ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

® STANDARD ECMA-75

SESSION PROTOCOL

January 1982

Free copies of this document are available from ECMA,
European Computer Manufacturers Association

114 Rue du Rhéne — 1204 Geneva (Switzerland)

[@

.

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-75

SESSION PROTOCOL

January 1982

e

BRIEF HISTORY

Work on an ISO Reference Model for Interconnection started in 1977
with the formation of ISO/TC97/SC16 and the development of a Refe-
rence Model, now ISO DP 7498.

In ECMA, work on a Session Protocol to be designed in accordance
with Layer 5 of the ISO Reference Model started in 1978 with the
formation of SSP TG in TC23 (Open Systems Interconnection). The
Session Protocol was designed to use and enhance the services pro-
vided by means of the Transport Protocol (Standard ECMA-72).

The principal characteristics of the services provided by the
Session Protocol are:

- reliable and transparent data transfer,
- organized data transfer,
- synchronized data transfer.

Reliable and transparent data transfer is derived directly from
the Transport Service. The other two characteristics are added
value services provided by the Session Protocol.

This Standard ECMA-75 is based on the practical experience of ECMA
member Companies world-wide, and on the result of their active par-
ticipation in the current work of ISO, the CCITT and national stand-
ard bodies in Europe and USA.

This Standard ECMA-75 has been adopted by the General Assembly
of ECMA on December 10, 1981.

(55
-

TABLE OF CONTENTS

SECTION 1 GENERAL

=
SR IE =N R

INTRODUCTION
SCOPE

REFERENCES
GENERAL OVERVIEW
CONCEPTS

Synchronization
Synchronization-Point Concept
Major-Synchronization-Point Concept
Minor-Synchronization-Point Concepts
Synchronization-Point-Serial-Number
Dialogue-Unit Concepts

Quarantining Concept

Blocking

Session-Connection Termination Concepts
.10 Tokens Concept

.11 Resynchronization Concept

.12 Delimiter Hierarchy

wu

el 0 el o I = T =S G Sy
SR N N N NS N NS NS N T
NN NEN (o NN T, N NI O =

SECTION 2 SERVICE

2.1
2ed

SERVICE OVERVIEW
SERVICE DESCRIPTION

2.2.1 Primitives
2.2.2 Parameters
2.2.3 Reason Codes

SERVICE SUBSETS

2.3.1 General

2.3.2 Subset A: Basic Subset

2.3.3 Subset B: Basic Interactive Subset
2.3.4 Subset C: Basic Synchronized Subset
2.3.5 Subset D: Basic TWA Subset

SECTION 3 PROTOCOL

3.1

PROTOCOL OVERVIEW

3.1.1 Model of the Layer
5.1.2 Specification of the session protocol

SPDU PROTOCOL

1 General

2 Connection Protocol

.3 Disconnection Protocol

4 Data Transfer Protocol
.2.5 Synchronization Protocol

TRANSPORT-SERVICE-MAPPING PROTOCOL

53.3.1 General
3.2 Transport Service
.3.3 Connection Mapping

N NN W

go)
©
()

ol e e o & R e T s IS B

15

17
18

18
21
27

27

47
28
28
30
31

33

a5

35
36

36

36
36
40
43
47

52

52
52
52

R

Table of Contents (cont'd)

Page

3.3.4 Transport Connection Establishment 55

3.3.5 Transport Connection Data Phase 53

5.3.6 Transport Connection Termination 54

3.4 PROTOCOL ENCODING 55

3.4.1 General Principles 55

5.4.2 Encoding of TLV Items 56

3.4.3 SSDU blocking TLV Items 57

3.4.4 Fixed Header 57

3.4.5 Variable Information Unit 59

3.4.6 SPDU Encoding of Protocol Messages 62

3.5 PROTOCOL SUBSETS 73

3.5.1 General 73

3.5.2 Subset A: Basic Subset 73

5.5.3 Subset B: Basic Interactive Subset 74

3.5.4 Subset C: Basic Synchronized Subset 74

35.5.5 Subset D: Basic TWA Subset 74

4. SECTION 4 CONFORMANCE REQUIREMENTS 75

4.1 GENERAL 77

4.2 EQUIPMENT 77

4.3 PEER EQUIPMENT 77

4.4 PROTOCOL SUBSETS 77

4.5 ADDITIONAL SESSION PROTOCOIL 77

4.6 REQUIREMENTS 77

APPENDICES 79
APPENDIX A - BRIEF DESCRIPTION OF THE REFERENCE MODEL

OF OPEN SYSTEMS INTERCONNECTION 81

A.1 SCOPE 81

A.2 GENERAL DESCRIPTION 81

A.3 THE LAYERED MODEL 82

APPENDIX B - TERMINOLOGY 87

B.1 GENERAL 87

B.2 DEFINITIONS 87

APPENDIX C - NOTATION 89

C.1 INTRODUCTION AND SCOPE 89

C.2 DEFINITIONS 89

C.3 SERVICE MODEL 90

C.4 PRIMITIVES 90

C.5 SERVICE STRUCTURE 91

C.6 EFFECTS OF SERVICE 92

C.7 PARAMETER NOTATION 93

APPENDIX D - FORMAL DESCRIPTION 95

D.1 INTRODUCTION 95

D.2 ELEMENTS USED IN THE FORMAL DESCRIPTION 95

9

0®

D.
D.

APPENDIX
- |

momE i mmmm
O oo~ UT P~ W

3
4

Table of Contents (cont'd)

FORMAL DESCRIPTION CONVENTIONS
FORMAL DESCRIPTION TABLES

E - EXTENSIONS

GENERAL

LIAISON WITH OTHER STANDARDIZATION BODIES
ADDITIONAL SUBSETS

FLEXIBILITY FOR FUTURE EXTENSION
PERFORMANCE

COMPLETENESS OF THE SERVICE DESCRIPTION
ADDITIONAL FACILITIES

NEGOTIATION ENHANCEMENTS

SYNCHRONIZATION ENHANCEMENTS

.10 TOKENS ENHANCEMENTS
.11 TRANSPORT MAPPING ENHANCEMENTS
.12 CONFORMANCE TESTING

®

1 General

04

(9

INTRODUCTION

This Standard ECMA-75 is one of a set of Standard for Open
Systems Interconnection. Open System Interconnection stand-
ards are intended to facilitate homogeneous interconnection
between heterogeneous information processing systems. The
standard is within the framework for the co-ordination of
standards for Open Systems Interconnection which is defined
by ISO/DP 7498.

This ECMA standard is based on the practical experience of
ECMA member companies world-wide, and on the results of
their active participation in the current work of ISO, the
CCITT and national standards bodies in Europe and the USA.
It represents a pragmatic and widely based consensus.

A particular emphasis of this standard is to specify the
homogeneous externally visible and verifiable characteris-
tics needed for interconnection compatibility, while avoid-
ing unnecessary constraints upon and changes to the hete-
rogeneous internal design and implementation of the infor-
mation processing system to be interconnected.

In the interests of rapid and effective standardization, the
standard is oriented towards urgent and well understood
needs. It is intended to be capable of modular extension

to cover future developments in technology and needs.

Section three of this standard (protocol) has precedence
over section two (service) if any differences arise in inter-
preting their content.

SCOPE

This ECMA Session Protocol Standard:
- defines general session layer concepts (see section 1),

- defines abstract interactions between two session-service-
users via the session service (see section 2),

- defines the protocol to support these services (see sect-
ion 3),

- specifies the requirements for conformance with this proto-
col (see section 4).

This standard defines only what is needed for a basic session
layer. It provides the consistent technical basis for furth-
er session layer standards with extended scope.

This standard defines what is needed for compatible inter-
connection between information processing systems. It does
not define local interactions between a session-service-user
and the session-service., It in no way defines interlayer
interfaces.

This standard is for the session layer of Open Systems In-
terconnection (see ISO/DP 7498).

1.4

1.

1.5.1 Synchronization

5

REFERENCES

ISO/DP 7498 Data Processing - Open Systems Interconnection -
Basic Reference Model

ECMA-72 Transport Protocol

GENERAL OVERVIEW

The role of session protocol is to use and to enhance the
services provided by means of transport protocol (see Stand-
ard ECMA-72).

The principal characteristics of the services provided by
means of session protocol are:

- reliable and transparent data transfer,
- organized data transfer,
- synchronized data transfer.

Reliable and transparent data transfer is derived directly
from the transport service. The other two characteristics
are added value provided by session protocol.

The organization is mostly concerned with the orderly es-
tablishment and termination of session-connections, and with
providing controls to assist structuring of the interactions
communicated on the session-connection.

The synchronization is mostly concerned with effective ways
of handling the uncertainties and inefficiencies caused by
transit delay (defined in B.2.3).

CONCEPTS

A distinctive characteristic of the session-service is
a systematic factoring out of complex transit delay
effects (defined in B.2.3) relating to synchronization
(defined in B.2.1) and performance optimization (see
notes 1, 2 and 3).

NOTE 1

Transit delay causes uncertainty of synchronization and additional
complexity in collision and contention cases, (defined in B.2.4

and B.2.5). It also leads to complexity of overlapped, concatenated
and buffered interactions to optimize performance.

NOTE 2
The effects of the delay are factored out, not the delay itself.
NOTE 3

Synchronization communicated via a transit delay is necessarily
only a pseudo-synchronization. The synchronization via the session-
service creates an effect which is as if the actions in question
occur at the same time.

‘®

0

=y

v5e

Synchronization-Point Concept

Synchronization-points (defined in B.2.6) are the prin-
cipal means of synchronization on a session-connection.
They are constructed by use of certain services with
service structure type 2 (defined in C.2.9), and non-
destructive effects (defined in C.6).

The request event (defined in C.2.3, C.2.12) designates

a point in the direction initiator to acceptor (defined in
C.2.12 and C.2.13). The point is identified by a serial
number (see 1.5.5). The response event (defined in C.2.5,
C.2.12) which carries the same serial number signals the
completion of synchronization.

Any semantics which ss users may give to their synchro-
nization-points, or to the subunits of communication
activity which they delimit (including check-pointing and
commitment semantics) are transparent to the session
service.

There are two main types of synchronization-point:
a) major-synchronization-point (defined in B.2.7),
b) minor-synchronization-point (defined in B.2.8).

Major-Synchronization-Point Concept

Figure 1.5/1 is a time-sequence diagram (notation defined
in C.5), illustrating the main characteristics of a major-
synchronization point.

The response/confirmation events (defined in C.2.5, C.2.6,
C.2.12) define a time-slicing of activity on the session-
connection, such that all communication before this divi-
sion is isolated from all communication after it (there

is one exception, see note 4).

Initiator Acceptor

(Restriction B)
BEFORE
REQUEST

(Restriction A)
INDICATION
RESPONSE

CONFIRMATION — =

‘/—"' AFTER (Restriction C)
"-

Fig. 1.5/1 - Major-Synchronization-Point

<5,

In order to ensure this absolute separation, the session
service has the following characteristics:

- Restriction A: The initiator is not subsequently able
to initiate any services until the response is receiv-
ed, except for requesting:

. abnormal termination (see 1.5.9)
. resynchronization (see 1.5.11).

- Restriction B: The acceptor is not able to initiate any
service with type 2 service structure whose indication
might arrive at the initiator of the major-synchroni-
zation-point request after the request event except for:

resynchronization.

- Restriction C: Expedited effects (see C.6) of services (‘
initiated by the acceptor after the response never
arrive before the confirmation except for:

. abnormal termination.

Restriction A ensures that the acceptor does not receive

any old indication or confirmation events after the res-

ponse event. Restriction B ensures that the initiator is

not required to make response events in the interval bet-
ween the request and confirmation events. The combination
of the two restrictions prevents backward penetration by

new events.

There is no restriction on other request and response
events at the acceptor, or their corresponding indication
and confirmation events at the initiator.

NOTE 4

The exception to these isolation provisions is that abnormal 0 ‘
termination of the session connection may be initiated at any time.

Minor-Synchronization-Point Concepts

The role of a minor-synchronization-point is to define
correlations between the flow of sequentially transmitt-
ed events in both directions. It does not define any
correlation with expedited events.

Fig. 1.5/2 illustrates successive request/indication

events defining boundaries between groups of events in

the direction initiator to acceptor . Figure 1.5/3 illus-
trates the corresponding successive response/confirmation
events defining boundaries between groups of other events
in the direction acceptor to initiator. The combined corre-
lation effect would be illustrated by superimposing

figure 1.5/3 on figure 1.5/2, with figure 1.5/3 displaced
along the time axis.

REQUEST X ~_

after x (any — _
before (other <%, <
x+1 (transfers INDICATION X

\‘

™ after X
before x+1

REQUEST X+1*-N*\’

after (any other<gy
x+1 (transfers -+ “~ INDICATION X+
:;after x+1

Fig. 1.5/2 Effects of Minor-Synchronization-Point Requests/
Indications.

RESPONSE X
L g

) after x
_.any other) before x+1
L,¢ransfers)

CONFIRMATION xl///

.
-

after x (& - & RESPONSE X+1

before x+1 (&~

CONFIRMATION X+14 ¢ ~'any other) after
after (_ &- transfers) x+1
x+1 { 5.

Fig. 1.5/3 Effects of Minor-Synchronization-Point Response/
Confirmations.

The initiator may make a simple synchronization struc-
ture by waiting for the confirmation event of each minor-
synchronization-point before initiating further primi-
tives. The synchronization structure then consists of a
series of units of synchronization, one at a time.

The initiator may make more complex synchronization
structures by issuing further primitives (e.g. for data
transfers and synchronization points.) before receiving

the confirmation event. The synchronization structure

then consists of a series of concurrent units of synchro-
nization. This is a performance optimization which might
be characterized as "write ahead" or '"pipelined operation".

There are two subtypes of minor-synchronization-point:

- normal,
- urgent.

The urgent subtype of minor-synchronization-point restricts
the initiator not to initiate data transfers before the
confirmation. It asks for the confirmation to be made

'""as soon as possible'.

The normal subtype does not have this restriction. For
example, it is possible to request a minor-synchroniza-
tion-point while other minor-synchronization-points are
unconfirmed. Confirmation of a subsequent synchroniza-
tion-point implicitly confirms any previous unconfirmed
synchronization points. This allows both synchronization
structures described above.

The response/confirmation events of a minor-synchroniza-
tion-point do not define a time-slicing of activity on
the session connection. There is no assurance that all
communication before is isolated from all communication
afterwards. There are none of the controls itemized as
in A, B and C in 1.5.3. This is illustrated in figure
1.5/4.

Initiator Acceptor
REQUEST
Before? other request or response
~

Primitive with —
expedited effects

Potential -
forwards & \\\1KINDICATION

penetration

$ Potential
backwards penetration

Other
request or Before?
response~

N RESPONSE
~ /
Potential
Backwards 4 — - - Primitive with expedited
penetration effects
CONFIRMATION Forwards penetration

Fig. 1.5/4 - Minor-Synchronization-Point Penetration

time

*

Synchronization-Point-Serial-Number

The session-service provides an automatically incremented
serial number to identify synchronization-points.

Certain services cause this value to be incremented.
Typically the increment is by one (see note 5). Certain
primitives may cause the current value to be changed to

a new value possibly chosen by the ss-users. The range

of this serial number is zero to 65535 (see note 60).

No service increments beyond the maximum value (see note 7).

NOTE 5

In principle the increment may be variable and arbitrarily large,

such that there are gaps in the serial numbers visible to ss-users.
This characteristic ensures that application-entities do not depend

on the assumption that the serial number (which is provided to them
via the presentation-service) is incremented only as a result of their
own actions. This gives freedom for the presentation-entities possibly
to use the session-service to define additional synchronization-
points for use internal to the presentation-layer.

NOTE 6

A larger range to accomodate the case when this maximum is not suffi-
cient is for further study.

NOTE 7

The alternative of re-cycling through zero is an unnecessary compli-
cation if the range is large enough.

Dialogue-Unit Concepts

SS-users may structure the exchange of data between them
into a series of dialogue-units (defined in B.2.10).

The characteristic of a dialogue unit is that all commu-
nication within it is guaranteed to be isolated from all
communication before and after it.

Figure 1.5/5 is a pictorial representation of this time
slicing of a session-connection.

