tECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA - 50

PROGRAMMING LANGUAGE PL/1

December 1976

BRIEF HISTORY

In 1965 ECMA set up a new technical committee TCl0 with the task
to study the report "Specifications for the New Programming
Language" issued in April 1964 by the Advanced Language Develop-
ment Committee of SHARE and to consider the suitability of this
language as a candidate for standardization. Based on this first
study, ECMA decided in November 1968 to proceed with the stand-
ardization of the new language named PL/1.

In 1970 ANSI too set up a technical committee X3J1 for PL/1. It
was decided that the two committees will work in common on a
Joint PL/1 Standardization Project. ECMA was entrusted with the
secretariat of this Joint Project. The 4th revision of tne ECMA
draft was then issued as a common ECMA/ANSI draft.

In 1975 the Joint Project distributed a final draft (Basis 1-12)
to the public with a request for comments. Numerous answers were
received from the DP community in the USA and from several Member
Bodies of ISO/TC97/SC5. These comments were taken into consider-
ation as far as possible when preparing the final text of the
present Standard.

The text of the technical part of this Standard ECMA-50 is iden-
tical to that of the corresponding part of standard ANSI X3.53-1976.
Co-operation between ECMA and ANSI is expected to continue on fu-
ture work related to PL/1 and to the maintenance of the Standard.

This Standard ECMA-50 has been accepted by the General Assembly
of December 16, 1976.

FOREWORD

THIS STANDARD IS5 A REFERENCE DOCUMENT DEFINING THE FULL
PL/1 LANGUAGE.

IT WILL BE THE BASIS FOR THE DEFINITION OF SUB-SETS,
WITH THE TWIN OBJECTIVES OF YIELDING PRODUCTS WITH A
MORE EFFECTIVE PERFORMANCE AND ALLOWING DEVELOPMENT

OF CONFORMANCE TESTS, WHICH WOULD BE LESS DIFFICULT

TO IMPLEMENT THAN FOR THE FULL LANGUAGE .

THE DEFINITION OF PL/1 SUB-SETS IS IN THE PROGRAM OF
WORK OF ECMA.

CHAFTER 1:
1.0 Scopa
1.1

1.1.1 A Summary of PL/1 "
1.1.2 The Forr of the De!hnltinn . - . s
1.1.3 Summary of Chapter Structure . -
1.1.48 Introdoction to the Metalancuage . -
1.1.4.1 ‘Tree Concepts . . - . . .
1.1-%.2 Syntaxes . i . P . .
1.1:4:.3 Algorithm ll:‘um::eptx . - . .
1.2 Relationships between an lnplementutlan and 1
1.2.1 Flexibilities of Interpretation - u
1.2.1.1 FRejection of Prograns . % . .
1.2.1.2 Guantitative Restrictions .
1.2.1.3 Cperating Environment - . . -
1.2.1.4 Expression Zvaluation . . N s
1.2.1.5% Interrupts and AsSSignment "
1.2.1.6 Inputsdutput . - . . . s
1.2.1.7 Cn-units . . . -
1.2.2 Implmentatiun deflned l'ltﬂtl.'ﬂ:‘eﬂ . .
1.3 The Metalanguage - - B . s
1.3.1 Traes - . a . . .
1.3.1.1 Tree Definitlunh . - . . .
1.3.1.2 MHNede Objects - . . 5 i
1.3.1:2:1 Unigue-names . . . B B
1.3.1.2.2 Types . . = . s . i
1.3.1.3 Hode Hokation - 2 - % . a
1.3.1.4 Tree Motation "
1.3.1.4.1 Enurerated Trees
1.3.1.4.2 Forms . . - - - . .
1.3.1.5% Tree Copies - . " . . -
1.3.2 Prodoction Rules . . . i :
1.3.2.1 Prodoction Rules ahﬂ Syntaxes . -
1.3.2.2 Complete and Partial Trees . . .
1.3.2.3 Syntactic-expressions and Syntactic-uni
1.3.2.8 Applicatian of the Production sules
1.3.3 Operations . ® .
1-3.3.1 Hature of an nperat.iuh - H . ¥
1.3.3.2 Hondeterministic Cperatlons . .
1.3.3.3 Formpat aof an Operatlnn . N : .
1.3.3.8 Instructions . - . - .
1.-3.3.5 Convert . - .
L-3.3.6 pdditional Hut_atmnal le.‘ll'l".l'El'ltiﬂl'IE N
1.3.3.7 Arithretic " . .
1.3.4% The Processor . + ® ¥
1.3.5 Mechanization of the Hetalanguage - .
1.4 Initialization of the Machineé-state . . -
1.4.1 The Hachina-state . - . N . .
1.4.2 Initialization . "
1.8.3 The Top=-level Uperations . i i .
1.4.3.1 Define-program . . . i . .
1.4.3.2 “Iranslation-phase - . . . -
1.4.3.3 Interpretation-phase . . . B
CHAFIER 2: CONCRETE SYNIAX - - . H -
2.0 Introduction . . .
2.1 The Intent of this DEfinihiﬂn . . .
2.1.1 Concrete and Absitract Symtaxes .

2.2 Organization of the Concrete Syntax
2.3 The High-level Syntax of PLSL

2.3.1 Procedure] s . - L]

SCOPE AND JVWERVIEWL - . . .

An Informal (,ui,l:!ﬁ 1;5- the PL/!. ﬂetlnltlnn

Contents

2.3.2 Unit .

& & 8 = &

LRI T I T R

& @& 8 §p ® o§ ® & m

B o® % § & 8 ¥ % TR § 3 @ & B 4 & B 4 & & # & F ® o4 & w @ F @ w

4 a4 % 8 * & B ¥ @

-

n s wom %

n ® a2 @

his Detinition

a B & B & % & B & 4 & B & B 4 ® B & B & & & 4 & & & B % & = b & ¥ & ®

I T R T S S

& g @ w8 @ @ @ B @ & w ok W A W B ® ow B w ow om B & @ § 8 W & w8 & @ @ om @ B 4 € 8 & w o® & @ 8 w B w & m #

= % 8 & = B ® & £ 8 ¥ % 8 @ B on 4 W & w F ¥ w o @ w g F w B

R T I I

Bow o om 4w ¥ i " ow o ogom

L R

L T T R

B a4 & & & B % % & & & 8 B 4 F & & & ¥ 4 & & 4 & § F & 4 B § 4 & 5 & % & 4 F F 4 w p ow B w ow B @ 5w @ W

I T I R |

Contents

e W md L P e

33
a3
33
33
EE
3a
i1
a3

1

2.5

CHAPTER 3: ABSTRACT SYNTAX

3.0 Introduction - - " : N
3.1 Abstract Syntax nulea . . . «
3.1.1 Pregram . = . . > 3
3.1.2 Procedure . . - -] .
3.1.3 Declaration F - . . .
3.1.4 Wariable % s s ” F
3.1.5 Data-desc:ip:lnn - . . A
3.1.6 Data-type L =
3.1.7 Hamed=-congtant . - . -
3.1.8 Entry-or-executable- untt . .
3.1.9 Begin-block 3 . . .
3.1-1ﬂ GIG‘“ES - - - - - - s
3:1.11 On Statement
3.1.12 If Statement . . . 2 =
3.1.13 Flow of Control Statements . .
3.1.14 sStorage Statements . . a .
3.1.15 I/C Statements . - . . .
3.1.16 Record I/0 Statements . - .
3.1.17 sStream I/0 Statements . . N

Executakle Units ‘u . .
Middle-lewel Syntax of PL{I . .
Sentence " ® - - - -
Statement . . . M g -
Prefixes . . -

-1 Condition F:efi:es . .

Statement Name Prefixes
ta Declaration B "

i o=
(FEp

B s

Attributes
Data Attributes . .
Environment and Options
Generic = . : 5
Y Initial . "
- B The Default Statement .
+5 The Procedure Statement .
-6 The Entry Statement .

.: The Begin Statement .
« 9
«1
ol

w BLR A R B

The Do Statement . .
The End Statement -
J Plow of Control Etatements . .

SR R T BT T T

2.4,10.2 The Go To Statemenkc " .
2.0.10.3 The Mull Statement - .

@ 8 B ® & & 8 B @

-10.1 The Call and Return Statements .

2:4.10.8 The Revert and Signal Etatemen:¢

2-4.10.5 The Stop Statement - . .
2.4.11 Storage Control Stateménts . .
2:48.12 Input/sOutput Statements .

2.4.12.1 The Open and Close Stal.eruents

2.4.12.2 Record 170 . 5 - . .

2:.5.12.3 Stream IS0 . .

2.8.12.3.1 Stream Input sPuciticathn

2.4.12.3.2 Stream Output Specification

2.4.12.3.3 Format Specification Lists
.13 Expressions * . ' . 0
he Low-lewvel Syntax of PLAT .
PL/sI Text . . .
Comment . * -
Identifier . . .
Arithmetic Constant
String Constants and Pictures
Isub . . - . . .
Include - . .
racter Sets . .
Language Eharacter Set
+1.1 Letters and Digits
«1.2 Special Characters
Data Character Set . . .
reviations - . . .

PR g

n B om @ om
LR O T T Y T I

u‘ummﬂwdmm-ﬂ'umlﬂ

and

LT T T R R T ST B T TR T T T T]

L T T T T R T T S T TR T T T

L S T T

Dimension httrinute and Uimens1nn Sutfl

= F % ® ¥ B # # ® & & & 4 & 4 M e & " ow & = " & @ & 4 ® " @8 w8 » ® ¥ # *2 & W
=
(-]

" ® o® % o K ¥ F F OB K B K & @ owm om

a @ g w8
" ® @ B o % B OB B B & & B & ®

I
% = & @ = @ * & 8

@ % a ® o8 #

t Statement

arm

e

R

-|-|||-------m..-a...---.....,...4-.4--“.....,........-

" om F & ® B % #® & % & ® @ % % @e 8 gow g ® 8 B §gOE § 8 W OB ®E W g W oW N g R omO® g W W W G W W

@ % & F & @ % w @
®
L L I e O T

® & g % & = & ¥ @ 8 ® B B B & 2 8§ @
T Y e T T TR TR R S R Y

" 8 % § 4 & % § B & % & & & 8 @ & & g @

LRI T T L R TR I T T DT T S

L R I T e R O R R O T N T T T

& & B & & & 4 & # # 8 & w @ w @ M ¥ & 4 ® B ® 8 8 ® oH W o§ 8 W o® w ™ B ® A& B o® & ® ¥ B & " B W & N

® M % B 4 @ # % B @ @ @ ® W o8 ®w o®m =g @

@ & ® & ® F # B F B # & ® B F @ w & & w % & 8 B K 4 & B & # @ & & & & & & @

LI R I N T Y T

3.1.18 Expression . . . A 5 & M 58
3.1.19 Types of Reference - . - . - 59
3.1.20 Congtant and Isub . . . - - % % f " . . GO
3.1.21 Types of Value " . : i : Py . .]
3.1.2% Types of Picture - . - - B & e . . . (14]
CHAPTER &: THE TRANSLATOR . - - B . ' - . , ' . " ' B3
4.0 Introduction . s 5 5 5 s . N . . 63
§.1 Translate . . . " . - . p 4 . . L3
4.2 Forming the Cuncrete Procedure N " Gl
8.2.1 Low-level-parse 3 % . s . G . . 2) - bl
§.2.2 Middle-level-parse - B + . . . P 55
;2.1 Hil]h leval- —parse " - " . . - - - a = e 1]
4.3 cCompletion of the Concrete Prncqﬂurq . . - . . ' . f . ag
4.3.1 Reorganize - - - . " * . . . 68
4.3.1.1 cComplete- npt.mna z 5 2 . 1]
§.3.1.2 Modify-sStatement-names . - 5 - - - . . - L9
3:+3.1.3 Complete- attnhute—implicatiﬂns T0
4.3.1.8 pefactor-declarations . . . * 71
B.3.2 Ennstruct*expliuit-deﬁla:atinna ¥ - . . . 11
4.3.2.1 Declare-parametcers . s . . - ' . " . . v . 12
8.3.2.2 Declare-statement-pnames - T2
§.3.,2.3 Construct-statement-name-— ﬂeclar&tinﬂﬁ - . T3
0.3.3 Complete-gstructure-declarations s 5
§.3.3.1 Determine-stractura - - “ i “ TG
#.3.3.2 Expand-like-attribute . . . i a - 76
§.3.3.3 Convert-to-legical-levels - . . . = . a " . iy
4.3.3.4 FPropagate-alignment . . - . . . - . . T8
4.3.3.5 Find-applicable-declaration 78
4.3.3.6 Find-fully-gualified=-name 9
b.3.4 Construoct-contextual-declarations . . - . B . . 80
5.3.5% cConstruct-implicit-declarations a2
j.3.56 Complete-declarations . . - . . . - . - - . B2
H.3.6.1 Test-attribute-consistency . . . % 43
§.3.6.2 Test=invalid=-duplicates - . i 5 a s . . as
4,3.6.3 Append-system-defaults 2 £ 2 . : a6
B.3.6.4 Apply-defaults o a7
B.3.6.59 Teat-ﬁeiault-appl1canility - . . B . i . = f a7
W.3.6.6 Copy-descriptors I . - - “ . B
§.3.6.7 Test-offget-in-descript iun . & = - ; i . . i a 91
§.3.6-8 Test-descriptor-extent- exp:easicna . . - 32
4.3.7 WValidate-concrete-declarations . . . H : 02
3.3.7.1 cCheck-attribute-coppleteness- and delate*ﬂttrinutEﬂ . " . * B3
Yy.4 Create-abpstract-equivalent-troee . - . . . - - . . au
G:li.1 Creation of Plocks and Groups x - ¥ - . N 95
H.4.1.1 Create=-procedure " . . . B . & s . “ . . 45
4.4.1.2 Create-begin-block .) . i ; P . . " . . 95
4.4.1.3 Create-hlock " s P = L
B.4.1.8 aeplane-cnmcrutuude#iqnutars - . . - - . - . 96
4.5.1.5 Create-group i z % . . 97
4.4.1.6 Create-entry-o r-executlble unit—list . . " a7
4§.4,1.7 Create-executable-unit-list = i . i H . - . 99
4.4.1L.8 Create-executable-unit - .] " I8
4.4.1.9 Create-entry-point 98
§,4,1.10 Create-statement-name-lise 99
4.9.1.11 Create-condition-prefix-list . . . - . . . - . 99
H.4.1.12 Create-candition . - . - - . - . . . - 100
4.4.2 Creation of Statements . » . . f . . P . . 101
4.4.2.1 Create-assignment-stat ean o a . . . a . i . 101
4.4.2,2 Create-by-name-assignment . - N . - . . B B . 101
H§.4.2.3 pData-descriptions Proper for hssianment 102
4.0.2.8 Create-by-name-parts-list . - N . . 102
4.45.2.5 Find-by-nare-parts . - B - 103
.0.2.6 Create-allocation . . . - . . . * 103
§.4.2.7 Create-forrat-statement B - 104
§.4,2.8 Create-format-iteration N . 104
B.4.2.% Create-freeing . - - - B N . . B 10%
0,4,2.10 Create-il-statement . - . . . - . & . i 105
H:4:.2.11 Create-balanced-unit . . - 106
4.4,2.12 Create-locate-statement . - . . - A i - P . 106

Contents 3

W.8.2.13 Create-on-statement . . " " - . . .
4.4.3 Create-declaration * . - . f .
§,4,3.1 Create-named-constant . - . . * . . ’
U:l:3:2 Create—?ariahle & & & & & & 8 " 5
4.4.3.3 Create-bound-pair-list . . . " . . . :
BaU.3-84 crEEtE“&Etﬂ'dEEEIiptiﬂﬂ & & & - = = -
§.4.3.5 Create-data-type a ¥ A
4.4.3.6 Create-entry . . . A i " - . . .
4.4.3.7 Create-refer-option - . - - . - . ,
B.4.3.8 Create-identifier . ' . H a i . . .
M:4.3.9 Create-ipitial-element . . M . a . " :
G.8.4% Create-expression " . . .
§.8.5 Create-reference . 5 . s 5
Ha8.5.1 Cnllect-auha:ripta . " . . . ® . . .
W.8.5.2 Apply-by-name-parts
H.4.5.3 Apply-subscripts Ca . N *
5.9.5.4 Create-value-reference . s . . - . . .
. “-51"’ 1 Trim—dd - - - - - w - " -
§.5.5.5 Create- nanad—nonstanthreterenne - = . ; s
4.0.5.6 Create-argument-list . = . . § - i
b.5.5.7 creata*huiltin—functinn-re!eren:e - 4 . . .
4.8.5.8 Create-pseuvdo-variable-reference - - s . .
4:4:5.9 Create-entry-reference . . M a a . . .
b.45.5.10 Test-matching " . . -
Balie5.11 Eﬂlect-ganﬂric-dlternative . " P - . " .
b.4.5.12 Test~generic-matching . . - . - . M .
B.%.5.13 Test-generic-aggregation - . .
4-4.5.15 Test-generic-description H
§.4.5.15 Test-genaric- pracisiun . - - -
§.5.6 Create-picture i
LHLICmﬂPmmﬂﬁmduE. = = B - . . -
h.4.7 Create-constant - - .
6.5 WValidation of the Abstract Pro-cudure a .
4.5.1 Validate=declaration . - a
§.5.2 Ualidate*nutarntic*daclaranian . . . - . . .
4.5.3 Validate-~baged-declaration . M ' '] . . .
h.5.4 WValidate-controlled-declazraticon -
4.5.5 Walidate-defined-declaration . . . ' . . '
4.5.6 WValidate-parameter-declaration . i H . i i .
4,5.,7 WValidate-static-declaration C = - 3 . . .
4.5.8 WValidate-descriptor . . ; 4 a * " *
4.5.9 Evaluate-restricted- e#preﬂniun i = .) s . i
4.5:10 Apply=-constraints . . . » » . . . " .
§.5.11 Test-constraints " . - . - &] . . .
§.6 Validate-program . - - . . . - .
4.6.1 Validate- i:taznal-dﬂclaxatian . * s N n . .
CHAPTER 5: THE FL/I IHTERPRETEE . . . g F
5.0 Introduction a pe . . H . . a i .
5.1 The Interpretation- state ‘ . . . 5
5.1.1 Directories . i N N s . . . & . .
5.1.2 Block State " - - = - N - - - & .
5:.1.3 File Information s
5.1.4 Storage and Values . w . . 5]
5.1.5 Generations, Evaluated Data Descr;ptannﬁ, and Evaluated Targets
5.1.6 Dataset . . -
5.2 Terminology and Da!initiuns - - - . . - - = x
5.2:1 Current " . . . i " "
5.2.2 Block . - - - . . . - . 5 i .
5.3 The Interpret npcratinn and the Initialization of the Interpretation State
5.3.1 Interpret . . M : . % . .
5.3.2 Iﬂitialize-intetpr&t&tlﬂn state ik « a . .
5.3.3 Eulld-file-directﬂrr-and inlﬂrm&tiﬂﬂﬁ . . - . .
5.3.4 Build-fdi . . . - . - - . .
5.3.5 Bui1ﬂ-cumtrnlled-directory -
5.3.6 hllucnte~static—sturageu&nﬂﬂhuild-Etatic-directory . .
5.3.7 FProgram-epilogue . . - " . [. B . g

@ @ oW % W o§ = o § @ H & § & B & 8 B @ # @ & @ & & & & B & B m B w # & 4 @ W ¥ B @ ® oz @ @

¥ & 8 % @ %

®

" s o o X ¥ 8§ o= o ® K ¥ B B OB & & B B ® 4 ® @ # % B 8 W & B @ B W B @ @ @ E ® B B W @ W ¥

B oR @ @

® & @ ® ® ® B ® % ® =2 B ¥ & B B ® % B ® % 4 = 8 B ® B B K 8 k@

CI T T Y

107
107

109
110
110
112
113
114
11y
114
115
117
120
120
121
121
122
122
123
123
124
124

126
127
127
128
130
131
132
134
137

137
138
138
139
139

139
140
140
1a1
1luz
1682

143
183
143
143
103
ias
146
1a7

148
148
148
1u8
148

149
150
150
151
151

CHAFTER 6: FLOW OF CONTROL . - .
6.0 Introducticon .
6.1 Program Activation and 1ﬂrminatian

6.2 Block Activation and Ternmnatiun

6:2.1 Activate-procedure . . .
H.2:1:1 Instal-arguments - -1
6.2.2 Activate-tegin-block i =
6.2.3 PFrologue . . N s s
6.2.4 Epileogue - * = =
6.3 Control within a Bluch . . .
6:3.1 HNormal=-sequence - . .
B.3.1.1 Advance-axecution . .
6.3.2 Execute-executable-unit s
G Execute=begin-bleck . .
6. Execute-group .

]

6:1.1 Program Terminaticn . .
6.1.1.1 Execute-stop-statement .
6.1.1.2 Srop-program s

«1 Estuhll3h-cantrnlleu-grﬂup
2 Initialize-spec-options

!!1|-r|+-|-1-.-p-|..p...-....q..

3.
1.3
i.q
[T |
6.3.4.
6.3.4.3 Test-spec . - . .
6.3.4.4 Establigh-next-spec "
6.3.4.5 Test-termination-cf-contrclled
6.3.5 Execute-if-statement . -
6-3.5%.1 Establish-truth-valus .
6.3.6 Execute-call-statement . .
6.3.6.1 Entry-references .
6.3.6.1.1 Evaluate-eéntry- rm‘.ernn::a
6.3.6:1.2 Establish-argument .
6.3.7 Exccute-goto-statement . . .
6.3.7.1 Local-goto
6.3.7.2 Trim-group-control . . <
6:3.8 Execute-pull-statement . - .
6:3.9 Execute-return=-statement 5 !
6-3.10 Execute-end-statement . - &
Conditions and Intertupts . . .
6:8.1 cConditions . - ¥ % &
6.4.1.1 Ralse~cuﬂditiam . . ;
6.4.1.2 Test-enablement . . N
6.0.1.3 Execute=signal-statement .
G.4.1.8 Ewaluvate-naged-ic-conditicn
6.4.2 Interrupts . . = * . .
6.4.2.1 Execute-cn-statement . .
G.4%,2.,2 Execute-revert-statement v
b.4.3 Interrupt 3
6.4.4 System-action -
6.4.4.1 Comrent s

CHAPTER 7: STORAGE AHD ASSIGHMENT . -

T.0
7.1

-
Y]

=l
-
et

Introduction . . . s . .
The Generation . - . .

7:1.1 The Humker of Elements in tre EtﬂrdgL 1nda: 11$t ut a Generation
1.2 Correspondence between an Item-data=-description and a Basic-value

7
7.1.3 Value of a Generation . . 4
7.1.4 value of Storage Index . . .
The Allocation of Storage n u "
T.2.1 Execute-allocate-statement . L
T+2.2 Allocate-controlled-storage s
T7.2.3 Allocate-based-storage . a
T7-2.% Evaluvate-in-option . 5 : -
7.2.5 Allocate = . . " i &
7.2-6 Suballocato - . . N .
T.2.7 Evaluate-data-description-for-al
7.2.8 Find-directory-entry - . .
7.2.9 Make-allocation-unit . - 1
7.2.10 Initialize-refer-options . .
T.2.11 Find-block-state-of-declaration
Initialization . . - -
T.3.1 Initiali=e~genuratiun = . -
7.3.2 Initialize-scalar-element . .

I I

L L I T T I T |
L

LI I

LN R D R DO DO AR R N TR Y TR B
0 w
L T B B N A R R B DR B T RO R R TR T T R S SR S S TR T T A R

LI R R R R

* * -

Ll Ll -
& & -
i . .
-] L
ation .
- . L
. . .
- 3 -
- . -

g | BT O R, R, W R R B e e el L R Tl S W nE Rl

LT R

o B oa e ow

@ 4 = @

* % % & # w8 @ & B m @ g # @ B 4 8 g w8 w &

B]

s % & @ @ @

LR T

L

" § R B Fom

" 8 B @ % & & F omo& w & 5 ®

LI I R T S I I

R T

®

-

@ @ § @ & ® & & B K g 8 =3 B @

L e N S

LI B T T T T (O S T YO TR T TR T SR SR St

*®

= F % 8 ® & § B B B # 2 B 4 » @

@ # ® & @ W @ B s @ @ & B & B 4 F 8 § B ®W % o= =B omoSE B ¥ oL " F ¥ & B & @&

.

I R

LR R e O e O T R T R R T T T T T T R T A R e I B N O |

I R T I T

LI I

B o4 @ 8 a

Contents

153
153
153
153
153
153
154
154
155
155
156
156
157
157
157
157

158
159
159
161
161
162
163
163
163
164
160
165
166
166
167
167
167
1&48
169
169
169
169
170
171
im
171
172
172
17u
174

186
187
188
1688
189

5

7.5 Assignment .
5.1 The nssignnant statnuent
-2 Target References . .
+2.1 Evaluated Targets .

7.3.3 Initialize-array . -
7:8 The Freeing of Storage . =

7-8.1
7-4.2
T8.3
Ta4.0
T:4.5

T
T
T

7.
7.

B

6.

5

+3-
-3

.
#

"
*
-
-

*

17
7.7 Refersnce to Named Constant . -
7-7:.1 Evaluate-named- cunstant-reterence
7.7.2 Search-file-directory . - .

i
]
]
')
4
]
9
]
a
1+

Execute=free-statement .
Free-controlled-storage
Free-pbased-storage .
Dedoce-in-option .
?I"&B L L & -

& @ &

The Assignment Operation
1 Fromote-and-convert

2 The Set-storage Operation
sepdo=-variables
1 Imag-pv .
2 Onchar-pv .
3 Onsource-pv

§ Pagenc-pv
5
6
7
a

N

Real-pv .
String-pv .
Substr-pwv .
Unspec-pv «
ble-reference .
Eu&luat¢+variableu:e=aran:¢

1 Connected Generations .
Select-based-generation .
Check-based-reference . .
Overlay-strings .
Evaluatﬂudata~deacripticnu!cr4r
Select-qualified-reference .
Select-subscripted-reference
Evaluvate-by-name-parts-1ist .
Evaluate-defined-reference . .
Evalnate-simply-defineﬂ-reietence
Adjust-bound-pairs - . .
Evaluate-isub-defined- reforonca
Expand-list-of-sobscript-lists .
Transfors-subscript-list . .

P

LT T TR R |
L IR R T
@ % & B @ & @ £ = 8
a & B F &« ® = 8 & & & ¥ @& & ¥ = 8 w # § N B @ & & & B B & @ @

Evaluate-st:inq-uverlay-def1neﬂ-referenue

Check-sipply-defined-reference .
Extract-slice-of-array - . *

CHAPTER B: IMNPUT/OUTPOT . - . . &
B.0 Introdoction . . . § . .
H-1 DﬂtﬂﬂEtﬂ - - - - - -
8.1.1 Record natanlts P) . v
8.1.2 BStream Datasets - . . B
B.2 Files " - - - ® ®
8.2.1 Record Filus - - & - s
8.2.2 Stream Files . ‘ . . .
8.3 Is0 Cconditions
8.3.1 Haise-in-nunditiﬁn
8.0 Evaluvate-file-option
8.5 File Opening and Closing ; . .
B.5.1 The Cpen Statement . & & .
8.5.1.1 Execute-open-statement . .
B.5.1.2 Execute-single-opening . -
8.5.1.3 Open B -
8.5.1.8 Evaluvate-tab-option . -
B:5.1.5 Evaluate-title-option . .
8.5.1.6 Evaluvate-filename . - .
H.5.2 The Close Statement . . .
B.5.2.1 Execute-close-statement -
B8.5.2.2 Execute-single-closing . -
8.5.2.3 Close . - u = - .

B.6 The Record IS0 Statements . ' F

L ex

LI R R |

8
L]
#
£
#

&

B oA B N OB O OB B & ® B & & B & ® 8 8 8 0 B B K @

@ @ @ @ " & @ & ® @& @ ®B ® & ¥ 8

LI I I O I

&

o4 ¥ B & & B B @ @ & & & 8 0 8 & F 8 B F B 8 @

T

R N @ ow ok oW

L L T R T I T T T TR TR R T]

L O I TR I B O O T T R R T S T T]

@ B 8 F @ # & § @ 0@ g oW oF o g @ @ F @ W § @ ® @ K @ F w ® ox Foa F @M W w B om F o3 om o W B

a # w B @ oW o omow o ® om

LI T T T I

LN ACLL S " B4 N M F a ® R F & Foam

I

I T

LI T R R]

I T I T T

@ 6 @ & § @ § 8 § @ ¥ W ® @ @ oW % @ 0w W g & 8 & o 8 g & W

@ § B @ & & ® @ 8

A ® @ @ m # m # @ % & B oA B om % o8 B o ow o§ @ ow

R T R O R

® & B & & & 4 & # § B & & § 8 w 0@ & &8 B B & 8 &

" ® @ ® @ W g W o @ oF W B E F E OB B B A F B F B K BB BB EF W

® & @ ® & & N B ® @ & B W B 8 B oW F ® " B E § B

B 8 & B & 4 & 4 & @ @ @ § @ F 4 8 F ¥ & & F # 5 B K B ¥ H % &5 & & 4 B & @ & & & # @ @ @

® 4 " % # & B B & % ® & 8

189
191
191
171
192
193
193
194

194
195
196
196
197
138
198
199
200

201
202
203
204
205
205
206
207
207
208
209
210
212
213
213
214
215
215
217
217
218
218
219
220
220
223

225
225
225
225
22%
226
236
226
226
226
227
28
228
228
228
229
230
)
231
232
232
232
232
233

[}
.
-

[--]

oo -H oo dSoEdodSeboRrBEOOEE DD oGS

=
-
it
[

o o
¥ (3
&= £ At B B

-]
o w Fa-

<

@ k ® F & & 8 & 4
N T R

Lﬂﬂhmnlmﬂlﬂiﬂ'-ﬂ\ﬂ'ﬂ‘-mﬂ!h
e s .

e A e L

0
1
2
3

Hl-l'l-ll-ll'-"@ﬁ-lﬂ"ul: L B

e

£ & e = § @ 4 wom w4 @ m & @& w ok @ @& 8 F 4 0 & #

B @ 8
B oF & =

@ & m @ 8 @ 4 ® # 8 8

Huewuqqﬂqqququwuvw

e s oa s

-]
W~ = B] el Sl D mmpﬂ*md‘iﬂhﬁﬂ'\-ﬁ" SRRSO SARE QWO DR D

"
& & F # @ @ B &

7
]
9
1
i

=
ﬂmﬂmﬂﬂﬁ;ﬁmﬁm
& @ & v 8 &
Eow o8 &
% 5w
=]

mm-u-uuquumduddmﬁmﬂd‘dqﬂﬂu-ﬂﬂﬂ‘i
MN-—INMMN-IH-JMMNHMN

o @ % 4 B #

@@
oW

1

1
2
3
g
5
]
2
2z
2
T
-8
9
1o
2.
1
12

o

B
1
2
3
L]
3.
3.

8 2 B @ =

T
) Gl el

ecations ﬁppllcahla tﬂ ﬂccurd IHG

eam I/0 Statements

A | Pa:suhlist-inpuL . .
iy

¢rations ﬁpplicable to

I
4.2 Expand-qeneration .

Read Statement . "
Execute-read-statement
Read . - - .
Write Statement .
Execute-write-statement
Write . - . . .
Locate Statemeéent .
Execute-locate- statement
Rewrite Statement . -
Execute=-rewrl te-staterent
Rewrite
Delete Statemenk N -
Execute=del ete-statement
Delete . -

i e & @
* 5 B o8 & ® B 8 F m & & # 8
£ o8 B 4

I
» B oW @ B @ ® 3§ & N o ®

Evaluate-frow=option A

Evaluate-into-option -

Evalpate- puinter-set“uptiﬂn
Evaluate-key-option . -
Evaluate-keyfrom-option
Evaluate-ignore-cption - "
Evaluate-Keyto-option .
construct-record . A -
Insert=-record - .

Fosition-file -
Evaluate-size .
Exit-from=-io -
Trim=io-control

I T I R I
-

Get Statement . .
Execute-get-statement .
Execute-ger-file -
Exeeute-get-string B .
Get=list s . .

[I)
"
.
Bo® @ @ % & @ % 4 & @& ®m B & ¥ & # & @ #
B oa4 o8 % o4 o®ow @ @

2 Parsing Cntegorlaa for

t=data .

Lat Directed
=] . -
1 Pa:qe-ﬂata-input-nume . . " "
2 Parse-data-input-value . . . s
3 pParsing c;tegn:iea for Data Directed
at—adit - - .
1 Execute-input- ccntrcl focmat
2 Execute=-ipput-data-format
6.2.1 Validate-input-format
Input-sctream-item . # .
Bagic=charactar-value
Baslc-bit-value -
Input-streap-item-for- ﬂdat
Fut Stacemoent . . +
Execute-put-statement
Execute-put-file .
Execute=put=string .
Fut-list . . .
Fut=data . . .
Fut-adit - .
6:1 Execute-cubput- nont:nl tormat
6.2 Execute-ourput-data-format .
6.3 Edit-nuperic-output &
Cutput=string - £
Output-string-1item
Eutput-strean—item
'Iab] w
10.1 Gutput-tah .
Put-1ine . .
Fut=-paqe

-
*
"
.

B o4 & B & & @ & 3 & W 8
U TR T R T}

% & B 8 ® & = &

= % 8 % B
& & B om @ B W
T T T

Stream Is0
ukip . ® . -
Eualuatn-current-nulumn

Evaluate-current-line .
Establish-next-data-item
.1 Expand-edd . . 1

T T T T T TR S S S NN T T TR N U N B S R |

[l
& @# § @ @ F & @ @ ® 8 ¥ B & 8 & ¥ 8

R L

4 8 & & 8§ W

i B % & % @ @& ® ® § § w B ¢ B @ 8 & S 3 B ¥ ¥ o @

|
=
@ s M os e & @ &
=
-

Input

B4 mo® B ® @ w

B g @ g @ & B B 8 ® ¥ B F =2 & = &

& mo® o4 B om ow om % om 0w

TR T TR Tl T S RS T (NIRRT S I L Sl TR S TRy T IO T JCRT T U U SO N Y R R R B R |

= B % & " & ® 8 ® & @

A og w o op oW

= 8 @ " &

B & ® g o m g ¥ g o®m w4 w o ® ® m # 3 % & ® 5 @ 8 & & b @ B & F @

& @ 4 ® W § & @ @ m B B & = & & ¥

R R

" " F o s @ W

W om @ @ % B O® & B @ ® @ % w g @ s 8 wo o # @ @ # = @ ¥

B 8 W @ OF % OB @ ® @ 8w @ B & @ B # # & 3 ® o » o8 F F @ g B 84 F 5 oFEF e

I T

" -
BOA B ® Rk e R e, @ d @ e aem B & @ B K & ® w8 omoEs A B FE O FLEEE B P W

Contents

233
233
234
235
235
236
237
237
238
238
239
240
240
201
241
2h1
2432
62
242
22
243
FLE]
243
2uy
2ny
245
2db
2l
247
Zh
207
247
208
249
250
251
252
255
256
247
57
258
259
261
263
264
2bu
ABL
265
265
265
266
267
ibd
270
271
272
73
275
275
276
276
217
217
2717
218
278
278
279
279
282
282

7

CHA
9.0
9.1

L)
.
B

B
7}

Make-name-and-subacrigpt=list

B.7:3.8.3
B.T7.3.4.4 Expand-name-and-subscript .
8.7.3.4.5 Subseript-to-comma-subscript
B.7.3.4.6 Identifier-to-dotname . .
8.7.3.5 Establish-next-format=item .
B.7.3.6 Evaluate-format-item f W "
8.7:3.6.1 Evaluvate-format-expression .
PTER 9: EXPRESSIONS AND COMVERSION r .
Introduction ' . .

Aggragate Expressions . - ‘ P 4
9.1.1 Scalar and Aggregate Tygpes . .

9.1.1.1 Aggregate Type of a Data ﬂeacrlptinn

9.1:.1.2 Scalar Elements - - - - - - - -
9.1.1-3 Treatment of Scalars - + . N . . .
9.1.1-4 cCompatibility . - -
9.1.1.5 Correspondence
9.1.1.5.1 Correspondence of Scalar Elementn . . Fi
9.1.1.%.2 Correspondence of Data Types i ® . -
9.1.1:.6 Generate- agqrcgute—:aault . . . » . w
9.1.2 Integer Type -) . . ? H 2 E: 5
9.1.2.1 Evaluate-e:pxeasinn tc-inteqer . - » . I
9.1.3 Derived Data Types . -
9.1.3.1 Derived Baseé, Scale, and Fndﬂ i
9.1.3.2 cConverted Precision ; - 3 a A =
9.1.3.3 Derived String Type . . " -
9.1.3.4 Fuourther Definitions for Characte and Bit Strings
9.1-8 Arithrmetic Results - - .
9.1.4.1 conditions in I:p:essians e
9.1.5 Expressions . - A i o i . .
9.1.6 WValue References . - . - & - & . -
9.1.7 Constants . - - - . - - - L il -
9.1.8 Isubs . i ¥ - . H F <
9.1.9 Parenthesi:eﬂ Expreasiuns . . . * . . .
9.1.10 .hrqumants ® - = - ® ® s = s L] s
Prefix Operators - . N F H
9.2.1 Prefix Expressions 5
9.2.2 Definition of the Pretix Operators . - i . .
9.2.2.1 FPrefix-minus B . . 5
9-2 2-2 Frefix-rnnt & - & - * & & & ® &
9.2.2.3 PFrefix-plus - . . - . - . . -
Infix GPEIﬂtnIE ® - = = " ® - = = L] -
9.3.1 Infix Expressiona . - s . " . .
9,3.2 Definition of the Infix Dperatcra
3.3.2.1 Infiu-—adﬂ ® ® = & s & s s 0 =
9.3.2.2 Infix-and A 5 . : . 3
9.3.2.3 Infix-cat
9.3.2.3.1 cuncatenatiun ut 3tr1ng Ua ues . - . .
9.3.2.4 Infix-diwide . - . - - . - = a
9.3.2:.5 Inftix-eqg A - : . . -
9.3.2.5.1 Compare . . - . . - . . k
9.3.2.6 Inti!‘gE - - - ' s - - - » =
9.3.2.7 Infix-gt - 3 s i - = - - . s
9-3-213 Inﬂ..\:-le = - - 0 0 - - - - =
9.3.2.9 Infix-lt
9.3.2.10 Infix-muleiply - - - E -
9151-2111 Infix-ne - " = = - - - o & -
9.3.2.12 Infix-or - - - . . - = ® ® s
9-3.2.13 Infix-power -
9.3.2.14 Infix-subtract - . -
Builtin-functions . . . i . " . %
9.4.1 Builtin-function Rnferenca . - . .
9.4.2 special Terms Defined for Builtin-functionu . .
9.4.2.1 Definition of N -
9.84.2.2 The Argurents p and q
9.4.3 Operations Used in Builtin-function Datinitiuns -
9.4.3.1 Get-established-onvalue
9.45.48 Definition of the Bﬂllt:ln-'fun::t.iuns - . . -
9.4.4.1 Abs-bif - . . . - 2 = . -
G002 Acos-bif - . . . - . - - " .

I R

@ = @ ow o w ow

% 8 B o® % 8

B & § @ #& & § @ @& & ¥ @ & % & § & @& @ g @ § & & 8 E K & B N 6 & E N W B & & ¥ R 6 & B ¥ U 5 8 B 4 & B B 8 & W m 5 o4 & &

® @ " owow @

& # B # & B & B ® & N 6 & & & 8 @ @ 8 4 m § 6 & B W % g W &4 W @ 8 B & 8 4 8 § 8 4§ 8§ ® 3 8 & @ @ * 4 =W o B oW B @ & ®W B ® B

L I

= oo o m o o&

LI O L

R T T T R

@ m o8 B ow & 8

A E o w w T T T R R |

R B " OB ® 8 B # ® = B B B & & 8 B B

283
184
285
285
285

287

289
289
289
289
289
289
290
290
231
291
s
293
235
295
295
235
296
297
297
298
299
2349
299
do0
300
00
300
gl
301
301
301
102
el
kK]
303
303
agu
J0u
ans
305
305
I06
el
Joa
309
309
iia
310
J11
Ji1
iz
313
N
ES L]
31u
318
a1s
31s
315
316
316
Ex

& % A e & @
il ol el Bl =)

& B B B B B ¥ B B oW OF & B A B & Bow &

]

WD WD D WD D AD D DD D D RS D D WD D WD D WD D D WD WD D WD D D D D D AD A0 D A WD D A WD A0 D WD D D A A D D D AD A A AD D A0 WD WD D A AD WD WD WD D D AD WD AD WD A

I I T T T

Add-bif .
AMdr-bif i
hAfter=bif -

allocation-bif

Asin-Ebif
Atan-bif
Atand-bif
Atanh-bif
pefore-hif
Binary-bif
pit-bif
Bool-bif .
Cceil-bif
Character-bi
Collate=bif
Complex-bif
conjg-bif
Copy=-bif
cog-bif
cosd=-hif
cosh-hif
Date-bif
pDecat-big
Decimal-bif

@ & @ B @ & 4

R R I T

Dimension-bit

pivide-bif .
Dot-bif
Expty-bif
EcE-Eif
Erfc-bif
Every-bit
Exp-bif
Fixed=bif
Float-bif
Floor=hif
Hbound-bif
High-bif
Imag=-bif
Index-bif
Lbound-bif
Length=-hif
Linena-bif
Log-bift
LoglO-bif
Log2-kif
Low-bif
Max-hif
rin=bif
Fod-bif
Multiply-ki
Bull=Eif
Offset-bif
cnchar-bif
Cncode-bil
Cnfield-kif
Oontile=bif .
Cnkey-Eif .
onloc-bif .
cnsource-kif
Pageno-bif .
Fointer-bif

®w % 1 PFRa ® 3 % g ® 5 ® 3 8 x & m ¥ w 4 ;3 ow §g oM W

Precision-bif

Frod-bif .
Real-bif .
Reverse-bif
Round=bif
Sign-bif
sin-bif
Sind-Ebit
Sinh-bif
Some=Eif
Sqrt-bif

w & 5 B @ @

= & * & ®F @& ® & & = B & % & ® & F @
ao§ 4 § = § # & & 8 B B % & = & E &
08 @ & = B m o8& & @ &

2" g v g & 3 & 5 »

s W o om o wm

L I)

P e omogom g A
ST T T T T T
L

T T T R T

= B % & " oW ® g
T I T R T
LI T T
= s § ® w8 om

@ & @ a4 @ g om om @

® = = ®* B o®m woP ® OB 3 F oS ® oE ® B O ¥ OB & ¥ B 8 B W om o @ o® ® W
L I S S N ST T T T TN S B Y

P om b o= om oa omow
P T I O I

A

s o= om o a
@ B 4 & = & & F & B & ¥ & K & & w & w @ w @ @

S T

* # = B ¥ m B E % & B § W § B @ ¥ m %
Boa o8 B & & & ¥ % = ¥ ®

E r % B F @ B m % ¥ 8 ¥ & 8

S R R

P B F @ F ¥ ¥ & % ® F ¥ F & ¥ B & @& # & B B ¥ & F H B ¥ F B & @ & & & & & & @ & & & @ 4 ® oy w4 & W @ @ @ g 8 @ w4 & F @ &
I e]

S I T L I L T TR |

" & ® & ® & 8w B & 4 @ 8
= m o B & 8 B B ¥ OF ® o® F B & 8 & 4w

I
nom s om g o

® ¢ & g B = @ g A po& T o4 O® R R @M R T d " a om0 R B op ¥R @ ® T R B g B oy g @ g ogow g Bog R o ® s % s ®owm # §N mom A E AR oE N &
R T

5 @ o & ® s ® ® & F B & & % & & @ 8 B & # ® 8 @ ® ®8 & @ 8w ® & & B & @ ¥ @ @ @ & @ L o® B W " W W F B W B B FE F FE B & BB K ® & & B
" s o o o@ @ o & % F 8 Bk A B OB ® w8 R F B B 6 % @ & m & " w & @ B & B § B oM " 8§ oW & LW ™ N oE N ® B N & & FOE K & & BN LS # 8 ®

oM @ @ m F ® ® o§ B OF & & F ¥ & B om % B S OE K & F w % & B om & & kw8 K % §F & & B @ & @ % & @ & @ @ # ® B ® B & ® ¥ W & & § 8 § o6 & & ¥ ¥ W @

R I O I O I R T T R T T U T SN TR Y T S

s @ g B @ BB % o§ oW W

317
18
318
13
319
320
321
121
322
322
323
323
A4
325
325
126
326
127
327
a8
123
3z
329
130
330
EERE
332
332
333
333
336
334
335
335
336
136
337
337
EET:]
318
139
333
339
ETTY]
340
ETH)
Jua
Iy
43
LT
345
345
345
LT
RS
BT
47
347
7
Jue
348
48
149
350
350
351
352

3533
353
ELL]
A5u

9

L1

IWDEX

Table
Table

Table
Table
Table

Table

i0

WA WD WD WD MDD D DA D

-4.84 Trunc-bif .
4.4.85 Upnspec-bif . .
9.4.4%.86 Valid-bif . .
90,848,877 Verify-bhif .
9.5 Conversion .

9.5%5.1 Conversion nf Ecalaz Valuoes .

« 15 strimg-bif .
76 sukgte=hif .
« 77 Subtract-bif
78 Sum-bif »
« T3 'Ian-hif "
+B0 Tand-bif %
«BlL Tanh=bif N
.82 Time-bif ,
«B3 Translate-bif

B w8
LI S B I |

@ 8 & F g & p B g @
T T TR T T R R T T

= F & ® a4 2 F B o8 4 @ ® % W

@ 4 @ @ @ ® 3 ®w o3 ®F § B B S 8 B 8 F B 8 &

l-!nil-l-hi-n.-i-h-.--.-........q..

L

9.5%5.1.1 Informal Invocation of Convert .
9.5.1.2 Convert-to-f£ixed . i ; s
9.5.1.3 Convert-to-float
9.5.1.4 convert=-to=-bit . . s s .
9.5%.1.5 Convert—to-character - -
9.5.1.6 cConversion to Float Dﬂﬂlmal .

9.5.1.7 cConversion from String or Picture to Ar hm!t.ic
9.5%.1.8 Basic dumeric Value of a String G

9.5.1.9 Ewvaluate=real-consStant . . s . &
5.2 MHumeric Pictures » " - .
9.5.2.1 Editing Humeric Picturea i . .
9.5.2.2 Editing & Numeric Plcture Field. :
9.5.2.3 WValidity of a Numeric Pictured Halutz

9.5.2.4 Validity of a Field of a Humeric Pictured #alne
5.3 Character Fictures . - - » . - .
9.5.3.1 Test-char-pic-char

9.1
9.3
9.3
q.u

Tables

concrete Tersinals of Significance to Test-generic-description
Takle of <bit-valua®g as a4 Function ot {symbcl}s and

fradix-factor}s for Create-constant

Takle of Converted Precisions as a function of Target and

Sowrce Attributes .

Table of scalaz—-:asults n.s a Fwnct.lnn of -(nit-?a.lueis 14::1-

Bool-Eif . - -

Table of {sysbcl}s as a Fum:tiun -u{ 4auppression-typa} tn-l:

Edit-nureric-picture-field .

Takle of {symhcl}s as a Function nt tnumeric-picturu-em-nnwﬂ
and <character-string-valueds for Edit-nureric-picture-tield

N R R T

@ @ g @ ow @ ow & 8

@ # B

" & % & % § ® ® § ® & # 8 6 @ & = B o4 & @w 8 @ 8 9 OB & W @ B W

" o ®F % F & 8 @m0 % & =5 @ ¥ ® F m F & = @ ® @ B @

-

¥ & ® B F o®m B @ % @ 8 @ @ & 8 @

35%
355
356
356
357
57
354
ELT
359
360
1]
361
361
363
363
ELT
£
367
368
369
T
aTi
372
373
aTh
375
Ik
140
381
3az
le2

383

129
136
296
324
179
719

Chapter 1: Scope and Overviews

1.0 Scope

This document defines the computer programming language PL/I. It is intended to secve as
an authoritative reference rather than as a tutorial introdection.

The definition is accomplished by specifying a conceptual PL/I machine which translates
and interprets intended PL/I preqrams. Section 1.1 provides a brief introduction to the
gtatements and data types dinclided in the languageé, to the structure and use of the

document, and to the method of definition. The relationship between an actuval
implementation and the conceptual machine of this document is deseribed in Section 1.2,
and the detailed specification of the potation to be used follows inm Section 1.3. The

main body of the definition is then begun at Section 1.4, and is completed by Chapters 2
through 9.

1.1 An Informal Guide to the PL /1 Definition

1.1.1 A SUMMARY OF PL/IL

A PL/I program consists of a set of procedures, each of which is written as a seguence of
gtatements. The %INCLUDE construct may be used to include text from other sources during
program translation.

All of the statement types are summariged here in groupings which are presented as a
means of obtaining an overview of the language and which may be related to the
organization of the document.

Strucktural: PROCEDURE
ENTRY
BEGIN
oo
END

Declarative: DECLARE
DEFRULT
FORMAT

Flow of Control: CARLL
RETURH
IF
GO TO
Hull Statement
STOP

OH
REVERT] Interrupt Handling
SIGHAL

Storage: ALLOCATE
FREE

Assignment Statement

Chapter 1: Scope and Overviews i

Input/output s OPEN
CLOSE

GET } Stream I/0
PUT

REARD

WRITE

LOCATE Record IJO0
REWRITE

DELETE

Hames may be declared to represent data of the following types; either as single values,
or as aggregates in the form of arrays or structures:

Arithmetic } or
CHARACTER PICTURE
BIT

AREA

ENTRY

FILE

FORMAT

LABEL

OFFSET

FOINTER

Values may be computed by expressions written using a specific set of operators and
builtin functions, most of which may be applied to aggregates as well as to single
values, together with user-defined procedures which, likewise, may operate on and return
aggregate as well as single values.

1.1.2 THE FORM OF THE DEFINITION

The conceptual PLAT machine i5 a processor which has a set of operations acting on
information stored in its memory. The operations are specified as algorithms, and may be
viewed as the component parts of one single algorithm, "define-program®™, which carries
cut the entire translation and interpretation process. The information in memory is all
held in the form of tree structures.

The definition algorithm operates as follows.

Sequences of symbols which are intended to represent PL/I external procedures (i.e.
procedures not contained in any other procedure) are processed by a Translator. This
processing involves systematically analyzing, transforming, and walidating each external
procedure. The analysis uses a grammar Known as the Concrete Syntax to produce the
concrete form of an external procedure as a tree structure. This iz tranaformed to the
abstract form; which is a tree satisfying the Abstract Syntax, designed to be more
convenient Eor interpretation. Further walidation is then carried out on the abstract
form. The Translator finally performs some validation of the mutual consistency of the
set of external procedures which comprise the complete program.

The semantics of the program when applied to given initial datasets {(i.e. collections of
data) are then provided by an Interpreter. The datasets are part of the PLAI machine's
memory, which is a tree satisfying the Machine-gtate Syntax, and it is the sequence of
changes in the datasets which constitutes the defined semantics.

In addition to translating and interpreting all programs which are valid according to
this definition, the PLs/I machine detects as non-standard all those which vioclate a
requirement involving the words “must® or "must not™ in the algorithms performed during
translation or interpretation. The implications for an actual implementation are

described in Section 1.2.

The method of definition may be seen in outline as follows:

SYMBOL-LISTS
REFRESENTING
EXTERMAL
PROCEDURES PROGRAM TREE
------ - 1 (ABSTRACT FORM) —m—— ey
______ ======% | TRANSLATOR |[=---=======-==s==3 | INTERPRETER |
____________ r T R L [S e T | L 1
A
s
mmsiés

It may also be helpful to visuvalize the abstract machine on which both the Translator and
the Interpreter are "axecutad®:

i o i e e g
OPERATIONS

{unchanging set of
algorithms)

r
|
I
!
| MEMORY
|
|
|
|

lchangeable machine-state treo)

machine-gtate
i
i I %
SYMBOL LISTS |
i s . s et
e B s

DATASETS |

[o5 —

b e e e e e e e

The inputs from outside the machine occur at initialization of the Translator and
Interpreter; the datasets may change during interpretation. However, there are no
outputs defined since the datasets are treated for the purposes of this definition as
being a part of the storage of the machine, i.e. as being “on=line” when needed.

1.1.3 SWMARY OF CHAPTER STRUCTURE

= B TTmTmmm 1

1. TOP=LEVEL OF MACHIME-STATE AND OPERATIONS

| 2. CONCRETE SYNTAX
| 3. ABSTRACT SYNTAX

4. TRANSLATOR

5. INTERPRETATION-STATE + TOP-LEVEL OF INTERPRETER

| 6. FLOW OF CONTROL Concerned with the
7. STORAGE AND ASSIGHMENT three parts of the
8. IHPOTSOUOTPUT interpretation-state

9. EXPRESSIONS Common Subroutines

| for Chapters 5-8

The operations of Chapter 1 serve to drive the Translator and Interpreter.

The operations of the Translator are all contained in Chapter 8. and use the syntaxes of
Chapters 2 and 3.

The operations of the Interpreter comprise all the operations in Chapters 5-%. After the
initialization in Chapter 5, the relevant operations will be in Chapters &, 7, oxr 8
depending on the type of statement being interpreted. All of theae chapters invoke

cperationa in Chapter 9 where necessary.

Chapter 1: Scope and Overviews 3

Within each chapter, the sections are logically organized, and the Table of Contents may
ke used to cobtain an overview of the structure.

All readers are recommended to acquire a good understanding of Chapter 1 in its entirety.
Thereaftaer, it is possible to read the definition as a systematic whole, or to wuse the
document to locate answers to specific guestions by combining an appreciation of the
overall structure of the definition with judicicus use of the index. To illustrate this
latter vsage, we consider each chapter in turn together with a sample question answerable
from it.

Chapter 2 contains the definition of the Concrete Syntax. The Concréte Syntax consists
of rules describing valid forms of PL/I conatructs in concrete tree form. The syntax is
permissive inm the sSense that some of the constructs permitted as being syntactically
correct may later be found to be meaningless.

ERERSATE AR TR PR R LR R R AR R R R R L R R R R R R LA R R L LA L R L R e R R e e R R

QUESTION
Iz the Following statement correck?
GET LIST (A(I,J) DO I = 1 70 M,H};

AHSWER
The first possibility 4i3 that there may be an error according to the Concrete
Syntax. The index entries for "get-statement® lead to the Middle-level Syntax, and
study of rules CM110, 111, 119, 122, and 123 reveals that an extra pair of
parentheses is required arocund the form {input-target-commalist} DO {do-speck-
This is in order to resolve the ambiguity exhibited in this example. The correct
form is either

GET LIST ((A(I,J) DO I =1 TO M), H);
or GET LIST ((A(I,J) DO I =1 TO M,N));

depending on whether the last input value is intended to be assigned to N or to
AlH,T) -

I L e R R e R R R R T R L R R LR R Rt R R R PR LR L L R A)

chapter 3 contains the definition of the Abstract Syntax. Many parks of the hAbgtract
Byntax description intentionally bear a strong resemblance to the ccrresponding parts cf
the Concrete Syntax. Hames in the Abstract Syntax have been chosen to resemble those of
corresponding parts of the Concrete Syntax in order to make obvious as far as posaible
the relationship between the syntaxes.

Sttt e e R e R TR R R SR R R TSR R R R R R AL A R LA L L]

CUESTION
May +the HKEYTO optiom on a READ statement Specify that the key be assigned to a
substring of a variakle?

ANSHER
The Concrete Syntax for a fkeyto-cption} shows werely that a {reference} must be
specified. PRPowever, the Abstract Syntax shows the form of & progras after the
Translator has completad all declarations, and has thus been able to associate each
reference with the appropriate declaration and make more subtle distinctions. The
rule A117 for <keyto-option> shows " <target-reterence> (scalar & character) ®, and
2179 showa that this permits a <pseudo-variable-referance>, e.g. the SUESTR pseudo-
wariable. The parenthesized constraint “(scalar & character)® shows that it must
be a single target (not an array of structure) which is character-valued.

Ko further restrictions are found Ey using the index tc search the Tranaslator and
Interpreter, sc that the answer is: yes, provided the sukstring dis a scalar of
character type. J

e SRR R R SRR R ke R AR R R R R R R R R R R R AR AR AR AR AR AR R ERAR AR R R R R

Chapter 4 defines the Translator whereby each of the individuval PL/I program portions
{external procedures) is translated from the submitted character string form to tree form
and appended +to the program tree. This process involves the parsing of each external
procedure using the Concrete Syntax to obtain a concrete tree, insertion of missing
options and completion of attribute sets in that concrete tree, conversion from that
concrete tree to an abstract tree, and, finally, wvalidation of the whole program. Once
formed, the abstract tree is not modified.

T e L L L R e T T R R R P R R R R AL B R AL L R Rl R LRl]]

CUESTION
What file is implied in POT LISTIX)}; ?

ANSWER
This seers at first sight as though it might be a semantic guestion abcut the <put-

statement>. However, the Abstract Syntax shows that a <Eile-opticn> must be
present in <put=file> (A124), and this means that if it was aksent in the concrete
form, it must have Ekeen supplied by the Translateor if the statement was valid.

In fact, immediately after parsing the input, the Translatcr cospletes the concrete
procedure in wvarious ways, one of which is to insert the eguivalent of
FILE(SYSFRINT) into our fput-statement} (Step Z of the cperation conplete-options,

Section #.3.1.1%.

The reason that it has to be handled early in the Translator is that it will lead
to a contextual declaration of the name SYSPRINT if our statement is nmot within the
gscope of an existing declaration for SYSPRINT. It is necessary to complete all
declarations prior to execution in order to resolve references correctly.

AR R RE R R R AR RS NN AR AR RN RN RN A PR AR R R R AR R R R RN R R R R R R Rk

Chapter 5 contains the definitions of the Machine-state Syntax, the initialization of the
machine-state tree, and the starting of the interpretation process.

Tl I I Ty e e e T R TR TR R T R TR PR R TR RPN Y

QUESTION
May the first procedure executed in a program have arguments passed to it?

AHSWER
For the initialization of execution, we consult Sections 1.4.3.3 and 5.3.1.

In Step 1 of operation interpretation-phase (Section 1.4.3.3) an <€entry-value* is
obtained from ocutside the definition. It designates the first procedure im the
<program*> to be activated. The "must not” condition specifies that the document
gives no meaning to a program whose <entry-point> designated by the <entry-values
containg a <parameter-name-list>. (See Section 1.3.3.4 for the definition of

"miasEt” . ¥

Additiocnally, in Step 2 of operation interpret (Section 5.3.1), an <evaluated-
entry-reference> containing only an <€entry-value* and not an <established-argument-
list® (see production rule M25 in Section 5.1.2) is used to activate the first

procedure.

Thus the passing of an argument-list to the first procedure would be an extension
beyond the language defined in this document.

AT IR e Rt e T e R R TR AR R R R RN R R R RN LA AR R RN AL LR LA A A A Rl Ll

Chapter 1: Scope and Overviews 5

Chapter 6 describes the operations of the Interpreter affecting the flow of control
through blocks, groups, and statements of the program. HNormal flow of control consists
of the execution of a 1list of executable units within a block. The definition also
defines calling, parametersargument matching and result returning, and abnormal flow of
control caused by interrupts.

LA LR RN R PR R R RS R LRI A R R R S R R R R R R R LR R R R LR R R R R R R L A A L R R AL

QUESTION

Is it permissible to REVERT a condition for which no ON statement has been
executed?

AHEWER

This is a semantic guestion about interrupt handling. The operation execute-
revert-statement (Section 6.8.2:2) deletes a mémber from the corremt <escablished-
on-unit-list>» if an appropriate one exists, otherwise it performs normal-sequence
to pass on to the next statement. Since the action of execute-on-statement is
merely to append <established-on-unit®*s to such lists, it is clear that execute-
revert-statement is indifferent to the absence of such actions. The answer to the
gquestion is that it is permissible and has no effect on the interrupt handling
mechaniam.

LR PR R I PR AR R R R R L R R L R L R RS R R L LR R R R R R R R R R R LR L R R R AR R R A ER L RN L)

Chapter 7 defipes the use of storage ineluding the allocation, freeing and inltialization
of storage, and the referencing of wvariables and named constants. The assignmeént
statement, aggregate asgignment, and psewdo-variables, are also defined.

I R T T T N R e R e R R R T R R R R R L AT T

QUESTION
Does DECLARE A(S) INITIAL (0); lead to all 5 elements of A being set to 0 when A is
allocated?

ANSWER
The allocation and initialization of storage is treated in Chapter 7.

The operation initialigze-array (Section 7.3.3) iterates over Step 4 while n<nt.
Since nt in this case is 1 (see Step 2) and n is initially 1 and is incremented in
Step 4.7, the iteration is performed once only, thus initializing the first element
Al1) only.

hi‘l.ﬁ.t'.‘.titiiI't.i‘i-‘-titi‘it-l‘ll“il-li--l-lil.l-itiiit-tilit-“l"-!iII“""".J

Chapter 8 deals with the transmission of data between external media and internal
storage, including the opening and elesing of files, stream and record tramsmission, and
interrupts applicable to I/0 ocperations.

rlt.#.t‘.tt.ltt|'.Qi-.ll..tl‘.l.i'---ll-'ﬁi#l--lil*-t-*.-i--li-i-tt*ifffﬁiil‘“"'*"".1

QCUESTION
Iz DECLARE F RECCRD; OFEN FILE(F) PFRINT; wvalid?

AHSHWER

Although most of the declarative structure is evident in the Abstract Syntax and
checked by the Translator, this is not altogether true of file attributeés since
they may still be incomplete until the file is opened during execution. Therefore
thediz valld combinations have to ke tested alsoe at this late stage.

The open operation (Section 8.5.1.3) shows that <print> implies <strean> in Step 2,
and that <stream> and <record> cause the result <fail> to be zeturmed from the
attempt %o open the file. Thus if the <open-statement> is executed, it will lead
to the raising of the UNDEFINEDFILE condition when an attempt is made to open the
file {(see Step 6 of execute-single-opening, Section 8.5.1.2).

SEF AR R R AR R R R PR R RS F AN AA R RS A RN R R BN R RSB IR RS RN R R AR N R R R PR

Chapter 9 describes the evaluation of expressions, also conversions between data types,
which can take place in expression evaluation, and the puiltin functions of PLAI.

RES SRR R TR PR R RN R TR R AP E AR R E AL R R R B LA L LR L L Rl L e Lttt ll

QUESTION

Iz it possible to add an array to a structure?
AHSWER

The evaluation of expressions in Chapter 9 Dbegins by considering the general
treatment of aggregate operands. The definition of compatibility in Section

9.1.1.4 leads us to Case 3, yielding the anawer that the array must be such that an
element of it is compatible with the given structure. Applying the test for
compatibility again, thisz would be true if the element is a scalar (Case 1) or a
compatible structure (Case 2 and further reécursionsal.

i]ilﬁ.!t‘tltl--t'#'tl-ltltl*lli#l*i#i**ll#ill.-.l.!I".l‘""ii'-""I.--".-‘-“‘.iiﬂiil

1.1.4 INTRODUCTICH TC TEE METALANGUAGE

An ipformal discussion of the main featuwres of the metalanguage is now cffered before
proceeding to its more rigorous defipition in Seceiom 1.3.

1.1.4.1 Tree Concepts

The definition of FL/I deals with three classes of trees (concrete parse, abstract text,
and machine-state), and a uniform concept of tree is egployed throughout. This is of a
tree which is a directed graph with a label (e.g. <prccedure>) at each node, and where
the subtrees of any mode are ordered. (Althocugh the crdering is often irrelevant, it is
needed, e.g., in the concrete parse and in lists, and it was decided that the sigple
uniformity of concept cutweighed the advantages of explicitly distinguishing instances
where the order was significant.) Mereover, ¢ach node implicitly has a unigue=-name by
which it can be "designated® when reguired. A copy of the tree has the same ordered
structure and labelling, but new unigue-names tce designate its nodes. Egqualivy of trees
requires equality of all except the unigue-names of nodes, and identity requires that
these also match.

The explicit label of a node may be eitheér a grammatical category-name, or some other
type of value such as an integer or a designator (i.e. a copy of the unigue-name
implicitly associated with some node). Thus 4 Single wvalue may be handled as a
degenerate tree with only a root-node labelled with this wvalue, and data objects
referenced in the metalanguage are uniformly regarded as trees.

The terminology applied to trees is developed from the starting-point of a tree
consisting of a node (the root-node) and an ordered, possibly empty, set of immediately

contained trees.

A tree, X, is said to be contained in a tree, ¥, if X is immediately contained in ¥, or
if ¥ is imnmediately contained in some tree contained in ¥. X is simply contained in ¥ if
and only Aif it is contained in ¥ and it is not contained in any tree, Z, ¢ontained in ¥
and having a root-node egqual to that of X or of Y. For example, if we refer to an
<expression> simply contained in a tree representing some statement in a4 program, we mean
the complete <expression> tree and not some subexpression which might be a tree rooted in
<expression> at some lower level within it. Since simple containment is a freguently
required concept, the use of any form of possessive phrase not employing the verb
"contain®” or the noun "component®, is takem to imply simple containment, e.q. "if y has
an <expression>" (meaning a tree with root-node labelled <expression>), "the <expression>
of y", or "its <expression>".

Chapter 1f Scope and Overviews 7

The terminology makes it possible to perform the three essential types of operation on
treas, namely, to test them for the presence or type of their gzubtrees, to select
subtrees Erom them, and to construct or alter them. However, construction can be
laborious if phrased as "root-node <a> with two immediate subtrees, the first being
with immediate subtrees <c> and <d>, and the second being x° (where x i3 the name of some
tree, meaning that a copy of it is to be made in constructing the new tree). This may
therefore be abbreviated as

car:
bz
<o
<y
xii

The indentation is inessential, although helpful with large trees. One or more trailing
semicolons at the end of such a conStructed tree may optionally be replaced by a periocd.

1.1.8.2 Syntaxes

Proceeding from consideration of particular trees +to classes of trees, we encounter
grammars composed of sets of production-gules couched in a slightly extended Backus-Haur
Form- The interpretation we make of such rules is that they describe the structure of a
tree belonging to the class described by the grammar - it is eonly in the traditicmal
ayntactic use of these rules that the sequence of terminal nodes of a tree acquires a
special importance as being the sequence of characters representing am utterance in the
language.

As an illustration, we will construct a tree that conforms to a rule of the form
<p>ri= <q>| [<r-list>|<a>)ect>[<u>]

A grammatical rule in the metalanguage is rather like a statement in a language which it
may be used to define, i.e. a metalanguage rule itself has a grammatical structure which
has to be validated and correctly interpreted. We have chosen to escape from circularcity
or regress at this point by not giving a formal grammar for the metalanguage, buot
describing in prose how a rule is to be interpreted. So in the above illustration, the
rule indicates that any node labelled <p> must have subtrees as described by the right-
nand side of the rule. There are three types of metalanguage operator, for concatenation
{indicated by Juxtaposition in the rule), permutation ("+") and choice between
alternatives (*]|®}, in descending order of precedence. Parenthesized expressions are
regarded as single operands, and the first stage in using a rule to construct a tree is
to partition the syntax expression into subexpressions separated by *|®, the operator of
lowest precedence, and to choose one of these alternative subexpressions. Supposa we
discard the alternative of having <g> alone, and next partition the other alternative by
the "s" pperator and decide to use the permutation which reverses these partitions to
yield

<e>l<u>) (<r=list>|<g>}

The brackets Iindicate that their contents may be optionally omitted, which we choose to
do here, and the braces enclose a syntax expression which must be interpreted according
to the method just described. Choosing the alternative <r-list> we would then have the
tree

<P
<E>
<r-listi>;

The underlining of t indicates that it always labels a terminal node in the grammar in
geestion, i.e. it does not occur on the left-hand side of any production-rule. <r-list>
dmdicates by convention that it is to have one or more immediate subtrees of type <r>
benezth it. We then apply the rule for <r> separately to each of these. The
oonstruction is completed when each terminal node of the tree 1s either of a type which
is always terminal or of a type which has produced an empty set of subtrees.

1.1.4.3 Algorithm Concepts

The operations of the abstract machine are defined by algorithms, which may be compared
with the logic or microcode supporting the operation codes of a computer. These
operations inspect the €machine-state®» or change the <machine-state», or both, i.e. the
memory of the abstract machine, which contains all the information directly or indirectly
affecting semantics, including some form of the <program> itself. (The metabrackets "<€°
and "»® are used in the PL/I definition of the machine-state nodes, except for those
belonging to the grammar ©f the abstract program which are distinguished by *<% and ">®
to help the reader.])

An operation of the machine is defined by a sequence of Steps, of a set of mutually
exclusive Cases, numbered from 1 to n. The i*th Step or Case may itself contain a
sequence of Steps or a zet of Cases numbered from 1.1 to i.m, and so forth. Each Step or
Case specifies actions to be performed, using various informal “"statement types®™ in the
metalanguage. A Case begins by stating the predicate that must be satisfied for it to be
applicable.

(AR AT R R AT R R RN R R AR R R PR R R R R AR R RN LR R R RS R RS R R A R R RS R R R R R R R R RN)

Bb.2.3 PROLOGUE

This operation 1is invoked at the beginning of every blcck activation to estaklish
the <automatick> and <defined> wariables local to that Elock. The <automatics
variables are initialized if their <declaraticn>s specify initialization. Any
<expression>s evalvated during the prologue, such as in <extent-expression>s or
<éxpression®s im <initial®>, are mnot allowed to reférence other <automatic> or
«defined> variables local to this block. The operation find-directory-entry will
impose the restriction when it finds a reference tc a varjiakle declared in a klock
for which there exists a 4prologué-flag¥. The <grologue-flag» is only present
while the operation prologue is active.

Operation: prologue
Step 1. httach a <prologue-flagq* to the current <linkage-part®.

Step 2. ror each <declaration>,d, of the current block, that contains <automatics
or <defined>, perform Step Z.1.

Step 2.1. Let id be the <identifier> immediately contained in d, and let dd be
the <data-description> immadiately contained in the <variable> of d.
Perform evaluate-data-description-for-allocation(dad) to obtain an
£gvaluated-data-description®»,edd.

Case 2.1.1. d contains <automatic>.
Step 2-1.1.1. Perform allacate (edd) o cbeain a €generationd,q.

Step 2.1.1.2. Append to the current <£automatic-directory-entry=list® an
dautomatic-directory-entry»: id g.

Step 2-1.1.3. If d contains <initial> then perform initialize-
generation{g,d).

Cage 2.1.2. d contains <defined>.

Append £ the current <defined-directory-entry-list> a
ddefined-directory-entry»: id edd.

Step 3. Delete the <proloque-flag®» of the current <linkage-partd.
Step H. Replace the current <4statemant-control® by a
dgtatement-controls:

<operation-list®:
<operation* for advance-execution.

T Y T Ry E E T R R R P P T T R R T R R R R L R L R L L S L A L Rt L LR L Ly

Exarple 1.1. The Prologue Operaticn.

Chapter 1: Scope and Overviews 5

As an example of an operation, consider the definition of the prologue operation in
Exarple 1.1. This kegins with an introductory paragragh which gives some guidance o the
reader, but the definitive material is not reached until the "Operation:™ heading.

Step 1 consists of an attach action, meaning that cne tree is to ke copied as a subtree
of ancther in the position in which it way walidly occur according to the syntactic rules
governing the +type of the latter. The word "current®™ has been defined precisely with
respect to the particular <machine-state® used in defining FL/I - the current <linkage-
part* is the <linkage-part® simply contained in the <block-state¥ corresponding to the
block currently being executed. Step 2 indicates itexation with a for sach speclfication
applied to the first form of the perform action, which refers to one or more Steps in the
same operation. A name such as d introduced after a comma is a variable, local to the
operation, whose wvalue (v, say) is a designator of the tree mentioned immediately
preceding the ",d". On subsequent uses of d, it is dereferenced. i:e. it meana "the tree
degignated by v" except when it is redefined in a way similar to its original definition
{as would happen here on the next iteration of "for each®), or by its occurrence after
the word “let®. The Jlet sStatemefnt is merely a more explicit syntax for this kind of
definition of a local wariable, and Step 2.1 contains an instance of this. If d contains
<automatic>, the predicate of Case 2.1.1 is gatisfied and Steps 2.1.1.1 to 2.1.1.3 will
be performed in sequence.

The second form of perform, which is used to invoke another operation as a subroutine or
function, occurs in Step 2.1.1.1. Here it is a function that is invoked “to obtain® a
resulting walue, which is then given a name. edd is passed as an argument to this
oparation, whose definition will name a parameter to correspond to it. Argument passing
is by reference, i.e. a designator to the argument is passed and becomea the value of the
parameter, which is then dereferenced on use, behaving just like a local wvariable.

The afnnnd action in Step 2.1.1.2 attaches a tree at the end of a list, and Step 2.1.1.3
axemplifies an if statement containing a subroutine call. Steps 3 and 4 consiat of the
other two tree actions which we use, delete and replace. When a tree is replaced by
another, the first tree iz deleted and a copy of the second tree is made with its root at
the same position, and having the same implicit name, as had the root of the tree just
deleted. Assignment of a value to a variable is permitted in the syntactic form of a set
acticn, e.g. "Set tv to <true>”, but this is only an alternative form of replacement with
the uswval implied dereferencing of the wvariable npame, meaning “replace the tree
designated by the strict designator value of tv by <trues”.

Cther statement types not illustrated here are go to (used sparingly), terminate an
operation at some point other than the end of the last Step, and returp a value from a
function (which also terminates the operation). WValues are returned by reference, so
that if the result is a tree constructed within the function it must be copied back to
the caller who will then receive a designator of the copy; values local to an operation
are deleted when it terminates.

We have now reached a point at which it i5 necessary to indicate a mechanization of the
metalanguage which will suffice to bolgter intuition in its weaker moments. Step 0o
provides the cue for this, since it constructs a tree which is to be placed in the
dmachine-gtate® at exactly the point at which it tails off into informality. of the
{doperation-1list®»s in the <machine-stated», +Fust one 1is said to be "active™ and has a
conceptual processor associated with it which may execute operationss In particular, the
PL/I machine has a current <block-state> which has a <statement-control® where one coold
mechanize the actions of the metalanguage involved in interpreting the statements of the
current block.

The <operation-list» is to be conceived as a push-down stack, where each <operation® will
have a subtree which is not formally defined, but contains such information as the name
of the operation, a list of its parameters and local variables with their current values,
all trees constructed during execution of the operation or copied back to it from invoked
functions, an indication of whereabouts in which Step or Case it is executing its
algorithm, how far it has proceeded through a "for each® iteration, and so forth. When a
*perform® Ainvokes another operation, this pushes down the stack and bacomes the active
operation; when an operation terminates, its whole tree (including its local walues) is
deleted and the stack pops up, activity in the operation now at the head of the stack
being resumed immediately after the point in its algorithm at which it was suspended.

To return to the analeogy suggested at the beginning of this sectien, it is as though an
abstract processor had a machine cycle which could cause the execution of microcoded
operations with their own local memories per invocation, together with the sophistication
of the stacking capability.

10

1.2 Relationships between an Implementation and this Definition

The inputs of the conceptual PL/I machine are one or more {symbol-list}s representing
PL/I external procedures, an €entry-value®, and a €dataset-list®. This combination will
be referred to as a program-run.

The standard definition of PL/I for a particular impleméntation is completed by defining
(not necessarily in the style of this document) the implementation-defined features
listed in Section 1.2.2, together with the representation of a program-run's eleéments
(faymbol-1ist}s, <€entry-valuer, and fdataset-list}) in the implementation's operating
environment . With this information available, the conceptual PLS/I machine gives one or
more interpretations to a program-run.

The main purpose of this document is to define the semantics of interpreting valid PLAI
program-runs. These semantics are constituted solely by the seguence of changes in the
ddata-set»s of the €machine-state», and an implementation is free to achieve them by any
means. The operations and other parts of the E<machine-state¥ which are the mechanisms
used in this document ¢to define the semantics npeed not be reflected directly in
implementation.

An implementation's interpretation of a program-run conforms to the standard if and only
if it conforms to one of the conceptual interpretations as follows:

{1} If the conceptual interpretation rejects a program-run (via failure of a "must”
test) or if it never completes the translation-phase,; then any interpretation by
the implementation conforms. In particular, an implementation may or may not
rgject a program-tin at the samé polnt as it 15 rejected by the standard, or at
all.

2] Otherwise, the implementation's interpretation conforms if it makes the same
sequence of changes to datasets as does the conceptual interpretation.

