indicates that the file is
compressed patched data. (Requires PKZIP
version 2.70 or greater.)

No Bits set to 0 Yes

6 Strong encryption. If this bit is set, you should
set the version needed to extract value to at
least 50 and you shall set bit 0. If AES
encryption is used, the version needed to
extract value shall be at least 51.

No Bits set to 0 Yes

7 Currently unused No Bits set to 0 Yes

8 Currently unused No Bits set to 0 Yes

9 Currently unused No Bits set to 0 Yes

10 Currently unused No Bits set to 0 Yes

11 Currently unused No Bits set to 0 Yes

12 Unused No Bits set to 0 Yes

13 Used when encrypting the Central Directory to
indicate selected data values in the Local
Header are masked to hide their actual values.
See the section describing the Strong
Encryption Specification for details.

No Bits set to 0 Yes

14 Unused No Bits set to 0 Yes

15 Unused No Bits set to 0 Yes

Table B.6 specifies the detailed production, consumption, and editing requirements for the Extra field

entries reserved by PKWARE and described in the ZIP Appnote.

Table B.6 — Support for Extra field (variable size), PKWARE-reserved

Field
ID

Field description Supported on
consumption

Supported on
production

Pass through
on editing

0x0001 ZIP64 extended
information extra field

Yes Yes Optional

ECMA-376 Part 2

72

Field
ID

Field description Supported on
consumption

Supported on
production

Pass through
on editing

0x0007 AV Info No No Yes

0x0008 Reserved for future
Unicode file name data
(PFS)

No No Yes

0x0009 OS/2 No No Yes

0x000a NTFS No No Yes

0x000c OpenVMS No No Yes

0x000d Unix No No Yes

0x000e Reserved for file stream
and fork descriptors

No No Yes

0x000f Patch Descriptor No No Yes

0x0014 PKCS#7 Store for X.509
Certificates

No No Yes

0x0015 X.509 Certificate ID and
Signature for individual
file

No No Yes

0x0016 X.509 Certificate ID for
Central Directory

No No Yes

0x0017 Strong Encryption Header No No Yes

0x0018 Record Management
Controls

No No Yes

0x0019 PKCS#7 Encryption
Recipient Certificate List

No No Yes

0x0065 IBM S/390 (Z390), AS/400
(I400) attributes —
uncompressed

No No Yes

0x0066 Reserved for IBM S/390
(Z390), AS/400 (I400)
attributes — compressed

No No Yes

0x4690 POSZIP 4690 (reserved) No No Yes

Table B.7 specifies the detailed production, consumption, and editing requirements for the Extra field

entries reserved by third parties and described in the ZIP Appnote.

Table B.7 — Support for Extra field (variable size), third-party extensions

Field
ID

Field description Supported on
consumption

Supported on
production

Pass through
on editing

0x07c8 Macintosh No No Yes

Annex B

 73

Field
ID

Field description Supported on
consumption

Supported on
production

Pass through
on editing

0x2605 ZipIt Macintosh No No Yes

0x2705 ZipIt Macintosh
1.3.5+

No No Yes

0x2805 ZipIt Macintosh
1.3.5+

No No Yes

0x334d Info-ZIP Macintosh No No Yes

0x4341 Acorn/SparkFS No No Yes

0x4453 Windows NT
security descriptor
(binary ACL)

No No Yes

0x4704 VM/CMS No No Yes

0x470f MVS No No Yes

0x4b46 FWKCS MD5 No No Yes

0x4c41 OS/2 access control
list (text ACL)

No No Yes

0x4d49 Info-ZIP OpenVMS No No Yes

0x4f4c Xceed original
location extra field

No No Yes

0x5356 AOS/VS (ACL) No No Yes

0x5455 extended timestamp No No Yes

0x554e Xceed unicode extra
field

No No Yes

0x5855 Info-ZIP Unix
(original, also OS/2,
NT, etc)

No No Yes

0x6542 BeOS/BeBox No No Yes

0x756e ASi Unix No No Yes

0x7855 Info-ZIP Unix (new) No No Yes

0xa220 Padding, Microsoft No Optional Optional

0xfd4a SMS/QDOS No No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order

bit = 0.

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2 147 483 647.