Sessionr Session
connection DIALOGUE~UNIT | DIALOGUE-UNIT | Etc. | connection
establishment termination

Fig, 1.5/5 - Dialogue-units

The beginning of the first dialogue-unit is implicit in
the completion of session-connection establishment. Norm-
al termination of a dialogue-unit is by means of a primi-
tive which defines a major-synchronization-point. The

= 10 =

beginning of the next dialogue-unit is explicitly the
termination of the current dialogue-unit (see note 8).

There is provision for destructive abnormal termination
of a dialogue-unit by either ss-user. Connection termin-
ation also terminates the current dialogue-unit.

The session service does not constrain the semantics
which ss-users may give to dialogue-unit synchronization
structure. Any such semantics are transparent to the ses-
sion-service.

NOTE 8

There is no recursivity of dialogue-units within dialogue-units.
SS-users may, however, construct a recursive semantic structure
delimited by means of the non-recursive synchronization structure.

Quarantining Concept “,'

The quarantining concept is a means to optimize scheduling
and buffering.

When quarantining is in use, an ss-user sending data de-
limits (explicitly or implicitly) a delivery-point (de-
fined in B.2.16) when he requires the data to be deliver-
ed.

The delivery-point delimits a quarantine-unit (defined in
ISO/DP 7498). None of the content of a quarantine-unit

is delivered to the acceptor ss-user until the whole
quarantine-unit has been transferred (see note 9).

The operation of quarantining is such that the acceptor
ss-user has no information about delivery-points nor in-
formation that data has been discharged or grouped into
quarantine-units.

NOTE 9

.
Use of this concept does not preclude implementations in which the [
content of a quarantine-unit is delivered to its user before it is

complete, provided that the globally visible effects are as if none
was delivered before completion.

Blocking

The blocking concept (defined in ISO/DP 7498) is included
in the session service and protocol. The ss-user sending
blocked data may use a local "push'", provided at an SSAP
in ways not defined by this Standard.

Session-Connection Termination Concepts

The session-service provides three types of session con-
nection termination:

- abnormal termination (see note 10)
- non disruptive termination (see note 11)
- negotiated termination (see note 11) .

- 11 -

Termination of the first type may cause loss of data. Ter-
mination of the second or third type causes no loss of
data. The difference between the second and third type

is that in the third type the acceptor may refuse the ter-
mination and continue the session-connection.

NOTE 10

This type relates to S~DISCONNECT and S-ABORT defined in 2.2.1.3
and 2.2.1.4.

NOTE 11

These types relate to S-RELEASE defined in 2.2.1.2.

1.5.10 Tokens Concept
Tokens (defined in B.2.11) provide a mechanism for ss-
users tou cuntrol the unambiguous dynamic and exclusive
right to initiate certain functions.
Each token that is to exist during the lifetime of a ses-
sion-connection is defined and initially assigned when
the connection is established. It is assigned to one ss-
user or the other. Thereafter, the assignment may be chang-
ed in various ways. Any token which is not defined during
connection-establishment does not exist during the life-
time of the connection.
Four tokens are defined in this standard:
- data token (see B.2.12 and note 12),
- synchronize token (see B.2.13),
- end-DU token (see B.2.14),
- terminate token (see B.2.15).
Table 1.5/6 defines the effects that are dependent upon
whether or not the above tokens are defined (i.e. used)
for a session-connection.
Table 1.5/6 - Use of_the Standard Tokens
Token If defined If not defined
Data token TWA or one-way TWS
Synchronize token Minor-synchroni- No minor-synchroniza-
zation-points may tion points
be made
End-DU token Major-synchroniza- | No major-synchroniza-
tion-points may be | tion points
made
Terminate token Termination may No negotiated
be negotiated termination

- 12 -

Table 1.5/7 defines the right conferred by assignment of
the above tokens. It applies in the case where all the
tokens are defined. If one or more tokens are not defined,
the restriction defined in table 1.5/6 apply, and the
entries for the not allowed actions and for the undefined
token(s) are deleted from table 1.5/7, modifying the con-
trol effects.

Table 1.5/7 - Control Effe;tsiof Tokens

To initiate ... It is necessary that these tokens be

assigned (if defined)

Transfer of an SSDU Data Token

Minor-synchronization- Data Token and Synchronize Token
point

Major-synchronizationr Data Token and Synchronize Token and
point End-DU Token

Negotiated termination Data Token and Terminate Token

For example, if the terminate token is defined and no
others, communication is necessarily TWS only and there
can be no synchronization-points (per table 1.5/6). Only
the ss-user to whom the terminate token is currently
assigned may initiate non-destructive negotiated termina-
tion, (per table 1.5/7) and either ss-user may send SSDUs
(per table 1.5/6).

NOTE 12

The data token is equivalent to the "turn" concept which is a pre-
decessor of the more general concept of tokens. The term "turn" is
not used in this standard.

1.5.11 Resynchronization Concept

Resynchronization (defined in B.2.2) is a destructive
change of synchronization, which may be initiated by
either ss-user. It sets the session-connection to a defin-
ed state, and includes repositioning of tokens and setting
the synchronization-point-serial-number to a new value.
Resynchronization has a '"purge' effect, and may cause

loss of data.

Resynchronization abnormally terminates the current
dialogue-unit. Two options are provided:

- abandon option,
- restart option.

)

1.5.12

= 1% =

These refer to the ss-user action relating to the work
content of the current dialogue-unit and distinguish
priority and different ways of setting the synchroniza-
tion-point-serial-number.

Delimiter Hierarchy

There is a hierarchy of delimiter effects:

at termination of the session-connection, the current
dialogue-unit is terminated,

- termination of the current dialogue-unit implies a
delivery-point in each direction, and implies confir-
mation of any outstanding minor-synchronization-points,

- any minor-synchronization-point implies a delivery-
point,

- any token management action implies a delivery-point,

a delivery-point implies end of SSDU.

1

- 15 -

2 Service

‘P

i

SERVICE OVERVIEW

The services defined by this standard are summarized in
table 2.1/1. It lists the service primitives and groups
them into five facilities.

The primitives are defined in 2.2.1. Their parameters are

defined in 2.2.2.

Subsets of the primitives and parameters, which are orient-

ed to particular uses of the session service, are defined

in 2.3.
Table 2.1/1 - Structure of the Service Provided
Facility Name of Primitive
Session-connection S-CONNECT request
establishment indication
facility response
confirmation
Session-connection S-RELEASE request
termination indication
facility response
confirmation
S-DISCONNECT request
indication
S-ABORT indication
Session-connection S-DATA request
data transfer indication
facility S-EXPEDITED request
indication
Session-connection S-QUARANTINE-DELIVER request
quarantining S-QUARANTINE-CANCEL request
facility
Session-connection S-SYNC request
synchronization indication
facility response
confirmation
S-END-DU request
indication
response
confirmation
S-RESYNC request
indication
response
confirmation
S-TOKEN-GIVE request
indication
S-PLEASE request

indication

R Are -y TRSApaE. W

bt e S —FL T TN

2.2 SERVICE DESCRIPTION

The service is described by using the service description
notation and terminology defined in Appendix C which should
be read at this point.

2.2.1 Primitives

NOTE 13

Use of certain primitives defined in this subclause is precluded
in particular subsets (see 2.3).

Zedodsd

2.2+1,2

2.2.1.3

S-CONNECT primitives

The S-CONNECT primitives are the means for two ss-
users to establish a session-connection between themn.

The effects are sequentially transmitted and non-dis-

ruptive. The service structure is type 2. Parameters @‘
are defined in 2.2.2.1. The right to be initiator 1is

not subject to token assignments.

The outcome is either of:

- the session-connection is successfully established
and ready for use,

- the session-connection is rejected and its effects
are discarded by the session service.

S-RELEASE primitives

The S-RELEASE primitives are the means for negotiated
termination (defined in 1.5.9) of a session-connection
(see note 14).

The effects are sequentially transmitted and non-

disruptive. The service structure is type 2. Parame-

ters are defined in 2.2.2.2. The right to be initia- |
tor may be subject to the current token assignments, Q§‘
as defined in table 1.5/6 and 1.5/7.]

The outcome is either of:

- the acceptor ss-user agrees and the session-connec-
tion is terminated,

- the acceptor ss-user does not agree, and the session-
connection 1is not terminated.

NOTE 14

Termination is not negotiated if the terminate token is not de-
fined (see table 1.5/6), in which case the termination is of the
basic non-destructive type (defined in 1.5.9).

S-DISCONNECT primitives

The S-DISCONNECT primitives are the means for abnorm-
al termination (defined in 1.5.9) of a session-connec-
tion, by either ss-user acting unilaterally.

‘)

2.2.1.4

Z2edelad

2:2:1:6

2ebule?

2.2.1.8

-~ 19 =

The effects are disruptive. The service structure is
type 1. Parameters are defined in 2.2.2.3. The right
to be initiator is not subject to token assignments.

S-ABORT primitive

The S-ABORT primitive is the means for abnormal ter-
mination (defined in 1.5.9) of a session-connection
by the session service.,

The effects are disruptive. The service structure is
type 3. Parameters are defined in 2.2.2.4. This primi-
tive is not affected by token assignments.

S-DATA primitives

The S~DATA primitives are the means for an ss-user to
transfer an SSDU to the other ss-user.

The effects are sequentially transmitted and non-dis-
ruptive. The service structure is type 1. Parameters
are defined in 2.2.2.5. The right to be initiator may
be subject to the current token assignments, as defin-
ed in tables 1.5/6 and 1.5/7.

S-EXPEDITED primitives

The S-EXPEDITED primitives are the means for an ss-user
to transfer an expedited SSDU of limited size to the
other ss-user,

The effects are expedited and non-disruptive. The
service structure is type 1. Parameters are defined in
2.2.2.6. The right to be initiator is not subject to
token assignments.

S-QUARANTINE-DELIVER primitive

The S-QUARANTINE-DELIVER primitive is the means for an
ss-user to cause release of previous indication events
which were originated by the initiator ss-user and may
be subject to quarantining.

The effects are sequentially transmitted and non-dis-
ruptive. The service structure is type 4. Parameters
are defined in 2.2.2.7. The right to be initiator may
be subject to the current token assignments, as defin-
ed in tables 1.5/6 and 1.5/7.

S-QUARANTINE-CANCEL primitive

The S-QUARANTINE-CANCEL primitive is the means for an
ss-user to cause discard of previous indication events
which were originated by the initiator ss-user and are
subject to quarantining.

The effects are sequentially transmitted and disrup-
tive. The service structure is type 4. Parameters are
defined in 2.2.2.8. The right to be initiator may be |

I N S S T R S SHEEY N e SRR R | e el B e e L o DS

ZxdindeB

2adsdlel0

2+2.1lll

- 20 -

subject to the current token assignments, as defined
in tables 1.5/6 and 1.5/7.

The outcome is that the indication events concerned
do not occur and all their effects are discarded by
the session service.

S-SYNC primitives

The S-SYNC primitives are the means for an ss-user to
define a minor-synchronization-point, and for the accep-
tor ss-user to confirm this synchronization.

The effects are sequentially transmitted and non-dis-
ruptive. The service structure is type 2. Parameters
are defined in 2.2.2.9. The right to be initiator is
subject to the current token assignments, as defined
in tables 1.5/6 and 1.5/7.

NOTE 15 @ ‘

The acceptor ss-user may reject the proposed synchronization
by initiating an S—-RESYNC primitive.

S-END-DU primitives

The S-END-DU primitives are the means for an ss-user

to define a major-synchronization-point which terminat-
es the current dialogue-unit normally (see note 16) and
for the acceptor ss-user to confirm this synchroniza-
tion (see note 17).

The effects are sequentially transmitted and non-dis-
ruptive. The service structure is type 2. Parameters
are defined in 2.2.2.10. The right to be initiator is
subject to the current token assignments, as defined
in tables 1.5/6 and 1.5/7.

NOTE 16 ;
— ‘N

The dialogue-unit is not actually terminated until the response/
confirmation events.

NOTE 17

The acceptor ss-user has no means to reject termination of the
dialogue unit, but may force a different termination by initiat-
ing an S-RESYNC.

S-RESYNC primitives

The S-RESYNC primitives are the means for an ss-user

to reset the session-connection, and to agree associat-
ed parameters with the acceptor ss-user. If the dia-
logue-unit concept is in use, the current dialogue

unit is terminated. This is referred to as abnormal
termination of the dialogue unit.

The effects are disruptive. The service structure

is type 2. Parameters are defined in 2.2.2.11. The
right to be initiator is not subject to token assign-
ments.

—,—____W

2.2.1.12 S-TOKENS-GIVE primitives

The S-TOKENS-GIVE primitives are the means for an ss-
user to assign to the acceptor ss-user one Or more
tokens currently assigned to the initiator.

The effects are sequentially transmitted and non-dis-
ruptive. The service structure 1s type 1. Parameters
are defined in 2.2.2.12.

2.2.1.13 S-PLEASE primitives

The S-PLEASE primitives are the means for an ss-user
to ask the other ss-user to give to him (the initiator)
one or more tokens which are not currently assigned

to him.

The effects are sequentially transmitted and non-dis-
1 ruptive. The service structure 1is type 1. Parameters
) are defined in 2.2.2.13.

The acceptor ss-user has the choice to ignore the ad-
vice or act upon it.

2.2.2 Parameters

The notation used in this subsection is defined in C.7
which should be read at this point.

NOTE 18

Use of certain parameters and parameter values defined in this
subclause is precluded in particular subsets (see 2.3).

2.2.2.1 Parameters of S-CONNECT

The parameters of the S-CONNECT primitives and their
values are defined in table 2.2/1 and the following
rules which reference it.

| . Table 2.2/1 - Parameters of S-CONNECT
EﬁﬁégETER Request Indication Response Confirmation
Result X X Bl
Connection-identifier B2 U B3
Initiator address D4 us X
Acceptor address D4 us B6
Subset choice D7 U X8
Subset parameters -9 -9 -9 9
Max. SSDU size I to A D10 8] D10
Max. SSDU size A to I D11 8] D11
SS-user data D12 U D12
Reason code X X B13

cCCcCcCCc ! xaoxcocca
Ul

Rule 12

Rule 13

If the connection is accepted by the acceptor ss-user, the
value is "accept". Otherwise, the value is "reject'. In
this case, all the other parameters of the S-CONNECT res-
ponse and confirmation have the 'null" values, except
possibly the ss-user data and the reason code.

This value is the initiator's proposal for the session-
connection-identifier. Its structure and format and origin
are not defined in this standard. The source code B allows
the value to be originated by the ss-user or by the ses-
sion service or by the two acting together. The maximum
size is 16 octets.

This value is the agreed session-connection-identifier.

It may be the same value as the initiator's proposal, or
different. It may be a concatenation of an acceptor's

component with the initiator's proposal. Otherwise as 6’
Rule 2.

Session-service-address, identifying a session-service-
access-point (SSAP) in ways not defined in this standard.
But the maximum size is 16 octets.

Where there is address translation within the session
service, this value may be different from that in the
preceding event. Otherwise as Rule 4.

Session-service-address, identifying a session-service-
access-point (SSAP) in ways not defined in this standard.
But themaximum size is 16 octets. Where there is generic
addressing or re-direction within the session service,
this value may be different from that in the indication
event.

This value identifies any one of the subsets defined in 2.3.
The value in the request/indication is not negotiable. (.

The rules for these subset parameters depend on which
subset is chosen. See 2.3.

Value in the request/indication primitives is the ini-
tiator requirement about the maximum size of SSDU in

the direction initiator to acceptor. Value in the res-
ponse/confirmation primitives is the acceptor capability
about that same size. Both values may be '"null'". The ses-
sion service imposes no relationship between the values
in the request/indication primitives and the value in the
response/confirmation primitives.

Same as Rule 10, but invert the terms "requirement' and
"capability'" and the direction is now acceptor to ini-
ator.

SS-user data content is transparent to the session ser-
vice. Size is an integral number of octets. Minimum size
is zero octet. Maximum size is 64 octets.

Present only if result is "reject'". Gives session-ser-
vice reason for not accepting the session connection.
See 2.2.5.