(] The implementation's interpretation also conforms if it deviates from (1) and
{2) only as permitted by the flexibilities of interpretation specified in
Section 1.2.1.

Hote that this implies that an lmplementation may provide extensions beyond the language
defined in this standard, but is still required to conform for a program not using those
extensions just as iF the extensions were not available.

1.2.1 FLEXIBILITIES OF INTERFRETATIONM

Throagh wuse of the terms "optionally”™ and "in any order™, the operation definitions of
the conceptual PLA/I machine permit most of +the flexibility necessary for efficient
implementation of PLs/I. However, there are some rules that, if given formally with a
metalanguage of the kind used here, would require constructions so elaborate as to impede
understanding seriously. These rules are given in this section using informal language
and making direct reference to possible actions of an implementation.

1.2.1.1 Rejection of Programs

If some part of a program is such that its interpretation would cause the program to be
rejected, then an implementation may reject the program even if the conceptual
interpretation does not reach the offending part.

Chapter 1l: Scope and Overviews 11

1.2.1.2 Quan ative Reastrictions

An implementation may make guantitative reastrictions not contained in the standard. For
example, restrictions may be made in the following contexts:

(1} Where syntaxes allow iterative or recursive constructs of arbitrary size, an
implementation may restrict the size of these constructs provided the construck
is not deleted. In particular, a standard implementation may limit the maximum
length of an fidentifier}, provided it is not less than 31 characters.

(2] The quantity of information existing during translation or execution may be
restricted.

(3) The time parmitted for interpretation of a program-run may be bounded.

1-2.1.3 Operating Environment

An implementation may make restrictions at the interface with its environment, for
exampla, in the composition of external identifiers or titles.

An implementation may regquire appropriate extralingual information in order to execute a
program in conformance with this standard.

1.2.1.0 Expression Evaluation

The operations “evaluate-expression™, "evaluate-variable-reference”, and "evaluate=
target-reference” define one or more strict orders of evaluation. An implementation may
deviate from these strict orders in the following respects:

1) Hot all of the interrupts raised by any of the strict evaluations need be raised
by an implementation.

2] The order in which interrupts are raised by an implementation may differ from
the order inm which they are raised by strict evaluation.

13 An implementation may evaluate an <expression®, <value-referenca>»; <variable=
reference>, or <target-reference> by evaluating its contained Xpressions>s,
<value-reference>s, and <variable-reference>s in any order. UHote that this does
not permit the association of operators with their operands to be altered, since
the association i3 fixed in the +tree structure of an <expression®> by the
Translator.

[£15] If an implementation can determine the result produced by evaluating an
ﬂnprc:siun:-, <variable-refereance>, or <target-reference> without evaluating it,
the implementation need not perform the evaluation. However, if the result
degenﬂa ocn the value returmed by a contained <procedure-function-reference>,
then this <procedure-function-reference?> must be evaluated.

When determining whether or mnot an evaluation muost be performed, the

implementation may ignore the possibility that this eévaluation could raise one
Or more interrapts.

1.2.1.5 Interrupts and Assignment

The operaticm “"execute-assignment-statement” determines a4 strict order of evaluation. An
implementation may deviate from one or more Strict orders in the number and order in
which it raises interrupts as described in Section 1.2.1.8, parts 1 and 2. When an
implemeéntation exceeds one or more of its implementation-defined limita, it may raise one
or more of the following conditions: owverflow, underflow, fixedoverflow, zercdivide,
gize, stringsize, stringrange, subscriptrange, storage, area, @rror.

12

1.2.1.6 Inputsoutput

i}

(2}

LR

fu)

(5}

{6}

The <environment> attribute and option are provided for the specification of
implementation-defined information concerned with the manipulation of the <file-
valueps and <datasetd»s. If present, an <eénvironment> may affect the algorithms
described in this standard by either causing (if necessary) the operation
evaluate-expression to be performed or affecting the correspondence between open
<file-valueds and <dataset>s. If no <environment> is present, the algorithms
work as given. An <expression> appearing in an <environment> is evaluated at an
implementation-defined point.

If there is more than one <single-opening> in an <open-statement>, an
implementation may deviate from the strict order of execution of the raise-io-
condition{<undefinedfile-condition>,fv) operation performed by the execute-
single-opeéning operation. In particular, an implementation may defer the raise-
io-condition operation(s) until all other operations in the Statement have bDeen
performed. The conditions must be raised in the same order as they would have
been raised had the strict erder of execution been followed.

If there is a <copy-option» in a <get-statement>, an implementation may deviate
from the strict order of execution of the output-string-item operation. in
particular, an implementation may interleave the execution of this operation
with the execukion of any other operations in the <get-statemeént> which follow
it. If there are two or more output-string operations, they must be executed in
the same order with respect to each cther as they would have been performed
under the strict order of execution, independently of thelir order with respect
to the other operations of the <get-statement>.

puring the execution of any inputsoutput statement which contains a <file-
option> or a <copy-option> an implementation may raise the <transmit-condition>.
Continued execution o©f the program bpeyond the point where the condition is
raised may be undefined depending on the use apd wvalidity of the data
transmitted by the inputsoutput statement. The <transmit-condition> is raised
by performing ralse-io~-condition{<transmit-condition>,file-valua,key) Wi
file=value and key depend on the inputsoutput statement. In the event that an
cutput operation is being executed as a4 part of file closing during program
epilogue and circumstances are such that the <transmit-condition> is to be
raised, the implementation may perform an implementation-defined action.

A <get-string> must not immediately contain an <expression> that simply contains
a <variable-reference> that identifies an €allocation-unit®» that is refeérenced

by the evaluation of the <input-specification> of the <get-string>.
A <put-string> must not immediately contain a <target-reference> that identifies

an <allocation-unit®» that is referenced by the evaluation of the <output-
gpecification> of the <put-string>.

Chapter 1: Scope and OVerviews 13

1.2.1.7 On-units

In order to awvoid defining certain "side-effects” of <on-unit>a; and to avoid overly
defining the state of the machine upon entry to <en-unit>s, a program must sSatisfy the
following constraints not explicitly enforced by the PL/I machine:

{1} An <on-unit>, or any of its dynamic descendants, eénteréd for the underflow,
conversion, or stringsize condition must not allocate, free, or assign a walue
to any <allocation-unit> wused in the block of interrupt, unless the <on-unit>
terminates by executing a <goto-statement>.

Let B be the current <block-state> at the time the interrupt was raised; l.e.
the block of interrupt. An <allocation-unit®» is used in block B if it is
referenced by any operation of the PLA/I machine while B is the current <block-
stateir.

(23 Let B be a <block-state>; let E be an <executable-unit> executed while B i=s the
current €block-state». During the execution of E, wvarious <generation®»s are
raturned by invocations of svaluate-target-reference. Lat T be the set of
4allocation-unit»s designated by these 4generation®»s, i.e., the targets of a
given statement execution.
puring the execution of E whenever the "interrupt® operation is invoked, all
dbagsic-valueds contained in any member of T are set <ondefineds. If control
reaches Step 4 of the "interrupt® operation, the original <basic-value»s are
restored, unless their containing <allocation-unit®» was assigned one or more

<bagic-value»s by the <on-unit> or its dynamic descendants. In the case of such
assignment, the <basic-value®»s of the <allocation-onit» are set <undefined».

1.2.2 IMPLEMENTATION-DEFINED FEATURES

The PLAT language features listed below are termed jimplémentaticn-defined: thedir
specification is regarded as completing the definition of the language for a particular
implementation. A brief description of each feature is given, with references in
parentheses to the sections of this document where further details can be found.

(1) Circumstances in which TRANSMIT conditicn is raised (1.2.1.6).

(2} Actions performed, 4instead of raising the RECORD, REY, or TRANSMIT condition, when
an output operation is being executed as a part of @ file closing during program
epilogue and circumstances are soch that, in all other contexts, the condition would
be Iﬂi“d ‘1l2|1|ﬁ' 3.5-2-3, and E-ﬁ‘-ﬁ‘-?]-

(3} Determination of the <dataset-list® passed to the “interpret® operation (1.8.3.3).

(&) Determination of the <entry-value» passed to the "interpret® operation (1.4.3.3).

{5) ENVIRONMENT attribute and option syntax (2.4.8.4) and semantics (Chapter &).

{6) OPTIONS attribute and option syntax (2.04.4.5) and semantics.

({7} Extralingual charactera in data character set (2.5.5 and 2.6.2).

(8) The form of the ftext-name} in the INCLUODE construct (2.5.7).

(%) cCollating sequence, hardware representations, graphic representations, and symbol
names of an implementation's character set (2.6 and 9.4.48.17).

(10) pDafaunlt precisions of arithmetic data (4.3.6.3).
(11) Default AREA size (4.3.6.3).

{12) Consistency requirements for EHVIROHMENT and OPTIONS attributes in EXTERNAL
declarations (4.6.1), and for OPTIONS attributes in ENTRY referencea (6.3.6.1.1).

{13) Size of an <area-value> passed as a dumny argument (6.3.6.1.2).

in

(in}
(15}
(16}
[}
(18)
(19}
(203
(21}
(223
(23)
[(24)
(25}
{26}
{27}
(2]
(29
(30}
{31)
(321

(33}

(34
(315}
{315}
(37}

(38}

(39)

fanl)

fu1}
a2l
an
(54
(as)
(u6)

Information cutput when SHAP is specified in ON statement (6.48.3).
Value returned by ONCODE builtin function (6.8.3).

Standard system action for STORAGE condition (6.4.8).
Standard system action for ERROR condition (6.8.4).

Form of comment cutput as standard system action (6.8.4.1).
Situations when ERROR is raised-

Sitvactions when STORAGE is raised (7.2.5).

Use of AREAR size specification (7.2.6).

Interpretation of ONSPEC pseudo-variable (7.5.4.8).
Concrete representation of a <dataset» (8-1).

The "size” of a <record» (8.1.1).

Length of a key (8.1.1).

Repregentation of stream dataset control items (B.1.32).
Determination of a <dataset» on file opening (#.5.1.3).
Default LINESIZE For a STHREAM OUTPUT file (B.5.1.3).
Default PAGESIEZE for a PRINT file (8.5.1.3}).

Default tab positions for a PRINT file (8.5.1.3).

Length of file title (B.5.1-5).

Circumstances in which the KEY condition is raised (8.5.2.3, B.6.2.2, B.6.3.1, and
B.6.6.10).

Circumstances under which records are written, or not written, when the RECORD
condition is raizsed and normal return occurs, amd the wvalues of those records
{B.6.3.1, B.6.4.2, and B.6.6.9).

Raising of RECORD condition by WRITE and LOCATE statements (9.6.6.9).

Position of records in a KEYED SEQUENTIAL file (8.6.6.9).

Items output by “PUT DATA;"™ (8.7.2.5).

Maximum <number-of-digits> used in editing relative to a <fixed-point-format>
(8.7.2.6.3).

Maximum <pumber-of-digits> for each combination of <base> and <scale> (Q.8.3.5,
9.1.3.2, 9.5.1.9, and elsewhere).

Precision of integer-type (9.1.3.2).

Determination of floating-point results of expressicns and builtin functions
(9.10-4).

Rasults of ROUND builtin function with floating-point argument [(9.0.04.68).
Length of string returned by TIME builtin function (9.0.4.82).

Result of UONSPEC builtin function (9.0.04.85).

Results of numeric conversions (9.5.1.2, 9.5.1.3, and 9.5.1.6).

Humber of digits in the exponent of a floating-point number {(9.5.1.5).

Representation of currency symbol and digit and sian symbols (9.5.2.2).

Chapter 1l: Scope and Overviews 15

1.3 The Metalanguage

Following the introductory material in Section 1.1.4, this section now gives a more
precise and careful definition of the metalanguage.

The definitive part of this document consists of:

a set of production-rules

a set of operations

constraints

attribute definitions and argument names
tables

defipnitions of terms

together with the sectlon describing the relationship between an implementation and this
mechanized definition.

The metalanguage in which the definitiom is expressed has three main notational parts, to
be presented later in this sections

a notation for trees, the fundamental type of data inm the metalanguage;
a notation for production-rules, which define classes of trees;
a notation for operations; which manipulate trees-

Other definitive material follows headings *Constraints:", "Attributes:®, or
"Arquments:”.

Tables are enclosed in a frame of straight lines.

At the point where a new term (other than a syntactic category) is defined, the term is
underlined to indicate this; subsequent uses of the term are not underlined.

Examples, which are not part of the definition, appear in a frame with lines at the sides
and asterisks at the top and bottom. Introductory paragraphs to syntaxes and operations
are likewise wlthout any definitive force.

1.3.1 TREES

Trees are the sole type of data manipulated by the actions of the process defined by this
document. All of the internal operations of th. process use only trees, all of the
inpute to the process from its environment are suitably constructed trees, and all
interpretations of the semantics defined by this process must be in terma of the tree
manipulations performed by it. For uniformity even simple values, such as numbers or
characters, are regarded within the process as single node trees.

In a strict mechanization of the process defined by this document, there could in fact be
only a single tree used to hold the entire “state® of the process, and all of the trees
discussed here would be subtrees of this single tree. &ince, however, this document
leaves certain informal "gaps" in its tree definitions, it is also possible to regard the
process as one that operates on a set of independent trees, one for the "state” and
others which are more local to particular phases of the definition.

The general abstract form of trees as employed in this document plus the technical terms
used in discussing trees are defined in Sectionm 1.3.1.1. These trees are then made more
specific by discussing in Section 1.3.1.2 the basic nature of the objects used in
composing tree nodes. In Sections 1.3.1.3 and 1.3.1.4% the written notations used for
individual nodes and then for whole trees are discussed. Seckion 1.3.1.5 deals with

copies of trees.

Following this general section on trees and tree notations, Section 1.3.2 then discusses
production-rules, which function in a declarative manner to specify the particular
classes of trees used in this document.

16

1.3.1.1 Tree Definitions

A node is an ordered pair of objects, termed the type of the node, and the unigque-name of
the node.

A tree is a finite set of one or more nodes together with some structuring relationships
among these nodes. These relationships are such that:

1] There is a specified node termed the rogt-node of the tree.

(3] Excluding this root=node, the remaining nodes (termed the subnodes of the treeld
are divided up into zero or more disjoint =sets, each of which in turn formas a
tree. These trees are termed the immediate subtrees of the defined tree.

3 There is a specified lipear ordering among these immediate subkrees.

A tree, X, is said to be a subtree of a given tree, ¥, if X is either:

(13 an immediate subtree of Y, or

(23 a subtree of an immedlate subtree of ¥.

A subtree, X, of a given tree, ¥, is said to be a Simple subtree of ¥ if thera doea pokt
exist a tree, I, such thakt:

iy 2 is a subtree of ¥,
2 * is a subtree of %, and

{3) the root-node of 2 has the same type as either the root-node of X or the root-=
node of Y.

Terminology based on the word "contained™ is used consistently as follows: subnodes and
subtrees are said to be contained in the given tree, and immediate subtrees and simple
subtrees are said to be immédiately contained and simply contained respectiwvely.
similarly for the word "component”, i.e. subnodes and subtrees are said to be components
of the given tree, immediate svbrrees and simple Subtrees are said to be at

components ard simple components respectively. The root-nodes of immediate subtrees and
simple subtrees are said to be immediate subnodes and simple subnodes respectively.

The concept denoted by the term "simply contains® is used so freguently in the sequel
that the words themselves are usually elided. Any relational statement between two nodes
that implies containment or possession, without using explicitly any form of the words
*contain® or "component®, is to be interpreted as implying the simple containment
relation. FPor example, *A simply containa B" may be expressed as "A with a B", “A has
B", "the B in the A®, or even just B A®. These abbreviated forms may also pe compoundad
in a single sentence.
Two trees are said to be egual if they contain the same number of ncdes and if:
i) when they sach contain a single node, their respective types are the same, or
{2) when they each contain more than one node, the respective types of their root-
nodes are the same, they have the sameé number of immediate subtrees, and their
regpective immediate subtrees, taken pairwise, are equal.

A tree, X, is said to immediately follew a tree, ¥, if they are both immediate subtrees
of some tree, %, and if X is next after ¥ in the linear ordering of the subtreea of Z.

A tree, X, is said to impmediately proceds a tree ¥ if ¥ immediately follows X.
A tres, X, is said to follow a tree, ¥, if any of the following is true:

{1 ¥ immediately follows Y.

123 There is a tree ¥ such that X follows Z and Z follows Y.

(3} There is a tree % such that 2 contains X and 2 follows Y.

(al There is a tree T such that 2 contains ¥ and X follows Z.

Chapter 1: Scope and Overviews 17

A tree, X, is said to precede a tree, ¥, if ¥ follows X.

Hote that the above definitions do not define a linear ordering on all of the subnodes of
a tree; just a partial ordering. In particular, any tree which contains another does not
elither precede or follow the contained trea.

The words first and last applied to any distinct set of trees have their wsuval sense of
"have none that precede™ and “"have none that follow®™. Although these definitions are not
sach as to give a unique first or last tree for some sets of trees, "first® and "last®
will be applied in this document only to sets such that there is a unigue result.

similarly, +the next tree following a given tree is defined in the usual sense of “"first
that follows"™ and will also be used in contexts where it is unique.

A node, M, contained in a tree, X, is said to correspond to a node, N, contained in a
tree, ¥, if M and N occupy the same ordinal position in the ordered set of immediate
subtrees of either:

fi) the root-nodes of X and ¥, or of

(2} corresponding nodes of X apd ¥.
(Chapter 9 (see Section 9.1.1.5) contains further definitions of “"correspond® useful in
certain special contexts.)

1.3.1.2 dode Objects

The definition of node given in Section 1.3-.1.1 leaves undefined the nature of the
objects used for node types and node unique-names. The sets from which these objects are
salectad are limited as described in Section 1.3.1.2.1 and 1.3.1.2.2.

1.3.1.2.1 Unigue-names

The set of objects which may be employed as node unigue-names plays two roles. All node
unigue-names are selected from this set, but in addition, some node types may be selected
from this set. Any potentially infinite set of objects which are distinguishable from
the other objects used as node types will suffice.

The unigue-name component of a node is so called for two reasons. First, at no time do
two distinct nodes have equal unique-name components. Second, no node is ever created
with a unigue-name component egual to that of any node which has ever been created. The
unigue-name component of a node does not change during the life of the node and thus
serves to identify, or designate, the ncde (gee Section 1.3.1.2.2).

The set of objects which may be employed as node types is the union of the following
disjoint sots:

1y The set of category-names. This is a finite set of the objects employed in
production-rules. This set can be further subdivided into several logically
coherent subsets, each with a definite notational convention.

(2) The set of real numbers, or possibly scme implementation-dependent subset of
them which includes the integers. The integers are used throughout for such
purposes as indices and ordinals. Real numbercs (including possibly integers)
are used as the values of arithmetic variables.

3} The set of unigue-names, as defined in Section 1.3.1.2.1. A member of this set
used as a node type is termed a designator. Designators are used explicitly for
the purpose of unigquely picking out, or designating, mnodes of a tres. A
designator (or a tree containing a single designator) designates exactly that
node which has the same object as wnigue-name. HWote that this construction,
together with the unigoeness rule din Section 1.3.1.2.1, means that it is
possible to examine a designator and constructively determine if the potentially
designated node has been in fact deleted.

18

As a general rule, the type of a node does not change during the life of the node.
Modifications to the tree cccur by removing old nodes and constructing new nodes with new
types and new unique-names. The single exception to this is the replace instruction (see
Bection 1.3.3).

1.3.1.3 Hode Motation

Throughout the metalanguage, the unigue-names of nedes have only an implicit and
essentially invisible function in guaranteeing unigue designation and proper subtree
distinction. The metalanguage discusgsion of nodes is always in terms of their types.
particular objects from the set of unigue-names are neéver referred +to directly, s0 no
written notation for them is reguired.

The written notation used for real numbers is just ordinary decimal notation throughout.
In the sequel, context is sufficient to distinguish numbers used as node types from

numbers used for other purposes.

The written notation wsed for category-names varies, depending on the logical nature of
the use of the particular category-name. Theae various notatlons and their meaning is as
follows:

{1} Mamed cCategories. Hames formed of lower case letters, hyphens, and numbers,
incloding surrounding brackets of the form *f* and "3%", "<" and ">", or "«<" and
"»* are wused as the dencotation of some category-names. Optionally the name
exclusive of the brackets may be underlined. In general, mnemconic English words
or abbreviations are chosen to indicate the function of the category-nameé. In
addition, the three types of brackets indicate whether the category-name
functions primarily in the concrete, abstract, or interpretation phases of the
definitional process respectively. The underlining, if present, indicates that
the category-name occurs only as the type of a node that has no components.

{2} PL/I Characters. The 57 characters of the PL/I language character set are used
as category-names. Two denotations are used. In the great majority of
situations, where no confusion is liable to arise, they are denoted by straight-
forward individual character denotations. Capital Jletters are used for the
letters, while the guoted symbol (i.e. that which is inside the following
quotes) "B® is used for blank. In situations where confusion might arise, the
concrete brackets are used around the straightforward denotations, e.9. §,}-

{3y PL/I Eeywords. certain category-names represent PL/I keywords, i.e. selected
sequences of letters or numbers that have particular significance in PL/I. TwO
denctations are used. In the great majority of situvations where no confusion is
liable to arise, they are dencted by a straightforward concatenation of the
denotations for the individual letters or digits that form these keywords in
PL/I, written without intervening spaces on the page. Examples are the quoted
symbols “LIKE® and “FLOAT". In situwations where confusion might arise, the
concrete brackets are used around the straightforward denotations.

Modes which have a type of either of the classes (2) or (3) above are said to possess a
concreteé-repeesentation, which is a (non-tree) character string composed from any of the
57 PL/I language characters. For these nodes this concrete-representation is just the
gimple denotation of the node type, with a blank space substituted for M. Any possible
subnodes of the category fextralingual-character}y are assumed +to have a concrete-
representation, each of which is different from that of any PL/I character.

Any tree that satisfies the restriction that all of its nodes which contain no compénénts
have a type which poasesses a concrete-representation, may alsc be psaid to possess a

ggng;ggg;;%pggggﬂigﬁjgﬂ. This representation 1is Jjust the character string formed by
concatenating, in precedence order, the concrete-representations of these nodes.

Chapter 1: Scope and Overviews 19

1.3.1.4 Tree Hotation

1.3.1.4.1 Enumerated Trees

A particular tree may be completely specified by stating its root-nodé and describing
each subnode in terms of immediate components down to the terminal nodes.

This may be expressed more concisely as an enumerated-tree in a notation which specifies:

{1} a node type, fLor the root-node, optionally followed by a comma and a name by
which this node can be designated (see Section 1.3.1.3),

optionally followed by
(2} a colon,

the immediate compenents of the root-pode (which may themselves be enumerated-
trees, or may be names designating other trees which are to be copied) which may
be enclosed in brackets ("(" and "]1") denoting a component that is to be omitted
if and only if its walue is <absents>,

and a semicolon.

For example, the tree which consists of a <data-type> which immediately contains a <non-
computational-type> which immediately contains <format> and <local>, can be wrictten as:
<data-type>,dt: <non-computational=type>; <format> <local>;;. Indentation is often used
as a visuval aid, e.g.

<data-type>,dt:
<non-computational-type>:
<format>
<loeal>;;.

Semicolons at the end of an enumerated-tree specification may be omitted immediately
bafore a period.

Uge of an enumerated-tree in the metalanguage indicates the creation of a local-tree (sSee
gection 1.3.3.1) having the structure and node types indicated, with appropriate copies
inserted of the trees to be copied (see (2) above), and with the designators
corresponding to the names optionally used as in (1) above set +to designate the nodes
there created.

A freguently used abbraviation for a particular class of enumérated-trees is to enclose a
potential PL/I concrete-representation in double guotes. This 4is an abbreviation for
that tree rocted in <{symbol-1ist} which has this encleosed string as its concrete-
representation.

1.3.1.4.2 Forms

Patterns to be searched for in trees may be indicated in the metalanguage by a notation
which is the sameé as that for enumerated-trees, except that the npames of trees to be
copied may not be included.

Use of such a notation in the metalanguage is always preceded by the word form. Its use
indicates that a search for, or test of conformance to, the pattern is to be made,
yielding true or false, and that the designators corresponding to the names used as in
(1) of Section 1.3.1.0.1 are to be set to designate the nodes corresponding to them if
and only 1f the search, or test, returns true. Use of brackets in a form indicates the
bracketed components may be either present or absent.

20

:-3;;1.5 !raa mEiE@

A copy of a given tree is constructed as follows:
(1) Construct a tree which is equal to the given tree.

{2) Por each designator node X in the given tree which designates a node ¥ also in
the given tree, change the constructed node which corresponds to X 8o that it
designates the constructed node which corresponds to ¥.

1.3.2 PRODUCTION RULES

The +trees actually employed in this dccument are a limited subset of all the possible
trees that could be formed according to the definitions given in Section 1.3.1.
Production rules serve as the declarative portion of the metalanguage and do s0 by
specifying restrictions on the forms assumed by the trees used in the definitional
process of this document.

1.3.2.1 Production Rules and Syntaxes

A production-rule is written with an optional label formed of capital letters amnd digits,
and consists of a category-name, followed by the gquoted symbol "::=" and then followed by
either a sSyntactic-expression (see Section 1.3.2.3) or, in a few instances, an English
Language phrase. Such a production-rule is termed a defining production-rule for that
category-name written before the ®::=%. Hithin this document, there is at most one
defining production-rule for any given category-name.

The basic function of a production-rule is to define a set of possibilities for the
number, typels), and order of the immediate subnodes of & node whose type is the defined
category-name. This is done by interpreting the syntactic-expressicn of the production-
rule according to the algorithm given in Sectiom 1.3.2.8.

Production=-rules are augmented in their function of specifying immediate subnodes by a
notational convention used for creating lists of repetitive immediate subnodes. This
conveéntion applies to the bracketed category-names whose denotatlion, exclusive of the
brackets, terminates in the guoted symbols “=liet® or “-commalist®™; and it substitutes
for the explicit appearance of a defining production-rule for such category-names (i.e.
such category-names have no defining production-rule written in this document).

A syntax is any set of production-rules. For example, the set of all of the production=
rules in this document is a syntax. Five (disjoint) subsets of the production-rules in
this document have enough legical coherence that they have been given names, i.e. the
High-level Concrete Syntax, the Middle-level Concrete Syntax, the Low-level Concrete
syntax, the Abstract Syntax, and the Machine-state Syntax. In order to distinguish these
syntaxes, the production-rules copprising them have been given numbered labels starting
with the gquoted symbols =cH®, =CcH®, “CL", "A", and "M" respectively. The unlabelled
produption-rules of this document do not belong to any of these syntaxes.

If a defining production-rule for a category-name cccurs in a syntax, then that category-
name is Said to be non-terminal w regpect to that syntax. Any ecategory-name that
occurs somewhere within the syntactic-expressions of the production-rules of the syntax,
but has no defining production-rule in the syntax, is said to be:

i non=terminal with respect to that syntax if its denotation exclusive of the
brackets, ends with "=list®, "=commalist®, or "=-designator”™, and

€23 terminal with respect to that syntax otherwise.

A category-name that is non-terminal with respéct to the Syntax composed of all the
production-rules oceurring in this document is said to be Jjust pon-terminal; similarly

for terminal-

The Abstract Syntax additionally allows constraints to be specified for certain category-
names. The constraint, written in parentheses after the relevant category-name, is
applied by the Translator, or during the interpretation phase, but has no effect on the
constitution of & tree speclfied by the syntax.

Chapter 1£ Scope and Overviews 21

LI LA AR R A A R P R L A T PR E R L R PR e R P R P PRI P E R R TR P P PRI P Ay PP PP R P R PR L
The prodoction-rule
Al7. <bound-pair>::= <lower=-bound> <upper-bound> | <asterisk>

defines two possibilities, which may be written as (a) or drawn as (b)

{al <hound-pair>: <bound-pair>:
<lower=bound> oF <agsterisk>;
<upper-bound>;

(b} <bound-pairc> <bound-pair>

| or |
i i I
£] ower-bound> <upper-bound> <agteriak>

A node whose type is <identifier-list> may have any non-zerc number of immediate
subnodes of type <identifier>, i.e.

<identifier-list>: or <identifier-list>: or cidentifier-list>:

<identifier>; <identifier> <identifier>
<identifier>; <identifier>
<identifier>;

and so on.

A node whose type is {parameter-commalist} may have any non-zerc number of
fparameter} immediate subnodes, but with nodes whose type is the PL/I character {.3}
interspersed between adjacent ones, i.e.

fparameter-commalist}s: or fparameter-commalist}: or {parameter-comnalisty:
fparameter};: fparameter} {parametarc}y
:ﬁ:rameter}; iélranater}
1£urumutar};
and so on.

The producticon-rule
A&7. <repeat-optionr>:i:= <expression> (scalar)

gspecifies that only <expression>s yielding secalar wvalues (i.e. not aggregate
values) are valid immediate subnodes of a <repeat-option’.

LI R E e R R e e R L e e e T R L L R P iR L R L L A L e L L L T L L il s et

Example 1.2. Examples of Syntax.

1-3.2.2 Complete and Partial Trees

Given a sSyntax, a complete tree with respect ko that syntax is any tree which can be
obtained by starting from a node of a given type, and reépeatedly attaching subnodes to
the nodes of the +tree being developed according to the algorithm of Section 1.3.32.8,
until an interpretation has beéen obtained for every node of the tree. A complete tree
with respect to the syntax composed of all the production-rules occurring in this
document is said to be just a complete traa.

22

A partial tree is any tree which is not a complete tree but which can be obtained by
deleting some nodes from some complete tree.

The trees utilized by the definition gruceas of this document are only complete trees or
partial trees. Other possible forms of trees are never utilized. Furthermore, it is the
ugual ease that complete trees are utilized, or at least utilized at the interfaces
between the various operations of the definition. Although there are a few specific
exceptions, it is a general rule that partial trees occur only in a very local context in
the process of building up a complete tree. Several of the "instructions® (see Section
1:3.3:.4) of the metalanguage are in fact designed to assist in the process of building
complete trees.

1.3.2.3 Syntactic-expressions and Syntactic-units

Given a syntax, a syntactic-expression is defined to be either a single syntactic-unit,
or several syntactic-units any of the adjacent pairs of which is possibly separated by a
®"|® or a "+«*. The symbols are called the or-symbol and the bullet respectively.

Given a syntax, a syntactic-unit is defined to be one of the following:
a single category-name,
& syntactic-expression enclosed in the brackets “(® and "1%, or

a syntactic-expression enclosed in the braces "(" and "}".

1.3.2.0 ppplication of the Production Rules

Given a syntax and a category-name, the algorithm shown just below obtains a (possibly
empty) ordered set of category-names, termed here an interpretation with respect (o Ehe
given syntax of the given category-name. In the process of constructing a complete tree
with respect to the given syntax, any sSuch ordered set may then be used as the
corresponding types of an ordered set of immediate subnodés connected to any node whose

type is the given category-name.

An intexpretation of a category-name is defined as follows:

Case 1. The denotation of the given category-name, excluding any terminating brackst,
ends with "=1list®.

An interpretation consists of an ordered set of any non-zerc number of instances
of that category-name whose denotation is obtained by deleting the "<list® from
the denotation of the given category-name.

Case 2. The denctation of the given category-name, eéxcluding any términating bracket,
ends with "-commalist®.

An interpretation consists of an ordered set which:

{1) contains any non-zero number, n, of instances of the category-name whoge
denctation is obtained by deleting the "-commalist™ from the denctation
of the given category-pame, and which

{2) contains n=-1 instances of the category-name {;}, and which

{3} is arranged =0 that no two instances of the same category-name are
adjacent.

Ccage 3. The denotation of the given category-name, excluding any terminating bracket,
ands with "-designator®™.

An interpretation is a sSingle member of the sSet of unigque-names. If the

category-name is of the form "x-designator®, the unigque-name must be of that of
a node of type "x".

Chapter 1: Scope and Overviews 23

Case 4. There is in the given syntax a defining prodection-rule for the given category-
name.

An interpretation &5 an interpretation of the syntactic-expression written
follewing the "::=* in the defining production-rule.

Case 5. (Otherrise).

The given category-name is a terminal with respect to the given syntax; the
interpretation is the empty set.

An interpretation of a syntactic-expression is defined as follows:
Case 1. The syntactic-expression is a syntactic-unit.
Case 1.1. The syntactic-unit is a single category-name.

An interpretation consists of the ordered get containing just this single
category-name.

Cage 1.2. T:; ?yntactic-unit ia a syntactic-expression enclosed in the brackets " ([
q - -‘

An interpretation consists either of an interpretation of the enclosed
syntactic-expression, or of the empty set.

Case l.3. The syntactic-unit is a syntactic-expression enclosed in the braces " (" and

Ll L

An interpretation consists of an interpretation of the enclosed syntactic-
expression.

Case 2. The ayntactichexpruasiun iz a sequence of two Or more syntactic-units possibly
geéparated by a "|" or a "e"

Case 2.1. Am or-symbol occurs as at least one such a separator.

Consider all or-symbols occurring thus in the given syntactic-expression to

partition it into a sequence of innex gsyntactic-expressions. An
interpretation is one of any of these inner syntactic-expressions chosen
arbitrarily-

Case 2.2. A bullet occurg as such a separator and an or-symbol does not.

Consider all bullets occurring thus in the given syntactic-expression to
partition it intoc a sequeénce of inner ayntactic-expressions. An
interpretation is the same as one of a syntactic-expression formed by
arranging these dinner syntactic-expressions in am arbitrary order and
omitting these bullets.

Ccase 2.3. [(Otherwise).

{The syntactic-expression is a sequence ol syntactic-expressions optionally
geparated by blanks.) An interpretation consists of the concatenatlion, in
order, of interpretations of the syntactic-expressions of the seguence.

1.3.3 OPERATIONS

The procedural part of +the metalanguage provides for the writing of algorithms termed
geggégifgga These are expressed in a semi-formal programming language which uses the
grammatical flexibility of ordinary English prose, while at the same time attaching
precise meaning to certain words and phrases, in order that the flow of control and the
tree manipulations in the operations be well defined. Completely formal notation is used
to describe trees in accordance with their syntactic definitions.

2y

1-.3.3.1 Hature of an EGEHEEEB

An operation, applied to zero or more gperands, may be performed by the processor (see
Section 1.3.4), with the effect of;

1) changing the <€machine-state®», or

(2) changing an operand, or

(3) returning a zesult, or

(u) any —cambination of (1), (2}, and (3)
Within am operation either operand-names or local-variable-names may bDe used for
accomplishing this effect. These.names serve as designators of trees, which may be

either portions of the <machine-state®, or local-trees created within this or another
operation. e P

When an operation is performed, its operand-names are set to designate the operand trees
it has been passed. It then has the following data available to it

{1) The whole 4machine-state®, which is directly accessible for inspection or change
at any time.

(2} The operands which it has been passed, which can be inspected or changed.

{3} Local-tress local to itself, which it can freely construct, inspect, or modify.
These trees are deleted when the operation terminates.

The operation may also apply any opération defined in this document (including itself)} to
any operands which it may select from among the trees available to it.

Upon completion of its actions, an operation may return a result, which then becomes
available to whichever operation applied the given operation to its operands. As with
operands, this result may be selected from among the trées available to the operation.
In the caze that (a portion of) a local-eree local to this operation is selected, this
tree iz not deleted, but iz copied to become a local-tree local to the applying
operation. (5ee Section 1-3.3.4 on "perform®™.}

1.3.3.2 Hondeterministic erations

The phrases “optionally”™ and "in any order®™ are used in some operation descriptions.
They indicate that the processor is to make a choice each time that part of the oparation
is executed. In general, then, the conceptual PL/I machine defines a set of possible
interpretations for a program.

1.3.3. mat of an Operation

The written description of an operation has a format consisting of a heading and a body.
The heading may have three parts:

(1} There iz always a specification of the form "Operation:™ followed by the
underlined name of the operation, optionally followed by a parenthesized list of
the names used to refer to the operands passed to the operation; the names being
separated by commas-.

(2} For an operation which has operands, the word “where™ then precedes a
description of the typels) of +tree to which each operand name may refer.
Brackets around a node type indicate that the operand is optional, which is an
abbreviation for stating that it may alternatively have the value €absents>.

{3y For an operation which returns a result, a Cinal part of the neading is of the

form "result:* followed by a description of the type(s) of tree which may be
returned.

Chapter 1: Scope and Overviews 25

LA EEREEE TR A R L2 L RS R E R R R R R LRI R R LR R R R R RN R R RS R R A R LR DR R LR AR R YR

operation: evaluate-in-option(al,vr)

vhere al is an <allocations,
vr is a <variable-referonce>.

result: a <generation®.

T T L e T L e e T T I e T T T T Y

Example 1.3. An Example of an Operation Returning a Resualt.

The body of an operation consists of either a Step-list or a Case-seét. PBach Step or Case
is a numbered section containing written instruction descriptions of arbitrary
complexity, and may itself contain’a Step-list or Case-set, numbered with an additional
index position and indented to indicate this containment.

Steps are normally performed segquentially.

Each Case consists of a condition part followed by an executable part. Within each case-
set, the set of condition parts is such that, at any execution point. exactly one of the
condition parts is satisfied. (The conventional condition part " (Otherwiszel”™ is satisfied
whenever none of the other condition parts of the case-set is satisfied.) The execution
of a case-set consists of executing the executable part of the one case whose condition
part i8 then satiafied.

The normal sequence for Steps and Cases may be modified by explicit instructions using
such terms as “go to™ or "perform™ which are defined in Section 1.3.3.8. The terminology
for selecting some actions, either in a defined left-to-right order or in an unspecified
order, is "in left-to-right order™ and "in any order® respectively. When selection is
between two options, ®“in either order® may be used instead of "in any order™. Optional
selection a3 to whether an action will be carried out is indicated by words such as

*optionally perform®.

r'i‘iit#i#i.l.l!!iliii‘-ll'liltltili--t-t-l-‘-‘liﬁﬁﬁill“““!--ﬁ-‘-"-"4‘*“"*"'--"'

Operation: every=bif (rdd,x)

Step 1. rerform evaluate-expression(x) to cbtain an <aggregate-valuek,u.
Step 2. In any order, convert each scalar-element of u to <bit>, to obtain wv.
Step 3.

Case J.l. Every scalar-element of v that does not contain <€null-bit-string® has
a <bit-string-value®> with every «bit-value® containing <one-biks.

Let r be <one-bit¥.
Case 3.2. {otherwise).
Let r be <€zero=bit®».

Step 4. Return an <aggregate-value* containing a «bit-string-value®» containing r.

Mttt e e T R T e R P R TR R LA SR ST AR AR E AR A LA R RS LR R R R L A L Ll

Example 1.4. An Example of an Operation Centaining a Step-list and a Case-set.

26

1.3.3.4 Instructions

An instruction is a specification of sore action involving the creation, destruction,
inspection, or modification of some treels), or causing scme departure to ke made from
the normal seguential flow of contrel through an operation.

cperand-names and lecal-variable-pames strictly dencte designators of trees rather than
tree values themselves; however, apart from their use in a8 context where they acguire
designator walues, are passed as operands, or are returned as results, references to
these names are always taken to be an akbreviation for references to the tree designated
by the strict value.

The "let® instruction is wused to indicate that the named variable is henceforth to
reference the specified tree, which may be an existing tree or one newly created, e.g. by
use of the enumerated-tree notation or by copying an existing tree. UOsa of a name for a
tree following some description of the root-node and a comma, ¢.g. in the enumerated-tree
notation, is equiwvalent to use of a "let™ instruction. Ho change to any tree previously
designated by the named wariable or operand occurs as a result of the "let®™ instruction.

In contrast, the “replace® instruction iz used to indicate that the tree referenced by
the named wariable or operand is to be replaced with the specified tree. The replacement
goours exactly at the root of the referenced tree, and the named wariable or operand
henceforth references the replaceméent.

The "append® instruction, as in "append b to ¢, indicates that b is to be attached as
the last immediate subtree of c. ¢ may be any existing tree, or if it is uoniguely
specified, may be non-existent. This latter case causes the construction of the (single)
node c. In order to make the specification of the potentially missing node o unique, the
notation illustrated by “append b to ¢ in d® can be employed to indicate that c may be
missing and is to be constructed as a simple component of d.

The "attach® instruction, as in "attach b to c®, indicates that b is to be attached to C
as a component of c. If b can be an immediate component of o, then it is aktached as an
immediate component. Otherwise, there will be a unique way that a node of type b can be
a simple component of ¢, and exactly the minimal necessary nodes which are both contained
by c and also contain b are created so as to attach b as a gsimple component.

The "delete” instruction, as in *"delete b" indicates that b is to be removed from its
containing tree (and discarded). In addition, if b is a mandatory component of the tree
which immediately contained b, say ¢, then the “delete” instruction is applied to c
{i.e., o is discarded and the process continues with the tree which immediately contained
c) .

The “perform”™ instruction either calls another operation, possibly passing operands.
possibly receiving a result, or calls for the execution of some Steps with an operation
out of the normal segquence. In calling otheér opeérations, references to trees specified
by the argqument list are passed to the named operation as operands {(any missing arguments
are given the wvalue <absent> in the called operation). If the operation returns a
result, then the term “to obtain® is used to indicate the obtained result. When other
Steps 4in an operation are performed, control returns to the instruction following the
*perform® instruction.

The "go to" instruction indicates that the normal sequence of control is broken and that
the named Step is to be executed next.

The "terminate® instruction indicates that the execution of the current operatiomn is to
be terminated and control is to be returned to the calling operation. If control reaches
the end of an operation that does not return a result, an implicit "terminate®
instruction is assumed. The "return® instruction indicates that the current operation is
to be terminated with a referance to a specified tree as the result.

The "if" instruction indicates that if the specified condition is true then the
instruction list following the "then™ is executed and the instruction list (if any)
following the "otherwise® is skipped. If the condition is false the instruction list
following the "then” is skipped and, if there is cne, the instruction list following the
"otherwise® is executed.

The "for each® instruction specifies actions that are to be carried out once for each
member of a set of objects., in some sequence which may be in any order or in some
specified order.

Chapter 1: Scope and Overviews 27

The “must® instruoction specifies a test to be performed. If the test is not satisfied,
the program (wheén combined with the particular initial entry-point and datasets if the
interpretation-phase has begun) is rejected by the standard, and the conceptual PLAI
machine atops. This is the only sense in which “must™ and “"must not" are used 4in
operation descriptions.

1.3.3.5 Convert

Conwvert is an exception to the general rules for naming and performing (see Section
1.3-.3.4). Use of this operation is generally specified in an informal style, e.g.
"convert the value of the <expressionr»,x to integer-type®. Details are given in Section
F.5.1.1.

1.3.3.6 Additional Hotational Conventions

Common mathematical symbols are used with their wusuval meaning. In addition, the
following notational conventions are uased:

* denotes multiplication;

s denotes division;

] denctes exponentiation;

:E; denotes iterated addition (summation); the result is taken as zero if the
iteration range is empty;

'IT denotes iterated multiplication (product); the result is taken as cne if
the iteration range is empty)

[l denotes subscripting in the metalanguage as a notational convenience used
with local names;

Pi denctee the mathematical constant of that name;

a denotes the mathematical constant of that name;

L denotes the square root of -1;

cail (%) denotes the smallest integer larger than or egqual to xj
floor(x) denotes the largest integer smaller than or egual to x:
min{x,y) denotes the value of x if x=<y, otherwise the value of y;
max({x,y) denctes the value of x if xzy, otherwise the value of y;
logixd denotes the natural logarithm of x;

| x| denctes the absolute value of .
1.3.3.7 Arithmetic

In the metalanguage, an arithmetic expression denotes the exact mathematical walue. The
sitvations in which the result may be approximated by the PLsI machine are defined in
such operations as arithmetic-result.

In general the distinction between numbers and trees containing them is ignored. For
example, if z is a tree of the form
fbasic-value®;
<complex-values:
f€real-numbors ,®
<real-number®, ¥

then the arithmetic expression ®"z+1* denotes the complex number (Ksl)+iy.

28

1.3.4 THE PROCESSOR

The processor is the active agent capable of performing various actions on the <machine-
gtate> tree. These actions are carried out as directed by the written algorithm which
comprises the PL/I definition.

A portion of the <machine-state® tree, either the <€control-state* or a <4statement-
contral®, holds the information which controls the processor. An <€operation» is known by
the processor if it is a simple component of the <control-state? or a <statement-
control*. ‘There is at most one active operation. An <operation» is actiwve if:

(1 it is the last member of its immediately containing <operation-list®», and
[§4] either:

(2.1} the <operation> is simply contained in an <operation-list» which is simply
contained in a <€statement-control® which is simply contained in a «block-
gtate» that is the last member of its immediately containing <block-state-
listy», or

(2.2} there Are no <statement-control®»s contained in the <machine-state®», and the
<pperation? is simply contained in an <operation-list®> which is simply
contained in the €control-statedr.

(See Section 1.4.1 and Section 5.1 for the definitions of these category-names.)
The processor carries out actions as follows:

Whenever there exists a known active <operation®, the procegsor carries oot the
actions specified by the written description of the corresponding cperaticn.

Whenever there exists no kmown active <operation®, the processor does nothing.

1.3.5 MECHANIZATION OF THE METALANGOAGE

A deeper understanding of the metalanguage may be obtained by comsidering how its formal
mechanization may be carried out as an extension of the <machine-States. Each
<operation> in an <operaticn-listd» may be given a subtree containing the name of the
operation, the names and designator values of its operands, the npames and designator
values of its local variables, the local-trees constructed during the performance of this
oparation, and control information indicating which Step or Case is currently being
executed, which members of an iterative "for each™ have still to be performed, and so on.
When a "perform” instruction causes a new operation to be invoked, a néw “operation® tree
will be appended to the <operation-list» and actiwvity in the present operation will be
suspended. ©On return from an operation, any local-tree returned by it as a result is
copied back as a subnode of the preceding <operation® tree, and the <operation» tree for
the terminating operation is deleted together with all its loeal information. Actiwvity
in the invoking operation is then resumed from the point at which it was susponded.

Chapter 1: Scope and Overviews 29

During the translaticn-phase, the only <operation-list» is the one in the <control-
puring most of the interpretaction-phase, the <gperation’»s in the <control-

state».
state* will be dormant while
control® as shown below.

T R T T P T PP R T TR P TR RO AT PR A AT R TR P R AR PP R ER DA AR TR R R R AR TR A L R T L L]

there is an active <foperation® in a <statemant-

imachine-state’
|

< pProqramn»

o 1
I

|
<control-stated» dinterpretation-states

foperation-lists
|
r 1
| | |
- 4operation® 1
{DORMANT)

{.--
“program-states

-n

I
“block-state-list>»

I

|

r 1
| [
“ = = 4{bhlock-gtatay
r =t 1
| I I
4block-control®
|
1
r I L
| | I
datatement-contraly
<operation-liast¥
1
1
] I
s & = <operation»

Ittty e e e e TR TR YR TR P R AR LA T AT R LR AL AR LA DL R R L R L L L L L L AL Ll Ll

{ACTIVE)

Example 1.5. Example Showing <€operation-list»s of a <machine-stater.

aon

1.4 Initialization of the Machine-state

1.4.1 THE MACHINE-STATE

M1. <machine-state®::= <program>
“<control=-states
[<translation-stated | <interpretation-states]
M2. £0ontrol-stater: 3= <operation-list®
M. <translation-stated::= [{concrete-external-procedure}]
My . fconcrete-external-procedure}: = [{declaration-commalist}] {procedure}
M5 . “operation®» ::=

The exact structure of <operaticn® is left unformalized and unspecified. It must
have adequate structure and capacity to represent the carrying out of the actions of
an operation. This includes designating the particular operation and the current
position within it, holding the operands given to the operation, and holding the
values of any variables used by the operation (see Sectiom 1.3.3).

The definitions of fdeclaration} and {procedure} are given in Chapter 2; the definition
of <program> is giwven in Chapter 3; the definition of <interpretation-states is given in

chapter 5.

1-4.2 INITIALIZATION

The PLfI definition process begine by creating an initial <machine-state» tree,
consisting of:
“machine-state»:
<ProgTan:
€control-statel:

foperation-ligte:
€operation® for define-program.

The processor then performs the €operations for define-program.

1.4.3 THE TOP-LEVEL OPERATIONS

1.4.3.1 Define-program

Operation: dafine-progrcam
Step 1. Perform translation-phase.

Step 2. Perform interpretaticon-phase.

Btep 3. Mo action. (Reaching this point indicates the successful completion of the
definition algorithm.)

Chapter 1: Scope and Overviews 31

Operation: translation-phase
Step 1. Append <translation-state> to the <machine-stated.
Step 2.

Step 2.1. Obtain, Efrom a sSource outside this definition, a sequence of characters
composing a putative PL/I external procedure, constructed in the form of a

fsymbol-list},sl.

Step 2.2. Perform translata(sl) to obtain an <abstract-external-procedurel,aap.
Append aep to the <abstract-external-procedure-list> in the <program>.

Step 2.3. Optiocnally go to Step 2.
Step 3. Perform validate-program.

Step 4. Delete the <translation-stated».

1l-4.3.3 Interpretation-phase

Operation: interpretat - aa
S5tep 1. Obtain, from a source cutside this definition, the following items:

(1) A collection of information te be used for inputs/ocutput, constructed in the
form of a suitable <dataset-list»,dl.

(2) A designation, as the first to be activated, of one of the <entry-point>s of
a <procedure> gimple component of <program®», constructed in the form of a
suitable <entry-value®,ev. Such an <entry-point> must exist and must not
have <parameter-pame=-list> or <returns-descriptor’> components.

Step 2. Perform interpreti(dl,ev.) (S5ee Section 5.3.1).

az

Chapter 2: Concrete Syntax

2.0 Introduction

The Conerete Syntax of PL/I is specified mainly by means of producticn-rules using the
notation defined in Chapter 1. The first such rule defines a {procedure}, and subseguent
rules define the permitted forms of a fprocedure} and its components in increasingly fine
datail, until every component is ultimately described in terms of sequences of characters
of the language character set.

2.1 The Intent of this Definition

As the first stage of translation (Chapter 8), any given sequénce of symbols is parsed to
determine whether that sequence indeed represents a {procedure} valid according to a set
of rules known in this document as the "Concrete Syntax®.

2.1.1 CONCRETE AND ABSTRACT SYNTANES

This formal Concrete Syntax is permissive in the sense that some of the constructs
permitted are not actually valid {procedural}s. Thus, for example:. the sequence of
aymbols "DCL X FLOAT FIXED;® is a syntactically correct construct that may be parsed as a
{declare-statement}. Errors of this sort will be detected later in the translation,
because of a failure to satisfy the Abstract Syntax (Chapter 3).

2.2 Organization of the Concrete Syntax

The rules of the Concrete Syntax, which are context-tree, are arranged in three levels,
s0 that two context-dependent features of this grammar, namely the presence of blanks and
comments, and the so-called "multiple closure®, may be resolved at the interface between
the levels.

The three levels of syntax correspond to the three levels of the parse algorithm
described in Chapter H.

2.3 The High-level Syntax of PL /I

2.3.1 PROCEDURE

CH1. fprocedure}::= fprefix-list} fprocedure-statement} [funit=list}) fending}
2:3.2 UNIT

CH2. funit}::= [{statement-name-list}l [fdeclare-statement} | fdefault-statement}} |
fstatement-name-1list} fentry-statement} |
fprefix-list} fformat-statement} |
fprocedure} |
fexecutable-unit}

chapter 2: Concrete Syntax 33

2.3.3 EXECUTABLE UNITS

CHI. fexecutable-unit}::= [{prefix-list}]
{{group} | {begin-block} |
fon-statement} | f[if-statement} |
fexecutable-gingle-statement}})

CHY . fif-statemaent}s:= fif-clause} (fexecutable-unit} |
{fhalanced-unit} ELSE fexecutable-unit}}

CHS. fbalanced-unit}::= (fprefix-list}]
{fexecutable-single-statement} | foroup} | fbegin-block} |
{fon-atatement} |
fif-clausa} fbalanced-unit} ELSE {balanced-unit}}

CHE. fgroup}i = fdo-statement} [funit-list}] fending}

CH7. {begin-block}: i= fbegin-statement} [(funit-list}] fending}

CHE. fon-statement}::= ON fcondition-name-commalist} (SHAP] (fon-unit} | SYSTEM:)

CHY . fon=-unit}:r= [(fcondition-prefix-commalist}):]
{fexecutable-single-statement} | fbegin-block}}

CH10. <ending}::= [fstatement-name-list}] fend-statementl

Example 2.1 1llustrates the tree of the high-level structure of a simple {procedurck.

Example 2.2 1llustrates the high-level structure of a simple fif-statement}.

T Il I Iy ey e ey TR R RN TR R R SRR LA LD LA L R L L LY

';Prﬂf-‘?d ured
fprofinlliut} fprnceduxﬁintatement} {unlt1115t1 ;endlng}
forefix} 0 l . fend-statement}
fun:IL £} 1:uru! t3
fdeclare-statement} I

|
{fexecutable-uni £}

|
faxecutable-single-atatement}

A sample concrete reprasentation having the structure illustrated above:

T: PROCEDURE;
bpCcL PL IMIT (3.14159);
PUT LIST (SIH{PIS8));
END T;

u....--tiiqugnqﬁniat-----tin:--n-t-#itititt*"tt*i#i*i¢*¢+91!+i¢ti#ii*i*iiiiiililitill!]

Example 2.1. The High-level Structure of a Simple fprocedure}.

£

T I Iy o e e e T YRR TR R RN AR R AR R AR A R AL L LR Y L]

fexecutable-unit}
|

|
fif-statement}

|

|

- =

| | | [
fif-clause} fbalanced-unit} ELSE fexecuktable-unit)
| |
| |
fexecutable= {fexecutable-
single-statement} single-s=tatement})

A sample concrete representation having the structure illustrated abowve:

Tl sy e e T R R R R PR R R R LR R L L L R L s (ST ER AT IR TR LR Y]

Example 2.2. The High-leével Structure of an fif-statement}.

2.4 The Middle-level Syntax of PL/I

2.4.1 SENTENCE

A 4{sentence} in the middle-level syntax corresponds to that which comes between semi-
colens in a PL/1I {procedure}.

CcM1. {sentence}::= [fprefixed-clause-list}) {single-statement} | felse-partc}

cM2. felse-part}::= ELSE [{prefixed-clause-list}] fsingle-statement}

CcM3. fprefixed-clause}::= lfprefix-list})
[fif-clause} |
ol {fcondition-name-commalist} [SHAF]}

CMi. fprefix}::= (fcondition-prefix-commalist}): | fstatement-name}

CH5. fif-clavse}::= IF fexpression} THEH

Chapter Z: Concrete Syntax 35

2.4.32 STATEMENT

CHE .

CHT.

fzingle-statement}::= [({statement-name=-1ist}]
{fdeclare-statement} | {default-statement} |
fend-statementy)} |
fstatement-name-list}y fentry-statement} |
[fprefix-1list}] (fexecutable-single-statement}|
{begin-statement} [funmatchedyl
fdo-statement} (funmatchedd) | fformat-statementy |
SYSTEM; | {procedure-statement} [(fonmatched}l}

Rotes: funmatched} is used only by the operation high-level-parse.

fexecutable-single-statement}: i= fallocate-statement}
fassignment-statement}
feall-statement}
fclose-statement}
fdelete-statement}
firee-statement}
fget-statement}
fgoto-statement}
flocate-statementd
fnull-statemant}

2.4.3 PREFIXES

2.4.3.1 Condition Prefixes

CMB .

cM9.

CHM10.

feondition-prefix}::= {computational-conditiony} |

fdisabled-compitational-condicion}

fcomputational-condition}: := CONVERSION
ETRINGRANGE

UNDERFLOW | ZERODIVIDE

fopen-s5tatementd
fput-statement}
{read-gtatement}
freturn-statement}
{revert=statement}
{rewrite-statement}
fsignal-statementd
{srop-statemant}
{write-statementy

FIXEDOVERFLOW | OVERFLOW | SIZE |
| STRINGSIZE | SUBSCRIPTRANGE |

fdisabled=-computational-condition}::= ROCONVERSION | NOFIXEDONERFLOW |

2.4.3.2 Statement Hame Prefixes

CHIl.

=

2.0.04

CHM13.
CMlk.

CM15.

a6

HOSTRINGSTZE |
HODHDERELOW |

HOOVERFLOW | HOSIZE | ROSTRINGRANGE |
HOSUBSCRIPTRANGE |
HOZERODIVIDE

f{statement-name}::= fidentifier} [(fsigned-integer-commalist})):

fsigned-integec}:iz= [+ | -] {finteger}

DATA DECLARATION

fdeclare-statement}::= DECLARE {declaration-commalist};

fdeclaration}::= [{flevel}] (fidentifier} | ({fdeclaration-commalistl}}}

(fdimension-suffix}]

flevel}::= finteger}

[fattribute=1ist}]

e — s e B . S

2.4.4,1 Dimension Attribute and Dimension Suffix

cHl6.
CHM1T.
cHMlg.
CH19.
CM20.
cMal.

CcH22.

fdimension-attribute}::= DIMENSION ({dimension-suffix}l
fdimension-suffix}::= (fbound-pair-commalist})
fbound-pairf::= [flower-bound}:] {fopper-bound} | *
flower-bound}: = fextent-expression}

fupper-bound}: = fextent-expressiony
fextent-expression}i:= fexpression} [frefer-option})

frofer-option}::= REFER (funsubscripted-reference})

Z.b.4,2 Attributes

CM23.

fattribute}::= fdata-attribute} KEYED

i
AUTOMATIC | LIEE {funsubscripted-reference}
BASED [i{freference}l)] | LOCAL
BULLTIH | foptions}
CONDITION | OUTRUT
CONSTANT | PARAMETER
CONTROLLED | POSITION ({{expressioni)]

DEFINED (freference} |

(freference})} | PRINT
DIRECT | RECORD
fenvironment} | SEQUENTIAL
EXTERNAL | STATIC
fgeneric-attribute} | STREAM
finitial} | UPDATE
INPDT | VARIABLE
INTERNAL
2.4.4.3 Data Attributes
CM2u. 4{data-attribute}is= ALIGHED | LABEL |
ARER [((farea-size})] | MEMBER |
BINARY [{fprecision}l | HOWVARYIHNG |
BIT [(fmaximum-length}) i | OFFSET [{freference}i) |
CHARACTER [(fmaximum-length})] | PICTURE [fpicture}l I
COMPLEY [{fprecision}] | POINTER |
DECIMAL [fprecisicn}) | PRECISIOH If{precision}i|
fdimension-attribute} | REAL [{precision}]
ENTRY [{[{description-
commalist}l)] | frecurns-descriptory |
FILE | STRUCTURE |
FIXED [fprecision}) | INALIGHED |
FLOAT [({fnumber-of-digits})] | VARYING I
FORMAT
CM25. farea-size}::= {fextent-expression} | *
CM26. {precision}i:= (fnumbér-of-digits} [,{scale-factor}l)
CcM27. fnumber-of-digits}::= finteger}
CM28. {scale-factor}::= {signed-integer}
cM29. {maximum-length}::= fextent-expression} | #
cM30. {description}i:= [flevel}]l [{dimension=-suffix}) [{data-attribute-list}]
Constraint: At least one subnode must be present.
CcM3il. fpicture}::= {simple-character-string-constant}

Chapter 2: Concrete Syntax

a7

2.8.8.8 Environment a ions

CM32. {enviromment}:;= ERVIROHMENT ({fenvircnment-specification})
CM33. fenvironment-specification}::=
CM3n. foptions}::= OPTIONS (foptions-gpecification})

CM35. Joptions-specificationd::=
2.8.04. eric

CHMA6. fgeneric-attribute}::= GENERIC [({generic-element-commalist})]
CM37. fgeneric-element}::= {reference} WHER (({generic-description-commalist}])

CM3IB. {generic-description}::= (flevel}] (fasterisk-bounds})
[fgeneric-data-attribute-1ist}) | *

Constraint: At least one subnode mast be present.

CH39. {generic-data-actribute}::= ALIGHED | LABEL I
ARER | MEMBER I
BINARY [{fgeneric-precision}] | HONVARYIRG I
BIT | OFFSET I
CHARACTER | PICTURE {picture} 1
COMPLEX (f{generic-precision}] | POINTER I
DECIMAL [(fgeneric-precision}] | PRECISICN {generic-

precision} |
DIMENSION fasterisk-bounds} | REAL ifgeneric-

precision}] |
ENTRY [({fdescription-

commalist}ly] freturns-descriptor}

| |
PILE | STRUCTURE 1
FIXED [fgeneric-precision}] | UNALIGRED i
FLOAT [fgeneric-precision}) | VARYING |

FORMAT
CHM40. fasterisk-bounds}i:= (f*-commalist})
CMyl. {generic-pracision}::= (fnumber-of-digits¥ [:{number-of-digits}l
lsfscale-factor} [(:{scale-factor}ll)

2.4.4.6 Initial

cMa 2. finitial}::= INITIAL [{finitial-element-commalist})]

CcMy3. finitlal-element}::= » | {parenthesized-expression} |
(fiteration-factor}) [(finitial-constant-two} | * |
(finitial-element-commalist})} |
finitial-constant-one}

CcMub. finitial-constant-one}::= lf{prefix-operator}] fsimple-string-constant} |
finitial-constant=two}

cMu5. finitial-constant-two}::= [fprefix-operator}]
{freference} | freplicated-string-constant} |
farithmetic-constant}} |
[# | =1 §{real-constant} (+ | -} {imaginary-constant}

cHbb6. fiteration-factor}::= {fexpression}

38

2.4.0.7 The Default Statement

cMa7. fdefault-statement}::= DEFAULT (fdefault-specification} | WOHE | SYSTEM};

cMu8. {defavlt-specification}::= (fpredicate-expression})
(ERROR | fdefault-attributes-commalist}}

CM49. fpredicate-exprassion}::= {predicate-expression-three} |

fpredicate-axpression} §|} fpredicate-expression-three}

CcMS50. {predicate-expression-three}::= {predicate-expreasion-two} |
{predicate-expression-threa} &
frredicate-exprassion=-two}

CMS1. {predicate-expression-two}::= {predicate-expreasion-one} |
= {predicate-expression-two}

CM52. {predicate-expression-one}:s= ({predicate-expresasion}) | {fattribute-keyword} |

{range-specification}

cM53. frange-specification}::= RANGE ((fidentifier} | flettex} : fletter} | =})

CM54. fattribute-keyword}::= ALIGNED | DEFINED | INTERNAL
ARER | DIMENSICH | EEYED
ADTOMATIC | DIRECT | LABEL
BASED | ENTRY LOCAL
BIHARY | EBVIROHMENT HEMBER
BIT | EXTERHAL RONVARYING
BUILTIN | FILE | OPFSET
CHARARCTER | FIXED | oPTIONS
COMPLEX | PLOAT | ouTPUT
CONDITION | FORMAT PARAMETER
CONSTANT | GEHMERIC PICTURE
CONTROLLED | INITIAL POINTER
DECIMAL | INPUT POSITION

CM55. §defavlt-attributes}s:= {fattribute-list}

2.4.5 THE PROCEDURE STATEMENT

CH56. {procedure-statement}::= PROCEDURE [fentry-informatiomn}];

cM57. 4entry-informaticn}::= [({fparameter-name-commalist})]

PRECISION
FRINT

SEQUENTIAL
STATIC
STREAM
STRUOCTURE
OHALIGHED
UPDATE
VARIARLE
VARYING

{ [({returns-descriptor}] « (foptions}] « [RECURSIVE]]}

cM58. {parameter-name}::= fidentifier}
CM59. 4{returns-descriptor}i:= RETURNS [(fdescription-commalist}}]

2.8.6 THE ENTRY STATEMENT

CM60. <{entry-statement}::= ENTRY ({entry-information}l;

2.-4.7 THE BEGIN STATEMENT

CcMEl. 4begin-statement}::= BEGIN (foptions}l:

Chapter 2: Concrete Syntax 39

2.4.8 THE DD STATEMENT

CM&2, fdo-statement}:z= DO; | DO fwhile-option}; | DO fdo-specd:

CMB3. {do-spec}::= freference} = {spec-commalist}

CHG4 . {spec}::= fexpression} [§ta-hy}¥ | frepeat-option}l [fwhile-option}]
CMG65. 4{to-by}::= {to-option} ({by-option}l | fby-option} [fto—option})

CHME6. fto-option}::= TO fexpression}

CHMG67. {by-option}:i= BY fexpression}

CHMG8. {while-option}:z= WHILE ({expression})

cMed. {repeat-option}::= REPEAT {fexpression}
2.4.9 THE END STATEMENT

CHMT0. fend-statement}::= END [fidentifiex}];
2:4-10 FLOW OF CONTROL STATEMENTS

Z2:8.10.1 The Call and Keturn Statements

CMT1l. feall-statement}::= CALL freference};

CMT2. freturn-statement}::= RETURN [({fexpression})];

2:4.10.2 The Go To Statement

CH73. {fgoto-statement}::= [(GOTO | GO TO} {reference};

Z2.08.10.3 The Hull Statement

CM74. 4{null-statement}:z= ;

2:4.10.4 The Revert and Signal Statements

CM?5. 4frevert-statement}::= REVERT {fcondition-name-commalist};

CMT6. fsignal-statement}::= SIGHAL fcondition-name};

CM77. 4{condition-name}::= {fecomputational-condition} | fnamed-ic-condition} |
fprogrammer-named-condition} | ARER | ERROR |
FINISH | STORAGE

CH78. {fnamed-io-condition}::= fic-condition} (freference})

CM79. {io-condition}::= EWDFILE | ENDPAGE | EEY | NAME | RECORD | TRAMSMIT |
UNDEFINEDFILE
CMEQ. {programmer-named-condition}::= CONDITION (fidentifier})

2.4.10.5 The Stop Statement

CMBl. {stop-statement}::= STOP;

an

2-8.11 STORAGE CONTROL STATEMENTS

CMEZ. {assignment-statement}::= {reference-commalist} = fexpression} [,BY HAME];
CcM83. {allocate-statement}::= ALLOCATE fallocation-commalist};

cMEu. fallocation}::= fidentifier} lilfset-option}] e (fin-option}l}

CHMA5. f{set-option}::= SET ({reference})

CMB6. fin-option}::= IN (freference})

CcMB7. {free-statement}::= FREE ffreeing-commalist};

CMB8. fEreeing}::= [flocator-qualifier}] fidentifier} ({fin-option}]

2:4.12 ISPUTAOUTPUT STATEMEHTS

Z.%.12.1 The Open and Close Statements

CME9. {open-statement)::w OPEN {single-ocpening-commalistdy

CM90. {single-opening}::= 4lile-optiont = [frtab-option}] * 1{title-option}) »
[flinesize-option}] » [{fpagesize-option}] =
[STREAM) = [RECORD] s [INPUT] = [OUTPUT) = [OPDATE] =
(SEQUERTIAL] » [DIRECT] e [PRINT] « [KEYED] =
[{environment})

CM91. ¢file-option}::= FILE (f{reference})

CM92. {rab-option}::= TAB (fexpression-commalist}}

CcH93. fritle-optiond::= TITLE ({expression})

CMo4. {linesize-option}::= LINESIEE (fexpression})

CM95. 4{pagesize-option}::= PAGESIZE (fexpression})

CM96. {fclose-statement}::= CLOSE {single-closing-commalist};

cM97. {single-closing}::= §file-opticon} = [fenvironment})

2.4.12.2 Record 1/0

CcM98. {delete-statement}::= DELETE (ffile-opticn} * (fkey-option}lk:

CM99. {locate-statement}::= LOCATE {identifier} (f{file-option} » lfpointer-sec-option}le
[fkeytfrom=option}l};

CM100. f{pointer-set-option}::= SET ({freference})
€M101. fread-statement}::= READ ({file-option} = (finto-option} | fpointer-secv-ocption} |
fignore-option}} =
I{key-option} | fkeyto-optionkll;
CM102. fintoc-option}:s= INTO (freferencel)
CM103. {ignore-option}::= IGHORE ({fexpression})

CM104. fkey-option}::= KEY ({expression}}

Chapter 2: Concrete Syntax 41

CM105. f{keyto-option}:z= EKEYTO ({reference})

CH106. frewrite-statement}::= REWRITE (ffile-option} | §file-option3} » [f{key-opticn}] e
fLrom-option});

CcH107. fwrite-statement}::= WRITE [(ffile-option} » f{from-option} =
[{keyErom-option}) };

CM108. ffrom-option}::= FROM ({freference})

CM109. fkeyfrom-option}::= EEYFROM ({fexpression})

2.4.132.3 Stream I/0

CH110. fget-statement}::= GET [(fget-file} | fget-string}l;

CM111. {get-file}::= [{file-option}) = [fcopy-option}] =
[fskip-option}]) = [finput-specification}]

CH112. fcopy-option}::= COPY [{freterencae}d]

CM113. {skip-option}::= SKIF [({expression}}]

CM11l4. fget-string}::= STRING (fexpression}) » {input-specification} = [{fcopy-option}l
€M115. fput-statement}::= PUOT (fput-file} | fput-string}l;:

CH116. fput-file}::= [ffile-option}] ¢ [(fskip-option}] = (fline-option}] = (PAGE] «
[foutput-specification}]

CM117. fline-option}::= LINE (fexpression})

CM118. fput-string}::= STRING (freference}) ¢ foutput-specification}

2.8.,13,3.1 Stream Input Specification

CM119. {input-specification}::= {data-directed-input} | flist-directed-input} |
fedit-directed-input}

CM120. fdata-directed-input}::= DATA [[fdata-target-commalist})]

CM121. fdata-target}::= funsubscripted-reference}

CM122. flist-directed-input}::= LIsST (finput-target-commalist})

CcMi123. {input-target}::= freference} | {({finput-target-commalist} DO {do-spech)

CH12Y4. fedit-directed-input}::i= EDIT fedit-input-pair-list}

CHM125. fedit-input-pair}ii= {(finput-target-commalist}) (fformat-gspecification-commalist})

42

2.8.12.3.2 Stream Output Specification

CM126. foutput-specification}::= fdata-directed-output} | flist-directed-output} |
fedit-directed-output}

CcM127. {data-directed-output}::= DATA [({fdata-source-commalist})]

CcM128. fdata-source}::= freference} |
{fdata-source-commalist} DO fdo-speck)

CM129. flist-directed-output}::= LIST (foutput-source-commalist})

cMi30. foutput-source}::= fexpression} | (foutput-source-commalist} DO fdo-speck)

CM131. fedit-directed-ontput}::= EDIT {edit-output-pair-list}

CM132. fedit-output-pair}::= (foutput-source-commalist})
(fformat-specification-commalist})

.3.12.3.3 Format Spec cation Lists and the at Statement

CM133. {format-specification}::= {format-item} | {format-iteration}

cM134. fformat-iteration}::= f{format-iteration-factor}
(fformat-item} | (fformat-specification-commalist}}}

CM135. {format-iteration=-factor}::= finteger} | (fexpression})
CM136. fformat-item}::= fdata-format} | fcontrol-format} | fremote-format}

€M137. {data-Format}::= freal-Eormat} | fcomplex-format} | fpicture-format} |
fstring-format}

CM138. {real-format}::= ffixed-point-format} | ffloating-point-format}
CM139. {fixed-point-format}::= F (fexpression} |, fexpression} (.fexpression}ll)
CM1i40. {floating-point-format}::= E (fexpression} [,fexpression} [fexpression}i])

cMi4l. fcomplex-format}::= € ({{freal-format} | fpicture-format}}
[.freal-format} | .fpicture-format}l)

cHM1a2. fpicture-format}i:= P {fpicture}

CM143. fstring-format}::= {character-format} | fbit-format}
CM1ul. fcharacter-format}:e= A [(fexpression}tl}]

CM145. fbit-format}i:= fradixz-factor} [({fexpression})])

CM146. fcontrol-format}::= {tab-format} | {line-format} | fspace-format} |
fskip-format} | fcolumn-format} | PAGE

cM147. {tab-format}:i= TAB [(fexpression})]
cM1u8. fline-format}::= LINE (fexpression})
cM1u9. {space=format}:z:= X (fexpression})
CcMi50. fskip-format}::= SKIP [({fexpreasion})]
CcM151. foolumn-format}::= COLOMH (fexpression})
£M152. {remote-format}::= R (freference})

CHM153. fformat-statement}::= FORMAT (fformat-specification-commalist});

chaptér 2: Concrete Syntax

53

2.0.13 EXPRESSIONS

CM154. fexpression}::= {expression-seven} | fexpreassion} f£|} fexpression-sevend
CM155. fexpression-seven}::= {expression-six} | fexpression-seven} & fexpression-six}

CH1l56. fexpression-six}::= {expression-five} |
fexpression-s5ix} fcomparison-operator} fexpression-fived

CM157. fcomparison-cperator}:i= > | >= | = | £ | €8 | => | == | =<
CM158. fexpression-five}::= {expression-four} | fexpression-five} §||} fexpression-four}

CHM159. fexpression-four}::= {fexpression-three} |
fexpression-four} { + | - } fexpression-threed

CM160. fexpression-three}::= {expression-two} |
fexpression-three} [* | /7 } fexpression=two}

CM161. fexpression-two}::= {primitive-expression} | {prefix-expression} |
fparenthesized-expression} | fexpression-one}

CM162. {expression-one}::= {fprimitive-expreszion} | {parenthesized-expressiont}
+* {foxpression-two}

CH163. {fprefix-expression}::= {prefix-operator} fexpression-two}

CHM164. fprefix-cperator}is= + | = | =

CHM165. {parenthesized-expression}::= (fexpression})

CMi66. fprimitive-expression}::= §reference} | {fconstant} | {fisub}

CH167. freference}::= [flocator-qualifier}] {fbasic-reference} [farguments-list}]
CM168. flocator-qualifier}::= {reference} ->

CM16%9. farguments}::= ([fsubscript-commalist}l)

CM170. fbasic-reference}::= [{structure-gualification}] {fidentifier}

CM171. fstructure-gualification}::= {basic-reference} [farguments}].

CHM172. faubscript}::= fexpression} | #

CM173. funsubscripted-reference}: ;= [funsubscripted-reference} .] {fidentifier}
CHM174. feonstant}i:= farithmetic-constant} | fstring-constant}

CM175. fstring-constant}::= §{simple-string-constant} | freplicated-string-constant}

CM176. fsimple-string-constant}::= {simple-character-string-constanc} |
faimple-bit-string-constanty}

CH177. freplicated-string-constant}::= (finteger}) fzimple-string-constant}

L L)

The following are examples of two middle-level parses. As in the previous examples, each
is accompanied by an example of a construct that matches the given syntax.

T Ittt e E e R T R R P R NI RN RN R N R AR R E R AR RN N L R R R L R R R R R R L L
&
I
el
i
eh
e=fexpression} i
oo
I
ol
|
4 =
r T 1
| I i
el o el
| |
el = 1
| | | I
o= ey @l s ez
i I | | i
€3 * al el fprimitive-
| | | expression}
el fprimitive- fprimitive- i
| expressionk expressiond foonstant}
fparenthesized- | | |
expression} {reference} freference} farithmetic-
| constant}
f t ¥ {basic- fhasic-
| § | referencae} referencel
{ [H | I
| fidentifier} fidentifier}
e’
|
ol
i
a5
|
ol
|
et EEEE
| | |
el + el
|
el a2
| I
o2 fprimitive-
| expressiond
fprimitive-
expression} freference}
| I
frefarence} fhasic=-
referencel}
fhasic= |
reference} fidentifier}
|
fidentifier}
A sample concrete representatiom of the above structure.
(A+B) *C-D/3
| e ey Tt T T 11t Lttt Lt P TR R T AT LT R AL R AR R L L R R L LA L R LR L L L

Examplée 2.3. An Example of the Middle-level structure of an fexpression}.

Chapter 2: Concrete Syntax 05

(A EET R Y iiiii#t##ii#iiititiﬂli T I R R PR PR Y RN P PR R A AR R R N R R EL LA RS AT R R R R LT L
fdo-statement}
|
e o G oa e —
| 1 |
Do fdo-apeck H
|
.* | -
freference} = fspec-commalisty
I
fhasic-reference} fspecd
| |
fidentifier} |
r I]
| | |
e fto-by} fwhile-option}
| | |
I | P fer—
|] [I 1 1
e’ fto-option} WHILE (e)
I | |
. | |
- e 1 |
. I | I
- TO e |
| | |
frefercence} | |
I | |
- et \;"-1'
- I I
. g |
| . I
fidentifier} - i
|
{reference} |
ek
. |
. |
|
| |
fidentifier} |
|
|
i 1 1
1 I |
ab < as
| |
| |
freference} fapithmetic-
| conatant}
|
fidentifier}
bR AR AR R AR AR AR NN AR RN R R AR R R R R R e bRy

Example 2.4. An Example of the Middle-level Structure of a fdo-astatement}.