ECMA-376 Part 2

74

Annex C
(normative)

Schemas - W3C XML

C.1 General

This document is accompanied by a family of schemas defined using the syntax specified in “W3C XML

Schema Structures” and “W3C XML Schema Datatypes.” A ZIP file called OpenPackagingConventions-

XMLSchema.zip containing all schemas accompanies this specification.

C.2 Media Types stream

See file opc-contentTypes.xsd.

C.3 Core Properties part

See file opc-coreProperties.xsd.

C.4 Digital signature XML signature markup

See file opc-digSig.xsd.

C.5 Relationships part

See file opc-relationships.xsd.

Annex D

 75

Annex D
(informative)

Schemas - RELAX NG

D.1 General

This document is accompanied by a family of schemas defined using the RELAX NG syntax. A ZIP file called

OpenPackagingConventions-RELAXNG.zip containing all schemas accompanies this specification.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XSD Schema, the

XSD Schema is the definitive version.

D.2 Media Types stream

See file opc-contentTypes.rnc.

D.3 Core Properties part

See file opc-coreProperties.rnc.

The schema is available at: http://standards.iso.org/iso-iec/29500/-2/ed-

4/en/OpenPackagingConventions-RELAXNG/opc-coreProperties.rnc.

D.4 Digital signature XML signature markup

See files opc-digSig.rnc and security_any.rnc.

D.5 Relationships part

See file opc-relationships.rnc.

This schema is available at: http://standards.iso.org/iso-iec/29500/-2/ed-

4/en/OpenPackagingConventions-RELAXNG/opc-relationships.rnc.

D.6 Additional resources

D.6.1 XML

See file xml.rnc.

D.6.2 XML digital signature core

See file xmldsig-core-schema.rnc.

http://standards.iso.org/iso-iec/29500/-2/ed-4/en/OpenPackagingConventions-RELAXNG/opc-coreProperties.rnc
http://standards.iso.org/iso-iec/29500/-2/ed-4/en/OpenPackagingConventions-RELAXNG/opc-coreProperties.rnc
http://standards.iso.org/iso-iec/29500/-2/ed-4/en/OpenPackagingConventions-RELAXNG/opc-relationships.rnc
http://standards.iso.org/iso-iec/29500/-2/ed-4/en/OpenPackagingConventions-RELAXNG/opc-relationships.rnc

ECMA-376 Part 2

76

Annex E
(normative)

Standard namespaces and media types

The namespaces available for use in a package are listed in Table E.1.

Table E.1 — Package-wide namespaces

Description Namespace URI

Media Types
stream

"http://schemas.openxmlformats.org/package/2006/content-types"

Core
Properties

"http://schemas.openxmlformats.org/package/2006/metadata/core-

properties"

Digital
Signatures

"http://schemas.openxmlformats.org/package/2006/digital-

signature"

Relationships "http://schemas.openxmlformats.org/package/2006/relationships"

The media types for the parts defined in this document are listed in Table E.2.

Table E.2 — Package-wide media types

Description Media type

Core
Properties
part

"application/vnd.openxmlformats-package.core-

properties+xml"

Digital
Signature
Certificate
part

"application/vnd.openxmlformats-package.digital-

signature-certificate"

Digital
Signature
Origin part

"application/vnd.openxmlformats-package.digital-

signature-origin"

Digital
Signature
XML
Signature
part

"application/vnd.openxmlformats-package.digital-

signature-xmlsignature+xml"

http://schemas.openxmlformats.org/package/2006/relationships

Annex E

 77

Description Media type

Relationships
part

"application/vnd.openxmlformats-

package.relationships+xml"

The relationship types available for use in a package are listed in Table E.3.

Table E.3 — Package-wide relationship types

Description Relationship Type

Core Properties "http://schemas.openxmlformats.org/package/2006/relat

ionships/metadata/core-properties"

Digital Signature "http://schemas.openxmlformats.org/package/2006/relat

ionships/digital-signature/signature"

Digital Signature
Certificate

"http://schemas.openxmlformats.org/package/2006/relat

ionships/digital-signature/certificate"

Digital Signature
Origin

"http://schemas.openxmlformats.org/package/2006/relat

ionships/digital-signature/origin"

Thumbnail "http://schemas.openxmlformats.org/package/2006/relat

ionships/metadata/thumbnail"

ECMA-376 Part 2

78

Annex F
(informative)

Physical package model design
considerations

F.1 General

The physical package model defines the ways in which packages are produced and consumed. This model is

based on three components: a producer, a consumer, and a pipe between them, as shown in Figure F.1.