2.2.2.2 Parameters of S-RELEASE
The parameters of the S-RELEASE primitives and their
values are defined in table 2.2/2 and the following
rules which reference it.
Table 2.2/2 - Parameter of S-RELEASE
PARAMETER
NAMES Request 1ndlcat10n response confirmation
Result , X X D1 U
SS-user data D2 8] D2 8]
Rule 1. Value is "affirmative" if the acceptor ss-user
agrees to the connection being terminated. Otherwise
it is '"'megative'" (see note 19).
Rule 2. SS-user data is transparent to the session
service. The size is an integral number of octets.
The minimum size is zero octet. The maximum size is
32 octets.
NOTE 19
The choice to give the response "negative" is not available if
the termination-token is not defined (i.e. the termination is
not negotiated). See 1.5.10.
2.2.2.3 Parameters of S-DISCONNECT
The parameters of the S-DISCONNECT primitives and their
values are defined in table 2.2/3 and the following
rule which references it.
Table 2.2/3 - Parameters of S-DISCONNECT
PARAMETER . .
NAMES request indication
SS-user data D1 U
Rule 1. The ss-user data is transparent to the session
service. The maximum size is three octets.
2.2.2.4 Parameters of S-ABORT

The parameters of the S-ABORT primitive and their va-
lues are defined in table 2.2/4 and the following rule
which references it.

Table 2.2/4 - Parameters of S-ABORT

PARAMETER .) .)
NAMES Indication Indication
Reason code Ul Ul

Rule 1. See 2.2.3. This parameter may have different
values at the two SSAPs in circumstances where the
reason is perceived to be different at the two ends
of the session-connection.

2.2.2.5 Parameters of S-DATA
The parameters of the S-DATA primitives and their va-
lues are defined in table 2.2/5 and the following rule
which references it.
Table 2.2/5 - Parameters of S-DATA
PARAMETER . .
NAMES Request Indication
SSDU D1 U
Rule 1. The SSDU is transparent to the session service.
The size is an integral number of octets. The minimum
size 1is zero octet. There is no maximum size restric-
tion, except that derived cumulatively from the
corresponding maximum quarantine size parameters of
the S-CONNECT primitives.

2.2.2.6 Parameters of S-EXPEDITED

The parameters of the S-EXPEDITED primitives and their
values are defined in table 2.2/6 and the following
rule which references it.

Table 2.2/6 - Parameters of S-EXPEDITED

PARAMETER . .
NAMES Request Indication
XSSDU D1 U

Rule 1. The XSSDU is transparent to the session service.

Size is an integral number of octets between zero and
1%

«

N

2.2.2.7 Parameters of S-QUARANTINE-DELIVER
None.

2.2.2.8 Parameters of S-QUARANTINE-CANCEL
None.

2.2.2.9 Parameters of S-SYNC

The parameters of the S-SYNC primitives and their va-
lues are defined in table 2.2/7 and the following rules
which reference it.

Table 2.2/7 - Parameters of S-SYNC

PARAMETER) _ . .
| NAMES Request Indication | Response Confirmation
(]
g Type D1 U X X
Serial Number U2 U D3 U
SS-user-data D4 U D4 U

Rule 1. Type is 'mormal" or '"urgent'" (see 1.5.4).

Rule 2. Synchronization-point-serial-number, increment-
ed as defined in 1.5.5.

Rule 3. This value identifies a previously indicated
but not yet confirmed minor-synchronization-point,
which is now confirmed (see 1.5.4).

Rule 4. The ss-user-data is transparent to the session
service. The maximum size is 6 octets.

2.2.2.10 Parameters of S-END-DU

(' . The parameters of the S-END-DU primitives and their
| values are defined in table 2.2/8 and the following
rules which reference it.

Table 2.2/8 - Parameters of S-END-DU

PARAMETER : : : ‘
NAMES Request Indication Response Confirmation
Serial Number Ul 0] X2 X
ss-user-data D3 U D3 U

Rule 1. Synchronization-point-serial-number, increment-
ed as defined in 1.5.5.

Rule 2. The response/confirmation events necessarily
relate to the same serial number as the request/indica-
tion events.

Rule 3. The ss-user-data is transparent to the session
service. The maximum size is 6 octets.

I,

2.2.2.11 Parameters of S-RESYNC

The parameters of the S-RESYNC primitives and their
values are defined in table 2.2/9 and the following
rules which reference it.

Table 2.2/9 - Parameters of S-RESYNC

gﬁﬁégETER Request Indication Response Confirmation

Resync type D1 U X X

Serial Number X2, D3 X2, U3 uz, X3 uz, X3

ss-user-data D4 U D4 U

Data token D5 U D6 U @ ’
Sync. token D5 U D6 U

End DU token D5 U D6 0]

Termin. token D5 U D6 0]

Rule 1. This value defines the ss-user action relating
to the work content of the dialogue unit which is
terminated. The value is either '"abandon'" or ''re-
start". If there is contention between S-RESYNC re-
quests "abandon'" has priority (see note 20).

Rule 2. If the resync type in the request is ''abandon",
this rule applies. The value is provided by the ses-
sion-service (see note 21) incremented as defined in
1.5.5.

Rule 3. If the resync type in the request is ''restart"

this rule applies. The value is provided by the ini-

tiator and is not negotiable (see note 20). It is not @l .
less than the value at the start of the current dia-

logue-unit.

Rule 4. The ss-user-data is transparent to the ses-

sion service. The maximum size is 6 octets.

Rule 5. If the token is not defined for this connection
the value is '"null", otherwise it is "initiator" or
"acceptor'" or '"acceptor chooses'.

Rule 6. If the value in the request/indication is
""acceptor chooses" this value is either "initiator"
or "acceptor'". Otherwise it is the same.

NOTE 20

Negotiation by means of multiple use of the S-RESYNC primitives
and detailed contention resolution are defined in B.2.5.2.

NOTE 21

The value is only known at the time of the response/confirmation events
because it depends on the outcome of protocol exchanges inside
the session layer.

UL

R

233
2:.3:1

delsdyld

- 27 =

Parameters'of»S—TOKENSfGIVE

The parameters of the S-TOKENS-GIVE primitive and
their values are defined in table 2.2/10 and the
following rule which reference it.

Table 2.2/10 -~ Parametgrs of S—TOKENS-GIVE

PARAMETER Request Indication
NAMES
Token given D1 U

2:24:2.153

Rule 1. The value is '"data token'" or '"synchronize

token'", or "end-DU-token'", or '"terminate token'" or

any combination of these.
Parameters of S-PLEASE

The parameters of the S~-PLEASE primitives and their
values are defined in table 2.2/11 and the following
rule which references it.

Table 2.2/11 - Parameters of S-PLEASE

PARAMETER Request Indication
NAMES

Token asked for D1 U
ss-user data D2 U

Rule 1. Value is ''data token'" or "synchronize token",

or '"end-DU-token'", or '"terminate token', or any com-

bination of these.

Rule 2. The ss-user data is transparent to the session

service. Maximum size is 1 octet.

.2.3 Reason Codes

Reason codes indicate session service generated informa-

tion that qualifies the inability of the session ser-
vice to perform the service concerned. The values are
defined in 3.4.

SS-

user-data semantic and encoding are transparent to

the session service. The session service may limit the
size of ss-user-data. The actual limitations are indicat-

ed

for each primitive (see 2.2.2).

SERVICE SUBSETS

General

Subsets of the session service are defined to achieve
simplification and variety control. Each subset is a

.,

- 28 -

complete set of services for establishing, using and ter-
minating a session-connection.

Four subsets are defined. Each is identified by a letter
code and a name:

Subset A - basic subset

Subset B - basic interactive subset
Subset € basic synchronized subset
Subset D basic TWA subset

2.3.2 Subset A: Basic Subset

2.3.2.1 BEEEOS@

Subset A provides to ss-users only the means of data
transfer. Any structuring of the interaction is wholly
an ss-user responsibility.

2.3.2.2 Content)
The service-primitives included in this subset are:

- S-CONNECT primitives,

- S-RELEASE primitives,

- S-DISCONNECT primitives,
- S-ABORT primitive,

- S-DATA primitives,

- S-EXPEDITED primitives.

The selection of all these primitives and their asso-
ciated services is implicit in the choice of this sub-
set (i.e. value "A" in the subset choice parameter of
S-CONNECT, see 2.2.2.1). There is no parameter in
S-CONNECT which is specific to this subset.

No tokens are defined. By application of the rules in

table 1.5/6 interaction type is TWS and negotiated

termination is not available in this subset. The ter- :
mination via S-RELEASE is only non-destructive and the (.
S-RELEASE result code parameter value is always

"affirmative'.

2.3.3 Subset B: Basic Interactive Subset

2.3.3.1 Purpose

Subset B provides to ss-users an organized dialogue
structure with selection of the interaction type
(i.e. TWS/TWA).

2.3.3.2 Content

The service primitives included in this subset are:

- S-CONNECT primitives,

- S-RELEASE primitives,

- S-DISCONNECT primitives,
- S-ABORT primitive,

- S-DATA primitives,

- S-EXPEDITED primitives,

¢)

- 29 -

S-QUARANTINE-DELIVER primitive,
S-QUARANTINE-CANCEL primitive,
S-TOKENS-GIVE primitives,
S-PLEASE primitives.

The selection of all these primitives and their
associated services is implicit in the choice of this
subset (i.e. value "B" in the subset choice parameter
of S-CONNECT, see 2.2.2.1).

Interaction type is selected at connection establish-
ment (i.e. the data-token is or is not defined and
assigned). Negotiated termination is supported (i.e.
the terminate-token is always defined and assigned).
No other tokens are defined.

The additional parameters in S-CONNECT which are spe-
cific to this subset and their values are defined in
table 2.3/1 and the following rules which reference
it.

Table 2.3/1 - S-CONNECT, parameters specific to Subset B

PARAMETER Request Indication Response | Confirmation
NAMES

Existence of data token D1 0] D2 0]

Data token D3 U D4 U
Terminate token D5 0] D6 U
Quarantining max D7 X X u7

size I to A

Quarantining max X U8 D8 X

size A to I

Rule 1. Value is "defined" or 'mot defined".

Rule 2. Value is same as in request/indication

Rule 3. Value is "initiator', or '"acceptor', or 'accep-
tor chooses'. This parameter is only present if the
value of the existence of Data token parameter is
"defined".

Rule 4. If the value in the request/indication 1is
"acceptor chooses'", this value is either "acceptor"

or "initiator'". Otherwise the assignment in the re-
quest/indication is not negotiable, and this value

is the same. This parameter is only present if the
value of the existence of Data token parameter is ''de-
fined".

Rule 5. Value is "initiator' or '"acceptor' or 'accep-
tor chooses'".

Rule 6. If the value in the request/indication is
"acceptor chooses", this value is either '"acceptor"

or "initiator". Otherwise the assignment in the request/

indication is not negotiable, and this value is the
same.

.

R

’

~ 30 =

Rule 7. The value in the request primitive indicates
the initiator requirement for the maximum size of a
quarantine unit in the direction initiator to accep-
tor. Value '"null" means no quarantining requirement.
The value in the confirmation primitive indicates the
service capabilities. The value in the confirmation
shall be greater than or equal to the value in the re-
quest. This parameter is not visible to the acceptor.

Rule 8. The value in the indication primitive indicates

the service capabilities for the maximum size of a qua-

rantine unit in the direction acceptor to initiator.

Value "null" means no quarantining capability. The

value in the response primitive indicates the acceptor
requirement. The value in the response shall be lower

or equal than the value in the request. This parameter

is not visible to the initiator. ¢ .

2.3.4 Subset C: Basic Synchronized Subset

2.5.4.1 Purpose

Subset C provides to ss-users a synchronized and organized
dialogue structure with selection of the interaction
type (i.e. TWS/TWA).

2.3.4.2 Content
The service primitives included in this subset are:

- S-CONNECT primitives,

- S-RELEASE primitives,

- S-DISCONNECT primitives,

- S-ABORT primitive,

- S-DATA primitives,

- S-SYNC primitives,

- S-END-DU primitives, '

- S-RESYNC primitives, ﬂ] ’
- S-TOKENS-GIVE primitives,

- S-PLEASE primitives.

The selection of all these primitives and their asso-
ciated services is implicit in the choice of this sub-
set (i.e. value "C" in the subset choice parameter of
S=-CONNECT, see 2.2.2.1).

Interaction type is selected at connection establishment
(i.e. the data-token is or is not defined and assigned).
Major and minor synchronization-points are supported

(i.e. the synchronize-token and end-DU-token are always
defined and assigned). Negotiated termination is suport-
ed (i.e. the terminate-token is always defined and assign-
ed).

The additional parameters in S-CONNECT which are speci-
fic to this subset and their values are defined in
table 2.3/2 and the following rules which reference it.

= 31 =

Table 2.3/2 - S-CONNECT, Parameters Specific to Subset C

PARAMETER Request Indication Response Confirmation
NAMES

Existence or data D1 U D2 §]
token

Data token D3 U D4 U
Synchronize token D5 U D6 U
End DU token D5 U D6 U
Terminate token D5 U D6 U
Initial serial number D7 U D8 U
Blocking I to A D9 X X X
Blocking A to I X X D10 X

(j . Rule 1. Value is "defined'" or '"nmot defined'.
Rule 2. Value 1is same as in the request/indication.

| Rule 3. Value is "initiator'" or "acceptor'" or "accept-
or chooses'". This parameter is only present if the value
of the existence of Data token parameter is ''defined".

Rule 4. If the value in the Request/indication is
""acceptor chooses" this value is either '"initiator'" or
"acceptor'", Otherwise the assignment in the request/
indication is not negotiable and this value is the same.
This parameter is only present if the value of the
existence of Data token parameter is ''defined".

Rule 5. Value is "initiator" or '"acceptor' or '"acceptor
chooses".

Rule 6. If the value in the request/indication is
”N ’ "acceptor chooses'" this value is either "initiator"
) or "acceptor'". Ohterwise the assignment in the request/
indication is not negotiable and this value is the same.

Rule 7. This is any value in the range defined in 1.5.5.

Rule 8. This value takes precedence if it is different
from that in the request/indication. It is any value in
the range defined in 1.5.5.

Rule 9. Requests blocking optimization of SSDU trans-
fers in the direction initiator to acceptor. The value
is "yes'" or '"no". This information is used inside the
session service and is not visible to the other ss-user.

Rule 10. As rule 9, except direction 1is acceptor to
initiator.

2.3.5 Subset D: Basic TWA Subset

2.3.5.1 Purpose

Subset D provides to ss-users a simplified TWA inter-
action structure.

k.

.,

=~ 32 =

2.3.5.2 Content

The service primitives included in this subset are:

- S-CONNECT primitives,

- S-RELEASE primitives,

- S-DISCONNECT primitives,
- S-ABORT primitives,

- S-DATA primitives,]
- S-TOKENS-GIVE primitives,
- S-PLEASE primitives.

The selection of all these primitives and their associat-
ed services is implicit in the choice of this subset
(i.e. value "D" in the subset choice parameter of
S-CONNECT see 2.2.2.1). Interaction type is TWA (i.e.
the Data token is always defined and assigned). Not
other tokens are defined. By application of the rules
in table 1.5/6, interaction type is TWA and negotiated
termination is not available in this subset. The ter-
mination via S-RELEASE is only non-destructive and the
S-RELEASE result code parameter value is always
"affirmative'.

The additional parameters in S-CONNECT which are speci-
fic to this subset and their values are defined in
table 2.3/3 and the following rules which reference it.

-
oW

Table 2.3/3 - S-CONNECT, parameters specific to subset D

PARAMETER Request Indication Response Confirmation
NAMES
Data token D1 U D2 U .

IR
Rule 1. Value is '"initiator" or "acceptor" or "acceptor
chooses'.

Rule 2. If the value in the request/indication is
"acceptor chooses'", this value is either '"acceptor' or
"initiator'. Otherwise the assignment in the request/
indication is not negotiable, and this value is the
same.

3 Protocol

5.1 PROTOCOL OVERVIEW

3.1.1

Model of the Layer

The specification in this standard is constructed using
a particular conceptual model of the session layer. This
subclause describes that model.

The model distinguishes two different aspects of session
layer protocol:

- The rules by which session protocol data units (SPDUs)
are generated, exchanged and accepted or rejected:
this is called the session layer SPDU protocol
(see clause 3.2).

- The rules by which the transport service is used and
manipulated: this is called the session layer transport
service mapping (TSM) protocol (see 3.3).

The two protocols above are intimately related to each
other, and inherently have a common locus in a protocol
machine at each session entity. This is called the session
protocol machine (SPM).