L1

2.5 The Low-level Syntax of PL/1
2.5.1 PL/I TEXT

CLi. fpli-text}ir= [fdelimiter-list}] (fdelimiter-pair-list})

CL2. fdelimiter-pair}::= {fron-delimiter} {delimiter-list}

CL3, fdelimiterf:i=+ | = | * | # | #¢ | > | < | =] >= | €= | => | =< | ~= | = |
Bl LIFLEIIFLCLYL - el 80 81 =2 B | fcomment} |
fincludead

CcLi. fnon=-delimiter}::= fidentifier} | farithmetic-constant} |
fzimple-bit-string-constant}y |
fsimple-character-string-constant} | fisub}

2.5.2 COMMENT

CLS. focommentd::= /% (fcomment-body-list}l {e+-list}
CLG . foomment-body}rs= (f*-1list}] {fcomment-character} | /

€LY . fcomment-charackery: 1= flettery | fdigict} | - | ¥ | =1+ =01%120 .1
SR TR B O T T 4 1 o I - S R |
faxtralingual-character}

Bote: Bules CLS5-7 effectively state that a comment begins with /¢ and ends
with #/ and that any characters may appear between these except the
consacutive pair /.

2.5.3 IDENTIFIER

cLg, fidentifier}::= fletter} | fidentifier} (fletter} | §digity | _}
CLY. fletter}::= h|B[C|D|E|T|G|H|I[J|RfL|H|Hjn|p|Q|R]S:T;urv|ﬂ1x|Y|1

cL10. fdigitp::= 0]1]2(3|u|5|6|7|8]9
2.5.4 ARITHMETIC CONSTANT

cLll. farithmetic-constant}::= freal-constant} | fimaginary-constant}
CL12. 4{real-constant}::= fdecimal-constant} | fbinary-constant}

cLl3. 4decimal-constant}::= {fdecimal-number} [{scale-type} fexponent}] [P]
cLlt. fdecimal-number}::= finteger} [.[fdigit-list})] | -fdigit-list}
cLi5. {finteger}::= fdigit-list}

CL16. {scale-type}i:=E | F

CL17. fexponent}p::= [+ | =] finteger}

CcL18. <{binary-constant}::= fbinary-number} [{scale-typa} fexponent}t) B [P)

CL19. 4binary-number}::= fbinary-digit-list} [.[{binary-digit-list}l] |
« fbinary-digit-list}

CL20. +fbinary-digit}::= 0 | 1

cL21. {imaginary-constant}::= freal-constant} I

Chapter 2: ~Concrete Syntax a7

2.5.5 STRING CONSTANTS AND PICTURES

CL22. 4{simple-bit-string-constant}::= *({string-or-picture-symbol-list}]® fradix-factor}
CL23. J{radix-factor}::= B|P1l|B2[B3|BA
CL24. <{simple-character-string-constant}::= '({fstring-or-picture-symbol-1ist}l"

CL25. f{string-or-picture-symbol}::= fletterd | fdigiey | - | B | ** | | * =]
A T S [TR IR SO - G B T R 4 O R R |

< | % | fextralingual-character}

-

I
Hotes: A {string-or-picture-symbol} may be two consecutive characters "' or any

character other than '

CL26. fextralingual-character}p::=
The category fextralingual-character} in rule CL2Z6 is implementation-defined, as
specified in Section 2.6.2.

2.5.6 IsSUR

CL27. fisub}::= finteger} sSOB

2.5.7 INCLODE

CL28. finclude}::= RINCLUDE {text-mamel;
CcL29. ftext-name}::=

The category ftext-name} in rule ©L29 is implementation-defined and such that if
it coptains 43}, then that {;} must be contained in a 4{simple-character-string-
constant} which is the only immediate subnode of {text-name}.

2.6 Character Sets

The ocharacter set used in the Fformation of PL/I text is a finite set of symbols,
comprising 57 language characters, and zero or more fextralingual-character}s which are
distinct from these and from each other and are implementation-defined.

fsymbol}:i= A | o
] | 516
I i]

-
-—

|
|
I

W o=agn
= o=l g
w4 o)

LR T =

This document does not specify internmal or external hardware representations of the
characters, nor does it define a collating segquence for them. These may, hoWever, be the
subject of other standards.

2.6.1 LANGUAGE CHARACTER SET

The mnames of the symbols in the language character set, together with the graphic
representatlons of them to be used in this document, are given in Sections 2.6-1.1 and

2.6.1.2.

48

2.6.1.1 Letters and Digits

Hame

Letter
Lettar
Letter
Latter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Laetter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter
Letter

HEKESSHEIOYWOZZIrALWHDOMEOoOE >

2.6.1.2 Special Characters

Hame

Fluas
Minus
haterisk
Slash
Greater than
Less than
Egqual

Hot

Amd

or
Percant

2.6.2 DATH CHARACTER SET

Data in stream-datasets

Gra)

HEXTCcCHMYORNoZERXURMSOmMBEOORE D

Graj

=g d Il AY S &1 *

Lo}

Hame Graphic

Digit 0 L]

Digit 1 1

Digit 2 2

bigit 3 3

Digie o L]

Digit 5 5

Digit & &

pigic 7 7

Digit 8 H

Digit 9 9
Hamae Graphiec
Period -
Comma ¥
Semicolon i
Colon H
Blank B
Single quote L4
Left parenthesis L
Right parenthesis H
Break A
Dollar §

from the language character set plus any other characters permitted by the

implementation®s fextralingual-character}s.

or in character-string-values may be represented by characters

particular

Chapter 2: Concréte Syntax 49

2.7 Abbreviations

Abbreviations are provided for certain keywords (see Section U.2.2) and builtin-function-
names. The abbreviations will be recognized as synonymous in every respect with the full
denotations, except that in the case of builtin-function-names the abbreviations hawve
separate declarations (explicit or contextual) and name Scopes. The abbreviations are
ghown to the right of the full denctations in the following list.

ALLOCATE ALLOC HOOVERF LOW HOOFL
ALLOCATION ALLOCH ROSTRINGRANGE HOSTRG
ROTOHATIC AUTO HOSTRINGSIZE HOSTRZ
BINMARY BIHN HOSUBSCRIPTRANGE HOSUBRG
CHARACTER CHAR HOUNDERFLOW HOUFL
COLUMH COL HOZERODIVIDE HOZDIV
COMPLEX CPLX OVERFLOW OFL
COHDITION COND PARAMETER PARM
CONTROLLED CTL PICTURE PIC
COHVERSION couv POINTER PTR
DECIMAL DEC POSITION Posg
DECLARE DCL PRECISION PREC
DEFAULT DFT PROCEDURE PROC
DEFINED DEF SEQUEHTIAL SEQL
DIMEHSION DIM STRIMGRANGE S5TRG
ENVIRONMENT ERV STRINGSIZE STRZ
EXTERNAL EXT SUBSCRIPTRANGE SUBRG
FIXEDOVERFLOW FOFL UMAL IGHED UHAL
INITIAL IHIT UHDERFLOW UFL
INTERNAL InT UNDEFINEDFILE UNDF
HOCONVERS ION HOCOHWY VARY IHNG VAR
HOFIXEDOVERFLOW HOFOFL ZERODIVIDE EDIV
HONVARY ING HONVAR

L1

Chapter 3: Abstract Syntax

3.0 Introduction

This chapter specifies the Abstract Syntax of PL/I, which is the syntax of programs in a
tree representation which is convenient for the definition of Semantics. The notation for
this syntax is defined in Chapter 1, tegether with some examples of its use. Further
examples are provided at the end of this chapter-

Many parts of the Abstract Syntax bear a strong resemblance to the corresponding parts of
the Concrete Syntax, and the relationship between them is intended to be, or become,
intuitively obvisus. In other parts, notably in the treatment of <declaration>s, the
Abstract Syntax exhibits a structuring and completeness of information which involves a
more complex transformation. The detailed description of the transformation between the
concrete and abstract forms of a program will be given in the next chapter.

There are also many instances of context-dependent constraints which have been inserted
in parentheses in the Abstract Syntax. These are attached o categories such as
<expression>, <target-reference>, <value-reference> and <declaration-designator>, where
these are required to fall within the Scope of appropriate <declaraticn>s so that they
have +the properties indicated. The Translator (Chapter 4) checks that these constraints
are satisfied.

3.1 Abstract Syntax Rules

3.1.1 PROGRAM

Al. <program>i1:= [<abstract-external-procedura-liast>]

A2. <abstract-external-procedure»: = (<declaration-list>] <procedure>
3.1.2 PROCEDURE

A3. <procedure>::= [<declaration-list>] (<procedure-list>] (<format-statement-list>]
[<condition-prefix-liat>] [<gecursive>]
<entry-or-executable-unit-list>

3.1.3 DECLARATION

.1 <declaration>::= <identifler> <scope> <declaration-type> {fdeclaraticn-designator}

AS. <acope>: 1= <éexternal> | <interpal>
Ab . ¢declaration-type>::= <variable> | <named-constant> | <builtin> | <condition>

Chapter 3: Abstract Syntax 51

3.1.-4

AT
AB.

Ad.

3’!1"5

Alld.

ALT.
AlB.

nlg.

A2l.
R22.

A23.

A25.
A2

A2T .
h2B.

52

VARIAELE

<variable>;:= Lstorage-type> <data-description>
<storage-type>::= <gtorage-class> | <defined> | <parameter>

<storage-class>::= <automatic> | <based> | <controlled> | <static>

<based>::= (<value-reference> (scalar & locator) | freference-designator}l
<defined>: = <base-ites> [<position>]

<bage-item>::= <variable-referencer {-~daefined & -based) |
freference-designator}

<position®::= <expression® (scalar & computational-type) | fexpression-designatord

DATA=DESCRIPTION

<data-description»::= <dimensioned-data-description> |
<gtructure~data-description> | <item-data-description>

<dimensioned-data-description>::= <element-data-description> <bound-pair-list>

<element-data-description>: ;= <structure-data-description> |
<item-data-dezcription>

<bound-pair>;::= <lower-bound?> <upper-bound> | <asterisk>
<lower-bound>; = <extent-expression>
<upper-bound>::= <extent-expression>

<extent-expression>::= (<expression> (scalar & computational-type) |
fexpression-designator} | <integer-value>} l<refer-option>]

<refer-option>: = <identifier-list> | <integer-value®
<gtructure-data-description>::= [(<identifier-list>] <member-descripticn-list>
<member-description>::#® <data-description>

<item-data-description>::= [<alignment>) <data-type> [<initial>]

Constraint: An <item-data-description> must not have an <initial> component with

an <iteration-factor>, or an <initial-element-list> with more than cne
<initial-element> immediate component, unless the <item-data-
description> 48 a (not necessarily immediate) componént —of a
£Aimensioned-data-descriprion>.

<initial>::= <initial-element-list> | finitial-designator}

<initial-element>;:= «<asterisk> | <parenthesized-expression> (scalar) |
<iteration-factor> <initial-element=1list>

<iteration-factor>::= <expression> (scalar & computational-type)

<alignment>::= <aliqned> | <unaligned:

3.1.6 DATA-TYPE

A29. <data-type>::= <{computational-type> | <non-computational-type>

A30. <computational-type>::= <arithmetic> | '<astring> | <pictured>

AJ1l. <non-computational-type>::= <area> | <entry> | <file> |
<format> [(<local>] | <label> [<locallX]l |
<locatorl

A32. <arithmetic>::= <mode> <base> <scaler <precision>
A33. <mode>ii= <real> | <complex>
A3b. <bage>::= <binmary> | <decimal>
R35. <scale>::= <fixed> | <float>
A36. <precisionr::= <number-of-digits> l<scale-factor>]
R37. <number-cf-digits>:i:= <integer>
Constraint: The <integer> must not be zero.
AJB. <scale=factor>::= <signed-integer>
A39. <string>»::= <string-type> <maximum-length> I<varying> | <nonvarying>]
R80. <string-typer::= <character> | <bie>
AHl. <maximum-lepngth>::= <extent-expression> | <asterisk>
A42. <picturedr::= <pictured-character> | <pictured-numeric>
A3, <locatorr::= <pointer> | <offset>
hdb. <offset>i:i= [<variable-reference> (scalar & area) | freference-designator}]
ALS. <entryr::= [<paramcter-descriptor-list>») [(<returns-descriptor>] [<options>]
A46. <parameter-descriptor>::= <data-description>
A47. <returns-descriptor>::= <data-description>
A48. <options>is=
This category is implementation-defined.
AY9. <area>::= <area-size>

A50. <area-gize>;:= <extent-expression> | <asterisk>

3.1.7 HAMED-CONSTANT

A51. <named-constant>::= [<entry> | cjlig} <file-description> | <format> | <label>}
[<boond-pair-1ist>]

n%2. <file-description>»:z:= [<stream>] [<record>] [(<input>] (<output>] (<update>]
{<sequential>] [<direct>] [<print>] [<keyed>] (<environment>]

A53. <environment>ri:=

This category is implementation-defined.

Chapter 3: Abstract Syntax 53

3.1.8 ENTRY-OR-EXECUTABLE-UHIT

ASA. <entry-or-executable-unit>::= <entry-point> | <executable-unit>

R55. <enktry-pointr::= [(<statement-namer] <entry-information>

AS6. <atatement-name>::= <identifier> [<gsigned-integer-list>]

AS57. <entry-information>::= (<parameter-name-list>] [<returns-descriptor>] [<options>]
ASE. <parameter-namer::= <identifier>

A59. <executable-unit>::= [<condition-prefix-list>] [<statemént-name-list>]

[<begin-block> g roup>
<allocate-statement> <nul l-stat ement>

cassignment-statement> <on-statement>

<call-statement> <open-statement>
<close-statement> <put-statement>
<delete-gtatement> <read-statement>
<end-statement> <return-statement>
<frea=-gstatement> <revert-statement>

<rewrite-statement>
<signal-statement>

<stop-statement:>
<write-statement>}

dgﬂ!t*ﬂtﬂtéﬁ&ht}
<goto-statement>
Lif=-gstatemant>
<locate-statement>

P e

3.1.9 BEGIN-BLOCE

AED. <begin-block>::= [<declaration-list>»] [<procedure-list>] (<format-statement-1ist>]
i<options>) <executable-unit-list>

3.1.10 GROUPS

Rbl. <group>::= {itaratiUE~group} | <non-iterative-group>

Rt2. <iterative-group>::= <controlled-group> | <while-only-group>
A63. <controlled-group>::= <do-spec> <executable-unit-list>

m6Y4. <do-speck:i= <target-reference> (scalar) <spec-list>

ABS. <specr::= <expression> (scalar) l<to-by> | <repeat-option>] [<while-option>]
B66. <to-by>::= <to-option> [<by-option>] | <by-option>

AE7. <repeat-option>::= <expression> (scalar)

AG6B. <by-option>::= <expression> (scalar & computational-type)
R69. <to-option>::= <expression> (scalar & computational-typel
AT0. <while-option>::= <expression> (scalar & computational-typel
ATl. <while-only-group>::= <while-option> <executable-unit-list>

AT2. <non-iterative-groupd::s <entry-or-executable-unit-list>

3.1.11 OH STATEMENT

AT3. <on-statement>::= <eondition-name-list> (<snap>] {<on=unit> | <system-action>}

ATH. <on-unitl>::= <procedure>

5S4

3.1.12 IF STATEMENT

A75. <if-statement>»:i:= <{test> <then-unit> [<else-unit>]
AT6. <testd::= {amxpression> (scalar & computational=-type)
A77. <then-unit>::= <executable-unit>

ATH. <elge-unit>::= <executable-unit>

3.1.13 FLOW OF CONTROL STATEMENTS

AT9. <call-statement>::= <subroutine-reference>

ABD. <goto-statement>::=® <value-reference> (zcalar & label)

ABl. <return-statement>::= [<expression>]

ABZ. <revert-gstatement>::s <condition-name-1ist>

A83. <signal-statement>::= <condition-name>

R8Y4. <condition-name>::= <computational-condition> | <named-io-condition> |

<programmer-named-condition> | <area-condition> |
<error-condition> | <finish-condition> | <storage-condition>

BES. <condition-prefix»:i;» <computational-condition> t<enabled> | <disabled>)

AB6. <computational-eondition>::= <conversion-condition> | <fixedoverflow-condition> |
<averflow-condition> | <aize-copdition> |
<gtringrange-condition> | <stringsize-condition> |

<zupacriptrange-condition» | <underflow-condition> |
<zerodivide-condition>

AET. <named-io-condition®::= <io-condition®> <value-reference> (scalar & fileld

MEB. <io=-copdition>::= <endfile-condition> | <endpage-condition> | <key-conditiom> |
<name-condition> | <record-condition» | <transmit-condition> |

<undefinedfile-condition>

ABY9. <programmer-named-condition>::= <declaration-designator> (condition)

3.1.14% STORAGE STATEMENTS

AS0. <assignment-statement>:r= <target-referénce-list> <expression®
A91. <allocate-statement>::= <allocation-list>

A92. <Lallocation>::= <declaration=designator> (based | controlled}
[<set-option>] [<in-opticn>l

A93. <get-option>:ii= <variable-reference> (scalar & leocator)

Constraint: The <data-description> immediate component of the <variable-reference>
mast not have <offset> without a <variable-reference> subnode.

A%4. <in-optionr:i= <variable-reference> (scalar & area)

A95. <free-statement>::= <{freeing=-list>

A96. <freeing>::= [(<locator-gualifier>] <declaraticn-designator> (based | controlled)
[<in-opticn>]

Chapter 3: MAbstract Syntax 55

3.1.15 I/0 STATEMENTS

n97. <open-statementr::= <single-opening-list>

A98. <single-opening»::= <file-option> [<tab-option>] [<title-option>]
[<linesize-option>] l<pagesize-option>] [<stream>] [<record:]
[<input>] [<gutput>] [<gpdate>] [<sequential»>] [<direct>]
[<print>] [(<keyed>] [<environment]

A%9. <file-option»::= <value-reference> (scalar & file)

A100. <tab-option»::= <expression-list> (scalar & computational-type)
A01l. <title-eption>::s <expression> (scalar & computational-typel
AL02. <linesize-option>::= <expression> (scalar & computational-type)
Al03. <pagesize-option>::= <expression>» (scalar & computational-type)
AlOG. <close-statement>::= <single-closing-list>

Al05. <single-closing>::= <file-option> (<environment>]

3.1.16 RECORD IS0 STATEMENTS

ALD6. <delete-statement>::= <file-option> (<key-option>]

A107. <locate-statement>::= <declaration-designator> (based) <file-options
(<pointer-set-option>) [(<keyfrom-option>]

AlOH. <pointer-set-option»::= <variable=-reference>» (scalar & pointer}

AlD9. <read-statement>::= <file-option>
[<into-option> | <pointer-set-option> | <ignore-option>}
[<key-option> | <keyto-option>]

A110. <into-option>:i= <variable-reference>

Alll. <ignore-option>»::= <exprassion> (acalar & computational-type)

All2. <rewrite-statement>::= <file-option>
[[<key-option>] <from-option>)

All3. <write-statement>z:= <file-option> <from-option>
[<keyErom-aption>)

3118. <from-option>;:= <variable-reference>
All5. <key-option>ri= Cexpression> (scalar & computational-typel
Allé. <keyfrom-option>::= <expression> (scalar & computational-typel

Al17. <keyto-ocption>::= <target-reference> (scalar & character)

3.1.17 STREAM 1/0 STATEMEHTS

Al18. <get-statement>::= <get-file> | <get-string>

All9. <get-file>::= <file-option> [<copy-option>] [<skip-option>] [<input-specification>]
Constraint: At least one of the last two options must be present.

A120. <skip-option>::= <expression> (scalar & computational-type)

A121. <copy-option>::= <value-reference> {scalar & file)

56

Al22. <get-stringr»i:= <expression> (sScalar & computational-typel
<input-specification> [<copy-option>]

Ai23. <put-statement>::= <puk-file> | <put-string>

K124, <puk-file>:;= <file-option> [<skip-option>] [(<line-option>] [<page>]
[<ourput-specification>]

constraint: At least one of the last four options must be present and the <skip-
option> must not be used together with a <line-option> or <page>.

A125. <line-option»::s <expressicn> (scalar & computational-typel
Al26. cput-string>::= <target-reference> (scalar & character} <output-specification>

AL27. <input-specification>::® <datp-directed-input> | <list-directed-input> |
<edit-directed-input>

hl28. <data-directed-input>::= [<data-target-list>]
Al29. <daka-target>::= <variable-reference> {(computational-typel

constraint: Tha Zvariable~reference> must not contain a <locator-gualifier> or a
<gubsecript-liat>, and must not contain a <by-name-parts-list>.

A130. <list-directed-input>::® <input-target-list>

Al3l. <input=-target>::= <target-reference> {(computational-typel |
<input-target-list> <do-spec>

A132. <edit-directed-inputd>::= <edit-input-pair-lise>
Al33. <edit-input-pair>::= <input-target-list> <tormat-specification-list>

Al3g. <output-specification>::= <data-directed-cutput> | <list-directed-output> |
Zadit-directed-output>

A135. <data-directed=-output>::= [<daca-source=list>]

A136. <data-source>::= <variable-reference> [computatiocnal-typel} |
“data-source-list> <do-spec>

Constraint: The <variable-reference> must not have a <locator-qualifier>.
A137. <list-directed-output>::;= <output-source-list>

A1l3H. <output-sourcer::= <expression> (computaticnal-typel |
<output-source=list> <do-specr

A139. <edit-directed-output>::= <edit-output-pair-list>

Alig. <edit-output-paick::= <output-sourcé-list> <format-specification-list>
Alhl. <format-specification>::= <format-item> | <format-iteration>

AliZ2. <format-iteration>::= <tormat=-iteration-factor> <format-specification-list>
Kluld. <format-iteration-factor>::s <expression> (scalarl

Alun, <format=ftem»::= <data-format> | <control-format> | <remote-format>

Alas. <data-format>::= <real-formaty> | <complex-format> | <picture-format> |
gtring-format>

AlGE. <real-format>::= <fixed-point-tormat> | <floating-point-format>

Al47. <fixed-point-format>::= [(<expression> (scalar & computaticnal-type) |
dinteger-values}
[{<expression> (acalar B computational-type) |
€integer-valuer}
[[<expression> (scalar & computational=type) |
£integer-value>}1]

Ehapté: 3: Abstract Syntax 57

Aiyd.

AL1HD.

Al50.
Al151-

A152.

R153.

A158.

R155.

AL56.
A157.
R156.
A153.
AlGOD.

Al1G1.

Ale2.

cfloating-point-format>:i= [(<expression> (scalar & computational-type) |
' <integer-value>}
[{<expresasion> (secalar & computational-typel) |
4{integer-valuek}
[{<expression> (scalar & computational-typel |
“integer-valuax}]]

<complex-format>::= {<real=format> | <picture-format>}
[<real-format> | <picture-format:]

Constraint: A <complex-format> must not contain <pictured-character>.
<picture-format>::= <pictured>
<string-format>::= <charactpr-format> | <bit-format>

<character-format>::= [(<expression> (scalar & computational-typel |
£integer=valuex})]

<bit-format>::= <radix=factor> ll{<expression> (scalar & computational-type) |
“integer-value>}]

<radix-facter>zs= 1 | 2 | 3 | 4

<control-format>: 1= <tab-format> | <line-format> | <space-format> | <skip-format> |
<column-format> | <pageX>

<tab-format>»::= {<expression> (scalar & computational-type) | <integer-valuex}
<line-format>::= ([<expression> (scalar & computational-type} | <integer-value>}
<space-format>: := {<expression> (scalar % computaticnal-type) | <integer-valued]
<skip-format>»::= {(<expression®> (scalar & computational-type) | <integer-values)
<oenlumn-formats::= [<expression> (scalar & computational-type) | <€integer-valuek}

<remote-format>::= <variable-reference> (scalar & format) |
<named-constant-reference> (scalar & format)

<format-gtatement>::= [<condition-prefix-list>]
<statement-name-list> <format-specification-list>

3.1.18 EXPRESSION

Al63.

ALGH.

Al65.

B166.
hle7.
AlGE.

38

<axpression®i:= [<value-reference> | <conStant> | <isub> |
<infix-expression> | <prefix-expression> |
<parenthesized-expression>) <data-descriptions

<infix-expression>::= <expression> <intix-operator> <expression> <data-descriptiom>

<infix-operator>::= <gr> | <and> | <gt> | <ge> | <eg> | <le> | <lt> | <ne> |
€gat> | <add> | cmubtract> | <multiply> | <divide» | <power>

<prefix-expression>»i:s <prefix-operator> <expression> <data-description>

<prefix-cperator>::= <plus> | <mpinus> | <pot>

<parenthesized-expression>;::i= <expression?> <data-description>

3.1.19% TYPES OF REFERENCE

Al69. <value-reference>::= [(<variable-reference> | <procedure-function-reference> |
<huiltin-function-reference?> | <nameéd-constant-referencex}
<data=-description>

A170. <variable-reference>::= (<locator-gqualifier>] <declaration-designator> {variable)

[<identifier-1list>] [(<subscript-list>]
[<by-name-parts-list>] <data-description>
ALT1. <by-name-parts>::= <identifier-list>
A172. <locator-gqualifier>::= <value-reference> (scalar & locator)

A73. <subscript>::= <expression> (scalar & computaticnal-typel | <asterisk> |
dipteger-valae»

Al74. <procedure-function-reference>::= <value-reference> [<argument-list>]
<data-descripticn>

AlTS. <arqument>::= <expression> [<dummy>] <data-description>

A176. <builtin-function-reference»:;= <builtin-function> [<argument-list>]
<data-description>

A177. <builtin-function>::= <abg-bif> 1 (ggntx—@;!b | <onkey=bif> I
<acos-bif> | <erf-bif> | <onlec-bif> I
cadd=-bif> | <ecfo=pDif> | <onsource-bif>
<addr-bif> | <every-bif> | <pagenc-bit>
cafter-bif> | <exp-bif> | <pointer-bif>
<allocation-bif> | <fixed-bif> | <precision=bifx>
casin-bif> | <float-bif> | <pred-bif> |
<atan-bil> | <floor-bit> | <real-bif>
<atand-bif> | <hbound-bif> | <reverse-bif>
<atanh=-bif> i < ~bif> | <round-pif>
<before-bif> I =bif> | <gign-pif>
<binacy-bif> | { gxdh; > | <sin-bLif>
<bit=bif> i -.’.,],num:d- bif> | <sind-nDif>
<bool-bif> | < th-bBif> | <sinh=bif>
<ceil-Dif> I <:;u eng-bif> | <some-bif>
<character-bif> | <log=bif> | <sqrt-bif>
<collate-bif> | <leoglo-bif> | <string=bif>
“C gggle:—bir} | <log?- b1£> | <substr-bif:
<gonfjg-bil> | <low=i | <subtract-bif> |
m:il.;i? | *‘-mx-_hiit | <sum-bif> I
<cog-bif> | <min=bif> | <tan-bif> |
ﬂgggd—nulh | <mod-bif> | <tand-bif> I
<cosh=b | <multiply-bif> | <tanh-bif> i
:ggta—u4r> | <null-bif> | <time-bif> [
<decat-DiE> | <offset-bif> | <tramnslate-bif>]
<decimal-bif> | <onchar-bif> | <trunc-bit> |
<dimension-bif> | <oncoda-bif> | <unspac=bif> 1
<divide-bif> | <enfield-bif> | <walid-bif> [
<dot-bif> | <onfile-bif> | <werify-bif>

A178. <named-constant-reference>::= <declaration-designator> [named-constant)
[<subseript-list>] <data-description>

A179. <target-reference>;:= [<variable-reference> | <pseudo=variable-referancex}
<data-description>

AlEd. <pseudo-variable-referencer::= <pseudo-variable> [<argument=1list>]
<data-description>

A181. <pmendo-variable>::= <imag-pw> | <onchar-py> | <onsource-pv:> | <pagenc-pv> |
<real-pu> | <string-pv> | <substr-pv> | <unspec-pve

Al82. <subrouotine-reference>::= <value-reference> [<argument-list>]

Chapter 3: Abstract Syntax 59

AlE3. <constant>:g= «<basic-value» <data-type>

Al1884. <isub®>::= <integer>

3.1.21 TYFES OF VALUE

A185. <identifier>::=
A186. <signed-integer>::= { + | - } <integer>
Al1BT. <integer>i:=
The two categories, Al85 and Al87, are defined as {symbol-list}s corresponding to

the segquences of characters in an fidentifier} or finteger} respectively. See rules
CLE and €L15 in Chapter 2.

3.1.22 TYPES OF PICTURE

AlB8. <pictured-character’;::= <character-plcture-element-list>
Al89. <character-picture-element>::= R | X | 9
Al90. <pictured-numeric>::= <numeric-picture-gpecification> <arithmetic>

Al9l. <numeric-picture-gpecification>::= <fixed-point-picture> [<picture-scale-factor>] |
<floating=-point-picture>

Al92. <fixed-point-picture>::= <numeric-picture-element=-list>

A193. <floating-point-picture>:i= <picture-mantissa> <picture-exponentl>
Al94. <picture-mantissa>::= <pumeric-picture-element-list>

h195. <plcture-exponentr;i:= <numeric-picture-element-list>

ML96. <picture-scale-factor>::= <signed-integer>

A197. <numeric-picture-element>::= E | I | K | R | 8 | T | ¥V | Y| 2] §$ |92+~
¢ | <insertion-character> | <credit> | <debit>

A198. <insertion-character>»i:= B | 4 | . | »
A199. <credit>i:= CR
AZ200. <debit>r:= DB

S]]

IR R L L T R R T T
The abstract text corresponding to the concrete representation
GO TO P -> 5.LV;
is as follows:
<goto-statement>
<value-reference

<variable-reference>
1

fm—————————= 1 -

| I |
<locator-gualifier> <declaration~-designator> <ldeptifier=1ige>

| (for 5)
<value-reference> |

<variable-reference> <ldentifier>
[|
<declaration-designator> LV
{for ™

Rote: <value-reference> and <variable-reference?> nodes ismediacely contain a
<data-description> (not shown) .
The abstract text corresponding to the copncrete-representation
DECLARE ¥ EXTERNAL STATIC ALIGHNED COMPLEX DECIMAL FLOATI153);

is as follows:

<declaration>
e R i
<identifier> <scope> <declaration-type
|
z <external> <variable>
|
[i i 1
| 1
cstorage-type> <data-description>
| |
<storage-clasg> <item-data-description>
I
<atatic> 1
R e e TS T |
I |
<alignment> <data=-type>
<a e > <computational-type>
<arithmetic>
|
T =T
I |
cmoda <base> <acalel <precision>
| | | |
<complex> <decimal> <float> <number-of-digits>
I
<integer>
I
13

TR s R A R L R R R R e L e e e S L A L Ll LRt

Example 3.1. Examples of Abstract Text.

Chapter 3: Abstract Syntax

[TrL]

61

-l

& RN

Chapter 4: The Translator

4.0 Introduction

This cChapter defines an operation which translates a f§symbol-list} into an <abstract-
external-procedure>. All the <abstract-external-procedure>s that are part of a PL/I
<program> are then combined. The <program> i% used by the PL/I machine to determine the

course of execution.

4.1 Translate

A concrete-hlock is a {begin-block}, {procedure}, or fconcreteé-external-procedure}.

x is a concrete=block-component of ¥y if y is a concrete-block, and y contains x but does
not contain any other concreéte-block which also contains . In this case Yy
concrete-block-contains x-.

An abstract-block is a <begin-block’», <procedurer, orf <abstract-external-procedures.

x is an abstract-block-component of y if y is an abstract-bDlock, and y contains x bat
does not contain any other abstract-block which also contains x. In this case ¥
abstract-block-containg x.

The informal term block-component 4§s used for either concrete-block-component or

abstract-block-component, and block-contains is used for eithér concrete-block-contains
or abstract-block-contains where the context makes it obvious which formal term is

reguired.

A {declaration}, fdescription?}, fdefault-attributes} or {generic-description}, d
declaration-contains a node n, if 4 contains n and d does not contain a fdescription} or
fgeneric-description} that also contains n.

A node, n, is a declaration-component of a node, d, if d declaration-contains n.

Operation: translatelt)

where t is a {symbol-list}.
result: an <abstract-external-procedure>.

step 1. Perform parselt,{procadure}) to obtain a {procedure}.cep. Append a {concrete-
external-procedurel}: cep; to the €translation-stated.

Step 2. Perform complete-concréte-procedure.

gtep 3. Let aep be an <abstract-external-procedure>.

step 4. Por each {declaratien}.d which is a block-component of the fconcrete-external-
procedure} perform create-declaration(d) +to obtain a <declaration>,ad, and
append ad to the <declaration-list> in aep.

Step 5. For ecach <declaration>,d which is a block-component ©f aep and which contains at
least one {expression-designator} or freference-designator}, perform replace-
concrete-designators (d).

Step 6. Let p be the 4{procedure} immediate component of the fconcrete-external-
procedure}. Perform create-procedure(p) to cbtain a <procedure>,ap, and attach

ap to aep.
Step 7. Delete the fconcrete-external-procedure}.
Step B. Perform, validate-procedure{aspl.

Staep 9. Return aep.

Chapter 4: The Translator &3

4.2 Forming the Concrete Procedure

The parse operation is applied to a §symbol-list} to construct a complete tree with
respect to the Concrete Syntax for a specified category-name. If this category-name is
defined in the high-level syntax or the middle-level syntax then some additional mapping
at the interfaces between these syntaxes is reguired.

If parse is called for a {procedure}, it calls itself recursively to build trees
consistent with the low-level, middle-level, and high-level syntaxes, in that order.
Operations parselsl,n)
where 51 is a fsymbol-list},
n is a tree with a single node, whose type is a non-terminal category
in the Concrete Syntax.
result: a complete tree with respect to the Concrete Syntax for n.

Case 1. The type of n is a non-terminal of the high-level syntax.

Parform parse(sl,{sentence-liat}) to obtain a f§sentence-list},snl. Perform
high=level-parseisnl,n) to obtain nt.

Return nt.
cage 2. The type of n is a non-terminal of the middle-lewvel ayntax.

Perform parselsl,fpli-text}) to obtain a fpli-text}.pt. Poerform middle-level-
parse{pt,n) to obtain nkt.

Return nt.
Case 3. The type of n is a non-terminal of the low-level syntax.
Perform low-level-parse(sl,n) to cbtain nt.

Return nt.

§.2.1 LOW-LEVEL-PARSE

Cperation: low-level-parse(sl,n}

where sl is a {symbol-list},
n iz a tree with a single node, whose type is a non-terminal category-
name at the low-level gyntax.

resule: a complete tree with respect to the low-level syntax for n.

Step 1. There must exist one and only one tree, nt, which is a complete tree with
respect to the low-level syntax for n, such that the following conditions are
true:

(1) the concrete-repréesentatien of nt 4is exactly the same as the concrete=
representation of sl, and

(2) every occurrence of {/*} or {*/} in the concrete-representation of nt most
be such that the ¢} and §*} are nodes of a J{comment} category or are
contained in a fnon-delimiter}, and

{3) of all possible trees asatisfying conditions (1) and (2), nt i= that one
containing the least number of §delimiter-pair}s and fdelimiter}s.

Step 2. Return nt.

[T}

0.2.2 MIDDLE-LEVEL-PARSE

A keyword is a category-name specified in the middle-level syntax as a sequence of
uppercase letters.

fdelimiter-or-non-delimiter}::= {delimiter} | {non-delimitecy

Operationi middle-level-parse (pt.cn)

Step 1.

Step 2.

Btep

Btap

Step

Step

Step

Step 3.

Step B.

Step 5.

cCaze

where pt is a fpli-text},
cn iz a tree with a single node, whose type is a non-terminal of the
middle-level syntax.

result: a complete tree wWith respect to the syntax composed of all the
production-rules occurring in the middle-level syntax and in tha
low-level syntax with the root-node cn.

Let t be a {fdelimiter-or-non-delimiter-list} which contains a copy of the
fdelimiter} and {non-delimiter} components of pt in the same order.

Repeat Steps 2.1 through 2.5 as long as there is a fdelimiter-or-non-
delimitery,d: fdelimiter}: finclude};; in t.

2:1. Let 5 be faymbol-listy: faymboll: B.

2.2. Append to s any {symbol}s cobtained in an implementation-defined way from the
ftext-name} in d. Append {symbol}: M; to 8.

2.3. Pecrform low-level-parse(s,{fpli-text}} to obtain a {pli-text},tx.

2-4. Let t1 be a fdelimiter-or-non-delimiter-list} which contains a copy of the
fdelimiter} and {non-delimiter} components of tx in the same order.

2.5. Replace 4 by the immediate components of tl in the same order.

pelete from € any {delimiter} containing a ¥ or a {comment}. This must not
cauge t to be deleted.

Let ntliil, 4#1l,...,n, be the ordered list of nodes which are the immediate
components of the fdelimiter}s and fnon-delimiter}s in t.

There must exist one and only one tree, meg, which is a complete tree with
respect to the middle-level syntax for the root-node ecn amd satisfies any
additional comstraints specified with that syntax, and which is such that mt
containse m terminal nodes wmmt(§), Jj=l,-...,m &and there 1is a one-to-one
correspondence between the ntlil, i=1l,....,n and nmtljl, 3=li+++.m taken in left-
to-right order as specified by Case 5.1 through Case 5.5 execept fL[or the
following instance:

Iif mmtl§] is an fenvircnment-specification} or an {foptions-specification} then
it eorresponds to k nodes nti{l), 1=i,...,i+tk=1 such that

(1) no ntll), 1=i,;....i*k-1 is a £:;};:

12} all mnodes ntlll, 1=i,-...,i+k=1 which are either a f{} or a {1} most be
matched in the normal way for balancing parentheses.

5.1. nmt(j] is a keyword.

ntli) most be an {identifier} containing the same terminals as the
characters appearing either in the denotation of mmtljl or in the
abbreviation for nmtl(jl. (See Section 2.7.)

Case 5.2. nmtlj] is a non-bracketed category-name other than a keyword.

nmtlj] and ntli) must be equal.

Chapter 4: The Translator 65

Case 5.3. nmtljl is a fradix-factor}.

ntli)l must he an fidentifier} such that the ordered sequence, seqg, of its
terminals can be a denctation of an immediate component of a {radix-factor}.

Replace nmtljl by a fradix-factor}: seq.
Case 5.8. pmt(j) is an {fimaglinary-constant}, a {real-constant}, or an {integer}.
ntli]l] muost be an {farithmetic-constant} containing just a node, le, with the
same type as nmtljl. (There may be intermediate nodes between ntli] and loc.
but no side branches.)
Replace nmt(j] by the tree with root-node le.
Case 5.5. nmt(j] is one of the following:
fidentifier}
farithmetic-constant}
fsimple-bit-string-constant}
{simple-character-string-constant}
fisub}
fletterd
ntlil] and nmt(j)] must be of the same type.

Replace nmtlj]l by nclil.

Step 6. Each {description} and {generic-description} must contain a subtree.

Step 7. Return mt.

4.2

Ope

.3 HIGH-LEVEL-PARSE

ration: high-level-parse({sl,cn)
where =1 is a {sentence-list},
en 43 a tree with a single node, whose type is 2 non-terminal of the
high=level syntax.

result: a complete tree with respect to the Concréte Syntax f£or on.

Step 1. For each {single-statement},s, component of 31, in left-to-right order perform

&6

steps 1.1 through 1.3.

step 1.1. If 5 contains a {begin-statement}, {do-statement}., or {procedure-statémentd.,
then attach funmatched} to s.

Step 1.2. If s contains an fend-statement} not containing an {identifier} then remove
the rightmost preceding funmatchedy.

Step 1.3. If & contains an §and-statement} containing an {identifier},id then perform
Steps 1.3.1 and 1.3.2.

Step 1.3.1. Let rpu be the rightmost preceding {single-statement} containing
funmatched} such that rpu contains also & tree of the form {statement-
name},sn: Fidentifier},idsn; and idsn is equal to id. s&n must not
contain a fsigned-integer-commalist}. rpu must exist.

Step 1.3.2. Lot k be the number of funmatched} components of s1 following rpu and
preceding s. Let es be a

{sentencel}:
fsingle-statement}:
fend=gstatement}:
ENDE; -

Attach k copies of €35 to sl immediately preceding s. Delete the k+l
instances of funmatched} which immediately precede s.

Btep 2.

Step 3.

Step 4.

Let ntiils; i=il;::=+n be the ordered sequence of components of 81 which are such
that for each component, o, the following conditions are satisfied:

(1} the category=-name of ¢ is terminal with respect to the middle-level syntax,
and

(2) & 4is not contained in any component of sl whose category-name is terminal
with respect to the middle-level syntax.

There must exist one and only one tree, ht, with root-node of the same type as
cn such that the following conditions are true:

{1} ht is a complete tree with respect to the syntax composed of all the
prodoction-rules occurring in the nigh-level syntax, and in the middle-level
syntax, and

(2) ht econtains n terminal nodes htnljl, J=1,...,n, such that for every i.
i=1,;.:+¢n; the type of the node ntlil is the same as the type of heniil.

Por each i, i=1,....n, replace htniil by ntl(il. Returm ht.

Chapter 4: The Translator 67

4.3 Completion of the Concrete Procedure

The {concrete-external-procedure} is "completed” in the sense that all declarationg are
constructed or completed.

operations complete-concrete-procedure

Step 1. Perform reorganiza.

Step 2. Perform construct-explicit-declarations.
Step 3. Perform complete-styructure-declarations.
Btep #. Perform construct-contextual-declarations.
Step 5. Perform construct-implicit-declarations.
Step 6. Perform complete-declarations.

Step 7. Perform validate-concrete-declarations.

4.3.1 REORGANIZE

The fconcrete-external-procedure} is reorganized in various ways to simplify and complete
it.

Operation: reorganize

Step 1. Perform complete-options.

Step 2. Pperform modify-statement-names.

Step 3. Perform complete-attribute-implications.

Step 4. For each fdeclaration-commalist},ds immediate component of a {declare-statement}
component of the {concrete-external-procedure} perform defactor-declarations (ds)
to obtain a {declaration-commalist),dds and replace ds by dds.

B.3.1-1 =¥

Various modifications are made to {fput-statement}s, {fget-statement}s, and {format-
statement}s to complete their options. TheSe are performed before the application of any
fdefault-statement}s.

Operation: ete= ohs

Step 1. For each {§get-statement},qs component of the {concrece-external-procedure}
perform Steps 1.1 and 1.2.

Step 1.1. If gs does not contain a 4§file-option} or a {fget-string}. then perform
parse("FILE(SYSIN) ", ffile-option}) to obtain a §file-option},.fo, and attach
fo to gs.

Step 1.2. If gs contains a fcopy-option}.co which does not ¢ontain a freference}, then
perform parse(®COPY{SYSFRINT)",{copy-option}) to obtain a {copy-option}.nco,
and replace ¢o by nco.

Step 2. For each {put-statement},ps component of the {concrete-external-procedure}, if
ps does not contain a 4{file-option} or a fput-string} then perform
parse("FILE(SYSPRINT) " ,ffile-option}) to obtalin a ffile-option}.fo; and attach
fo to ps.

Step 3. For each ftab-format},tf component of the feoncrete-external-procedure} where tf
does not contain an feéxpression} pecform parse ("TAB(1l) " ,ftab-format}) to obtain
a ftab-format},ntf, and replace tf by ntf.

Step 4. For each {skip-option},sk component of the {concrete-external-procedure}, if sk
does not contain an fexpression} then perform parse("SRIP(1)".{skip-option}) to
obtain nsk, and replace sk by nsk.

Step 5. For each f{skip-format},sf component of the {concrete-external-procedure}, if sf
does not contain an fexpression} then perform parse(“"SEIP(L1)*.fskip-format}) o
obtain nstf, and replace sf by nsf.

Step 6. PFor each {radiz-factor},rf component of the {ooncrote-external-procedure)}, if rf
contains only B then replace rf by a {radix-factor}: Bl.

4.3.1.2 Modify-statement-names

The <statement-name} components of a 4{declare-statement} or {default-statement} are
removad and attached to fnull-statement}s. (It i3 not possible For control to branch to a
declaration or a defauolt during execation.) Hultiple occurrences of {statement-name}s in
the {prefix-list)} component of a 4procedure}, or in 4{unit}s which contain {fentry-
statement}s, are also Simplified.

Operation: modify-statement-names

Step 1. For each funit},u immediate component of a funit-1list},ul component of the
fconcrete-external-procedure}, where u immediately contains a {statement-name-
list},snl and a {fdeclare-statement} or fdefault-statement}, perform Steps 1.1
and 1.2.

Step 1.1. Let pl be a {prefix-list}. For each {statement-name},sn of snl perform Step
1.1.1.

Step 1.1.1. Append fprefixp: snc; to pl, where snc is a copy of sn.
Step 1.2. Let un be a

funit}:
fexecatable-unit}:
1

P
fexecutable-single-statement):
fnull-statement}:
1%

Attach un to ul immediately preceding u. Delete snl.

Step 2. For each 9{procedure}.po, wWhere po is a component of the {concrete-extoernal-
procedore} and pc immediately contains a {fprefix-list}.pf, perform Steps 2.1 and
2.2

Step 2.1. pf must contain at least one {statement-name}. For each {statement-namel,sn
component of pf, after the leftmost one, perform Steps 2.1.1 through 2.1.3.

Step 2.1.1. Let snc be a copy of sn. Let unl be a

funith:
fstatement-name-list}:
BNC§
fentry-statement},as:
EHTRY

+it-
Step 2.1.2. If the {procedure-statement} dimmediate component of po contains an

fentry-information}.ei then let eic pe a copy of ei, delece any
RECURSIVE subnode of eic, and attach eic to es.

Step 2.1.3. Attach unl €0 poc as the first component of the funit-list} immediate
component of po.

Step 2.2. Delete pvery {statement-name} except the first from pE.
BEtep 3. Por weach #funit},u component of the {fcooncrete-external-procedure}, where u

immediately contains a {statement-name-list},snl and an fentry-statement},es and
snl contains more than one fstatement-name}, pecform Steps 3.1 and 3.2.

Chapter 4: The Translator 69

Step 3.1. For each {statement-name},sn component of snl after the first, perform Steps
3.1.1 and 3.1.32.

Step 3.1:.1. Let snc be a copy of sn. Let esc be & copy of es. Let unl be a

funit}:
fstatement-name-1listp:
&0C;
BSC.

Step 3.1.2. Attach unl to the funit-list} which immediately containg u 2o that unl
immediately precedes u.

Step 3.2. Delete every {statement-pame} from snl except thé Lirst.

4.3.1.3 complete-attribute-implications

The {dimension-attribute}, 4{precision}, and the {data-attribute}: FIXED; can be implied
without the use of the keywords DIMENSION, PRECISION, and FIXED. These implicationa are
replaced by explicit declarations of these attributes.

Operation: complete-attribute-implications

Step 1. For each fdimension-suffix},ds component of the fooncrete-external-procedured
such that ds is not a component of a {dimension-attribute} append a

fdata-attribute}:
fdimension-attribute}:
DIMENSION
daecg

where dsc is a copy of ds, to the node immediately containing ds, and delete ds.

Step 2. For each fgeneric-description},gda component of the {concrete-external-
procedura}, if gda immediately contains an fasterisk-bounds)},ab then append a
fgeneric-data-attribute}j: DIMENSION ab; to the {generic-data-attribute-listy
component of gda and delete ab.

Step 3. For each fattribute}: fdata-attribute},atr; or fdata-attribute},atr which is an
immediate component of & list, 1, component of the {concrete-external-
procedure}, if atr simply contains a fprecision},p but not PRECISION then append
to 1l a

fdata-attribute}:
PRECISEION
pl;
where pl is a copy of p. and délete p.
Step 4. For each {data-attribute-list},al or fattribute-list},al of the {concrete-
external-procedure}, if al simply contains a f{data-attribote} with fprecisionk.p
and p containg a fscale-factor} then append to al a

fdata-attribute}:
FIXED.

10

§.3.1.4 factor-declarations

The syntax o0f J{declare-statement} allows {identifier}s to be Factored together to give
them the same structuring or attributes. This factoring is uncavelled %to provide a
single fdeclaration} for each fidentifier}.

Cperation: defactor-declarations(dch

where dc is a fdeclaration-commalist}.
result: a fdeclaration-commalist}.
Step 1. Lat ds be a copy of de.
Step 2. For each fdeclaration},d immediate component of ds, if d immediately contains a
fdeclaration-commalist},decl then perform defactor-declarations{del) to obtain a
fdeclaration-commalist}.dcll and replace dcl by dell.

Step 3. For each fdeclaration}.d immediate component of ds, if d immediately contains a
fdeclaration-commalist},dl then perform Steps 3.1 through 3. 3.

Step 3.1. If d immediately contains a {level}.lv then there must nokt be a flevel}
declaration-contained in any of the fdeclaration}s immediately contained in
d1l, and attach a copy of lv to each fdeclaration} immediate component of dl.

step 3.2. If 4 immediately contains an fattribute-list},al then append a copy of sach
fattribute} of al to each {fdeclaration} immediate component of di.

Step 3.3. Replace d by the immediate components of dl in the same order.

Step 4. HReturm ds.

§.3.2 CONSTRUCT-EXPLICIT-DECLARATIONS

The occurrence of an fidentifier} in the fconcrete-external=-procedure} as an immediate
component of a fdeclaration} explicitly specifies that fidentifier} as the name of some
data item. Other contexts may also constitute explicit declarations of an {identifiery,
in which case a fdeclaration} is created for it.

fdeclared-statement=-names}r:= [{name-list}] [(fprocedure} | fbegin-block}}

fname}::= f{statement-name} [fentry-informationk]

Operation: copstruct=explicit-declarations

sStep 1. For each 4{procedure},p contained in the fconcrete-external-procedure} perform
declare-parameters(p).

Skep 2. Let p be the oprocedure} immediate component of the {concrete-external-
procedure}. Perform declare-statement-names(p) to obtain a {declared-statement-

names},dsn. Replace p by the fprocedure} of dsn. The {fname-list},.nl of dsn
must not contain a fsigned-integer-commalist}.

Step 3. Perform constroct-statement-name-declarations(nl,eattr) where eattr is an
fattribute}:
fdata-attribute}:
ENTRY ()} ;;

to obtain a 4unit} containing a fdeclaration-commalist},dc. Roplace all
oeccurrences of fattribute}: INRTERNAL; in dc by fattributed: EXTERMAL.

Step 4. Attach do to the {concrete-gexternal-procedurel}.

Chapter 4: The Translator 71

§aodada Declare= ers

Each fidentifier} occurring in a {parameter-name-commalist} represents an explicic
declaration of a parameter. Unless it is already declared, a declaration 4is introduced
for it. If it has been declared erronecusly then a conflict will occour when this
declaration is being transformed to its abstract equivalent.

Operation: declare-parameters (p)

where p is a f{procedure}.
Step 1. For each f{parameter-name-commalistp.pl block-component of p perform Step 1.1.

Step l.1. pl must be soch that no two fidentifier} components of pl are egual. For
each fidentifier},id component of pl perform Steps 1.1.1 through 1.1.3.

Step 1.1.1. Perform find-applicable-declaration{id) to obtain 4.
Step 1.1.2. If 4 is <absent?>, or d is not a concrete-block-component of p, or d is a
eonerete-block-compopent of p but declaration-containg a 4{level} whose
value is not 1, then let 4 be a
funit}:
fdeclare-statement}:
DECLARE
{declaration-commalist}:
fdeclaration}.d:
id;;
fikis
and append d to the funit-list} of p.

Step 1.1.3. If 4 does not contain fattribute}: PARAMETER; then attach fattribute}:
PARAMETER; to d.

B.3.2.% Declare-statement-names

A {statement-name} may occur as a component of a fonit} which contains an {entey-
statement}, {format-statement}. or some other {executable-unit}, or as a component of a
{procedure}. These contexts are used to determine the fattribute}s to be attached to the
explicit declarations for the {identifier} of the {statement-pamel}.

Operations declare-statement=-names (p)

where p is a fprocedure} or fbegin-block}.
result: a {fdeclared-statement-names}k.

Step 1. Let pc be a copy of p and let lnl, pnl, Enl, and enl each be a {fname-list} with
no components.

Scep 2. For each {statement-name},sn concrete-block-component of pe perform Step 2.1.
Step 2.1. One of the following Cases must apply:
Cage 2.1.1. sn is simply contained in an {fexecutable-unit),eu.
Append sn to lnl.

Case 2.1.2. sn is simply contained im a funit} that has a fformat-statement}
immediate component.

Append 8n to fnl.
Case 2.1.3. sn is contained either in a fprefix-list} immediate component of pc

where pc has {procedure-statement}.ep, or in a qunit} with an f{entry-
statement},ep as an immediate component.

72

Cage 2.1.3.1. ep has an {fentry-information}.ei.

If ep is an {entry-statement}, then ei moust not contaln
RECURSIVE. Append fname}: sn ei; to enl.

Cagse 2.1.3.2. e&p has no fentry-information}.
Append {fname}: sn; to enl.

Step 3. For each fprocedure} or fbegin-block}; pn concrete-block-component of pc perform
Step 3.1.

Step 3.1. Perform daclara-statement=-namaspnd tex obtain a fﬂE-L‘ lared=gtatement=
names}.dsn. Append the elements of the fname-list} of dsn to pnl. Replaca
pn by the J{procedoure} or fbegin-bliock} of dsn. IF pn is5 a {fbegin-block},
then the {name-list} component of dsn must De empty.

Step . IE Inl is not empiy then perform construct-statement-name-
declarations(linl,lattr), where lattr is an
fateribute}:
fdata-attribuce}:
LABEL; ;

to obtain a funit},d, and append d to the funit=list} of pe.

step 5. If fni is not empty then perform construct-statement-name-
declarations(fnl,fatkr), where fattr is an
fattribute}:
fdata-attribute}:
FORMAT ;3

to obtain a funit},d and append d to the funit-list} of pe.

Step 6. If pnl is not empLy then perform construct-gtatement -name-
declarationsipnl,pattr), where pattr is an
fattribute}:
fdata-attribute}:
ENTRY) ;;

to obtain a funitk,d and append 4 to the funit-list} of pe.

Step 7. Return the fdeclared-statement-namesp consisting of enl and pe.

§.3.2.3 congtruct-statement-name-declarations

This operation takes a f{name-list} containing fstatement-name}s and possibly fentry-
information}s and construcks a {fdeclare-statement} for them. The type of the {statement-
namejs is given by a supplied fattribute}. Any bype of {statement-named may contain cne
or more {integeris, signifying that it is one element of an array of {statement-name}s.
The explicit declaration for this array is constructed with a fdimension-actriputed

componaént.

Operation: conztruct-statement-name=declarationsinl ,att)

where nl is a fname-list},
att iz an fattributea}.

result: a funit}.
Step 1. Let nlc be a copy of the {name-list},nl. Let un be a
funith:
{declare-statement}:

DECLARE
fdeclaration-commalist}.dcl

it

Chapter 4: The Translator T3

Step 2. While nlc containg any element, perform Stepa 2.1 through 2.7.

Step 2.1. Let id be the {identifier} component of the first element of nlec.

Step 2.2. Let

tnl be a 4{name-list} containing a copy of all elements of nlc whose

fstatement-name} immediately contains an fidentifier} equal to id.

Step 2.3. Let d be a

Step 2.4. If
amd

fdeclarationd:
id

fattribute-list};al:
fattribotel}:
IHTERHAL;
fattributel:
CONSTANT
att.

tnl contains more than one eléement ©r if tnl contéins only one element
this element has & fsigned-integer-commalist}, then perform Steps 2.8.1

I‘.hrtiug'h 2.l.bs

Step 2.4.1.

Step 2.4.2.

Step 2.4.3.

Btep 2.0.4.

Step 2.4.5.

StEp 2:8.6.

Let m be the number of elements of tnl. Each element of tnl must
contain a fsigned-integer-commalist} with the same number of elements,
n. tnl must be such that no two {signed-integer-commalist} components of
tnl represent the same ordered sequence of numerical values.

Let =sifi,j] be the F'th {signed-integer} of the <{signed-integer-
commalist}y of the i'th element of tnl.

Let wubik] and lblkl, k=1,...,n be, respectively, the largest and least
value of ﬂillfkl '] |si[m'k] -

Let bpl be the fbound-pair-list} containing n fbound-pair} elements soch
that the j*th element is a

tbound-paic}:
flower-bound} :
al;
f:¥
fupper-bound} :
eZ;;

where e1 and e2 are {fextent-expression}s representing 1blj] and ubliql
respectively.

Let bpcl be the fbound-pair-commalist) produced by inSerting commas as
appropriate in bpl.

Append an
fattribute}:
fdata-attribute}:
fdimension-attribute}:
DIMENSION
fdimension-suffix}:
I
bpel
Yroan

to al, the fattribute-list} of d.

Step 2.5. If al contains ENTRY then perform Steps 2.5.1 through 2.5.2.

Step 2.5.1.

If any J{entry-information} of +#nl contains a freturns-descriptor},rd
then perform Steps 2.5.1.1 and 2.5.1.2.

Step 2.5.1.1. Each element of tnl must contain a freturns-descriptory.

Th

Hota: a check for consistency is made in copy-descriptors.

Step 2.5.1.2. Append to al an
fattribute}:
{data-attribuke}:
rd.

Step 2.5.2. If any fentry-information} of tnl contains an foptions},op then perform
El:aps 11.54.2-1 and 2.5.2.2.

Step 2.5.2.1. Each element of tnl must contain an foptions}.
Hote: a check fFor consistency is made in copy-descriptors.
Step 2.5.2.2. Append to al an

fattribute}:
op -

grep 2.6. If del has a subcomponent, append §,} to del. Append 4 to del.
Step 2.7. Delete from nlec all those elements of which there is a copy in tnl.

Btep 3. HReturn un.

4.3.3 COMPLETE-STRUCTURE-DECLARATIONS

A structure is specified by a hierarchical set of names that refers to a group of
individual items each of which may have a different data type. Conversely, an array is
specified by a single name referring to a group of items all of the same data type. The
component items of a structure may themselves be Structures Or arrays.

Cperation: complete~gtructure-declarations

Gtep 1. For each fdeclaration-commalist}, fdescription-commalist}. or 4genaric-
description-commalist}, dl component of the fooncrete-external-procedure}

perform determine-structure (d1) to obtain a | fdeclaration-commalist},
fdescription-commalist}. or fgeneric-description-commalist}, dlm. Replace dl by
Alm.

Stop 2. Let di{j] be the j"th {declaration} component of the {concrete-external-
procedura} that declaration-contains LIKE. For each di(j] perform Step 2.1.

Step 2.1. Perform expand-like-attribute(dljl) to obtain a fdeclaration-commalist},
deml (5] -

Step 3. For each d[j) pecform Step 3.1.

step 3.1. Let dl be the fdeclaration-commalist} that immediately contains dljl. Atcach
a f,} Eollowed by the elements of demlljl in sequence so that they
immediately follow dijl.

Step 4. Delete all fattribute}: LIKE funsubscripted-referencel; components of
{declaration}s in the {concrete-external-procedurel}.

Step 5. For each {declaration-commalisty, fdescription-commalist}, or {generic-
description-commalist}, dl component of the fconcrete-external-procedure} that
declaraticn-contains STRUCTURE, perform convert-to-logical-levels({dl) to obtain
dll, a node of the same type as dl. Pertorm propagate-alignment{dli} to obtain
dl?, a node of the same type as dll. Replace dl by dl2.

Chapter 4: The Translator 75

§.3.3.1 Determine-structure

Operation:

Step 1. Let

Step 2. For
2.4.

determine-structure (cml)

where cml is a 4declaration-commalist}, fdescription-commalist}, or
{generic-description-commalist}.

result: a {fdeclaration-commalist}, a {description-commaliast}, or {generic-
description-commalist}.

cmlc be a copy of cml. Let @lj] be the j th immediate component of cmlc that

is not 4,}- Let n be the number of such components.

each (4] that immediately containz a {level},lv, perform Steps 2.1 through

Step 2.1. lv must not be 0.

Step

step

Step

Step 3.

step H.

224

2.3,

2.4,

For

1)

(2]

{3}

5

(6}

1)

If j is less than n and elj+i] immediately contains a {level} whose numeric
value is greater than that of 1v, then attach STRUCTURE to eljl.

If elj] declaratlion-contains LIKE then attach STRUCTURE to eljl. In this
case, elj]l must not contain more than one instance of LIKE and cml must be a
{declaration-commalist}.

If the numeric value of 1lv is greater than one, attach MEMBER to elij).

each elj), all of the following must be false:

elj] immediately contains flevel} and does not declaration-contain STRUCTURE
or MEMBER.

elj] immediately contains §lewvel} whose value is 1 and eljl declaration-
contains MEMBER.

elj] declaratiopn-containg STRUCTURE or MEMBER and does not immediately
contain flevel}.

elj] declaration-contains STRUCTURE, does not declaration-contain LIEKE and
either j is egual to n or elj+*1l] does not declaration-contain a {level}
whose value is greater than the {level} declaration-component of e(jl.

elj] declaration-contains MEMBER and either j is egual to one or elj-1] does
not declaration-contain MEMBER or STRUCTURE.

elj)] declaration-contains STRUCTURE and LIXE, j is less than n, and elj+l]
declaration-contains MEMBER and a {level} whose numeric wvalue is greater
than the numeric value of the {level} declaraticn-contained in e(jl.

elj] declaration-contains LIKE but not a {level}.

Return cmic.

4.3.3.2 Expand-like-attribute

Operation:

Step 1.

76

expand-like-attribute(d)

where d is a fdeclaration}.

result: a fdeclaration-commalist}).

d declaration-contains an

fattribute}:
LIKE

funsubscripted-reference},r.

Step 2.

Step 3.

Step 4.

Step 5.

Step

Step

Perform find-applicable-declaration{r) to obtain 1d. 14 must be a {declaration?
that declaration-contains STRUCTURE and must not declaration-contain LIEKE.

Let 14 be immediately contained in the fdeclaration-commalist},dcml. Let elj]
be the §'th element of Acml that is not §.). Let k be soch that elk]l is
identical to 1d and let n be the number of elements of doml that are not €.%-

Let m be the numeric value of the immediately contained flevel} of d. Let 1lv be
the numeric value of the immediately contained flevel} of elk]l and let cf be the
numeric value (m=1v).

Let cl be a fdeclaration-commalist} with no elements. Let i be k+l. Let t be the
smallest integer greater than k such that one of the following is true: t is
egual to n, elt+l] does not declaration-contain MEMBER, or eflt+l] immediately
contains a flevel} whose numeric wvalue is less than or egqual o 1v. Pertorm
Steps 5.1 through 5.3 while i is less than or egual to t.

5.1. Let ec be a copy of elil. Let the numeric value of the immediately contained
flevel} of ec be lvc. Replace this {level} by one WhosSe numeric wvalue is
1ve+ctE.

5.2. Append ec to cl, appending commas where necessacy.

Step 5.3. Let i be i+l.

Step A

Step 7.

4.3-.3.3

cl mst not contain any instance of LIEE.

Return £l.

Convert-to-logical-levels

operationt convert-to-logical-levelsicml)

Step 1.

Step 2.

Cage

Cage

Step 3.

Step

Step .

where cml is a {declaration-commalist}, {description-commalist},
or fgeneric-description-commalist}.

result:r a fdeclaration-commalist}, fdescription-commalist},
or fgeneric-description-commalist}.

Let cmle be a copy of cml. Let elj) be the j'th component of cmlc that is not
4,3 and let m be the nomber of such components. Let 10jl] be the {level}

declaration-contained in eljl, if it exists, and let nlj] be the numeric wvalue
ef 11jl.

2.1. There exists an dnteger t Lless than m Ssuch that elt]l and elt+l] each
declaration-contains a flevel}, and nit+l] is greater than nit]+1.

Let j be the least such t.
2.2. (0therwisel.
Return cmle.
Let j1 be the least integer greater than j such that either j1 is egqual to m, or
@l§1+1] does not declaration-contain MEMBER, or nljl+l] is less than or equal to
nijl+l. For i=j+l,....jl, perform Step 3.1.
3.1. Replace 1[i]l by a flevel} whose numeric walue is nlil-1.

Go to Step 2.

Chapter 4: The Translator T

4.3.3.4 Propagate-alignment

Operation: propagate-alignment (cml)

Step 1.

Step 2.
Step
step

where cml is a {declaration-commalist}, {description-commaliat},
or {generic-description-commalist}.

regult: a fdeclaration-commalist}, {fdescription-commalist},
or fgeneric-description-commalist}.

Let cmlc be a copy ©f cml. Let elj] be the j*'th component of cmlc that is not
§:F and let m be the number of such components. Let 1(j] be the 4level}
declaration=contained in elj), Lf it exists, and let nijl] be the numeric wvalue
of 10j]-

For i=l,...,m, perform Steps 2.1 and 2.2

2.1. elil must not declaration-contain both ALIGHED and UNALIGHED.

2.2.

Case 2.2.1. eli] declaration-contains MEMBER, and elil declaration-contains neither

ALIGNED nor UNHRLIGHED.

Let k be the greatest integer such that k is less than i and nlk]l is
egqual to nlil-1. If elk] declaration-contains ALIGNED or UOWALIGHED,
then attach ALIGHED or UHALIGHED, respectively, to elil.

Case 2.2.2. (Otherwise).

Step 3.

Ho action.

For i=l,...,m, pecform Step 3.1.

step 3.1. If eil]l contains STROCTURE and ALIGHED, or STRUCTURE and UHALIGHED, delete

step .

ARLIGHED or UHALIGHED, respectively, from elil.

Return cmlc.

4.3.3.5 Find-applicable-declaration

Operation: find-applicable-declaration(r)

Step 1.

where r is an fidentifier}, {onsubzecripted-reference}, {basic-referencel},
or freference}.

result: a fdeclaration} or <abzent>.

case 1l.1. r is an fidentifier}.

Let idl be an fidentifier-list}: r.

Case 1.2. r is an {unsubscripted-reference}. Append, in order, a copy of each

fidentifier} component of r to an fidentifier-list},idl.

case 1.3. r is a {basic-reference}.

Append; in order, a copy of each {identifier} component of ¢ which is not a
component of an {farguments}, in order, to an {identifiex-list},idl.

Cage 1.4. r is a {reference}.

e

Let br be the Jbasic-reference} immediate component of r. Perform find-
applicable-declaration(br} to cbtain d. Retizrn d.

Btep 2. Let b be the concrete-block that block-containg . If v is contained in a
{statement-name},sn then perform Step Z.1.

Step 2.1. If sn is contained in a funit} which simply contains {entry-statement} or sn
is contained in a {prefix-1list} immediate component of a J{procedure} then
let b ba the concrete-block which block-contains b.
Step 3. Let id be the rightmost fidentifier} component of idl.
Btep 4. Let dl be a fdeclaration-designator-list} each component of which designates a
fdeclaration} that is a concrete-block-component of b and that imepediately
contains an fidentifier} that is egqual to id.
Step 5. Delete from dl any component that designates a fdeclaration},d such that find-
fully=-qualified-nameld) returns an fidentifier-List},didl such that idl does not
contain an ordered sublist of the {identifier}s contained in didl.
Btep 6.
Cage 6.1. dl is empty.

Let b be the concrete=block that block-contains b. 1f there is no such block
then peturn <absent®; otherwise, go to Step U.

Case 6.2. 41 contains a single component.

Let d be the fdeclaration} designated by the single component of dl. Return
d.

Case 6.3. 41 contains more than one component.

41 must contain exactly one component that designates a fdeclaraciony,d such
that Find-fully-qualified-name(d) returns an fidentifier-lise} equal to idl.
Return 4.

§.3.3.6 Find-fully-qual = mame

Each {declaration} has a fully gualified name associated with it. If it is an array or
jtem declaration then this is a single fidentifier}. If the fdaclaration} is a member of
a structure then it may have as many fidentitier}s as its legical level-number indicates
its depth of embedding to be.

Uparation: find-fully-gualified-nameid)
where d is a fdeclaration.
rasult: an fidentifier-list}.
case 1. d declaration-contains MEMBER.
step 1.1. Let deml be the fdeclaration-commalist} that immediately contains d. Let

dl be the rightmost preceding {declaration} of deml that declaration-
contains a flevel} whose numeric value is less than the numerie value of the

tlevel} of 4.
Step 1.2. Perform find-fully-qualified-name{(dl) to obtain an fidentifier-list},idl.

Step 1.3. Append the fidentifier} immediate component of d to idi.
Step 1.4. Return idl.

case 2. d doea not declaration-contain MEMBER.
gstep 2.1. Let id be the {identifier} immediate component of d.

Etep 2.2. Return fidentifier-list}: id.

Chapter 4: The Translator 9

4.3.4 CONSTRUCT-CONTEXTUAL-DECLARNTIONS

Certain contexts in a procedure specify the attributes of an ldentifier appearing in
those contexts. If an identifier is not explicitly declared, but is used inmn such a
context, then it is contextually declared and a declaratiom for it is introduced into the
{concrete-external-procedure}. ALl the attributes implied by the context are added onto
this generated declaration-

Operation: construct=contextual-declarations

Step 1. Let cep be the fconcrete-external-procedure}. Let u be a

funit}:
fdeclare-statement}:
DECLARE
{declaration-commalist},dcml

fikiz
where deml contains no elements.
Step 2. For each fidentifier},id in cep perform Steps 2.1 through 2.3.
Step 2.1. Let attrs be <absentd».
Step 2.2.
Case 2.2.1, id is a component of a
{reference}, r:
fhasic-referencel}:
fidentifier},id;;
where r has no other components.
S-tEp 2-2-1.1.
Case 2.2.1.1.1. ¥ is an immediate component of an {fin-option} or r is an
immediate component of a fdata-attribute},da and da contains
OFFSET.
Let attrs be an
fattributre=-list}:
fattril ate}:
fdata-attribute}:
ARER; ;
fattribute}:
VARIABLE .
case 2.2.1.1.2. r is an immediate component of a fcall-statemeént}.
This case must not occur.

Cage 2.2.1.1.3. r is an component of a ffile-option}, feopy-option}, or
fnamed-io-condition}.

Let attrs be an

fattribute-list}s
fattribute}:
fdata-ateribute}:
FILE;;
fattribute}:
CONSTANT «

Bo

Cagse 2.2.1.1.8. r is an immediate component of a {set-option} or a flocator-
qualifier}, or r is an immediate component of an fattribute}
that contains BASED.

Let attrs be an
fattribute-list}:
fattributed:
fdata-attribute}:
POTHTER ;
fattribute}:
VARIABLE .
Case 2.2.1.1.5. {(Otherwise).
Ho action-.
Case 2.2.2. id is an immediate component of a {programmer-named-conditiond.
Let attrs bhe an
fattribute-listh:
fateribatel:
CONDITION.
case 2.2.3. id is the only component of the {basic-reference} of a
freferencel:
fbasic-reference}:
{fidentifier},id;
{farguments-ligt};
where the {reference} has no other immediate components.
Let attrs be an
fattribute-list}:
fattribute}:
BULLTIN.
Case 2.2.4. (Otherwise).
Ho action-

Step Z.3. If attrs is not <absent> then perform fipd-applicable-declaration(id) te
obtain 4. If 4 is <absSent® then perform Steps 2.3.1 throogh I.3.3.

Step 2.3.1. Let d be a
fdeclaration}:
ia
AttrsS.

Step 2.3.2. If an element of deml ismediately containa an fidentifiery equal to id
then the fattribute-list} of this {declaration} must equal attrs.

Step 2.3.3. If no element of deml immediately contains an fidentifler} equal to id
then append 4 to deml.

Step 3. If deml containg any elements, appénd u to the funit-list} of the {procedure}
immediately contained in cep.

Chapter 4: The Tranglator a1

4.3.5 CONSTRUCT-IMPLICIT-DECLARATIONS

Identifiers that do not resclve to any declaration or that have not had declarations
constructed because of the context in which they appear are implicitly declared.

Operation: construct-implicit-declarations

Step 1. For each tree of the form

freference}:
fhasic-reference}:
fidentifiec},id;;

where the {reference} has no other components, or that is the only fidentifier}
of an {unsubscripted-referencg}, or that is an immediate component of an
fallocation}, ffreeing}, or flocate-statement}, perform Step 1.1.

Step 1.1, Perform find-applicable-declaration{id) to obtain 4. If 4 is <absent?® then
perform Step 1.1.1.

Step 1.1.1. Let u be a

funith:
fdeclare-gtatementp:
DECLARE
fdeclaration-commal ist}:
fdeclaration}:
id::

it
Append u to the funit-list} of the fprocedure} immediately contained in
the {econcrete-external-procedured.

4.3.6 COMPLETE-DECTLARATIONS

Operations: complete-declarations

Step 1. For each fdefault-attributes},das component of the {concrete-external-
procedure}, perform Steps 1.1 and 1.2.

gtep 1.1. Let d be a fdeclaration}: x;, where x is a copy of the fattribute-list} of
das (d is a partial fdeclaration}).

step 1.2. Parform test-attribute-consistency(d,<absent®] to obtain tv. &v must not be
<falaer.

gtep 2. For each 4{declaration}, {description}, or fgeneric-description},d component ot
the {concrete-external-procedure}, perform Step 2.1.

Step 2.1. Perform test=-attribute-consistency(d) to obtain tv. tv must not be <talsedr.
Step 3. Perform append-system-defaults.

Step 8. Each {default-atkributes} copponent of the fooncrete-external-procedure} must
not declaration-contain LIKEE, MEMBER, STHUCTURE, or PARRMETER.

Step 5. For each fdeclaration},d component of the fconcrete-external-procedure} perform
Steps 5.1 and 5.2.

Step 5.1. Perform apply-defaunlesid).
Step 5.2. Perform check-attribute-completeness-and-delete-attribuces (d).

Step 6. For each {description},d component of the fconcrete-external-procedure} that
satisfies the following conditions, perform Steps 6.1 and 6.2.

{1} 4 is contained in a {declaratieon} but not in a {generic-attribute}.

12) d was not prodiuced by Step 6.1.

82

Step 6.1. Perform apply-defaultsidl.
Step 6.2. Pearform check-attribute-completeness-and-delete-attributes{d).

Step 7. For each {returns-descriptor}.d componeént of the {concrete-external-procedure}
which does not contain a {fdescription}y and which satisfies the following
conditions, perform Step 7.1.

{1) d is contained in a {declaration} but not in & fgeneric-attribute}.
(2} d was not produced by Step 6.1 or Step 7.1.
Step T.1. Perform apply-defaultsid}.
Step 8. For each fdescription},d component of the fconcrete-external-procedure which is

contained in a {declaration} but not in a {generic-attripute}, pertorm check-
attribute-completeness-and-delete-attributesid).

step 9. PFor each tree of the form

{fprocedural:
fprefix-1ist}:
fprefix}:
{statement-name}, sn;
{procedure-stacement}
[funit-1iast}]
fending};

or of the form
funitd:
fstatement-name-list}:
fatatement-name},.85n;
fentry-statementd);
perform Steps 9.1 through 2.3.
Step 9.1. Let id be the fidentifier} immediately contained in sn.

Step 9.2. Perform find-applicable-declarationiid} to obtain d. d must he a
fdeclaration}.

Step 9.3. Perform copy-descriptorsi(d).

4.3.6.1 Test-attribute-consistency

Operation: test-attribute-consistency (d,das)

where d is a fdeclaravion}, {description}., or {generic-description}.
das is a [fdefault-attributes}l.

result: <trues or <falses.
gtep 1. If das is <aboent® then :

case 1.1. 4 is a fdeclaration}.

Por each palr of fattribute}s, al and a2, which are declaration-components
of d, pexform test-invalid-duplicateslal,a2) to obtain tv. &V must not be

{truer.
case 1.2. 4 is a fdescription}.

For each pair of 4data-attribute}s, al and a2, vwhich are declaration-
components of d, perform test-invalid-duplicatesi{al,a2) to obtain tv¥. tv

must not be €truer.

Chapter 4: The Translator 83

cCase

Step 2.

Casa

Case

1.3. 4 is a fgeneric-description}.
For each pair of {generic-data-attribute}s, al and a2, which are

declaration-components of d, perform test-invalid-duplicates(al.a2) to
abtain tv. tv must not be <£trues.

2.1. das is <absent¥».

Let akl be an {fattribute-keyword-list} consisting of a copy of each keyword
declaration—component of d.

2.2. das is not <absent>.

Step 2.2.1. Let al be an fattribute-list} consisting of copies of each fattribute}

declaration-component of das, and each fattribute} or §data-attribute}
declaration-component of d where d is a fdeclaration} or {description}
respectively.