Figure F.1 — Components of the physical package model

A producer is software or a device that writes packages. A consumer is software or a device that reads

packages. A device is hardware, such as a printer or scanner that performs a single function or set of

functions. Data is carried from the producer to the consumer by a pipe.

In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The

significant communication characteristics of this pipe are speed and request latency. For example, this

communication can occur across a process boundary or between a server and a desktop computer.

In order to maximize performance, designers of physical formats consider access style, layout style, and

communication style.

Annex F

 79

F.2 Access styles

F.2.1 General

The access style in which local access or networked access is conducted determines the simultaneity

possible between processing and input-output operations.

F.2.2 Direct access consumption

Direct access consumption allows consumers to request the specific portion of the package desired,

without sequentially processing the preceding parts of the package. For example, a byte-range request. This

is the most common access style.

F.2.3 Streaming consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.

Physical formats should be designed to allow consumers to begin interpreting and processing the data they

receive before all of the bits of the package have been delivered through the pipe.

The earlier editions of this document defined requirements for streaming consumption. This edition

dropped them since different applications of OPC impose different requirements on streaming

consumption.

However, to allow streaming consumption, it is recommended that the Media Types stream have no

Default elements and should have one Override element for each part in the package. Each

Override element should appear before or in close proximity to the part to which it corresponds.

F.2.4 Streaming creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all

of the parts that are to be written. For example, when an application begins to build a print spool file

package, it does not always know how many pages the package contains. Likewise, a program that is

generating a report does not always know initially how long the report is or how many pictures it has.

In order to support streaming creation, the package implementer should allow a producer to add parts

after other parts have already been added. A consumer shall not require a producer to state how many

parts they will create when they start writing. The package implementer should allow a producer to begin

writing the contents of a part without knowing the ultimate length of the part.

F.2.5 Simultaneous creation and consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen

at the same time on a package. Because of the benefits that can be realized within pipelined architectures

that use it, the package implementer should support simultaneous creation and consumption in the

physical package.

ECMA-376 Part 2

80

F.3 Layout styles

F.3.1 General

The style in which parts are ordered within a package is referred to as the layout style. Parts can be

arranged in one of two styles: simple ordering or interleaved ordering.

F.3.2 Simple ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the

bytes for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a

package uses simple ordering, all of the bytes for each part are stored contiguously.

EXAMPLE Performance bottleneck with simple ordering

Figure F.2 contains two parts: a page part (markup/page.xml) describing the contents of a page, and an image part

(images/picture.jpeg) referring to an image that appears on the page. With simple ordering, all of the bytes of the page

part are delivered before the bytes of the image part.

Figure F.2 illustrates this scenario. The image cannot be displayed until the entire page part and the image part have

been received. In some circumstances, such as small packages on a high-speed network, this might be acceptable. In

others, having to read through all of markup/page.xml to get to the image results in unacceptable performance or

places unreasonable memory demands.

markup/page.xml images/picture.jpeg

Figure F.2 — Page part and image part

images/picture.jpeg

markup/page.xml
byte 0

byte n

Figure F.3 — Delivery order of bytes with simple ordering

F.3.3 Interleaved ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain

scenarios. For example, interleaved ordering improves performance for multi-media playback, where video

and audio are delivered simultaneously and inline resource referencing, where a reference to an image

occurs within markup.

Annex F

 81

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while

allowing easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the

physical package. A part that is broken into multiple pieces in the physical file is considered one logical

part; the pieces themselves are not parts and are not addressable.

F.4 Communication styles

F.4.1 General

The style in which a package and its parts are delivered by a producer or accessed by a consumer is

referred to as the communication style. Communication can be based on sequential delivery of or random

access to parts. The communication style used depends on the capabilities of both the pipe and the physical

format.

F.4.2 Sequential delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the

package. Generally, all pipes support sequential delivery.

F.4.3 Random access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some

pipes are based on protocols that can enable random access, for example, HTTP 1.1 with byte-range

support. In order to maximize performance, the package implementer should support random access in

both the pipe and the physical package. In the absence of this support, consumers need to wait until the

parts they need are delivered sequentially.