Figure 3.1/1 summarizes this model of the layer.

session layer service
- O external

N
— SPDU protocof‘

SPM
locus

TSM protocol~-
7

____________ — e R e viewpoint
transport layer service

Fig.3.1/1 The criterion of external visibility applied

to_the Model of the Layer

The specification in this standard is concerned with

the externally visible characteristics of the session
layer, i.e. the SPM behaviour and its protocols. Internal
functions such as address translation, title to address
mapping, buffering, queuing and the detailed manifesta-
tion of the abstract layer service events defined in the
layer service standards are outside its scope (see 1.2).

Another important characteristic of this model is that
the detailed division of functionality between the SPDU
protocol and the TSM protocol is arranged in such a way
that the specification of the SPDU protocol is invariant
to transport related variables. Such variability is lo-
calized in the specification of the TSM protocol.

g
|
|

e

NOTE 22

The conceptual partitioning of functions which is described in this
model is for purpose of modular description and specification. No
equivalent partitioning is required in implementations.

3.1.2 Specification of the session protocol

The protocol is described by means of events, states and
transitions. Subsection 3.2 provides a narrative descrip-
tion. Appendix D provides the formal description.

3.2 SPDU PROTOCOL

3.2.1 gggeral

This is a narrative description of the protocol. The
protocol is described message by message. For each message
type, there is a brief description under the headings @, '
Function, Content, Sending and Receiving, and sometimes

Additional Information. The description references the
message contents defined in 3.4 and the states and events
defined in Appendix D. It describes the more usual valid
sequences of messages. It does not describe the unusual
interactions.

For sending, the validity of the associated SPM Service
request and response events depends upon the current SPM
state, and other conditions which are described in each
subclause and in Appendix D.

For receiving, the valid conditions are more complex be-
cause they are the product of the valid sending conditions
and the current state of the receiving SPM etc., plus the
variable effects of the transport service delay charac-
teristics. Therefore, only brief details are given in this
part of the description.

The message types are described in four groups: ¢ ’

- Connection protocol

- Disconnection protocol

- Data Transfer protocol

- Synchronization protocol.

3.2.2 Connection Protocol

Session connection protocol is used:

- to establish a session connection between two users of
the Session Layer,

- to negotiate session connection parameters,
- to transfer user data.

Session connection establishment protocol uses the CONNECT
(CN), REFUSE (RF) and ACCEPT (AC) messages.

3.2.2.1 The CONNECT message

Function

The CONNECT (CN) message is used to request the esta-
blishment of a session connection and proposes para-
meter values.

Qontent

The message contains the description of the global
capabilities of the sender:

- Protocol Identification parameters. These identify
the Session Layer protocol as being the ECMA Session
Protocol version 1. They nominate also the subset
being used.

) - Dialogue Negotiation parameters:

- mode of dialogue (use of tokens)

- initial tokens setting (initiator, acceptor or
acceptor chooses)

- maximum quarantineunit size requirement initiator
to acceptor

- maximum quarantine unit size capability acceptor
to initiator

- SSDU maximum size requirement initiator to accept-
or

- SSDU maximum size capability acceptor to initiator

- SPDU maximum size requirement initiator to accept-
or after connection establishment (minimum value
is 36 octets)

- SPDU maximum size capability acceptor to initiator
after connection establishment (minimum value is
36 octets)

) - serial number to be used for the first mark.
- initiator blocking requirement (value '"yes'" or '"no'")
- initiator deblocking capability (value '"yes'" or '"no").

- Addressing parameters (carried transparently, may
be omitted):

- the session layer address of the initiator ss-user
- the session layer address of the acceptor ss-user
- the connection-identifier.

- ss-user data (limited to 64 octets).

Sending

A valid "SPM service ESTABLISH request'" event (EVEl),
results in a CONNECT (CN) message. Functions within

the layer but external to the SPM determine the trans-
port address of the session entity supporting the des-
tination user, so that a transport connection is pro-
vided to the appropriate destination. The CONNECT mes-
sage 1is sent on the transport normal flow. The SPM

goes to the state '"waiting for ACCEPT message' (STA 2A).

|

3:2:2.72

Receiving

A valid "incoming CONNECT message' event (EVE 11)
normally results in an '"SPM service establish indi-
cation'" event (EVE 101). The session service user
is selected according to the destination address
parameter of the CONNECT message. The standard sub-
set selection and dialogue negotiation parameters
are matched against the values that the session en-
tity can accept.

In particular, it is checked whether:

- the proposed SPDU size is acceptable,

- the maximum quarantine unit size requirements in
the direction intiator to acceptor is less or equal
to the maximum quarantining capability of the receiv-

ing SPM, 0

- the blocking requirement matches with the deblocking
capability of the receiving SPM.

The user data is passed to the session service user.
The SPM goes to the state "waiting for ESTABLISH res-
ponse' (STA 8).

Additional Information

The sender of this message is defined to be the 'con-
tention-winner" for the whole duration of the session
connection.

The ACCEPT message

Function

The ACCEPT message (AC) is used to confirm successful
establishment of a session connection, in response

to a CONNECT message.

Content

The structure of this message is the same as the CONNECT
message (see 3.2.2.1, Content). The dialogue negotia-
tion parameters values follow the rules defined below.

- mode of dialogue (values same as in CONNECT),

- token setting (values same as in CONNECT except when
it was "acceptor chooses'" where value shall be either
"initiator'" or '"acceptor',

- maximum quarantine unit size requirement acceptor to
initiator (value less than or equal to initiator capa-
bility),

- maximum quarantine unit size capability initiator to
acceptor (value greater than or equal to the initiator
requirement),

- SSDU maximum size requirement acceptor to initiator
(value unrestricted),

-

= B0 =

- SSDU maximum size capability initiator to acceptor
(value unrestricted),

- SPDU maximum size requirement acceptor to initiator
after connection establishment (value less than or
equal to the initiator capability, but greater than
36 octets),

- SPDU maximum size capability initiator to acceptor
after connection establishment (value greater than
or equal to the initiator requirement),

- serial number to be used for the first mark (no re-
lationship to the same parameter in the CONNECT),

- acceptor blocking requirement (value '"yes'" only if
initiator deblocking capability had value '"yes'",
otherwise value 'mno'"),

- acceptor deblocking capability (value "yes'" if initia-
tor blocking requirement had value "yes' otherwise
value "yes'" or '"'no'").

Sending

A valid "SPM service ESTABLISH response'" event (EVE 25),
results in an ACCEPT message. The message is sent on the
transport normal flow. The SPM goes to the state '"DATA
TOKEN my side (STA 7)" or "DATA TOKEN not my side (STA 13)"
depending upon the initial chosen position of the data
token, The SPM sets its internal variable V(M), which
contains the serial number to be used for the next type

B or C or D mark, (see 3.2.4.1) to the value given by the
ss-user (parameter EVE 25).

Receiving

A valid "incoming ACCEPT message'" event (EVE 12) nor-

’ mally results in an "SPM service ESTABLISH confirmation"
event (EVE 112). The user data is passed to the session
service user. The SPM goes to the state "DATA TOKEN
my side (STA 7)" or "DATA TOKEN not my side (STA 13)"
depending on the chosen initial position of the data
token, The SPM sets its internal variable V(M), which
contains the serial number to be used for the next
type B or C or D mark, to the value contained in the
ACCEPT message.

Additional Information

The values of the maximum SPDU size and maximum quaran-
tine unit size after sending and/or receiving the
ACCEPT message are as follows:

- in the direction initiator to acceptor: equal to the
requirement of the initiator,

- in the direction acceptor to initiator: equal to the
requirement of the acceptor.

In a similar way, the blocking function is "on" accord-
ing to the requirement of the initiator and the accept-

—

B5udedod

3.2.3 Disconnection Protocol

= 4 =

or. The serial number value to be used for the first
mark is the value contained in the ACCEPT message.
After the successful establishment of the session
connection, the first DIALOG-UNIT is implicitly en-
tered.

The REFUSE message
Function

The REFUSE message (RF) is used to reject the establish-
ment of a session connection.

Content

The message contains:

- protocol identification,

- a reason code, .
- transparent ss-user data (limited to 64 octets) @
- a code specifying transport disconnection.

Sending

A valid "SPM service REJECT request'" event (EVE 10A)
results in a REFUSE message. The message is sent on
the transport normal flow. Status information relat-
ing to the connection is cleared (i.e. the connec-
tion ceases to exist). The SPM goes to the state
"unconnected'" (STA 1).

Receiving

A valid "incoming REFUSE message'" event (EVE 12A)
normally results in an "SPM service REJECT indication"
event (EVE 110A). The receiving session entity does

not respond. Status information relating to the connec-
tion is cleared (i.e. the connection ceases to exist).
The SPM goes to the state "unconnected'" (STA 1).

Session disconnection protocol is used to terminate a
session connection. It uses the FINISH (FN), DISCONNECT
(DN), NOT FINISHED (NF) and ABORT (AB) messages.

3:263:1

The FINISH message

The FINISH message (FN) is used to initiate orderly
termination of a session connection. The FINISH message
seeks a DISCONNECT message as a response to complete the
termination of the connection.

Content

The message may contain transparent ss-user data (up
to 32 octets).

- 47 =

Sending

The right to issue a FINISH message is regulated by
the TERMINATE TOKEN.

A valid "SPM service RELEASE request" event (EVE 3)
results in a FINISH message. The message is sent on
the transport normal flow.

The SPM goes to the state "waiting for DISCONNECT
message' (STA 3), in which the ss-user shall not send
on the expedited flow or on the normal flow, but is
able to receive data on both flows.

Receiving

A valid "incoming FINISH message' event (EVE 13)
normally results in an '"SPM service RELEASE indication"
event (EVE 103). The user data is passed to the session

service user. The SPM goes to the state '"waiting for
RELEASE response'" event (STA 9).

Additional information

The expected outcome at the receiving end is an "SPM
service RELEASE affirmative response' event (EVE 26A).
This results in a DISCONNECT message being sent.

Alternatively, the receiving session service user may
wish to continue data transfer. The outcome is then a
"SPM service RELEASE negative response'" (EVE 26 B).
This results in a NOT FINISHED message being sent.

An end of SSDU and end of quarantine delimiter is im-
plicit in a FINISH message.

The DISCONNECT message
Function

The DISCONNECT message (DN) is used to effect order-
ly termination of a session connection, in response
to a FINISH message. No confirmation is sought as a
result of the DISCONNECT message. The disconnection
is an implicit end of the current DIALOG-UNIT.

Content

The message contains a code specifying transport dis-
connection and may contain transparent ss-user data
(up to 32 octets).

Sending

A valid '"SPM service RELEASE affirmative response'
event (EVE 26A), results in a DISCONNECT message. The
message 1s sent on the transport normal flow. Status
information relating to the connection is cleared
(i.e. the connection ceases to exist). The SPM goes
to the state "unconnected" (STA 1).

5.2.3.3

3.2.3.4

& §7 =

NOTE 23

There may be an implementation dependent intermediate state
for statistics gathering etc. which is not externally distinct
from STA 1.

Receiving

A valid "incoming DISCONNECT message' event (EVE 14)
normally results in an "SPM service RELEASE affirma-
tive confirmation" event (EVE 116A). The receiving
session entity does not respond. Status information
relating to the connection is cleared (i.e. the con-
nection ceases to exist). The SPM goes to the state
"unconnected" (STA 1) and invokes the transport dis-
connect service.

NOTE 24

There may be an implementation dependent intermediate state
for statistics gathering etc. which is not externally distinct
from STA 1.

NOT FINISHED message
Function

The NOT FINISHED message (NF) is used to report that
the receiver of a FINISH message is not ready to
terminate the session-connection. This message can only
be sent if the TERMINATE TOKEN is defined.

Content

The message may contain transparent user data (up to
32 octets).

Sending

A valid "SPM service RELEASE negative response'"

event (EVE 26B) results in a NOT FINISHED message. The
message is sent on the transport normal flow. The SPM
goes to the state STA 7 or STA 13 according to the
current position of the DATA TOKEN.

Receiving

A valid "incoming NOT FINISHED message' event (EVE 33)
normally results in an "SPM service RELEASE negative
confirmation" event (EVE 116B). The SPM goes to the

state STA 7 or STA 13 according to the current posi-
tion of the DATA TOKEN.

The ABORT message

Function

The ABORT message (AB) is used to effect abnormal
termination of a session-connection at any time. This
includes the establishment, the data transfer, and
disconnection phases. This message is also used by a
session entity to terminate the session connection
when a protocol error is detected. The session

2.4

- 43 -

ABORT is an implicit end of the current D-U. The use
of this message may cause loss of data.

Content

The message contains either a reason code (2 octets)
if it has been issued by the session layer, or trans-
parent ss-user data (3 octets) if it has been generat-
ed by the session user. The message contains a code
specifying transport disconnection.

Sending

A valid '"SPM service ABORT request'" event (EVE 2),

or the detection of a protocol error in any state of
the SPM results in an ABORT message. The message is
sent on the transport expedited flow. The SPM goes to
the state '"unconnected'" (STA 1). Status information
relating to the connection is cleared (i.e. the con-
nection ceases to exist).

NOTE 25

There may be an implementation-dependent intermediate state for
error analysis etc. which is not externally distinct from STA 1.

Receiving

A valid "incoming ABORT message' event (EVE 31) nor-
mally results in an '"SPM service ABORT indication"
event (EVE 102). The receiving session entity shall
not transmit on either of the two flows. The receiv-
ing session entity does not respond. Status informa-
tion relating to the connection is cleared (i.e. the
connection ceases to exist). The SPM goes to the state
"unconnected'" STA 1.

NOTE 26

There may be an implementation-dependent intermediate state for
error analysis etc. which is not externally distinct from STA 1.

Data Transfer Protocol

Session data transfer protocol carries and delimits ses-
sion user data. It uses the DATA TRANSFER (DT), MARK
CONFIRMATION (MC) and EXPEDITED (EX) messages.

Suring the data transfer phase, the exchange of data
(SSDUs) and control informations is regulated by the use
of TOKENS (see 1.5.10).

NOTE 27

SS-user data may also be transferred in the CONNECT, ACCEPT, REFUSE,
FINISH, ABORT, PLEASE-TOKENS, RESYNCHRONIZE and RESYNCHRONIZE ACK
messages.

-)

3+244.1

- 44 -

The DATA TRANSFER message

Function

The DATA TRANSFER message (DT) is used to carry ses-
sion user data and delimiting information between
session connection users. It is also used to give to-
kens. If the data token has been defined for that
session connection, only the owner of this token may
issue DT. If the synchronize token has been defined for
that session connection, only the owner of this token
may issue marks types B or C or D. If the end-DU token
has been defined, only the owner of this token may issue
MARKS type D. The mark type D is used to close normally
the current DIALOG-UNIT.

If a mark is indicated, the delimiter type must be end

of quarantine of quarantining is on. Marks are used 0
to identify a point in the dialogue. The mark identi-

fier is a serial number which is contained in a varia-

ble called V(M). The variable V(M) is incremented

by one, by both session entities whenever a mark is

sent or received (see 3.2.4.1 Sending and Receiving).

Content
The message may contain:

- user data (SSDU)

- delimiter

- GIVE TOKENS

- mark type and transparent user data (up to 6 octets)

The user data and delimiters may be absent. These are
processed in the sequence defined in appendix D.2. The
delimiter types are end of fragment, end of SSDU and

end of quarantine. If surrender of data token is indi-

cated the delimiter type must be end of quarantine, if (
quarantining is on.

Marks may be of three types:

- Type B This mark supports the service of minor syn-
chronization point (normal type). A MARK CONFIRMATION
(MC) may be returned by the SPM user, but is not
required by the session protocol. This mark has no
implications on the data flows.

- Type C This mark supports the service of minor syn-
chornization point (urgent type). A MARK CONFIRMATION
(MC) 1is required before all subsequent transmissions
on the normal flow. There is no other implication
on the data flows.

- Type D This mark supports the service of major syn-
chronization point. A MARK CONFIRMATION (MC) is re-
quired before all subsequent data transmission on the
normal and expedited flows. The SPM issung this mark
will not send a RESYNCHRONIZE request with the op-

3.2,4.2

- 45 -

tion '"restart'" until the receipt of the MARK
confirmation. This mark is used for closing the
current DIALOG-UNIT. The separation between two
consecutive D-U is achieved at protocol level by send-
ing a PREPARE message (MARK CONFIRMATION), on the
transport expedited flow (see 3.2.4.2 Additional In-
formation). This mark also identifies a point in the
dialogue before which resynchronization with the op-
tion RESTART is not permitted by the session layer.