Step 2.2.2. For each pair of fattribute} components of al, al and a2, perform test-

invalid-duplicates(al.,a?) to obtain tv. If tv is <true», return

ifalse».

Step 2.2.3. Let akl be an q{attribute-keyword-list} consisting of a copy of each

Step 3.

Step A.

Step 5.

Step 6.

Case

cCase

Cage

step 7.

keyword declaration-component of al.

Replace all mueltiple occurrences of a given keyword in akl by a single
cocurrence of that keyword.

IEF akl contains GENERIC or MEMBER and also contains EXTERHAL, return <falsed.

If akl contains STRUCTURE and ALIGHED, or contains STRUCTURE and DHALIGHED,
return <£falgses>.

6.1. 4 is a fdescription} or {generic-description}.
If the set of all keywords in akl is not a subset of the Keywords that form
the concrete-representation of some tree whose root-node is J{consistent-
description}, return <falsed.

6.2. 4 iz a partial {fdeclaration} produced by the operation create-constant.
If the set of all keywords in akl is not a subset of the keywords that form
the concrete-representation of some tree whose root-pode s {oconsistent-
literal-constant}, return <falsge».

6.3. d is a fdeclaration}.
If the set of all keywords in akl iz not a subset of the Keywords that form
the concrete-representation of some tree whose root-node is foonsistent-
declaration}, return «£falsae».

Return <truedk.

{consistent-declaration}::= {scope} {declaration=-type}

fscope}::= EXTERHAL | INTERMAL

{declaration-type}::= {fvariable} | {fnamed-constant} | BUILTIR | CONDITION | GENERIC

fvariable}::= VARIABLE {storage-type} fdata-description}

{storage-type}:i= {storage-class} | DEFINED [(POSITION] | PARAMETER | MEMBER

{atorage-class}::= AUTOMATIC | BASED | CONTROLLED | STATIC

fdata-description}::= [DIMEMSION] falignment} (fdata-type} LINITIAL] | STRUCTURE}

By

falignment}::= ALIGNED | UNALIGHED
fdata-type}:1= feomputational-type} | fnon-computational-typed
fecomputational-type}::= farithmetic} | fstring} | fpictured}

fnon-computational-type}i:= RAREA | fentry} | FILE | FORMAT (LOCAL]) | LABEL [LOCAL] |
{locatory

farithmeticp::= (REAL | COMPLEX} (BIHARY | DECIMAL} (FIXED | FLOAT! PRECISION
fstring}::= (CHARACTER | BIT} (VARYIRG | HONVARYING)

fpictured}: ;= PICTURE [(REAL | COMPLEX]

fentry}i:s= ENTRY [RETURNS] [(QPTIONS]

flocator}i::= POIRTER | OFFSET

fnamed-constant}::= CONSTANT (ENTRY | FILE ffile-description-set} | FORMAT | LABEL}
[DIMENSION]

ffile-description-set}::= [ENVIRONMENT] [f{stream-set} | frecord-set})
f{stream-set}::= STREAM (INFUT | OUTPUT (PRINTI}

{record-set}::= RECORD (INPUT | OUTPUT | UPDATE) ({sequential-set} | {fdirect-set}}
{sequential-set}::= SEQUERTIAL [KEYED)

fdirect-set}::= DIRECT EEYED

feonsistent-literal-constant}::= CONSTANT [farithmetic} | BIT | CHARACTER}

feonsistent-description}::= <{data-description} [MEMBERI]

B.3.6. t-invalid-d icates

operation: test-invalid-duplicatesial,a2)

where al and a2 are fattribute}s or {data-attribute}s or are both
{generic-data-attribute}s.

result: <true» or <false>.
Step 1. Let k1 and k2 be the leftmost keyword componéntse of al and al respectively.
Step 2.
case 2.1. k1 and k2 are egual.
Case 2.1.1. al and a2 have no terminal components other than k1 and k2.
Return <falscy.

Case 2.1.2. k1 (respectively, k2) is the only terminal componént of al (respectively
a2} but k2 (respectively, ki) is not the only terminal component
of a2 (respectively, all).

Return <falses».
case 2.1l.3. (Otherwise).
Return <€trues.

Case 2.2. Kkl and k2 are not egual.

Return <false>.

Chapter 4: The Translator as

4.3.6.3 Append-asyatem-defaults

Opecation: append-system-defaults

Step 1.

Step 2.

86

I1f the fprocedure}.p immediately contained in the fconcrete-external-procedured}
does not have as a concrete-block-component a fdefault-statement} that contains
SYSTEM, append a

funit}:
fdefault-statemant):
DEFAULT SYSTEM {:%};;

to the funit-list} of p-

Modify the 4{symbol-list} below by replacing o1, d2, d3, d4e, and d5 by
implementation-defined integers to obtain 1d.

"/% ENTRY DEFAULTS ¢/

DEFAULT (RETURNS) ENTRY;

/% FILE DEFAULTS */

DEFAULT (DIRECT | INPUT|KEYED|
QUTPUT | PRINT | RECORD | SEQUENTIAL | STREAM|UPDATE) FILE;

S¢ ARITHMETIC DEFAULTS 4/

DEFAULT (~CONSTANT & -PICTURE) FIXED, BINARY, RERL;
DEFADLT (FIXED & BINARY & -~CONSTANT) PRECISION(DL.0);
DEFAULT (PIXED & DECIMAL & <COMSTANT) PRECISION(dZ,0):
DEFAULT {FLOAT % BINARY & -~CONMSTANT) PRECISION(43);
DEFAULT (FLOAT & DECIMAL & -CONSTANT) PRECISION{d4};

A% STRING AND ARER DEFRULTS #/

DEFAULT (CHARACTER) CHARACTER(L1), WONVARYING;
DEFAULT [BIT) BIT(1), HOHVARYING;

DEFAULT (AREA) AREA(4S);

DEFAULT (POSITION) POSITION(L):

/% SCOPE AND STORAGE CLASS DEFAULTS */

DEFRAULT ((ENTRY|FILE) &
(AUTOMATIC | BASED | DEFINED | PARAMETER | STATIC | CONTROLLED | MEMBER |
ALIGNED | UNALIGNED | INITIALY) VARIABLE;

DEFAULT ((ESTRY|FILE) & RARGE(®*)) CONSTRNT;

DEFRULT (RANGE(*) & ~COHSTANT) VARIABLE;

DEFAULT (CONDITION| ((FILE|ENTRY) & CONSTANT)) EXTERNAL;

DEFRULT (RANGE(*)) INTERNAL;

DEFAULT (VARIABLE & EXTERNAL) STATIC;

DEFAULT (VARIABLE) AUTOMATIC;

/% ALIGHMENT DEFAULTS */

DEFRULT ((CHARACTER|BIT|PICTURE) & -~CONSTANT) UNALIGHED;
DEFAULT ({-COHSTART) ALIGHED;"

Step 3. For weach {unit}.,u component of the {concrete-external-procedure} where u
immediately contains a {defanlt-statement} that contains SYSTEM, pecform Steps
3.1 and 3.2.

step 3.1. Perform parselld,funit-1list}} to obtain wul.

gtep 3.2. Replace the single {unit},u by the funit} immediate components of ul such
that all of the immediate compenents of ul are effectively inserted, din

order, in place of u.

b.3.6.4 Apply-defaults

operations: apply-defaults (dl

where d is a fdeclaration}, or a {description}, or a {freturns-descriptor}
with no fdescription} component.

Step 1. If 4 4is a {returns-descriptor}, then attach to d a fdescription},decl with no
components, and the surrounding parentheses as required; otherwise let decl be

Step 2. For each fdefanlt-statement},dft component of the fconcrete-external-procedure}
taken in left-to-right order perform Steps 2.1 through 2.3.

Step 2.1. 4ft must be a block-component of the §fprocedure} immediate component of the
fconcrete-external-procedured.

Step 2.2. If dft immediately contains WONE then go to Step 3.
Step 2.3. Let dpe be the {predicate-axpression} component of dft. Perform test-
default-applicability(dpe,decl} to obtain tv. If tv is <trued perform Steps
2.3.1 and 2.3.2. L
Step 2.3.1. dft must not contain ERROR.

Gtep 2.3.2. For each Jdefanlt-attributes},das component of dft in left-to-right
order perform Steps 2.3.2.1 through 2.3.2.3.

Step 2.3.2.1. Perform test-attribute-consistency(decl,das) to obtain tv.

Step 2.3.2.2. If +tv is <true> and decl is a fdeclaration}, then append to the
fattribute-1ist} in decl copies of the J{attribute} simple
components of das.

SBtep 2.3.2.3. If tv is <true» and decl is a fdescription}, then append to cthe
fdata-attribute-1ist}y in decl copies of the {data-attribute}
simple components of das.

Step 3. If 4 is a freturns-descriptor}, then decl must contain at least one subnode.

N.3.6.5% Test=default-applicability

Operation: test-default-applicability({dpe,decl)

where dpe is a {predicate-expression}, fpredicate-expression-three},
{predicate-expression-two}, fpredicate-expression-one}, {frange-
specification}, or fattribute-keyword},
deel is a fdeclaration}, or a fdescription}.

result: <trued or «€falsedr.

cagse 1. dpe immediately contains a §[}-

let pe be the {predicate-expression} simple component of dpe, and pl be the
{predicate-expression-three} simple component ot dpe. If either, or both, test-
defanlt-applicability(pe,decl) or tegt-default-applicability (p3,decl) yield
£true* then return €true®*; otherwise return €falsed®.

Chapter 4: ‘The Translator 87

Case 2.

-Sase 3.

Case #.

dpe immediately contains an &.

Let p3 be the fpredicate-expression-three} simple component of dpe, and p2 be
the fpredicate-expression-two} simple component of dpe. If both test-default-
applicability(p2,decl) and test-default-applicability(pd,decl) yield <trued,
then return <trued; otherwise return <false>.

dpe immediately contains & -.

Let pe be the other simple componepnt of dpe. Perform test-default-
applicability(pe,decl) to obtain tv. If tv is <ktrue®* then return Afalsek;
otherwise return <true».

dpe is a frange-specification},rs.

Case 4.l. rs contains an *.

If decl is a fdeclaration} which immediately contains an fidentifier} return
€true>, otherwise return €false>.

Case 8.f. rs contains an {identifier},id.

Step 4.2.1. If decl is a fdescription} or a fdeclaration} that does not immediately

contain an fidentifier}, then return <falses».

Step 4.2.2. Let idd be the fidentifier} immediate component of decl. Compare che

terminal nodes of id and idd, taken in order, until the terminal nodes
of id have been exhausted. IFf all the comparisons are equal then return
<true»; otherwise return <false».

Ccage 4.3. rs contains fletter},ll §:} flecter},l2.

Step %.3.1. If decl is a fdescription} or a {declaration} that does not immediately

contain an fidentifier}; then return <false>.

Step 4.3.2. Let dl be the first fletter} of the fidentifier} simple component ot

Case 5.

Cagse b.

dacl. If 4l i=s, or is after 11 and is, or is before 12 in the English
alphabet then return <€true®; otherwise return <falses.

dpe is an fattribute-keyword},ak.

If decl declaration-containg an {fattribute},atr or a {data-attribute},atr such
that the leftmost keyword, k of atr is equal to ak then return €true*; otherwisce
return <false>. TR

{Otherwise) .

Let pe be the {predicate-expression} compeonent of dpe. Perform test-defaule-
applicabilityipe,decl) to obtaim tr. Return tr.

4,3.6.6 Copy-degeriptors

Operation: copy-descriptors (d)

Step 1.

Step 2.

where d is a fdeclaration}.

Let e be the §data-attribute} declaration-component of d that immediately
contains ENTRY.

Case 2.1. d declaration-contains a {dimension-attribute}.

Let ep (i1, i=l,...,n, be the n occurrences of
{statement-namé} :
fidentifier},id
({signed-integer-comnalist}) {:3};

such that d is obtained by performing find-applicable-declaration{id}).

Case 2.2. (Otherwisel.

Let epll] be the single occurrence of a

such

{statement-namea} :
fidentifier},id f:};

that 4 is obtained by performing find-applicable-declarationiid). Let

n ba 1.

Step 3. For each eplil., i=1l.....n, perform Steps 3.1 through 3.4.

Step 3.1.

Cage 3.1.1.

case 3.1.2.

Step 3.2.

case 3.2.1.

epli] is contained in a {prefix-list} dimmediate component of a
fprocedure},p.

Let &5 be the immediately contained {procedure-statement} of p.

eplil is econtained in a {statement-name-1list} immediate component of a
funitd,a.

Let &3 be the immediately contained fentry-statement} of u.

es contains a fparameter-name-commalist}y.pl.

step 3.2.1.1. Let pnlj]l be the fidentifier} of the j"th immediately contained

fparameter-pame} component of pl. Let m be the pumber of such
components.

For each pnljl, 1=1,...,m, taken in order, perform Steps
3.2.1.1.1 through 3.2.1.1.0.

step 3.2.1.1.1. Perform find-applicable-declarationtipn(il) to obtain pd. pd

muse be a fdeclaration}.

Step 3.2.1.1.2. Let deml be the 4{declaration-commalist} that immediately

contains pd. Let demik] be the k'th {declaration} component
of deml. Let there be kmy such components and let k be suech
that demik) is identical to pd.

Step 3.2.1.1.3. Let knd be the minipum integer greater than or equal to k

such that one of the following is true:
(1) knd is equal to kmx;
12y demlknd+l) does not contain flevell};

{3 demliknd+l] coptains a flevel} whose {integer} has the
wvalue 1.

Step 3.2.1.1.4. For each demfinxl, in®=k,....knd, taken in order, pecform

Steps 3.2.1.1.6.1 through 3.2.1.1.4.5.

Step 3.2.1.1.4.1. Let pnd be a copy of demlinx]. Delete from pnd
any occurrence of an
fattribute}:
PARAMETER .

Chapter 4: The Translator 89

Step 3.2.1.1.6.2. If demlinx] contains an

fattribute}:
fdata-attribute}, da:
OFFSET
]
freference},r
Yiz

then perform test-offset-in-descriptionida) to
obtain tv. If tv is +«£trim¥», then replace the
fdata-attribute} in pnd corresponding to da by
fdata-acttribute}: OFFSET.

Hota: This language feature allows pointer to of fset
conversion to be performed on calls to internal
procedures only if the area to which the offset is
relative is known to the calling block.

Step 3.2.1.1.8.3. If pnd contains a

fdata-attributel,da:
ENTRY
t
fdescription-commalist}
¥

then replace da with a

fdata-ateribute}:
EHTRY .

Step 3.2.1.1.4.4. If pnd contains an

fattribute},atr:
fdata-attribute}:
freturns-descriptord;;

then delete atr.

Step 3.2.1.1.8.5. Append, with intermediate 4.%s as reqguired, to a
{description-commalist}.des(il, a {§description}
simply containing copies of the {level} and fdata-
attribute?} simple components of pnd. pnd must not
contain any fextent-expressionds containing an
tidentifiec?.

Case 3.2.2. es does not contain a fparameter-name-commalist}.

Step

Step

Step 4.
Step
5tep
Step

BEtap

S0

3:3:

d.b.

4.1.
4.2.
§.3.
H.4.

Let desli] be <absent».

If es contains a <returns-descriptor}, let r©dli]l be that §returns-
descripetor}; ctherwise, let rdlil be <absent>.

If es contains an <foptions} then let opsli) be a copy of that foptions}:
otherwise let opslil be <€absent®.

Let x[i] be des[i]l for i=l,...,n. Perform Steps 4.5 and §.6.
Let x[1)] be rdl(i) for i=1,...,n. Perform Steps 4.5 and 4.6,
Let x(1] be opsli) for i=ls...,n. Perform Steps 4.5 and 4.6.

Go to Step 5.

Step U.5. It must be possible to make copies ex(i) of all the x[(1) in which the
ordering of the immediate components of fdata-attribute-list}s and {foptions-
specification}s has been altered such that all the cx(il are equal, except
for the subnodes of any {extent-expression}s.

Step U4.6. For each pair of corresponding fextent-expression}s, extl and ext2, in each
pair of members of the =set coxl(il. perform test-descriptor-extent-
expressionslextl,ext) to obtain tv, which must be <€trues.

Step 5. If des(l] is not <absent®, replace & with a
fdata-attribute}:
ENTRY

{
des(1]

Step 6. If d declaration-contains a 4{returns-descriptor},.drd, then for i=1,...,n,
replace rdli] f(which must not be <absent¥} by drd.

Cage 6.1, d is not block-contained in the foeoncrete-external-procedural.

For ¢ach fdata-attribute},da: OFFSET({reference}); in rdlil]l, perform Step
6.1.1.

Step 6.1.1. Perform test-offset-in-descriptionida) to obtain tv, which must be
Anotrims.

Case 6.2. (Otherwise).

For each fdata-attribute}: OFFSET(freference}); in drd, delete the
{freference}) .

step 7. If d declaration-contains an foptions}.dops, then for i=1,...,n. replace opsii]
{which must not be <€absent®) by dops.

4.3.6.7 Test-offset-in-description

This operation tests whether the ({reference}) from an OFFSET attribute has to be trimmed
because it would fall within the scope of a different declaration if copied into an ENTRY

declaration in the surrounding block.

Operation: test-offset-in-descriptionida)
where da is a fdata-attribute}: OFFSET(freferenced).

result: <£trim¥ or <nobpin®.

Step 1. For each freference},r contained in da, perform Step 1l.1.

Step 1.1. Perform find-applicable-declaration{(r} to obtain rd. rd must be a
fdeclaration}. If rd is block-contained in the same block as da, return

ttrin@;

Step 2. Return <notrimd.

Chapter 4: The Translator 91

4.3.6.8 Test-descriptor-extent-expressions

Operation: test-descriptor-extent-expressionsiextl, ext2)
where extl and ext? are fextent-expression}s.

result: «true» or <false».
Step 1. If extl or ext? contains fidentifier}, return <false».
Step 2. Let cel and ce2 be the {expression} immediate components of extl and ext2.

Perform ¢r¢ttﬂ—ﬂxpt¢ﬂ$ibn{¢11? to obtain an <expression®>,el, and create-
expression{ce?) to obtain an <expression>,el.

Step 3. Perform evaluata-restricted-expressioniel) and evaluate-restricted-
expression{e?) to obtain vl and vZ respectively. If vl or wv2 is not a
<constant> having <computational-typer, return <falsed. Otherwise, perform
evaluate-expression-to-integeri{el) and evaluate-expression-to-integeriez) to
obtain <integer-value»s il and i2 respectively. If il and i2 are egual, return
£t roex; otherwise return €false®.

4.3.7 VALIDATE=CORCRETE-DECLARATIONS

Various checks are applied to the {fconcrete-external-procedure} to ensure that a wvalid
set of declarations has been generated. Each declaration must be unigue within its own
BCOpe. A check is also made to ensure that fdeclaration}s of INTERNAL CONSTANT ENTRY,
CONSTANT FORMAT, and COHSTANT LABEL were constructed by the operation construct-
statement-name-declarations.

Operation: validate-concrete-declarations

Step 1. The {concrete-eéxternal-procedure} must not contain two {declaration}s, d1 and
d2, such that dl and d2 are block-components of the same block, and f£ind-fully-
qualified-name(dl) yields the same result as find-fully-qualified-name(d2}).

{d1 and dZ are duplicate declarations).

Step 2. The {concrete-external-procedure} must not contain a {reference}.r. fbasic-
reference},r, or <{unsubscripted-reference},r such that find-applicable-
declaration(rc) yields <absentd.

(There is no {declaration} for rd.

Step 3. The {concrete-external-procedure} must not contain a {declaration},d that

declaration-contains LABEL and CONSTANT, or FORMAT and CONSTANT, or INTERNAL and

ENTRY and COHNSTANT, unless d was created by the operation construct-statement-
name-declarations.

92

4.3.7.1 Check-attribute-completeness-and-deleté-attributes

Operation: check-attribute-completeness-and-delete-attributes (d}

Step 1.

Step

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 2.

Step 10.

Step 11.

Cage

Cagse

where d is a fdeclaration} or a fdescription}.

For each distinct keyword, k which is a declaration-component of 4 perform Step
1l.1.

1.1. If there is an A{attribute}.,stt or a fdata-attribute},att declaration-
component of d, such that att declaration-contains k. but not as its =ole
terminal COMPOnent then delete all fattribute} or {data-attribute}
declaration-components of d which declaration-contain k, except for atk;
otherwise, delete all but one of the fattribute} or {data-attribute}
declaration-components of d which declaration-contain k.

d must not declaration-contain an fattribute} or fdata-attribute} with AREA,
BIT, CHAMRACTER, DIMENSIOHN, GEMERIC, IHITIAL, PICTURE, POSITION, PRECISION, or
RETURNS &s its sole terminal node.

if d4 declaration-containg EXTERMAL, it must not declaration-contain ADTOMATIC,
BASED, DEFINED, PARAMETER, or BUILTIN.

If d4 declaration=-containg EXTERNAL and CONSTANT, it must not declaration-contain
FORMAT or LABEL.

If d declaration-contains EXTERNAL and COHSTANT and ENTRY, it must not
declaration-contain DIMENSION.

If 4 is a fdescription}, 4 must not declaration-contain INITIAL.

If d iz a 4declaration} which declaration-contains DEFIRED or PARAMETER (or
declaration-contains MEMHER and the rightmost preceding 4{declaration} whose
flevely has the wvalue one declaration-contains DEFINED or PARAMETER}), then d
must not declaration-contain INITIAL.

If 4 is a fdeclaration} which declaration-contains STATIC and either ENTRY,
FORMAT, or LABEL f(or declaration-contains MEMBER and either ENTRY, FORMAT, or
LABEL, and the rightmost preceding fdeclaration} whose {level} has the value one
declaration-containg STATIC), then d must not declarationm-contain INITIAL.

Let akl be an fattribute-keyword-list} consisting of copies of the keyword
declaraLtlion-components of 4.

Delete from akl any keyword that can be contained in a tree whose root-node is
fEile~description-setd.

1l.1. d is a fdescription}.

There must exist a tree whose root-node is {consistent-description} and
whose concrete-representation congists of the same get of keywords as
are contained im akl.

1i.2. d is a fdeclaration}.
There must exist a tree whose root-node is {consistent-declaration} and

whose concrete representation consists of the same set of keywords as
are contained in akl.

Chapter 4: The Translator 93

4.4 Create-abstract-equivalent-tree

Where the Concrete and Abatract Syntaxes are similar a simple transformation generates a
spacific abstract tree from the given concrete one. Essentially this consists of
ignoring those concrete terminals which represent the “punctuation® of the concrete
program, and transforming each concrete node into its 4abastract eguivalent. Whexre the
syntaxes are not similar an operation specifies the translation.

Operation: create-abstract-equivalent—treaslct)
where ct is a tree belonging to & cateégory of the Concrete Syntax.
result: a tree belonging to a related category of the Abstract Syntax,

or <4dnone¥.

Case 1. ¢t is an fallocation}, {assignment-statement}, <{begin-block}, fconstant},
fexpressiony, fformat-iteration}, <Ereeing}, {§identifier}, {initial-element},
fif-statement}, fgroup}, flocate-statement}, fon-statement}, or {picturel.

Perform create-fict) +to obtain abt, where “§f}" is the name of the category of
ct. Return abt.

case 2. ct belongs to a terminal category.

case 2.1. ct is a keyword and there is a terminal category whose name is of the form
"<cn>® where cn is the lowercase equivalent of category name of ct (e.g., if
ct 1s FIXED, cn is "fixed®).
Return a <cni.

Case 2.2. ck ls an *.
Return an <asterisk>.

Case 2.3. (Otherwisel.
Return 4ponek.

case 3. The category-name of ct is of the form "fen-list}® or "{fcn-commaliat}®, where
"cn® is some name-

Let x be a <cn-1list>. For each fcn}.y. in ct, taken in order, perform vreate-
abstract=equivalent-tree(y) to obtain 2, and append z to x. Return x.

Case 4. ct is a fradix-factor}.

Let d be the digit in the denctation of the immediate component of ct. Return
cradix-factor>: d.

case 5. ct is a fcondition=-name}.
Perform create-conditioni{ct) to obtain abt. Return abt.
case 6. (Otherwigel.

Step 6.1. Let "cn® be the name such that “fen}® is the category-name of ct. Let x be
a <cn>. If <cn®» is a terminal category, return x.

Step 6.2. Por each immediate subnode, y, of ct, taken in order, perform Step 6.2.1.
Step 6.2-1.
Case 6.2.1.1. y is a freference}-
Lat ref be a <variable-reference>, or a <target-reference>, or a
csubroutine-reference>, chooaing the alternative that permits ref

to be attached to x as an ipmediate subnode. Perform create-
referencel(y,ref) to cbtain z. Attach z to x.

9y

Case 6.2.1.2. y is an {funsubscripted-reference}.

Perform create-referencely,<variable-reference>) to obtain =z.
Attach z to x.

Case 6.2.1.3. (Otherwise).

Perform create-abstract-squivalent=tree(y) to obtain z. If z is
not equal to <€none», attach z to X.

Step &6.3. Return X.

A.84.1 CREATION OF BLOCKS AND GROUPS

4.45.1.1 Create-procedure

Operation: create-procedure(cp)

where cp is a {procedure}.
result: a <procedure>.

Step 1. c¢p immediately contains a fprocedore-statementd,cps. Perform create-entry-
peintieps) to obtain an <entry=point>,ep. Let ap be a

<procedurek:
<antry-or-executable-unit-list>»,seul:
centry-or-executable-unit>: ep.

Step 2. Perform create-blockicp,ap).

Step 3. Let pl be the {prefix-list} immediately contained in cp. Perform create-
condition-prefix-listipl) to obtain a <condition~prefix=-list>,cpl or
<absent>*,cpl. If cpl is not <€ahsent®, attach cpl to ap.

Step 4. If cps simply contains RECURSIVE, then attach <recursive> to ap.

Step 5. Return ap.

4:4.1.2 Create-begin-block

A <begin-block>» is constructed im much the same way as a <procedoerer, which it resemboles
except for the presence o©f any entry or return information.

Operation: create-begin-block (cbh)
where cbb is a {begin-block}.
result: a <begin-block>.

Step 1. ILet abb be a <begin-block>. If the {begin-statement} in cbb contains an
foptions}, attach an implementation-dependent tree of type <options> to abb.

Step 2. Perform create-blockicbb,abb).

Step 3. For each <entry-point>,ep, contained in abb, abb must contain a <procedure> that
contains ep-

Step 4. Return abb.

Chapter 4: The Translator 25

o te-bloc
Operation: ergate-block (ch,ab)

where cb is a fprocedure} or fbegin-block}.
ab is a <procedure> or <bégin-block>.

Step 1. For each J{declaration},d that iz a block-component of ¢b and that does not
declaration-contain MEMBER or GENERIC, perform create-declarationfd) to cbtain a
<declaration>,ad, and append ad to the <declaration-list> immediately contained
in ab.

Step 2. For each <declaration®,ad component of ab such that ad contains at least one
{expression-designator}, freference-designator}, or finitial-designator} perform
replace-concrete-designators{ad) .

Step 3. For each +{procedure},p that is a block-component of cb perform create-
procedure(p) to obtain a <procedure>.ap and append ap to the <procedurs-list> in
ab.

Step 4. For each fformat-statement},fs that is a block-component of cb, perform create-
format-statement (fs) to obtain a <format-statement>,afs and append ats to the
<format-statement-list> in ab.

Step 5. If cb immediately containag a funit-list}, let ul be that funit-list}. Otherwise
let ul be €absents>.

case 5.1. ¢bh is a {procedure}.

Perform create-entry-or-executable-unit-listiul) to obtain an <entry=-or-
executable-unit-list>,eul and attach eul to ab.

Case 5.2. cb is a {begin-block}.
Parform ereate-executable-unit=ligt(ul) +to obtain an <executable-unit-
list>,eul and attach eul to ab.

h.B.1.4 R ce=C = =] ators

Oparation: replace=-concrete-designators tad)
where ad is a <declaration> or a <data-description>.
Step 1. For each fexpression-designator},ed component of ad, perform Steps 1.1 and 1.2.
Step l.1. Let e be the fexpression} designated by ed.

Step 1.2. Perform ecreate-abstract-equivalent-tree(e) to obtain an <expression>,ae and
replace ed by ae.

Step 2. FPor each {reference-designator},rd component of ad, perform Steps 2.1 and 2.2.
S5tep 2.1. Let r be the §reference} designated by rd.
case 2.1.1. rd is an immediate component of <based>.

FPerform create-reference{r,<value-reference>) to obtain a <value-
reference>; vre .

case 2.1.2. rd is an immediate component of <base-item> or <offset>.

Perform create-referencef{r,<variable-reference>) to obtain a <variable-
reference>,vr.

Step 2.2. Replace rd by wvr.

96

Step 3. For each finitial-designator},ides component of ad, perform Step 3.1.

Step 3.1. Let int be the J{initial} designated by ides. Ferform create-abstract-
equivalent-tree(int) to obtain an <initial>,i and replace int by i.

4.4.1.5% Create-geou

Operation: create-groupiql
where g is a fgroup}.
result: a <group>.

step 1. Let ds be the {fdo-statement} in g. If g immediately contains a funit-list}, let
ul be that funit-list}. Otherwise let ul be <absent>.

Case 1.1. ds imeediately contains a {do-speck,dsp.

Perform create-abstract-eguivalent-treeldsp) to obtain a <do-specr,adsp.
FPerform create-executable-unit-listiul) +to obtain an Cexecutable-unit=
list>,eul. For each <entry-point>,ep contained in ewl, ewl must contain a
<procedure> that contains ep. Return a COgroup>: citerative-group>:
<controlled-group>: adsSp eul.

Ccagse 1.2. ds immediately containg a fwhile-option},wo.
Perform create-abstract-eguivalent-tree(wo) to obtain a <while-optionX,awo.
Perform create-executable-unit-listiul) to obtain an <executable-unit-
list>.eul. For each <entry-point>,ep contained in eul, eul must contain a
<procedure> that contains ep. RAeturn & <group>: <iterative-group>r: <while-
only=group>; awo eul.

Case 1.3. [(Otherwizel.

Perform creéateé-eéntry-or-executable-unit-list(ul) to obtain an <entry-or-
executable-pnit=List>, eul. Return a <group>: <pon-iterative-group>: eul.

G.4.1.6 Create-entry-or-executable-unjt=list

operation: create-antry-or-executable-unit=1istial)
where ul is a [funit=list}l.

result: an <entry-or-executable-unit-1list>.

Step 1. Let eul be an <entry-or-exccutable-unit-list>. If ul is not <absent®> then for
each funit},u in wvl, taken in order, perform Step 1.1.

Step 1.1. If u immediately contains an fentry-statement},es then perform create-entry-
point(es) to obtain an <entry-point>,ep, and append an <entry-or-executable-
unit»: ep; to euwl; otherwise, if u immediately containzs an fexecutable-
unit},eun then perform create-executable-unit(eu) to cbtain an <executable-
unit>,aeu and append an <entry-cr-executable-unit>: acu; to ewl.

Step 2. pppend an <entry-or-executable-unit>: <executable-unit»: <end-statement>;; to
eul, and return eul.

Chapter 4: The Translator 97

4.5.1.7 Create-executable-unit-list

Operation: create-executable-unit-list(ul)

where ul is a [funit-list}].
regsult: an <executable-unit=ligt>.

Step 1. Let eul be an <executable-unit-list>. If ul is not <absent® then for each
funit},u in ul, taken in order, perform Step 1-1.

Step 1.1. u must pot immediately contain an {entry-statement}. If u immediately
containg an fexecutable-unit},eu, perform create-executable-unitiea) to
obtain an <executable-unit>»,aeu and append aeu to ewal.

Step 2. Append an <executable-unit>: <end-statement>; to eul, and return eal.

B:4:.1.8 Create-executable-unit

Cperation: croate-executable=unit (eu)

where ea is fexecutable-unit}.
resulkt: an <executable-unit>.

Step 1. If eu immediately contains an fexecutableé-single-statement},es, let st be the
immediate component of es; otherwise let st be the immediate component of eu

that iz not a fprefix-list}.

Step 2. Perform create-abstract-equivalent-tree(st) to obtain ast. Let aeu be an
<eéxecutable-unit>: ast.

Step 3. If eu immediately contains a {prefix-list},pl, perform Steps 3.1 and 3.2.

Step 3.1. Perform create-condition-prefix-list(pl) to obtain a <condition=-prefix-
list>,cpl or <absent®,cpl. If cpl is not <€absent> then attach cpl to
aeu.

Step 3.2. Perform create-statement-name-listipl) to obtain a <statement-name-
list>,8nl or <€absent®»,snl. If snl is not <abgent», then attach =snl to

Al

Step #. Return aeu.
4.4.1.9 eake-entry- nk

An <entry-point> may be the primary <entry-point> of a <procedure’, or a secondary
<entry-point> specificd in the conerete {procedure} by an {entry-statement}. Each <entry-
point> has its own information for entry and return which becomes the <entry-information>
and <returns-descriptor?> respectively.

Operation: ereate-entry=-point {es)

where &3 iz an {fentry-statement} or a {fprocedure-statement}.
result: an <entry-point>.
Step 1. Let ep be an <entry-point>: <entry-information>,ei.
case 1.1. es is an fentry-statement}.

Let pl be the {statement-name-list} of the funit} immediately containing es.

Cagse l.2. es is a {procedure-statement}.

Let pl be the {fprefix-list}y of the fprocedure} immediately containing es.

a8

Step 2. Perform create-statement-name-listipl) to obtain a <statement-name-list>,snl.
Laet asn be a copy of the <statement-name> in snl, and attach asn to ep.

S5tep 3. IFf es has a {parameter-name-commalist},pnl, perform create-abstract-equivalent-
tree(pnl) to obtain a <parameter-name-list>,apnl and attach apnl to ei.

Step 4. If es has a freturns-descriptor},rd, then perform Step #.1.
Btep 4.1. Let d be the first {description} in rd. Perform create-data-descriptionid}

to obtain a <data~description>,dd. Perform replace-concrete-
designators({dd). Let 1rdd be a <returns-descriptor®>: dd; and attach rdd to
el.

step 5. If es has an 4options}, attach an implementation-dependent tree of type
<options> to ei.

Step 6. Return eps

4.4.1.10 Create=sgtatement-name-1ist

Operation: create-statement=n =ligt (pl)
where pl is a fprefix-list} or a {statement-name-list}.
result: a <statement-name-liiatr.

Step 1. Let snl be a <statement-name-list». For each {statemént-nameé},sn in pl, pectorm
Steps 1.1 and 1.2.

Step 1.1. Let id be the fidentifier} in sn. Ferform create-identitfier(id} to cbtain an
<identifier>,ad. Let asn be a <statement-name>: ad. For each {signed-
integer},.si in sn, taken in order, perform Step 1.1.1.

Step 1.1.1. Let asi be a <signed-integer> whose concrete-representation is the same
as that of si. Append asi to the <signed-integer-list> in asn.

Step 1l.2. hppend asn to snl.

step 2. If snl has any subnodes, return snl; otherwise return <absent.

G.6.1.11 create-condition-prefix-list

Operation: create-condition-prefix-list(pl}
where pl is a fprefix-list} or a focondition-prefix-commalist}.

result: a <condition-prefix-list>.
Step 1. Let cpl be a <copndition-prefix-list>.
step 2. For each fcomputational-condition},cc in pl, perform Step 2.1.

Step 2.1. Perform create-conditionlcc) to obtain a <ocomputational-conditions,acec.
Append a <condition-prefix>: acc <gnabled>; to cpl.

Step 3. For each fdisabled-computational-condition},dec, in pl, perform Step 3.1.
Step 3.1. Perform create-condition{dce) to obtain a <computational-condition?,acec.
cpl must not contain <condition-prefix>: acc <enabled:. hppend a
<condition-prefix>: acc <disabled>; to cpl.

Step 8. If cpl has any subnodes then return cpl; otherwise return <absentd.

Chapter 4: The Translator 99

4.8.1.12 Create-condition

Operation: create-conditionic)

Caze

Cage

Case

Case

Case

Case

Cage

100

1.

24

3.

where ¢ is a q{computational-condition}, fdisabled-computational-
condition}, or fcondition-name}, or fio-condition}.

result: a <computational-condition>, <io-condition>; or <condition-name>.
¢ is a fcomputational-condition}.

Return a <computational-condition»; <x-condition»; where "x" is the lowercase
aquiua].unt of the concrete-representation of c.

¢ is a fdisabled-computaticonal-conditionk.

Return a <computacional-condition>: <x-condition>; where ¥ is a name such chat
"nox® is the lowercase equivalent of the concrete-representation of c.

¢ is an fio-condition}.

Return an <io-condition>: <x-copdition®>; where "x" is the lowercase equivalent
of the concrete-representation of c.

¢ is a foondition-name} that contains AREA, ERROR, FINISH, or STORMGE.

Return a <condition-namer: <x-condition>; where "x" is the lowercase eguivalent
of the concrete-representation of c.

c is a feondition-name}: feomputational-conditiond,cc.

Perform create-conditionfec) to obtain a <computational-condition>.acc, and
raturn a <condition=-name>: acc.

a is a foondition-name}: fnamed-io-condition}: fio-condition},icc
({reference},ref).

Perform create-conditiontioc) to obtain an <io-condition?>,aioc, and perform
create-reference (ref ,<value-reference>} to obtain a <value=references>,ve.
Return a <condition-name>: <named-ioc-comdition®>; aloc ve.

¢ is a fcondition-namel}: {programmer-named-conditiond.

Let id be the {identifier} in c. Perform find-applicable-declaration{id) to
obtain a fdeclaration},dd. Let des be a <declaration-designator> designating the
<declaration> whose fdeclaration-designator} designates dd. Return a <condition-
nameé>; <programmer-named-condition®: des.

H.4.2 CREATION OF STATEMENTS

B.0.2.

Create-agssignment-statement

Operations create-assignment=atatement (ast)

Step 1.

where ast is an fassignment-statement}.

result: an <assignment-statement>.

Cage 1.1. ast immediately contalns €.}, BY, and HAME.

Perform create-by-name-assignment (ast) to obtain an <assignment-—
statemenk> aast or a <null-statement>,aast. If aast is a <null=statement>
then return aast.

Case 1.2. [(Otherwise).

Step 2.

Step 3.

Let aast be an <assignment-statement>: <target-reference-list>,trl. For
each freference},r, immediately contained in the {reference-commalist} in
ast, taken in left-to-right order, perform create-referencelr,<target-
reference>) to obtain a <target-reference>,tr, and append tr to trl. Let e
be the {expression} immediately contained in ast. Perform create-
expression{e) to obtain an <expression>,ae, and attach ae to aast.

The <data-description> of ae must be proper for assignment to the <data-
description> of each <target-reference> in aast.

Return aast.

B.4.2.2 Create-by-name-assiqgnment

Operation: craate-by-name-aasignment (ast)

step 1.

step 2.

where ast is an fassignment-statement}.

result: an <assignment-statement>
or <null-statement>.

Perform c:eate-b¥-namn-parts—1iat{uat] to obtain a <by-name-parts=list>,;bnpl or
<abgent®,bnpl. If bapl is <absent¥», return a <npull-statement>.

Let aast be an <assignment-statement>: <target-reference-list>.trl. For each
{reference}, r, immediately contained in the {reference-commalist} in ast, taken
in left-to-right order, perform Step 2.1l.

Step 2.1. Perform create-referencelr,<target-reféerence>,bnpl} to obtain a <target-

Step 3.

Step Q.

Step 5.

reference>,tr. Append tr ko trl.

Let & be the 4{expression} immediately contained in ast. Perform create-
expressionle,bnpl) to obtain an <expression>,ae and attach ae to aast.

Each chuiltin-function=-reference> or <procedure-function-reference> simple
component of aast, which is net contained in a <locator-qualifier>, in a
<subscript>, or in a <builtin-function-referemce> whose result has <€aggregate-
types>: €scalar»; (see "Attributes” for each builtin function in Section 9.4.4],
mist immediately contain a <data-description> which simply contains an <item-
data-descriptioni.

Return aast.

Chapter 4: The Translator 101

4.4.2.3 pata-descriptions Proper for Assignment

The <data-description®>,dds is proper for assignment to the <data-description>,ddt if and
only if the following conditions exist:

(1} The <aggregate-type* of dds is promotable (see Section 7.5.3.1) to the <aggregate-
type> of ddt.

12y corresponding «<data-type>s of dds and ddt:
(2.1} both have <computational-type>, or
(2.2} both have <locater:>, or

{2.3) both have <non-computational-type>, with the immediate subnodes of the <non-
computational-type>s belonging to the same category other than <locator>.

Further, if one <data-type> has <offset> and the other has <pginter>, then the
<offset> must contain a <varilable-reference>.

4.4.2.4 Create-by-name-parts-list

Operation: creace-by-name-parts-list{asr)

whers asr is an fassignment-statement)
or an fargumentsl}.

result: a <hy=-pame-parts-list> or <€absent.
Step 1. Let bnpl be a <hy-name-parts-list-list> with no components.

Step 2. For each f{reference},lr immediately contained in the freference-commalist} of
asr perform Step 2.1.

step 2.1. perform find-applicable-declaration(lr} to obtain a {declaration}.cd. which
must declaration-contain STRUCTURE. Pertorm find-bDy-npame-parts(cd) ta
obtain a <by-name-parts-list>,bnp and append bnp to bnpl.
Step 3. For each freference},r contained in the fexpression} immediate component of asr,
but pot contained in a {locator-gualifier} or farguments}, perform Stepsd J.1 and
3.2.
step 31.1. Perform find-applicable-declaration(r) to obtain a fdeclaration},cd.

step 3.2. If od declaration-contains STRUCTURE then perform find-by-name-parts(cd) to
abtain a <by-name-parts=-1list>,bnp and append bnp to bnpl.

Step 4. Let rbnpl be a <by-name-parts-list> consisting of those <by-name-parts> which
are common to every <by-name-pacts-1list> of bmpl.

Step 5. If rbnpl is not empty then return rbnpl; otherwise return €absents.

102

4.4.2.5 Find-by-name-parts

Operation: find-by-name-parts (d)

Step 1.

Step 2.
Step 3.
Step
Step
Step

where d is a {declaration}-.

result: a <by-name-parts-list>.
Let dl be tha 4{declaration-commalist} node that immediately contains d. Let
e[j] be the j"th immediate component of dl that is not a +4,}. Let n be the
number of sach components and let % be such that elk) is 4. Let 14 be the
numeric value of the {level} of d. Let i be k+l.
Let bnpl be a <by-name-parts-list> with no components.
While i<n perform Steps 3.1 through 3.4.
3.1: If eli] does not declaration-contain MEMBER then go to Step 4.
3.2. Let le be the numeric value of the f{level} of eli). If lesld, go to Step 4.

3.3. If le = 1ld+1 then perform Steps 3.3.1 and 3.3.2.

Step 3.3.1. Let cid be the fidentifier}y of elil. Perform create-identifier(cid) to

obtain an <identifier>,id.

Step 3.3.2.

sStep
Btep U.

Cage 3.3.2.1. &ali) declaration-contains STRUCTURE.
Perform find-by-name-partsielil}) to obtain a <by-name-parts-
list>.rbnp. Attach a copy of id to each <identifier-list>
component of rbnp as the initial element. Append a copy of each
immediate component of rbnp to bapl.

Cag® 3.,3.2-2. {ﬂt.hmis“]!
hppend a <by-name-parts> containing id to bnpl.

J.8. Let i = f+1.

Return bnpl.

b,4,2,6 Create-allocation

Operation: create-allocation(al)

Step 1.

Step 2.

Step 3.

Step G.

where al is an fallocation}.
result: an <allocation:>.

Let id pe the {identifier} immediately contained im al. Perform f£ind-
applicable-declaration{id}) to cbtain a {fdeclaration}.cdcl. cdcl must not
declaration-contain MEMBER.

Lat adel be the <declaration> whose fdeclaration-designatcr} designates cdcl.
1f adel contains <gontrolled>, then al must nmot contain a {fset-option} or an
fin-option}. If adcl contains a <based>;b and al does not contain a fset-
option}, then b must immediately contain a <value-reference> that immediately
contains a <variable-reference>.

Let des be a <declaration-designator> designating adcl. Let aal bea an
<allocation>: des. If al contains a f{ser-option},sp, then perform create-
abstract-eguivalent-tree(sp) to obtain a <set-option>,asp, and attach asp to
aal. If al contains an fin-option}.io, then perform create-abstract-eguivalent-
tree(io) to obtain an <in-option»,;aio, and attach aio to aal.

Return aal.

Chapter 4: The Translator 103

L.4.2.7 Create-format-statement

Operation: greate-format-statement (Es)

where fs is a f{format-statement}.

result: a <format-statement>.

Step 1. Let fsl be the {format-specification-commalist} component of f£s. Perform
create-abstract-equivalent-tres(fsl) to obtain a <format-specification-
list>;afsl-

Step 2. The {funit} that Iimmediately containa £s5 must lmmediately contain a {prefix-
1list}.,pl. Perform create-statement-name-list{pl) to obtain a <statement-name-
list>,2nl, which must not Dbe <absent>. Let afs be a <format-statement>: snl
afsl.

Step 3. Perform create-condition-prefix-liatipl) to obtain a <condition-prefix-
list>,cpl; or <€absent®»,cpl- If cpl is not <absent®», attach cpl to afs.

Step 4. HReturn afs.

B.5.2.8 Croate-format-iteration

Operation: create-format-iteration{fi)

Step 1.
Step 2.

Step 3.

Case

Case

Step .

108

where fi is a fformat-iteration}.

result: a <format-iteration>.
Let afi be a <format-iteration>.
Let ff be the {format-iteration-factor} immediately contaimed in f£i. If Ef
immediately contains an fexpressicn}, let e be that {expression}; otherwise let
e be an fexpression} to which the immediately contained finteger} of ff has been

attached. Perform create-expressioni{e) to obtain an <expression>,ae and attach
a <format-iteration-factor>: ae; to afi.

3.1. fi immediately contains a {format-specification-commalist},fec.

Parform create-abstract-equivalent=-trealifac) Lo obtain a <format-
specification-list>,El, and attach £1 to afi.

3.2. Fi immediately contains a fformat-item},ft.

Perform create-abstract-egquivalent-tree(ft) to obtain a <format-item>,ft and
attach a <format-specification-list>: <format-specification>: ft;; to afi.

Return afi.

4.4,2.9 Create-freeing

Operations create-freeing (£r)

Step 1.

Gtap Z.

Step 3.

where fr iz a {freeing}.
resulkt: a <freeing>.

Let id be the fidentifier) immediately contained in fr. Perform find-
applicable-declaration{id) to obtain a {declaration},cdel. cdcl must nok
declaration-conkain MEMBER-

Let adel be the <declaration» whose fdeclaration-designator} designates cdcl.
If adel contains <controlled», then fr must not contain an fin-option} or a
flocator-qualifiar}.

Let des be a <declaration-degignator> designating adcl. Let afr be a <freeing>:
des. If fr immediately contains a flocator-qualitier} with {reference},r,
perform create-reference(r,<value-reference>) to obtain a <value-reference>,vrc
and attach a <locator-gualifier>: wvr; +to afr. If afr contains an {in-
option}, io. perform create-abstract-equivalent-tree(io)l to obtain an <in-
option>,aio, and attach aio to afr. Return afr.

4:4.2.19 Create-if-statement

Operation: greate=if-statement (ifs)

step 1.

Step Z.

Case

Case

where ifs is an fif-statement}.
result: an <if-statement>.

ifs immediately contains an {if-clause} which contains an fexpression}k.e.
Perform create-expressicnie) to cbtain an <expression>,aa.

2.1. ifs immediately contains an fexecutable-unit},eu., but not an ELSE.

Pexrform create-executable-unit{enl to obtain an <executable-unit®>,aeu.
Returnm an

cif-statement>:
<LEege>: ae;
<then-unit>: aea.

2.2. ifs immediately contains a fbalanced-unit},bu, an ELSE, and an fexecutable-
anit},eu.

rerform create-balanced-unit (bu) o obtain an <executable-unit>,eul.
perform create-executable-uniti{ew) to obtain an <executable-unit>, eul.
Return an

<if-statementiy
<test>: ae;
<then-unit>: eul;
<alse-unit»: eul.

Chapter 4: The Translator 105

B.0.7-11

Operatic

te= a = £

n: create-balanced=-unit (bu)

where bu is a fbalanced-unit}-

result: an <executable-unit>.

1.1. bu immediately contains an {executable-single-statement},ess.

Let s be the immediate component of essa. Perform create-abstract-
egquivalent-tree(s) to obtain stat.

1.2. bu immediately contains & fgroup}, fbegin=-block}, or fon-statementl).

Let s be that fgroup}, fbegin-block}, or fon-statement}. Perform create-
abstract-equivalent-tree(s) to obtain stat.

Let e be the {expression} immediately contained in the J{if-clause}
immediately contained in bu. Pexform create-expressioni{e) to obtain an
cexpression>,ae. Let bul and bu2 be, in order, the J{balanced-unit}s
immediately contained in bu. Perform create-balanced-unit(bul) to obtain
eul and create-balanced-unitibu?) to obtain eul. Let stat be an

cif-statement>:
<test>: ae;
<then-unit>: eul;
<else-unit>: eu.

Let eu be an <executable-unit>: stat. If bu immediately contains a {prefix-
list},pl, perform Steps 2.1 and 2.2.

2.1. Perform create-statement-name-list(pl) to obtain a <statement-name-list>,snl
or <absent*,snl. If snl is not <absent?®, attach snl to eu.

2.2. Perform create-condition-prefix-list(pl) to obtain a <condition-prefix-
list»,cpl or <€absent®,cpl. If epl is not <absent®, attach cpl to eu.

where 1s is a flocate-statement}.
result: a <locate-statement>.

Let §d be the Jfidentifier}y immediately contained in ls. Pertorm Eind-
applicable-declaration(id) +to obtain a {declaration},cdcl. cdcl mast not

Let des he a <declaration-designator> designating the <declaration>,ad, whose
fdeclaration-designator} designates cdol. ad must contain <based>. Let als be
a <locate-statement>: des. For each immediate subnode, x, of 1% other than id
or LOCATE, perform create-abstract-equivalent-tree{x) +to obtain a <file-
option>,y, <pointer-set-option>,y or a <keyfrom-option>,y, and attach y to als.

Step 1.

Case

Cagse

Case 1.3. (Otherwise).
Step 2.

Steap

Step
Step 3. Return eug.
h.h.2.12 Create-locate-statement
operation: create-locate-statement (s}
Step 1.

declaration-contain MEMBER.

Step 2.
Step 3. HReturp als.

106

G.l.2.13 Create-on-statement

Cperation: create-on-statement (os5)
where og is an fon-statementl}.
result: an <on-statementl.
Step 1.
cagse 1.1. o= immediately contains SYSTEM.
Let p ba a <gystem-action>.
cage 1.2. os immediate contains an fon=unit},ou.
Step 1.2.1.
Case 1.2.1.1. ou immediately containz an fexecutable-single-statement},ess.
Let s be the immediate component of ess.
case 1.2.1.2. ou immediately contains a {begin-blocky.
Let 3 be that {begin-block}.

step 1.2.2. Perform create-abstract-equivalent-tres(s) to obtain sa. Let ep be an
<entry-point> whose only subnode is <entry-information>. Let eul be an

<gntry-or-executable-unit-list>:
<entry-or-executable-unit>: ep;
<entry-or-executable-unit>:
cexecutable-unit> . eu: saz;
<entry-or-executable-unik>:
<executable-anit>:
<end-statement>.

step 1.2.3. If oun immediately contains a fcondition-prefix-commalist},cpl, perform
create-condition-prefix-list(cpl) to obtain acpl, and attach acpl to eu.

Step 1.2.8. Let p be an <op-unit>: <procedure>: eul.
Step 2. Let aos be an <on-statement>: p. If os immediately contains SHAP attach <snap>
to aos. For each {fcondition-name}.cn in the fcondition-name-commalist} 4in os,

perform create-conditionfcn) to obtain a <condition-names.acn, and append acn to
the <condition-name-1list> in ac3. Return aos.

4.4.3 CREATE-DECLARATION

Operation: create-declaration(d}

where 4 is a fdeclaration}.
result: a <declaration>.

Step 1. Let cid be the fidentifier} of d. FPerform create-identifier(cid) to obtain an
<identifier>,id.

step 2.
Case 2.1. d contains INTERMNAL.

Let sc be <scope>: <intermnal>.

Ccase 2.2. d contains EXTERHAL.

Let sc be <scopgé>: <gxternal>.

Chapter 3 The Translator 107

Step 3.
Case 3.1.

Cage 3.2.

Cage 3.3.

Case 3.H8.

d econtains VARIMBLE.

Perform create-variable(d) to obtain a <wvariable>,v. Let dt be
<declaration-typer: V.

d contains COMSTANT.

Perform create-named-constant(d) to obtain a <named-constant>,nc. Let dt be
<declaration-type>: nc.

d contains BUILTIHN-
Let dt be a <declaration-type>: <builtin>.
d contains CONDITION.

Let dt be a <declaration-type>: <condition>.

Step 4. Lat dd be a fdeclaraticon-designator} that designates d.

Step 5. Return <declaration>: id sc dt dd.

H.%.3.1 CF -l - stant

Operation:

create-named-congstant (d)

where d is a fdeclaration}.

result: a <named=-constant>.

Step 1. Let nc be a <named-constant>.

Step 2. IF

d declaration-contains a fdimeénsion-attribute},da then perform create-bound-

pair-list{da) to obtain a <bound-pair=-list>,bpl and attach bpl to -o.

Step 3.

Case 3.1.

Case 3.2.

Case 3.3.

d declaration-contains ENTRY.
Perform create-entry{d) to obtain an <entry>,ae. Attach ae to ne.

d declaration-contains FILE.

Attach <file> to nc. Let fd be a <file-description». For each fattribute}
component of d which declaration-contains STREAM, RECORD, INPUT, OOTPUT,
OPDATE, SEQUENTIAL, DIRECT, PRINT, KEYED, or ENVIROMMENT attach <stream>,
<record>, <input>, <outpot>, <update», <Segquential>, <direct>, <print>.
<E§E§§-. or <environment>, respectively, to f£4. Attach fd to nc. IE
<environment> was attached then perform some implementation-defined action.

d declaration-contains FORMAT or LABEL.

Attach <format> or <label> respectively, to nc.

Step 4. Return ne.

108

§.8.3.2 Create-variable

For each distinct wariable a <declaration> which contains <variable> is constructed and
completed according to the declared attributes of the item. A <variable> may be referred
to by a <value-reference>, a <target-refersnce’, or & <subroutine-reference> (see Section

U.H.59).

Operation:

Step 1.

Case 1.1.

Cage 1.2.

Case 1.3.

Case l.4y.

Hote:

Casa 1.5.

Hote:

case 1.6.

create-variable(d)

where 4 is a fdeclaration}.

regule: a <variables>.

4 contains AUTOMATIC.

Let st be a <storage-type>: <storage-class>: <automatic>.

d contains CONTROLLED.

Let 5t be a <storage-type>»: <storage-class>: <controlled:>.

d contains STATIC.

Let st be a <storage-type>: <storage-class»: <staticd.

d contains an {fattribute},atr that immediately contains BASED.

Let st be a <gtorage-type>x: <sLOrage-class>: <based>». If atr also ﬁimply
contains a {reference},r then attach a freference-designator}: designator of

r; to sk,

The translation of r will be completed after the processing of all fdeclare-
statement}s.

d contains DEFINED (freference},.r) or DEFISED {freferencel},r.
Let st be

<storage-typek:
<defined>:
<hage-item>:
{reference-designatork:
designator of r.

If d contains the form {fattribute},atr: POSITION; them atr must have an
fexpression}-

If d contains {fattribute},atr which immediately contains POSITION
{fexpression},e) ¢hen attach a <position>: fexpression-designator}:
designator of e.

The kranslation of ¢ will be completed after the processing of all fdeclare-
statemant}e.

d contains fattribute}: PARAMETER.

Let st be a <storage-typer: <parameter>.

Step 2. Perform creace-data-description(d) to obtain a <data-deacriptiocn>,dd.

Step 3. HReturn a <variable>: st dd.

Chapter 4: The Translator 109

4.68,3.3 Create-bound-pair-list

Operation: create-poupd-pair=-list(da)
where da is a {fdimension-attribute}.
result: a <bound-pair-list>.
gtep 1. Let bpl be the {bound-pair-commalist}y component of da.
Step 2. For each fbound-pair}.bp of bpl such that bp contains an {fupper-bound} and does

not contain a flower-bound}, attach a {flower-bound}: umn; to bp, where un 1is a
copy of an f{fextent-expression} whose concrete representation is the character

1}

Step 3. Let abpl be a <bound-pair-list>. For each {bound-pair},bp component of bpl in
left-to-right order perform Step 3.1.

Step 3.1.
Case 3.1.1. bp contains *.
Append a <bound-pair>: <asterisk>; to abpl.
Case 3.1.2. (Otherwise).
Step 3.1.2.1. Let abp be a
<bound-palr>:
<lower=bound>; alb
<upper-bound>, aup.
Attach to alb an {expression-designator} desgignating the
fexpression} simply contained in the flower-bouna} componeént of

bp- Attach to aup an fexpression-designator} designating the
{expression} simply contained in the fupper-bound} component of

Step 3.1.2.2. If the {lower-bound} component of bp contains a {refer-option}.ro
then perform create-refer-option({ro) to obtain a <refer-
option>,arc and attach are to alb.

Step 3.1.2.3. If the fupper-bound} component of bp contains a {refer-option},ro
perform create-refer-optioniro) to obtain a <refer-coption>,aro
and attach aro to agp.

Step 3.1.2.4. Append abp to abpl.

Step 4. Return abpl.

§.0.3.0 Create-data-description

The <data-description> component of a <declaration> specifies the aggregate properties of
a variable or the descriptor of a variable, and also the data properties associated with
elements of +the wariable. This distinction between structures, arrays, and scalars is
made at a high level, and the individual element data properties are attached to each

scalar.

Operation: create-data-descript jon (d)

where d is a 4{declaration}, a fdescription}, or a {generic-description}
whose subtree would be a valid subtree of a {fdescription}.

result: a <data-description>.

Stap 1. Let dd be a <data-description®.

Step 2. If 4 declaration-contains a fdimension-attribute},da then perform Steps 2.1 and
2.2.

110

Step 2.1. Perform create-bound-pair-list(da) to obtain a <bound-pair-list>,abpl.

Step 2.2. Attach <dimensioned-data-description>: <element-data-description> abpl; to
44.

Seep 3. If d declaration-contains STRUOCTURE then perform Steps 3.1 through 3.8.

Step 3.1. Let dl be the node that jimmediately contains d. Let eljl be the j*th
immediate component of dl that is not a {.}. Let n be the number of such
components and let k be such that elk) is identical to 4. Let i be k+l.
Let 14 be the numeric value of the {level} of d.

Step 3.2. Let idl be an <identifier-list> and let mdl be a <member-description-list>.

Step 3-3. While ifn perform Steps 3.3.1 through 3.3.4.

Step 3.3.1. If eli] does not declaration-contain MEMBER then go to Step 3.4.

Step 3.3.2. Let le be the numeric value of the flevel} of elil. If lesld then go to
S5tep 3.84.

Step 3.3.3. If le=1d+1 then perform Steps 3.3.3.1 through 3.3.3.3.

Step 3.3.3.1. Perform create-data-descriptionfelil) ko aobtain a <data=
description>,add.

Step 3.3.3.2. Append a <member-description>: add; to mdl.
Sstep 3.3.3.3. If 4 is a fdeclaration} then let cid be the {fidentifier} of elil,
perform create-identifierfcid) to obtain an <identifier>,id, and
append id to idl.
Step 3.3.8. Let 1 be i+l.

Step 3.4. If idl has no components then let sdd be a <structure-data-description>:
mdl; otherwise let sdd be a <structure-data-description>: idl mdl. Attach
add to dd.

Etep 4. If d does not declaratiom-contain STRUCTURE then perform Steps 4.1 through 4.8.
Step 4.1. One of the following cases must apply:
Case 4.1.1. d declaration-contains ALIGHED.
Let al be <alignment>: <aligned:>.
Case #.1.2. d declaration-contains UHALIGNED.

Let al be <alignment>: <unaligned>.

Step 4.2. Perform create-data-typel(d) to obtain a <data-type>,.dt. Let idd be an
<item-data-description>: al dt.

Step u4.3. If 4 declaration-contains {initial}.int then let intd be an {initial-
designator} that designates int and attach intd to idd.

Step 4.4. Attach idd to dd.

Step 5. Return 44.

Chapter 4: The Translator 111

4.4.3.5 te-data-t

Operation: create-data-type(d)

where d is a {declaration}, a {description}, or a {generic-description} that
is restricted +to those forms that are egquivalent to
fdescripeion}s.
regult: a <data-type>.
One and only one of the following cases must apply:
case 1. d declaration-contains ARER{farea-size},asz).
Step 1.1. Lat ar be an <area>. If asz immediately contains an {*} then let ed be an
<asterisk>; otherwise let ed be an fexpression-designator} that designates
the fexpression} simple component of asz. Attach ed to ar.

Step 1.2. If aszx contains a frefer-option},ro, perform create-refer-optioniro) to
obtain a <refer-option>,aro and attach are to ar.

Step 1.3. Return <data-type>: <non-computatiomal-type>: ar.
case 2. d declaration-contains ENTHY.

Perform create-entryld) to obtain an <entry>,e and return a <data-type>: <non-
computational-type>: e.

case 3. d declaration-contains FILE.
Aeturn a <data-type>: <non-computational-typé>: <file>.
Caseé 4. d declaration-contains FORMAT or LABEL.

Attach <format> or <label> respectively to ﬂdata—typa),dtl <non=copputational-
type>r. IF d declaration-contains LOCAL then attach <local> to dt. Return dt.

case 5. d declaration-contains POINTER or OFFSET((freference},r)).

Let dt be a <data-type>: <non-computational-type>: <locatord,loc. Attach
<pointer®» or <offset>,ofs, respectively to loc. If r exists then attach a
freference-designator} that designates r to ofs.

case 6. d declaration-contains PICTURE {fpictux-:},pa.

Perform create-picture(pa) +to obtain a <pictured>,p and return a <data-type>:
<ocomputational-type>: p.

case 7. d declaration-contains a fdata-attribute},sa which declaration-contalins
CHARACTER or BIT.

step 7.1. If s=a contains CHARACTER then let &8t be a <string-typer: <character>.
otherwise, let st be a <string-type>: <bit>.

Step 7.2. Let ml be the 4{maximum-length} component of sa. Let aml be a <maximum-
length>. If ml immediately contains an §*F then let ed be an <asterisk>;
otherwise let ed be an {expression-designator} that designates the
fexpreasion} simple component of ml. Attach ed to aml.

Gtep 7.3. If ml contains a frefer-option},ro then perform create-refer-optionire) to
cbtain a <refer-option>,aro and attach aro to aml.

Stap T.U. If d declaration-contains VARYING let v be <varying>; otherwise let v be
<nenvarying>.

Step 7.5. Return a <data-type>: <ccmputaticnal-type>: <string>: st aml v.

Case B. (Otherwise).

Step B.1-

Step 8.2.

Step 8.3.

Step B.4.

Step 8.5.

Step 8.6.

Let dt be a

<data-type>:
<computational-type>:
<arithmetick:
<modeX>,m
<base>,b
<gcale>,s
<precision>, p-

If d4 declaration-contains REAL then attach <real> te m; otherwise, attach

<complex>.

If d4 declaration-contains BINARY then attach <binary> to b; ctherwise,
attach <decimal>.

If 4 declaration-contains FIXED then attach <fixed> to s; otherwise, attach
<float>.

Let cp be the J{precision} declaration-cemponent of d. Perform create-
abstract-egquivalent-treelcp) to obtain a <precision>,ap. The <pumber-of-
digits> in ap must not be greater than the maximum <number-of-digits>
allowed for the <base> and <scale> of dt. Heplace p by ap.

Return de.

§.5.3.6 Create-entry

operations:

Step 1. Let
Step 2. If

create-entry (4l

where 4 is a fdeclaration}. a fdescription}., or a fgeneric-description} that
declaration-contains an ENTRY [([fdescription-commalist},dlolll.

result: an <entry>.
ent be an <entry> with no subnodes.

dlo exists, then for each fdescriptiom},pd in dlo that does not declaration-

coptain MEMBER, perform Steps 2.1 and 2.2,

Step 2.1.
Etﬂp 2sde

5tep 3. If
3.1

Step 3.1.

Step 3.2.
Step 3.3.

Step b. If

Perform create-data-description(pd) to obtain a <data-description>,dd.

append a <parameter-descriptor>: dd; to the <parameter-descriptor-1list> in
enk.

d declaration-containg BRETURNS (fdescripticn-commalist},de), perform Steps
through 3.3.

tet rd be the {description} immediate componént of de that does not
declaration-contain MEMBER. There must bDe exactly one such fdescription}.

Perform create-data-descriptionird) to obtain a <{data-description>,dd.

Attach a <returns-descriptor>: dd; to ent.

d contains OPTIONS, attach <options> with some implementation-defined

gsubnodes, to ent.

Step 5. Return ent.

Chapter 4: The Translater 113

4.4%.3.7 Create-refer-option

Operation: create-refer-option{crol

Step 1.

Step 2.
Step 3.

Step .

h.4.3.8

where cro is a frefer-option}.
résult: a <refer-option>.

Let ur be the f{funsubscripted-reference} of cro. Perform Eind-applicable=
declarationf{ur}) to obtain d.

Perform find-fully-qualified-name(d) to obtain an fidentifier-list},idl.

Perform create-abstract-eguivalent=tree{idl) to obtain an <identifier-
list>,aidl.

Return a <refer-option>: aidl.

Create-identifier

Operation: create-jdentifier(id)

Step 1.

where id is an fidentifier}.
regsult; an <identifier>.

Return an <identifier> whose concrete-representation is the same as that of id.

3.6.3.9 Create-initial-element

Operation: create-infitial-element(ine)

Step 1.

Casea

Case

Case

Case

where ine is an finitial-elementd}-
result: an <initial-element>.
Let aine be an <initial-element>.
1:1: ine immediately contains * as its only component.
Attach an <asterisk> to aine.
1.2. ine immediately contains a {parenthesized-expressionk.cpe.

Perform credte-abstract-equivalent-treslcpe) to obtain a <parenthesized-
expression>,pe and attach pe to aine.

1.3. ine immediately contains an finitial-constant-one},ico.
Lat & be the fexpression} whose concrate-representation is the same as the
concrete-representation of ico. Perform create-expression{e}l te obtain an
<expression>,ae, and attach a <parenthesized-expression>: ae; to aine.

1.4. ine immediately contains an fiteration-factor},itf.

Perform create-abstract-equivalent-tree(itf) to obtain aif and attach aif to
aine.

case 1.8.1. ine immediately contains an *.

114

Attach an <initial-element-list>: <initial-element>: <asterisk>;; to
aine.

Cage 1.4.2. ine immediately contains an finitial-constant-two},ict.

Let e be the {expression} whose concrete-representation is the same as
the concrete-representation of ick. Perform create-expressioni(el to
obtain an <expression>.,ae. Attach an <initial-element-list>: <initial-
element>: <parenthesized-expression>: ae;;; to aine.

case 1.4.3. ine immediately contains an {initial-element-commalist}.liec.

Perform create-abstract-eguivalent-tree({iec) to obtain aiec, and attach
alec to aine.

Step 2. Return aine.

G.4.8 CREATE-EXPRESSION

Operation: create-expressionie,bnpl)

where @& is an 4{expression}, {fexpression-seven}, {fexpression-six},
fexpression=-five}, fexpression-four}. fexpreasion-three},.
fexpression-two}, fexpression-one}, {primitive-expression},
{prefix-expression}, or {parenthesized-expressionk},
Enpl is a [<by-name-parts-list>].

result: an <exprassion>.

Case 1. e is an fexpression}, {fexpression-seven}, {expression-six}, {fexpression-five},
fexpression-four}, fexpression-three}, or an fexpression-two} and e has only one
componeént, ec.

Perform create-expression{ec,bnpl) to obtain an <expression>,asc. Return aec.

Caze 2. e is an {fexpression}, fexpression-seven), fexpression-six}, fexpressicn-five},
texpression-four}, {expression-three}. or an fexpression-one} and € bhas three
compponents: el, op, and e2.

Step 2.1. Perform create-expressionfel,bnpl) to obtain an <expression>,ael. Perform
create-expression(eZ,bnpl) to obtain an <expression>,aei.

Step 2.2. If op is or has |; & >, >=, =, <=, <, =3y 2=, €, [|a *s =+ ¥, £y ** then
let acp be <pr>, <and>, <gt>, <ge>, <eq>, <le>, <lt>, <le>, <pe>, <ge>,
<cat>», <add», <subtract>, <multiply®, <divide>, or <powWwer> respectively.

Step 2.3. Let 441 and 442 be the <data-description>s immediately contained in ael and
ae?, respectively.

The associated <aggregate-type»s of ddl and d4d2 must be compatible.
Individuoal <data-type>s in ddl and dd? and corresponding <data-type>s in ddl
and dd2 must satisfy any constraints specified in the “Constraints®
paragraphs of the section of Chapter % for the <infix-operator>,aop.

ILet dd be a <data-description> whose associated <€aggregate-type> is the
common <aggregate-type® of ddl and ddz and whose <data-typers are defined as
"scalar-result-types”™ in the “Attributes® paragraphs of the section of
Chapter 9 for the <infix-operator»,aop in terms of the corresponding <data-
type>s in ddl and d4d2.

Etep 2.4. Return an

<expression>:
<infix-expression>g
ael
<infix-operator>:
aop;
ael
ad;
dd.

Chapter 4: The Translator 115

Case 3.

Cage

Case

Cage

Cage /.
Stap
Step
Step

Step

Cage 5.

Step

Step

118

e is a {primitive-expression}.

Let ec be the immediate component of e.

3.1.

3.2.

3.3.

ec is a freference}.

Perform create-reference(ec,<value-reference>,bnpl) to obtain a <value-
reference>,vr. Let dd be the <data-description> immediately contained in vr.
feturn an <expression®: wvr dd.

ec is a fconstant}.

Perform create-constanti{ec) to obtain a <constant>,c. Let dt be the <data-
type> immediately contained in c. Return an

<@éxpressions:

[
<data-description>:
<item-data-description>: dt.

ec is an fisub}.

e must be contained in an fattribute} that immediately contains DEFINED.
Let i be an <integer> whose concrete-representation is the same as that of
the finteger} in ec. Let dt be a <data-type> that is an integer—type. Return
an

Lexpression>:
Lisub>: 1p
<data-descriptioni>:
<item-data-description»: dt.

e ia a {prefix-expression}: op el.

h.1-
§.2.
4.3.

Balja

Perform create-expression(el,bnpl) to obtain ael.
I1f op has =, #, = then let acp be <pot>, <plus>, or <minus> respectively.
Let ddl be the <data-description®> immediately contained in ael.

The <data-type>s in d4d1 must satisfy any constraints in the “"Constraints®
paragraphs of the section of Chapter 9 for the <prefix-operator>,aocp.

Let dd be a <data-description> whose assoclated 4aggregate-type® is the same
as that of ddl and whose <data-type>s are defined as “scalar-result-types”
in the *"Attributes® paragraphs of the section of Chapter 9 for the <prefix-
operator>,aop in terms of the corresponding <data-type> in ddl.

Return an

<expression®i
<prefix-expressions:
cprefix-operator>: aop)
ael
ddy
4ad.

e iz a fparenthesized-expressionk: {fexpressiony,el) .

5.1.

5-2-

Parform create-expression(el,bnpl) to obtain an <expression>,ae. Let dd be
the <data-description> immediate component of ae.

Return an

<expression>:
<parenthesized-expression>:
ae
dd;
dd.

4.4.5 CREATE-REFERENCE

operation: create-referencel{cr,targ,bnpl}

where er is a freference} or an {unsubscripted-réference},

targ is a <variable-reference’>, <value-reference’>, <sabroutine-
reference>, or <target-reference>,
bnpl is a [<by-name-parts-list>].

resulé: a tree of the same Lype as targ.

step 1. If o

immediately containg an {farguments-list},ca, let al be a copy of ca.

otherwise let al be an farguments-1ist}. Perform find-applicable-declarationlcr)
to obtain a fdeclaration},cd.

Case 1.1. cd contains a fgeneric-attribute}.

Let dcl be <abSent¥.
Case 1.2. cd declaration-contains MEMBER.

Let red be the rightmost preceding fdeclaration} that does not declaration=
contain MEMAER. Let del be the <declaration> whose 4declaration-designator}
designates red.

Case 1.3. (Otherwise).

Let del be the <declaration® whose fdeclaration-designator} designates cd.
It mast not contain <conditioni>.

Step 2.

rase 2.1. del is a <declaration> that has <variable>.

Step 2.1.1.

step 2.1.2.

Let des be a <declaration-designator> designating dcl. Let dd be a copy
of the <data-description> in decl. Let ref be a <variable-reference>:
des dd.

perform find-fully-qualified-nameicd) to obtain an fidentifier-list},il.
perform create-abstract-egquivalent-tree(il) to obtain an <identifier-
list>,idl. Delete the first <identifier> in idl. If idl still contains
any <identifier>s, attach idl to ref, and for each <identifier>,id, in
4dl, taken in order, perform Steps 2.1.2.1 through 2.1.2.3.

Step 2.1.2.1. Let dd be the <data-description> immediately contained in ref.

It will have a <structure-data-description>,sdd. If dd has a
<dimensioned-data-description®>, Llet bpl be the <bound-pair-list>
in dd; otherwise let bpl be a <bound=-pair-list>». Let i1 be the
<identifier-list> in sdd, and let mdl beé the <member-description-
list> in s5dd. Let i be the integer such that the i'th
<identifier> in il equals did, and then let mdd be the <data-
description® immediately contained in the i‘*th <member-
degeription> of mdl.

Step 2.1.2.2. If mdd has a <dimensicned-data-deacription>, append copies of the

£bound-pair>s in mdd to bpl, and let tdd be the <item-data-
description> ar <structure-data-description?> immediately
contained in the <element-data-description> of mdd. Otherwise,
let tdd be the <item-data-description> or <structure-data=
description» immediately contained in mdd.

Step 2.1.2.3. If bpl contains <bound-pair>s, replace dd by a

<data-descriptionz>:
<dimensioned=data-descriptioni:
<element-data-description>:
tdd;

bpl-
Otherwise replace dd by a <data-description>: tdd.

Chapter 4: The Translater 117

Step 2.1.3. If cr is a {reference}, then let br be the {basic-reference} immediately
contained ' in ¢¥, and perform collect-subacripts(br) to obtain a
fsubscript-commalist},sl. Otherwise let sl be a fsubscript-commalist}.

Ccase 2.1.3.1. The <data-description> immediately contained in ref does not have
a <dimensioned-data-descripticn>.

In this case sl must not contain any {subscript}s.

Case 2.1.3.2. The <data-description>,dd, immediate component of ref has a
<dimensioned-data-description>.

Perform apply-subscriptsicr,ref,sl,all.
Case 2.2. del is a <declaration> that has <named-constant>.
Perform create-named-constant-reference(dcl) to obtain a <named-constant-
reference>,ref. If the <data-description> immediately contained in ref has a
<dimensioned-data-description», let sl be a {subscript-commalist}, and
perform apply-subscripts(cr,ref,sl,all.
Case 2.3. del is a <declaration> that has <builtin>.
Step 2.3.1.
case 2.3.1.1. al has an farguments}.
In this case, al mast have only one farguments}. Let ar be the
farguments} in ca. Perform create-argument-list{ar) +to obtain
args. Delete the {farguments} from al.
cage 2.3.1.2. al does not have an farguments}.
Let args be <absent>.
Step 2.3.2.
Case 2.31.2.1. targ is 4 <value-reference>.

Perform create-builtin-function-referenceldel,args) to obtain a
<builtin-function-reference>, ref.

Case 2.3.2.2. targ is a <target-reference>.

Ferform ereate-pseundo=-variable-referencel{dcl.args) to obtain a
<paeudo-variable-reference>,ref.

Cage 2.3.2.3. targ is a <variable-reference> or a <subroutine-reference>.
This case must not occur.
Case 2.0. cd has a fgeneric-attribute}.ga.
Step 2.4.1.
Caze 2.4%.1.1. al has an farguments}.

Lek ar be the first 4{arguments}y in ca, and perform create-
argument-list{ar) to obtain args.

Case 2.4.1.2. al does not have an farguments}k-

In this case targ must be a <subroutine-reference>. Let args be
dabsent®.