ECMA-376 Part 2

82

Annex G
(informative)

Differences between ECMA-376-2021
and ECMA-376:2006

G.1 General

This annex documents the syntactic differences between the versions of the Open Packaging Conventions

defined in this document and ECMA-376:2006 (see Reference [5]).

G.2 XML elements

The following XML element is included in this document but are not included in ECMA-376:2006:

• The value element (8.3.4.4.4)

The following XML element is included in ECMA-376:2006 but are not included in this document:

• The contentType element

G.3 XML attributes

No changes.

G.4 XML enumeration values

No changes.

G.5 XML simple types

No changes.

G.6 Part names

Non-ASCII part names are allowed by this document but are disallowed by ECMA-376:2006.

Annex H

 83

Annex H
(informative)

Package example

H.1 General

This annex depicts an abstract package and a physical package representing a Microsoft® Office document.

H.2 Abstract package

This abstract package contains five parts: "/_rels/.rels, /docProps/core.xml",

"/word/_rels/document.xml.rels", "/word/document.xml", and "/word/settings.xml".

See Figure H.1

Figure H.1 — An example abstract package

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships

xmlns="http://schemas...org/package/2006/relationships">

 <Relationship Id="rId2"

 Type="http://schemas... "

 Target="settings.xml"/>

</Relationships>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relationships

xmlns="http://schemas...org/package/2006/relationships">

 <Relationship Id="rId2"

 Type="http://schemas... "

 Target="docProps/core.xml"/>

 <Relationship Id="rId1"

 Type="http://schemas... "

 Target="word/document.xml"/>

</Relationships>

package Relationships part

part Relationships part associated with "word/document.xml"

ECMA-376 Part 2

84

Two of these parts are Relationships parts ("/_rels/.rels" and

"/word/_rels/document.xml.rels") and three of them are non-Relationships parts

("/word/document.xml", "/docProps/core.xml", and "/word/settings.xml"), where

"_rels/.rels" is a package Relationships part and "/word/_rels/document.xml.rels" is a part

Relationships part associated with "/word/document.xml". The package Relationships part contains

two relationships from the package to "/docProps/core.xml" and "/word/document.xml",

respectively. The part Relationships part contains a relationship from "/word/document.xml" to

"/word/settings.xml".

H.3 Physical package

This physical package (empty.docx) is a ZIP file. The ZIP items in this ZIP file are "_rels/.rels",

"docProps/core.xml", "word/_rels/document.xml.rels", "word/document.xml", and

"word/settings.xml", and "[Content_Types].xml".

With the exception of "[Content_Types].xml", these ZIP items represent parts. Note that part names

have "/" as the first character. "[Content_Types].xml" represents the Media Types stream.

Annex H

 85

Bibliography

[1] Character Model for the World Wide Web: String Matching, W3C Working Group Note, 04 February 2019,

available at https://www.w3.org/TR/2019/NOTE-charmod-norm-20190204/

[2] Date and Time Formats, W3C NOTE 19980827, 1997, available at http://www.w3.org/TR/1998/NOTE-

datetime-19980827

[3] XML Security RELAX NG Schemas, W3C Working Group Note 11 April 2013, available at

https://www.w3.org/TR/xmlsec-rngschema/

[4] ISO/IEC TR 30114-1, Information technology -- Extensions of Office Open XML file formats -- Part 1:

Guidelines, available at https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

[5] ECMA-376:2006 Office Open XML File Formats, 1st edition (December 2006), available at

https://www.ecma-international.org/publications-and-standards/standards/ecma-376/

[6] NIST SP 800-56A Rev. 3, Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete

Logarithm Cryptography, available at https://doi.org/10.6028/NIST.SP.800-56Ar3, April 2018

[7] ISO/IEC 10646, Information technology — Universal coded character set (UCS), available at

https://standards.iso.org

[8] Uniform Resource Identifier (URI) Schemes, available at https://www.iana.org/assignments/uri-

schemes/uri-schemes.xhtml

https://www.w3.org/TR/2019/NOTE-charmod-norm-20190204/
http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.w3.org/TR/1998/NOTE-datetime-19980827
https://www.w3.org/TR/xmlsec-rngschema/
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://standards.iso.org/
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