Sending

A valid "SPM service TRANSFER request'" event (EVE 4),
results in a DATA TRANSFER message. The message is
sent on the transport normal flow. After sending the
message the value of V(M) is incremented by one if

any mark type B or C or D was requested. Unless a

type C or D mark has been requested, the SPM goes to
the state '"'idle DATA TOKEN not my side" (STA 13), or
""idle DATA TOKEN my side'" (STA 7), depending on the
new position of the DATA TOKEN. If a type C mark has
been requested, the SPM goes to the state '"waiting for
mark C confirmation'" STA 12. If a type D mark has

been requested, the SPM goes to the state "waiting

for MARK D CONFIRMATION message, DATA TOKEN my side"
(STA 4A), or "waiting for MARK D CONFIRMATION message,
DATA TOKEN not my side'" (STA 4B), depending on the new
position of the data token.

Receiving

A valid "incoming DATA TRANSFER message' event (EVE 15)
normally results in an "SPM service TRANSFER indication"
event (EVE 104). If the message carries a mark of type

B or C or D, the value of V(M) is incremented by one.
Unless the incoming DATA TRANSFER message indicates

a type D mark, the SPM goes to the state "idle DATA
TOKEN not my side" (STA 13), or "idle DATA TOKEN" (STA 7),
depending on the new position of the data token If a
type D mark has been indicated, then the SPM goes to

the state "waiting for MARK D response DATA TOKEN my
side'" (STA 10A), or "waiting for MARK D reponse, DATA
TOKEN not my side'" (STA 10B), depending on the new po-
sition of the data token

The MARK CONFIRMATION message
Function

the MARK CONFIRMATION message (MC) is used to return

a confirmation to a received mark of any type with a
session user specified mark serial number. This means
that the confirmation refers to a mark serial number
and not to a mark type. The confirmation of a mark
serial number implies the confirmation of all the pre-
vious mark numbers. The confirmations shall be sent in

3.2.4.3

- 46 -

the increasing order of the serial numbers to be
confirmed. As a consequence, the confirmation of a
serial number which has already been confirmed, is
detected as a protocol error.

Content

The message contains a user specified serial number
and transparent ss-user data (up to 6 octets).

Sending

A valid "SPM service MARK response' event (EVE 27), re-

sults in a MARK CONFIRMATION message. The message 1s

sent on the transport normal flow. The SPM goes to

the state "idle DATA TOKEN not my side" (STA 13), or

nidle DATA TOKEN my side" (STA 7), depending on the

current position of the data token. ¢

Receiving

A valid "incoming MARK CONFIRMATION message' event
(EVE 16) normally results in an '""SPM service MARK
confirmation'" event (EVE 113). The SPM goes to the
state "idle DATA TOKEN my side'" (STA 7) or '"idle
DATA TOKEN not my side'" (STA 13), depending on the
current position of the data token.

Additional information

When the serial number, which has to be confirmed, has
been indicated by a type D mark, a PREPARE message
shall be sent immediately before the MARK CONFIRMATION
in order to isolate the current DIALOG-UNIT from the \
next one (normal termination).
The last confirmation sent (serial number a) and the
mark received (serial number b) define an interval:
/ a, b / with b greater or equal to a (
a does not belong to the interval
b belongs to the interval.

All confirmation messages shall identify a point within
the interval / a , b / . Otherwise a protocol error
is signalled.

NOTE 28

After sending a confirmation message, related to a serial num-
ber identified by a type C or D mark, the above interval be-
comes empty.

NOTE 29

The ability to send mark confirmations is only on the side that
receives the marks.

The EXPEDITED message

Eunction

The EXPEDITED message (EX) is used to transfer small
amounts (no more than 6 octets) of ss-user data asyn-

4

47

chronously and independent of the TOKENS and indepen-
dent of the enclosures of SSDUs in DATA TRANSFER mes-
sages.

Content

The message carries a limited amount of user data
(6 octets).

Sending

A valid "SPM service EXPEDITED request'" event (EVE 6)
results in an EXPEDITED message. The message is sent
on the transport expedited flow. The SPM state is
not changed.

Receiving

’ A valid "incoming EXPEDITED message'" event (EVE 18)
normally results in an "SPM service EXPEDITED indica-
tion'" event (EVE 106). The SPM state is not changed.

5.2.5 Synchronization Protocol

‘ Session connection synchronization protocol is used to
synchronize the exchange of data between the two users
of the session connection, typically in error and ex-
ception circumstances. It may be used to close a DIALOG-
UNIT. This protocol uses the CANCEL (CL), RESYNCHRONIZE
(RS), RESYNCHRONIZE ACKNOWLEDGEMENT (RA), PLEASE TOKENS
(PT), GIVE TOKENS (GT) and PREPARE (PR) messages.

3.2.5.1 The CANCEL message

Function

The CANCEL message (CL) is used to cancel data which
has not yet been delimited by end of quarantine.

’ Qontent

There is no parameter.

Sending
A valid "SPM service CANCEL request'" event (EVE 5)
results in a CANCEL (CL) message. The message is sent

on the transport normal flow. The SPM state is not
changed.

Receiving
A valid "incoming CANCEL message'" event (EVE 17) re-
sults in the receiving session entity discarding all

the SSDUs belonging to the current quarantine unit.
The SPM state is not changed.

Additional information

The receipt of this message may not be visible to the
session service user, because SSDUs are not delivered
until after the current quarantine unit is terminated.

,L

5.245.2

The RESYNCHRONIZE message

Function

The RESYNCHRONIZE message (RS) is used to provide to
the ss-user a selective means to resynchronize the
exchange of data to a previous mark and to reposition
the tokens to an agreed side. Typically, this protocol
is used after failure, and may imply additional des-
truction of data.

NOTE 30

The use of the resynchronize service may cause destruction of
data (see 3.2.5.6) but the message RS itself does not destroy
anything.

This protocol can also be used to 'purge' or 'reset" (
the connection, since that is a particular case of re-
synchronization.

The RESYNCHRONIZE message may be used to abnormally
close the current DIALOG-UNIT. Two options are pro-
vided:

- abandon (the current unit of work is discarded)
- restart (the current unit of work will be restarted
in a new D-U).

NOTE 31

These options are user provided semantics and are not seen
by the session layer except for solving contention cases.

Since the protocol provides a repositioning of the
tokens a particular use of it is the destructive way
to get tokens.

Content (
The message contains:

- user specified mark serial number (see note 32)

- user specified tokens positions (initiator, accep-
tor, acceptor choses)

- option: abandon/restart

- transparent user data (up to 6 octets) optional

NOTE 32

When the abandon option is invoked, the SPM supplies the cur-
rent value of V(M) as mark serial number.

Sending

A valid "SPM service RESYNCHRONIZE request' event

(EVE 7) results in a RESYNCHRONIZE message which is
sent on the transport normal flow. The SPM goes to

the state "waiting for RESYNCHRONIZE ACKNOWLEDGEMENT
message'" (STA 5). In this state, all the incoming mes-
sages are discarded except RESYNCHRONIZE (see Addi-
tional information), RESYNCHRONIZE ACK and ABORT.

= B =

Receiving

A valid "incoming RESYNCHRONIZE message' event

(EVE 19) normally results in an "SPM service RE-
SYNCHRONIZE indication' event (EVE 107). The SPM

goes to the state "waiting for RESYNCHRONIZE response
event" (STA 11).

Additional Information

A PREPARE message shall also be sent just before the
RESYNCHRONIZE message.

The contention between two RESYNCHRONIZE messages is
solved according to the following table:

Incoming RESYNCHRONIZE
message from SPM B

option = ABANDON | option = RESTART

outgoing option = contention SPM A's
ABANDON winner request
(result:ABANDON) | (result:ABANDON)
RESYNCHRONIZE
message from SPM A option = SPM B's . lowest mark

RESTART request serial number or
(result: ABANDON)|. contention winner
if equality
(result: RESTART)

The table describes how SPM A shall behave. An equi-
valent behaviour could be deduced for SPM B. The gene-
ral rule is: only one of the two requests is taken in-
to account; the other is discarded.

Explanations:

- contention winner: only the message, issued by the
contention winner (see 3.2.2.1 Additional Information)
is taken into account.

- SPM X's request: only the request, isseud by the SPM X
is taken into account.

- Lowest mark serial number: the lowest mark serial
number identifies the request which is taken into
account.

If an incoming RESYNCHRONIZE message (with the restart
option) is not acceptable, the receiving ss-user may
issue another request (EVE 7) with a lower serial number
or with the abandon option. In general, a counter-pro-
posal may be issued if it prevails over the original
proposal according to the above decision rules.

D

Scdudad

- 50 -

The RESYNCHRONIZE ACKNOWLEDGEMENT message

Function

The RESYNCHRONIZE ACKNOWLEDGEMENT message (RA) is
used to notify to the sender of a RESYNCHRONIZE mes-
sage the completion of re-synchronization.

Content
The message contains:

- a mark serial number

- user specified TOKEN positions (initiator, acceptor)
which must be consistent with those proposed in the
incoming request.

- transparent ss-user data (up to 6 octets), optional.

When the 'abandon'" option is used, the SPM supplies (
the current value of V(M) as mark serial number.

When the '"restart" option is used, the ss-user supplies
the mark serial number.

Sending

A valid "SPM service RESYNCHRONIZE response' event

(EVE 28) results in a RESYNCHRONIZE ACKNOWLEDGEMENT
message. The message is sent on the transport normal
flow. The SPM goes to the state '"idle DATA TOKEN my
side'" (STA 7) or "idle DATA TOKEN not myside'" (STA 13),
depending in the new position of the data token.. The
value of V(M) is set:

- to the mark serial number agreed as the resynchro-
nization point, for the option restart,

- to the higher serial number contained in the RS and |
RA messages, for the option abandon.

Receiving (
A valid "incoming RESYNCHRONIZE ACKNOWLEDGEMENT mes-

sage'" event (EVE 20) normally results in an '"SPM

service RESYNCHRONIZE confirmation'" event (EVE 114).

The tokens are set to the positions indicated. The

SPM goes to the state '"idle DATA TOKEN my side"

(STA 7) or "idle DATA TOKEN not my side (STA 13), ‘

depending on the new position of thedata token. The
value of V(M) is set:

- to the mark serial number agreed as the resynchro-
nization point, for the option restart,

- to the higher serial number contained in the RS and
RA messages, for the option abandon.

Additional information

A PREPARE message shall also be sent just before the
RESYNCHRONIZE ACKNOWLEDGEMENT message (see 2.3.5.0,
Sending) .

- 51 -

The result of the exchange of the two messages
(RS and RA) is that the two users of the session
connection have negotiated who has what TOKEN and
the identity of the mark from which they will re-
sume their exchange of data.

3.2.5.4 The PLEASE TOKENS message

Function
The PLEASE TOKENS message (PT) is used to ask for one
or several tokens in a non-destructive way.

Content

The message contains:

- types of the requested tokens
’ - transparent ss-user data (up to 1 octet) optional.

Sending

A valid "SPM service PLEASE TOKENS request' event

(EVE 9) results in a PLEASE TOKENS message. The message
is sent on the transport normal flow. The SPM state is
not changed.

' Receiving
A valid "incoming PLEASE TOKENS message' event (EVE 23)
normally results in an ''SPM service PLEASE TOKENS indi-
cation'" event (EVE 109). The SPM state is not changed.

Additional Information

If the receiving ss-user has the requested token, it

should surrender it promptly, but need not do so at

all. The user surrenders TOKENS by the usual means,

i.e. a DATA TRANSFER message, with or without data, or
) a GIVE TOKENS message.

3.2.5.5. The GIVE TOKENS message

Function

The GIVE TOKENS message (GT) is used to give to the

‘ partner, one or several tokens among: Data, Synchronize,
End-DU and Terminate tokens. Only the owner of a token
is allowed to give it through this message.

Content

The message contains the tokens which are given.
Sending

A valid "SPM service GIVE TOKENS request' event (EVE 8)
results in a GIVE TOKENS message. The message is sent
on the transport normal flow. The SPM state is changed
according to the new positions of the tokens.

Receiving

A valid "incoming GIVE TOKENS message' event (EVE 21)
l normally results in an ''SPM service GIVE TOKENS indica-

L

tion'" event (EVE 108). The SPM state is changed
according to the new positions of the tokens.

3.2.5.6 The PREPARE message

.3

Sads

Function

The PREPARE (PR) message is used to notify the
imminent arrival of certain message types which are
sent unexpectedly. Its effects may be destructive.

Eontenﬁ

The message contains a parameter value identifying the
imminent message type.

Sending

The PREPARE message is sent before the following (
messages: RESYNCHRONIZE, RESYNCHRONIZE ACKNOWLEDGE-

MENT, and MARK CONFIRMATION type D.

The PREPARE message is sent on the transport expedited

flow (the other message is sent on the transport norm-

al flow). The SPM goes to the state which is determin-

ed by the initial request (see 3.2.5.2, Sending; 3.2.5.3
Sending; 3.2.4.2, Sending).

Receiving

A valid "incoming PREPARE message' event (EVE 32)
normally results in the state '"waiting after PREPARE
message' (STA 15). There is no corresponding SPM ser-
vice indication event.

In this state, incoming messages on the transport norm-

al flow are dealt according to rules specific to the

message type indicated by the parameter value of the

PREPARE message (see 3.2.5.2 Receiving; 3.2.5.3. Re-

ceiving; 3.2.4.2 Receiving). (

TRANSPORT-SERVICE-MAPPING PROTOCOL

1

.)

General

This clause defines the transport service mapping protocol
(TSM protocol), including definition of the service re-
quired from the transport layer. One transport mapping

is defined; it has no variants and no options.

Transport service

The transport services which are used in this protocol
are defined in Standard ECMA-72.

Connection mapping

The connection-oriented type of transport service is used
and no other.

The transport connection shallhave the expedited data trans-
fer capability.

The transport-connection may have the purge capability,
but this is not used.

oo LSRR

@ 5% =

Each session-connection uses one transport-connection.
The transport-connection is used by one session-connec-
tion only; it is not used in any other way.

3.3.4 Transport Connection Establishment

The transport connection is established before any SPDU
protocol activity (see note 33).
The transport connection establishment is initiated by
the session entity which initiates establishment of the
session connection (see notes 34 and 35).
The data parameters of the transport connection establish-
ment phase are not used. The use of the parameters relat-
ing to the transport expedited and purge options is de-
fined in 3.3.3. All other parameters of the transport
connection establishment phase are handled by functions

’ within the session layer, in ways undefined by this stand-
ard.

NOTE 33

Typically the transport connection is established immediately before
the session connection.

NOTE 34

The assymmetry avoids the possibility of collision between session
connection requests on the same transport connection.

NOTE 35

Multiple session connection establishment requests are not generally
visible to the session service and protocol. The collision of two ses-
sion connection establishment requests on the same transport connec-
tion is a special case. Because there is no multiplexing, this

is necessarily visible to, and avoided or resolved by, the session
protocol.

’ 3.3.5 Transport Connection Data Phase

A1l of the messages of the SPDU protocol are mapped into
the Data Transfer and Expedited Data Transfer primitives
of Standard ECMA-72. SPDU protocol is not mapped into

any other transport service primitives. The mapping 1is
one-to-one (see note 36). The transport normal flow is
subject to back pressure flow control by functions within
the session layer, in ways undefined by this standard. The
transport expedited flow should generally be used in such
a way that it is never blocked by back pressure (see note
37). The transport expedited flow shall not be blocked by
back pressure unless the transport normal flow is also
blocked by back pressure.

NOTE 36

The size of each SPDU is delimited by end of TSDU, and its size
is therefore necessarily a multiple of 8 bits.

NOTE 37

The transport expedited flow is systematically used by the SPM
protocol as a way of avoiding potential transport flow control

r_____________________ﬁ---------------------------IIIIlIIllllllllllllllllll..i.l

- 54 -

deadlocks. SPM message types which may be sent unexpectedly are
generally sent on the transport expedited flow.

3.3.6 Transport Connection Termination

The transport connection termination is initiated in
one of two ways:

- by an SPM acting with prior agreement of the other
SPM; or

- spontaneously by the transport service.