Step 2.4.2. Perform select-generic-alternativelga,args) te obtain a <value-
reference>,vr. Let ref be the first immediate component of vr.

Step 3.

Ccase 3.1. er immediately contains a flocator-qualifiery.lq.

118

Let r be the {reference} immediately contained in lg. Perform create-
referencelr,<value-reference>) to obtain a <value-reference>,vr. All the
following conditions must hold:

(1) ref must be a <variable-reference>;

{2) the <declaration> designated by the <declaration-designator> immediately
contained in ref must have <based>;

(3) the <data-description> immediately contained in vr must immediately
contain an <item~-data-description> whose <data-type> must hawve

<locator>, and if the <data-type> has an <offset>,os, then os must hawve
a <variable-reference> or a freference-designatork}.

Attach a <lecator-qualifier>: vE: to ref.

Case 3.2. ¢r does not immediately contain a {flocator-qualifiecr} and del is a
<declaration> that has <variable>.

If del contains a <based>,b, then b must immediately contain a <value-
reference> or a {reference-designator}.

Case 3.3. (Otherwisel).
Ho action.
Step 4. If al contains an facgquments}, perform Steps .1 Eo §.h.

Step 4.1. ref must not be a <gubroutine-reference>. Parform create-valuoe=
reference(ref) to obtain evr. The <data-description> immediate component of
evr must immedlately contain an <item-data-description> whose <data-type>

must have <entry>.

Step 4.2. Let ar be the first farguments} in al. Perform create-argument-list{ar) to
obtain args. Delete ar from al.

Step 4.3. Perform create-entry-referencelevr.args) to obtain ref.

Step U.0. Go to Step 4.

Step 5. If bnpl in not <absent» and ref is a <variable-reference> then perform apply-by-
name-partsiref,bnpl) to obtain a <variable-reference>,ref. If bnpl is not
dabsent* and ref is not a <variable-reference>, then the <data-description> of
ref must immediately contain <item-data-description>.

Step 6.
Case 6.1. targ is a <variable-reference>.

In this case ref must be a <variable-réeference>. Return ref.

Case 6.2. targ is a <value-reference>.

rief must not D a <aubroutine-referancel. Perform cocreate-value-
referencel{ref) to obtaln a <value-reference>,vr. Return vr.

Cafe 6.3. targ is a <subroutine-reference>.

If ref iz a <subroutine-reference>, return ref. Otherwise perform ereate-
value-reference{ref) to obtain a <value-reference®,vr whose Iimmediately
contained <data-description> must immediately contain an <item-data-

description> whose <data-type> must have <entry>. Perform create-entry-
referonceiref) to obtain sr; which must be a <subroutine-referenceX. Return
EE .

Ccage §.4. targ is a <target-reference>.

In this case ref must be a <variable-reference> or <pseudo-variable-
reference>. Let dd be a copy of the <data-description> immediately contained
in ref. If ref is a <variable-reference>, perform trim-dd{dd). Return a
<target-reference>: ref d4dd.

Chapter 4: The Translator 119

4.4.5.1 Collect-subscripts

Operation:

Ccage 1.

collect-subscripts{br)

where br is a {basic-reference}.

regult: a fsubscript-commalist} which may have no COmponents.

br has a {structore-gualification},sqg-

Let br2 be the fbasic-reference} immediately contained in sg. Perform collect-

subseripts (br2)

to abtain a fsubgscript-commalist}.sl. If 5 has an

farguments},args, then args must have a fsubsceript-commalist}.sll, append the
fsubscript}s in 512 to sl, appending f£.} as required. Finally, return sl.

br does not have a fstructure-gualification}.

Case 2.

Return a fsubscript-commalist}.
Belho5.2 =by-n = £
operation: apply-by-name-parcts{voo, bop)

where vro i
bnp i

8 a <variable-reference’,
g2 a <by-name-parts-list>.

result: a <variable-reference>.

case 1. The <data-description>,dd immediate component of wvro has a <structure-data-

120

description>.

Step 1.1. Let vr be a copy of vro. Let cdd be a

<data-descriptioni:
<structure-data-description>;:

For each

<mémber-description-list>,mdla.

<identifier-list>,idl componeént of bnp, taken in order, perform

steps 1.1.1 and 1.1.2.

Step 1.1.1. For each <identifier>,id in idl, taken in order, perform Steps l.1.1.1
throwgh 1.1.1.3.

EtEp 1.1:1:1-

step 1.1.1.2.

Step 1.1.1.3.

dd will have a <structure-data-descriptions,sdd. If dd has a
<Adimensioned-data-degcription>, let bpl be the <bound-pair-list>
in dd; otherwise let bpl be a <bound-pair-list> with po
component. Let il be the <identifier-list> in sdd, and let mdl
be the <member-description-list> in sdd. Let i be the integer
such that the i'th <identifier> in il equals id, and let mdd be
the <data-description> in the i'th <member-description> of mdl.

1f mdd has a <dimensioned-data-description>, append copies of the
<bound=pair>»s in mdd to bpl, and let +tdd be the J<Jitep-data-
description> or <atructure-data-deacription> immediately
contained in the <element-data-description> of mdd. Otherwise,
let tdd be the <item-data-description> or <strocture-data-
description> immediately contaimed in mdd.

If bpl contains <bound-pair>s then let dd be a

<data-description>;
<dimensioned-data-descriptioni:
<element-data-description>:
tadd;
bpl.

otherwise let dd be a <data-description?>: tdd.

Step 1.1.2. Append dd to mdla.
Step 1.2. Replace dd by cdd and append bnp to vr.
Step 1.3. Return vr.
Case 2. (Otherwise).

Step 2.1. Return vro.

§,4.5.3 Apply-subscripts

Operation: apply=subscripts (cr,ref,sl,al)

where cr is a {reference},
roef iz a <variable-reference> or a <named-constant-reference>,
8l is a {subscript-commalist},
al is an farguments-1list}.

Step 1. Let dd be the <data-description> immediately contained in ref. Let m be the
number of <bound-pair»s in 44, and let n be the number of {subscript}s in sl In
may be 0):. If n €« m, and if al has a first immediate component, args, that has a
fsubseript-commalist}, then perform Step 1.1.

Step 1.1. Ahppend +the §{subscript}s in args to sl, appending {:.} as required. Delete
args from al.

Step 2. Let n be the number of {subscript}s in sl which are not in any {fexpression} also
in s8l.

Case 2.1. n = 0.

Attach a <subscript-list> containing m occurrences of <asterisk> to ref.

Case 2.2. n = 0.

Step 2.72.1. In this case n must egual m. Attach a <subscript-list>,sl2 to ref. For
i=l,...,n, pecform Step 2.2.1.1.

Step 2.2.1.1. 0f those {subscript}s contained in cr which are not contained in
any {expression} contained in ¢r, let s be the i°th one. If s
immediately contains an fexpression}.e. perform create-
expression{e) to obtain an <expression>,e2, and append a
<gubscript>: e2;: to #l2. Otherwise append a <subscripti:
cagterisk>; to sl2.

Step 2.2.2. FOr i=nssss+1; perform Step 2.2.2.1.

Step 2.2.2.1. If the i'th <subscript> in s512 contains an <expression>, delete
the i'th <bound-pairc> in dd.

Step 2.2.3. If the <bound-pair-list> in dd noW has no <bound-pair>s, let dd2 be the

¢item-data-description>» or <structure-data-description> in dd, and then
replace 44 by a <data-description>: ddl.

b.4.5.4 Create-value-reference

Operation: create=vajue-reference (ref)

where ref is a <variable-reference>, <procedure-function-reference>,
chuiltin=-funetion-reference>, or <named-constant-references.

regult: a <value-reference>.
Step 1. Let dd be a copy of the <data-description> immediately contained in ref.

Step 2. If ref is a <variable-reference> perform trim-dd{dd). HReturn a <value-
raference>: ref dd.

Chapter 4: The Translator 121

§.4.5.4.1 Teim-dd

Cperation: crim-ddldd)
where dd is a <data-description>.

Step 1. Delete from dd any occurrences of the following categories that are not
contained in an <entry>:
<alignment>,
<initial>,
<identifier-list>,
<local>,
<optionss,

<varyinas,
<nonvarying>

Replace by an <asterisk> the immediate component of each <maximum-length>,
<area-size> or <bound-pair> that is not a component of an <entry>.

B.4.5.5 Create-named-constant-refersnce

Operation: create-named-constant-reference (dael)
where del iz a <declaration>.
result: a <named-constant-reference>.

Step 1. Let ct be a copy of the leftmost immediate component of the <named-constant>
component of dgl. Let dt be an

<item~-data-description>:
<data-type>:
<non-computational-types:
ct.
Step 2.
Case 2.1. dcl contains a <bound-pair-list>,bp.

Let n be the number of <bound-pair>s in bp. Let bpl be a <bound-pair-list>
containing n subnodes <bound-pair>: <asterisk>. Let dd be a

<dimensioned-data-description>:
<glement-data-descriptioni:
de;
bpl-
Case 2.2. {Otherwlse).
Let dd4 be dt.
Step 3. Let ddg be a <declaration-designator> designating dcl. Return a
<pamed-constant-reference>:
ddg

<data-description>:
dd.

142

4,8.5.6 Create-argqument-list

Operations: create-argqument-list (al)

step 1.

Etep 2.

Step 3.

Step 4.

where al is an farguments}.
result: an <argqument-list> or <absent®.

If al deoes not contain a fsubscript-commalist} then return <€absent?»; otherwize
let sc¢l be the fsubscript-commalist} immediately contained in al.

Lat n be the number of {subseript} immediate components of scl. The {subscript}
immediate components of scl must not immediately contain #.

Lat xal be an <argumept-list> and let ecli), i=l,...,n be the {expression}
simple components of scl taken in left-to-right order.

for each element, eclil, i=l,...,n, perform Steps 4.1 and 4.2.

Step #.1. Perform create-expression{eclil)) to obtain an <expression>,eaclil.

Step 4.2. Let rdd be the <data-description> immediately contained in eaclil. Append to

xal an

carguments:
eacli] rdd.

Step 5. Return xal.
4.5.5.7 Create-bujiltin-function-reference

A builtin-function-name is a seguence of uppercase letters and digits such that the

corresponding sequence of lowercase letters and digits followed by “-bif" is the
category-name of a subnode of <builtin-function>.

Operation: greate-builtin-function-reference(ad,all

Step 1.

Step 2.

Step 3.

where ad is a <declaration>,
al is an [<argument=list>].

result: a <builtin-function-reference>.

Let did be the <identifier> contained in ad. There must be a <builtin-
function>, bf, whose name or abbreviation fas listed in Section 2.7) corresponds
to the concrete-representation of id. Let bfr be a <builtin-function-
reference>: bf.

The number of <argument>»s in al must be as shown in the "Arguments® section of
the description of bf (see Chapter 9).

case 3.1. al is not <€absents.

Step 3.1.1. All <data-description>s immediately contained in the <argument>s in al

must satisfy the constraints given in the “Constraints® section of the
same builtin-function description.

Step 3.1.2. Append al to bfr.

Cagse 3.2. (Otherwise).

Step b.

Step 5.

Ho action.

Construct a <data-description®,rdd, as specified in the "Attributes® section of
the same <builtin-function> description. Append rdd to bir.

Return bfr.

Chapter 4: The Translator 123

4.4.5.8 Create-pseudo-variable-reference

Operation: create-pseudo-variable-reference(ad,al)

where ad is a <declaration>,
al is an [<argument-list>].

result: a <pseudo-variable-reference>.
Step 1. Let id be the <identifier> contained in ad. There must be a <pseudo-variable>,pv
whose name corresponds to the concrete-repreésentation of id. Let pvr ba a
<pseudo-variable-reference>: pv.

Step 2. The npumber of <argument>s in al must be as shown in the “Arguments® section of
the description of pv (see Chapter 7).

Step 3.
Case 3.1- al is mot <absent>.

Step 3.1.1. All <data-description>s immediately contained in the <argument>a in al
must satisfy the constraints given in the "Constraints™ section of the
degcription of pv.

Step 3.1.2. Attach al to pvr.

Case 3.2. (Otherwise).
No action.

Step 4. Construct a <data-description>,rdd, as specified in the “Attributes® section of
the same <pseudo-variable> deseription. Attach rdd to pvr.

Step 5. Return pvr.

4.8.5.9 Create-sntry-referance

Operation: create-entry-reference(vr,all

where vr is an <value-reference> whose <data-type> has <entry>,
al is an [<argument-list>].

result: a <procedure-function-reference> or a <subroutine-referencel.
gtep 1. Lot dd be the <data-description?> immediately contained in wvr.
Step 2.
case Z.1. dd =simply contains a <parameter-descriptor-liste,.pdl. al must not be
4absent*. The number of elements in pdl must be equal to the number of
elements in al.
Cage 2.2. (Otherwise).
al must be <abgent». Go to Step 4.

Step 3. For each <argument>,arg, Aimmediate component of al, perform Steps 3.1 through
3.3.

Step 3.1. Let pdd be the <data-description> immediate component of the <parameter-
descriptor> corresponding to arg.

Step 3.2.

case 3.2.1. arg Aimmediately contains <expression>: <value-referance>: <variable-
reference>,var. Perform test-matching(var,pdd) to obtain tv. If tv is
«<false®, then attach <dummy> to arg.

12u

Case J.2.2. (Otherwise).
Attach <dummy> to arg.
Step 3.3.
case 3.3.1. <dummy> was attached to arg in Step 3.2.

Let rdd be the <data-description> immediately contained in arg. xdd
must be proper for assignment to pdd {see Section 4.8.2.3).

case 3.3.2. (Otherwise).
Ho action.
Step U.
case 4.1. dd simply contains a <returns-descriptor>,zd.

Let rde be a copy of the <data-daescription> immediately contained in rd.
Return <procedure=function-reference>: vr [(all rde.

case 4.2. {(Otherwise).

Return <subroutine-reference>: vr lall.

4.0.5.10 Test-matching

Cperation: test-matching (var,pd}

where var ls a <variable-reference?,
pd is a <data-description> immediate component of a <parameter-
descriptor>.

result: <£true» or <false>s.

Step 1. Lee del be the <declaration> designated by the <declaration-designator? in wvar.
If dcl contains a <defined> whose <base-item> contains an <isub>, return
dfalses.

Step 2. Let dd be a copy of the <data-description> immediavely contained in var. Let
pdd be a copy of pd.

step 3. If any of the following subtrees exist as a component of dd or pdd then delete
every OCCUEEence.

<local>

<initial>

¢variable-reference> as component of an <offset>
cparameter-descriptor=-1list>

<returns-descriptor>

<options>

<identifier-list> as a component of a <structure-data-description>.

Step 4. If pdd and dd are not egual, disregarding comparison of the subnodes of any
<maximum-léngth>, <bound-pair>, or <area-gize>, then return “falsed.

Step 5. For each <extent-expression>,el, in pdd, perform Step 5.1.

Step 5.1. If there does not exist a corresponding <extent-expression>,el, in a4,
return <false». If e2 contains a <refer-option>, return <falser. Let exl
and ex2 be the <expression>s im el and e2, respectively. IFf exl or ex?
containg a <declaration-designator>, retorn <false*. Perform evaluate-
restricted-expression(exl) and evaluate-restricted-expression(ex?) to obtain
vl and vZ. If vl or v2 is not a <comstant> having <computational-type>,
return <falszed». Otherwise, perform evaluate-expression-to-integer(exl) and
evaluate-expression-to-integer (ex2) to obtain <integer-valuess i1 and i2
raspectively. If i1 and 412 are egual, return <troe¥; otherwise return

<false>.

Chapter &: The Translator 125

Step 6. Return <trued.

§.4.5.11 Select-generic-alternative

Operations:

select-generic-alternative(ga,argl

where ga is a {generic-attribute},
arg is an [<argqument-list>].

result: a <value-referenceX.

Step 1.

Step 2.

Gtep ds

126

Case 1.1

arg is <€abhsent».

ga must have at least one fgeneric-element} that does not have a {generic-
deacription-commalist}. Let rr be the {reference} immediately contained in
the first such {fgeneric-element}.

Case l.2. arg is an <argument-list>.

Step 1-.2.1. L&t na be the number of <argument>s in arg. There most be at least one
{fgeneric-element} in ga. Let ge be the first such {generic-element}.

Step 1.2.2. et ngd be the number of {generic-description}a in ge that do not
declaration-contain MEMBER. If ngd does not equal na, go to Step 1.2.5.

Step 1.2.3. For i=1,...

na, perform Steps 1.2.3.1 and 1.2.3.2.

Step 1.2.3.1. Let ai be the i'th <argument®> in arg.

Let

gd be the i'th {generic-description} in ge that does not

declaration-contain MEMBER and let gdl be {generic-description-
list}: gd.

case l.2.3.1.1.

Case 1.2.3.1.2.

There is a fgeneric-deacription} in ge that follows gd and
does not declaration-contain MEMBER.

Let gdf be the leftmost such fgeneric-description}. Append
to gdl, in left-to-right order, copies of all <{generic-
description}s in ge between gd and gdf.

{Otherwise) -

Append to gdl in left-to-right order, copies of all
fgeneric-description}s in ge following gd.

Step 1.2.3.2. Perform test-generic-matening(ai,gdl) to obtain tval. If tval ia
<false> go to Step 1l.2.5.

Step 1.2.4. Let rr be the freference} immediately contained in ge. Go to Step 2.

Step 1.2.5. Let ge ba

the next {generic-element} of ga following the current ge.

There must be such a fgeneric-element}. Go to Step 1l.2.2.

Perform find-applicable-declaration(rr) to wobtain a {declaration},decl, which

must mot contain a {generic-attribute}.

perform create-reference(rr,<value-reference>} to obtain vr. Return vr.

4.4.5.

Operation:

Case 1.

Case 2.

t-generic-matchin

test-generic-matching{ai,gdl}

where ai is an <argument>,
gdl is a fgeneric-description-list}.

result: <true* or <falser.

gdl contains only {generic-description}: *-

Return <trues.

{Otherwizel.

Step 2.1. If ai is of the form

<argument>1
<expressions:
<value-reference>:
<variable-reference>,ve;;

then let dd be the <data-description> immediately contained in wr.

Otherwise, let dd be the <data-description> immediately contained in ai.

Step 2.2. Perform test-qeneric-aggregationigdl,dd) to obtain tval. Return tval.

4.8.5.13 Test-qeneric-agqregation

Operation:

Etep 1.

Step 1.1.

Step 1.2.

Step Ll.3.

Step 2-

Step 3.

Let

test-generic-aqgreqation (gdl,dd)

where gdl is a fgeneric-description-list},
dd is a <data-descripktion>.

result: «true» or <£false».

gd be the first {generic-description} component of gdl. If gd declaration-

contains DIMENSION then perform Steps 1.1 through 1.3.

If

If dd does not immediately contain a <dimensioned-data-description> then
return <false®.

If the number of * components of the f*-commalist} of gd is not equal to the
number of <bound-pair> components of the <bound-pair-list> of dd., then
return <false».

Delete tha DIMEWSION {asterisk=-bounds} declaration-contained in gd.

dd immediately contains a <dimensioned-data-description> then let dd be a

<data-deseription>: tdd; where tdd is the immediate component of the <element-
data-description> of dd.

Case 3.1. gd Aeclaration-centains STRUCTURE.

Step 3.1.1. Let 1v be +the wvalue of the flevel} of gd. Let nl be the number of

flevel} components of gdl with walue egual te 1lveél which follow gd
without any intervening component of gdl whose {level} has value less
than or equal to 1v.

Step 3.1.2. If dd does not immediately contain a <structure-data-description>,sdd

then return <false*. Let ndd be the number of <data-description> simple
components of sdd. If ndd does not equal nl then return <falser.

Chapter 4: The Translator 127

Step 3.1.3. For il,...,nl perform Steps 3.1.3.1 to 3.1.3.0.

Case

Step 3.1.3.1. Let tgdl be a copy of gdl. pelete from tgdl the {fgeneric-
description} immediate components that precede the i'th {generic-
description} whose flevel} has value Lvél.

Step 3.1.3.2. Let tdd be the 1'th <data-description> of dd.

Step 3.1.3.3. Perform test-generic-aggreégation{tgdl,tdd) to obtain tval.

Step 3.1.3.4. If eval is <false®> then return «<falsed.

3.2. (otherwise).

Step 3.2.1. Delete any flevel} or MEMBER components of gd.

step 3.2.2. Perform test-generic-descriptionigd,dd) to obtain twval.

Step 4.

Returm twval.

B.4.5.10 Test-generic-description

Operations: test-generic-description{gd,dd}

Step 1.

Case

Cage

Case

Step 2.

Step 3.

Step H.

Step

step

Step
Step

128

where gd is a {generic-description},
dd is a <data-description>.

result: <€true» or <falses.

1.1. 44 immediately contains <structure-data-description>.
Return £false>.

1.2. dd immediately contains <dimensioned-data-description>.
Return <false>.

1.3. dd immediately contains <item-data-description>.
No action-

IE a4 does npot have <alignment> then delete any ALIGHNED or UNALIGHED
declaration-contained in gd.

If 44 has neither <varying> nor <ponvarying> then delete any VARYING or
HONVARYING declaration-contained in gd.

Let gdal be the {generic-data-attribute-list} in gd. For each fgeneric-data-
attribute},gda in gdal whose first immediate component atr appears in Table 4.1,
perform Steps 8.1 to 8.4.

4.1. Perform create-ahstract-equivalent-treelatr) to obtain absatr.

4.2. 1f 44 does not simply contain a node whose node type is the same as absatr
then return €falses.

4.3. If atr is neither ENTRY nor PRECISION then delete gda from gdal.

4.4. If atr is EWTRY or PRECISION and is the sole component of gda, then delete
gda from gdal.

Step 5. If

gdal contains a J{generic-data-attribute},gda which immediately containz a

fogeneric-precision},.gprec then perform Steps 5.1 to 5.3.

Step 5.1.

Step 5.2.

Step 5.3.

Step 6. If

If dd does not have <precision> or if dd has <pictured>», then return
“falses.

Let prec be the <precision> of dd. Perform test-generic-
precision{gprec,prec) to obtain tval.

If tval is <false® then return <€false». Otherwise delete gda from gdal.

gdal contains a J{generic-data-attribute},gda which immediately contains a

{description-commalist}, then perform Steps 6.1 to 6.4.

Btep 6.1.
Step 6.2.

Step 6.3.

Step 6.0.

Step 7. If

If dd does not have a <parameter-descriptor-list> then return <€falses.
Let pdl be the <parameter-descriptor-list> simply contained in dd.

gd must mnot contain any fidentifier} components. Perform create-data-
description(igd) to obtain a <data-description>,qgdd. Parform peplace-
concrete-designators (gdd). Let gpdl be the <parameter-descriptor-1ist> in
gdd. For each <parameter-descriptor>,.gpd in gpdl, perform validate=
descriptor (gqpd) .

If gpdl is not egqual to pdl then return <false>. Otherwise delete gda from
gdal.

gdal contains a {generic-data-attribute},gda which immediately contains a

freturns-descriptor} then perform Steps 7.1 to T.4.

Etﬁ‘p T.1.
Step 1.2.

Stap 7.3.

Step 7.4.

Step 8. If

If dd does not have a <returns-descriptor>» then return «false».

Let rd be the <returns-descriptor? simply contained in dd.

gd must not contain any J{identifier} components. Perform create-data-
description{gd) to obtain a <data-description>,qdd. Perform replace-
concrete-designators (gdd) . Lat grd bpe the JLreturns-descriptor> in gdd.
Perform validate-descriptorigrd).

If grd is not equal to rd then return “€falses. Otherwise delete gda from
gdal.

gdal contains a {generic-data-attribute},gda which immediately contains

fpicture},p then perform Steps 8.1 to B.u.

Step B.1l.
Step 8.2.
Step B.3.

Step B.4.

If dd deoes not have a <pictured> then return <false>.
Let pd be the <pictured> component of dd.
Perform create=picture(p) to obtain a <pictured>,ap.

If ap is not egual to pd then return <false>»; otherwise delete gda from
gdal .

Step 9. All nodes must have been deleted from gdal. Return <trued.

Table 4.1. Concrete Terminals of Significance to Test-generic-description.

| e s 1
I I
| ALIGHED COMPLEX FLOAT POINTER |
| RREA DECTIMAL FORMAT PRECISIOHN]
| BIHARY EHNTRY LABEL REAIL |
| BIT FILE HONVARY I G UNALIGHED I

|
'. |

CHARACTER FIXED OFFSET VARYING

PR e . e ——

Chapter 8: The Translator 129

4.8.5,15 Test-gqeneric-precision

Operations test-gqeneric-precision (gprec,prec)
where gprec is a {generic-precision},
prec is a <precision>.
result: €troe» or «€£false>.
Stap 1.
tase 1.1. gprec containzs fnumber-of-digits} §:} fnumber-of-digits}.
Let gple be the value of the {integer} component of the first {number-of-
digits} of gprec and let gphi be the value of the {finteger} component of the
gecond fnumber-of-digits} component of gprec.
Cage 1.2. (Otherwise).
Let gplo and gphi both be the value of the finteger} component of the sole
frnumber-of-digits} component of gprec.
Gtep 2. Let p be the value of the <integer> component of the <number-of-digits> of prec.
If it is not the case that gplo = p £ gphi then réturn <falséeyr.
Step 3.
Case 3.1. gprec does not have a {scale-factor} and prec does not have a <scale-
factor>.
Return <€iruss®.
Case 3.2. gprec has a {scale-factor} and prec does not have a <scale-factor>.
Return <false®.
Case 3.3. gprec has fscale-factor} f:} fscale-factor}.
Let galo be the walue of the finteger} component of the first {scale-factor}
of gprec and let gshi be the value of the finteger} component of the second
fscale-factor} of gprec.
Cage 3.4. (Otherwisal.
Let gslo and gshi both be the value of the finteger} component of the sole
fscale-factor} component of gprac.
Step 8. Lat 5 be the value of the <signed-integer> component of the <scale-factor> of
prec.
Step 5. If it is the case that gzlo S 8 £ gshi then return <true®; otherwise return
cfalze>.

130

B.0.6 CREARTE-PICTURE

A f{picture} may occur as a component of a {declaration} or a fformat-item}. In both
cases it is translated to a <pictured®». Elements of a {picture} may be repeated by the
specification of a {repetition-factor} which is expanded into a sequence of elements
first. Then the {picturc} is translated to a <pictured-character> or Cpictured-numeric.
The content of a fpicture} is governed by the following syntax:

fpicture-content}: ;=fpicture-item-1ist} [{picture-scale-factor}]

fpicture-item}::= [frepetition-factor}] {picture-element}

frepetition-factor}::= (finteger})

fpicture-element}::= AlX|F|CIDIL|R[S|TIVIYIE|SI*I=|*IE)K|B|A]|,

fpicture-scale-factor}::= F ({signed-integer})

Oparation: create-picture(pl
where p iz a {picture}.
result: a <pictured>.

step 1. There must be a fstring-or-picture-symbol-list},spsl in p- Let t be a {picture-
content} whose concrete-representation is the same as that of spsl. The tree t
must exist and be unique.

Step 2. For each component of t which is a

fpicture-item},c:
frepetition-factory,rf
{picture-element}.pe;

ljet iv be the dJdecimal value of the {integer} in rf. iv must not be equal to
zerc. HReplace c by iv occurrences cf a fpicture-item}: pe.

Step 3.
case 3.1. t contains a fpicture-element}: A; or & fpicture-element}: X.

If p is a component of a fdeclaration},d, a fdescription}.d. or a {generic-
description?,d then 4 must not declaration-contain REAL or COMPLEX. All
terminal nodes of t most be A, X, or 9. Return <pictured>: <pictured-
character>»: <character-picture-e¢lement=-list>.cpel;; where the concrete-
representation of cpel is the same as that of t.

Case 3.2. {(Otherwise).
Perform create-numeric-picture(t) to obtain a <pictured-numeric>,pn. If p
is a component of a {declaration}, fdescription}, or {generic-description}

which declaration-contains COMPLEX, then replace the <real> component of pn
by <complex>. Return <pictured>: pn.

Chapter &: The Translator 131

B.b.6.,1 Create-numeric-picture

The picture-wvalidation syntax is as follows:
fnumeric-picture-specification}i:= {fixed-point-picture} | ffloating-point-picture}
ffixed-point-picture}::= fnon-drifting-field} | fdrifting-field}

fnon-drifeing-field}:s= [fdigits} o [fsign}l] = (51 } |
[fdigits} = (5] } | foredit} | fdebity }

fdigits}:i= {pic-digit-list} [V [{pic-digit-1ist}l] |

V fpic-digit=1ist} |

f2-1list} [({scaled-digits-field}) |

[f2-1ist}] V £2-1list} |

f*=1ist} [(fscaled-digits=-field}] |

[f*-1ist}] V §»-list}

fscaled-digits-field} = {pic-digit=list} [V [fpic=digit-1ist}]] |
V [fpic-digit-1list}]

fpic-digitp:z=9 | I | R | T | ¥
fsign}r:=§ | + | =
fdrifting=field}i:= (fdrifting-sign-field} = [$) } |
[fdrifting-dollar-field} & [fsiqn}l } |
farifting-doliar-field} I(fcredit} | fdebit}}

fcredit}ir= CR
fdebit}iz= DB
fdrifting-sign-field}::= {fsigns} (fscaled-digits-field}] |

& [§5-1ist}] V §5-list} |

+ [fplus-list}l V fplus-list} |

- [fminus-Llist}] V fminus-list}
fplus}::= +
fminug}:im =
fsignas}::= & §5-1ist} | fplus} 4plus-list} | fminus} {fminus-list}

fdrifting-dollac-field}:z= § §5-1list} (fscaled-digits-fiald}] |
$ [f5-1ist}] V §5-1list}

ffloating-point-picture}::= {pic-mantissa} {fpic-exponent}
fpic-mantissa}::= [{sign}] {digits} | fdrifting-sign-field}
fpic-exponent}i:= (E]¥} (fsign}] ({pic-digit-limt} |

{{ f2-1ist} | f*-list} } [fpic-digit-list}] })

A digit-position is any occurrence of a {pic-digit} or £ or %, or any ococurrence of 5, #,
=, o % in an f5=list}, fplus-list}, {minus-list}, or §5-listc}.

132

Cperation: creata-mmeric-picture(p)

Step 1.

Step 2.

Step 3.

where p iz of the form {picture-content}: {picture-item-list},pil [{picture-
scale-factor},pstl.

result: a <pictured-pumeric>».

Let pilw be a copy of pil. Delete from pilw any fpicture-item} which contains a
fpicture-element} containing a

f£.:}. or

£1}e OF

P

B if that Jpicture-item} does not immediately follow a fpicture-item}:
fpicture-element}: D.

A terminal node so deleted must mot have occurred immediately between a C and an
R nor immediately betweéen a D and a B.

It must be possible to construct a fnumeric-picture-specification},nps according
to the picture-walidation syntax (abowe), such that the concreéte-representation
of nps is the same as that of pilw.

If pef exists, then nps must contain a ffixed-point-picture}.
Let pn be a partial tree

<pictured-numeric>:
<pumeric=-picture-specification?,anps
<arithmetic>:
<modeds:
<real>;
<hazel:
Cdecimal>;
<uscale>.s
<precision>,precs
<number-of-digits>r niji

where n is the number of digit-positions in ffixed-point-picture} or in fpic-
mantissa), in nps. n must not be greater than the maximum <number-of-digits>
for <base>: <decimal>; and <scale> to be set below.

Mote: The node <peal> may be replaced by <complex> at a later stage.

Step §.

Step 5.

If nps contains a ffloating-point-picture} then attach <float> to s; otherwise
attach <fixed> to =.

case 5.1. nps contains a {fixed-point-picture}.

Step 5.1.1. nps must not contain more than one {pic-digit} which has a T, I, or R.

nps must not contain a fpic-digit} which has a T, I, or R 4if it alseo
containg S, +, -, fcredit}, or {debit}. Attach to anps a <fixed-point-
picture> with the same concrete-representation as pil.

Step 5.1.2. If psf exists, then let v be the result of interpreting the {signed-

integer},si, in pef as a decimal constant, and attach to anpas a
<picture-scale-factor> containing the <signed-integer> abstract-
egquivalent of si; otherwise, let v=0. Let vli=(n-v} where n is the
number of digit-positions after the ¥V in nps Lif V appears, and 0
otherwise. Attach a <scale-factor>: vl; to prec.

case 5.2. nps contains a {floating-point-picture}.

Step 5.2.1. Let pm be a <numeric-picture-element-list> whose concrete-representation

is the same as that of pil up to (but not including) the E or K. pen
mast not contain any of T, I, or R.

Step 5.2.2. Let pe be a <numeric-picture-element-list> whose concrete-representation

i5 the same as that of pil beginning with the E or K. pe must not
contain any of T, I, or R.

Chapter 4: The Translator 133

Step 5.2.3. Attach to anps a

<floating-point-pictures>:

fpicture-mantiazals
pm;
<pictore-exponanti:
pﬁ!
Step 6. Return pn.
4.4.T7 CREATE-CONSTANT
Operations: create-constant ()

where ¢ is a fconstant}.
result: & <constant>.
Cagse 1. ¢ containg a {simple-character-string-constant}.
Step 1l.1.
Case 1l.1.1. ¢ contains no {string-or-picture-symbol-1ist}.
Let csv be a <character-string-value»: <null-character-gtring».
Cage 1.1.2. (Otherwise).

Step 1.1.2.1. Let csv be a <character-string-value® whose {symbol}s (in order)
have the same concrete-representations as the {string-or-picture-
symbol}s in o, except that each {fstring-or-picture-symboll}: £'"Fi
in ¢ becomes a fsymbol}: §£°}; in csv.

Step 1.1.2.2. If ¢ contains a {replicated-string-constant},rsc, perform Step
1.1.2.2.1.

Step 1.1.2.2.1. Lat j be the wvalue obtained by interpreting the {finteger} in
rgc as a decimal constant; let i be the number of
“character-value»s in csv.

If §y=0, let v be a <null-charactec-string®; otherwise, let v
be a <character-value-list®» with i+%j components, the
(nei+k) "th component equalling the k'th €character-values of
csv; for k=Ll;e.a,iy and n=0, .04, (3-1).

Replace the <character-value-list® in cav by v.

Step 1.2- Return a <constant>: <basic-value®»: esv; de; where dt is a <data-type>
containing <gharacter>, <ponvarying>, and <maximum-length>: <asterisk>.

Case 2. ¢ contains a fsimple-bit-string-constant}.
step 2.1.
case 2.1.1. ¢ contains no {string-or-picture-symbol-list}.
Let bsv be a <bit-string-value¥: <null-bit-stringk.
Case 2.1.2. (Otherwise).

Step 2.1.2.1. Let m be 1,2,3,4 according to whether {radix-factor} in c has Bl.
B2, B3, or Ba. Let s(i), 1i=1l,;...,k; be the {string-or-picture-
symbol}s in e.

Each s(i) must have an entry in Table 4.2 which is valid for the
value of m. Let bsv be a €bit-string-value?» containing m*k <bit-
valuer*s, such that <bit-value®s (i*ms+l-m) through (i*m) are
obtained from Table 4.2 as a function of m and s{il, i"1,....k.

13n

Step 2.1.2.2. If ¢ contains a {replicated-string-constant},rsc, perform Step

Etep 2.2.

2.1.2.2.1.

Step 2.1.2.2.1. Let j be the value obtained by interpreting the {integer} in
rac as a decimal constant; let i be the number of <bit-
value»s in bav.

If j=0, let v be a <null-bit-string®; otherwlse, let v he a
4hit-value-list® with i*j components, the (n*i+k)"th
component equalling the k'th <bit-value®» of bsav, for
E=1,ccspi, and n=0,..., (j=1).

Replace the <bit-value=-list» in bsv by v.

Return a <constant>: <basic-value®: bsv; dit; where dt is a <data-type>
containing <bit>», <nonvarying>, and <maximom-length>: <asterisk>.

Case 3. ¢ contains an farithmetic-constant},ac.

Step 3.1.

Step 3.2.

Step 3.3.

Step 3.4.

Perform evaluate-real-constant(rc), where roc is the {real-constant} in ac,
to obtain a <value-and-type>: <real=valued,v <data-type>,t.

Let ds be = partial fdeclaration} containing:

CONSTART

if ¢ containe F, then FIXED

if ¢ contains E, then FLOAT

if ¢ contains I, then COMPLEX
otherwise, REAL.

{ds iz partial in that it contains no fidentifier}).

If ¢ does not contain P, then attach a partial <{unit},u: fdeclare-
statement},d; to the {procedure} or fbegin-block} which block-contains o,
attach a copy, cds, of ds to d, perform apply-defaultsicds}, let ds be a
copy of cds, and delete u.

Let dt be a partial <data-type>: <computational-type>: <arithmetic>;; and
complete it as follows:

Step 3.4.1. For each of the following which is contained in ds, append the abstract-

equivalent to dt: BINARY, DECIMAL, FIXED, FLOAT, RERL, COMPLEX.

I¥ dt is still without <base> or <scale> {(or both), copy the <base> or
<scale> {or both) from t.

Step 3.4.2. Let cp be the converted <precision> of t for the <base> and <scale> of

dt .

EtEP ﬂi-nl]l-

Cage 3.4.3.1. d= contains a fprecision}.p-

Perform create-abstract-eguivalent-treelp) to cbtain a
<precision>,ap.

If dt contains <fleat>, ap must not contain a <scale-factor>.

If dt contains <fixed> and ap containg no <scale-factor>, attach
<scale=factor>: 0:; to ap.

If dt contains <fixed», the amount by which the <number-of-
digits> exceeds the <scale-factor> in ap must not be less than
that for cp.

Attach ap to dt.

Cage 3.8.3.2. (Otherwisel.

Attach cp to dt.

chapter 4: The Translator 135

Step 3.5.

Cagse 3.5.1.

cCase 3.5.2.

ac immediately contains a §real-constant}.

Perform convert{dt,t,v) ¢to obtain a <real-value®»,rv. Let bv be a
“hasic-value»: rv.

ac contains an {fimaginary-constant}.

Let rdt be a <data-type> which has <real> but is otherwise as dt.
Perform converti{rdt,t.v) to cbtain a +<real-value»,rcv. Let bw be a
<basic-value®: <complex-value®; with real part: 0; and imaginary part:
Iv.

Step 3.6. Return a <constant>: bv dt.

Table §.2. Table of <bit-value®s as a Function of fsymbol}s and fradix-factor}s for
Create-constant.

136

r 3
|[Contents of i'th {symbol} [Contents of =bit-value>s|

jor fstring-or-picture-— | ti*m#l-m} throwgh (i*m} |
| symbol} e
| jm=1 m=2 m=3 m=4 |
| : —— e
1 o | 0 oo ooo oooa)
1 1 | 1 o1 oo o001
| 2 | = 10] 0010 |
I 3 | = 11 011 ool
|] | - - 100 0100
| 5 | = - 101 0101
| [] = = 110 011D
i 7 | = - 111 0111
| k| | = - - 1000 |
I 9 | - - - 1001
| A | = = 3 1010
B | = = - 1011
s | = - - 11400
D] = - = 1101
I E | = - - 11140
i F | = - = 1111
] Other | = - - =

= indicates that the corresponding <{symbol} or
fetring-or-picture-symbol} is invalid for this
value of m

0 indicates <zero-bit>

1 indicates <one-bit®»

e e e .

4.5 Walidation of the Abstract Procedure

An abstract <procedure> has been constructed so Ear by the Translator, corresponding to
the specified concrete fprocedure}. This abstract <procedure> is now examined by some
final tests before heing returned as the result of the translate operation. These tests

validate each declaration and apply constraints.

Opeération: validate-procedurelap)

where ap is a <procedure>.
Step 1. Perform apply-constraintsiap).
step 2. For sach <declaration®,ad component of ap perform validate-declarationfad}.

Step 3. For each <parameter-descripter>,d and for each <returns-descriptor>,d contained
in ap perform validate-desériptorid).

Step 4. ap must satisfy all the Constraints appearing under the heading "Coenstraint:® im
the Abstract Syntax.

Step 5. Each <do-spec> must satisfy the Constraints specified in Section 6.3.8.

B.5.1 VALIDATE=-DECLARATION

When all the <declaration>s have been completed, and their contained <expression>s and
<value-reference>s properly completed, some additional validation is required to ensure
that such <declaration>s do represent realistic data entities.

Operations: validate-declaration(ad)

where ad is a <declarationi.

Step 1. If ad contains <autematic>, <based>, <gontrolled>, <defined>, <parameter>, or
€static> then perform validate-automatic-declarationfad), validate-based-

declarationCad), validate-controlled-declarationtad) , validate-defined-
declarationtadl, validate-parameter-declarationlad), ar validate-gtatic-
declaration(ad),; respectively.

Step 2. If ad contains <named-constant>, then perform validate-static-declarationlad}.

Step 3. If ad contains any <data-description>,dd which simply econtains <initial>, then
for each such dd perform Step 3.1.

Step 3.1. The Zdata-descriptions immediate COmpPonent aof weach <parenthesized-

expression> immediate component of an <initial-element> contained in dd must
be proper for assignment to dd.

4.5.2 VALIDATE-AUTOMATIC-DECLARATION

Automatic declarations must satisfy constraints which enablée them to be allocated and
possibly initialized at the time that the block to which they belong is being activated.

Cperation: validate-auntomatic-deslaration(ad}

where ad is a <declaration®.

Step 1. ad must not contain an <area-size>: <asterigk>;, a <maximum-length>:
casterisk>;, or a <bound-pair>: <asterisk>i. except as subnodes of <entry>.

Step 2. Each <extent-expression» in ad must not contain a <rafer-option>.
Step 3. If ad contains a <variable-reference>: <declaration-designator>,dd; then dd must

not degignate a <declaration>.d, containing <automatic> or <defined> if 4 is a
block-component of the same block as ad.

Chapter #: The Translator 137

4.5.3 VALIDATE-BASED-DECLARATION

Based declarations may contain <structure-data-description>s some of whoae <member-
description>s refer to other (previous) members of the same structure by means of the
<refer-option>.

Operation: validate-based-declaration(bd}

where bd is a <declaration>.

Step 1. Each <area-size>, <maximum=-length>, or <bound=-pair> in bd must not contain
<asterisk>, except as subnodes of <entryl.

Step Z. PFPor each <refer-option>;ro in bd, perform Steps 2.1 to 2.4.
Step 2.1. ro must be simply contained in a <member-description®,ms.

Step 2.2. Let idlll,...,idln] be the components of the <identifler-list> in ro. 4idill
must be equal to the <identifier> immediately contained in bd; bd most
simply contain a <structure-data-deseription>,.sdll]l: idli(1) mdlil]l. For
i=l;esssln=1), idlli) mast have an <identifier>,idcli]l egual to idii#ll; for
i=l,...,(n-2), the <member-description> in mdl(i] corresponding to idelil in
141{i] must simply contain a <structure-data-description>,sdli+1): 141(1i+1)
mdl(i+1l]l; the <member-description>,mo in mdlin-1] corresponding to ideoin-11
in idlin-11 must immediatelvy contain a <data-description>: <item-data-
description>: <data-type>: <computational-type>;;; and mo must not be
contained in a <dimensioned-data-description>.

Step Z.3. mo must occur to the left of ms in bd.

Step 2.4. For every <structure-data-description>,sdd other than sdll) which contains
both mo and me perform Step 2.8.1.

Step 2.4.1. For every <item-data-description>,iddl which is contained in sdd and is
ko the right of ms, there must exist at leagt ope <item-data-
description>,1dd2 contained in sdd, which either is simply contained in
ms or iz to the left of ma, such that iddl and iddZ match as defined {in
Step 2-11.1-'1-

Step 2.8.1.1. Let 414d41°" and id42* be copies of iddl and iddl, modified as
follows. Delete any occurrences of <initial’>, <maximum-length>,
cnomber-of-digits>, and <local>; delete any subnodes of <offset>,
<antry>, and <area>; replace any occurrences of <pictured> by
<string»; <string-type>: <character>; <nonvarying>.

For iddl and idd2? to match, iddl"' and idd2' must be egual, and,

if iddl and idd2 have <arithmetic>, the <number-of-digits> of
idd1 must be less than or egual to the <number-of-digits> of

idd2.
4.5.4 VALIDATE-CORTROLLED-DECLARATION

Cperation: validate-controlled=declaration{cd)

where od is a <declaration>.

Step 1. cd must not contain an <area-size>: <asterisk>»;, a <maximam-length>: <asterisk>;
or a <bound-pair>: <asterisk>;, except as subnodes of <entry>.

Step 2. Each <extent-expression> in cd must not contain & <refer-option>.

Step 3. If od has <external>, then for each <expression>, e simple component of an
cexteant-expression> of cd, perform Step 3.1.

Gtep 3.1. Perform evaluate-restricted-expressionle) to obtain c. If ¢ is a <constant>
having <computational-type> then replace the first immediate component of e
by c. (This is preparatory to consistency checking of constant <extent-
expression»s in validate-external-declaration. If ¢ 1is +<fail>, this
ipdicates that e is not a restricted-expression, and ¢ remains unchanged.)

138

4.5.5 VALIDATE-DEFINED=-DECLARATION

cperation: validate-defined-declaration(dd)

Step 1.

Step 2.

step 3.
Step 4.

where dd is a <declaration>.
Perform wvalidate-auvtomatic-declarationi{dd).
Let dd contain the form <defined>,def: <base-item>: <variable-reference>,vr. If
vr contains an <isub> then def must not contain a <position> and wr muost not
contain an <asterisk>.
Each <declaration-designator> in dd must not designate dd.
The <data-description> immediately contained in vr and the <data-description>

immediately contained in the <variable> in dd must not contain <varying>, other
than as a subnode of <entry>.

4.5.6 VALIDATE-PARAMETER-DECLARATION

Operation: validate-parameteér-declaration (pd)

Et.‘E'P 1,
Step 2.
Step

where pd is a <declarationZ.
Each <extent-expression> in pd must not contain a <refer-option>.
For each <extent-expression»: <expréassion>,e; in pd perform Steps 2.1.

2.1. Perform evaluate-restricted-expressionie) to obtain o. c mast be a
<constant>. Replace the first immediate component of e by c.

§.5.7 VALIDATE-STATIC=-DECLARATION

operation: validate-static-declaration{sd)

step 1.
Gtep 2.

where 8d is a <declaration.
perform validate-automatic-declarationisd).

For each <expression>,e simple component of sd which is not a component of an
cpffset> perform evaluate-restricted-expressionfé! to obtain ¢, which must be a
Zoonstant> or a <value-reference>. If ¢ is a <value-reference> then it mpust be
a component of an <initial-elemént>. Replace the first immediate component of &

by -

4.5.8 VALIDATE-DESCRIPTOR

Operation: walidate-descriptor(d)

Step 1.

Step

Step 2.

Step 3.

where d is a <parameter-descriptor> or a <returns-descriptors.
For sach <extent-expression>: <expression>,e; in d, perform Step 1.1.

1.1. Perform evaluate-restricted-expressionie) to obtain e. ¢ must be a
<ponstant>. Replace the first immediate component of e by c.

If 4 is a <parameter-descriptor>, any <entry> simply comtained in 4 mist not
have any subnodes.

d must not contain any <refer-option>s.

Chapter 4: The Translator 139

4.5.9 EVALUATE-RESTRICTED-EXPRESSION

Operation:

Step 1. For

Btep 1.1.

Step 1.2.
Step 2.

Ccase 2.1.

Case 2.2.

Step 2.2

Step 2.2

Step 2.2

step 2.2

8.5.10 APPLY-

In ocertain
category are

evaluate-restricted-expressioniel

where € is an <expression>.
result: a <constant> or & <value-reference> or «£fail».
each <expression»,ex simply contained in e, perform Steps 1.1 and 1.32.

perform evaluateé-restricted-expressioniex) to obtain r. If r is <£fail» then
ceturn <€fajily.

Feplace the first immediate component of ex by r.

e immediately contains a <value-reference>,vr.

If vr immediately contains either a <named-constant-reference> or a
<builtin-function-reference> which has <gmpty-bif> or <pull-bif>, then
return vr; otherwise return <fajl>.

{otherwisel,

1. If e has an <infix-operator> which does not contain <add>, <subtract>,
<multiply>, <divide>, or <cat>, then return <fails.

.2. Perform evaluate-expression(e) +to obtain an <€aggregate-value®,av. av
must immediately contain an <aggregate-typed which immediately contains
“scalar». Lot ¥ be the <basic-value» in av.

.3. Let dt be the <data-type> in the <data-description> immediate component
of e.

-4. Return a <constant>: v dt.

CONSTRAINTS

coptexts of an abstract <procedure> only restricted forms of the specified
permitted. The restrictions are shown by a constraint-expression enclosed

in parentheses. The definition of a constraint-expression is as follows.

constraint-expression:z= multiple-constraint|

constraint-expression | multiple-constraint

miltiple-conatrainti:= constraint |

congtraint:s=

Operation:

Step 1. For
with
be &
perf

140

multiple-constraint & constraint

-~ constraint | {area | based | character | condition | named-constant |
defined | computational-type | file | format | controlled | label |
locator | pointer | scalar | variable}

apply-constraints (p)

where p is a <procedure>.

each subnoda, ¢ in p corresponding to a categqory-name in the Abstract Syntax

an attached constraint-expression,ce, if ¢ is an <expression-list>, let c
ach component of the list in turn, and perform Steps 1.1 and 1.2; otherwise.
orm Steps 1.1 apd 1.2.

Step 1.1.

case 1.1.1. ¢ is a <variable-reference> and ce contains a constraint containing

*defined® or "based”.

Let d be the <declaration> designated by the <declaration-designator>
immediately contained in c.

Case 1.1.2. ¢ is a <declaration-designator>.

Let d be the <declaration> designated by c.

case 1.1.3. ¢ is a <variable-reference> f(other than as in Case 1.1.1), a <wvalue-

reference>, an <expression>, a <parenthesized-expression>, a <target-
reference>, or a <paméd-constant-reference>.

Let 4 be the <data-description> immediately contained in c.

Step 1.2. Perform test-constraintsid,ce) to cbtain r.

r mast be <€truek.

4.5.11 TEST-COHSTRAINTS

Operation: test-constraints (d,cel

Cage

Case

Case

case

Caga

Cage

Cage

1.

2.

3.

B

where d is a <declaration> or a <data-description>,
ce is a constraint-expression, & multiple-constraint, or a constraint.

result: <true> or <false>».

ce is of the form constraint-axpression: constraint-expression,cce | multiple-
congtraint,me.

parform test-constraints{d,cce) to obtain ri; perform test-constraintsid,mc) to
obtain r2. If rl is «<trued, return <true>; otherwise return r2.

ce iz of the form muletiple—constraint: multiple-constraint,mc & constraint,ct.

Perform test-constraints({d,mc} to obtain rl; perform test-comstraintsid.ct) to
cbtain r2. If rl is «<false», return <false?; otherwise return r2.

ce is of the form constraint: - constraint,ct.

Perform test-constraintsi(d,ct) to obtain r. IXIE r is <falsed», return <truek;
ctherwise return €false».

ce is a8 constraint: scalar.
If d is a <declaration®* which has <variable> immediately containing <data-
deseription>: <item-data-description»; then return <true». If d is a <data-

description®: <item-data-description>; then return <itrues. Otherwise return
<false>.

ce is a constraint: computational-type.

If d contains <non-computational-type> then return <false»; ctherwise return
<Lrues.

ce is a constraint other than in Cazes 3 and 4.

If d contains a category-name egqual to ce othér than as a subnode of <entry>.
return <true>; cotherwise return <false>.

(Otherwise) -

Let ©8 be +the immediate component of ce. Perform test=-constraintsi{d,cs) to
obtain r. HReturn r.

Chapter &: The Translator 141

4.6 WValidate-program

Operation: validate-proqram

Step 1.

For each distinct <identifier> component of the <program> which is an immediate
component of a <declaration> which contains <external>, let adl be a
<declaration-list> containing copiles of all such <declaration>s and perform
validate-external-declaration{adl) .

B.6.1 VALIDATE=-EXTERNAL-DECLARATION

Operation: validate-external-declarationl{adl}

Step 1.

Step 2.

Btep 3.

Step 4.

Step 5.

where adl is a <declaration-list>.

Delete all <identifier-list> components of adl which are immediate components of
<astructure-data-description>.

Delete all <variable-reference>s which are immediate components of an <offsec>.

For each <declaration>,d which has <storage-class>: <static>; and for each
<item~data-description> component of d which contains an <initial>, change any
<initial-element> which contains an <iteration-factor’> and an <initial-element-
list> into the equivalent number of <initial-element>s.

If any <declaration?,d component of adl contains <storage-class>: <controlled>;:
then delete every <initial> component of 4 and every <extent-expression>
component whose <expression> deoes not immediately contain <constant>.

For each <extent-expression>.ee in adl containing a <constant>,o, perform Step
5.1.

Btep 5.1. Let e be the <expression> of ee. Perform evaluate-expression-to-integer{e)

Step 6.

to obtain an €integer-value»,iv. Replace @& Dy iv.

For each <initial-element>,ie in adl containing a <constant>,c, perform Step
Bal.

Step 6.1. Let tdt be the <data-type> Iimmediately contained in the <item-data-

Stﬂp T=

Step 8-

Step 9.

Step 10.

142

description> containing ie. Let cdt be the <data-type> of ¢, and let cbv ba
the <basic-value* of ¢. Perform convert(tdt,cdt,cbv) to obtain a <basic-
valuer,bv. Replace ¢ by <constant>: bv tdt.

Delete any <local> which is an immediate component of a <non-computational-
types.

In an implementation-defined fashion; compare <declaration>s of adl which have
<environment> components with those which da not have corresponding
<environment> components, and compare corresponding <environment> components of
the <declaration>s of adl. Delete all <environment> components of adl.

In an implementation-defined fashion, compare <declaration»s of adl which have
<pptions> components with those which do not have corresponding <options>
components, and compare corresponding <options> componeénts of the <declaration>a
of adl. Delete all <options> components of adl.

All <declaration> componeénts of adl must be egual.

Chapter B: The PL/I Interpreter

B.O Introduction

This chapter gives the interpretation-state part of the Machine-state Syntax and also
introduces the interpretation phase of the definition. Section 5.1 defines the
interpretation-state. Section 5.2 defines some terminology used in the subsequent
chapters. Section 5.3 gives the operation interpret and some operations called from it
to 4initialize and terminate the interpretation phase. The subsequent chapters complete
the definition of the interpretation phase.

5.1 The Interpretation-state

MG . <interpretation-stated::= <program-state®> <allocated-storagey l<dataset-listy]
M7 - <program-state®::= <program-directory®

[€block-gtate-1list»]
[<file-information-list®]

5.1.1 DIRECTORIES

MB. dprogram-directory»: = €static-directorys
<controlled-directorys
<€fille-directory>»
Ma. “static-directoryr::= [4static-directory-entry-list>]
Mid. <gtatic-directory-entry>::= [<external> | <declaration-designator> }
<identifier> <generation®
Mil. 4eontrolled-directory®»::= [<€controlled-directory-entry-list»]
Miz. <controlled-directory-entry»::= [<external> | <declaration-designator> }
<identitier> [<generation-list¥]
M13. 4ffile-directory»::= [(dfile-directory-éntry-1ist>]
M14. <fFile-directory-entryr::= [<external> | <declaration-designator> }

<identifier> [<subscript-value-list¥]
“file~information-designator®

Mi5. “gubseript-value»::= €integer=value»
5.1.2 BLOCK STATE

Ml6. <block-state¥: = <block-directory® £block=control®
<linkage-part® {4block-environments®]
[€eatablished-on-unit-1ist®»] (<condition-bif-value-lists]
[<copy-filer]

Mi7. <block-directory»::= <automatic-directorys
<€detined-directory®
[“parameter-directory)

M18. fautomatic-directory»::= [€automatic-directory-entry-lists)
M19. <automatic-directory-entry*::= <identifier> <generation®
M20. <defined-directoryrii= [<defined-directory-entry-list»]

Chapter 5: The PLAI Interpreter 143

M2i. “defined-directory-entry»::= <identifier> <evaluated-data-description»

M22. <parameter-directory>::= [<parameter-di rectory-entry-list®]
M23. <parameter-directory-entry»::= <{identifier>
(€undefined> | <established-arguments}
M28 . “established-argument®::= <generation® [<dummy® | <not-dummy> }
M25. “gvaluated-entry-reference®: = <£antry-value® [€established-argument-list>]
MZ6. <block-control®: = <executable-unit=designator> <group-control®
£5tatement-control® {<string-io-control®]

(#data-item-control-list>] («format-control-list®]
[<current-scalar-item-1ist>) (<remote-block-state>]
[fcurrent-file-value®)

M27. “dremote-block-stateri:= <4block-state-designatory

M2B. dcurrent—-file-value®: = €£file=-valued

M29. <group-control®::= [<controlled-group-state-lists]

M310. “controlled-group-state>::= <spec-designator> <dcv-target® <cv-type>

[£by-value? <converted-by-typak]
[£to-value?> <converted-to-type>l

M31. dov-target®: = fevaluated-target>

H32. £cv-typer: = {data-type>

M33. “hy-value¥::= <real-valued | <€complex-values

Mi4. €converted-by-type*»::= Jdata-type>

M35. fto=-valuer ;= Lreal-value®

Mi6. dconverted-to-typer*::= <data=-type>

M37. “statement-controld»::= <operation=list®»

M3H. <s5tring-io-control®::= <character-string-value® [<€string-limit»] [<first-comma»}

M39. fatring-limit»::= £Linteger-value>

Ma0. dfirst-comma¥»;:= <on¥ | €off»

Mul. “data-item-control®::= <£data-list-indicator® <data-item—indicators

My z. €data-list-indicator»::= €designator?®

Mg3. <data-item-indicator»::= <designator®» | <undefined>

Muy . “format-control¥»: 1= <format-specification-list-designator> <€format-list-index»

[<format-iteration-value>] [<format-iteration-indexs»]
(<format-statement-designator>] (dremote-block-state®]

MaS. “format-list-index¥»::= <€integer-value»

M6 . d<format=-iteration-valuer::= dinteger-valued

Ma7. “format-iteration-index»::= <dinteger-value»

H48. {current-scalar-item®::= <basic-value® <data-type> [<data-name-field®] |
“evaluated-target®

Ma9. <data-name-field»::= fsymbol-list}

HS50. <linkage-part®:iz= Hent:r point-designator>]

[“returned-value® | <recurned-onsource-value]

[<prologque-£lag>]

144

M51. dreturned-valoer: i= {aggregate-values

M52, {retiurned-onsolirce-valuer: ;= <£character-string-values

H53. “block-environment®: = €block-state-designator®

M54 . destablished-on-unit»::= <€evaluated-condition® l<entry-value» | <system-action>}
[<snap>)

M55, <evaluated-condition®: = <oomputational-condition | <area-condition> |
fievaluated-io-condition® | <error-con

<programmer-named-condition> | <tinish-copdition> |
<s5torage-condi tion>

HS6. avaluated-io-condition»::= <io-condition> <€file-valuak

M57. <condition-bif-valued::= <onchar-value®» | <oncode-wvalue> | <onfield-valuer |
“onfile-value> | <onkey-valuak | €onloc=values |
fonsource-value¥

M58 . fonchar-value¥::= <£integer-value®»

M5%. <oncode-valuer ;= L{integer-value>

M&0. donfield-value®::= <character-string=value»

M&L . “onfile-valuer::= <“character-string-valuoe»

ME2. <onkey-value»::= <character-string-value>

ME3. fonloc-valuek»::= dcharacter-string-valued

MEH . donsource-valuad; ;= <character-string-valus>

MES . fcopy-filae®::= <file-value»

5.1.3 FILE INFORMATION

MBG. “file-information®: := <open-stated 4fi lename»
<file-degcription> [<file-opening?)

ME6T - <open-statedr::= <openr | <closed»

MBB. <filenames»::= <4character-string-values

MED. ifile-openings::= <dataset-designator® <complete-tile-description»

fourrent-position® (delete-flag»]
[£allocated-buffer>] [<page-number®*) [<first-comma¥r]

M. dcomplete-file-description®::= <evaluated-file-description-list»
MT71. “nvaluated-file-description®::= <stream> | <record> | <input> | <gutput> |

<update> | <seguential> | <direct> | <print> |
<keyad> | <environment> |
fevaluated-tab-option® | <evaluated-titles |

devaluated-linesize» | €evaluated-pagesize>
M7Z. <evaluated-tab-option»::= <integer-value-list»
M73. £evaluated-title®»: 1= <character-string-valued
M7h. <evaluated-linesizes: = <£integer-valuek
M75. devaluated-pagesize®::= €integer-values
MI6. fcurrent-pogition»s:= <designator®» | <undefined»
MIT. £allocated=puffer®::= <generation® [<key»)

M78. “page-number»::= <integer-valuer

Chapter S: The PLSI Interpreter 185

5.1.8 STORAGE AND VALUES

M7a. 4allocated-storage»::= ([<€allocation-unit-list¥]

Hao. {allocation-unitd»::= <basic-value-list>

MBL. 4basic-value®::= <real-value> | €complex-valuek I
£character-string-value» | <bit-string-value? |
fentry-values | <label-walue |
<format-valuek | €file-value> I
<pointer-value* | “offset-valued |
darea-value» | dundefineds»

MB2. <real-value»::= <£real-number>

MB3. ‘complex-valuer; ;= <complex-numbers

Mah . <complex-numberr: ;= [<real-number® | <undefined»>} (<real-number®» | <undefineds)

MBS. dreal-number»: =

The members of the set of real numbers are the alternative choices as immediate
and terminal components of <real-number®.

MB6 . finteger-valued: =

The members of the set of integers are the alternative choices as immediate and
terminal components of <integer-value>.

HAT. {character-string-valued::= <character=value-list» | <null=character-strings
HMAS. fcharactar-valued::= {fsymbol} | <undafineds
HA9. ahit=-gtring-values::= <bit-value-list®» | «<null-bit-string®
Ma0. €hit-value®::= €zero-bity | <one-bity» | <undefineds
M31. <entry-valued::= <entry-point-designator> [<block-state-designators]
H9Z. £label-values::= <pxecutable-unit-designateor> [<block-state-designator®]
M33. <format-values::= <format-statement-designator®> [<block-state-designators]
M0 . €file-values;::= «file-information-designators
M35. ipointer-value®::= <generation® | <nulls
MI6 . “offaet-value®:i= <devalusted-data-description®
4signiticant-allocation-liskt®
£storage~index=-1list» | €null>
M37. <area-value»::= <area-allocation-list?» <significant-allocation-list> | <cmptys
MIE. darea~allocation®::= <significant-allecation-list® <€allocation-unit®»
MID. <significant-allocatien®::= <evaluated-data-description» <cccupancys
MLOO. {occupancy®::= <€allocateds» | <freed>
M101. <aggreqate-valued::= <€aggregate-types <basic-value-lists
MLDZ. daggregate-typer::= €dimensioned-aggregate-typer |
fstructure-aggregate-type> | €scalar®
M103. “limensioned-aggregate-types: = <element-aggregate-typer <bound-pair-list>
MLOn . <element-aggregate—typer::= dstructure-aggregate-typer | <£gcalacs
MLOS. structure-aggregate-typed»::= <member-aggregate-type-listh
M106. imember-aggregate-type»: i= <aggregate-typep

106

5.1.5 GEHERATIONS, EVALUATED DATA DESCRIPTIONS, AND EVALUATED TARGETS

M107.

HM108.

Mi06.
M110.
M11l.
M112.

M113.

dgeperation®»::= <evaluated-data-description®
£allocation-unit-designators
“<storage-index-list®

<evaluated-data-description®::= <data-description>

Hotes cextent-expression? components of €evaluated-data-description®: <data-
description> contain only <€integer-value®s. (See Section 7.1.}

“storage-index®::= fbasic-value-indexd (£position-indexs]
<basic-value-indexd: = dinteger-value>»
£position-index®::= dinteger-values»
devaluated-targets: s <€generation® | <evaluated-pseudo-variable-reterences
<avaluated-pseundo-variable-reference®; 1= <pseudo-variable>

l<geneération» | <€aggregate-valuedx)

l€aggregate~-values]
[faggregate-valuex]

5.1.6 DATASET

HM114.
M115.

M11l6.

M117.
M118.
M119.
M120.
M121.
Mi22.
HM123.

HML24.

£dataset»: 1= <dataset-namer [drecord-dataset® | <stream-dataset»}
“dataset-name®::= £character-string-value»
<record-dataset®::= €sequential-datasets I

fhoayod-datasetd

<keyed-sequential-datasets
<sequential-dataset®»::= <€alpha> (<record-list>»] <omegaz
<keyed-dataset>::= [<keyed-record-list»]
ikeyed-sequential-dataset»: 1= <€alpha> [<keyed-record-list»] <omegadr
<keyed-record>::= <records <key»
{record¥; 1= <evaluated-data-description® <basic-value-list®
<keyr:i= <character-string-values

<stream-datagets::= <€alpha®» [<stream-item-list>»] <omeqas
<stream-item»::= {symbol} | <linemarks | <pagemark> | dgarriage-return®

Chapter 5: The PL/I Interpreter 147

5.2 Terminology and Definitions

The following terms are employed at warious places throughout the operations which
comprise the interpretation phase.

5.2.1 CURRENT

{1} The last <block-state* member (if any) of the <block-state-list> is termed the
current <€block-state».

(2} Excepting only components of its <controlled-group-state-list® simple component (if
any), any component of the current <block-gtate» iz termed current. For example,
the <executable-unit-designator> simple component of the current “block-state® is
termed the current <executable-unit-designator>.

(3} The last <controlled-group-state* member (if any) of the current <controlled-group-
state-liast?» is termed the current <controlled-group-stater.

{4} Any component of the current <controlled-group-state» is termed curremt. For
example, the <by-value> component of the current £controlled-group-state® is termed
the current <by-valued.

[5) The corresponding block (see Section 5.2.2) of the current <£block-state» is termed
the current block.

(6) any simple component of the current block is also termed current. For example, the
<gnd-gtatement> immediate component of the current block is termed the courrent
<gnd-statement>.

5.2.2 BLOCK

The term block is wused to refer to a <begin-blockr; a <procedure’, or an <abstract-
external-procedure>. Each <block-state® present in the <machine-state® is created to be
associated with some particular block. That block is termed the corresponding block of
the €block-state®» and it may be located since it 1is that block which has as block-
component the <executable-unit> designated by the <executable-unit-designator> simple
component of the <block-state® in gquestion.

5.3 The Interpret Operation and the Initialization of the Interpretation State

5.3.1 INTERPRET

First; the <interpretation-state® is initialized, and then the <program> is executed.

Dperation: interpratidl,ev)

where dl is a <dataset-list>»,
&V is an <entry-wvalued.

Step 1. Perform initialize-interpretation-state(dl).
Step 2. Let eer be <evaluated-entry-reference»:; ev. Perform activate-procedure(eer).

Step 3. Perform program-epilogue.

ing

5.3.2 INITIALIZE-INTERPRETATION-ETATE

Initialize-interpretation-state constructs the initial configuration of cthe
<interpretation-state®, including certain porticns that are a Function of the <program>

to be interpreted.

Cperation: ipitialize-interpretation-state(dl}

where dl is a <€dataset-lists.

Step 1. Append to the 4machine-state* the tree

<interpretation-states:
£program-state®»:
fprogram-directory»:

“5tatic-directory>®
€controlled-directory?®
£file-directory®»;;

<allocated-storages

Al .

Step 2. Perform build-file-directory-and-intormations.

step 3. Perform build-controlled-directory.

Step 4. Perform allocate-static-storage-and-baild-static-directory.

5:3.3 BUILD-FILE-DIRECTORY-ANRD-INFORMATIONS

Operation: build-file-directory-and-informations

Step 1. FPor each <declaration>,d in the <program>, which has <named-constant> with
<file>», selected in any order:

rcase 1.1. d has <external>, and there exists in the <file-directory®» a <£file-
directory-entcy> with both <external> and an <identifier> that is equal to
the <identifier> in 4.

Ho actions

case 1.2. (Otherwise).

case 1.2.1. d does not have a <bound-pair-list>.

Perform build-fdild).

case 1.2.2. 4 does have a <bosund-pair-list>.bpl.

Step 1.2.2.1.

Step 1.2.2.2.

Et.E'p' 1:2:2:3.

Step 1.2.2.4.

bpl must not contain <asterisk> or <refer-option>.

Let n be the number of <bound-pair>s in bpl. Por i=1,...,n, let
1h1i] and wubli]l be the <lower-bound> and <upper=-bound>
respectively in the 1'th <bound-paic> of bpl.

For 4i=1,...n, perform evaluate-expression-to-integer(ib{i)) to
obtain an €integer-valuoer,elblil and perform evaluate-expression-
to-integer(ubli)) to obtain an <integer-value>»;eublil.

For each distinct subscript-value-list¥,subl having n
£subscript-value»s such that the i'th contained <integer-wvalues
lies in the idinclusive range defined by elblil and eubli],
gelected in any order, perform build-fdild,subl).

Chapter 5: The PL/I Interpreter 149

5.3.4 BUILD=-FDI

Operation: build-fdi(d,subl)

where d is a <declaration>,
subl is a [<subscript-value-list>].

Step 1. Let fn be a <filename> whose component {symbol}s are those of the <identifier>

in d, and are taken in the same order. Let f4 be the <file-description> in 4.
Let info be a

4file-information¥:
dopen-Stated:
£ologeds;
fn
£d.

Step 2. HAppend info to the <file-information-list®». Let fid be a <file-information=

designator> which designates this appended <fille-information® node.

Step 3. If 4 has <external>, then let =3c be <external>; otherwise let =sc be a

<declaration-designator> designating d. Let id be the <identifier> in 4. Let
fde be

dfile-directory-entry>»:

If subl is present, append it to £de.

Step 4. Append fde to the <file-directory-entry-list¥.

5.3.5 BUILD-CONTROLLED-DIRECTORY

Operation: build-controlled-directory

Btep 1. For each <declaration>.d in the <program>, seleécted in any order:

150

Case 1.1. d has <controlled>.
case 1.1.1. d has <external>, anpd there exists in the <controlled-directory» a
<controlled-directory-entry? with both <extermal> and an <identifier>
that is egual to the <identifier> in d.
Ho actiom-
Case 1l.1.2. (Otherwise).
Step 1.1.2.1. If 4 has <gxternal>, then let sc be <external>; otherwize let sc
be a <declaration-designator> designating d. Let id be the
<identifier> in d.

Step 1.1.2.2. RAppend, to the <controlled-directory-entry-list®, the tree
doontrolled-directory-entry»: sc id.

Case 1-2-. [(Otherwise).

Ho action.

5.3.6 ALLOCATE=-STATIC=-STORAGE-AND-BUILD-STATIC-DIRECTORY

Operation:

age-and-build-static-directory

Step 1. For each <declaration>,d in the <program>», selected in any order:

case 1.1. d has <static>.

Case 1.1.1. 4 has <external>, and there exists in the <static-directory?® a <static
directory-entry» with both <external> and an <identifier> that is equa
to the <identifier> in 4.

Mo action-

Case 1.1.2. (Ocherwise).

Step 1.1.2.1.
Step 1.1.2.2.
Step 1-1.2.3.

Step 1.1.2.8.

Step 1:1.2-5.

Let dd be the <data=-description> in 4. Perform evaluate-data
description-for-allocationi{dd) to obtain an devaluated-data
descriptions,edd.

Perform allocate{edd) to obtain a dgeneration¥,q-

If 4 has <initial>», then perform initialize-generation(d,g).

If d has <extermal>, then let Sc be <eéxternal>; otherwise let =
be a <declaration-designator> designating 4. ©Let id be th
cidentifier> in d.

Append, toa the <static-directory-entry-list», a <static
directory-entey®»: sc id g.

Case 1.2. (Otherwise)-

Mo action.

5.3.7 PROGRAM=EPILOGUE

Cperations program=-epilogue

Step 1. For each <file-information».fi containing <open» perform close(fv), where £v i
a €file-value» designating fi.

Chapter 5§ The PL/I Interpreter 151

S g S LS

Ny ap— L PR - 111 EEEECHT S TTE T TR S E ey e

Chaptexr 6: Flow of Control

6.0 Introduction

The definition of the control mechanism of the PL/I Interpreter, introduced im Chapter 5,
is completed in this chapter. The definition treats in order the three levels of
control, pertaining to the program, the block, and the operations within the block. This
iz followed by the definition of the control of interrupt operations.

Within the execotion of the program, there may be seweral blockz active at any time, but
execution proceeds sequentially only within the most recently activated block while the
execution of the other blocks is temporarily suspended.

6.1 Program Activation and Termination

The activation of a program is described in Section 5.3, the initialization of the
dprogram-state® being followed by the performance of the activate-procedurs operation.
This causes the first <block-state* to be created.

A <program-state®* in generdl containe a list of <block-stateds, one for each Dlock
activated within it and not yet terminated. When the eoxecution of a program jis
terminatad, all the contained block activations are also terminated. The deletion of the

last remaining <block-stated results in coentrol returning to Step 3 of the interpret
operation and performance of the program-epilogue operation (see Section 5.3.7).

6.1.1 PROGRAM TERMINATION
A program may be terminated:

(1) "abnormally™, by execution of a <gstop-statement>, or

2} "normally®, by execution of an <gnd-gtatement> or <return-statemeént>, in
circumstances which lead to the epilogue operation being performed in the
original <block-State>. Since the <end-statement> and <return-statement> can
also be used for other purposes, their execution will be described in Section
6.3.

6.1.1.1 Execute-stop-statement

Operation: execute-stop-statement (S8)

where ss is a <stop-statement>.

Step 1. Perform raise-condition(<finish-condition>).

Cr =l _i-d S Lo bt sy

Step 2. Perform stop-program.

6.1.1.2 Stop-program

Operation: SEOp-progqran

Step 1. For each <block-stated» contained in the 4program-stated except the current
“block-stated, replace the <€statement-control® by

£gtatement-cantrol
doperaticn-listk:
<operation» for epilogue.

step 2. Perform epilogue.

Chapter &6: Flow of Control 153

6.2 Block Activation and Termination

Block activation is described by defining first those actions which are different for
<procedure>s and <begin-block>s. The operations prologue and epilogue are the same for
both kinds of bleck.

6.2.1 ACTIVATE-FPROCEDURE

A <procedure> may be activated by execution of a <call-statement>; or by evaluation of a
<value-reference> which is a <procedure-function-reference>. Also an <on-unit> has a
<procedure> which may be activated on the occcurrence of an interrupt.

This operation completes when epilogue (see Section 6.2.4) is executed and eliminates the
“block=gstate» and its contained ocperations.

Ccperation: activate-procedure(eer,chifs)

where eer ls an <€evaluated-entry-reference®»,
chifs is a [<condition-bif-value-list®].

step 1. Let epd be the <entry-point-designator> of eer, designating an <entry-point>,ep.
which is a simple component of a <procedure>,p.

Step 2. If there exists in the <block-state-list’® a <block-state> whose corresponding
block is p, then p must simply contain <recursive>, unless p 18 the immediate
component of an <on-unit>.

Step 3. Let eud be a designator of the first <executable-unit> after ep in the <entry-
or-executable-unit=-1list> simply containing ep. If eer contains a <«hlock-state-
designator®,bsd, let hle be <block-environment®: bsd. Otherwise ble is <absent®.
If bsd is present, it must designate an existing <block-state¥.

Step 4. Let bs be a

<block-states:
£block-directory®»:
€automatic=-directory®
ddefined-directory®
fparameter-directory?®;
£block-control®:
<executable-unit-designator>:
eud;
“group-control’®
€statement-control®:
“operation-list®;
“operation® for instal-argumentsieer);;:
<linkage-partd:

If ble iz a <Zblock-environment® then attach ble to bs. If chifs iz a
4condition-bif-value-list®» then attach cbifs to bs.

Step 5. Append bs to the <£block-state-list®.

158

6.2.1.1 Instal-arquments

Operation: instal-arguments{esr)

where esr iz an <evaluated-entry-referances.

Step 1. If the <parameter-name-1list>,pnl of the <entry-point> designated by the <entry-
point-designator> of eer exists, then perform Step 1.1.

Step 1.1. Let eal be the <established-argument-list» of eer. Attach to the current
<parameter-directory® a <parameter-directory-entcy-list®,pdel, with the same
number of immediate components as pnl and whose i'th immedlate component is

“parameter-directory-entcyd:
<identifier> of the i*th immediate component of pnl
<egtablished-argument®, the i'th immediate component of eal.

Step 2. For each <identifier>,id immediately contained in a <declaration> containing
<parameter> in the current block, and not contained in pnl, append to plel a

{parameter-directory-entry®;
id
Lundefineds.

Step 3. Perform prolegue.

6+2.2 ACTIVATE-BEGIH-BLOCK

A <begin-block> is activated when the operation execute-executable-unit is applied to the
<executable-unit> immediately containing it.

Operation: activate-begin-hlock

Step 1. Let eud be a designator of the first <executable-unit> of the <executable-anit>:
<begin=-block>: <executable-unit-list>»;; designated by the current <executable-
unit-designator>. Let bsd be a <block-state-designator®» designating the current
<hlock-state®. Append to the <block-state-list> a

“block-atated:

dblock-directory¥:
<automatic-directory®»
<defined-directory®;

dfhlock=control:
<gxecutable-unit-designator>: eud;
<group-controlk
dgtatement-control»:

£operation-1list®;:
<operation> for prolegue;;;

€linkage-parts

<block-environment:
bad.

Chapter 6: Flow of Control 155

6.2.3 PROLOGUE

This operation is invoked at the beginning of every block activation to establish the
<automatic> and <defined> variables local to that block. The <automatic> wvariables are
initialized 4if their <declaration®s specify initialization. Any <expréssion>s evaluated
during the prologue, such as in <extent-expression>s or <expression>»s in <inirial>, are
not allowed to reference other <automatic> or <defined> variables local to this block.
The operation find-directory-entry will impose the restriction when it finds a reference
to a wvariable declared in a block for which there exists a «<prologue-flag». The
iprologue-flag®» is only present while the prologue operation is active.

Operation: prologue
Step 1. Attach a <proloque-tlaq* to the current <linkage-parts.

Step 2. For each <declaration»,d, of the current block, that contains <automatic> or
<defined>, perform Step 2.1.

Step 2.1. Let 4id be the <identifier> immediately contained in d, and let dd be the

<data-description> immediately contained in the <variable> of d. Perform
evaluate-data-description-for-allocationfdd) to obtain an <€evaluated-data-
description», edd.

Case 2.1.1. 4 conkains <auvkomatic>.
Step 2.1.1.1. Perform allocateladd) to obtain a <generation®»,g.

Step 2.1.1.2. Append to the current <automatic-directory-entry-list®» an
€automatic-directory-entry»: id g.

Step Z.1.1.3. If 4 contains <initial> then perform initialize-generationig,d).
Case 2.1.2. d contains <defined>.

Append to the current <defined-directory-entry-list» a <defined-
directory-entry»: id edd.

Step 3. Delete the <prologue-flag» of the current <linkage-parcts.
Stéep 4. Replace theé current <statement-control® by a
dotatement-conktrol>:

£operation-list®:
“operation» for advance-execution.

6.2.4 EPILOGUE

This operation is used to terminate the execation of a block and may be invoked from
executing an <end-statement>, a <return-statement>, 2 <gtop-statement>, o©or a4 <goto-
statement> which causes a transfer of contrel out of a block. This operation, which
deletes the <block-state®, normally causes a return to activate-procedure or activate-
begin-block, in the previous <block-state>.

Operation: #pileque

Step 1. For each current <parameter-directory-entry?,pde, which contains €dummy>, let g
be the <gencration® in pde and perform free{g).

Step 2. PFor each current fautomatic-directery-entry».ade, let h be the <generatiom® in
ade and perform freelh).

Step 3. If there is a current <onsource-value», then attach its impediate subtree to the
<returped-onsource-value* of the preceding <block-state* of the <block-state-

lists.

Step 4. Delete the current <£block-states.

156

6.2 Control within a Block

The operation normal-sequence sets the current <executable-unit-designator> to designate
the next <executable-unit>. This is normally the last action of each execution of an
<executable-units. The special ecases of execution of a <goto-statement> and <end=
statement> may Set the <executable-unit-designator> independently, while the <return-
stateément> and <stgp-statement> have no further nesd for it. The <executable-unit-
designator® is initialized in each activation of a <procedure> or <begin-block>, and may
be reset on entering a <group’ or <if-statementi>.

6.3.1 HORMAL-SEQUENCE

Operation: nopmal-gegquence

Step 1. Let eu be the <executable-unit> designated by the current <executable-unit-
designator>. Let eul be the <executable-unit-list> or <entry-or-executable-
unit=1ist> which contains eu, but does not contain any other <executable-unit-
list> or <entry-or-executable-unjit-list> which alsc contains eu.

Step . Let eu? be that Aimmediate component of eul which either contains eu or is
exactly eud.

Case 2.1. eul is an <executable-unit-list>.

Let eul be that <executable-unit> which immediately follows eu? as an
immediate component of eul.

Case 2.2. e#ul is an <entry-or-executable-unit-list>.
Step 2.2.1. Let eul be that <entry-or-executable-unit> which immediately follows eu2
as an immediate component of eul. If eof immediately coptains <entry-
point>, then let ew? be eull and go to Step 2.2.1.
Step 2.2.2. Let eud be the <executable-unit> immediate component of eud.

Step 3. Set the current <executable-upit-designator> te designate eud.

6:3-1.1 Advance-execution

This operation is the “driver” which initiates execution of each <executable-unit> as
aclected by the current <executable-unit-designator>.

Operation: advance-gxecution
Step 1. Perform execute-executable-unit.

Step 2. Go to Step l.
6.3.2 EXECUTE-EXECUTABLE-UNIT

The currént <executable-unit-designator> designates the <executable-unit> to be executed.
Execution of an <executable-unit> consists of performing the appropriate “execute”
operation. That operation normally terminates with the current <executable-unit-
designator> designating some other <executable-unit> in the <program>. Return of control
to advance-execution then causes execute-executable-unit to be applied again.

Operation: execute-executable-unit

Step 1. Let f be the rightmost immediate component of the <executable-unit> designated
by the curremt <executable-unit-designator>.

gtep 2. DPerform execute-xxx(f), wheras “xxx* is replaced by the sSequence of symbols
forming the name of the type of f.

Chapter 6: Flow of Control 157

6:3.3 EXECUTE~-BEGIN-BLOCEK

Operation:

Step 1.

Step 2.

execute=hogin=block (b)

where b iz a <begin-block>.

Perform activate-begin-block.

Perform normal-seguence.

6.3.4 EXECUTE-GROUP

Copstraints: In a <do-speck;dsp. let tr be tue <target-reference?> componeént. For each

operation:

Step 1-

158

Case

Case

Case

1.1

1.2.

1.3.

<spec> of dsp, let

a be the <expression> immediately contained in the <spech,
b be the <expression® in the <by-option>,

te be the <expression> in the <to-option>,

S be the <expression> in the <repeat-option>,

if such options are present. The following constraints must hold for each
<HEpec> @

(13 If re is present then tr and e must have <computational-type> and the
derived modes of tr, e, b, and te, must all be <real>.

(2) If r iz present then tr, &, and r must all have:
<ocomputational-type>, or
<locator>, or
<non-computational-type>, with immediate subnodes of the <non-

computational-type>s belonging to the same category other than
<locator>.

(33 If +tr has <pointer> and either or both of & and r has <offset>, then
each such <offset> must contain a <variable-reference:. I1f tr has

<offget> and either or both of e and r has <pointer>, then the
<offset> in tr must contain a <variable-reference>.

execute-group (gl

where g is a <group>.

feu be the first <executable-unit> simply contained in g.

g has a <non-iterative-group>.

Set the current <executable-unit-designator’> to designate feu.

g has a <while-only-group>.

Let exp be the <expression> of the <while-option> of g. Perform establish-
truth-value{exp) to obtain t. If ¢t is +«true®, theén set the ourrent
<executable-unit=-designator> to designate feu; otherwise, perform normal-
Sequence.

g has a <controlled-groupl.

Let dsp be the <do-spec> of g. Perform establish-controlled-group(dsp) to

obtain - If t is <true®, then set the current <executable-unit-designator>
to designate feu; otherwise, perform normal-sequencea.

G.3.4,1 Establish-controlled-group

This operation is wused to set up an iteration in the cases of a <controlled-group>,
¢list-dicrected-input>, <list-directed-output>, <edit-directed-input>, <pdit=directed-
output>, and <data-directed-output>.

If the controlling <do-spec: is such as to indicate iteration, then an appropriate
<controlled-group-state® is established and <true» is returned. If the controlling <do-

spec> indicates no iteration, then no <contyrolled-group-state® is established and <false»
is returned.

Operation: establish-controlled-group (dsp}
where dsp is a <do-speck.
regnlt: <ftrued or €falsed.

Step 1. Let &r be the <target-reference> of dsp, and dt be the <data-type> of tr.
Perform evaluate-target-referencel(tr) to obtain an €evaluated-target®,et.

Step 2. Let sp be the first <gpec> of dsp. Append to the current <controlled-group=
state-1listy», the treea

“controlled-group-states:
<gpec-designator>: a designator designating sp;
“ov-targot»: ety
£ocy-typer: dt.
Step 3. Perform initialize-spec-options.
Step 4. Perform test-spec to obtain tw.
Cage 4.1. tv is €truek.
Return <€trues>.

case $.2. tv is <falser.

Perform establish-pnext-spec to obtain kEwva. If tv2 is «£true*, then go to
Step 8. Otherwise, delete the current <controlled-group-state* amd return

4false>.

6.3.4.2 Initialize-spec-options

Operation: initialize-spec-options

Step 1. Let sp be the <spec> designated by the current <spec-designator>. Let e be the
<gxpression® immediate component of sp.

Step 2. Perform Steps 2.1 through 2.3 in any order.
Step Z.l. Perform evaluate-expression(e) to obtain an <aggregate-valuer,av.

Step 2.2. If sp contains a <to-optiom>.t: <expression>,et; then perform Steps 2.2.1
through 2.2.3.

Step 2.2.1. Let etdt be the <data-type> of et. Let dt be a

<data-typek:
Ceomputational-type>:
<arithmeticdy
omode
<realx;

the derived common <base> of etdt and the current <€cv-type»
the derived common <scale> of eedt and the current <€cv-types
the converted <precision> of etdt.

Chapter 6: Flow of Control 159

Step 2.2.2.

Step 2.2.3.

Step 2.3. If

Ferform evaluate-expression{et) to obtain an <€aggregate-value»,x. Let y
be the <basic-value? in x. Pertorm convert (dt,etdt,¥y) to obtain a
<bhasic-value®: <real-valued,z. Attach a «<to-value®: z; to the current
“<ocontrolled-group-stated.

Let cp be the converted <precision> of the current €cv-type>, where dt
is used as the target <data-typer for determining ep. Replace the
<precision> tree in dt by cp. Attach a <€converted-to-type»: dt; to the
cuarrent <controlled-group-state>. (The <£converted-to-type® will be used
later as the target <data-type> when the value of the <cv-target®» is
converted for comparison Wwith the <to-value®.)

gp contains a <by-option> or a <to-option> then perform Steps 2.3.1

through 2.3.5.

Step 2.3.1.

case 2.3.1.1. sp contains a <by-option>: <expression>,eb.

Perform evaluate-expressionieb) to obtaln an <aggregate-valuewr, x.
Let ebv be the «basic-value® in x. Let ebdt be the <Jdata-type>
af eb.

case 2.3.1.2. sp contains a <to-option> but not a <by-option>.

Step 2.3.2.

Step 2-3.3.

Step 2:3.0.

Lat ebv be & <basic-value»: +real-value»: 1. Let ebdt be a
<data-type> which is integer-type, except that its <base> has
<decimal> and its <npumber-of-digits> has 1.

Let dt be a

<data-typek:
<oomputational-type:
<arithmetic>:
derived common <mode> of ebdt and current €cv-type>
derived common <bage> of epdt and currant <€ev-types»
derived common <scale> of ebdt and current <cv-typed
converted <precision> of epdt.

Perform convert(dt,ebdt,ebv) to obtain a <basic-valuer.,x. Let y be the
<real-valuer or <complex-value* immediately contained in x. Attach a
<by-value>: y; to the current <controlled-group-state®.

Let op be the converted <precision> of the current <€cv-typed, where dt
iz ugsed as the target <data-type> for determining cp. Let p be the
<punber-cf-digits> of cp, and let ¥ be the <pumber-of-digits> of de.

Cage 2.3.8.1. dt has <float>.

Change the value of the <number-of-diaits> of dt to maxip,r).

Ccase 2.3.08.2. dt has <fixed>.

Step 2.3.5.

Let g be the <scale-factor> of ¢p, and let s be the <scale-
factor> of dt. Let meEmini(M,maxi{p-g.r-s)+maxiqg,s)+1), whére M is
the maximum <pnumber-of=-digits> allowed for <fixed> with the
<base> of dt. Let n=maxlg,s). Change the value of the <nomber-of-
digits» in dt to m, and change the value of the <scale-factor> in

dt to A.

Attach a <converted-by-type*: dt; ¢to the carrent <€controlled-group-
stater. (The <converted-by-type? will be used later as the result
cdata-type> for the addition of the <by-value* and the value of the <cv-

target®.)

gtep 3. Lat cvt be the immediate component of the current <€cv-target®. Let dd be the
<data-description> immediate component of e. Perform assignicvt.av.dd).

160

6.3.49.3 Test-spec

This operation is wused to test whether the current controlling <specr in a <do-spect>
indicates continuation (€trued returned) or termination (<€false» returned).

Operatiomn: test-spec
result; <true> or <€false>.

Step 1. If the Iimmediate component of the current <controlled-group-state* contains a
{to-valuer,y, perform Steps 1.1 through 1.3.

Step l.l. Let ovk be the immediate component of the currenc <€cev-targets». Perform
value-of-evaluated-target (cvt}) to obtain an <aggregate-value> containing a
fhagic-value®,x. Let xt be the current <cv=-typed».

Step 1.2. Let dt be the current <converted-to-type». Perform convert(dt,xt,x) to
obtain a <basic-value»,cx.

Step 1.3. Let bw be the current «by-wvalue®». If bv =2 0 and cx > y, or if bv < 0 and
cx < ¥» retlirn <falsed.

Step 2. If the <spec> designated by the current <spec-designator> contains a <while-
option>: <expression>,e; then perform Step 2.1.

Step 2.1. Perform establish-truth-value(e) o obtain tv. Return tv.

Step 3. Return <trues.

6.3.0.04 Establish-next-spec

This operation is used to advance through the list of wspec>s in a <do-spec>. If there
is a next <spec> available, then conditions are established to use it and <true> is
returned. IE there is no next <spec> available, then <false¥* is returned.

Operation: establish-next-spec

result: <£trued or £talse».

Step 1. Let sp be the <spec> designated by the current <spec-designator>. Let spl be
the <gpec-list> which immediately contains sp. If gp is the last component of
spl then return <falsek.

Step 2. Replace the imsediate componcent of the current <spec-designator> by a designator
of the next <spec> component of spl.

Step 3. If the current <controlled-group-state® contains a <4by-value* and a <converted-
by=-type* or a €to-value* and a <converted-to-type* then delete them.

Step 4. Perform initialize-spec-options. Return <trued.

Chapter 6: Flow of Control 161

6.3.06.5 Test-termination-of-controlled-group

This operation is used to test for the termination of an iteration set up by establish-
controlled-group. If the controlling <do-spec> is such as to indicate termination, then
the current <controlled-group-state® is deleted and <trus> is returned. If the
controlling <do-spec> indicates continuwation, then the appropriate <executable-unit-
designator> or <data-item-indicator® is set to continue and <false» is returned.

Operation: test-termination-of-controlled-group

result: <true* or <falser.

Gtep 1. Let sp be the <spec> designated by the current <spec-designator>. Let eve be
the <evaluated-target» of the current <cv-target>.

Case 1.1. sp contains a <repeat-optien>: <expression>,re.

Let dd4 be the <data-description® immediate component of re. Perform
evaluate-expression{re}) to obtain an £aggregate-value®, av. Parform
assignievt,av,dd) .

Cagse 1.2. gp coptains a <by-optiom> or a <to-option>.

Step 1.2.1. Let bt be the <data-type> in the current <converted-by-type>». Let cvt
be the <data-type> in the current <€cv-type>». Let cvt? be a <data-type>
that is the same as bt except for its <precision®, which is the
converted <precision> of cvt, with bt being the target <data-type> for
determining the converted <precision>.

Step 1.2.2. Let et be the <€evaluated-target® in the current €cv-target». Perform
value-of-evaluated-target{et) to obtain an <aggregate-valuer,x1. Let x3
be the <£basic=value> in x1. Perform convertievtZ,evt,x?) to obtain a
fhasic-value®,x3. Let x be the <real-value? or <complex-value» in x3.

Step 1.2.3. Let ¥y be the <real-value® or <complex-value* in the current £by-wvalue®.
rerform arithmetic-resultix+y,bt) to obtain z, where z i3 a <€real-valoe»
or a €complex-valuek.

Step 1.2.4. Let rtd be a

<data-description>:
Zitem-data=deseription>:
<data-typei:
hti

Let w be an
€aggregate-valued;
daggregate-type»:
<Ecalari;
<basic-value-list¥:
£hasic=value®:
T
Perform assigniet,Ww,rtd).
case 1.3. sp does not coptain a <repeat-option>, a <to-option>, or a <by-option>.
Go to Step 3.

Step 2. Perform test-spec to obtain tv. If tv is <trued, return <false* (which indicates
that the group does not terminate).

Step 1. Perform establish-next-spec to obtain tv2. If tvl is <trued then go to Step 2;
otherwise delete the current <controlled-group-stater and return <trues.

162

6.3.5 EXECUTE-IF-STATEMENT

Operation: execute-if-statement (ifs5)

Step 1.

sStep 2.

Case

Case

Case

6.3.5.1

where ifs is an <if-statement>.

Let & be the <expression> immediate component of the <test> of ifs. FPerform
establish-truth-valuele} to obtain tv.

2.1. tv is <trucs.

Replace the immediate component of the current <executable-unit-designator>
by a designator of the <executable-unit> of the <then-unit> of ifs.

2.2. tv is 4false» and ifs simply contains an <else-unit>,eu.

Replage the immediate component of the current <executable-unit-designator>
by a designator of the <executable-unit> of eu.

2.3. tv is «falger» and ifs does not Simply contain an <else-unit>.

Perform normal-gsequence.

stablish-truth-val

Operation: establish-truth-value{exp)

Step 1.

Step 2.

Step 3.

where exp is an <expression».
result: €true® or <false>.

Perform evaluate-expression{exp) to obtain an <€aggregate-valued»,av: <basic-
value-list®»: <basic-valuer,sv. Let sdt be the <data-type> of exp.

Let tdt be a

<data=-type>:
<computational -type>i
<string>:
<string-type>:
<bit>;
<maximum-length>:

<asterisk>.
Perform convert(tdt,sdt,sv) to obtain b.

If b containsg a <bit-value®»; <€one=bit*; then return <true®*; otherwise return

<falsedr.

f.3.6 EXECUTE-CALL-STATEMENRT

cperation: execute-call-statement (cs)

Step 1.

Step 2.
Step 3.

where ca is a <call-atatement>.

Let sr be the <subroutine-reference> component of cs. Perform evaluate-entry-
reference (sr} to obtain an <evaluated-entry-references,eer.

Perform activate-procedure (eer).

Perform normal-seguence.

Chapter 61 Flow of Control 163

6.3.6.1 Entry-ceferoences

An entry-reference iz weither a <subroutine-reference> or a <procedure-function-
reference>. {(<bujiltin-function-reference>s are described in Section 9.4.)

The main difference between a <subroutine-reference> and a <procedure-function-reference>
is that normal termination of a <procedure> in the <subroutine-reference> case 1s by a
<return-statement> not containing an <expression>, or by an <end-gtatement>, whereas in
the <procedure-function-reference’> case it 1is by a <return-statement> c<coptaining an
<expression>.

Evaluation of an entry-reference normally takes place just before activation of a
<procedure>.

6.3.6.1.1 Evaluate-gntry-reference

Operation: evaluate-entry-referencefear)
whera er is a <subroutine-reference> or a <procedure-function-reference>.
result: an <evaluated-entry-references».

Step 1. Let wvr be the <value-reference> immediate component of er. Perform evaluate-
valug-raferenca(ve) to obtain an <aggregate-value>,ag. Let ey be the <entry-
value* in ag.

Step 2. Let ep be the <entry-point?» designated by the <entry-point-designator> in ev.
Lat id be the <identifier> in the <statement-name> in ep. Let p be the
<procedure> that block-contains ep. Let b be the abstract-block that block=
contains p. et dl be the <declaration-list> immediately contained in b. Let d
be the <declaration> in dl whose <identifier> equals id. Let de be a copy of
the <eéntry> immediately contained in the <named-constant> of d, and let vre be a
copy of the <entry> of the <data-description> of vr.

Delete from de and vre all <variable-reference»s which are immediate components
of <offset>. In an implementation-defined fashion, compare corresponding
<optiona> components of de and vre and, if either de or vre has <options>
components and the other does not have corresponding <options> conponénts,
compare de and vre. Delete all <options> components of de and vre.

For each <extent-expression>,ee in de or vre coptaining a <constant>,c, let e be
an <expression>: ©; and perform evaluate-expression-to-integer{e) toc obtain an
“integer-value»,iv and replace ee by <extent-expressionr: iv. de and vee must
now be egual. (This checks that the entry point to be invoked agrees with the
declaration of the entry value reference, ve.)

Step 3.
case 3.1. er does not contain an <argument=1list>.
Return an <evaluated-entry-references>: ev.
cage 3.2, er contains an <arqument-list>,al.
Let n be the number of <argument>s in al. Let eal be an <established-
argument=lists» with n <established-argument®» immédiate components. For
i=1,+.+,n, taken in any order, perform Step 3.2.1.

Step 3.2.1. Let arg be the i°th <argument> in al. Let dd be the <data-description>
in the i'th <parameter-descriptor> in the <parameter-descriptor-list> in
the <data-type> of vr. Perform establish-argumentlarg,dd) to obtain an
<festablished=-argument®,x. Replace the i'th <established-argument®» of
eal by x.

Step 4. Return an <evaluated-entry-reference®: ev eal.

164

£.3.6,1.2 Establish-arqument

Operatien:

establish-arqument (arg,dd)

where arg is an <argqument>,
dd is a <data-description>.

result: an <€established-argument®.

Case 1. arg does not immediately contain <dummy>.

Lat

vr be the <variable-reference> simple component of arg. Perform evaluoate-

variable-reference{vr) to obtain a <genperation>,qg. Return an <eéstablished-
arqument®: g <not-dummy>.

Case 2. arg immediately contains <dummy>.

Step 2.1.

Step 2.2.

Step 2.3,

Lat & be the <expression>® in arg. Perform evaluate-expressiont(e) to obtain
an <aggregate-value¥,av.

Let avdd be the <data-description> immediate component of e. Perform
promote-and-convert(dd,av,avdd} to obtain an <aggregate-wvaluer,avi.

Let ecdd he a copy of dd. Replace each <bound-pair> in cdd that is not a
component of <entry> by the corresponding <bound-pair> in awva. For each
<area-size»,x, contained in cdd, let ¥y be an <integer-value» determined by
an implementation-defined algorithm, and replace x by an

<area-size>:
<extent-expression>i

¥

For each <data-type>,st simply contained in cdd that simply contains a tree
of the form <string>: <maximum-léngth>: <asterisk>;; perform Step 2.3.1.

Step 2.3.1. Let m be the maximum of the lengths of all €character-string-value»s or

Step 2.4.

Step 2.5.

Step 2.6.

£hit-string-value*s in av2 that correspond to st. Replace the <maximom-
length> in st by a

<maximam=-lengkh®:
<extent-expression>:

<integer-valuad:
m|m.
Perform evaluate-data-description-for-allocation{cdd) te obtain an
dayvaluated-data-description»,edd. Parform allocate{edd) o obtain a

<generation®,g.

Let byl be the <basic=value=-ligt®» in avZ. Perform set-storage(g,ovl).

Return an <established-argument®: g <dummys.

Chapter &: Flow of Control 165

6. 3.7 EXECUTE-GOTO-STATEMENT

operation: execute—goto-statement (gs)

where ga is a <goto-statementl.

Step 1. Let vr be the <value-reference> of gs. Perform evaluate-value-reference{vrl} to

abtain an £aggregate-value?®,ag. ag must contain the form

4label-valued, lv:
<executable-unit-designator>,tp
“block=-state-designator»,ban.

Step 2. The <block-state-list® must contain a <block-stated®.bs, designated by bsn. (Its

corresponding block contains the <executable-unit> designated by tp.)

Case 2.1. bs is the current <block-State>.

Perform local-goto(lv).

Case 2.2. bs is not the current <4block-statek.

Step 2.2.1. vr mast not immediately contain a <data-description> whose <data-type>
has <locals.

Step 2.2.2. The <statement-control® component of bs must not contain &n <€cperations
for execute-allocate-statement,; execute-locate-statement, or prologue.

Step 2.2.3. Replace the <statement-control®» component of bs by:

“<gtatement-controls:
doperation-1listd:
£operation® for advance-execution
<operation®* for trim-io-control
<operation®» for local-gotol(lv).

Step 2.2.4. For each <block-state»,b that occurs after bs and before the current
£block=state» in the <block-state-list®» (of the <interpretation-state®)
perform Steps 2.2.8.1 and 2.2.4.32.

Step 2.2.8.1. The <£statement-controld component of b must not contain an
“operat lond for exeécute-allocate-atatement, execute-locate-
statement, or prologue.

Step 2.2.8.2. Replace the <statement-control®» of b by £statement-control®:
<pperation-list®: <operation® for epilogue.

Step 2.2.5. Replace the current <statement-control® by <statement-control:
“operation-list»: <operation® for epilogue.

6.3.7.1 Local-goto

operation: local-qgoto(1v)

where lv is a <label-valua®.

Step 1. Let tp be the <executable-unit-designator> in lv. Let eu be the <executable-

unit> designated by tp. If there is an <iterative-group>,g that contains ea but
does not contain an <iterative-group> or <begin-block> that contalns au, then
the current <executable-unit-designator> must designate an <executable-ondt>
that is contained in g-

Gtep 2. Perform trim-group-control (Ep).

Step 3. Replace the current <executable-unit-designator> by tp-

166

6.3.7.2 Trim-gqroup-control

Operations:

Step 1. Let

trim-group-control (eud)

where eud iz an <executable-unit-designator>.

eu be the <executable-unit> designated by eud. Let b be the <begin-block>

or <procedure> that block-contains eu.

Step 2.

Cage 2.1.

Case 2.2.

b contains a <controlled=-group> that contains ea.
Lat n be the nomber of <controlled-group>s that contain eu and aAre contained

in b. If the current <controlled-group-state-listd» contains more than n
<controlled-group-state»s, delete those after the n'th <controlled-group-

atater.
{Otherwise).

If there is a current <€controlled-group-state-list», delete it.

6.3.8 EXECUTE-NULL-STATEMENT

Oporation:

execute=null=-statemoent (ng)

where ns is a <pull-statement>.

Step 1. Perform normal=-seguences

6.3.9 EXECUTE-RETURN-STATEMENT

Operations

execute-return-statement {rs)

where rs is a <return-statement>.

Step 1. Let p be the last €block-state> of the <block-state-list» whose corresponding
block is a <procedure>.

Case 1.1-

Case 1.2.

rs does not contain an <expression?.

There must not be a <returns-descriptor> in the <entry-point> designated by
the <entry-point=-designator> of p. If p is the first <€block-state®* in the
£hlock-state-1ist» then perform raise-conditioni(<finish-condition>).

rs containg an <expressions,e.

There must be a <returns-descriptor>,rd in the <entry-point> designated by
the <entry-point-designator> of p. Lét dd be the <data-descriptions
immediate component of e. dd moast be proper for assignment to rd (see
Bection 0.0.2.3).

Step 1.2.1. Perform evaluate-expressionie) to obtain ev.

Step 1.2.2. Perform promote-and-convert(rd,ev,dd) to obtain an <aggregate-values,av.

Attach <returned-value>: av; to the <£linkage-part» of the <£block-states
immediately preceding p in the <block-state-lists.

Step Z. For each €block-state® (if any) which is& or which follows p in the €block-state-
list» except the current <block-state®, replace its <statement-control®» by a

“gtatement-control¥:
“foperation-list¥:
“operation* for epilogue.

SEtep 3. Perform epilogue.

Chaptér &: Flow of Control 167

6.3.10 EXECUTE-END-STATEMENT

Operation: execute-end-statement (es)

Step 1.

where €3 is an <end-statement>.

Let eul be that <executable-unit-list> or <entry-or-executable-unit-=list> which
contains es but doea not contain any other <executable-unit-list> or <entry-or-
executable-unit=-1list> which also contains es.

Let n be the node which immediately contains eul.

case 1.1. n is a <procedure>.

Step 1.1.1. The <entry-point> designated by the <entry-point-designator> component

of the current <linkage-part® must not contain a <returns-descriptor>.

Step 1.1.2. If the <block-state-list® contains only one <block-state® then perform

raigse-condition{<finish-condition>).

Step 1.1.3. Perform epilogue.

cagse 1.2. n is a <begin-block>.

Perform epilogue.

cagse 1.3. n i3 a <non-iterative-groupd.

Step 1.3.1. Set the current <executable-unit-designator> +o designate the

<pxecutable-unit> which simply cdmtains n.

Step 1.3.32. Perform normal-sequence.

case l.4. n is a <while-only-group>.

Set the ocurrent <executable-unit-designator> to designate the <executable-
unit> which simply contains n.

Case 1.5. n is a <controlled-grouap>.

Set the current <executable-unit-designator> to designate the <executable-
unit> that simply containg n. Perform test-terpination-of-controlled-group
to obtain t.

Case 1.5.1. £t is <truedr.

Pearform normal-sequence.

case 1.5.2. t is «falsed>.

168

Set the current <executable-unit-designator> to designate the first
<executable-unit> of eul.

6.4 Conditions and Interrupts

There are two distinct concepts of “condition® and “"interrupt®. When a "condition®
acours, @.9. raise-condition(<overflow-condition>) is performed, it may lead to an
*interrupt®, i.e. invocation of the interrupt operation.

The circumstances in which the various "conditions® occur are defined throughout Chapters
& to 9 at the appropriate points, wherever the operation raise-condition is to be
performed. This section defines how the occurrence of a “condition®™ may also be
signalled explicitly, and how the operations raise-condition, interrupt, and system—
action, are performed.

6.48.1 CONDITIONS

G.%.1.1 Raise-condition

A condition may be "raised” either implicitly from circumstances defined elsewhere, or
explicitly by the execution of a <signal-statement>. In either case, the operation test-
enablement is used to determine whether the ®"condition® is enabled and hence to determine
whether the operation interrupt is to be performed.

Operation: raise~condition{c,cbifs)

where ¢ iz an <evaluated=ic-condition®», a <programmer-named-condition»; or a
terminal node of <condition-pame> apart from the <named-io-
eondition»s or <programmer-named-condition>s,

chifs is a [<condition-bif-value-list®].

Btep 1. There must exist at least one <block-statedr.

gtep 2. If ¢ iz one of the terminal nodes of a <computatiomal-condition>, then perform
test-enablement{c) to obtain r., which must not be <disablads.

Step 3. Lat eoc be a copy of chifs. If ¢ is a <converSion-condition> and the current
<block-control® contains a <€current-file-value®: <file-value®,fv;, and cc does
not contain an <onfile-value®, then attach to cc an <onfile-value¥: fn; where fn
is the <character-string-value® in the <€filenames in £i, where £i is the «file-
information® designated by fv.

Step §. Perform interrupklo,oc).

6.0.1.2 Test-enablement

Operation: test-enablemnent (o)

where ¢ is one of the terminal nodes of <computational-condition>.
result: <enabled® or <disableds.

Step 1. Let eu be the <executable-unit> designated by the current <executable-unit-
designator>.

Case 1.1. The current <£linkage-part® does pot oontain a <prologue-flag® and the
current <block-control» does not contain a €remote-block-statek.

Let tp be eu.

Case 1.2. The current <linkage-part® does not contain a <prologque-flag» and the
current €hlock-control® contains a dremote-block-stated,rbs.

Let fc be the last <format-control® of the current <format-control-lists®
that contains a <“remote-block-state®. {This <remote-block-state®> equals
rbs.) Let tp be the <format-statement> designated by the <format-statement-
designator> of fc.

Chapter &: Flow of Control 169

Ccase 1.3. The current <linkage-part> containg a <prologue-flag».

Let tp be the <procedure> or <beqin-block> of which eu is a block-component.

Step 2. If tp is a <begin-block> then let tp be the <executable-unit> immediately
containing tp.

Step 3. If tp immediately contains a <copdition-prefix-list>,cpl;-and if cpl contains a
<condition-prefix>.cp. containing a <camputational-condition> equal to
<computational-condition»: cj,; then return the second component of cp.

Step .

Cage 4.l. There exists a bleck, b, which has tp as block-component.
Let tp be b and go to Step 2.

Case 4.2. There is no such block.
If c is <pize-condition>, <«stringrange-condition>, or <subscriptrange-
condition>, then return <disabled?»; otherwise return fonableds.

G.%.1.3 Execute-signal-statement

Operation: execute-signal-statement (sa)

Step 1.

wheére 55 is a <signal-Statemantl>.

Let en be the <condition-pame> immediate component of as and let o be the
<named-io-condition> or <programmer-named-condition> or otherwise the terminal
subnoda, of cn. If ¢ is not ona of the terminal nodes of <computaticnal-
condition®>, then let r be <enabled®. Otherwvise perform test-enablementi{c) to
obtain r.

Case 1.1. r is <disableds.

Perform normal-sequence and terminate this operation.

Case 1.2. r is <enableds.

Cage 1.2.1. ¢ is <conversion-condition>.

Let cbifs be a

dcondition-bif-value-1ist>:
<condition-bif-value®:
Lonsource-valued;
<character-string-values:
£null-character-string»;;;
“<oondition-bif-valued:
fonchar-valuoe>:
£integer-valuer: 0.

Cage 1.2.2. ¢ contains <name-condition>.

170

Let chbifs be a

4oondition-bif=value-1ist>»:
“<oondition-bif=valued:
<onfield-valued;
“character-string-value»:

dnull-character-strings».

Cage 1.2.3. ¢ contaings <key-condition>.
Let cbifs be a
deondition-bif-value-list»:
€condition=bif-valued:

<onkey-valuek:
dcharacter-string-valuas:

4pull-character-string>.

Cage 1.2.4. (Otherwisze).
Laet cbifs be <€absent?®.

Btep 2. If ¢ is a <named-io-condition> then perform evaluate-named-io-condition{c) to
obtain ec; otherwise let ec ba c.

Step 3. Perform interrupt(ec,cbifs).

Step 4. Perform normal-sequence.

6.0.1.8 Evaluate-named=ic-condition

Operation: evaluate-named=jio-condition(nioc)

where nioc is a <named-io-condition>.
result: an <evalvated-io-condition®.

Step 1. Let vr be the <value-reference> immediate component ¢f nicc. Perform eévaluate-
file-option{vr} to obtain a <€file-valued f.

Step 2. Let ioc be the <io-condition> component of nioc. Return <evaluated-io-
condition»: ioc E.

6.4.2 INRTERRUPTS

The <on-statement> and <revert-statemént> may be wsed to influence the action taken on
the occurrence of an interrupt operation. First these statements are described, and then
the operation interrupt itself is defined.

G2 = =gtat £

operation: execyte-on-statement (os)
where os is an <on-statement>.

Step 1. Por each <condition-name>,cn in the <condition-name-list> component of oS taken
in left-to=-right order perform Steps 1.1 through 1.5.

Step 1.1.
Ccase 1.1.1. cn has <naped-io-condition>,nic.

perform evaluate-named-ioc-conditioninic) to obtain an <evaluated-io-
condition®,eic. Let ec be an €evaluated-condition®»; eic.

Ccase 1.1.2. cn does not have <named-ic-conditionZ>.

Let enl be the immediate subtree of cn. Let ec be an <evaluated-
conditionk:; cnl.

Step 1.2. If the current <established-cn-unit-list* contains an <established-on-
unit®,e00 containing ec, then delete eocu.

Chapter 6: Flow of Control 171

Step 1.3.
case 1.3.1. o3 contains an <on-unit>,ou.

Let epd be an <entry-point-designator’> designating the <entry-point> of
ou. Let es he an

fentry-value®:

epd
{block-state-designator® designating the current <block-stated.

Case 1.3.2. (Otherwise).
Lot es be «<system-action>.
Step 1.4. Let neou be
festablished-on-unit®»:
8o
a85.

Step 1.5. If o8 contains <snap>, attach <snap> to nesu. Append neosu to the current
<established-on-unit-list>.

Step 2. Perform normal-segquence.

6-.4.2.2 Execute-revert-statement

Operatiomn: execute-revert-statemant (rs)

where rs is a <revert-statement>.
Step 1. Let ¢nl be the <oondition-name-list> immediate component of rs. For each
<condition-name>,c in cnl taken in left-to-right order perform Steps 1.1 and
1.2.
Step 1.1.
case 1l.1.1. ¢ has <named-io-condition>,nic.

Perform evaluate-named-io-conditioni{nic) to obtain an €fevaluated-io-
condition®,eioc. Let ec be an <evaluated-condition»: eioc.

case l.1.2. ¢ does not have a <named-ic-condition>.
Let ec be an <evaluated-condition®: the immedlate component of c.

Step 1.2. If the curremt «<established-on-unit-list® contains an <established-on-unit®,
eou containing ec, then delete eou.

Step 2. Perform normal-sequence.
G.4.3 INTERRUFT

Cperation: interrupt (c,cbifs)

where ¢ i1s an <evaluated-io-condition®, a <programmer-named-condition>, or a
terminal node of <condition-name> apart from the <pamed-io-
condition>s or <programmer-named-copdition>s,

chifs is a [<condition=-blf-value-list>»].

Step 1. Let bs be the current <€block-state®.

172

Step 2. Append eo cbifs each of the following components whose immediate subnode it does
not already possess (or let cbifs be a <condition-bif-value-list®» with these
components 1f cbifs is <absent®»):

£condition-bif-values:
£oncode=value»:
<integer-value»: an implementation-defined integer;;;
€oondition-bif=valoek:
<onloc-value»;
the #character-string-value* formed by finding the last
£block-state» of the €block-state-list» which has an
<entry-point-designator®>, and taking the <identifier>
of the <statement-name> of the <entry-point> designated
by itij

and if ¢ iz an <evaluated-ic-condition®» and cbifs does not contain an
<onfile-valuer:

<condi tion-bif-values:
“onfile-valuer:

the <character-string-value* in the <£filename¥» of the
4file-information® designated oy the <€file-value» of c.

Step 3. Let eoul be the <established-on-unit-list> of bs.
rase 3.1. eoul containsg an <established-on-unit®,ecu, which contains an €evaluated-
condition®* with a subtree egual to ¢, or ¢ is a <programmer-named-condition>

such that the following conditions are trues:

{1} ¢ designates a <declaration>,ad containing <external>, and

{2} ecul contains an <established-on-units»,eou which contains a <programmer=
named=-condition® designating a <declaration®> equal to ad.

Step 3.1.1. If eou contains <spap», then output implementation-defined information
{e.g. a list of names of currently active blocks) by an implementation-
dependent means.

StEF 3:1:-2-

cage 3.1.2.1. eou contalns an <entrcy-valued,av.

Let eer be an <evaluvated-entry-refarence®: ev. Perform activate-
procedure (eer,cbifs) -

case 3.1.2.2. eou contains <system-action>.
Perform system—actionlc,chbifs).
Case 3.2. (Otherwise).
case 3.2-1. bs iz pot the first <block-state» of the <block-state-list»,bsl.

Let bs be the immediately preceding <block-state» of bsl and go to Step
3.

Ccage 31.2.2. (otherwise).
Perform system-actionlc;cbifs).
Step . © must not be <error-condition®, <fiwxedoverflow-condition>, <overflow-

condition>, <gize-condition>, ¢stringrange-condition?, <subscriptrange-
condition», or <gerodivide-condition>.

Chapter 6: Flow of Control 173

6.0.4 SYSTEM-RCTION

For every <evaluated-condition®, there is the posaibility, as defined in Section 6.8.3,
that an interrupt operation for it will lead to the operation system-action-

Operation: system-action(c,chifs)
whera ¢ is an <evaluated-io-condition®», a <programmer-named-condition>, or a
terminal node of a <condition-name> apart from the <named-

ig=condition>s or <programmer-naped-condition>s,
chifs is a €condition-bif-value-list®».

cage 1. ¢ is <finish-conditjon> or <gtringsize-condition>.
Terminate this operation.

Case 2. ¢ is <programmer-named-condition> or <underflow-conditiomn>, or contains <name-
condition>.

Perform comment.
cage 1. ¢ contains <endpage-condition>.

Let fv be the «file-value®* component of c. Perform put-pagel(fv) (see Section
B.T.2.12).

case 4. ¢ is <grror-condition> or <storage-condition>.
The action is implementation-defined.
Case 5. {(Otherwise).
Step 5.1. Perform comment.

Step 5.2. Perform raise-condition(<error-condition>.cbifs).

G.U.4.1 Comment

Oparation: copment

output implementation-defined information by an implementation-dependent
HEans.

178

Chapter 7: Storage and Assignment

7.0 Introduction

This chapter defines all the operations of the PLAI Machine that change the <allocated-
storage* of the <machine-state®. The main Sections are:

T.1 The Generation

2 The Allocation of Storage

3 Initialization

Iy The Freeing of Storage

5 hRssignment

& Variable-referonce

7 Reference to Mamed Constant

The <allocated-storage® confists of an <€allocation-unit-list®». Elements are appended to
thizs list by the allocate operation; this may be invoked either during the execution of
an <allocate-statement?, <read-statement>, or <locate-statement>, or directly by any of
the operations allocate-statlc-storage-and-build-static-directory, establish-argument, or
prologue. An <allocation-units» is deleted from the list by the free operation; this may
be invoked either during the execution of a <free-statement>, <read-statement>, or
<locate-statement>, or directly by the epilogue operation.

An <area-value* also contains an <allocation-unit-list»; elements may be added to this
list by the suballocate operation during the execution of an <allocate-statement> and may
be deleted by the free-based-storage operation during the execotion of a <free-
gtatement>.

Elements of the <basic-value-list®» of an €allecation=-unit®» are changed by the set-storage
operation; this may be invoked during the execution of the <assignment-statement>, the
<group>, the <read-statement>, the <get-statement>, or during initialization.

7.1 The Generation

The evaluation of a <variable-reference> yields a <generation®; & <pointer-value® i=s also
a €generation®. A <generation» describes some or all of the elements of the <basic-
value-list>» of the <allocation-unit?® designated by the <allocation=-unit-designator» of
the <generation». The elements of the <storage-index-list®» component of the <generation¥
apecify which elements of the <basic-value-list®» of the <allocation-unit®» are being
described. Each such element is a scalar-element.

The £evaluated-data-description® component of a <generation® contains a <data-
description> where each <extent-expression> contains only an €integer-values.

7.1.1 THE HOMBER OF ELEMENTS IN THE STORAGE-INDEX-LIST OF A GENERATION

Let the <evalvated-data-description® of the dgensration®,g, have the immediate <data-
degcription® component dd. Because dd is contained in an <evaluated-data-descriptions,
each <bound-pair> of dd has two <extent-expression>s which contain only <integer-wvaluess;
that is, no <bound-pair> contains an <asterisk> or <expression> with a <variable-
reference>. The number of elements of the <storage-index-liat» of g is the number of
gcalar-elements corresponding to dd. This number is determined by the operation scalar-
elements~-of-data-description.

Chapter 7: Storage and Assignment 175

Operation: scalar-elements-af-data-description(dd)}

where dd is a <data-description>.
result: an integer.
Cagze 1. dd is of the form <data-description>: <item-data-description>.

Return the integer 1.

Tage 2. dd is of the form <data-description’: <structure-data-description>: <member-
description-1list>,mdd.

For weach tree of the form <member~description®»: <data-description>,ddilil; in
mdd, i=l,...,m, perform scalar-elements-of-data-description(ddli(il) to obtain an
integer, nifil. Return the integer

Enlll-

i=1

Case 3. dd is of the form <data-description>:
<dimensioned-data-description>:
<element-data-description>,edd
<pound-pair-list>,bpl.

Let idic be the immediate component of edd. Let 441 be a <data-description>: ic.
Perform scalar-elements-of-data=description(ddl) to obtain the integer n. For
gach tree of the form <bound-pair>»,bpl(i} in bpl, i=1,....m, let ublil and 1bli)
be the <integer-value* components of the <upper-bound> and <lower-bound>
regpectively of bplil. Return the integer

n ¢ JT (ublil-1blil+1).
i=1

7:1.2 CORRESPONDENCE BETWEEN AN ITEM-DATA-DESCRIPTICN AND A BASIC-VALUE

There is a correspondence between an element of the <storage-index-list* of a
{4generation®* and a <basic-value* in the <zllocated-storage®. There is also a
correspondence betwesn a {gtorage-index* and an <item-data-description> of the
<evaluated-data-description» of the <generation*. In general, this is a many-to-one
correspondence definmed by the operation find-item-data-description which finds the <item=
data-description> of a <data-description®> that corresponds to a4 given eleéemént of the
“€storage—index=1ist>».

Operation: find-item-data=-description (dd,ord)

where dd is a <data-description>,
ord is the ordinal of an element of a <storage-index-lists.

result: an <item-data-description>.
case 1. The immediate component of dd is an <item-data-description.
Return this <item-data-description:.
Case 2. The immediate component of dd is a <structure-data-description>.

Let 5dd be this <structure-data-description>. Let mdl be the <member-
description-list> of sdd. Let nii]l] be the number of scalar-elements
corresponding to the i'th element of mdl, obtained by performing scalar-
elements-of-data-description(ddlil) where dd4(i] is the <data-description> of the
i'th element of mdl. Let sml0l be 0. Let smli] be the sum of the nlj] for the
first i elementz of mdl. Let j be such that smij-ll<ordssmljl. Perform f£ind-
item-data-description(dd(j] .k}, where k = ord-amlj-1], to obtain an <item-data-
description>,idd. Return idd.

178

case 3.

Cane

case

The immediate component of 44 is a <dimensioned-data-description>.
Let d4dd be this <dimensioned-data-description>.

3.1. The <Lelement-data-description® of ddd has an <item-data=-description> as the
immediate component.

Return a copy of this <item-data-description>.
3.2. (Otherwise).

Let ddl be a <data-description> immediately containing a copy of che
<structure-data-description> of ddd. Perform scalar-elements-of-data=
description{ddl) te obtain an integer mn. Perform find-item-data-
description(ddl,k+1), where Kk is the value of the remainder obtained when
ord-1 is divided by n, to obtain an <item-data-description>,idd. Return
idd.

T.1.3 VALUE OF A GENERATION

operation: value-of-generationig)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step

Step
Step

Step 6.

where g is a <generation®.
result: an <aggregate-valua®.

The <allocation-unit®* designated by the <€allocation-unit-designator» of g must
be contained in <€allocated-storage>.

Let av be an <aggregate-wvalues.

Let dd be the <data-description> of g, with associated <aggregate-type®,agt.
Attach agt to av.

Let n be the number of elements in the <€storage-index-list®» of g, and let v be
the <hasic-valus-1ist> of the <allocation-unit®» designated by the <allocation-
unit-designator®» of g.

For i=l,....n, pérform Steps 5.1 through 5.3.

5.1. Perform find-item-data-description(dd, i) to obtain an <item-data-
description>,id. Let d be the <data-type> of id.

5.2. Let p be the i"th <€storage-index’d immediately contained in g.

5.3. Perform walue-of-storage-indexip,d,v) +&o obtain a <basic-values,bv. Append
bv to the <basic-value-listy of av.

Return av.

Chapter 7: Storage and Assignment 177

T-.1.4 VALUE OF STORAGE INDEX

Operation: value-of=storage-index(p,d,v)

where p is a <€storage-indexy»,

d is a <data-type>,
v iz a <basic-value-listd».

result: a <basic-valua®.

Step 1. Let i be the <basic-value-index» of p.

Step 2. Let v[il be the immediste component of the 1'th <basic-value® of wv.

Case 2.1. d dogs not have <string>: <nonvarying>; or <plctured>.

Let

& be a copy of viil.

Case 2.2. d has <string>: <nonvarying>; or <pictured>.

Let

H be the <maximum-length> component of d (if 4 has <string>) or the

associated character-string length of d (if d has <pictured>).

Case 2.2.1.

Cage 2.2.2.

M= 0.

Let © be the <«null-character=string» (if d has <charactec> or
<pictured>} or the <€null-bit-string» (if d has <bit>).

Hoe D

Let M be the <position-index» component of p. Then there are integers j
and k such that:

(1) i =4 sk (i=j=k is possible),

(2 wiil, wili+ll,..., wik]l are either all <bit-string-value®»s or all
dcharacter-string-valued»s.

i-1 3
(1) E Lis] <« M = ELIBL and
5=i

GEi

ke
(u) MeN=1 = EL[S].

s=i

Here Lix)] is the length of wix]. Let e be a <character-string-value>
{if wii) is a <character-string-value®) or a <bit-string-wvalue¥® (if w(il
is a «bit=string-value®»}. The length of ¢ is #. The N components of e
are the same N successive components of vwijl, wij+ldl, ..., wlk]
beginning at component number (M=L{il=Liie¢ll=...=Lij=11) in vI(jl-

Step 3. HReturn a <basic-value* containing a copy of e.

i7e

[iiiti#ii*tiitiiﬁti#‘#.ii-----*--liltltlt-t.---itll|¢1‘.i-liiiiiitl-#-.itiiiilll...i.il‘

DECLARE 1 A AUTOMATIC UMNALIGHED,
2 B CHARMTER (3},
2 € CHARACTER(S5],
2 D CHARACTER({3) .
¥ CHARACTER(4) DEFIMNED R POSITION(Z),
¥ CHARACTER(G) DEFINED A POSITION(E);

L2323

A.B =
h.Cc = "BS&6TE";

Afeer the assignments, the €generation® corresponding to A looks like

| L] 2| 3] | & | 5] 6| 7] 8| | N |

[—1 e s m e ——————1 P |

w1l wizl w31

flere wvlil is the i"th component of the fbagic-value-list®, a digit represents the
corresponding character, and an empty slot represents <undefined>. Evaluation of a
¢variable-references,X yields a €scalar®» <generation® accessing the <€generation» of

h as follows.

1] 213] J4«15161718] [I
i L 1

S et i
I |

e e mccos -]

i

Lae=

Hence a <value-reference>,X ylelds *2345". Evaluation of a <variable-reference> ¥
yields a <Scalar® <generation» accessing the <generation®» of A as follows.

E . i S e 6 A S | R T

e e e |

The walwe of the <generationd corresponding to ¥ has <€undefined» as its fourth,
fifth, and sixth components. Therefore, evaluation of a <value-reference>,¥ at

this point would be in error.

"f".'.-tiiijjjiijﬁi"'I..i"-‘-.‘-‘."-'..-...“"‘--*-""-*.*‘.-*“*‘"f“.i".'-“l

Example 7.1. An Example of <generation®s and <basic-value»s of Defined Variables.

Chapter 7: Storage and Assignment 179

7.2 The Allocation of Storage
7.2.1 EXECUTE-ALLOCATE-STATEMENRT

This operation causes the construction of an <€allocation-unit®» corresponding to the
<declaration> designated by the <declaration-designator>. Under c¢ertain circumStances,

the <storage-copdition> or the <area-condition> may be raised.
Operation: execute-al locate~-statemant {ast)

where ast is an <allocate-statement>.

Step 1. For wsach <allocation>,al, in the <allocation-list> of ast, chosen in left=to=
right order, perform Steps 1.1 through 1.3.

Step 1.1. Let d be the <declaration> designated by the <declaration-designator> of al.
Step 1.2.
Case l.2.1. The <storage-class> of d contains <controlled>.
Perform allocate-controlled-storagefal) to obtain the «<dgeneration®.g.
Case l.2.2. The <storage-class> of d contains <based>.
Perform allocate-based-storage(al) to obtain the <generation®,q.
Step 1.3. If d has an <initial> component, perform initialize-generationig,d).

Step 2. Perform normal-sequence.
7.2.2 ALLOCATE=CONTROLLED-STORAGE

This operation causes the allocation of storage tfor a <controlled> variable and records
the allocaticn in the <controlled-directory®.

Operation: allocate-controlled-storagai{al)
where al is an <allocation.
result: a €generation®.

Step 1. Let d be the <declaration> designated by the <declaration-designator>.dp, of al.
Make a copy, dd, of the <data-deseription®> of d.

Step 2. Perform evaluate=data-description-for-allocation(dd) to obtain the <evaluated-
data-description®, edd.

Step 3. Perform allocatel{edd) to obtain the <generation®,.q-.

Step 4. Perform find-directory-entry(dp) to obtain the <controlled-directory-entry>,a,
for the <declaration>,d.

Step 5. Append g to the «€generation-list> component of e.

Step 6. Return a copy of g.

180

T.2.3 ALLOCATE-BASED—STORAGE

This operation causes the allocation of storage for a <based> variable and the assignment
of the resulting <generation® to a <locator>» variable.

Operaticn: allocate=-based-gtoragel(al)
where al is an <allocation?.
result: a <generation®.
Step 1. Let d be the <declaration> designated by the <declaration-designator> of al.
Step 2.
Case Z.1. al has no <set-option> component.
The <based> component of d must have the component <value-reference> that
immediately contains a <variable-reference>. Let wrs be this <variable-
reference’.
case 2.2. al has a <get-option> component.
Let vrs be the <variable-reference> of the <set-option> of al.
Step 3. Perform evaluate-variable-reference(vrs) to obtain a <generation®,qs.
5tep 4. Perform evaluate-in-optionfal,vra). If the allocation is to be made in an area,
a <generation® with an <area> component will be obtained; let this be gi;
otherwise the wvalue <€fail>» will be obtained.
itep 5. Make a copy, dd, of the <data-degcription> immediately contained in the
<variable> of d. Perform evaluate-data-descriptioen-for-allocation{dd) to obtain
an <€evaluated-data=-descriptions,edd.
tep 6.
case 6.1. A €generation¥,gl, was obtained in Step 4.
Make an allocation for dd in the area <generation¥,gi, by performing
suballocateledd,gi). The result cobtained will be either the <generation®.q.
or the value <fajily. In the latter Case, perform raise-
condition(<area-condition>); on normal return go to Step U.
Ccage 6.2. <fail» was obtained in Step b.

Make an allocation for dd in the <allocated-sStorage* by performing
allocate{edd) to obtain the <generation®,q.

Step 7. Perform Steps 7.1 and 7.2 in either order.
Step 7.1. Let av be an

<aggregate-valuek:
daggregate-typak:
€5cRlary;
<pasic-value=1ligt»:
“basic-valued>:
“pointer-value>:

Let ddp be of the form <data-description>: <item-data-description>:
<pointer>. Let egs be devaluated-target®: gs. Perform assigniegs,av.ddp).

Step 7.2. Perform initialize-refer-options(g) to carry out the initializations of g
specified by each <refer-opticn> in the <evaluated-data-description* of g.

Step B. Return g.

Chapter 7: Storage and Rssignment 181

7.2.8 EVALUATE=IN=OPTION
If an allocation is to be made in an area, this operation yields the area <generation? in
which the allocation is to be made.

operation: evaluate-in-option{al,vr)

where al is an <allocation>,
vr iz a <variable-reference?.

result: a €generation® or <fails.
Step 1. Let ds be the <declaration> designated by the <declaration-designator> component
of vp. 43 is the <declaration> for the locator that will be used to identify the
dallocation-vnit» that will result from the <allocation>,al.

Step 2. If the component <locator> of ds has <offset> and this has the subnode
<variable-reference>, then let this <variable-reference> be vro.

Step 3.
Case 3.1. al has an <in-option> component.
Let the <variable-reference> of the <in-option> be vri.
Ccase 3.2. al has no <in-option> component.
cage J.2.1. da has an <offset> component.

vro wmust have been created in Step 2. That is, the area baseé for the
of fget must have been specified. Let vri be the same as vro.

Cage 3.2.2:. ds has a <pointerr> component.

Return the walue <fail*», since the €allocation-unit® for al is to be
congtructed in the €allocated-storage?®.

Step 4. Perform evaluate-variable-reference(vri) to obtain the <generation®,gia.

Step 5. If vro has been created in Step 2, then pertorm evaluate-variable-referencel(vrol
to obtain the <generation»,gib. gia must be the same as gib.

S5tep 6. Return gla.

7.2.5 ALLOCCATE

This operation adds an <allocation-unit® that is described by an €evaluated-data-
description®» to the <allocated-storage®». The result of the operation is the <generations
that identifies the new <€allocation-units».

Cparation: allocate (edd)
where edd is an <€evaluated-data-description®.
resaolt: a <generation.
Step 1. Perform either Step 1.1 or Step 1.2.
Step 1.1. Perform raigse-condition(<storage-condition>). Go to Step 1.
Step 1.2. Perform make-allocation=unit(edd) to obtain an <allocation-unit»,au.
Step 2. Append ag to <€allocated-storage?.
Step 3. Perform scalar-elements-of-data-description{dd), to obtain n, where dd is the

<data-description> of edd. Let i be 1. Construct a <storage-index-list®»,sil,
by pecforming Steps 3.1 through 3.3 n times.

182

Step 3.1. Perform find=item-data-descriptionidd, i) to obtain an <item=
description»,idd.

Step 3.2.

Case 3.2.1.

Cage 3.2.3.

idd contains either a <pictured> component or a <string> component
has <nonvarying>.

Construct a <storage-index®.si, that contains a <basic-value-indexs
has an <integer-value» equal to i and algo a <position-index®» that
an <€integer-value» equal ko 1.

(Otherwisge) .

Cconstruct a <storage-index®,si, that contains a <basic-value-index®
has ap €integer-value® equal to i.

Step 3.3. Append s5i to sil and set i1 to iel.

Step 4.

7-.2.6 SUBALLOCATE

Return

the <generation» constructed from an <allocation-unit-design

designating au, edd, and =il.

data-

thak

that
has

that

atars

This operation constructs an <€area-allocation® and adds it to the <area-allocation-lists
of an area <generation¥. The result of this operation is the <generations
identifies the new <area-allocation>.

Operations: suballocate(edd,qg)
where edd is an <evaluated-data-description®,
g is a <€generation®.
results a <generation» or <failw.
Step 1. The value of g must not be <undefineds>.
Step 2. Perform either Step 2.1 or Step 2-2.

Step 2.1. Return the value <£fail>.

Step 2.2. Pertorm make-allocation-unit{edd) to obtain an <€allocation-unit®,au.

step 3.

Perform

value-of-generationig) to obtain an <aggregate-valuek,aqV

daggregate-types> must immediately contain <scalar» and whose <basic-wvalbue-

contains

by

hppend a

Lo the
darea=-al

an <area-value¥,av. If av immediately contains <€empty> then repla

<€area-valie>,av:
€area-allocation-ligt®
£signiticant-allocation-list®.

<zignificant-allocation®:
edd
foccupancy:
€allocateds;;

“significant-allocation-list>,sal immediate component ot av. Appe
location®: sal au; to the <area-allocation-liat®» ot av.

Chapter T: Storage and Assignment

that

WNose
lists
ce ay

nd an

181

Step 4. Perform sScalar-elements-of-data-description{(dd}), to obtain n, where dd is the
<data-description> of edd. Let i be 1. Conpstruct a <storage-index-lises,sil,
by performing Steps 4.1 through 4.3 np times.

Step h.1. Perform find-item-data-descriptionidd,i) to obtain an <item-data-
description>,idd.

Step 4.2.

Case 4.2.1. idd contains either a <pictured> component or a <string> component that
has <nonwaryingx.

Construct a <storage-index®,si, that contains a <basic-value-index» that
has an <€<integer-wvalue® egqual to 1 and also a €position-index®» that has
an €integer-value> eégual to 1.

Case 4.2.2. (Dtherwise).

Construck a <€storage-index®»,si, that contains a <€basic-value-index® that
has an <integer-walue®» equal to i.

Step U.3. Append si to sil and set i to i+l.

Step 5. Return the <generation® constructed trom an €allocation-unit-designator» that
designates au, edd, and sil.

T.2.7 EVALUATE-DATA-DESCRIPTION-FOR-ALLOCATION

This operation forms an <evaluated-data~-description® from a <data-description®> by
evaluating each <extent-expression.

Cperation: evaluate-data-descriptiop-for-allocation{dd)

where dd is a <data-description?>.
result: an <evaluated-data-description®.

Step 1. Let cdd be a copy of the <data-description>,dd. For each <extant-expression> in
cdd that immediately contains an <expression>, peérform Step 1.1, wicth the
<axtent-expression>s chosen in any order.

Step 1.1. Let the chosen <extent-expression> be ee. Evaluate ee by performing
evaluate-expression-to=integer{e) where & is the <expression>» of ee, to
obtain the value i. The <expression> of the <extent-expression> is replaced
by an <€integer-wvalue®» with value i.

S5tep 2. In each <bound-pair> of odd, the value of the <integer-value® of the <upper-
bound> must he greater than or equal to the value of the €integer-value® of the

<lower-bound>.

Step 3. In each <maximum-length> component of cdd, the wvalue of the 4€integer-value> must
be greater than or equal to zero.

Step 4. In each <area-sizer component of cdd, the value of the €integer-value?® must be
greater than or equal to zero.

s5tep 5. For each <refer-option>,ro, in cdd perform Step %-1.

Step 5.1. Let mo be the <menber-description® in cdd that ro references as in Step 2.2
of validate-pased-declaration. Let n be an €integer-wvalue®» such that the
result of find-item-data-descriptionf{cdd,n) is equal to the <item-data-
description> in mo. Replace the <identifier-list> component of ro by n.

Step 6. Return the €evaluated-data-description®: odd.

184

T-2.8 FIND-DIRECTORY-ENTRY

This operation searches the appropriate <machine-state®» directory for an entry
corresponding to a declaration.

Operation: find-directory-entry(dp)
where dp is a <declaration-designator> designating a <declaration>,d.
result: a <static-directory-entry>; or a <contreolled-directory-entry®», or an
<antomatic-directory-entry», or a <parameter-directory-entry», or
a <defined-directory-entry>.
Step 1. Let st be the <storage-type> of d.
Step 2.
Case 2.1. st contains <automatic>, <parameter>, or <defined>.
Perform find-block-state-of-declarationidp}) to obtain a <plock-statedrbs.
If st contains <automatic> or <defined> then bs must not conktain a
<proloqua-flag* in its <linkage-part®. Find the directory entry, €, in the
<automatic-directory®, {parameter-directory», or <defined-directory>» of bs,
as appropriate, such that the <identifier> of e is equal to the <identifier>
of d.
Case 2.2. st contains <static> or <controlled>.
Case 2.2.1. The <scope> of d has an <external> component.
Search the <static-directory®* or the <controlled-directory®, as
appropriate, for the directory entry e whose <identifier> is egqual o
the <identifier> of d and that has an <gxternal> component.
Cagse 2.2.2. The scope of d has an <internal> component.

Let e be the €static-directory-entry® or <contrelled-directory-entry?®,
as appropriate, which contains a <declaration-designator> equal to dp.

Step 3. Return a.

7:2.9 MAKE-ALLOCATION-ORIT

This operation forms an <allecation-unit®» correasponding to an <evaluated-data-
description®.

operation: make-allocatlion-unit (edd)
where edd is an €evaluated-data-descriptions.
result: an <allocation-unit>.

Step 1. Let dd be the simply contained <data-description> component of edd. Perform
scalar-elements-of-data-descriptionidd) to <obtain n, the number of scalar-
elements that correspond to edd. Construct a <basic-wvalue-list»,svl, by
performing Steps 1.1 through 1.2 for i=1,...,n.

Step 1.1. Perform find-item-data-description{dd, i) to obtain the <item-data-
description>,idd, that corresponds to the i'th scalar-element of edd.

Step 1.2.

Caze 1.2-1. The emoda> of idd contains <complex> and idd does not contain
<pictured>.

Append o svl a <complex-value* consisting of two <undefineds
COMponents .

Chapter 7: Storage and Assignmeént 185

Ste

Cage 1.2

2. idd contains <pictured:.

It m be the asSociated character-strinmg length of the <pictured>
component of idd. Append to svl a <character-value-list®» consisting of
m elements, each of which is €undefineds.

Cage 1.2.3. idd containg <string> containing <nonvaryimng>.

Cage

Case

Let m be the {integer=-valued contained by the <maximum-length> component
of <atring>.

1.2.3.1. The <string> of idd contains <character>.

If m is zero, append a <€character-string-value» consisting of the

“nul l-character-gtring* to svl; otherwise append a <characcer-

string-valde®» consisting of a <character-value-list» with m
elements containing <€undefineds».

1:2:3:2. The <string> of idd contains <bit>.

If m is zero, append a <bit-string-value* consisting of the
“null=bit-string® to avl; otherwise append a <bit-string-values
consisting of a <bit-value-list» with m elements containing

“<undefineds.

Case 1.2.8. 1dd contains an <area’> component.

Case 1.2

Append an <€area-value®»; <€empbty¥®; to svl.

-5. (Dtherwise).
Append an <4undefined®» element to Svl.

p 2. Return an <€allocation-unit®» containing svl.

7.2.10 INITIALIZE-REFER=-OPTIONS

This operation initializes the object of each <refer-option> in a <generations.

Cperations

Ste

186

p 1. Let

initialize-refer-optionsig)

where g is a <generation®» whose <aggregate-type> immediately contains
dstructure-aggraqace-typa».

edd be the <evaluated-data-description* of g and let dd be the <data-

description> in edd. For each <refer-option>,ro, of edd, chosen im any order,

pect
step 1.1.

Step 1.2.

orm Steps 1.1 and 1.2.

The <refer-option>,;ro, has an <integer-value* index, 1, constructed by
evaluate-data-description-for-alleocation; this identifies the element of g
that is the object of the <refer-option>,ro- Perform find-item-data-
descriptionfdd,i) to obtain an <item-data-description>,idd, of the element.
Let eddr be an <“evaluated-data-description® with idd as immediate component.
Construct the <generation®»,qgr, trom eddr, a copy of the <allocation-unit-
designator» of g and the <storage-index-list® containing a single element, a
copy of the i*th element of the <storage-index-list» of g.

ro is a component of an <extent-expression> that has an €integer-values,iv.
Let ddi be a <data-description> with integer-type (See Section 9.1.2%. Let
av be of the form

daggregate-values;
fagagreqate-typaes:
€scalarc®;
£hasic-value=list®;
<hasic-value¥;
dinteger-value»,iv.

Let et bDe <evaluated-target®: gr. Perform assignlet.av,ddi} to assign the
value of the <extent-expression> to the object of the <refer-option>.

T+2.11 FIND-BLOCK-STATE-OF-DECLARATION

Operation: find-block-state-of-declaration(dp)

Step 1.

Step 2.

Step 3.

where dp is a <declaration-designator> designating the <declaration>,d.
result: a <bhlock-stated.

Let bs be the current <block-state». If the <block-control® of bs contains the
form <remote-block-state¥,rbs, then let bs be the <block-stated designated by
rhs.

Let bb bhe the corresponding block of bs (see Section 5.2.2). If bb contains d,
then return bs.

bs must have a <block-environment?,bv. Let bs be the <block-stater designated
by bwv. GO to Step 2.

Chapter T: Storage and hssigament 187

7.3 Initialization

7.3.1 INITIALIZE-GENERATION

This operation initializes a <generation®» according to the specificatrion contained in a
<declaration>.

Operation: initialize-genevationiq,d}

case 1.

Case 2.

case 3.

Step

Step

Step

where g is a <generation®»,
d is a <declaration>.

The immediate component of the <data-description> immediately contained in the
<variable> of d is an <item-data-description>,idd.

Perform initialize-sealar-element(g,idd}.

The immediate component of the <data-description> immediately contained in the
<variable> of 4 is a <dimensioned-data-description> whose <element-data-
description> is an <item=-data-descripticn>.

Perform initialize-arrayig,d).

The immediate component of the <data-descriptionz,dd immediately contained im
the <variable> of d is either a <structure-data-description>, or a <dimensioned-
data-description> whose <elemgnt-data-description> iz a <strocture-data-
descriptions.

Let 8dd be the simply contained <structure-data-description® in dd. For #ach
<member-description> immediately contained in the <member-description-list> of
gdd, chosen in any order, that has an <initial> component, not necessgarily
immediate, perform Steps 3.1 through 3.4.

3.1. Let the chosen <member-description>,md be the i'th immediate component of
the <member-description-list>.

3.2. Perform select-qualified-referencelg,il,d), where il is an <identifier-list>
consisting of the single <«<identifier>,id, that is a copy of +the 1i'th
immediate <component of the <idepntifier-list> of sdd, to obtain a modified
“generation®;gl.

3.3. Let de be a copy of the <declaration>,d, and let &dde be the copy of sdd
contained in de.

Case 3.3.1. The immediate component of dd is <dimensiconed-data-description> and the

<data-description> of md has a <dimensioned-data-description>,ddd.

Append to the <bound-pair-list> of dc the immediate cowmponents of the
tbound-pair-list> of d4dd. Replace sddc by the immediate subtree of the
<element=data-description> of ddd; this will always be a <structure-
data-description> or an <item-data=-description>.

Case 3.3.2. (Otherwise).

Step

188

Replace sddec by the immediate subtree of the <data-description> of md.

3.4. Perform inltialize-generationigl.dc).

7.3.2 INITIALIZE-SCALAR-ELEMENT

This operation initializes a generation consisting of a single element.

Operation: initialize-scalar-elément (g, idd}

where g is a <€generation®,
idd is an <item-data-description>.

Step 1. If 144 does not contain an <initial-element> then terminate this operation.

gtep 2. If the <initial-element> component of idd has an <asterisk> then terminate this
operation.

Step 3. DPerform evaloate-expressioni(e), where e is the <expression> Simply contained in
the <initial-element> of idd, to obtain an <aggregate-values,V.

Step B. Create an €¢valuated-target»,et, and attach g ko it.

Step 5. Perform assigniet,v,ddl), whera ddl is the <data-description> immwediately
contained in e.

7.3.3 INITIALIZE-ARRAY

This operation initializes a <generation® that has an array of <basic-valuekrs.

<evaluated-initial-element»;:= <asterisk> | <parenthesized-expression> (scalar) |
(<iteration-factor> | <evaluated-iteration=factor¥}
4<evaluated-initial-element-1ist® |
€evaluated-initial-items |

<absent»
€avaluated-iteration-factor®::= <integer-value®

£avaluated-initial-item¥»ii= dbasic-valued <data=-descriptioni>

Operation: initialize-array(g,d)

where g Is a <€generation®,
¢ is a <declaration>.

Step 1. Let edd be a copy of the <evaluated-data-description® of g in which the simply
contained <dimensioned-data-deseription> has been replaced by the subtree of its
<element-data-description>. If 4 does not have an <initial-element-list> then
terminate this coperation. Let iel be the <initial-element-1list> of d.

Step 2. Let m and n be 1. Let mt be the number of elements in the <€storage-indax-lists
of g. Let nt be the number of elements in the <initial-element-=list>,iel.

Step 3. Construct an <evaluated-initial-element-list»,eiel, by making a copy of iel and
replacing e#ach <initial-element-list> node by an <evaluated-initial-element-
list» and each <initial-element> node by an <evaluated-initial-element® in the

COPY .
Etep 4. Perform Steps 8.1 through 8.7 while m = mt and n 5 nt.
Step 8.1. Let the n'th element of eiel be eleln).
step 4.2. If eiefn] immedistely contains an <iteration-factor>.itf, then perform
evaluate=-expression-to-integer(e), where e is the <expression> of itf, to

obtain the <integer-value*,v, and replace itf by an <evaluated-iteration-
factor®» containing v.

Chapter T: -Storage and Assignment 189

130

Step @.3. If eieln] immediately contains an <evaluated-initial-element-liste,eiell,
then for each <expression>»,e, contained in eiell, chosen in any order,
perform Step H.3.1.

Step 4.3.1.
Cage §.3.1.1. e is immediately contained in an <iteration-factor>,itfl.

Optionally perform evaluate-expression-to-integer(e} to obtain an
<integer-value®,il and replace itfl by an <evaluated-iteration-
factor®» containing il.

Case 8.3.1.2. e is immediately contained in a <parenthesized-expression>,pe.

Optionally per form evaluate=-expression (@) to abtain an
<aggregate-valued having a <basic-value®,bv, and replace pe by an
<gvaluated=-initial-item*> comprising of bv and a copy of the
<data-description> immediate component of pe.

Step 8.8. If eieln] immediately contains an devaluated-iteration-factor>,elf, then
pecform Steps 4.4%.1 theouwah 4.0.3.

Step B.4.1. Let eiel? be the €evaluated-initial-elempent-list®» of eielnl. Let i2 be
the <integer-value* of eif.

Step d.0.2.
Case U.4.2.1. i2 5 0.
Replace eieln] by <absent®.
Case G.4.2.2. f(Otherwise).

Let k be the number of elements in elel2. Replace eleln] by the
i?*k elements formed from i2 replications of the sequence of
elements of eiel2. Let nt be nt+iZ+k=1.

Step H.8.3. Go to Step L.l.

Step 4.5. If eielnl is neither an <asterisk> nor an <absent» then perform Steps 4.5.1
and 4.5 2

Step H.5.1. If eieln) 4is a <parenthesized-expression>,pel, then perform evaluate-
expressionie), where & 13 the <expression> of pel, to obtain an
fagyregate-value* having the <basic-value®,bvl, and replace pel by an
fevaluated=-initial-item» comprising of bvl and a copy of the <data-
description® immediate component of pel.

Step 4.5.2. eieln] is an <devaluated-initial-item®». Let v be of the form

dagqragate-valuek:
€faggregate-types:
“gcalark;
4bagic-valua-list>:
bv;;

where by is the <basic-value> of eieln]l. Let dd be the <data-
degcription® immediate component of eieln]l. Let s5i be a copy of the
m'th element of the <storage=-index=-list®» of g. Parform
assign(<evaluated-target®»sgl;,v.dd), where gl is the dgeneration®
comprising of edd constructed in Step 1, a copy of the {allocation-unit-
designator® of g, and a €storage-index-list» consisting of the single
element si.

Step 8.6. If eiein) is not <€absent® then let m be m+l.

Step 4.7. Let n be n+l.

7.4 The Freeing of Storage

The <free-statement> causes storage allocated for specified <based> or <controlled>
variables to be freed.

7.8.1 EXECUTE-FREE-STATEMENT

Operation: execute-free-statement (£5)

where Es is a <free-statement>.

Step 1. For each <Ereeing>,fr, in the <Ireeing-lise>» of £8, chosen in left-to-right
order, perform Steps 1.1 and 1.2.

Step 1.1. Let d be the <declaration> designated by the <declaration-designator>
component of fr.

step 1.2.
Case 1.2.1. The <storage-class> of 4 contains <gcontrolleds>.
rerform free-controlled-storagelfr).
Cage 1.2.2. The <storage-class> of d contains <based>.
Perform free-hased-storageifrd.

Step 2. Perform normal-sequence.

T.84.2 FREE-CONTROLLED-STORAGE

This operation frees the most recent allocation of a <controlled:> variable.
Opecation: freg-controlled-storage (£r)
where fr is a <freeing>.
step 1. Let d be the <declaration> designated by the <declaration-designator>,dp, of fr.

step 2. Perform find-directory-entry{dp) to obtain a <controlled-directory-entrys,o,
corresponding to d.

Step 3. If e contains a <generation-list».gl, perform Steps 3.1 to 3.3.
Step 3.1. Let g be the last <generation* in gl.
Step 3.2. Perform freel(g).

Step 3.3. Delete g from gl.

Chapter 7: Storage and Assignment 191

T-4.3 FREE-BASED-STORAGE

This operation frees a <based> variable specified in a <freeing>.

Operation: free-based-storage(fr)

where fr is a <freeing>.

Step 1. fr can consist of three components:

a <declaration-designators,dp
a <locator-gqualitier>
and an <in-option>.

Of these, only dp always exists.

Step 2. Let dd be the <data-description> of the <declaration> designated by dp- If fr

contains a <locator-qualifier>;lq then let vr be <variable-reference>: 1q dp
ad. gtherwise let vr be <variable-reference>: dp dd. Let n be the number of
<bound-pair>s in dd. If n is not equal to =zero, attach a <subscript-list>
containing n occurrences of <asterisk> to vr.

Step 3. Perform evaluate-variable-referencelvr) to obtain the <generation¥».gf to be

freed. Lot an be the <allocation-unit® designated by the <alleocation-unit-
designator» of gf.

Step 3.1. If the <data-type>r componeénts of dd either all contain <characters,
<nonvarying», and <unaligned> or all contain <bit>, <nonvarying>, and
<unaligned> +thén the npumber of elements in each <4characteér-value=list>» or
<bit-value-1list* in au must egual the corresponding <maximum-length> in the

<evaluated-data-description» of gf.