The first case arises only after completion of SPDU
protocol which terminates the session connection. One
SPM receives a REFUSE, DISCONNECT or ABORT message with
the transport disconnection code '"terminate'. This SPM

then issues a disconnection request to the transport
service.

The second case may arise at any time after initiating (
transport connection establishment, including during the

first case or during the SPDU protocol leading up to it.

It is treated as a transport service failure, and re-

sults in automatic termination of the session connection

(see note 38) with the appropriate reason code, i.e.
S-ABORT indication.

NOTE 38

Spontaneous transport connection termination (i.e. transport
failure) after the SPM has initiated transport termination may re-
sult in the other SPM being unable to know whether the SPDU pro-
tocol completed orderly termination of the session connection.

3.4 PROTOCOL ENCODING

3.4.1

General Principles

Each SPDU is mapped into a Transport Service Data Unit
(TSDU) one-to-one, as specified in 3.3. Each SPDU is
therefore delimited by the end of a TSDU, and is a mul-
tiple of 8 bits.

The messages defined in 3.2 are generally encoded one-
to-one into SPDUs. The only exception is the DATA TRANS-
FER message (see 3.2.4.1) whose encoding may span an
arbitrary (even fractional) number of SPDUs if user data
are segmented or blocked (see 3.4.3).

An SPDU is encoded with two distinct parts.

- Fixed Header (FH)
- Variable Information Unit (VIU)

This general structure is illustrated in figure 3.4/1

FH VIU

< SPDU = TSDU »-

Fig. 3.4/1 - SPDU General Structure

The fixed header encodes those characteristics which are
most frequently used or which most fundamentally affect
the structure of the protocol. It also defines the struc-
ture of the following variable information unit.

The variable information unit contains items encoding the

session protocol information, and items with transparent-

ly-carried user data; both kinds of information can appear
in various combinations.

Within the variable information unit, items with session
protocol information are "TLV-encoded" in a format des-
cribed in 3.4.2 which includes an item "type'" information.
Items with user data may also be TLV-encoded, or may not
have any structure visible to the session protocol.

TLV-encoded items (TLV items) containing protocol informa-
tion are distinguished from TLV items containing user da-
ta by their "type'" field. A set of types is reserved for |
session protocol TLV items (see 3.4.5) other types are
available to identify TLV items for ss-user data in SSDU
blocking (see 3.4.3).

The encoding is designed to allow future extensions; there
are reserved encodings in the fixed header, and the in-
formation unit encoding is inherently flexible and ex-
tendable.

3

4.

All the fields which are qualified as '"reserved"
shall contain a bit configuration of all ZERO.

Encoding of TLV items

Each TLV item carries three distinct pieces of informa-
tion (explicitly or implicitly).

- a type
- a length
- a value

These pieces of information are contained in adjacent
fields of the TLV item.

The formats which are defined below are classified as:

F1 : implicit length, no value field
F2 : implicit length, l-octet value field
F3 : explicit length, n-octet value field

Each format (Fl, F2, F3) will be defined field by field.
First field of formats F1, F2 and F3.

This field contains the type information.
1 octet (bl, b2 ...b8).
bl = 1 : fixed length formats

b2 = 0 - no value field (format F1)
b3 to b8 = 0 - reserved

0 - format F1 types
(range 129-191 decimal)
b2 = 1 - l-octet value field follows (format F2)
b3 to b8 = 0 - reserved

0 - format F2 types
(range 193-255 decimal)

bl = 0 - variable length value field (format F3)

b2 to b8 = 0 - reserved
0 - format F3 types
(range 1-127 decimal)

Second field of format F2

This field contains the value information.
1 octet (bl, b2 ...b8).
bl to b8 - l-octet data

Second field of format F3

This field contains the length information.
l-octet (bl, b2 ...b8) or 2-octets (bl, b2 ...bl6)

bl = 0 - the length is specified in the 7 bits
which follow (b2 to b8) (range 0-127)

1 - the length is specified in the 15 bits
which follow (b2 to bl6) (range 0-32767)

bl

= B7 =

b2 to b8 or b2 to bl6 - length (in octets) of the value
field.

Third field of format F3.

This field contains the value information:
value (of the length specified in the second field).

SSDU blocking TLV items

For SSDU blocking, each SSDU is encoded as a TLV item
with a type 16 or outside the range reserved for session
protocol types (see 3.4.5).

SSDU blocking TLV items shall be positioned in the order
in which they were submitted to the session service.

An SSDU blocking TLV may span across two or more SPDUs.
This characteristic is not explicitly encoded. The spann-
ing characteristics are implicit because the TLV in
question has a length which makes it continue beyond end
of SPDU. Its next octet is where SSDU blocking TLVs

start in the next SPDU.

To simplify the decoding, it is stated that the type and
the length of this user item shall not be split in two
SPDUs.

NOTE 39

To implement this SSDU blocking, the session layer inspects each
SSDU submitted for blocking. If it is already in a correct TLV
format with a non reserved type (see 3.4.5) then no further encod-
ing of it is necessary. Otherwise the SSDU is encoded as a TLV of
type 16 while it is inside the session layer and this encoding is
stripped off when it leaves the session layer. The non reserved
types are available for use by data structuring protocols in pre-
sentation layer. The SSDU blocking capability of session layer

is independent of whether presentation layer actually uses TLV en-
coding and the non reserved types, although that gives the optimum
result.

Fixed Header

The SPDU fixed header contains information on:

- the category of the SPDU itself (use described in 3, 4, 5);

- the structure of the SPDU information unit (structures
defined in 3.4.5);

- "enclosures'" which delimit user data, if any;

- type of a mark, if present.

The size of the fixed header part of an SPDU is two octets.
The format is defined in figure 3.4/2. The encoding is
defined in table 3.4/3.

- 58 -

SPDU category

Enclosures

Information unit structure

Marks

) 11

Reserved

Fig. 3.4/2 - Format of Fixed Header

Table 3.4/3 - Encoding Fixed Header

FIELD VALUE MEANING
SPDU category 0 DATA category
(see 3.4.5) il EXPEDITED category
2 NORMAL FLOW category
3 CONNECTION category
4 DISCONNECTION category
5 SYNCHRONIZATION category
6 reserved
7 reserved
Enclosures 0 No enclosures (none)
(see 3.4.6.1) 1 End of quarantine unit (EOQ)
2 Give DATA token (GDT) and EOQ if
applicable
3 reserved
Information unit 0 Structure 0
structure 1 Structure 1
(see 3.4.5) 2 Structure 2
3 Structure 3
Marks 0 No marks
(see 3.4.6.1) 1 Mark type B (B-mark)
2 Mark type C (C-mark)
3 Mark type D (D-mark)
4 to 7 Reserved

3.

4.

Variable information unit

The contents and possible structures of the SPDU va-
riable information unit depend on the message which is
encoded in the SPDU. The category of the SPDUs carrying
the information for each message is defined in table
3.4/4. The SPDU category is indicated in the fixed
header (see 3.4.4).

Table 3.4/4 - messages/SPDU category correspondance

Message Name Category

DATA TRANSFER DATA

EXPEDITED EXPEDITED N
CANCEL

MARK CONFIRMATION NORMAL FLOW

GIVE TOKENS
PLEASE TOKENS

CONNECT
ACCEPT CONNECTION
REFUSE

FINISH
DISCONNECT DISCONNECTION
NOT FINISHED
ABORT

RESYNCHRONIZE
RESYNCHRONIZE ACK SYNCHRONIZATION
PREPARE

There are four possible structures of the variable infor-
mation unit, as defined in fig. 3.4/5. The structure
is indicated in the fixed header (see 3.4.4)

Structure 0

TRANSPARENT

(last segment)

Structure 1

TRANSPARENT

(not last segment)

Structure 2

S-TLV S-TLV TRANSPARENT

(last segment)

Structure 3

S-TLV S-TLV U-TLV U-TLV

U-TLV

where S-TLV: session protocol TLV item
U-TLV: session user data TLV item

TRANSPARENT: transparent session user data

Fig. 3.4/5 - Variable Information Unit Structures

The number and type of the required S-TLV items is

termined in each SPDU which has structure 2 or 3;

order in which they must appear is also determined by
the session protocol. The U-TLY items, when present,
shall follow all S-TLV items. Only one (possibly empty)

transparent user data field may appear in structu

and 2, delimited by the end of the SPDU/TSDU. Any number
of user TLV items may appear in structure 3. Structures
0 and 1 only differ for the information they carry about
the segmentation of user data. The complete list of the
TLY items used in protocol messages is given in table
used in the
g-TLVs. For each item, a format (f1, F2, F3) and a type

3.4/6. The table also indicates the types

(depending on the format) are indicated.

Subsection 3.4 specifies the mandatory items and the op-
tional items in the SPDU variable information unit for
each message. It also defines the contents of the value

field of each protocol TLV-ed item.

"Table 3.4/6 - Items defined in each

- 60 -

SPDU category

SPDU Item TLV Type

category format (see note 40)

DATA Session-TLVed User F3 (see |16 (see note 41)
Data note 41)
Mark/Token Extension | F3 17

EXPEDITED

NORMAL FLOW Cancel F1l 129
Mark Confirmation F3 18
Give Tokens F2 207
Please Tokens F2 206

CONNECTION Protocol Identifica-|F2 205
tion
Connect F3 19
Accept F3 20
Refuse F3 21
Initiator Address F3 22
Acceptor Address F3 23
Connection Identi- F3 24
fier

DISCONNECTION Finish F2 204
Disconnect F2 203
Not finished F1 130
Abort F3 25

SYNCHRONIZATION Resync F3 26
Resync Ack F3 27
Prepare F2 202

NOTE 40

The type is given as the decimal representation of the first field
of the TLV item, which also indicates the format (see 3.4.2)

NOTE 41

Any other type not reserved for the session protocol is acceptable
for user TLV items, when the item is provided directly by the user.

Other types are reserved for future protocol extensions
and are not available to the users; the complete set of
protocol and user types are given in table 3.4/7.

—

= 62 =

Table 3.4/7 - Allocation of Types

Format Session Protocol Types User Types
Fl 129 + 143 144 + 191
E2 193 + 207 208 + 255
E3 1+ 31 32 + 127

3.4.6 SPDU Encoding of Protocol Messages

This subsection defines, for each message, the format
and content of the SPDU(s) encoding it. The internal
encoding of protocol TLV items is defined in the nota-
tion of PL/1 structure declarations.

3.4.6.1 DATA TRANSFER Message (

Encodings
a) FH TRANSPARENT| (last segment)
b) [FH | TRANSPARENT| (last segment)
c) [FH J (2) TRANSPARENIJ(last segment)
d) [Fi_[(1) [[_ 1 ol
e) [FH_| (2) [[1]

(1) - Session TLVed User Data Item
(2) - Mark/Token Extension item

Fig. 3.4/8.

Fixed Header

Table 3.4/9 4 |
Encoding SPDU Enclosures Information Marks
category structure
a) DATA None, EOQ or 0 Any
GDT
b) DATA None 1 None
c) DATA None, EOQ or 2 Any
GDT
d) DATA None, EOQ or 3 Any (see note 44)
GDT (see note
43)
e) DATA None, EOQ or 3 Any (see note 44)
GDT (see note
43)

3.4.6.2

NOTE 42

Encodings d) and e) are used for blocking SSDUs.
NOTE 43

With encodings d) and e) when the last ss-user TLV spans across
the SPDU boundary, the Enclosure can only be None and the Marks
field can only be No marks.

NOTE 44

Restrictions defined in Appendix D.2 limit the acceptable com-
binations of marks and tokens.

Information Unit

In encodings a), b) and c) the user transparent data
may be omitted.

- Item 1: Session TLVed User Data Item

Format: F3

type: 16

length: variable

value: transparent to session layer

See also note 41, clause 3.4.5, table 3.4/6.
- Item 2: Mark/Token Extension item

Format: F3

type: 17

length: variable from 2 to 8

value: declare 1 Mark/Token Extension item

2 Reserved bit (2)

2 SYNCHRONIZE token bit (2)

2 TERMINATE token bit (2)

2 End-DU token bit (2)

2 Reserved bit (8)

2 ss-user mark data bit (48) (maximum)
The 2-bit field values for each token:
0 no action

1 give token

2 reserved

3 reserved

NOTE 45

The ss-user data field can vary from 0 to 6 octets (see 2.2.2.9,
2.2.2.10).

EXPEDITED message

Encoding

FH TRANSPARENT

Fig. 3.4/10

- 64 -

Fixed Header

Table 3.4/11

SPDU category Enclosures Information Marks
Structure
EXPEDITED None 0 No marks

Information Unit

The information unit length ranges from 0 to 6 octets.

3.4.6.3 CANCEL message
Encoding

FH (1)

(1) - Cancel item
Fig. 3.4/12

Fixed Header
Table 3.4/13

SPDU category Enclosures Information Marks
Structure
NORMAL FLOW None 2 No marks

Information Unit

The user transparent data are not permitted
- Item 1: CANCEL item

format: F1
type: 129

3.4.6.4 MARK CONFIRMATION message

Encoding

FH (1)

(1) - Mark Confirmation item
Fig. 3.4/14

Fixed Header
See tabhle 3.4/13

Information Unit

The user transparent data are not permitted.

- Item 1: Mark Confirmation item

3.4.6.5

3.4.6.6

- 65 -

format: F3
type: 18
length: variable from 2 to 8
value: declare 1 Mark Confirmation item
2 mark serial number bit (16)
2 ss-user data bit (48) (maximum)

NOTE 46

The ss-user data field can vary from 0 to 6 octets (2.2.2.9,
206 22 d0) 5

GIVE TOKENS message

Encoding

FH (1)

(1) - Give tokens item
Fig. 3.4/15

Fixed Header
See table 3.4/13

Information Unit

The user transparent data are not permitted.

- Item 1: GIVE TOKENS item

format: F2

type: 207

value: declare 1 Give Tokens item
2 DATA token bit (1)
2 SYNCHRONIZE token bit (1)
2 TERMINATE token bit (1)
2 END D-U token bit (1)
2 Reserved bit (4)

for each token: 0: token not given
1: token given

PLEASE TOKENS message

Encoding

FH (1) TRANSPARENT
(1) - Please tokens item

Fig. 3.4/16

Fixed Header
See table 3.4/13

Information Unit

The user transparent data may be absent (size is 1 octet);
the TLV item is mandatory.

- Item 1: - Please tokens item

- 66 -
format: F2
type: 2006
value: declare 1 Please Tokens item like Give tokens
item

for each token: 0: token not asked for
1: token asked for

3.4.6.7 CONNECT message
Encoding
FH (1) (2) (3) (4) (5) TRANSPARENT
(1) - Protocol Identification item
(2) - Connect item
(3) - Initiator Address item
(4) - Acceptor Address item

(5) - Connection Identifier item
Fig. 3.4/17

Fixed Header

Table 3.4/18

SPDU Category Enclosures Information Marks
structure
CONNECTION None 2 No marks

Information Unit

The user transparent data may be absent (maximum size
is 64 octets); the TLV items are mandatory.

Item 1: - Protocol Identification item
format: F2
type: 205

value: declare 1 Protocol Identification item
2 ECMA protocol version bit (4) (see 1)

2 protocol subset bit (4) (see 2)
1 - value is 1; all other values are reserved
2 - 1: subset A
2: subset B
3: subset C
4: subset D
all other values are reserved
Ttem 2: - Connect item
format: F3
type: 19
length: 19

value: declare 1 Connect item
2 use of tokens (see 1)

3 DATA token bit (2)
3 SYNCHRONIZE token bit (2)
3 END D-U token bit (2)
3 TERMINATE token bit (2)
3 reserved

token setting (see 2)
3 DATA token
3 SYNCHRONIZE token
3 END D-U token
3 TERMINATE token
3 reserved

quarantining max size (se
3 initiator to acceptor
3 acceptor to initiator

SPDU max size (see 4)
3 initiator to acceptor
3 acceptor to initiator

SSDU max size (see 5)
3 initiator to acceptor
3 acceptor to initiator

initial mark serial number (see 6) bit (16)

blocking (see 7)

bit
bit
bit
bit
bit
e 3)
bit
bit

bit
bit

bit
bit

(16)
(16)

3 initiator to acceptor bit (1)
3 acceptor to initiator bit (1)

3 reserved

use of token (2-bit field):
0 - token not defined

1 - token defined

2 - reserved

3 - reserved

token setting (2-bit field):
0 - initiator

1 - acceptor

2 - acceptor chooses

3 - reserved

bit

quarantining capacity (16-bit field):
0 - quarantining not required

16-bit unsigned integer: gives maximum quarantining

unit size divided by 128

SPDU size:
16-bit unsigned integer; minimum value: 36

SSDU size:
16-bit unsigned integer

initial mark serial number
16-bit unsigned integer

blocking (1-bit field):

0 - no
1 - yes

(6)

- Item 3: - Initiator Address item

format: F3

type: 22

length: variable (up to 16)
value: not defined

- Item 4: - Acceptor Address item

format: F3

type: 23

length: variable (up to 16)
value: not defined

- Item 5: - Connection Identifier item

format-* F3

type: 24

length: variable (up to 16)
value: not defined

3.4.6.8 ACCEPT message
Encoding
FH (1) (2) (3) (4) (5) TRANSPARENT
(1) Protocol Identification item
(2) Accept item
(3) Initiator Address item
(4) Acceptor Address item
(5) Connection Identifier item
Fig. 3.4/19

Fixed Header
See table 3.4/18

Information unit

The user transparent data may be absent (maximum size
64 octets); the TLV items are mandatory.

TLV items (1), (3), (4), (5) above are defined for the
CONNECT message. (see 3.4.6.7 Information unit).

- Item 2: - Accept item
format: F3
type: 20
length: 19

value: declare 1 Accept item like Connect item
(see 3.4.6.7, Information unit)

In the 2-bit field "token setting" for each token,
value "2" is reserved in the Accept item.

= 69 =

3.4.6.9 REFUSE message
Encoding
FH (1) (2) TRANSPARENT

(1) - Protocol Identification item
(2) - Refuse item

Fig. 3.4/20
Fixed Header
See table 3.4/18

Information Unit

The user transparent data may be absent (maximum size
is 64 octets); the TLV items are mandatory.

- Item 1: - Protocol Identification item

The Protocol Identification item is defined in 3.4.6.7,
Information unit, item 1.

- Item 2: - Refuse item

format: F3

type: 21

length: 3

value: declare 1 Refuse item
2 transport disconnect bit (1)
2 reserved bit (7)
2 reason code bit (16)

Reason code values:

0 - reason not specified

- protocol version unknown

- subset not supported

- unacceptable session connection parameters
- acceptor address invalid

- rejection by acceptor ss-user

all other values are reserved

(A B G N

Transport disconnect field values:

0 - reserved
1 - yes
3.4.6.10 FINISH message
FH (1) TRANSPARENT
(1) - Finish item
Fig. 3.4/21

Fixed Header
Table 3.4/22

SPDU category Enclosures Information Marks
structure

DISCONNECTION None 2 No marks

5.4.6.11

Information unit

The user transparent data may be absent (maximum size
is 32 octets).

- Item 1: - Finish item

format: F2
type: 204
value: declare 1 Finish item
2 reserved bit (8)

DISCONNECT message
Encoding

FH (1) TRANSPARENT

3.4.6.12

(1) - Disconnect item
Fig. 3.4/23

Fixed Header
See table 3.4/22

Information unit

The user transparent data may be absent (maximum size
is 32 octets).

- Item 1: - Disconnect item

format: F2

type: 203

value: declare 1 Disconnect item
2 transport disconnection bit (1)
2 reserved bit (7)

Transport disconnection field values:
0 - reserved
l - yes

NOT FINISHED message
Encoding

FH (1) TRANSPARENT

(1) - Not Finished item
Fig. 3.4/24

Fixed Header
See table 3.4/22

Information unit

The user transparent data may be absent (max. size 1is
32 octets).

- Item 1: - Not Finished item
format: F1
type: 130
3.4.6.13 ABORT message
Encoding
FH (1) TRANSPARENT
(1) - Abort item
Fig. 3.4/25
Fixed Header
See table 3.4/22
Information unit
In an ss-user-generated ABORT message: the Abort item
has a length field 1; the ss-user transparent data
may be absent (maximum size is 3 octets).
In a service-generated ABORT message: the Abort item
has a length of 3 and includes a reason code; the
user transparent data are not present.
- Item 1: - Abort item
format: F3
type: 25
length: 1 or 3
value: declare 1 Abort item
2 transport disconnect bit (1) (see 1)
2 reserved bit (7)
2 reason code bit (16) (see 2)
(only present in service-generated abort)
1 - transport disconnection field values:
0 - reserved
1 - yes
2 - reason code field values:
0 - reason not specified
6 - protocol error
all other values are reserved
3.4.6.14 RESYNCHRONIZE message
Encoding
FH (1) TRANSPARENT
(1) - Resync item

Fig. 3.4/26

Fixed Header

Table 3.4/27

SPDU category Enclosures Information Marks
structure
SYNCHRONIZATION None 2 No marks

3.4.6.15

Information unit

The user transparent data may be absent (maximum size
is 6 octets).

- Item 1: - Resync item

format: F3
type: 26
length: 5
value: declare 1 resync item
2 mark serial number bit (16)
2 token setting
like Connect item. token setting
(see 3.4.6.7, Information unit, Connect item)
2 resync type bit (1)
2 reserved bit (7)

Resync type field values
0 - restart
1 - abandon

RESYNCHRONIZE ACK message

Encoding

FH (1) TRANSPARENT

(1) - Resync Ack item
Fig. 3.4/28

Fixed Header
See table 3.4/27

Information unit

The transparent user data may be absent (maximum size
is 6 octets).

- Item 1: - Resync Ack item
format: F3
type: 27
length: 5

value: declare 1 Resync Ack item
like Resync item

= T3 =

In the 2-bit field "token setting'" for each token
value "2" is reserved. Field ''resync type'" is reserved.

3.4.6.16 PREPARE message

Encoding

FH (1)

(1) - Prepare item
Fig. 3.4/29

Fixed Header
See table 3.4/27

Information Unit

The user transparent data are not permitted

- Item 1: - Prepare item
format: F2
type: 202
value: declare 1 Prepare item
2 item type bit (8)

Item type (8-bit field) contains the TLV type
identifying the message which the PREPARE mes-
sage anticipates, viz.:

18 - MARK CONFIRMATION

26 - RESYNCHRONIZE

27 - RESYNCHRONIZE ACK

all other values are reserved.

5.5 PROTOCOL SUBSETS

3:5:1

General

For each of the service subsets defined in subsection 2.3,
a corresponding protocol subset is defined in this sub-
section.

Subset A : Basic Subset

The SPDU protocol messages included in this subset are:

- CONNECT

= ACCEPT

- REFUSE

- FINISH

- DISCONNECT

- ABORT

- DATA TRANSFER
- EXPEDITED

Parameters and parameter values wich relate to services
and messages that are not included in the subset are not
used.

The TSM protocol is defined in subsection 3.3.

F__-""""""""'""'---------q'

«d

D

- 74 -

Subset B : Basic Interactive Subset

The SPDU protocol messages included in this subset are:

all the messages included in Subset A
CANCEL

PLEASE TOKENS

GIVE TOKENS

Parameters and parameter values which relate to services
and messages that are not included in the subset are not
used.

The TSM protocol is defined in subsection 3.3.

Subset C : Basic.Sxpchronized Subset
The SPDU protocol messages included in this subset are:

- all messages included in Subset A, except EXPEDITED

- MARK CONFIRMATION (
- RESYNCHRONIZE

- RESYNCHRONIZE ACKNOWLEDGEMENT

- PLEASE TOKENS

- GIVE TOKENS

- PREPARE

- NOT FINISHED

Parameters and parameter values which relate to services
and messages that are not included in the subset are not
used.

The TSM protocol is defined in subsection 3.53.
Subset D : Basic TWA Subset

The SPDU protocol messages included in this subset are:

- all the messages included in Subset A, except EXPEDITED
- PLEASE TOKENS
- GIVE TOKENS

Parameters and parameter values which relate to services
and messages that are not included in the subset are not
used.

The TSM protocol is defined in subsection 3.3.

4 Conformance Requirements

4

4

.

«3

A

«5

.6

= 7T =

GENERAL

This clause defines the conformance requirements for the
session-protocol defined in section 3 of this standard.

There is no conformance requirement for the abstract
session-service defined in section 2 of this standard.
EQUIPMENT

The conformance requirement is for equipment which consists
of hardware and/or software and has the purpose of conform-
ing with this standard. The equipment may also have other
purposes.

PEER EQUIPMENT

Any execution of the protocol necessarily involves a peer
equipment with which the subject equipment communicates.

For purposes of verifying conformance it is assumed that
this other peer equipment:

- is operating in conformance with the standard;

- may be capable of controlled deviation, in that it may
be the source of deliberate protocol-errors for the
purpose of testing.

This conformance requirement does not distinguish any diffe-

rences of status between the two equipments (i.e. the notion

of a "reference equipment" with a "definitive implementation"
is not used).

PROTOCOL SUBSETS

The equipment shall implement one, or more, of the protocol
subsets defined in subsection 3.5.

The supplier of the equipment shall nominate which of these
subsets the equipment is intended to conform with.

ADDITIONAL SESSION PROTOCOL

In addition to the subsets nominated as in 4.4, the equip-
ment may also implement other session layer protocol, in-
cluding different subsets of the protocol defined in this
standard.

Such additional provisions are themselves not in conformance
with the standard, but do not prejudice conformance with

the standard provided that they are separate and do not pre-
vent use of the subsets nominated in 4.4.

REQUIREMENTS

For each subset nominated in 4.4 the equipment shall be
capable of establishing, using and terminating a session-
connection by execution of the protocol according to the
following criteria. The subject equipment:

"a) shall accept correct sequences of SPDUs received from
peer equipment, and respond with correct SPDU sequences,
for the defined states of a session connection,

b) shall respond correctly to all incorrect sequences of
SPDUs received for a defined state of a session connection,

c) shall accept all correct sequence of the transport mapp-
ing protocol,

d) shall only issue correct sequences of the transport mapp-
ing protocol,

e) should be capable of issuing all correct sequences of
SPDUs and transport mapping protocol'.

The terms '"correct sequences'" and "incorrect sequences"
refer to the protocol defined in section 3 and Appendix D.

NOTE 47

only the externally visible and externally testable criteria are de-
fined.

- 79 -

APPENDICES

O

- 81 -

APPENDIX A

BRIEF DESCRIPTION OF THE REFERENCE MODEL OF OPEN SYSTEMS INTER-
CONNECTION

A.1 SCOPE

This appendix is not an integral part of the standard.
It is a copy of ISO/TC97/SCl16 N 575.

This appendix provides a brief description of the Reference
Model of Open Systems Interconnection.

A.2 GENERAL DESCRIPTION

A.2.1 Introduction

The Reference Model of Open Systems Interconnection pro-
vides a common basis for the co-ordination of the deve-
lopment of new standards for the interconnection of sys-
tems and also allows existing standards to be placed within
a common framework. The model is concerned with systems
comprising terminals, computers and associated devices

and the means for transferring information between these
systems.

A.2.2 Overall perspective

The model does not imply any particular systems implemen-
tation, technology or means of interconnection, but rather
refers to the mutual recognition and support of the
standardized information exchange procedures.

A.2.3 The Open Systems Interconnection environment

Open Systems Interconnetion is not only concerned with
the transfer of information between systems (i.e. with
communcation), but also with the capability of these sys-
tems to interwork to achieve a common (distributed)

task. The objective of Open Systems Interconnection is

to define a set of standards which allow interconnected
systems to co-operate.

The Reference Model of Open Systems Interconnection re-
cognizes three basic constituents (see fig. 1):

a) application processes within an OSI environment,
b) connections which permit information exchange,
c) the systems themselves.

NOTE A. 1

The application processes may be manual, computer or physical
processes.

A.2.4 Management Aspects

Within the Open Systems Interconnection architecture
there is a need to rccognize the special problems of
initiating, terminating, monitoring on-going activities
and assisting in their harmonious operations as well as
handling abnormal conditions. These have been collective-
ly considered as the management aspects of the Open Sys-
tems Interconnection architecture. These concepts are
essential to the operation of the interconnected open
systems and therefore are included in the comprehensive
description of the Reference Model.

System A System B
. ; Aspects of system and
. . application process
: . of concern to OSI

{ Physical interconnection media§

Fig. 1 - General schematic diagram illustrating the
basic elements of Open Systems Interconnection

A.2.5 Concepts of a Layered Architecture

The open systems architecture is structured in Layers.
Each system is composed of an ordered set of sub-systems
represented for convenience by Layers in a vertical se-
quence. Adjacent subsystems communicate through their
common interface.

A Layer consists of all subsystems with the same rank.
The operation of a layer is the sum of the co-operation
between entities in that Layer. It is governed by a set
of protocols specific to that Layer.

The services of a Layer are provided to the next higher
Layer, using the functions performed within the Layer
and the services available from the next lower Layer.

An entity in a Layer may provide services to one or more
entities in the next higher Layer and use the services
of one or more entities in the next lower Layer.

A.3 THE LAYERED MODEL

The seven-Layer Reference Model is illustrated in fig. 2.

- 83 -

Layer Peer-to-peer-protocol
Application -b - -—- Y- S
Presentation f’ = e b >
Session -» N Q- ——— = mm e = >
Transport i €—- e e
Network B - wr = mms = e
Data Link ~ Rememmam===B
Physical _—b €—----. - .-
4+
Physical media for interconnection
Fig. 2 - The seven-layer Reference Model and peer-to-
peer protocol.
A.3 The Application Layer

As the highest layer in the Reference Model of Open
Systems Interconnection, the Application Layer provides
services to the users of the OSI environment, not to a
next higher layer.

The purpose of the Application Layer is to serve as the
window between communicating users of the OSI environment
through which all exchange ot meaningful (to the users)
information occurs.

The user is represented by the application-entity to
its peer.

All user specifiable parameters of each communication
instance are made known to the OSI environment (and, thus,
to the mechanisms implementing the OSI environment) via
the Application Layer.

The Presentation Layer

The purpose of the Presentation Layer is to represent
information to communicating application-entities in a
way that preserves meaning while resolving syntax diffe-
rences.

The nature of the boundary between the Application Layer
and the Presentation Layer is different from the nature
of other Layer boundaries in the architecture.

The following principles are adopted to define a bound-
ary between the Application Layer and the Presentation
Layer.

A.3.4

a) internal attributes of the virtual resource and its
manipulation functions exist in the Presentation
Layer;

b) external attributes of the virtual resource and its
manipulation functions exist in the Application Layer;

c) the functions to use the services of the Session
Layer effectively exist in the Presentation Layer;

d) the functions to use services of the Presentation
Layer effectively exist in the Application Layer.

The Session Layer

The purpose of the Session Layer is to provide the means

necessary for cooperating presentation-entities to organize

and synchronize their dialogue and manage their data ex-
change. To do this, the Session Layer provides services
to establish a session-connection between two presentation
entities, and to support their orderly data exchange in-
teractions.

To implement the transfer of data between the presenta-
tion-entities, the session-connection is mapped onto and
uses a transport-connection.

The Transport Layer

The Transport Layer exists to provide the transport-ser-
vice in association with the underlying services provided
by the supporting layers.

The transport-service provides transparent transfer of
data between session entities. Transport Layer relieves
the transport users from any concern with the detailed
way in which reliable and cost effective transfer of da-
ta is achieved.

The Transport Layer is required to optimize the use of
the available communication resources to provide the per-
formance required by each communicating transport user

at minimum cost. This optimization will be achieved with-
in the constraints imposed by considering the global de-
mands of all concurrent transport users and the overall
limit of resources available to the Transport Layer.
Since the network service provides network connections
from any transport entity to any other, all protocols
defined in the Transport Layer will have end-to-end sig-
nificance, where the ends are defined as the correspon-
dent transport-entities.

The transport functions invoked in the Transport Layer
to provide requested service quality will depend on the
quality of the network service. The quality of the net-
work service will depend on the way the network service
is achieved.

The Network Layer

The Network Layer provides the means to establish
maintain and terminate network connections between sys-
tems containing communicating application-entities and
the functional and procedural means to exchange network
service data units between two transport entities over
network connections.

The Data lLink Layer

The purpose of the Data Link Layer is to provide the
functional and procedural means to activate, maintain
and deactivate one or more data link connection among
network entities,

The object:ve of this layer is to detect and possibly
correct errors which may occur in the Physical Layer.
In addition, the Data Link Layer conveys to the Network
Layer the capability to request assembly of data cir-
cuits within the Physical Layer (i.e. the capability of
performing control of circuit switching).