Step 3.2. If there are n elements in the <basic-value-list» of au then there must be n
eléments in the <storage-index-list®* of gf and the i'th element of the
istorage-index=-1ist» must have a <basic-value-index® that contains an
<integer-value® equal to i for all values of i1 from 1 through n.

Step 4. Perform deduce-in-option(frd. If an area containing gf can be interred from fr,

a 4generation®,ga, will be obtained; otherwise <£fail» will be obtained.

step 5.

192

Case 5.1. ga exists.

Step 5.1.1. Let awv be the <area-valued referred to by ga. The <£area-allocation-
list» of av mugt contain au. Let aa be the <€area-allocation® containing
au and let sal be the <aignificant-allocation-list* of av. Let n be the
number of elements of the «<significant-allocation-list» of aa. Replace
the 4allocated> component of the n'th element of sal by <freed>.

Step 5.1.2. If aa iz the only <area=-allocation® of av then replace av hy <area-
valuck: <empky®. Otherwise, delete aa from the <area-allocation-lists
of av and pecform Step 5.1.Z.1.

Step 5.1.2.1. If the last element, @l, of sal contains <freed>» then delete el
and go to Step 5.1.2.1.

Case 5.2. deduoce-in-option returned <fail®» in Step 8.

The +<allocation-unit®» au must be an immediate component of the <allocation-
unit-list® of <allocated-storage®. The <generation® gf must not:

(1) be equal to a component of any of the following:

(1.1} the <controlled-directory®
{1.2) the <static-directory>

(2% for any <block-state®, be egqual to a component of

(2.1) the <automatic-directory>»
(2.2) the “paramecer-directory® as the component of an
“established-argument® containing <dummy>

£33 for any 4file-ipformation®», be equal to a component of the
<allocated-buffery.

Perform freelqgfl).

T.4.4 DEDUCE-IH-OPTION

This operation infers, if possible, an area <generation» in which a freeing 1is to be

applied.

Operation: deduce-in-option(fr) .

Case 1.

Casne 2.

Step

where fr is a <freeing>.

result: a <€generation®» or <fail>.
fr contains an <in-option>.
Let ioc be the <in-option» of Er. Let vr be the <variable-referénce> component
of io. Perform evaluate-variable-reterencel{vr) to obtain the <generation».ga.
Return ga.

Er contains no <in-option>.

2.1.

Cage 2.1.1. There is a <locator-qualifier> as an immediate subnode of fr.

Let vr be the <value-reference> contained in the <locator-gqualifier>.

Ccase 2.1.2. There is no <locator-qualifier> as an immediate subnode of fr.

The <declaration-designator> of f{r designates a <declaration>,d. The
chased> component of 4 must have a <value-reference>. Let wvr be cthis

<yalue-referencel.

Step 2.2.

case 2.2.1. vr contains a <variable-reference> with a <declaration-designator> that

designates a <declaration> whoae <data-typer contains <offsatl>.

The <declaration-designator> of vr designates a <declaration>;dvr. The
<offset> component of dvr must have a <variable-references component .
vra. Parform evaluate=variable-referencelveal to obtain the

generakion®,ga. Rekturn ga.

Case 2.2.2. (Otherwise).

Return the value 4fails.

T7.4.5 FREE

This operation frees an €allocation-unit®.

operation: freaig)

Step 1.

Step 2.

where g is a <generation®.

Let au be the €allocation-units designated by the €alleocation-unit-designatork
in g.

Delete the <allocation-unit»,au, from the <allocation-unit-list® of <allocated-
storages».

Chapter 7: Storage and Assignment 193

7.5 Assignment

Assignment involwves changing <basic-value? components of storage (the common case),
components in the <file-ipformation=lizt>» (in the case of the <pageno-pv>), oOr components
in the <condition-bif-walue®s of the current <block-state® (in the case of the <pSecodo-
variable»s <onchar-pv>» and <onSource-pv>»). The components to be changed are determined
by evaluating & <target-reference> (Section 7.%.2), +to obtain an <evaluated-targets
(Section 7.5.2.1). The actual assignment is effected by the operation assign (Section
7.5.3), which, in general, will involve conversion of <basic-value®s and promotion of
daggregate-valuers. The full generality of assignment i5 awvailable through the
<assignment-statement> (Section 7.5.1), but other constructions cause invocation of the
operation assign.

7.5.1 THE ASSIGHMENT STATEMENT

Operation: execute=assignment=gtatement (agt)

where ast is an <assignment-statement>.
Step 1. Perform Steps 1.1 and 1.2 in either order.

Step 1.1. Let &r be the leftmost <target-reference> of the <target-reference-liat> of
ast. Perform evaluate-target-referenceltr} to obtain the <evaluated-
targety,et.

Step 1.2. Let e be the <expression> of ast. Perform evaluate-expressionie) o obtain
an <aggregate-value>,v.

Step 2. Perform assigniet,v,d), where d is the <data-description> immediately contained
in e.

Step 3.
Case 31.1. ast contains no unevaluated <target-reference>.
Perform normal-seéguence.
case 3.2. ast contains one or more unevaluated <target-reference>s.

Let tr be the leftmost unevaluated <target-reference>. Perform evaluate-
target-referencei{tr) to cbtain the <evaluated-targetd®,et. Go to Step 2.

7.5.2 TARGET REFERENCES

Atkributes: The result <data-description> of a <target-reference> that immediately
containg a <variable-reference> is the same as the result <data-description>
of the <variable-reference>. For a <target-referemce> that has a <pseado-
variable-reference>, the result <data-description> is given in the
description of the <pseudo-variable> (Section 7.5.8).

Operation: evaluate-target-reference{tr)

where tr is a <target-refarences.
result: an <evaluated-target.
case 1. The immediate component of tr is a <variable-referencer,vr.

perform evaluate-variable-referencei{vr) to obtain & <gencration®,g. Return amn
devaluated-target»: g.

134

Cage 2.

The immediate component of tr is a <pseudo-variable-reference?,pvr.

Perform evaluate-flx{1),...,xIn)}, where f is the immediate component of cthe
<pseudo-variable> contained by pvr, and x{1],...,xln) are the <argument>s, it
any, in the <argumeént-list>. Let g be the result of evalwate-f(x[1),...,xinl).
(It will be either a <geperation® or an <evaluated-pseudo-variable-referencek.}
Return an <evaluated-target®: gq.

7.5.2.1 Evaluated Targets

Operation: value-of-evaluated-target (k)

Case 1.

Case 2.

Case 3.

Cage M.

Case 5.

Cage 6.

where t is an <evaluated-target®.
result: an <€aggregate-wvalueds.
t immediately contains a <generation»,.g.

Perform walue-of-generationig) to obtain an <aggregate-value®,av, which must not
contain <undefinedr. Heturn av.

t contains <imag-pv> or <real-pv>.

Let g be the <generation® in t, and perform value-of-generaticnig} to cbtain an
‘daggregate-value®,x, which must not contain <undefincd*. Let er be the scalar=-
result of performing Steps 1 and 2 of imag-bif (see Section 9.4.08.80) or Steps 1
to 3 of real=-bif (see Section 9.4.8.66), respectively, taking:

the scalar-value of x to be the <basic-value® in x;
the scalar-result-type to be the <data=-type> in the <€generation®» of t, with
<complex> replaced by <preal>.
Return an <€aggregateé-value» containing sr.
t contains <onchar-pv> Or <ONSOUrCE-pw>.

Parform onchar=hif (see SHSection 9.U4.4.5%) or onsource-bif (see Sectior
9.48.4.61), respectively, to obtain an <aggregate-value®,av. Return av.

t contains <pagenc-pvs.

The «file-values>,.fv in + must obey the constraints of pageno-bif, Step 1 isee
section 9.8.4.62). Perform Steps 2 and 3 of pagenc-bif.

t contains <gsubstr-pv>.

perform value-of-generationig) to obtain an <aggregate-value®,sa, where g is the
<generation® in t. Sa must not contain <{undefined>. Let st be the first
daggregate-value® in t; let le be the second <€aggregate-valuer in &, if present.

Let sr be the scalar-result of performing Steps 1 to 4 of substr-bif (see
Section 9.8.8.76), taking:

the scalar-value of sa (or of st or of le) to be the single <basic-value> in
ga (or in st or in le);
the scalar-result-type to be the <data-type> in the <€generation> in t.
Beturn an <aggregate-valued containing sr.
t contains <unsSpec-pis.

Let g be the <generation® in t. Perform Step 3 of unspec-bif (see Section
9.4.4.85).

Chapter 7: Storage and Assignment 195

T7:.5.3 THE ASSIGHMENT OPERATION

Operation: asgigniet,sv,ad)
where et is an <evaluated-targets,

v is an €aggregate-valued,
sd is a <data-description>.

Case 1. et immediately contains a <generation®.g.

Step l.1. Let edd be the <evaluated-data-description* of g. Perform promote-and-
convert (edd, sv,5d}, to obtain an <€aggregata-value®, av.

Step 1.2Z. Perform set-storage(g.svl)., where svl is the <basic-value-list> of av.
Case 2. et immediately contains an <evaluated-psewdo-variable-referenced®,epvr.

Let £ be the component of the <pseuwdo-variable> in epvr. Thus £ is the name of
the <pseudo-variable>. Perform assign=flepvr,sv,sdl.

7.5.3.1 Promote-and-convert

Let x and y be <aggregate-typers. Then x ia promotable €0 ¥ if % and y are compatible
and y iz the same as the common <aggregate-type> of x and y. lHowever where one has a
<bound-pair> which has <asterisk>, the other may have a <bound-pair> whose <expression>
components contain <€integer-value»s.

Operation: promote-and-convert (td,sv,ad)

where td is a <data-deseription> or <evaluated-data-descripticns,
s5v Is an <€agaregate-wvalued,
8d is a <data-descriptioni.

result: an <aggregate-valuer.
Step 1. Let ats be the faggregate-type» of sv.
Cage 1.1. td is an <evaluated-data-descriptions.
Let tdd bhe td.
Cage 1.2. td is not an <evaluated-data-description>.
Perform evaluate-data-description-for-allocation(td) to obtain an
“evaluated-data-descriptiond, tdd. For each tree of the form < bound-

pair>,bp: <asterisk>; <contained in &dd that is mnot a component of an
<entry>», perform Step 1.2.1.

Step 1.2.1. If & <bound=palir>,cbp corresponding to pp exists in ats, then replace bp
by cbp. Otherwise, replace bp by a <bound-pair> whose <lower-bound> and
<upper-bound> each have an <integer-value® of 1.

Step 2. Each <bound-pair-list> in ats must equal the corresponding <bound-pair-list> in
tdd.

step 3. Perform sScalar-elements-of-data-description{tdd) to obtain an integer, m. Let
av be an <€aggregate-valuer whose <€aggregate-type> equals the <aggregate-types
associated with the <data-description> of tdd, and whose <£basic-value-list®,svl,
contains n <basic-value® nodes, each of which has no subnode.

step 4. For each distinct valoue of § between 1 and n, taken in any order, perform Steps
4.1 through 4.3.

Step #.1. Perform find-item-data-descriptionitdd,j) to obtain an <item-data-

description> that describes the j*th scalar-element of av. Let ydt be the
<data-type> of this <item-data-description>.

196

Step 4.2. Let x be the scalar-element of 8v that corresponds to the j*th scalar-
element of av. Let xdt be the <data-type> of the <item-data-description> in
8d which corresponds to x in sv.

Step 4.3.

Ccase 0.3.1. Both xdt and ydt contain <computational-type>», or one contains <cffset>
and the other contains <pointer>.

perform convert{ydt,xdt,x} to obtain yI[jl.

Ccase 4.3.2. Poth xdt and ydt contain <area>.
Optionally perform raise-conditioni<area-condition®). If there is a
normal return from this operation let yljl be a <basic-value®* containing
€undet i neds. If raise-condition(<area-condition>) is not performed,
then let ylj)] be a copy of x.

Case 4.3.3. (Otherwise)l.
Let yili]l be a copy of x.

Step 5. Append the y(jl to av in order and return av.

7.5.3.2 The Set-storagqe Operation

This operation sets the elements of a <€bagic-value-list®» in <allocared-scorages degcribed
by a <geperation® to have the walues contained in a fhasic-value-1list¥.

Operation: set-storagelg ,ssvl)

where g is a <generationd,
58vl iz a <baslic-value-list>.

Step 1. Let au be the <€allocation-unit® designated by the <allocation-unit-designators
of g. au must be contained in <allocated-storage®». Let +tsvl be the <£basic-
value-list¥ of au.

Step 2. Let dd be the <data-description> of the <evaluated-data-description®* of g and
let sil be the <storage-index-list> of g.

Step 1. For each of the elements of sil, taken in any oxder, pertorm Steps 3.1 throagh
3.3.

Step 3.1. Let i be the chosen eleément and let i be its ordinal in sil. Let j be a
copy of the value of the <integer-valuz> of the <basic-value-index® of si.

Step 3.2. Let ssv be the i'th element of the <basic-value-listd»,ssvl.
Step 3.3.
cage 1.3.1. 8i contains a <position-index>».

Let Kk be a copy of the value of the <€integer-value* of the <€position-
index®» of si. sS8sv will contain either a <character-string-value> or a
<blt=gtring=-value». perform find-item-data-descriptionidd,i) to obtain
the <item-data-description>,idd, of the target scalar-element.
If idd contains <pictured> then let n be its associated strino-length;
ptherwise let n be the value of the <maximum=length> in idd. Let m he
1. Perform Steps 3.3.1.1 through 3.3.1.4 n times.

Step 3.3.1.1. Let &1 be the #€charactér-value-list> or <bit-value-listd of the
j*th element of tsvl.

step 3.3.1.2. HReplace the k'th element of tl by a copy of the m"th element of
BSV.

Chapter 7: Storage and Assignment 197

Step 3.3.1.3. Let k be k+#l. If k is now greater than the number of elements in
tl, then let k be 1 and let § be j+l. Repeat Step 3.3.1.3.1
while the <§'th element of tsvl contains <pnull-character-strings

or <null-bit-strings.
Step 3.3:.1.3.1. Set § to j+l.

Scep 3.3.1.%. Let m be m+l.
Case 3.3.2. si does not contain a fposition-indexi.

Replace the j"th element of tsvl by a copy of ssv.
T-5.4 PSEUDO-VARIARLES

This Section presents the definitions of the <pseudo-variable*s in alphabetical order.
For each <pseudo-variable>:

Thae Arguments Section indicates the number of arguments to the <psendo-variable> and
supplies names by which the arguments are referenced in the Attributes and Constraints
Sections.

The Constraints Section specifies constraints on the arguments.

The Attributes Section defines the <data=-description> of the <pseudo-variable-
reference> (and of the <target-reference> containing it} in terms of the <data-
degscription>»s of the arguments.

One eor two opetrations are defined for each <pseudo-variable>. This first operation,
evaluate-f, where f is the name of the <pseuwdo-wvariable>, is wused by the operation
evaluate-target-reference. This operatien returns & <generation?» or an <evaluated-
paeundo=variable-references».

The second operation, assign-f, where f is the name of the <pseudo-variable>, is defined

only for those «<pseudo-variable>s whose evaluate-f operation yields an <evaluated-pseudo-
variable-reference®».

T:5.4.1 Imag-pv

Argumentcs: X

Constraints: ¥ must have the form <argument>: <expression>: <value-reference>:
<variable-referencel.

All <data-type>rs of x must have <arithmetic> (including <arithmetic> in
cpictured-numeric>) with <mode>: <complex>.

Attributes: The result <aggregate-types is the <aggregate-type*» of x. Each result
cdata-type> is the same as the corresponding <data-type> of x except
that it has <mode>d: <real>.

Operation: evaluate-imag-pwvix)

Step 1. Let y be the <variable-reference> in x. Perform evaluate-variable-referencely)
to obtain a €generation®,qg. Return an <evaluated-psewdo-variable-referencek:

<pseudo-variable>: <imag-pv>; g.

i9g

Operation: assign-imag-pvit,sv,sd)

where ¢ is an <evaluated-pseosdo-variable-reference?®,
5v is an €agqregate-valoes,
sd is a <data-description>.

Step 1. Let £t have the form

£evaluated-pseudo-variable-references:
<generation®,qg:
<gvaluated-data-description»,dc
“<allocation-unit-designators®,aud.

Let dr be the same as dc except that all <mode>s have <real>. Perform promote-
and~-convert{dr,sv,s5d4) to obtain vr.

Step 2. Por each <storage-index>»,p in g, perform Steps 2.1 and 2.32.

step 2.1. Let sdc, svr and sdr be the scalar-elements of dc, vr and dr, respectively,
corresponding to p.

stEp .

Cage 2.2.1. sdc has sarithmetic> but not <pictured-numeric>.

Let =g be a

“generations:
fevaluated-data-description®;
sde;
aud
€storage—-index-1list®»:
[:!.

Let 21 be the value of sg (zl contains a single <complex-value*}. Let
22 be a 4complex-value®» with first component as z1 and second component
equal to the component of svr. Perform set-storageisg.bvl) where bvl is
a <basic-value-ligt®» containing z2.

case 2.2.2. sdc has <pictured-numeric>
Lekt 59 he a

generationd:
fevaluated-data-description®:
sdr:
aud
<gtorage=-index-list»:
Pe=

Let n be the associated character-string length of the <pictured-
numeric> in sdr. IEf p contains a <€position-index®, increment its value
by n; otherwise, append to p a <€position-index» of n+l. Perform set-
storagel{sg,bvl), where bvl is a <£basic-value-list® containing svr.

T7.5.4.2 Onchar-pv

Arquments: {none)

Attributes: The result has <aggregate-type¥: <scalacy. The result <data-type> has

<character>.
Operation: alunte- ar=
Step 1. Return an fevaluated-psendo-variable-references»: <patudo-variable>;
<gnehar-pv>.

Chapter ¥: Storage and Assignment 199

Operation: assign-onchar-pvit,sv,sd)

where t is an <€evaluated-psewdo-variable-reference,
sv i3 an <aggregate-valuey,
5d is a <data-description.

Step 1. In either order, perform get-established-onvalue(<€onchar-value*) to obtain i and
perform get-established-onvalue(<ongource-value») to obtain str. i and str must
not be <fail®>.

Step 2. Convert sv to <character> of length 1, using the <data-type> in 8d as the source
<data=-type> for the conversion, to obtain c.

Gtep 3. TIf i>0, replace the i'th <character-value* in Str by the <chavacter-value* in c.

7:5:-4.3 Onsource-pv

Arguments: {nonea)

Attributes: The result has <aggregate-type®: <scalar®. The result <data-type> has
“<oharacter>.

Operation: evaluate-onsource=py

Step 1. Return an <evaluated-psendo-variable-reference®; <pseudo-variable>:
":GH.EEII'IJIL'E-E'I.F -

Operation: assign-onsoucce-pvit,sv,sd)

where t is an <evaluated-pseudo-variable-referenced,
5v is an <aggregate-valuer,
#d is a <data-description>.

Step 1. Perform get-established-onvalue(<€onsource-value»} to cbtain str. str must not

be «€fail». Let n be its length. Convert sv to <character> of length n, wusing
the <data-type> in sd as the source <data-type> for this conversion, to obtain

CV.

Step 2. Replace str by ov.

T-5-4.4 Pagenc-pv

Arguments i £n
Constraints: fn must have <aggregate-type®»: <scalar®». The <data=-type> of In must have

<file>.
Rttributes: The result has <aggregate-type®»: <gcalard. The result <data-type> has
integer-type.

Cperation: evaluate-pageno-pv (En)

Step 1. Perform evalvate-expréssion(fn) ®o obtain f£wv. Return an <evaluated-poeuodo-
variable-reference»: <pseudo-variable>: <pageno-pv>; Iv.

200

Cperatlion: asalgn-pagenc-pvit,sv,sd)

where t is an <evaluated-psendo-variable-rererenced,
5v is an <aggregate-valued,
sd is a <data-description>.

Step 1. Let f be the <file-information®» designated by the <file-value» in t. £ must
have €open®. The <complete-file-desceription® of f must have <print>.

Step 2. Let bv be the €hasic-valuwe® in sv. Let tdt be a <data-type> which is integer-
type (Section %9.1.2). Perform convertitdt,.sd,.bv) to obtain a <real-value>,rv.
v must be non-negative.

Step 3. Set the <page-number® component in £ to contain an €integer-value® with the same
component &s rv.

7.5.0.5 Real=-pv

Arcuments:]

Constraints: x must have the form <argument>: sexpression>: <valoue-reference>: <variable-
reference>.

All <data-type>s of x must have <arithmetic> (including <arithmetic> in
<pictured-pumeric>), with <mode>: <complax>.

Attributes: The result <aggregate-typed is the <aggregate-type® of x. Each result

<data-type> iz the same as the corresponding <data-type> of x excepl that it
has <mode>: <real>.

Operation: evaluate-real-pvix)
Step 1. Let y be the <variable-referonce> in x.

step 2. Perform evaluate-variable-referencel{y) to obtain a <generation*,g. Return an
<evaluated=-pseudo-variable-reference?:<pseudo-variable>: <real-pv>; g.

Operation: assign-real-pvit,sv,sd)
where t is an <€evaluated-pseundo-variable-refarences,

5v is an <aggregate-valued,
gd iz a <data-description>.

Step 1. Let t have the form
<evaluated-psevdo-variable-referenced:
fgeneraktion®,g:
fovaluated-data-description®,de
<allocation-unit-designator®,aud.

Let dr be the same as dc except that all <mode>s have <real>. Perform promote-
and-convert (dr,sv,2d) to obtain vr.

Step 2. For each <storage-index®»,p in g, perform Steps 2.1 and 2.2.

step 2.1. Let sde, sve, and sdr be the scalar-elements of de, we, apd dr,
raspectively, corresponding to p.

Chapter 7: Storage and Assignment 201

Step 2.2.

Cage 2.2.1. ade has <arithmetic>, but not <pictured-numerici.

Let 59 be a

£generation®:
devaluated-data-descriptions:
sdo;
aud
€storage-index-1list?:

P-

Let z1 be the value of 89 (z1 contains a aingle <complex-wvalue»). Let
22 be a <complex-values with firat component equal to the component of
svr and second component as zl. Perform set-storage(sg,bvl) where bvl
iz a <bagic-value-list®» containing z2.

Cage 2.2.2. sdec has <pictured-numeric>.

Let sq be a
dgenerationd» :
<evaluated-data-descriptions»:
gdr;
aud
€storage-index-list®:
P
Perform set-storage(sg,bvl) where bvl is a €basic-value-list» containing
SVIs

7.5.4.6 String-pv

Arguments: x

Constraints: x must have the form <argument>:<expression>: <value-referencex: y;j; where

y is a <variable-reference>». Let ad be the <declaration> designated by the
£declaration-designator> in x. Each <item-data=description> in ad must have
cunaligned>. Further, one of the following two conditions must holds:

{1y all <data-typeds im ad must have <character>: <NOOVArying> or
<pictured>, or

(2) all <data-type>s in ad must have <bit>: <nonVarying>.

httributes: The result has 4aggregate-type®: 4scalar®». The result <data-type> has the

derived common <string-type> of the <data-type>s of x, and <nonvarying>.

Operation: evaluate-string-pwvixl

Step 1.

Step 2.

Step 3.

202

Let ¥ be the <variable-reference> in x. Perform evaluate-variable-reference(y)
to obtain a «generation®,qy, which must be connected. Let the «evaluated-data-
description®», <allocaticn-unit-designator®, and dstorage-index-list® components
of gy be 4, aud and s, respectively.

If the <data-type> of the i'th scalar-element in the <generation> has <string>,
let k(il be the value of the corresponding <maximum-length> component in d;
otherwise let Ekl(i]l be the associated character-string length of the <pictured>

in d.

Returm a <geéneration®,.g, with components as follows. The <evaluated-data-
description® of g is described under Attributes, above, with <maximam-lengbhs
the sum of all the kiil- The <4allocation-unit-designator» of g is a copy of
aud. The <€storage-index-1ist» of g contains a copy of the first component of =.

7.5.8.7 Substr-pw

Arguments: t. 5t [.1lel

constraints: t mast have the form <argument>: <expression>: <value-reference>:

syvariable-reference>.

All the <data=type>s of t most have <string>. The <aggregate-typers of the
<argument»s st and le must be promotable to the <aggregate-types» of t. All
¢data=-typers of st and le must have <computational-type>.

Attributes: The result <€aggragate-type® is the <aggregate-type® of t. Each <data-type>

is the same as the corresponding <data-type> of t.

Operation: evaluate-substr-pvit,st,lel

Step 1.

Step 2.

5tep 3.

Btep 4.

Lat ty bs the <variable-referemce> in t. In any order, perform evaluato-
variable-reference (ty) to obtain a <generation¥,q. perform evaluate-
expression(st) and evaluate-expression(le), if le occurs, to obtain <aggregate-
valuers, x and y.

Corresponding <bound-pair»>s in the <aggregate-types of g, %, and y must be
egual -

Let x' and y¥* be <aggregate-valuess wWwhose <{aggregate-typeds ara the same as
those of x and y, respectively, and whose scalar-elements are obtained by
converting the corresponding scalar-elements of x and y to integer=-type.

Return an <€evaluated-=pseudo-variable-reterence®»:; <pseudo-variable>: <gubstr-pv>;
g x" ly*l.

Operation: assign=substr-pvit,sv,sd)

Step 1.

where t is an <evaluated-pseudo-variable-reterence» as returned
by evaluate-substr-pv, i.e.
<evaluated-pseudo-variable-references:
cpseundo-variables:
cgubgtr=pus;
fgeneration®.q:
<evaluated-data-descriptions,edd
“allocation=unit=designator?,aud
“storage-index-lists,sil;
€aggregate-valuer, xl
(£aggregate-value®,y1l;,
sv is an <aggregate-value>,
gd is a <data-description>.

Corresponding <bound-pair>s in the <aggregate-type»s of sv and g must be equal.
For cach <storage-index®,p, in #il, taken in any order, perform Steps 1.1
through 1.3.

Step 1.1. Let pp be the ordinal of p within =il. Perform find-item-data-

deseriptioniedd,pp) to obtain an <item-data-description>,idd. Let =g be a

£generation®:
£ovaluated-data-descriptiond:
<data-descriptiond:
idd;;
aud
<storage-index-listr:
p-

Perform walue-of-generation(sg) to obtain an <aggregate-valued,av. If sd
has <varying> then av must not contain 4undefined». Let k be the length of
the <character-string-value* or <bit-string-value®» in av {cf. Section
9.1-3.4).

Step 1.2. Let i be the scalar-element in x1 corresponding to p in 5il. If yl exists,

let j be the scalar-element in yl corresponding to p in sil; otherwise let
J=k-i+1.

Chapter T3 éturaqn and Assignment 203

Btep 1.3.
Ccage 1.3.1. 0 £ i-1 < j+i-1 < k.
Step 1.3.1.1. Let st be the <string-type> contained in sg. Let sgl be a

dgeneration®:
“evaluated-data-description»:
<data-description>:
<item-data=-description>:
<data-type>i
<computational-typei>:
<string>:
st
<maximum-1lengthi:
<extent-expression>:
<integer-value»:
dree

<nonvarying=;iii;i

aud

“<storage-index-list»:
P-

If p contains a <position-indeéx®, increment its wvalue by i-1;
otherwise append to p a <positicn-index» of i.

Step 1.3.1.2. Perform convert{dtl,ssv,ssd) to obtain =ssvl, where dtl is the
<data-type> of sgl, 55V is the scalar-element in sv corresponding

te p in sil, and ss5d is the <data-type> in &d corresponding to p
in sil.

Step 1.3.1.3. Perform set-storagelsgl,ssvl).
Ccase 1.3.2. (Otherwisel.

Ferform raise-condition(<stringrange-condition>).

T.5.4.8 Ungpec-pv

Argument: X

Constraints: ®x muast hawve the form <argument>: <expression>: <value-references:
<variable-reference.

x mast have daggregate-type»3; <scalark.

hRetributes: The result has <aggregate-typed: <scalar®. The result <data-type> has
<bit>.

Operation: evaluate-unspec—-pvix)

Step 1. Let y be the <variable-refarence> in x. Perform evaluate-variable-referance(y)
to obtain a <genecation®,q. Return an <evalvated-pseuvdo-varlable-reference»:
<pseudo=variable>: <unspec-pv>; g.

Operation: assign-unspec-pvit.sv,sd)

where £ is an <evaluated-pseuvdo-variable-references,
sv is an <aggregate-valued,
sd is a <data-degcription>.

Step 1. sv must have Jaggregate-type®: «scalar». Let g be the <generation® in t.
Convert sv to <bit> of length n, where n depends on g 4in an implementation=
defined fashion.

Step 2. In an implementation-defined fashion construct f£rom the converted value of sv a

<pasic-value®,v, depending on properties of g. This walue may contain
dundefined». Perform set-storagelg,v).

200

7.6 Wariable-reference

7:6.1 EVALUATE-VARIMBLE-REFERENCE

The result of this operation is the <€generation® referenced in the <variable-reference>.

Operation: evaluate-variable-reference{vr)

gtep 1.
scep 2.

Case

Casea

Cage

Case

step 3.

Step b.

step 5.

Step 6.

Hote:

Step 7.

where vr is a <variable-reference>.
resulkt: a <generation».

Let 4 be the <declaration> designated by the <declaration-designator>,dp, of vr.

2.1. The <storage-type> of d has <based>.
Perform select-based-gensrationlve) to cbtain the <€generation?,g-.
2.2. The <storage-type> of d has <defined>.

Perform evaluate-defined-reference(vr) +to obtain the <generation®»,g. Go to
Step 6.

2.3. The <storage-type> of d has <parameter>.

Perform find-=block-state-of-declaration(dp) to obtain the <block-states,bs,
of d. Find the <parameter-directory-entry®,pde, in the <parameter-directorys
of bz whose <identifier> componeént is the same as the <identifier> immediate
component of d. pde must not immediately contain the <undefineds component.
Let g be a copy of the <generation* of pde. The <€allocation-unitk
designated by the <€allocation-unit-designator®» of g must be contained in the
<allocation-unit-list», possibly as a component of an <€area-valued.

2.4. The <storage-type> of 4 has <automatic>, <controlled>, or <gtatic>.

Perform find-directory-entry(dp}) to obtain a directory entry. If the
<storage-type> of d has <contrelled>, the entry must have a <“genération-
list®»; 1let g be a copy of the dgeneracion® most recently added to the
€generation-list». Otherwise, let g be a copy of the <generation®» component
of the directory entry.

1f wr immediately contains an <identifier-list>,il, then perform select-
qualified-referencelg,il,d) to obtain a <generationd,qg.

If wr has a <by-name-parts-list> perform evaluate-by-name-parts-listig,vr,.d) to
obtain a <€generation¥®,g-

If wr has a <subscript-list>, then perform select-subscripted-reference(g,sll.,
where s1 is the <subscript=list>, to obtain a <generation®,q.

In the <evaluated-data=-description® of g. replace each <offset> component by a
copy of the corresponding <offset> component of the <data-degeription> immediate
component of the <wvariable-reference>,vr.

This 4is a definitional artifice to make the proper target <offset>s available
for conversion in the operation assign.

Return g.

Chapter 7: Storage and Assignment 205

7.6.1.1 Connected Generations

A <generation®»,g, is connected unliess it is found to be uncomnected by the following
Steps.

Btep 1. Let g be
<generation®:
fevaluated-data-description®,edd:
<data-description>,dd;
<allocation-unit-designator»,aud
“gtorage-index-list»,8il.
Lot m be the nomber of elements in gil.

Step 2. Let bv(i]l be the i'th element of the <€basic-value-list> of the <allocation-units»
designated by auvd.

Step 3. Lat i be the <integer-value®» contained in the <basic-value-index» of the first
element of sil. Let j be the <integer-value® contained in the <position-index’
of the first element of 3il, if this <position-index> exists, and 1 otherwise.
For k=1l,s:.,m perform Steps 3.1 and 3.2.

Step 1.1. Perform find-item-data-descriptioni{dd, k) 0o obtain an <item=-data=-
description:,idd.

Gtep 3.2.
Cage 3.2.1. idd contains both <string> and <nonvarying>.
Step 3.2.1.1. Let the k*th element of sil be
“s5torage-index>:
<basic-value-index®, bvi
<position-index»,pol.

Step 3.2.1.2. If the value contained in the <€integer-value* of bvi is not egual
to i, g is unconnected.

Step 3.2.1.3. If the value contained in the <integer-value* of poi is not egual
to j, g9 is unconnected.

Step 3.2.1.4, Let ml be the <maximum-length> of idd. Let j be j+ml.
Step 3.2.1.5%. Let nell{il] be the number of elements in the <€character-value-
list® or <bit-value-list® of bvlil. Repeat Step 3.2.1.5.1 while
j is greater than nell(i]l.
Step 3.2.1.5.1. Let j be j-nellil. Let 1 be i+l.
case 3:2.2. (Otherwise).
ftep 3.2.2.1. Let the k"th element of sil be

€storage-index»:
d<basic-value-inda»,bvl.

Step 3.2.2.2. If the value contained by the <integer-value> of bvi is not equal
to i; g9 is unconnected.

Step 3.2.2.3. If j§ is not 1, g is unconnected.
Step 3.2.2.4. Let i ba is#l.

206

7-6.2 SELECT-BASED-GENERATION

The result of this operation is the <generation® corresponding to the <based> wvariable
refercnced in a <variable-reference> before any name-gualification or subscripting has
been performed.

Operation: select-hased-generation (ve)

where vr is a <variable-reference>.
resulbt: a <generations.
Step 1.
case 1.1. vr has a <locator-gqualifier>,;lq.
Let valr be the <value-refeérence> of lg.
case 1.2. vr has no <locator-qualifier>.

The <based> component of the <declaration> designated by the <declaration-
designator> of vr has a <value-reference>. Let this be valr.

Etep 2. Perform evaloate-value-reference{valr] to obtain an <aggregate-value* with a
<basic-value®,v.

Step 3. Let dt be the <data-type> of valr. If dt has <offset>, perform
convert({<pointer>,dt,v) to obtain a <pointer-value®,v.

Step 4. v must not contain <null®. Let g be the <generation* in w.

Step 5. The <allocation-unit* designated by the <allocation-unit-designatory component
of g must be contained in the <allocation-unit-list» of <allocated-storage®,
possibly as a component of an <area-value>.

Step 6. Perform check-based-reference(g,vr) to obtain a <generation®,gl.

Step 7. Return gl.
7-.6.3 CHECE-BASED-REFERENCE
Thizs operation checks that the attributes of the variable being referenced agree with

those of the <generation® being referenced.

Operation: check=baged-reference{g,vr)

where g is a <generation®,
vr ig a <variable-reference>.

result: a <€generations®.
Gtep 1. Let 4 be the «<declaration> designated by the <declaration-designator> of vr.
Let dd be the <data-description> immediately contained in the <variable> of d.

Step 2. Let g comprise the <allocation-unit-designator®,auwd, the <evaluated-data=
description®,edd, and the <storage-index-list®,sil.

Step 3.
Case 3.1. The immediate component of 44 is a <structure-data-description>,sdd.

Step 3.1.1. sdd containg an <identifier-lise>mil, and a <member-description-
list>,mdl.

Step 3.1.2. If wr contains an <identifier-list>,il, then let m be the position of

the element of mil that is identical to the first element of il.
Othervwise, let m be the number of elements in mil.

Chapter 7: Storage and Assignment 207

Step 3.1.3. Let ddl be

Casa 3.2.

<data-description>:
Lastructurae-data-description>g
<identifier-list>,111
<member-description-lists>,mdll;;

where 4il1 contains a copy of the first m elements of il, and mdll
contains a copy of the first m elements of mdl.

{Otherwise) .

Lat d4d1 be a copy of dd.

step 4. Parform evaluate-data-description-for-referenced{ddl,g) to obtain an <evaluated-
data-description®,eddl.

step 5.
Ccase 5.1.

Case 5.2.

eddl has no <refer-option> node and both eddl and edd are such that each
<data-type> component contains <unaligned> and

either (1) vach <data-type> component contains <nonvarying> and <bit>,
or {23 each <data-type> component contains either <pictured>, or

<nonvarying> and <character>.
Perform overlay-strings{eddl,g,1) to obtain a <storage-index-list>»,sill.
(Otherwise).

Let cedd bhe a copy of edd. Delete from cedd and edd2, a copy of eddl, all
occurrences of <refer-option>», <initial>, <local>, and all <variable-
reference> components of <offset>. Each subnode of edd? must be equal to
the corresponding subnode of cedd except that if edd2 is an

devaluated-data-deacription®s
<data-description:
<structure-data-description>:
<merber-description-list>,mdl3;;;

then the <member-description-1ist> in cedd corresponding to mdl2 may have
more components than mdlZ, and the excess components are ignoced}

Let ddle be the <data-descript.on® of eddl. Perform scalar-¢lements-of-
data-degeription(ddle) to obtain n, the number of scalar-elements
corresponding to ddle. Let sill be a <storage-index-list®* containing a copy
of the first n elements of s5il.

Step 6. Return a <generation®»: aud eddl sill.

7.6.4% OVERLAY-STRINGS

This operation constructs a <storage-index-list» that reflects the fact that in a string-
overlay defined reference or a reference to a based variable, the resulting <generation»
may describe strings that start inside a <character-string-value* or <bit-string-value®.
The «position-index> is used to define the starting point of the strings.

Cperationg

Step 1. Let

overlay-strings (edd.q, indx)

where edd is an <evaluated-data-description®,
g is a <generation»,
indx is an inteéger.

result: a <storage-index-list».
dd be the <data-desecription® simply contained in edd. Perform scalar-

elements-of-data-description(dd) to obtain the npumber of scalar-elements, n,
described by edd. Perform Step 1.1 for isl,s--n-

208

Step 1.1. Perform find-item-data-descriptionidd, i) to obtain the <item-data-
description>,idd of the 1i'th scalar-element described by dd. If didd
contains <string> then let mli] be the value of the <maximum-length> of idd;
otherwize, let miil be the associated character=-string length of the <data-
type> of idd.

Step 2. Let ddg be the <data-description> simply contained in g. FPerform scalar-
elements-of-data-descriptiontddg) to obtain the npumber of soalar-elements

corresponding to g, ng. Perform Step 2.1 for i=1,...,ng.

Step 2.1. Perform find-item-data-descriptiont(ddg,i} to obtain the <item—data-
description>,idd, of the i'th scalar element corresponding to g. If idd
contains <string® then let mgli]l be the value of the <maximum-length> of
idd; otherwise, let mgli] be the associated character-string length of the
<data-type> of idd.

Step 3. Let indxe be a copy of indx. Let ml be the value of the sum mg{l] +...+ mglngl.
Let 8il be a <storage-index-list?» with no elements. Let i be 1. Perform Steps
3.1 through 3.7 n times.

Step 1.1. Find the maximom integer j such that j<ng and such that the value of the sum
mgll]l #...+ mgljl is less than indxc. Let the value of this sSum be s5lg.
Hote that j and slg may be zeéro.

Step 3.2. Let i be j+l.

Step 3.3. Let bvi be the <basic-value-index» of the j'th element of the <€storage-
index-1ist®» of g, and let p be the <position-index®* of the same element.

Step 3.4. Let px be the <integer-value® containing the value indxc-Slg-1+p.
Step 3.5. Append
“<gtorage-index»:
bvi
“pogsition-index»:

PRI
to sil.

Step 3.6. Let indxe be indzo+ml(il. The value of indxc must not be greater than ml+l.
Step 3.7. Let i be i+l.

Step 4. Return sil.

T.6.5 EVALUATE-DATA-DESCRIPTION-FOR-REFERENCE

This operation takes a <data-description> and a <generation® and construces an
{evaluated-data-description®, using the <€generation® to evaluate any <refer-opcion>.

Operation: evalpate=-data-description-for-reference{dd,q)

where dd is a <data-description:,
g is a <generation®.

result: an fevaluated-data=-description.

Step 1. Let edd be a copy of dd. FPor each <extent-expréssion>,ee, of cdd, taken in
left-to-right crder, perform Step 1.1.

Step 1.1.
case 1:1.1. ee has a <refer-option>,ro.
Step 1.1.1.1. Let idl be the <identifier-list> of ro. Let n be the number of
elements in idi. Let cddl be a copy of cdd and let ddp designate

the <data-description>,cddi. Let i = 1. Perform Steps 1.1.1.1.1
through 1.1.1.1.3 n times.

Chapter 7: Storage and Assignment 209

Step 1-1.1-1.1. Let id be the i'th element oF idl. Let sdd be the
¢ <structure-data-description> that is the immediate component
of the <data-description> designated by ddp. Let idll be
the <identifier-list> of sdd. Let the m'th element of idll
be identical with id.

Step 1.1.1.1.2. Let mdll be the <member-description-list> of sdd. Delete
all elements following the m*th element in both 1dll and
mdll. Set ddp ko designate the <data-description>
immediately contained in the m'th element of mdll.

S5tep 1.1.1-1.3. Set i to i+l.

Step 1.1.1.2. Perform sScalar-elements-of-data-description{cddl) to obtain j.
the number of scalar elements corresponding to oddl.

Step 1.1.1.3. Let by be the j'th element of the <basic-value-list?» designated
by g. Replage the <expression> of ee by the <integer-values
obtained by converting bv to integer-type. The source type for
this conversion is the <data-type> in the <data-description>

designated by ddp.

Case 1.1.2. (Otherwise).

step 2.

Perform evaluate-expression-to-integerie), where ¢ is the <expression>
of es, to obtain the <€integer-value®,j- Replace e by j.

Return the <evaluated-data-description> containing cdd, as modified, as its
immediate component.

7.6.6 SELECT-QUALIFIED-REFERENCE

This operation selects the part of a <generation®» that corresponds to an <identifier-

list>.

Operation: gelect-gqualified-reference(q,idl,d}

step 1.

Step 2.

where g is a <generation®,
idl is an <identifier-list>,
d is a <declaration>.

result: a <genecation®.

Let tdd be the immediate component of the <data-description> immediately
contained in the <wvariable> of d. Let csil be a copy of the <storage-index-
lists of g and cedd be a copy of the <evaluated-data-description» of g. Let
redd and tedd both be the ipmediate component of the <data-description> of cedd.

Let ecount be 1. Let m be the number of elements in idl. For J%1,-.-.m;
perform Steps 2.1 through 2.9.

Step 2.1. If tdd is a <dimensioned-data-description> then perform Steps 2.1.1 and

2.1.2.

Step Z.1.1. Let bpl be the <bound-pair-list> of tedd. Let ubli]l and lb({i] be the

finteger-value® components of the <upper-bound> and the <lower-bound> of
the i'th <bound-pair> of bpl respectively. Let ecount be the value of

the product
k

T tublil-1blile1)
i=1

where k is the number of elements of bpl.

Step 2.1.2. Let tdd and tedd be the immediate components of the <element-data-

10

description»s of tdd and redd respectively.

Step 2.2.

Step 2.3.

Btep Z.4.

Step 2.5.

Btep Z.6.

tdd and tedd will both be a <structure-data-description>. Let mdl and mil
be, respectively, the <member-description-list> and the <identifier-list> of
tdd. Let emdl be the <member-description-list> of tedd.

Let the n"th element of mwil be the one that is identical with the j'th
element of idl.

Let the number of elements of mdl be nm. Let ddlk]l be the <data-
description> of the k'th element of emdl. Perform scalar-elements-of-data-
descriptionldadikl) to obtain the number of scalar-elements nselk]
corresponding to ddlk]l for 1<kznm.

Let i1 be the value of the sum nselll +...+ nsein-1], i2 pe nseln), and i3
be the value of the sum nseln+ll+...+nselnm].

Let dindx be 1+(il+iZ+ild)=({ecount=1). Perform Steps 2.6.1 through 2.6.3
ecount times.

Step 2.6.1. Delete il successive elements of csil starting with the element whose

index is indx+il+i2.

Step 2.6.2. Delete i1 suecessive elements of csil starting with the element whose

index is indx.

Step 2.6.3. Set indx to indx-(il+iZ2+#id).

Step 2.7. Let tdd be the immediate component of the <data-description» of the n'th

Step 2.B.

element of mdl and let tedd be the immediate component of the <data-
description> of the n'th element of emdl.

Case 2.8.1. tdd is a <dimensioned-data-description> and redd is a <dimensioned-data-

description>.

Append the elements of the <bound-pair-list> of tedd to the <bound-pairc-
list> of redd. HReplace the <element-data-description> of redd by the
<element-data-description> of tedd.

Case 2.8.2. tdd is a <dimensioned-data-description> and redd is a <structure-data-

description>.

Replace the <element-data-description> of redd by tedd.

Case 2.8.3. (Otherwise).

Replace redd by tedd.

Step 2.9. Let tedd be redd.

Step 3.

Return the €generation® comprising a copy of the <allocation-unit-designators of

D

cgil, and cedd.

Chapter 7: Storage and Assignment 211

7.6.7 SELECT-SUBSCRIPTED-REFERENCE

This operation selects the part of a <generation® that corresponds to a given <subscript-

list>.

Operation: salect-subscripted-referenceiq,sbl)

step 1.

Step 2.

Etep 3-

Step 4.

Step

where g is a <generation®,
bl is a <subscript-listi.

result: a €generation®.
Let cg be a copy of 9. o©g will have the form

<generation®:
devaluated-data-description®»:
<data-description>:
<dimensioned-data-description>:

<element-data-descriptions ,eldd
<bound-pair-lists>,bpl;;;

£allocation=-unit-designavors

“gtorage-index-1list®»,sil.

Let cbpl be a copy ©f bpl.

Let d4d be a <data-description> that immediately contains a copy of the immediate
subtree of eldd. Perform scalar-elements-of-data-descriptioni{dd} to obtain the
integer n.

Let m be the number of elements of sbl. Let sbli) be the i'th element of sbl.
Lot chpli]l be the i'th element of cbpl anpd let ubli] and 1bli) be, respectively,
the <integer-values® contained in the <upper-bound> and <lower-bound> of cbplil.
For im1,...,m, where the values are chosen in any order, perform Steps U.1 and
BaZs

h.1.

Cage #.1.1. sbli) has <asterisk>.

Let ubp be a copy of cbhplil.

Cage B.1.2. [(Otherwise).

Step 4-1.2.1. If sbli] immediately contains an <expression»,e then perform

evaluate-expression-to-integer(e) to obtain the <integer-
wvalued,v. otherwise let v be the <integer-value® contained in
solil.

Step 8.1.2.2. If v is less than 1blil or v ls greater than ublil}, then perform
raise-condition(<gsubseript-range-condition>). Let ubp be

<bound-pair>:
<upper-bound>;
<extent-expression>s
¥ii
<lower-bound>:
<extent-expressions:
V.

Step 4.2. Replace cbplil by ubp.

Step 5.

Step 6.

Step 7.

212

Perform extract-glice-of-array(bpl,chpl,n,sil) to obtain a <storage-index-
list»,nsil. Replace sil by nsil.

Let nbpl be a <bound-pair-list> with no components. For i=1,...,m, if sblil has
<asterisk> then append a copy of the i'th component of bpl to nbpl. If nbpl has
no components then replace the <data-description» of cg by dd; otherwise replace

bpl by nbpl.

Return ©g.

T:.6.8 EVALUATE-BY-HAME-PARTS-LIST

This woperation takes a <generation® and a <by-name-parts-list> and consStrocts a new
“generation® containing all the parts specified by the <by-name-parts-list> in the order
of that list.

Operation: evaluate-by-pame=-parts=listig,vr,d)

Step 1.

Step 2.

Step

Step

Step

Step 3.

where g is a <generation¥,
wr is a <variable-reference>,
d is a <declaration>.

result:a <dgeneration.

Let auwd be the €allocation-unit-designator» of g.
Let rg be

<generation®:
{evaluated-data-description®:
<data-description>:
<structure-data-description>:
<member-description—-list>,mdl;;;
aud
£storage-index-list»,s5il.

Let m be the number of elemeénts in the <by-name-parts-list>,bnpl, of vr. For
i=l;:+s.m perform Steps 2.1 through 2.3.

2.1. Let bnp be the i'th element of bapl. Let idl be a copy of the <identifier-
list> of vr, if one exists; otherwise let idl be an <identifier-list> with
no elements. Append the elements of the <identifier-list> of bnp to idl.

2.2. Perform select=gualified-referencelq,idl,d) to obtain a <generation®.ng.

2.3. Let dd be the <data-description> of the <evaluated-data-description* of ng.
Lot md be a <member-degcription>: dd. hppend md to mdl. hppend the
elements of the <storage-index-list® of ng to sil.

Return £g.

T-6.9 EVALUATE-DEFINED-REFERERCE

This operation evaluates a <variable-reference> for a <variable> whose <storage-type> is
cdefined> and yields a <generation®.

Operation: evaluate-defined-refecence (vr)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

case

where ¥r is a <variable-referencer.

result: a <generationd.
Let dp be the <declaration-designator> of the <variable-reference>,vr, let d be
the <declaration> designated by dp, and let dc be the <defined> component of d.
Perform find-block-state-pf=declaration(dp) to obtain the <£block-state?,bs.

Let dde be the <defined-directory-entry» in bs whose <identifier> is egual to
that of d. Let edd be the <evaluated-data-description® of dde.

d has a <base-item> with a <variable-reference>,bvri. Let bvrl be a copy of
bvrl. If bvr? contains a <subscript-list> with <isub> components then delete
the <subscript-list> in bvr2.

Perform evaluate-variable-ceferance (bvr2l to obtain the <generation®,g.

5.1. d¢ has a <position> component.

Perform evaluate-string-overlay-defined-refecence({vr,edd,qg) +to obtain the

Chapter 7: Storage and Assignment 213

“generat ion®,gd.
Case 5.2. de¢ has a <subscript-list> with an <isub’> component.

Perform evaluate-isub-defined-reference(ve,edd, q) to obtain the
<generation®;gd.

Case 5.3. (Otherwise).

Perform check-simply-defined-referencelve) . If the walue obtained is
“trued, then perform evaluate-simply-defined-reference{vr,edd,q} to obtain
the <generation®.gd. otherwise perform evaluate-string-overlay-defined-
referencelvr,edd,g) to obtain the <generationd,gd.

Gtep 6. Heturn gd.
7:6.10 EVALUATE-SIMPLY-DEFINED-REFERENCE

This operation takes a simply-defined <variable-referencer, +the <evaluated-data-
degcription®» associated with the variable and the <generation®» being referenced and
conStructs the <generation® that is the result of the reference.

operation: evaluate-simply-defined-raeference(vr,edd,q)

where vr 1is a <variable-referencel>,
edd iz an <evaluated-data-descriptions,
g is a <generation®.

result: a <generation.

step 1. Let eddg be the €evaluated-data-description» of g.

Etep 3. For every <extent-expression>,e contained in edd that is not contained in a
<parameter-descriptor> or <returns-descriptor>, let v he the <integer-values
concained in e.

Case 2.1. e is contained in 3 <member-description> or an <area-gized>.
v must be equal to the corresponding <integer-values of eddg.

Case 2.2, ¢ is contained in a <lower-bound> and is npot contained in a <member-
description>.

v must be greater than or equal to the corresponding <integer-value> of
eddg.

Case 2.3. (Otherwisel.
v mast be leszs tham or equal to the corresponding <€integer-valoe» of eddg.

Etep 3. If edd contains any <bound-pair>, perform adjust-bound-pairsig.edd) to yield a
new €storage—index-lists,sil, corresponding to the <bound-pair>s of edd. Let g1
be the 4generation® constructed from a copy of the 4allocation-unit-designator>
of g, edd, and sil.

Step 4. If wr has an <identifier-list>,idl, then perform gelect-qualified-
reference(gl,idl,.d), where d is the <declaration> designated by the
<declaration-designator> of vr, to obtain a <generation®. Replace gl with this
dgeneration.

step 5- If vr has a <by-name-parts-list>, perform evaluate-by-name-parts-listig,vr.d) to
obtain a <genaration®. Replace gl with this <€generation¥.

Step 6. If wr has a <subscript-list>,sbl, perform gelect-subscripted-reference (gl,sbl)
to obtain a <€generation®. Replace gl with this <€generation®.

Step 7. Return gl.

214

T.6.11 ADJUST-BOUHD-FPAIRS

This operation takes a <generation®> and modifies the <storage-index=list» to reflect the

<bound=pair>s contained in an <evaluated-data-description®.

Operation: adjust=bound-pairs (g,edd)

where g is a «generation®,
edd is an <€evaluated-data-description®.

result: a €storage-index-list>.

Step 1. Let eddg be the €evaluated-data-description® of g and let csil be a copy of the

“storage-index-list® of g.

Step 2. If khe <data-description> of edd immediately contains a <dimensioned-data-

description>,ddd, then perform Steps 2.1 through 2.4.

Step 2.1. Let dddg be the simply contained <dimensioned-data-description> of eddg.
Let bpl and bplg be, respectively, the <bound-pair-list>s of ddd and dddg.

Step 2.2. Let m be the number of elements in bpl: For i=l;...;m; the wvalues being

chosen in any order, perform Steps 2.2.1 through 2.2.5.

Setep 2.2.1. Let bplii]l] and bpgli]l be the i"th element of, respecbively, bpl and bplg.

Step 2.2.2. Let ublil] and wubglil be the <integer-value? contained in the <upper-

bound> of , respectively, bpli) and bpglil.

Step 2.2.3. Let 1b{i)l and 1lbgli) be the <integer-value®* contained in the <lower-

bound> of , respectively., bplil and bpglil.

Step 2.2.0. If ubfil is greater than ubg il then pecform
conditioni<subgscriptrange-condition>).
Step 2.2.5. IF 1blil is less than lbglil then pecform

condition{<gubscriptrange-condition>}.

raige-

raise-

Step 2.3. Let dd be the <data-description®> of the <element-data-description> of dddg.

Perform scalar-elements-of-data~desecription(dd) to obtain the integer n.

Step 2.0. Perform extract-glice-of-array(bpl,bplg,n.csil) to obtain a <storage-index-

list»,nsil.

Step 3. Return nsil.

7.6.12 EVALUATE-ISUB-DEFINED-REFERENCE

This operation takes an isub-defined <variable-reference>, the <evaluated-data-

deseription® associated with the <variable> and the <generation> belng referenced,

constructs the <generation® that is the result of the reference.

Operation: evaluate-isub-defined-reference(vr, edd,q)

where v i a <variable-reference>,
edd iz an €evaluated-data-descriptions,
q is a <generationi.

result: a <generation®.

and

Step 1. Let dddl and bpl be, respectively, the immediately contained <dimensioned-data-

deseription> and its <bound=-pair-list> in the <data-description> of edd.
be the number of eleéments in bpl.

n

Step 2. Let dp and sbl be, respectively, the immediately contained <declaratiomn-
designator®> and <subscript-list> of wvr. Let sbla be a <subgeript-list>
containing a oopy of the First n elements of sbl and let sblb be a <subscript-

list> containing a copy of the remaining elements, if any, of sbl.

Chapter 7: GStorage and Rssignment 215

step 3.

Step

Step

Step

Step 4.

step 5.

Step 6.

Step

step

Step 7.

Step B.

Casng

Choose, in any order, each element of sbla that does not immediately contain
<asterisk> and perform Steps 3.1 through 3.3.

3.1. Let e be the chosen element of sbla and let i be its ordinal in sbla.

3.2. Perform evaluvate-expressionie}) and convert the result obtained to integer-
type of value v. Replace the <expression> component of the i'th element of
sbla by v.

3.3. Let 1lb and ub be, respectively., the <lower-bound> and the <upper-bound> of
the i'th <bound-pair> of bpl. If v is 1less than the <integer-value?
contained in lb or greater than the <integer-value» contained in ub, perform
raise-condition{<subscriptrange-condition>).

Construct a <subscript-list-list>,sbll, whose gingle element iz a copy of sbla.
If sbla contains any <asterisk> component, then expand sbll by performing
expand-list-of-subgcript=-lists (sbll,edd) +to obtain a new <sabScript-list-listl,
and replace sbll with this.

Let d be the <declaration> designated by dp. For each element, esbl, of sbll
perform transform-subscript-listiesbl,d) to obtain a <subscript-list>, and
replace esbl in sbll with this. Tnhis transforms each <subscript-list> of sbll
from a <subscript-list> that applies to the <data-description> of 4 into one
that applies ko the <data-description> of the <declaration> designated by the
<declaration-designator> of the <variable-reference> of the <defined> component
of d.

Construct a new <storage-index-list®»,nsil by performing Steps 6.1 and 6.2 for
cach element of sbll chosen in left-to-right order.

6.1. Let sblc be the chosen element of sbll. Perform select=subscripted-
reference (q,sble) to obtain a €generation®.ql.

6.2. Append the elements of the <storage-index=-list®» of gl to nsil.

Let bplc be a copy of the <bound-pair-list>,bpl. Delete each element of sbla
that is not <asterisk> and also delete the element of DbDple with the same
ordinal. Let wvrc bhe a copy of wr. Replace the copy of sbl in Vrc by a
<subscript-list>» constructed by appending the elements of a copy of sblb to a
copy of sbla.

Lot eddge be a copy of the <evalvared-data-description» of g. The <data-=
description> of eddgc has an immediate <dimensioned-data-description> component;
let this be ddd2. Let eddc be a copy of edd and let its contained copy of dddi
be dddic.

#.1. Az a result of Step 7, bple no longer exista.

Step #.1.1. Replace dddlc in eddc by the subtree of its <element-data-description>.

Step H.1.2. Replace ddd2 in eddge by the subtree of its <element-data-description>.

Case

Step 9.

§.2. (Otherwise).
Replace the <bound-pair-list> of eddge by bple.

Let g2 be a «generation*» constructed from a copy of the <allocation-unit-
designator» of g, eddge, and nsil. Perform check-simply-defined-referenceivrc).
The value obtained must be £trues. Perform evaluate-simply-defined-
referencelvrc,edde,g2) to obtain a <generation¥®,gl.

Step 10. Returpn gi.

216

T.6.13 EXPAND=-LIST=-0F=-5UBSCRIPT=-LISTS

This operation expands a <Subscript-list-list> =o that each element that {s an
<asterisk>, meaning a cross-section, causes the generation ©f an appropriate number of
elements in the list with one element for each element of the cross-section.

Operation: expand-list-of-subscript-lists(sbll,edd)

where sbll is a <subscript-list-list>,
edd i= an <€evaluated-data-description®».

resulkt: a <subscript-list-list>.
Step 1. Let csbll be a copy of sbll. Let bBpl be the <bound-pair-list> of the
<dimensicned-data-description> that is simply contained by edd. Perform Steps
1.1 through 1.3 until no <asterisk> remains in csbll.

Step 1.1. Choose an element, =abl, of csbll, such that one of the elements of sbl is
<asterisks-. Let an <asterisk> be the 1'th element of sbl.

Step 1.2. Let bp be the i'th element of bpl. bp has the two components <upper-
bound»,ub, and <lower-bound>,lb.

Step 1.3. Replace sbl by (ub-lbe1) copies of sbl modified such that the j'th copy has
its <asterisk> component in the i'th position replaced by an <expression>
containing the <€integer-value®, (lb=1+3j).

Step 2. HReturn cabll.
T.6.14 TRANSFORM-SUBSCRIPT-LIST
This operation takes a <subscript-list> and performs the transformaticon specified by

isub-defining to senerate a new <subscript-list>.

ODperations: transform-subscript=list (sbl,d)

where sbl is a <subscript-list>,
da is a <declaration>.

regult: a <subscript-list>.

step 1. In the <variable-reference> of the <defined> component of d there is a
<gubgcript=list>. Let csbl be a copy of this <subscript-list>.

Step 2. For each <isub>,ic, of csbl perform Step 2.1l.
step 2.1. Let i be the wvalus of the <integer> componént of ic. i must be greater than
zero and less than or equal to the number of elements in sbl. Replace ic in
csbl by the <€integer-value® of the i'th element of sbl.

Step 3. FPor each <expression>,e of csbl perform Step 3.1.

Step 3.1. Perform evaluate-expression-to-integeri{e) to obtain an <integer-valued, iv,
and replace & in €3kl by 1iv.

Step 4. Return csbl.

Chapter 7: Storage and Assignment 217

T:.6.15 EVALUATE-STRING-OVERLAY-DEFINED~-REFERENCE

This operation takes a <variable-reference> for a string-overlay-defined <wariable>, the
<evaluated-data-description® associated with the <variable>, and the base <generations
being referenced and constructs the <generation?® that is the result of the reference.

Operation: evaluate-string-overlay-defined-reference{ve,edd,g}

where vr iz a <variable-reference>;
aedd is an <evaluvated-data-description®,
q is a <generation®.

result: a <generation®.

Gtep 1. g must be a connected <generaticn». The scalar-elements of g and the =calar-
elements described by edd must each contain <unaligned> and

elither (1) each contain <nonvarying> and <bit>,
or (2 each contain either <pictured>, or <ponvarying> and <character>.

Step 2. Let d be the <declaration> designated by the <declaration-designator> of vr. If
the <defined> component oF 4 containa <position>, then perform evaluate-
expression({e), where e is the <expression> of <position», and convert the result
to integer-type of wvalue p. Otherwise, let p be 1. The value of p must be
greater than or equal to 1.

Step 3. pPerform overlay-gstringsi(edd,g,p)} to obtain a <storage-index-list®»,nsil. Let gl
be the <€generation® comprising the <€allocation-unit-designator®» of g, a copy of
edd, and nsil.

Step 4. If wvr immediately contains an <identifier-list>,idl, then pertorm select-
qualified-referencelgl,idl,d) to obtain a <generation¥.gl.

Step 5. If wvr immediately contains a <by-name-parts-list>, then perform evaluate-by-
name-parte-listig,ve,d) to obtain a <generation>,gl.

Step 6. If vr immediately contains a <subscript-list>,sbl, then perform select-
subscripted-reference(g,8bl) to obtaln a 4generation?.gl.

Step 7. Return gl.
T«6+.16 CHECE-SIMPLY-DEFINED-REFERENCE

This operation checks that the relationship between the <declaration> of a <variable-
reference> to a variable that is <defined> and the <declaration> referenced in the <base=
item®» is suitable for evaluvation as a simply-defined reference.

Operation: check=simply-defined-referencelvr)

where vr is a <variable-reference>.

result: <true> or <falser.

Step 1. Let d be the <declaration®> designated by the <declaration-designator> of vr.
Let dd be a copy of the <data-description> immediately contained in the
<variable> of 4. Replace each <bound-pair> in dd by <bound-pair>: <asterisk>;,
each <maximum-length> by <maximum-length>: <asterisk>;, and each <area-size> by
<area-size>»: <asterisk>. Let pd be

cparameter-descriptors:

Step 2. Let bvr be the <variable-reference» of the <defined> component of dd.

Step 3. Perform test=-patehing{bvr,pd]. If the walue obtained is <£true> thén return
€trued; otherwise return €falses.

218

7.6.17 EXTRACT=-SLICE-OF-ARRAY

This operation selects the part of a <€storage-index-list» or <basic-value=list®» according
to a <bound-pair-list>.

Operation: extract-slice-of-array(ocbpl,nbpl.n,$il)

Step 1.

Stap 2.

Step 3.

Step B.

where obpl is a <bound-palr-list>;
nbpl iz a <bound-pair-list>,
n is an integer,
gil iz a <storage-index-list®» or <basic-value-list¥».

result: a <storage-index-list» or <basic-value-list».

For each <bound-pairr,cbplil, i=l,...,m, in obpl let oubli] and olbli] be the
<integer-value® components of the <upper-bound> and <lower-bound>, respectively,

of cbplil.

For each <bound-pair>,nbplil, 4i=1l,....m, in nbpl let nublil and nlb{i] be the
dinteger-value®* components of the <upper-bound> and <lower-bound>, respectiwvely,

of nbplil.
Let n2 be
m

n*] tnublil-nlblil+1).
=3

If sil is a <storage-index-11ist® then let nsil be a <storage-index-lists with n2
<storage-index®> elements. Otherwise, let nsil be a <basic-value-list* with n2

elements of the form <basic-valuer: <€undefined».

For each set of integers =s(il, i=1,...,m, such that nlbli]l 5 =(i] = nublil,
perform Steps 4.1 and H.2.

Step h.1. Lat

=1 m
k = 1initstml-nthml+:E:{islil—mlh{iJ1* TT toubigl-olbii1+13))
im1 j=iel
and let
m=1 m
k2 = 1+n-tarml-nlhlng:mul-nmun- TT tnubifl-nleifi+120).
i=1 juiel

Step 4.2. Replace nsilikZ+j] by sillk+j] for 3=0,...,n-1.

Step 5.

Return nsil.

Chapter 7: Storage and Assignment 219

7.7 Reference to Named Constant
7.7.1 EVALUATE-HAMED-CONSTANT~REFERERCE

This operation obtains the value of a <named-conStant-reference>.

Operation: evaluate-pamed-constant-reference (ncrl

where ncr is a <named-constant-referencel.

result: an <aggregate-valued.

Step 1. Let d be the <declaration> designated by the <declaration-designator> of ncr and

let nc be a copy of the <pamed-constant> component of d.

Step 2.

Cage 2.1. ne containa a <bound-pair-list>»,bpl.

Step 2.1.1. For each <expression>.e of bpl, chosen in any order, perform evaluate-
expression-to-integer(e) to obtain the <integer-valuer,i and replace e

by i.

Step 2.1.2. For each <bound-pair>,bpli]l in bpl, i=1,...,m, let ublil and 1bli] be
the <integer-value* components of the <upper-bound> and <lower-bound>,

respectively. of bpli].
Step 2.1.3. Let n be the integer
m

TT tubril-1biil+id,
i=L

and let svl be & <basic-value-listd» consisting of

elements. R

Case 2.2. lotherwisel.

n <undefineds

Step 2.2.1. Let n be 1, and let svl be a <basic-value-list» consisting of one

fLundefined> element.

tep 3.

Ccase 3.1. nc has an <entry> component and d has <external>.

Let ep be the <entry-point> that is an element of the <entry-or-executable-
unit-list> that is immediately contained in a <procedure> of the <abstract-
external-procedure-list> and that has a <statement-name> with an
<identifier> that is equal to the <identifier> of d. Let epd be an <entry-
point-designator> designating ep and replace the <€undefined> component of

s5vl by epd.
Case 3.2. nc has an <entry> component and d has <internal>.

Step 3.2.1. Perform find-block-state-cf-declaration(d) o obtain the <block-
state»;bs. Let pl be the <procedure-liat> of the <beégin-block> or

<procedure> that simply contains d.

Step 3.2.Z. For each <entry-point»,ep that is simply contained in pl and whose
<statement-pame> has an <identifier> that is equal to the <identifier>

of d perform Steps 3.2.2.1 and 3.2.2.32.

Step 3.2.2.1. Let epd be an <entry-point-designator> designating ep and let bad

be a €block-state-designator®> designating bs.
€antry-value*: epd bsd.

220

Let ev be an

Step 3.2.2.2.

Case 3.2.2.2.1. op has a <signed=integer-list>,sl.

Let glil be the i*th element of 51- Let sn be the integer
m=1
1#s(ml-1bim)+ E (slil-1blil)%*alil
where ™
m

alil = T tubljl-1Biil+1).
jmisl

Replace the <undefiped®* component of the sn'th element of
svl by ev.

case 3.2.2.2.2. (Otherwise).

Replace the <undefined® component of svl by aw.

Case 3.3. nc has a <file> component.

Perform search-file-directorylner,svl) o obtain a <basic-value-list»,bvl.
Heplace svl by bvl.

Cage 3.4. ne has a €<format®» componént.

Step 3.4.1.

Step 3.4.2.

Perform find-block-state-of-declarationd{d) to obtain the <block-
stated»,bs. Let fsl be the <format-statement-list> component of the
<begin=block> or <procedure> that simply contains 4.

For each <format-statement?>,fs, element of fsl that has a <statement-
name> whose <identifier> is equal to the <identifier> of 4, perform
Steps 3.4.2.1 and 3.0.2.2.

step 3.4.2.1. Let fsd be a <format-statement-designator> desigmating f's and let

bsd be a <€block-state-designator® designating bs. Let fv be a
<format=valuex: fsd bsd.

Step 3.4.2.2.

case 3.U4.2.2.1. The <statement-name> of fs has a <signed-integer-list>,sl.

Let 5(i) be the i'th element of sl. Let sn be the integer

m=1
1+siml-1blm] + :E:lsiil-lhliljia[il
i=1
where
m
atil = [T tuntjl-1bijl+1).
=i+l

Replace the <undefined* component of the sn'th element of
svl by fv.

Cage 3.48.2.2.2. (Otherwise).

Replace the <undefined» component of svl by fv.

Chapter T: Storage and Assignment 221

Case 3.5. nc has a <label> component.

Step 3.5%.1. Perform find-block-state-of-declaration(d) to obtain the <block-

Step 3.5.2.

Btep 4.

Casa

Cage

Step 5.

Step 6.
step

222

state¥;bs. Let eul be the <executable-unit-list> or <entry-or-
executable-unit-list> of the <begin-block> or <procedure>, respectively.
that simply contains d.

For each <executable-unit>,eu, component of #ul that has a <statement-
name> whose <identifier> is equal to the <identifier> of d, perform
Steps 3.5.2.1 and 3.5.2.2.

step 3.5.2.1. Let eud be an <executable-unit-designator> designating eu, and

let bsd be a <block-state-designator® desigpating bs. Let lv be
a <label-valuer: eud bad.

Step 3.5.2.2.

Cagse 1.5.2-2.1. The <statement-name> of eu has a <signed-integer-listd>,sl.

Let g{i) be the i'th element of 51. Let sn be the integer
m=1

1+sim])~L1iIm]+ :E: (slil-1blildy*alil
i=g
where
m

alil = TT tubljl-ibijl+1).
J=i+1

Feplace the <undefined> component of the sn'th elément of
svl by lv.

case 3.5.2.2.2. (Otherwisel.

Replace the <undefined* component of svl by 1v.

4.1. nc contains <bound-pair-=list>,bpl.

il

Let agt be
<€aggregate-typedr:
€dimensiocned-aggregate-type>:
{elemant-aggregata-typer:
<gcalary;
bpl-
(Otherwise).

Lat agt be <€aggregate-typed; 4acalars.
Let av be <€aggregate-value®»: agt svl.

If ncr has a <subscript-list> then perform Steps 6.1 through 6.4.

6.1. Let m, 1lbli) and uwb[i), i=1,...,m, be as determined in Step 2. Let bpl2 be

a <bound-pair-list> with m elements of the form

<bound-paic>:
<upper-bound>»,ub2iil
<lower=-bound>, Ib21i);

for i=1,...,m. Perform Step 6.6.1 for i=l,...,m, taken in any order.

Step 6.1-1.

Case 6.1.1.1. The i*th element of the <subscript-list> in ner has an

casterisk>.
Let 1b2({i] and ubiii] be, respectively, 1lbli]l and ublil.

Case 6.1.1.2. The 1'th e@lement of the <subscript-list*> in ncr has an
cexpression>; exp.

Perform evaluate-expression-to-integer(exp) to obtain the

€integer-value®,v and let 1b2(i) and ab2(il] be the integer in w.
If v is leas than 1lbl{i]l or greater than ubli] perform raise-

condition{<subscriptrange-condition>}.

Step b.2. Perform extract-slice-of-arraylbpl,ppl2,1,svl) to obtain a €basic-value-
list», bvl2.

Gtep 6.3. Replace the <basic-value-list® in av by a copy of bwli.
Step 6.0.
Case 6.4.1. Each element of the <subacript-list> in ner has <expression>.
Replace the <€aggregate-type* of av by <aggregate-type®: <€£s5calare.
cCase H.0.2. (Otherwise).

pelete from the <bound-pair-list> of av the elements which correspond to
elements of the <subscript-list> of ncr which have <expression>.

Step 7. The <aggregate-value® av must not contain €undefined». Return av.

7.7.2 SEARCH=-FILE=-DIRECTORY

This operation searches the €file-directory> for the entry or entries that correspond to
the <declaration> referred to in & <named-constant-reference>.

Operation: sgarch=file-directoryincr,svl)

where ncr is a <named-constant-reference>,
&¥]l is a <basic-value-listd.

résult: a <basic-value=list».

Gtep 1. Let bwvl be a copy of svl. Let d be the <declaration> designated by the
<declaration-designator> of nor. Perform Steps 1.1 throwgh 1.2 until bvl
contains no <updefined» elements.

Step 1.1. Search the <file-directory® for a “file-directory-entry»,. e, whose
<identifier> is identical with the <identifier> of d and which has the
component <exterpal> if d has the component <eéxternal>; otherwise it has a
<declaration-designator> component that deaignates d.

step 1.2. Let fid be the €file-information-designator?> in e and let bv be a <basic-
value»: «<file-valuer»: fid. If & has a <subscript=-value-list», replace the
e¢lement of bvl denoted by this <subscript-value-list® by bv. Otherwise,
replace the single element of bvl by bv.

Step 2. Return bwvl.

Chapter 7: Storage and Assignment 223

Chapter 8: Input/Qutput

8.0 Introduction

This Chapter describes the abstract structure of a <dataset> and the transmission of data
between a <dataset® and the <€allocated-storage®» of the dmachine-state®» directed by PLAL
programs as inktroduced in Chapter 5. The main Sections are concerned with the following:

8.1 Datasets and the interface between them and the program

8.2 Files

8.3 Conditions applicable to I/0 operaticns

B.4 Evaluation of a <file-ocption>

B.5 File ocpening and closing

B. 6 Statements performing record transmissicon

BT Statements performing stream transmission, and a description of how data may be
organized in the data stream

8.1 Datasets

A <dataset® is an abstract model of a physical dataset. Its properties and structure are
those which are necessary for a correct interpretation of a PL/I program. The concrete-
representatlion of a <dataset» is implementation-defined. <alpha®* and <omeqga* are end-
markers for <dataset»s that have a sequence.

B.1.]1 RECORD DATASETS

A €record-dataset®» may contain discrete <record?»s; <record-dacaset?»s without any
£record*»s are permitted.

The "gize® l(goe Section H.6.56.11) is an implementation-defined function of the
<evaluated-data-description® of a <record®». It is checked whenever the <records» Iis
transmitted, and under implementation-defined circumstances may cause the raising of the
<record-condition.

dkey»s are a means of identifying particular <€record»s. Within a <dataset», <key»s are
unigue,

8.1.2 STREAM DATASETS

A <“stream-item* i3 either a 4{symbol} or & control item which indicates (in an
implementation-defined way) a line or page break or that the following fsymbol}s are to
be Esent to the same line as the preceding ones. The <stream-item»s <pagemark® and
dcarriage-returpn» are not allowed in a <€stream-item-list®» associated with a file open for
stream input and may only appear in a <stream-item-list®» associated with a file open for
print stream output.

Chapter 8; Inputs0utput 225

8.2 Files

Whenever a PL/I program reguires to access a <dataset®, it does so by naming a <file-
option». This <file-opticn> is evaluated yielding a <file-value®,fv, which designates a
<file-information®,fi. In order successfully to access a <dataset», fi must contain
<open®, in which case it also contains a <file-opening* with a <dataset-designatory,dsd.
dsd designates a <datasetd», which is thus accessed by naming the original <file-option>.

g.2.1 RECORD FILES

The <current-position®* oF a <file-opening® containing <record> contains either the
<designator® of a component of a <record-dataset®» or <undefined*. The designated node may
be a <records, a <keyed-records, €alpha?®, or €cmeqa>. One of the actlons in executing a
statement may be to wpdate the <current-position®.

The <delete-flag», which may be present in a <tfile-opening®» when <racord> appears, iz an
indication that certain actions must not be performed. (See, for example, the operation

delets.)

The <allocated-buffer’ in a <file-opening®» containg a <generation® allocated by a <read-
statement> or a <locate-statement> with the <pointer-set-option>. In the case of the
<locate-statement> it may also contain a <key?® to be associated with the <€record» to be
asgociated with the <€allocated-bulfers.

8.2.2 STREAM FILES

The <current-position®» of a <file-opening* containing <stream> contains either the
“degsignators of a component of a <strean-dataset® or <undefineds. The designated node
may be a <stream-item», <alpha®*, or <omeqa>. One of the actions in executing 8 statement
may be to update the €current-position®.

The <page-number® component of a <file-opening® is applicable only when the <€file-
opening®» also contains <stream> and <print>.

The <First-comma® component of a <file-opening> is applicable only when the €file-
opening® also coptains <stream> and <input>.

B.3 I/0 Conditions

In describing the execution of each inputsoutput statement, the circumstances under which
any <ip-condition>, except <transmit-condition>, may be raised, are ipdicated.

8.3.1 RAISE-LO-CONDITION

Cperation: rajse-io-condition (cond, fv,atr,int)
where cond is <endfile-condition>, <endpage-condition>», <key-condition>,

<pname-condition>, <record-condition>, <transmit-condition>,
<updefinedfile-condition>», or <conversion-conditions.

fv is a [<£file-valuaz],

str is a [<character-string-value»],

int iz an [(€integer-values].

Step 1. If Ev ic a <file-value® then let fi be the <file-information> designated by Ev.

226

Step 2.

Case 2.1. cond is not <conversion-condition>.

If fv la <gbzent>» then perform raise-condition(<error-condition>).
Let eloc be an
<evaluated-io-condition»:
<io-condition>:
cond j
£v.

Ccagse 2.2. cond is <conversion-conditions.

Let eioc be <conversion-condition>.

Step 3.
Ccase 3.1. cond is <pame-condition>.

Let chifs be a <condition-bif-value-list®»: <condition=pif-values®: <onfield-
value¥: s8tr.

Case 3.2. cond is <conversion-conditiom>.

Let chifs be a <condition-bif-value=list® gimply containing £onsource-
value¥»: str; and <onchar-value¥; int. If fv is a <file-value> then let £n
be the <character-string-value» in the <«filename> in £i amd attach an
“<onfile-valua®: fn; to cbifsa.

case 3.3. cond is <transmit-condition>, <record-condition> or <key-condition>, and str
is present.

Let cbifs be a <condition-bif-value-list®: <condition-bif-wvalue®: <onkey-
value»: =str.

Case 3.4. (Otherwisel.
Let cbifs be dabsent?®.
Step 4. Perform raigse-condition{eioc,cbifs).

Step 5. If cond is <key-condition> or <endfile-condition> theén perform exit-trom-iolfvl.

B.4 Evaluate-file-option

The wevaluation of a <file-option> may be performed during inputsoutput statements. This
operation is also used to evaluate <copy-option>s and options of <on-statement>s,
<gignal-statement>s, and <revert-statement>s containing <mnamed-io-condition>s.

operation: evaluate-file-option(vr)

where vr is a <value-reference>.
result: a €file-valuek.

gtep 1. Perform evaiuate-value-referance(vr) to obtain an <€aggregate-values,av. Return
the f€file-value> in av.

Chapter 8: InputsOutput 227

8.5 File Opening and Closing

Opening

a file causes a <“file-opening® to be attached to the 4file-information* and a

<dataset> to be associated with the file. ¢Closing a file removes the <file-opening®> and
dissociates the <dataset> from the file.

8.%.1 THE OPEN STATEMENT

8.5.1.1

Execute-open-statemenk

Operation: execute-open-statement (05)

Step 1.

Step 2.

where o is an <open-statement>.

For each <gingle-opening>;sgo in os5; in order, percform execute-single-
opening{sga) .

Ferform normal-Sequence.

§.5.1.2 Execute-single-opening

Operation: execute-single-opening (sgo)

Step 1.
Step 2.
Step

Step

Step

Step

Step

Step 3.

Step 4.

tep 5.
Step 6.

228

where sgo is a <single-opening».
Let efdl be an <evaluated=-file=-degcription-list® with no components.
Perform Steps 2.1 ko 2.5 in any order.

Z:1. Let fo be the <value-reference> in the <file-option> in sgo. Perform
evaluate-file-option(fo) to obtain a <€file-values, fv.

2.2, If sgo contains & <title-option>,tto, then perform evaluvate-title-
option{tto) to obtain an <€evaluated-title»,et, and append <evaluated-file-
description®»: et; to efdl.

2.3. If sgo contains a <tab-option®.tbo, then perform evaluate-tab-option(tbo) to
obtain amn <evaluated-tab-option®,etoc, and append <evaluated-file-
description®: eto; to efdl.

2-4. If sgo contains a <linesize-option>, ther let 1zo be its <expression>,
perform evaluate-expression-to-integer{lzo) te obtain an <integer-valued,lz,
which must be greater than zero, and append <€evaluated-file-descriptions:

<evaluated-linesize¥»: lz;; to efdl.
2.5. If sgo contains a <pagesize-option>, kthen let pzo be its <expression>,
perform evaluate-expression-to-integer (pzo) to obtain an <€integer-values,pz,

which must be greater than zero, and append sfevaluated-file-descriptioni:
fevaluated-pagesize*: pzi; to efdl.

Let fi be the <file-information® designated by fv. If fi contains <open® then
terminate this operation.

For each immediate component, tn, of 8go which is a terminal node, append
<gvaluated-file-description®»: tn; to efdl.

Perform open{fv,efdl) to obtain res.
If res is <fail> then perform raise-io-conditien(<undefinedfile-condition>, fv).

8-5.1.3 Open

Operation: openlfv,efdl)

Step 1.

Btep 2.

Step 3.

Step 4.

Step 5.

S5tep 6.

Step T.

where v ig a <€file-values,
efdl is an <evaluated-file-description-list».

resulb: <€sSucceed® or €failw».

Let £i be the <file-information® designated by fv. For each terminal node, tn,
of the <file-description> of £fi, append <evaluated-file~description®»: tn; to
efdl.

Augment efdl with implied attributes as follows: for each terminal neode in efdl
which cccurs under “Attribote” in the table below, append to efdl trees
containing the corresponding "Implied Attributes® categories.

1
f Ateribute | Implied Attributes I
i <direct> 1 <record> <keyed> I
| <keyed> | Crecocd> |
| <print> | <stream> <output> 1
| <seguential> | <record> 1
| <update> | <record> !
L

Augment efdl with default attributes as follows: when efdl does not contain any
of the "Alternative Attributes® in a line of the table pelow, append to efdl a
tree containing the corresponding "Default™ category.

T]
Alternative Attributes	Default		
	S =		
<stream>	<record>	<stream>	
<input>	<eutput>	<update>	<input>
L = - 1

If efdl contains <record> but does not contain either <segquential> or <direct>,
append <segquential> to efdl.

If the <«filename®» in fi contains in order precisely the {symbol}s of the word
SYSPRINT, and the <«file-directory-entry*» whoae «Efile-information-designator»
designates f£i has <external>, and efdl contains <stream> and <output>, then
append <evaluated-file—description®: <print>; to efdl.

If both <stream> and <record>, or any two of <input>, <output>, and <update>, or
both <direct> and {soguantzalb are contained in efdl, then return «fail».

if efdl contains an <evaluated-linesize®* then it must contaln <stream> and
<gutput>. If efdl contains <stream> and <gutput> bDut npot an <evaluated-
linesize» then append <evaluvated-fEile-description®: <evaluated-linesize®: an
implementation-defined <integer-valuer;; to efdl.

If efdl contains an <evaluated-pagesize> then it must contain <print>. If efdl
contains <print> but not an <evaluated-pagesized* then append <evaluated-file-
description®»: <evaluated-pagesize®: an implementation-defined <integer-values;;
to efdl.

1f efdl contains an <evaluated-tab-option® then it must contain <print>. If
efdl contains <print> but not an <evaluated-tab-option® then append <evaluated-
file-description®: <evaluated-tab-option®*: an implementation-defined <£integer-
value-1list®;; to efdl.

1f efdl does not contain an <evaluated-title® then let fn be the <filename® in

Fi and perform evaluate-filename(fn) +to obtain an <evaluated-title®»,t, and
append <evaluated-file-description®: ti to efdl.

Chapter &: Input/Cutput 229

Step 8.

Step 9.

Step 10.

Attempt %o find, among the <dataset»s of the <machine-stater (if any), a
<datazet*,ds, the <character-string-value* of the <dataset-name* of which
matches the <character-string-value* of the <evaluated-title» in efdl in an
implementation-defined manner. If the attempt fails, then return <€fails.

If efdl contains <record> then ds must contain a €record-datasetk.

If efdl containg <stream> then ds must contain a dstream-dataset®.

If efdl contains <segquential> and <keyed> then ds must contain a <€keyed-
sequential-dataset®.

If efdl contains <geguential> and <record> but not <keyed> then ds must contain
a <sequential-datasats.

If efdl contains <direct> then ds must contain a <keyed-datasets.

If efdl contains <stream> and <input> then ds must not contain any <€pagqemarck® or
“oarriage-return®.

If efdl contains <record> and <keyed> then ds must not contain two distinct
“keyed-record»s whose <key»s are equal.

Ateach to £i a

€file-opening®, fo:
<dataset~-designators
“complete-file-descriptions:
efdl.

The <dataset-designator® designates ds, which has been associated with fv in
Step 8. If efdl contains <record> then attach a <delete-tlag» to fo. If efdl
contains <print> then attach a <page-number® with 1 to fo. If efdl contains
<stream> and <input> then attach <first-comma®: <on*; to fo.

case 10.1. efdl contains (dirgcg .

Attach to fo a <€current-position®:; <€undefineds.

case 10.2. efdl contains <putput> and not <direct>, and ds contains a <€record-

list» rl, a +<keyed-record-list®»,rl, or a <atream-item-list>,rl.

Attach to fo a <current-position» designating the last immediate
eomponent of rl.

case 10.3. [Otherwise) .

Attach to fo a €current-position® designating the <alpha® in ds.

Step 11. Set the <open-state® in fi to contain <open®.

Step 12. Return <succesds.

8.5.1.4 Evaluate-tab-option

Operation: avaluate=-tab-option(tbho)

Step 1.

230

where tho is a <tab-optioni.
result: an <evaluated-tab-option>.

For each <expressicn*;e in tba, in any order, perform evaluate-expression-to-
integer(e) to obtain an <integer-valued. Let il be an <integer-value-list»
containing these #integer-value»s in the same order as thelr original
<expression>s in tbho.

Step 2.

Step 3.

The <integer-valueds in il most each be greater than zerc, and the list must be
in ascending order.

Return <€evaluoated-tab-option¥: il.

B8.5.1.5 Evaluate-title-option

Operation: evaluate-title-optionit)

step 1.

Step 2.

Step 3.

where £ is a <title-option>.
result: an €evaluated-titled.

Lek & be Ehe <expression> in t. Perform evaluate-expression(e) to obtain an
daggregate-value®,av. Let dd be the <data-description> immediately contained in
(=

et sdt be the <data-type> in dd and let tdt be a <data-type> containing
<gharacter>, <nonvarying> and an implementation-defined <maximom-length>. Let bw
be the <basic-value®* in av. Perform convert (tdt,sdt,bv¥w) to obtain a <character-
string-value»,csv.

Return <evaluated-title?®: csv.

B.5.1.6 Evaluate-filename

Operation: evaluate-filename(fn)

Step 1.

Step 2.

Case

Case

Case

Step 3.

where fn is a <filenamed.
regult: an <evaluated-ticle>.
Llet 5 be the <character-string-value* in fn and let m be the number of

<character-value®s in s. Let n be the implementation-defined maximum length of
the <€evaluated-tlcle>.

2:1. n= 0.

Let csv be <character-string=-values: <€pull-character-strings.

2.2. m 2 n > D.

Let csv be <character-string-value»; <character-valueé-list»; where the
length of <character=-value-list» is n and where the i'th <character-value»
is the same as the i'th <character-value> in s, i®l,...,n0.

2.3. m < n.
Let osv be <character-string-value®»: <character-value-list»; where the
length of <character-value-list® is n and where the i'th <character-value»

iz the sape as the i'th <character-value* in & for 1Ziin, and where the
remaining <characteér-value®»s have Hs.

Return <evaluated-titler»: cav.

Chapter 8: Input/Output 231

8.5.2 THE CLOSE STATEMENT

8.5.2.1 E =close-atat eme

Operation: execute-close-statement (c5)

Step 1.

Step 2.

where s is a <close-statement>.

For each <singleée-closing’, sc in e¢s, in order, perform execute-single-
closing (sc) -

Perform normal-seguence.

B.5.2.3 Execute-single-closing

Operation: execute-singla-closing (sa)

step 1.

Step 2.

where sc is a <single-closing>.

Let fo be the <value-reference> in the <file-cption> in sc. Perform evaluate-
file-option(fo) to obtaim a <file-value>, fv.

If the <«file-information®» designated by f£v contains +<open> then perform
clogel(fv) .

8.5.2.3 Close

Oparation: closel Ev)

Step 1.

step 2.

where fv is a «“file-valued.

Let fi be the <€file-information® designated by fv, and let ds be the <dataset?®
designated by the <dataset-designator®» in f£i.

IE £i contains <output> and an <allocated-buffer¥,abuf containing the
<generation®,g then perform Steps 2.1 through 2.3.

Step 2.1. If abuf contains a «<key®, then let k be a copy of that <key®; otherwise k is

<£absent¥». Perform construct-record(g,k) to obtain r.

Btep 2.2. If k iz a <«key> thenm if there is a <key?> in ds equal to k, or if k is

unacceptable to the implementation, then:

Cagse 2.2.1. This operation is preceded in its <operation-list®» by an €operation* for

execute-single-closing.

Perform raise-ic-condition(<key-condition>,fv,csv}, where cgv is the
fcharacter-string-value®* in k.

Cage 2.2.2. This operation is preceded in itg <operation-list® by an <operationd for

program—epi logue.
Perform some implementation-defined action and go to Step d.

Step 2.3. Perform insert-record(r,fv).

Btep 3.

Step 4.

232

If abuf is present then perform free(g) and delete abuf.

Delete the +<file-opening>* in f£i, and set the <open-stater» in fi to contain
“plogseds.

8.6 The Record I/0 Statements

The record

I/0 statements perform data transmission to and from €record-datasetrs.

Several of the record I/0 statements use common operations. These are described in
Section 8.6-6. Several local wvariables are used in Section 8.6 in a consistent manner:

abuf
d

ds
edd
eio
eko
EPBE
afdl
48
fn
fv

q
int
k
kr

POS
5

for <allocated-buffer>»

for <declaration>»

for <record-datasetd

for <evaluated-data-description»
for <evaluated-into-options»

for <evaluated-keyto-option>»

for <evaluated-pointer-set-option>
for <evaluated-file-description-lists»
for <file-information®»

for <filenama®

for «file-value>

for <€generation®

for <integer-value>

for <key»

for <keyed-record» or <records»

for <current-position»

for <record»

B.6.1 THE READ STRTEMENT

Purpogse: The <read-gstatement> causes a «record? to be transmitted from a <record-datasets
to a target <generation® or an <allecated-buffecs.

B.6.1.1 Execute-read-statement

<evaluated-read-statement®::= «file=valued

Cperation:

Step 1.

Step 2.

Step 2.1.

Btep 2.Z.

Step 2.3.

Step 2.4.

sStap 2.5.

step 2.6.

Step 3.

[€evaluated-into-option® |
“avaluated-pointer-sec-option» |
fevaluated-ignore-option»}

[<€key> | <evaluated-keyto-option:]

execute-read-statement [£s)

where rg is a <read=-statement>.

Let ers be an <€evaluated-read-statement® without subnodes.

Perform Steps 2.1 through 2.6 in any order.

It

Let f be the immediate component of the <file-option®> in rs. Perform
evaluate-file-option(f} to obtain a <file-value»,fv. Attach fv to ers.

If rg contains an <into=-option®,ito, perform evaluate-into-option{ite) to
obtain an <evaluated-into-option®,eito and attach eito to ers.

If rs contains a <pointer-set-option>;pso. perform evaluate-pointer-set-
option{pso) to obtain an <€evaluated-pointer-set-option®,epsc and attach epso
to ers.

if rs contains an <ignore-opticn¥,igo, perform evaluate-ignore-option{igol
to cbtain an <evaluated=-ignore-option®;eigo and attach eigo to ers.

If rs contains a <key-option®,ko, perform evaluate-key-optionl(ka) to obtain
4 €key*,.k and attach k to ers.

If rs contains a <keyto-option>»,kto, perform evaluate-keyto-option(kto) to
obtain an <evaluated-keyto-option®,ekto and attach ekto to ers.

the <file-information®,fi, designated by fv contains <cpen> then go o Step

Chapter 8: Input/Output 233

Step .

Step 4.1. Let efdl be an <€evaluated-file-description-list® containing <record>.

Step 4.2. If fi deoes npot contain <update> then attach <evaluated-file-description®:

<input>; to efdl.

Step U.3. Perform open(fv.efdl) to obtain rf. If rf is «fail» then perform raise-io-

condition{<undefinedfile-condition>,fv). If, on normal return, £i contains
dglogeds then perform raise-conditioni{<error-condition>}.

step 5. £i must contain:

<recordx;

<input> or <¥Egate>:
if erz contains an <evaluated-ignore-option» or if ers
does not contain a <key¥, then <sequential>;
if ers contains a <key® or an €evaluated-keyto-option®, then <keyed>.

Step 6. Perform read(ers).

Stap 7. Perform normal-Sequence.

B.6-1.2 Read

Operation: read(ers)

where ers 15 an 4evaluated-read-statement».

Step 1. Let fi be the <file-information® designated by the €file-value»,fv, in ers. fi

must contain <€open». If ers contains a <key®, then let K be this <key*> and let
k1 be the immediate component of k. Otherwise let kK and k1l be €absent®.

Step 2. If fi contains an <€allocated-buffer®.abuf, then perform freal(g), where g is the

<generation» in abuf, and delete abuf from f£i.

Step 3. Perform position-filelers).

Step 4. If ers does not contain an <evaluated-keyto-option®,eko, then go to Step 5.

otherwise let ns be the number of fsymbol} subnodea of the <character-string-
valued»,csvk in the «key> in the <kKeyed-record» designated by the <current-
position® in Fi. Let dd be a <data-description> containing <character>,
<maximom-length> containing ns, and <ponvarying>. Let avk be an <aggregate-
value® containing csvk. Let ekoet be the <£evaluated-target® in eko.

Step 5.

case 5.1. erse contains an <evaluated-into-option®,elo.

234

Let r be the <record® or <keyed-record® designated by the €currént-position®
in Ei.

Step S5.1.1. Let eddl be the <evaluated-data-description* in r and eddl be the
“evaluated-data-description® in eio. Perform evalpate-size(eddl) +to

obtain an <integer-value®,intl, and perftorm evaluate-sizeledd2) to
ocbtain an <€integer-wvalue»,int2.

step 5.1.2. Let g be the <€generation® in eio.
Case 5.1.2.1. intl is equal to intl.
Perform Steps 5.1.2.1.1 apd 5.1.2.1.2 in either order.

Stop 5.1.2.1.1. eddl and edd? must be equal. Perform set-storagelg,v), where
v is the <basic-value-list® in E.

Step 5.1.2.1.2. If ers contains an <evaluated-keyto-option® then perform
assigniekoet,avk,dd) .

Case 5:.1.2:2- lOtI'lEl:wi.El!h
Btep 5.1.2.2.1. Let nsi be the number of <storage-index®»s in g. Let undef be
a <€pasic-value=list?» containing <basic=-value®*: <undefineds;
nEi times. Perform &Steps 5.1.2.2.1.1 and 5.1.2.2.1.2 in
either order.
Btep 5.1.2.2.1.1. Perform set-storage (g,undef) .

Step 5.1.2.2.1.2. If ers contains an <€evaluated-kKeyto-option® kthen
perform assiqniekoet,avi,dd) -

Step 5.1.2.2.2. Perform raise-io-condition(<{record-condition>,fv,kl).

cage 5.2. ers has an <evaluated-pointer-set-option?»,epso.

Perform Steps 5.2.1 through 5.2.5 in any order such that Step 5.2.1 precedes
Step 5.2.2: Btep 5.2.3, and Step 5.2.0.

Step 5.2.1. Let ¥ be the <record» or <keyed-record» designated by the «Lcurrent-
position* in Fi. Let edd be the <evaluated-data-description® in r.
Perform allocate{edd) to obtain a <genecation®»,q.

Step 5.2.2. Let abuf be an <allocated-pbuffer»: g. Attach abuf to the <file-opening»
in fi.

Step 5.2.3. Let v be the <basic-value=list® in r. Perform set-storage(g.v).

Step 5.2.4. Let pdd be a <data-description> simply containing <pointer> and no other
terminal subnodes. Let epsoet be an €evaluated-target®> containing the
<generation® contained in epsoO. Let agv be an <aggregate-values
containing the <pointer-values: g. Perform assignlepsoet.agv, pdd).

Etep S5.2.5. If ers contains an <evaluated=-kKeyto-option®* then perform
assigniekoet,avk,dd).

Case 5.3. (OtherWwise).
if ers containg an “avaluated-keyto-option®» then perform
assignlekoet,avk,dd).

B.6.2 THE WRITE STATEMENT

Purpose: The <write-statement> causes a £recordy» or dkeyed-recordd* to be transmitted from
a €generation* or an <allocated-buffer®» to a <record-dataset>.

«6.2.1 Execute-write-statement

<evaluated-write-statement?::= <£file-valued <evaluated-from-options
[€evaluated-keyfrom-options]

Operation: execute-write-statement (wa)

where ws is a <write-statement>.
Step 1. Let ews be an <evaluatad-write-statement> without subnodes.
Step 2. Perform Steps 2.1 through 2.3 in any order.

Gtep 2.1. Let £ be the immediate component of the <tile-option> in we. Ferform
evaluate-file-option(f) to obtain a <file-value¥,fv. Attach fv to ews.

Step 2.2. Let fr be the <from-option> in ws. Perform evaluate-from-option(fr) to
obtain an <€evaluated-from-option¥®,efo and attach efo to ews.

Step 2.3. IE ws contains a <kKeyfrom-optien>,keo, then perform evaluate-keyfrom-

option(ko) to obtain an <evaluated-keyfrom-option»,ekfo and attach ekfo to
eWs .

Chapter 8: InputsOoutpuot 235

Step 3.

Step 8.
Btep
Step

If the <Afile-information®»,fi, designated by fv contains <open® then go to Step
B '

.1. Let efdl be an €evaluated-file-description-list® containing <recorpd>.

4.2. If fi does not contain <update> then attach <evaluated-file-description®:
<output>; to efdl.

Step 0.3. Perform open(fv,efdl) to obtain sf. If sf is <fail®> then perform raise-io-

Step 5.

sStep 6.

Step 7.

B.6-2.2

condition({<undefinedfile-condition>,fv). If on normal return £i contains
<closed®» then perform raise-condition(<error-condition>) -

Ei mast containz

<pecord>;

<gutput>, or <update> and <direct>;

if and only if ews contains an <evaluated-keytrom-option®, then <keyed>.
perform write(ews).

Perform normal-sequence.

Write

Operation: writelews)

Step 1.

Step 2.

Cage

Cagza

where ews is an <evaluated-write-statements.
Let fi be the <file-information® designated by the <file-value»,fv, in ews. fi
mist contain <open®. If ews contains an €evaluated-keyfrom-option»: <character-

atring=-value*,csv; then let k be a <key®: csv. Otherwise let k be <absents.
Let ds be the <record-dataset> designhated by the <€datagset-designator» in fi.

2.1. fi does not contain an <€allocated-buffer® or dees not contain <output>.

Go to Step 3.

2.2. fi containg an «<allocated-buffer®»,abuf, and £i contains <output>.

Step 2.2.1. Let g be the <generation» immediately contained in abuf. If abuf

contains a <key*, let kbu be this <key?» and let csvb be the immediate
component of kbu; otherwise let kobu and csvb be <€absentr». Perform
construct-record (g, kbu) to obtain kr.

Step 2.2.2. If fi contains <keyed> and if kbu is equal to any <key> in the

<dataset>,ds, or if kbu is wunacceptable to the implementation then
perform raise-io-condition(<key-condition>,fv,csvbl}.

Step 2.2.3. Perform insert-record{kc,fv) to obtain a <designator¥,pos.

Step 2.2.4. Replace the immediate component of the <€current-position® in fi with

Step 3.

Step 4.

Step 5.

Step 7.

236

POS.

If fi contains an <allocated-buffer®».abuf, containing a «generation®.qg, then
perform freelg) and delete abuf from £i.

Let g be the <generation® in the <evaluated-from-option® in ews. Perform
congtruct=-record (g,k) to obtain kr.

If Fi contains <keyed> then 1f k is egual to any <key> in ds or if k is
upacceptable to the implementation then perform ralgse-io-condition(<key=-

condition>,fv,csv).

Parform insert-record(kr,fv) to ocbtain a <designator®,pos.

Replace the immediate component of the <currept-position® in f£i by pos-

B.6.3 THE LOCATE STATEMENT

Purpose :

The <locate-statement> causes allocation of the specified based variable in an
fallocated-buffer*; it may also cause transmission of a based wvariable
previously allocated in an €allocated-buffers.

B.6.3.1 Execute-locate-statement

devaluated-locate-statement® = <declaration-designator®> <file-value>

[€evaluated=-pointer-set-option»])
[<evaluated-keyErom—options]

Operation: execute-locate-sStatement (15}

Step 1.
Step 2.

where 15 is a <locate-statement>.
Let els be an <evaluated-locate-statement? without subnodes.

Perform Steps 2.1 through 2.4 in any order.

Step 2.1. Let f be the immediate component of the <file-option> in ls. Perform

evaluate-file-option(Ef) to obtain a <file-value>,fv. Attach Ev to els.

Step 2.2. If 18 contains a <pointer-set-option>,pfo, then perform evaluate-pointer-

set-option{pso) to obtain an <€evaluvated-pointer-set-option®,epso and attach
epso to els.

Step 2.3. If 1s contains a <keyfrom-option>,kfo, then perform evaluate-keyfrom-

option(kfo) to obtain an <evaluated-geyirom-option®,ekfo and attach ekfo to
&ls. If fi contains <keyed> then let chs be a copy of the immediate
component of ekfo; otherwise let chs be <€abgent». If fi contains <keyed>
then let kk be <key?>: chs.

Step 2.0. Let eodp be a copy of the <declaration-designator> immediately contalned in

Step 3.

Step 4.

Step 4

Step 4

S5tep 5.

Step 6.

Step 7.
Step T

1. Attach cdp to els.

If the <file-informaticon®,.fi, designated by £v contains <open® then go to Step
5#

1. Let efdl be an <evaluated-file-description=list> containing <record> and
<outpuati.

+2. Perform open(fv,efdl) to obtain sf. If sf is equal to <fail», then perform
raise-lo-condition(<undefinedfile-condition»;fv}. If, on normal returm, fi
contains <closed®* then perform raise-condition(<error-condition>).
fi must contain:
<record>;
<output>;
if and only if els contains an <evaluated-keyfrom-option®, then <keyed>.

If e¢ls does not contain an <evaluated-pointer-set-option® then the <declaration-
designator> contained in els must designate a <declaration>,d, of the form

<haged>;
<value-reference>:
<yariable-reference>,v:
<declaration-desSignator?,p.

p must designate a <declaration> containing <pointer>. Perform evaloate-
variable-reference(v) to obtain g. Let epso be an <evaluated-pointer-set-
optien®»: g; and attach epso to els.

1. If fi does not contain an <allocated-butfer®>,abuf, then go to Step B.

Chapter 8: ImputsOutput 237

Step 7.2. Let g be the <generation® immediately contained in abuf. If abuf contains a
dkey», let k be this +«key> and let csvb be its immediate component;
otherwizse let k and csvb be <abgsent». Perform congstruct-recordlg.k} to
obtain kr-

Step 7.3. If fi contains <keyed> then iE K is equal to any <key* in the <record-
dataset», designated by the <dataset-designator* in fi, or if k is

unacceptable to the implementation, then perform raise-io-condition(<gey-
condition>, fv,csvbl.

Step 7.4%. Perform insert-record(kr,.fv) to obtain pos.
Step 7.5. Replace the immediate component of the <current-position® in fi with pos.
Step 7.6. Perform freel{g) and delete abuf from £i.

Step 8. Let dd be the <data-description® immediately contained in the <variable> of the
<declaration> designated by odp. Perform evaluate-data-descripticn-for-
allocation{dd) to obtain edd.

Step 9. Perform evaluate-size(edd) to obtain an <integer-valued®,int. If int is
unacceptable to the implementation then perform ralise-io-conditiont<record-
condition>, fv,chs) and optionally perform exit-from=-io.

Step 10. Perform allocate{edd) to obtain g-

Step 11. Let desc be a <data-description> simply containing <pointer> without other
terminal subnodes. Let epsog be an <evaluated-target» containing the
<genération® in the <evaluated-pointer-set-option* in els. Let agv be an
{aggregate-valuey containing <pointer-valuei: g Perform
agsigqniepsog,aqv,desc) .

Step 12. Lat d be the <declaration> designated by the <declaration-designator> in els.

Step 1Z.1. If the Jaggregate-type®* of g contains <structure-agg-egate-type® then
perform initialize-refer-options{g).

Step 12.2. Perform initialize-generationig,d).
fitep 13. Let abuf be an €allocated-buffer®: <dgeneration®,g. IE fi contains <kKayed> then
attach kk to abuf. Rttach abuf to the <€file-opening®* in fi.
Step 14. Perform normal-sequence.

B:.6-0 THE REWRITE STATEMENT

Parpoge: The <revrite-statement> causes replacement of an existing <record» or <keyed-
record* in a <récord-datasets.

B.6.8.1 Execute-rewrite-statement

<evaloated-rewrite-statement®::= <file-value>
[(4key»] <evaluated-from-options]

Operation: execute-rewrite-statement (rwa)

where rwa is a <rewrite-statement>.
Step 1. Let erws be an €fevaluated-rewrite-statement® without subnodes.
Step 2. Perform Steps 2.1 through 2.3 in any order.

step 2.1. et f be the Iimmediate component of the <file-option® in rws. Perform
evaluate-file-option(f) to obtain a <file-valued,fv. Attach IV to exrws.

Step 2.2. If rws contains a <from-option>,fr, then perform evaluate-from-option(frlto
obtain an <evaluated-from-option®,efo and attach efo to exvwa.

238

Step 2.3. If rws contains a <key-option>,ko, then perform evaluate-key-option(ke) to

step 3.

sStep 4.
step

obtain a <key>,k and attach k to erws.

If the <file-information®,fi, designated by Ev contains <open® then go to Step
5.

4.1. Let efdl be an <evaluated-file-description-list» containing <record> and

cupdatex.

Step 4.2. Perform open(fv,efdl) to obtain sf. If sf is <fail> then perform raise-io-

Stnp S

Step 6.
Step 7.

condition(<undefinedfile-condition>,tv). If on normal return fi contains
<closed®> then perform raise-conditicn(<error-conditionz).

£i must contain:
<record>;
<update>;
if erws does not contain a <key?, then <gequential>;
if erws contains a <key®, then <geysd>.

If fi contains <direct> then erws muost contain a <€Key». If Fi contains
<gsequential> then erws may contain a <key?® and an <evaluated-from-options.

Perform rewrite(erws).

Perform normal-sequence.

B.6.4.2 Rewrite

Operation: rewritelerws)

Et’E'P 1.

Btep 2.

Cage

Case

step 3.

Cage

Case

step 4.
Etep 5.

where erws is an <évaluated-rewrite-statements.
Let Fi be the <file-information® designated by the <file-value»,fv in erws. f£1

must contain <open®*. If erWs contains a <key®, then let kK be this keys;
otherwise let k be <absent®. I1f k is a <€xey> then let csv be its immediate

component; otherwise let cav be <£absent>.

2:1. k 1s <€absent».
fi must not contain a €delete-flag» and the <cuarrent-position® in £i must

fok contain {4undefined». If the <current-position» in fi designates a
dikeyed-record»,kr then let k be a copy of the <key® in kr and let csv be the

immediate component of k.
2.2. k iz a €key>.
Perform position-filelerws).

3.1. erws contains an <evaluated-from-option®,efo.
Let g be the <generation® in efo.

3.2. (otherwise).

fi must contain an <€allocated-buffer®,abut. Let g be the <generation® in
abuf .

Perform construct-record(g,k) to obtain r.

Let eddl be the <evaluated-data-description®* in g and edd? the <€evaluated-data-
description® in the <record> designated by the <current-position® in £i.
Ferform evaluate-size(eddl) to obtain an <integer=-value®,intl and evaluate-

sizeledd?) to obtain an <integer-value®,int2.

Chapter 8: InputsOutput 239

Step 6. L;t rd be the 4record® or <keyed-record?» designated by the <current-position® in
f -

Ccase 6.1. intl and int? are egual.
Replace rd by r.
Case 6.2. intl and int? are not equal.

If rd is a +record®», replace rd by an implementation-defined <€records;
otherwise replace rd by an implementaticon-defined <keyed-record* with an
equal <key>. Perform raise-io-condition{<record-condition>,fv,csv), and
optionally perform exit-from=ioc.

Step 7. If f£fi contains an <allocated-buffer»,abuf, then let g be the <generation® in
abuf, perform free(g), and delete abuf from fi.

B.6.5 THE DELETE STATEMENT

Purpose: The <delete-statement> deletes a <record* or <keyed-record*» from a <record-
dataseti.

B.6.5.1 Execute-delete-statement

<evaluated-delete-gtatement®»: 1= <€file-valued [dkeyd»]

Operations: execute-delete-statement (dls)

where dls is a <delete-statementi?>.
Step 1. Let eds be an <evaluated-delete-statement?® without subnodes.
Step 2. Perform Steps 2.1 and 2.2 in either order.

Step 2.1. Let f be the immediate component of the <file-option> in dls. Perform
evaluate-file-option({f} to obtain a <£file-valued,fv. Attach fv to eds.

Step 2.2-. If dls contains a <key-option>,ko, then perform evaluate-key-option(ko) to
obtain a <key*.k and attach k to eds.

step 3. If the «file-information®,fi, designated by v contains <opend then go to Step
S.

Seep U.
Step h.1. Let efdl be an <evaluated-file-description-list® containing <update> and
<

-

Step 0.2. Perform open({fv,afdl) to obtain sf. If sf is <€fail® then perform raise-io-
condition(<undefinedfile-condition>,fv). If on normal return fi contains
4closed* then perform raise-condition{<error-condition>}.

Step 5. fi must contain:

<record>;

<ppdate>;
if eds contains a <key®, then <keyed>;

if eds does not contain a <key», then <sequential>.

If fi contains <direct> then eds must contain a <key>. If fi containg
<sequential> then eds may contain a <key>.

Step 6. Perform deletef{eda).

Step 7. Perform normal-sequence.

240

8.6.5.2 Delete

Operation:

Step 1.

Step 2.

deletefeds)

where eds is an <evaluated-delete-statementd.

Let fi be the €file-information® designated by the €file-wvalues,fv, in eds. Fi
must contain <€open*. If eds contains a <key®, then let k be this <€key*> and let
eV be the immediate component of k; otherwise let k and csv be <€absent>.

Case 2.1. k is <absent®.

fi must not contain a €delete-flag». The €current-position® in i must not
contain <undefined».

Cage 2.2. k is a dkey>.

Step 3.

step O.

Perform position-filelaeds).

Let {2 be the immediate component of the <drecord-dataset?» designated by the
£dataset-designator® in fi. Let kr be the node designated by the <current-
position® in fi (Kr is a <record» or a <keyed-records®). QDelete kr from da.

Case #.1. £i contains <direct>.

Case

Step 5.

Step 6.

b.2.

Replace the immediate subnode of the Jourrent-position» in fi by
<undef ineds.

fi contains <seguential.
Replace the immediate subnode of the <current-position®» in fi by a

€designator» designating the predecessor of Kr in ds (this may be <alpha¥, a
“<record® or a <€keyed-records»).

Attach a <delete=flagr to the €file-opening* in fi.

If

fi contains an <allocated-buffer¥,abuf, then let g be the €genecation* in

abuf, perform freel(g), and delete abuf from fi.

8.6.6 OPERATIONS APPLICABLE TO RECORD 1/0

8.6.6.1 Evaluate-from-option

fdevaluated=-from-option®: := <€generation®

Operation:

Etep 1.

Step -

Lat

evaluate-from-option(fr)
where fr is a <from-option>z.

result: an <€evaluated-from-option®.

v be the <variable-reference> immediately contained in fr. Perform

evaluate-variable-reference(v) to obtain a <generation®,q, which must be
connected.

Return an <evaluated-from-option¥: g.

Chapter 8: InputsOutput 2451

B.6.6.,2 Evaluate-into-option

<gvaluated-into-option®»::= <generation»

Operation: evaluate-into-option(ito)

where ito is an <into-option>.
result: an <evaluated-into-option®.
Step 1. Let v be the <variable-reference> immediately contained in ito. Perform
evaluate-variable-referencel(v) +to obtain a <generation®»,qg, which must b

connectead.

Step 2. HReturn an <evaluated-into-option®: g.
B.6.6.3 Evaluate-poi =~gat=optio

<evaluated-pointer-sek-option®: := €genarcation®
Operation: ewvaluate-pointer-set-option(pso)
where pso is a <pointer-set-option>.
regsult: an <evaluated-pointer-set-option®.

Step 1. Let v be the <variable-reference> immediately contained in pso. Perform
evaluate-variable-referencelv) to obtain a <4generation¥.q.

Step 2. Returnp an <evaluated-pointer-set-option®: g.

B.6.6.8 Evaluate-key-option

Operation: evaluate-key-option({ko)
where ko is a <key-option>.
result: a <keyk.

Stap 1. Let e be the <expression> impediately contained in ko. Perform evaluate-
expressionie) to obtain res, containing a <basic-value®,bv.

Step 2. Let tk be a <data-type> containing <character>, <ponvarying>, and <maximum-
langth>: <asterisk>. Let rt be the <data-type> of e. Perform convercitt,rt,bv}
to obtain a <character-string-value®,cha.

Step 3. Return a <Key»: chs.

B.6.6.5 Evaluate-keyfrom-option

<evalusted-keyErom-option®: ;= <character-string-value»

Operation: evaluate-keyfrom-option (kfo)

where kfo is a <keyfrom=-option:.
result: an €evaluated-keyfrom-options.

step 1. Let e be the <expression> immediately contained in kfo. Perform evaluate-
expressionfe) to obtain res, containing a «basic-valued,bv.

Step 2. Let tt be a <data-type> containing <character>, <ponvarying>, and <maximum-
langth>: <asterisk». Let rt be the <data-type> of e. Perform converti(tt,rt,bw)
+to ohtain a <character-string-value¥,chs.

2n2

Step 3. Heturn an fevnluated-kayfrUm—optiani: chs.

B.6.6- aluate-ignore—option

€evaluated-ignore-option®»::= <integer-value

Operation: evaluate-ignore-cption(igo)

where igo is an <ignore-optioni.
result: an €evaluated-ignore-options».

Step 1. Let & be the <expression> immediately contained in igo.

Perform evaluate-

expression-to-integer(e) to obtain an <integer-value»;int; which must not be

negative.

Step 2. HReturn an <€evaluated-ignore-option®: int.
B.6.6.7 Evalu - ke -optio

<evaluated-keyto-option®»::= <evaluated-target®»
Operation: evaluate-keybo-optionlkto)
where kto is a <keyto-option>.
result: an €evaluated-keyto-option®.

Step 1. Let ktotr be the <target-reference> in kto. rerform
referencelktobtr) to obtain an €evaluated-target®,et.

Step 2. Heturn an <evaluated=-keyto-option®: et.

B.B-6. gtruct=record

Operation: construct-recopdig, k)

where g is a connected <genecation®,
k is a [<keyr]l.

result: a €record* or a <keyed-records.

evaluate-target-

Step 1. Let agy be an <aggregate-value> which is the value of g. (See Section 7.1.3.)
Let edd be the <€evaluated-data-description® in g. Let bvl be the <basic-value-

list®» in agv. Let r be a <€records: edd bvl.
Step 2.
case 2.1. k is <absent.
Returm r.
cagse 2.2. k is a <key>.

Return <keyed-record®»: r k.

Chapter 8: InputsOoutput 243

8.6.6.9 Insert-record

Operation: insert-record (kr.fv)

where kr is a «record» or a <keyed-records®,
Ev is a <€file-valuek.

result: a <designator®.

Step 1. If kr is a <keyed-record*» then let k be the <key* in kr and let csy be the
immediate component of k; otherwise let k and csv be <absent®. Let fi be the
“file-information® designated by fv. Let ¥l be the €record-lise» or <keyed-
record-list» in the <dataset® designated by the <£dataset-designators in fi. Let
edd be the <evaluated-data-description®* in kr. Perform evaluate-sizeledd) to
obtain an €integer-valuer,int. If int is not acceptable to the implementation
then perform Step 1.1.

Step 1.1. If kr is a +«record®, let kr be a new implementation-defined <records;
otherwise let kr be an implementation-defined <keyed-record» with an equal
£hay>. Optionally perform Step 2. If this operation is preceded in its
immediately containing <operatiom-list®* by an <operation» for program-
epilogue then perform some implementation-defined action; otherwise perform
raise-io-condition{<record-condition>,fv,csv). Optionally perform exie-
from-io.

Step 2.

Case 2.1. fi contains <direct>.

Attach kr to rl in a poszition chosen in an implementation-defined way-

Cage 2.2. fi contains <keyed> and <segquential>.

Attach kr to rl in an implementation-defined position which may depend on

the «key®* in Kr, on the <record® in kr and the <current-position® in Fi.
case 2.3. fi contains <sequential> and not <keyed>.

Append kr to rl in the position immediately following the immediate

component of rl designated by the <current-position® in f£i.

Step 3. Return a <designator® designating kr in rl.

8.6.6.10 Pos -file

Cperation: pesition-filelevat)

Step 1.

step 2.

Step

Step

where evgt is an <evaluated-read-sgstatement®», an <evaluated-rewrite-
statement®* or an 4devaluated-delete-statementd.

If evst contains a <key> then let k be this <key> and let csv be its immediate
component; otherwise let k and csv both be <€absent®». Let tv be the <file-values
in evst, let fi be the <file-information* designated by fv, let ds be the
<record-dataset® in the <dataset> designated by the <dataset-designator>» in £4,
and let pos be the <current-position» in fi.

2.1. If k is a <key* and k is unacceptable to the implementation then perform
raise-io-conditioni<key-condition>;fv,csvl.

2.2

case 2.2.1. k is <absent¥.

2u

Go to Step 1.

Case 2.2.2. k is a <key» and k is not egual to any <key® in ds.

Step 2.2.2:.1. If fi does not contain a <delete-flag®», then attach a <€delete-
flag®* to the «file-gpening®» in £i.

Step 2.2.2.2. Replace the immediate component of pos by <undefineds.
S5tep 2.2.2.3. Perform raise-ico-copditioni<key-condition>,fv,csv).
Case 2.2.3. k is equal to a <key® in a <keyed-record®,kr, in ds.
Step 2.2.3.1. If fi contains a <delete-flag»,dfl, then delete dfl from fi.

Step 2.2.3.2. Replace the immediate component of pos by a <designators
dasignating kr.

Step 3.

case 3.1. evst is an <evaluated-read-statement® containing an <evaluated-ignore-
option®, eigo.

Let int he the <£integer-value®» in eigo-

Case 3.2. evst is an <evaluated-read-sStatement> not containing a <key* or an
devaluated-ignore-optioni.

Let int be an <integer-value® with value 1.
Case 3.3. {Otherwise).
Terminate this operation.
Step 4. pos must contain a <designators, rdes.
Step 4.1. If int is 0, then terminate this operation.
Step U.2.
case #.2.1. rdes designates <omegad.
rerform ralse-io-condition{<gndfile-condition>, fv)

case M.2.2. rdes designates the last element of the <€keyed-record-list» (or <record-
listy¥) in ds.

Replace rdes by a <designator>» designating the <cmega® in ds.
Cage B.2.3. (Ctherwise).

Replace rdes by a <designator® designating the next <keyed-records (or
“€record») in ds.

Step 4.3. If rdes designates <omegad then perform raise-io-condition(<endfile-
condition>,fv).

Step 4.8. If Fi contains a <delete-flag> then delete it from fi.

Step 4.5. Decrement int by 1. Go to Step 4.

f.6.6.11 Evaluate-size

Operation: evaluate-gizeledd)
where edd is an <evaluated-data-description¥.
result: an €integer-value».

Step 1. Return an implementation-defined <integer-valued, depending on edd.

Chapter 8: Input/0utput 245

B.6.6.,12 Exit-from-io

Operation: exit-from-iolfv)

Step 1.

Step 2.
Step 3.

Step U.

where fv is a <file-values.
Let fi be the «file-information®» designated by Lv. It fi contains an
<allocated-buffer®,abuf, containing a <generation®»,g, then perform freel(g) and
delete abuf from fi.
Perform trim-io-control.

Let eud be the current <executable-unit-designator>. Perform trim-group-
control (eud) .

fieplace the immediate component of the current <statemeént-control® by
foperation-ligtky

foperation® for advance-execution
£operation® for normal-gequence.

B.6.6.13 Trim-ic-control

Operation: trim-ig-control

Step 1.
Step 2.
Step 3.
Step H.
Btep 5.
Step 6.

step 7.

246

Let be be the current <block-control®.

If be contains a <data-item-control-list®»,dicl; then delete dicl from bc.
If bc contains a <current-scalar-item-list»,csil, then delete csil from bc.
If bc contains a <string-io-control®»,sioc, then delete sioc from bo.

If bc contains a <format-control-list»,fecl, then delete fcl from be.

If be contains a <remote-block-stated.rbs, then delete rbs from bo.

If bc contains a «<current-file-value¥,ctv, then delete civ from be.

B.7 The Stream I/0 Statements

B.7.1 THE GET STATEMENT

8.7.1-1

Execute-get-statement

Operation: execute-get-statement (gs)

Step 1.

cage

Cage

Step 2.
Step 3.

H.7.1.2

where g= is a <get-stacement>.

1.1. gs has a <get-file>,gE.
Perform execute-get-filelgfl.
1.2. g8 hazs a <get-string>,gstr.
Perform execute-get-stringigstr).
Perform trim=io-control.

Perform normal-sequence.

Execute-gat-file

Operation: axecute-get-file(gg)

Step 1.

Scep

Step

Step

Step 2.

Step 3.

step .

Step 5.

Step 6.

step 7.
Step 8.

step 9.

where gf is a <get-file>.
Perform Steps 1.1, 1.2, and 1.3 in any order.

1.1. Let fo be the <wvalue-reference> inm the <file-option> in gf. Perform
evaluate-file-option{fo) to obtain a <€file-valued,fv.

i.2. If gf contains a <skip-option>.sko, then let e be the <expression> in gko,
and perform evaluate-expression-to-integer(e) to obtain an <integer-
Values ¥ Ska

1.3. If gf contains a <copy-option>,co, then let cv be the <value-reference> in
co, and perform evaluate-file-option{cv) to obtain a <file-value®»,cf.

Letk fi be the <file-information® designated by fv, and, if a <copy-option> is
present in gf, let cfi be the <file-information® designated by cf. If f£i

contains <open® then go to Step .

Let efdl be an <evaluated-file-description-list® containing <gtream> and
<input>. Perform open(fv,efdl) to obtain rf. If ¢f is <fail> then perform

raise-io-condition{<undefinedfile~condition>,fv). If on normal return fi
contains €closed» then perform raise-conditioni{<error-condition>}.

fi must contain <stream> and <input>.

If gf does not have a <copy-opticn> then go to Step 9. If cfi contains <opens
then go to Step 7.

Let efdll be a <evalvated-file-description-list®» containing <gtream> and
<outpuat>. Perform openlcf,efdll) to obtain ref. IEf ref is <fail® then perform
raise-io-condition(<undefinedfile-condition>,cfl. It on normal rTeturn §£i
contains <€closed>» then perform raise-condition{<error-condition>).

cfi must contain <stream> and <output>.

Attach a <copy-file»: cf; to the current «<block-state>.

1f gf has a <skip-option> then perform skipisk,fvi.

chapter B: Input/Cutput 287

Step 10. If gf has an <input-specification> then:

Cagae 10.1.

Cage 10.2.

Case 10.3.

gf has a <list-directed-input>, ldi.

Perform get=list(1di,Ev).

qf has a <data-directed-input>,ddi.

Perform get-data(ddi,Efv).

gf has an <edit-directed-input>,edi.

Perform get-editledi,fv).

Step 11. If gf has a <copy-option> then delete the current <copy-file».

Step 12Z. If
the

gf has a <list-directed=-input> then terminate this operation.: Otherwise set
afirst-comma® in fi to contain <on».

B.7.1.3 Execute-get-string

Operation:

execute-get=-string (gstr)

where gstr is a <get-string>.

Step 1. Perform Steps 1.1 and 1.2 in either order.

Step 1.1.

Step 1.2.

Let @ be the <expression> immediately contained in gstr. Perform evaluate-
expressioni{e), to obtain an <aggregate-value,av. Let sdt be the <data-
type> in the <data-description> immediate component of e. Let sv be the
“hasic-wvalue* in av. Let ¢4t be a <data-tcype> simply containing
<character>, <nonvarying», and <maximim-length>: <asterisk>. Perform
convert(tde,sdt,5v) to obtain a <character-string-value»,csv. Attach to the
current <block-control® a <string-io-control®: csv {first-comma®: <€on¥.

If gstr has a <copy-option>,co, then perform Steps 1.2.1 through 1.2.4.

Step 1.2.1. Let ev be the <value-reference> in co. Perform evaloate-file-oprionf(cv)

to obtain a <file-value>,cf. Let ofi ba the éfile-informations
designated by cf. If cfi contains <open®> then go to Step 1.2.3.

Step 1.2.2. Let efdl be an <eévaluated-file-description-list» containing <stream» and

<gutput>. Perform openicf,efdl) teo obtain a result rcf. If rcf 1=
4fajils them perform raise-io-condition(<undefinedfile-condition>,ct).

if on normal return i contains <closed®» then perform raise-

condition (<error-condition>).

Btep 1.2.3. cfi must contain <stream> and <output>.

Step 1.2.4. Attach a <copy-file¥: cf; to the current <block-stater.

Step 2.

Case 2.1.

Case 2.2.

Cagse 2.3.

gstr has a <list-directed-input>,ldi.

Perform get=-1igt(ldi).

gstr has a <data-directed-input>,ddi.

Perform get-datalddi).

gstr has an <edit-directed-input>,edi.

Perform get-edit{edi).

Step 3. If gstr has a <copy-option> then delete the current <copy-tiled.

248

B.7+1-4 Get-list

Operation:

Step 1.

Step 2.

Step 3.

Step 0.

Case

Casa

Case

Casgse

Step 5.

get-list(1di, fv)

where ldi is a <list-directed-input>,
fv is a [<file-valued].

Attach to the corrent €block-control® a

fdata-item-control-lists:
“data-item-control¥:
<data=-list=-indicator®* designating the <input-target-list> of ldi
“data-item-indicator»:
€undefineds.

Perform eéstablish-next-data-item %o obtain a <current-scalar-item»,ndi or
€none?*,ndi. If ndi is <none* then terminate this operation.

Perform parse-list-input{fv) to obtain a <€character-string-valued,csv.

IE

fv is a <file-value> thén attach to the current <block-control® a <current-

file-value»: Fv.

4.1.

n.2.

4.3.

B.5.

csv contains just one terminal which is a €,} or & <null-character-strina®.

Go to Skep 6.

The terminal mnodes of esv can be parsed as “{non-blank=comma-guote} [fnon-
blank-comma-list}] ™.

Let v be casv. Let S5t be <character>.

The terminal nodes of o3v can be parsed as “"§simple-character-string-=
constant}®.

Perform basic-charactéer-valus{csv} to obtain a <€character-string-value?,v.
Let st be <character>.

The terminal nodes of csv can be parsed as "fsimple-bit-string-constant}”.

Perform basic-bit-value{csvl) to obtain a €bit-string-values,v. Let st be
<bit>.

(Otherwisel .

Let intg be the smallest integer such that the €character-string=-value® of
length intg containing the first intg <character-value®s of csv doés not
have a continuation conforming, and does not itself conform, to either ot
the syntaxes: {simple-character-string-constant} or {simple-bit-string-
constant}.

Perform raise-io-condition{<conversion-condition>,Ev,csv,intg}l. On normal
raturn let osv be the immediate component of the current €returned-onSouroce-—
value®»; csv must not contain only blanks; go to S5tep 4.

Let et be the <evaluated-target®» in ndi. Let agvy be

Chapter 8: Input/sO0utpot 263

faggregate-valuer:

et dd be

<aggregate-type>:
“scalars;
£basic-value-listr:
£hagic-valua»:
vi
<data-description>:
<item~data-descriptioni:
<data-type>:
<pon-computational-type>:
<string>:
<string-type>: st;
<maximum-length>:
<asterisk>;
mouvargiﬂ =

Perform assignlet.agv,dd).

Step 6. If fv is a <file-value* then delete the current <current-file-value*. Go to
Step 2.
B.7:.1.8.1 Pargse-ligt=-inpu
Operation: parse-list-input({fv)
whera Fv is a [£$File-value3].
result: a <character-string-value®.
Step 1.
Case 1l.1. fv is a <file-value>.

Let f£i be the <file-information® designated by £v, and let ds be the
<dataset» designated by the <dataset-designator®» in fi. Let cp be the
<current-position® in fi.

Case l.1.1. There is no €stream=-item-1ist®» in ds or cp designates the last <€stream-

item» in the <€stream-item-list» in ds.

Perform raise-io-condition(<endfile-condition>,fv).

case 1.1.2. (Otherwisel.

Case 1.2.

Step 2.
Case 2.1.

250

Let sl be a <stream-item-list» containing the <stceam-item®s in the
€<stream-item-1list» in ds, following the <€stream-item®» designated by cp.

fv is <absent».

Let sl be the <character-string-value* in the current <€string-io-control®.
If sl contains no fasymbol}s then perform raise-condition(<error=-condition>}.

51 can be parsed as "[fleading-delimiter-list}] . [<dstream-item-list>]1".

Let 1d be that segquence in sl which satiafies "(fleading-delimiter-list}) .~
in this parse, and let its number of terminal nodes be ln. Perform input-
stream-item(fv} In times. If the current <first-comma®* exists and contains
<on* or the €first-comma® in the <file-information®,fi exists and contains
€0n* then return <character-string-value®: <character-value-liste:
€character-valuek: §symbol}: §.}. Otherwise set the current <first-commas
(respectively, the «first-comma® in fi) to contain <on®, perform parse-list-
input (fv) to obtain csv, and return csv.

Case 2.3%.

case 2.3.

case 2.4.

81 can be parsed as "fleading-delimiter-1list}”.

Let 1n be the number of terminal nodes inm sl. Perform input-stream-item{fwv)
In times. If the current <firgt-comma® exists and contains +<on®», or the
“first-comma® in £i exists and contains <on® then return <character-string-
value»: <null-character-string». Otherwise go to Step 1.

8l can be parsed as "([(fleading-delimiter-list}l * I[<€string-symbol-or-
linemark=-ligt>]".

Let ln be the number of terminal nodes in sl. Perform inpot-stream-item{fv)
ln times. Perform raise-condition(<error-condition>).

gl can be parsed as "({fleading-delimiter-list}] {putative-list-constant}
[{B],} [<stream-item-list>]11".

Let 1n be the pumber of termipal nodes in sl preceding that part which
gatisfies “[<stream-item-list>»]® in this parse. Perform input-stream-
item(fv) 1In times. Let csv be a <character-string-value? whose terminal
nodes are those of the part of 51 which satisfies “4{putative-list-constant}
[B],1" except those terminals that are <linemark»s. Let fc be the current
<first-comma®, if that exists; otherwise let fc be the €first-comma» in f£i.
If the last fsymbol} of csv is a {.} then set fc to contain <on®; otherwise
get fc to contain <off». Delete from csv the last {symbol}y, if that
fsymbol}y is a B or a §,:%- HReturn csv.

B.7.1.64.2 Parsing Categories for List Directed Input

Some of the

categories used in parsing input streams for list directed input are

categories of the Concrete Syntax or the Machine-state Syntax. Others are defined as

follows:

fleading-delimiter}i:= B | <linemarks»

fputative-list-constant}:z= *[<string-symbol-or-linemark-list*)"*

[{non=blank-comma-quotel
[{non-blank-comma=1ist¥ll |
[fdata~-symbol} | §:F | =}
[fnon=blank-comma=1ist}l

fdata-symbolly: = fletter} I $diqit} I - =1 ¢ 13«11l &a]l 131 ~1
> | = “ 15 % $&xtra1ingua1-character
Hote: The subnodes of f{data-symbol} are those of fsymbol} except for M. €%, f:13. £°F
and §=3%.
fnon-blank-comma-guote}::= fdata=-symbol} | ; | = | <€linemarks

fnon-blank-comma}::= fnon-blank-comma-guote} | °

«string=-symbol-cr-linemark®::= {string-or-picture-symbol} | <€linemarks

Chapter 8: Input/0utput 251

B:7:1:5 Get_dﬂt!

fdata-basic-reference}::= [{data-structure-reference}l

[fE-1ist}]) fidentifier} [fE-list}] [({data-subscripts}yl

fdata-structure-reference}::® fdata-basic-reference}.

fdata-subscripts}i:= (fdata-subscript-commalist}) (f¥-1ist}]

fdata-subscript}z:= [fB=-1ist}] [+|=] {integer} [{E-list}]

<scalar-facts®»::= <identifier-list> <declaration-designator>

Operation:

step 1.
step 2.

Case

Cage

Case

Casne

Step 3.

Step Y.

Step

[<data-description>] «integer-values

get-data (ddi,Ev)

where ddi is a <data-directed-input>,
fv is a [<file-value®].

Parform parse-data=-input-name{fv) to obtain a <character-string-valuer,nf.

2.1.

2.2

2.-3.

2.0.

nf contains a <null-character-string* or has just one {symbol} which
contains a §£,%}-

Go to Step 1.

nf has just one fsymbol} which contains a €;}-
Terminate this operation.

The last fsymbol} of nf contains an §=}.

Let nnf be a <{symbol-list} containing, in order,; all the {symbol}s of nf
except its terminal {symbol}: $=}. If nnf is an empty list then let nnf be

a -t’null—-::haractar—st.ring ®

{Otherwise) .

Let wf be <character-string-values: 4dnull-character-string*. If the last
§{symbol} of nf contains a ;} then let 1li=l; otherwise let li=0. Go to Step

Perform parse-data-input-value{fv) to obtain a <character-string-value¥*,vf. If
vE contains a fsymbol} and its last {symbol} contains a 4:} then let 1i=1;
otherwise let 1i=0.

f.1-

If nnf conforms to the syntax for fdata-basic-reference} then let dbr be a
fdata-basic-reference} whose terminal nodes are paicwise equal to the
terminal nodes of nnf, both sets being taken in order. Otherwise go to Step
9.

Step 4.2. Let vr be a <variable-reference> without subnodes.

Step §.2.1. Let idll be an fidentifier-list} containing. in order, the {fidentifier}s

252

in dbr. Let 1412 be an <identifier-list> without subnodes. For each
fidentifier},ide, in idll let ida be the corresponding <identifier> and
append ida to idl2. If id12 contains more than one element, then let
idlld be a copy of idl2, delete the first element of idll, and attach
idl3 to vr.

Step 4.2.2. If dbr does not contain any fdata-subscripts}s then let ssl be <absent>
and go to Step 4.2.3.

Let dsl be a {fdata-subseript-list} containing all the fdata-subscript}s
in all the {data-subscripts} in dbr, in order. Let 55l be a <subscript-
list> without subnodes.

For

each {data-subscript}.dss, in dsl, in order, perform Step 4.2.2.1.

Attach ssl to vr.

Step 4.2.2.1.

Let cs5dss be the <£character=-string=value» corresponding to dss.
Perform basic-numeric-valuefcsdss) to obtain a <value-and-typa»:
€real-value»,ry <data-type>,dt. Let 55 be

<aubscriptr:
Caxpressionz:

<constant>;

fhasic-valued»;
rv;

dak;

<data-description>;
<item-data-descriptioni:

dt.
Step 4.2.3. Lat ble be the <beégin-block> or <procedure> that simply contains the
<gxecutable=unit> designated by the current <executable-unit-
designators.

Step 4.2.3.1.

Step 4.2.3.2.

Step 8.2.3.3.

If blo contains a <declaration-list>;dl; then go to Step 4.2.3.3.

If blo is not contained in a <procedure> then go to Step 9. Let
blo be the <begin-block> or <procedure> containing blo which
conkains no other <begin-block»> or <procedure> containing blo.
Go to Step 4.2.3.1.

Let sfl be a <scalar-facts-list® containing all of the distinct
“scalar-facts®»s which can be obtained by performing Steps
§.2.3.3.1 and 4.2.3.3. 2.

Step 4.2.3.3.1. Let d be a <declaration> in dl. Let sfx be a €scalar-factsy»

containing a <declaration-designator’> designatine 4, an
cidentifier-list>,idl: id; where 4id is the <identifier>
immediately contained in d, and an Linteger-values: 0. If d
containg <variable> which immediately contains a <data-
degeription>,dd, then parform Steps Go.2.3.3.1.1 and
.2.3.3.3.2.

Step 4.2.3.3.1.1. If A4d immediately contains a <dimensioned-data-

description>,ddd, then let nbp be the number of
<hound=pair>s in the <bound-pair-list> of ddd, add
nbp to the value of the <integer-values in sfx,
replace that <integer-valuer with the suam 50
obtained, and let dd be tha <plement-data-
description> in ddd.

Stap 4.2.3.3.1.2. Is dd simply contains a catructure-datn-

description>,sdd, which immnediately contains an
<identifier-list>,idlx, then choose an
<identifier>,idx, Erom idlx, append idx to idl,
let dd be the <data-description> in the <member-
deseription> corresponding to idx in the <member-
description-list> of sdd, and go ko Step
4.2.3.3.1.1.

Step 8.2.3.3.2. If 4 contains a <variable> then let idd be the <item-daca-

deseription> simply contained in dd and attach a <data-
description>»: idd; to six.

Chapter B3 Inputs/Output 253

Ske

Ste

258

Step

P 5.

P 6.

Cage

casa

Case

Step H.2.3.4. In this step a list will be said to be an ordered sublist ot
anocther list if the two lists are equal or if a list egual to the
first list can be obtained by deleting one or more elements from
the second.

If idl2 is not &An ordered sublist of the <identifier-list> of any
#gcalar-facts» in sfl then go to Step 4.2.3.2. If idl2 is an
ordered sublist of the <identifier-list>s of more than one
£acalar-facts?® in sfl but i3 not egual to one of them., then go to
Step 9. If idl2 is equal to the <identifier-list> of a <scalar-
factg»,sfx, then let idlu be that <identifier-list>. IF idl2 is
an ordered sublist of the <identitier-list>,idld, ot exactly one
<gcalar-facts»,s8fx in sfl, then idl2 must equal idlu.

If =51 is a <subscript-list> then let nssl be the number ot
<subseript>s in ssl. Otherwise let nssl be 0. It ns=sl is not
equal to the value of the <integer-valued in sfx then go to Step
9.

Let d be the <declaration> designated by the <declaration-
designator> in @fx. d must contain <declaration-type>:
<variable>; and must not contain <bagsed’» without a submode. The
¢data~-description>;dd. in &fx must contain an <item-data-
description®> containing & <data-type>»: <computational-type>.

nttach the <declaration-designator> in sSEx to vr. Attach the
<data-description> in sfx t0 vr.

Step 4.2.3.5. In this step a list iz zaid to be an initial sublist of another
iist if the two lists are egual or if a list equal to the tirst
can be obtained by deleting the last element of the second list
onga or mare times.

If ddi does not contain a <data-target-list> then go to Step 6.3.
Let vl be a <variable-reference-list> conslsting of each
<variable-reference> in a <data-target> in the <data-target-list>
of 441 whose <declaration-designator> equals that of vr and whose
<identifier-list>, if present, has fewer elements than idly., If
vrl is empty then go to Step 9. If any <variable-reterence> in
vrl is without an <identifier-list> then g2 to Step 6.3.
Otherwise, go to Step 9 unless some <variable-reference> in wvrl
has &an <identifier-list> which is an initial sublist of the
<identifier-1ist> obtained by deleting the first <identitier>
from idlé.

4.3. Perform evaluate-variable-reference(vr) to obtain a <generation®,g.

If fv is a «file-value® then attach <current-file-value®»: £v; to the current
<block=-control®. If vf contains a <pull-character-string» then go to Step 8.
If vf contains the single {symbol}: §.}; then go to Step 8. I[f vt contains the
single {symbol}: §:}; then go to Step 8. If vf terminates in the {symbol}: 4:3};
then remove this fsymbol}.

6.1. The terminal nodes of vf can be parsed as "{non-blank-comma-quote} [fnon-
blank-comsa=1ist}]".

Let v be vf. Let st be <character>.

6.2. The terminal nodes of +f can be parsed as "{simple-character-string-
constant}”.

Perform basic-character-value({vi) to obtain a <character-string-value®,v.

Let st be <character>.

6£.3. The terminal nodes of vI can be parsed as "{simple-bit-string-constant}”.

Perform basic-pit-valuei{vf) +to obtain a <bit-atring-value¥,v. Let st be
<bit>.

Case 6.4. (Otherwise).

step T.

Step 8.

Step 9.

Let intg be the smallest integer such that the <character-string-valuer of
length intg containing the first intg <character-value»s of csv does not
have a continuation conforming, and does not itself conform, to either of
the syntaxes: {simple-character-string-congstant} or {simple~bit-string=-
constant}.

Perform raise-io-condition(<conversion-condition>,fv,vE,intg). on normal
return let vf be the immediate component of the current <returned-onsource-
value®; vf must not contain only blanks; go to Step 6.

Let etg be <€evaluated-targetd»: g. Let agv be

<aggregate-value»:
€aggregate-types:
<scalac;
<basic=value=1istd:
£basic-value>:
Va

Let dd be
<data-description>:
Litem-data-degeriptioni>s
<data-type>:
<non-computational-typa»:
<String>;
<string=-type>: sk;
<maximum=-lengthi>g
<agterisk>;
cponvarying>.

Perform assign(etg,agv,dd).

IFf fv is a «file=value» then remove the current <current-file-valuer. If li=]
then bterminate this operation; otherwWwise 9o to S5tep 1.

Perform raise-jio-condition{<name-condition>,fv,str), where str is a €character-
string-value» containing, in order, the {symbol}s of nf and the {symbol}s of i
(excepting a final {symbol}: €;¥;, it any). On normal return if 1i=0 then go to
Step 1; otherwise terminate this operation.

B.7.1.%5.1 Parse-data-input-nane

Operation: parse-data-input-name(tv)

Step 1.

where fv is a [€file-value®>].

result: a <character-string-valued.

Case 1.1. fv is a <€file-values».

Iet fi be the <file-information® desigpnated by £v, and let ds be the
ddataset>» designated by the <dataset-designator®» in fi. Let cp be the
£curreént-position® in £i.

Case 1.1.1. There is no <“stream-item-list®» in ds, or cp designates the last <stream=

item» in the <stream-item-l1ist?® in ds.

rerform raise-io-condition(<endfile-condition>,fv).

Case 1.1.2. (Otherwise).

Let sl be a €stream-item-list» containing, in the same order,; <€£stream-
item¥s equal to the <€stream-item?s in the 4stream-item-1list>* in d$ which
follow the €stream-item® designated by cp.

Chapter 8: Inputsoutput 255

Gte

Case 1.2.

p 2'-

Case 2.1.

Cage 2.2.

Case 2.3.

Ev is <abSent®.

Let 81 be the <character-string-value® in the current <string-io-controlk.
If sl contains no {symbol}s then perform raise-condition{<error-condition>).

sl can be parsed as *({leading-delimiter-1ist}) [, | i | =} (<stream-item-
list»]".

Let 1d be that sequence in sl which satisties "(fleading-delimiter-list}] 1.
| # | =}® in this parse, and let the number of its terminal nodes be 1ln.
Perform input-stream-item{fv) ln times. Let endld be the last terminal node
in 14. Return <character-string-value»: <character-value-list»: <character=-
value®:; fsymbal}: endld.

81 can be parsed as "{leading-delimiter-list}".

Lee 1n be the number of terminal symbolis in sl. Perform input-stream-

item(Ev) 1In times. Return dcharacter-string-valuek: 4null-charactar=
string».

8l can be parsed as "[fleading-delimiter-list}] {putative-name-field} [(; |
=} [4gtream-item=-1ist>]]".

Let 1n be the number of terminal nodes im 51 before that part which
gatisfies "[<stream-item-list>])" in this parse. Perform input-gstream=
item{fv} 1In Etimes. Let ¢sv be a €character-string-value» whose terminal
nodes are those preceding the part of sl which satisfies "l«stream-item-
list»]™® 4in this parse, excluding the part of sl satisfying " (fleading-
delimiter-1ist}}™ and those terminals that are <linemark»s. Return csv.

8.7.1.5.2 Parse-data-input=-value

Opa

rationsz

Step 1.

256

case 1.1.

parse-data=-input-value (fv)

where fv iz a [«file-value>]).

resulk: a (charanter*string*v&luei.

fv is a <file-valued.

Let fi be ehe <file-information® designated hy fv, and let ds be the
<dataset» designated by the <dataset-designator® in fi. Let cp be the
“ourrent-position®» in f£i.

case 1.1.1. There is no <€stream-item=-list» in ds, or cp designates the last <stream-

item® in the <Astream-item—list?» in ds.
Perform raise-io-condition{<endfile-condition>,fwv).

Case 1.1.2. (Otherwise).

Case 1.2.

let =81 be a €stream-item-list®» containing., in the same order, <stream-
item®s egqual to the <stream-item®»s in the <stream-item=-1ist®» in ds which
follow the <stream-item® designated by cp.

fv is <absent>.

Let =58l bes the fcharacter-string-value® in the current <€string-io-control».
If 51 contains no {symbol}s then perform raise-condition(<error-condition>).

Step 2.
Case 2.1. sl can be parsed as "[{leading-delimiter-list}] (,|;} [(€stream-item-list»]".

Let 1d be that seguence in Sl which satisfies " ({leading-delimiter-list}]
{:1:}" in this parse, and let the nomber of 4ts terminal nodes be 1n.
Perform input-stream-item({fv) 1ln times. Return a <character-string-values»
containing the last faymbol} in 1d.

case 2.2. 8l can bhe parsed as "{fleading-delimiter-list}".

Let 1n be the number of terminal nodes in sl. Perform input-stream-item{fw)
1n times. Return <character-string-value?: <null-charactér-strimg».

Case 2.3. gl can be parsed as "I[{leading-delimiter-list}] " [fstring-or-picture=-
symbol=1iathk] " .

Let 1ln be the number of terminal nodes in sl. Perform input-stream-item(fw)
ln times. Perform raise-condition({<error-condition>).

Case 2.4%. 81 can be parsed as "(fleading-delimiter-list}] {putative-data-constant}
(i8] ,|:} [<stream-item-list>]]".

Let lm be the nomber of terminal nedes in 51 preceding that part which
gatigfies ~“l«stream-item-list>*]® in this parge. Perform input-stream-
item{f¥} 1n times. Lot e5v be a dcharacter-string-value® whose terminal
nodas are those of the part of sl which satisfies "{putatiwve-data-constant}
(B],]:1" except those terminals that are <linemark»s. Delete from csv the
last f¥symbol}, if that fsymbol} is a B or a f,}- Return csv.

8.7.1.5.3 Parsing Categories for Data Directed Input

Some of the categories used in parsing input streams for data directed input are
categories of the Copncrete Syntax or Machine state Syntax. Some of the categories are
defined in Section 8.7.1.4.2 "Parsing categories for list directed input®. The remainder
are defined as follows:

fputative-nane-field}::z= (fdata-symbol} | *} [ffield-element-1-1list}]

ffield-element=-1}::= f{data-symbol¥|*|.|¥]|<linemacks

fputative-data-constant}::i= {simple-character-string-constant}k
[{{data-symbol} | <linemark» | =}
[f{field-element=2=1igt}l] |
{f{data-symbol} | =}
[{field-elenﬂnt-!-liat}l

ffield-element=-2}::= fdata-symbol}|<€linemack>|=| "
B.7.1.6 Gec-edit

Operation: gqet-edit(edi, fv)

where edi is an <edit-directed-input>,
fv is a [<file-value>].

Step 1. Attach to the current <block-control® a

#data=item~control=1ligt»;
{<data-item-control®:
4data-list-indicator® designating the first <input-target-list>
of edi
ddata-item-indicator®:

fundef ineds.

Chapter 8: InputsOutput 257

Step #. Attach to the current <block-control?®» a
“format-control-l1ists»:
“format-control®:
<format-specification-list-designator> designating the first <format-
specification-1list> of edi
<format-list-indexs:
€integer-valued:
0.
Step 3. Perform egtablish-next-data=-item to obtain a <current-scalar-item»,ndi:
fevaluated-targets,et; or <none*,ndi. If ndi is <none>* then go to Step 6.
Step 8. Perform establish-next-format-item to obtain a <format-item>.efi.
Step 5.
Case 5.1. efi contains a <control-format>,ecf.
Perform execute-input-conktrol-formati{ecf,fv). Go to Step U.
Casa 5.2. efi contains a <data-format>,edf.
Perform execute-input-data-format{et,edf,fv). Go to Step 3.
Step 6. L[et dpp be the flrst <data-item-control» of the current 4data-item-control-
ligt».
Cage 6.1. The <data-list-indicator> of dpp designates the last <lnput-target-list> ol
edi.
Terminate this operation.
Case 6.2. [Otherwise).
Replace dpp by
“data-item-control»:
<data-list-indicator®» designating the next <input-target-list> of edi
<data-item-indicator®:
“undefineds.
Replace the current <format-control=list® by
<format-control=ligt»:
“format-controli:
<format-specification-list-designator> designating the next
<format-specification-list> of edi
<format-l1ist-index>:
dinteger-valua»:
Go to Step 3.
§.7.1.6.1 Execute- = £ ~format
Operation: execute-input-control-format lect, fv)
where ecf iz a <control-format>,
fvr is a [£file-value>).
Case 1. fv is a <file-value>.

Step 1.1. Let fi be the <file-information®* designated by fv. ecf must not have a

258

<page>, <line-format>, or <tab-format>. Let ds be the <dataset> designated
by the <dataset-designator® in f£i.

StEp 1. s
Cas# 1.2.1. ecf has

w musk
pecform

Case 1.2.2. ecf has
w must
Case 1.2.3. ecft has

Step 1.2.3.1.

Step 1.2.3.2.

case 1.2.3.

Case 1.2.3.

case 1.2.3.

case 2. fv is <absentkr.

ecf must have

a <space-format>r; Linteger-valued,w.

not be negative. If w=0 then terminate this operation; otherwise
input-stream-item-for-editifv,i}, tor i=ls....w.

a <skip-format®»: <integer-value:>,w.
be greater than zero. Perform skiplw, fv).

a <column=-format>: <dinteger=-valuek,w.

W must not be negative. Pertorm evaluate-current-columnifv) to
obtain ce. If w = 0 then let w be 1. Let m be the number of
fsymbolds in ds which follow the <stream-item* designated by the

<current=position» in £i, up to the next €stream-item® which has
a €linemark» or <omeqga.

2.1. ec € (w=1) and m 2 (w-cc-1)-
Perform input-stream-item{fv} (w-cc-1) times.

2.2. ec = (w=1).
Terminate this operation.

2.3. ce > (w=1), or cc < (w-1) and n < (w-cc-1).
Perform skipl€integer-value»:l;,Iv). Let ni pDe the number
of {symbol}s in d5 which follow the <stream-item® designated
by the <current-position» din f£i, op to the next «stream-

item* which has a <linemark®» or <omega®*. If nl = (w-1) > O
then perform input-stream-item(fv) (w-1) times.

& <gpace-Fformat>: «integer-value®,w. w must not be negative. It

w=0 then terminate this operation; otherwise perform input-stream-jitem-for-
edit{fv, 1), For i=l1,...,w.

B.7.1.6.2 Execute-input-data-format

Operation: execute-input-data-tormat (et , edf, fv)

where et is an <evaluvated-target®,
edf iz a <data-formati,
fv is a [€file-value>].

Step 1.

case l.1. edf immediately contains a <real-format> or a <string-format>.

Let w be the First <€integer-value® in edf; w must be present.

case 1.2. edf immadiately contains a <picture-format>,pf.

Let w be the assoclated character-string length of pf. (See Section 9.5.2.)

case 1.3. edf immediately contains a <complex-format>,ecf.

Step 1.3.1. If the first immediate component of ect is a <real-format> then let wl

be the

first €integer-value® in ecf; otherwise let wl be the associated

characteér-string length of the first component of ect.

Chapter 8: Input/s0utput 259

Step 1.3.2. If there is a second immediate componént, sc, of ecf and s¢ is a <real-

format> then let wl be the first <integer-value® in sc. If there i1is an
sc and sc is a <picture-format> then let w2 be the associated character-
string length of sc. If there is no second immediate component of ect
then let w2 be wl. Both wl and w2 most be non-negative.

Step 1.3.3. Let w = wlswl.

Step 2.

Ste

260

p 3.

Step

Step

Step

Step

Staep

step

w mast not be ne