The Physical Layer

The Physical Layer provides mechanical, electrical, funct-
ional and procedural characteristics to activate, maintain
and deactivate physical connections for bit transmission
between data link entities possibly through intermediate
systems, each relaying bit transmission within the Physical
Layer.

APPENDIX B

TERMINOLOGY

B.1 GENERAL

This appendix is an integral part of the standard.
The terminology used in this standard consists of:

- Reference Model terminology, which is defined in ISO/DP 7498,

- Terminology for session layer concepts, services and pro-
tocol, which is defined in this appendix (see B.2),

- Notation terminology, which is defined in Appendix C.

B2 DEFINITIONS

B.2.1 Synchronization

The effect of actions occuring at the same time.

B.2.2 Resynchronization, resynchronize

Destructive change of synchronization.
B.2.3 Transit Delay

The time taken to convey information from its source to
its destination, including the time for transmission,
buffering and processing.

B.,2.4 Collision

Any conflict between a session service action initiated
by one ss-user and an action initiated by another ss-user.

B.2.5 Contention

An actual or potential collision between two actions of
the same kind.

B.2.6 Synchronization-point

A non-disruptive correlation of points in each direction
of data transfer on a session connection, such that they
are deemed to occur at the same time,

B.2.7 Major Synchronization Point

A synchronization point which completely isolates any sub-
sequent communication from the previous communication.

B.2.8 Minor Synchronization Point

A synchronization point which not necessarily isolates
all communications before and after it.

.10

«11

«12

.13

.14

«1D

.16

Synchronization-Point—-Serial-Number

Synchronization-point identifier.

Dialogue-Unit

A particular kind of subdivision of activity within a
session connection.

Token

An attribute which is dynamically assigned to one ss-
user at a time or to neither ss-user.

Data Token

The token controlling the conditional right to initiate
transfer of a normal SSDU in TWA or one-way communication.

Synchronize Token

The token controlling the conditional right to initiate
the making of a minor synchronization point.

End-DU-Token

The token controlling the conditional right to initiate
normal termination of a dialogue unit.

Terminate Token

The token controlling the conditional right to initiate
negotiated termination of a session connection.

Delivery-Point

A point at which events subject to quarantining effects
are freed from these effects.

.1 INTRODUCTION AND SCOPE
This appendix is an integral part of the standard.
It is a version of notation under development in the ECMA re-
gister of common techniques for OSI standards, particularized
by substitution of the word "secssion" into the terms defined.
.2 DEFINITIONS
This terminology is for the notation defined in this appen-
dix.
C.2.1 (x)-Service
A conceptual unit of the session layer service, of which
(x) is its particular name.
C.2.2 (x)-Service primitive
A discrete component of an (x)-service.
C.2.3 (x)-Request primitive
A type of primitive bymeans of which anss-user causes an
occurence of the (x)-service.
C.2.4 (x)-Indication primitive
A type of primitive by means of which an ss-user is in-
formed of an occurence of the (x)-service.
C.2.5 (x)-Response primitive
A type of primitive by means of which an ss-user replies
to an occurence of an (x)-indication primitive.
C.2.6 (x)-Confirmation primitive
A type of primitive by means of which an ss-user is in-
formed of an occurence of an (x)-response primitive.
C.2.7 Service Structure
The series of one or more primitives of which an (x)-ser-
vice wholly consists.
C.2.8 Service Structure Type 1

- 89 -

APPENDIX C

NOTATION

A service structure with a request primitive and an
indication primitive.

CeZs

Gis 2s

Gisds

Cads

CoZs

C.4

.9 Service Structure Type 2

A service structure with a request primitive, an indica-
tion primitive, a response, and a confirmation primitive.

10 Service Structure Type 3

Service structure with two indication primitives.

11 Service Structure Type 4

Service structure with a request primitive only.

12 Event
The occurence of a primitive.
13 Initiator (ss-user)

The ss-user who issues the request primitive of the (
(x)-service concerned. .

14 Acceptor (ss-user)

The ss-user who receives the indication primitive of the
(x)-service concerned.

SERVICE MODEL

The Session Service is modelled as an abstract service to
which session-service-users (ss-users) gain access at ses-
sion-service-access-points (SSAPs). These SSAPs are unique-
ly identified by session-service-addresses. All interactions
defined are between two ss-users located at separate SSAPs.
A single session-connection is modelled. Figure C/1 is a
pictorial representation of this model.

ss-user ss-user {

SSAP SSAP

Session Service

Fig. C/1: - Session service model

PRIMITIVES

The session-service is defined by means of service primiti-
ves.

Primitives are conceptual, and are not intended to be di-
rectly related to session protocol elements or to the units
of interaction across a procedural interface in an imple-
mentation. The descriptive technique is independent of such
variable details.

Primitives which relate only to local conventions between
an ss-user and an implementation are not defined.

The subdivision of the session-service into the particular
primitives chosen is arbitrary, in that the same session-
service could be described by other logically equivalent
primitives. There is no notion that a primitive is "elemen-
tary".

A primitive occurs at one SSAP (not both). It usually has
parameters, containing values relating to its occurence.

The occurence of a primitive is a logically instantaneous
and indivisible event. The primitive occurs as a logically
separate instant, which cannot be interrupted by the occu-
rence of another primitive. It occurs either completely or
not at all.

There are four types of primitives inthis standard:

a) request primitive (see C.2.3),

b) indication primitive (see C.2.4),
c) response primitive (see C.2.5),

d) confirmation primitive (see C.2.6).

The primitives are given names prefixed by "S" (session)
to distinguish them from primitives of adjacent layers. The
names of primitives are written in upper case, e.g. S-DATA.

SERVICE STRUCTURE

Each service consists of one or more primitives and affects
both SSAPs, (see note). There are four different combinations
of primitives. These combinations are referred to as ser-
vice structures. The four service structure types used in
this standard are defined in C.2.

Figures C/3, C/4, C/5 and C/6 are time-sequence diagrams
giving a pictorial representation of the service structures.
The progression of time is on the vertical axis downwards.
The two sides represent the two ss-users. The void in the
middle represents the unseen internal workings of the session
service. The arrows give the direction of event propagation.

SS-User SS-User

Request Request

\\\\ \\\‘ Indication
A \\\‘
Indication
N g@sponse
4 — '

Confirmation

Fig. C/2: ?erzlie SLYucture Fig. C/3: Service Structure

C.6

SS-User SS-User
‘///' ‘\\\‘ Request
Indication Indication
Fig. C/4: Service structure Fig. C/5: Service Structure
Type 3 Type 4

Unlike the events which are the occurrence of its consti-
tuent primitives, the occurence of a service structure is
not logically instantaneous and indivisible. The intervals
between its constituent events may be non-disruptively in-
terspersed with other events (subject to restrictions par-
ticular to the services concerned). Service structures may
also be disrupted by the occurence of certain other primi-
tives, (see C/6).

NOTE C.1
The type 4 service structure departs from the general rule in that

it has only one primitive at one SSAP. But it affects the occurence
of other primitives at the other SSAP.

EFFECTS OF SERVICES

The effects of a service are referred to as being sequen-
tially transmitted if its successive events at one SSAP
result in the same sequence of corresponding events at the
other SSAP, (unless disrupted, see below).

The effects of a service are referred to as being expedited
if its indication or confirmation events may arrive at the
other SSAP before those of a previous occurence of a ser-
vice.

The effects of a service are referred to as being disrup-
tive if it may destroy, and therefore prevent the occurence
of, indication and confirmation events corresponding to pre-
vious request or confirmation events. The effects of disrup-
tive services are expedited unless stated otherwise.

The effects of a service are referred to as being non-dis-
ruptive if they do not have the above disruptive effect.
Non-disruptive effects may include effects relating to de-
laying of other events without destroying them.

The effects of most services are sequentially transmitted
and non-disruptive.

The characteristics of individual primitives or events may
also be referred to by this same terminology, (e.g. '"disrup-
tive primitive" or "expedited event").

.7

PARAMETER NOTATION

For each service structure, the parameters are defined by

a table and a numbered list of rules referencing the table.
The vertical axis of each table is a list of the parameters.
There is a column for each primitive.

In each column there is a source code against each parameter.

D = Value supplied by ss-user during the event (D='"down'").
U = Value supplied by session service during the event (U="up").
B = Value supplied by ss-user and/or the session service
during the event (B="both'").
X = Parameter not used during the event.
- = Source not defined in this table.

The letter may be followed by a number referencing the rule
which applies to the parameter.

Unless otherwise stated, the parameter value in the indica-
tion is the same as that in the request, and the parameter
value in the confirmation is the same as that in the response.

Parameter values are only defined to a level which distin-

guishes meaning (e.g. "yes'), but generally without defining

their absolute value or encoding. These details are outside r
the scope of the standard, being local conventions between

an ss-user and an implementation, or else conventions bet-

ween the ss-users which may be the subject of other standards.

The value '"null" is used with the meaning that the characte-
ristic referred to is not wanted, and includes the case where
the parameter is not used.

In some cases an event has no parameters.

- 95 -

APPENDIX D

FORMAL DESCRIPTION

This appendix is an integral part of the standard.

D.

1

« &

INTRODUCTION

In section 3 of this standard, the SPDU protocol interactions
between two SPMs are described. That description references
states, cvents and actions which in this appendix are conso-
lidated into a formal description of the SPDU protocol by
means of state-event tables.

This is a description of the complete protocol and is inde-
pendent of the subsetting within it. For some of the subsets
defined, some of the information may not be applicable.

The TSM protocol is not included in this formal description.

ELEMENTS USED IN THE FORMAL DESCRIPTION

Table D/1 lists the states which are used in the formal
description. For each entry there is a state code and a
brief description.

Table D/2 lists the events which are used in the formal des-
cription. For each entry there is an event code and a brief
description.

Table D/3 lists the conditions which are used in the formal
description. For each entry there is a condition code and a
brief description.

Table D/4 lists the SPM message acronyms which are used in

the formal description to identify messages sent. Sometimes
they are qualified by extra information in parenthesis. For
each entry there is an acronym and the message name.

The way in which these various elements are used is defined
in D.3.

In the Data Transfer message, concatenated events shall be
processed in the sequence Data (EVE 15)

Mark (EVE 15A, 15B, 15C)

Tokens (EVE 21)
as if they were included in separate messages.

NOTE D.1

Tables D/1 and D/2 also include SPM states and SPM events which are
referenced in the text description, section 3.2, but not in this formal
description. This reflects differences in the level of detail between
the text description and the formal description.

- 96 -

Table D/1 - SPM States

State Code State Description

STA 1 Unconnected

STA 2A waiting for ACCEPT message

STA 3 waiting for DISCONNECT message

STA 4A waiting for MARK D CONFIRMATION message
DATA TOKEN my side

STA 4B waiting for MARK D CONFIRMATION message
DATA TOKEN not my side

STA 5 waiting for RESYNCHRONIZL ACKNOWLEDGEMENT
message (initiator point of view)

STA © waiting for RESYNCHRONIZE ACK (collision bet-
ween two requests)

STA 6A waiting for old RESYNCHRONIZE message after
another PR (RS) while resolving a previous
collision

STA 7 Idle DATA TOKEN my side

STA 8 waiting for ESTABLISH response event

STA 9 waiting for RELEASE response event

STA 10A waiting for MARK D response event, DATA TOKEN
my side

STA 10B waiting for MARK D CONFIRMATION, DATA TOKEN
not my side

STA 11 waiting for RESYNCHRONIZE response event

STA 12 waiting for MARK C confirmation

STA 13 Idle DATA TOKEN not my side

STA 7-13 connected

STA 15A after PREPARE, waiting for MARK D CONFIRMATION
message

STA 15B after PREPARE, waiting for RESYNCHRONIZE
message (acceptor point of view)

STA 15C after PREPARE, waiting for RESYNCHRONIZE
ACK message

STA 15D waiting for new RESYNCHRONIZE message after
another PR (RS) while resolving a previous
collision

NOTE D.2

STA 1 exists only after a transport connection establishment and ceases to
exist after transport connection termination.

= 97 =

Table D/2 - SPM Events

Event Code Event Description
SPM-driving events
EVE 1 ESTABLISH request event
EVE 2 ABORT request event
EVE 3 RELEASE request event
EVE 4 TRANSFER request event
EVE 4A MARK B request event
EVE 4B MARK D request event
EVE 4C MARK C request event
EVE 5 CANCEL request event
EVE 6 EXPEDITED request event
EVE 7 RESYNCHRONIZE request event
EVE 7A RESYNCHRONIZE (ABANDON) request event
EVE 7B RESYNCHRONIZE (RESTART) request event
EVE 8 GIVE TOKENS request event
EVE 9 PLEASE TOKENS request event
EVE 10A REJECT request event
EVE 11 CONNECT incoming message event
EVE 12 ACCEPT incoming message event
EVE 12A REFUSE incoming message event
EVE 13 FINISH incoming message event
EVE 14 DISCONNECT incoming message event
EVE 15 DATA TRANSFER incoming message event
EVE 15A MARK B incoming message event
EVE 15B MARK D incoming message event
EVE 15C MARK C incoming message event
EVE 16 MARK CONFIRMATION incoming message event
EVE 16A MARK B CONFIRMATION incoming message event |
EVE 16B MARK D CONFIRMATION incoming message event ‘
EVE 16C MARK C CONFIRMATION incoming message event
EVE 17 CANCEL incoming message event l
EVE 18 EXPEDITED incoming message event
EVE 19 RESYNCHRONIZE incoming message event |
EVE 20 RESYNCHRONIZE ACK incoming message event

—

- 98 -

Table D/2 - continued

EVE 21 GIVE TOKENS incoming message event
EVE 23 PLLEASE TOKENS incoming message event
EVE 31 ABORT incoming message event
EVE 32 PREPARE incoming message event
EVE 32A PREPARE (MARK D) incoming message event
EVE 32B PREPARE (RESYNC) incoming message event
EVE 32C PREPARE (RESYNC ACK) incoming message event
EVE 33 NOT FINISHED incoming message event
EVE 25 ESTABLISH reponse event
EVE 26A RELEASE AFFIRMATIVE response event (|
EVE 26B RELEASE NEGATIVE response event
EVE 27 MARK CONFIRMATION response event
EVE 27A MARK B/C CONFIRMATION response event
EVE 27B MARK D CONFIRMATION response event
EVE 28 RESYNCHRONIZE ACK response event
SPM generated events
EVE 101 ESTABLISH indicafion event
EVE 102 ABORT indication event
EVE 103 RELEASE indication event
EVE 104 TRANSFER indication event
EVE 104A MARK B/C indication event
EVE 104B MARK D indication event ('
EVE 106 EXPEDITED indication event
EVE 107 RESYNCHRONIZE indication event
EVE 108 GIVE TOKENS indication event
EVE 109 PLEASE TOKENS indication eveiit
EVE 110A REJECT indication event
EVE 112 ESTABLISH confirmation event
EVE 113 MARK confirmation event
EVE 113A MARK B/C confirmation event
EVE 113B MARK D confirmation event
EVE 114 RESYNCHRONIZE confirmation event
EVE 116A RELEASE AFFIRMATIVE confirmation event
EVE 116B RELEASE NEGATIVE confirmation event

- 99 -

Table D/3 Conditions

Conditions Meaning
DT DATA TOKEN my side
“DT DATA TOKEN not my side
SY SYNCHRONIZE TOKEN my side
=~ SY SYNCHRONIZE TOKEN not my side
DU END-DU-TOKEN my side
~ DU END-DU-TOKEN not my side
TR TERMINATE-TOKEN my side
~“TR TERMINATE-TOKEN not my side
DEF (xx) TOKEN XX is defined
“DEF (xx) TOKEN XX is not defined

Table D/4 List of SPM messages

CONNECT CN
ACCEPT AC
REFUSE RF
FINISH FN
NOT FINISHED NF
DISCONNECT DN
ABORT AB
DATA TRANSFER DT
MARK CONFIRMATION MC
EXPEDITED EX
CANCEL CL
RESYNCHRONIZE RS
RESYNCHRONIZE ACKNOWLEDGEMENT RA
PLEASE TOKENS PT
GIVE TOKENS GT
PREPARE PR

- 100 =

FORMAL DESCRIPTION CONVENTIONS
The formal description is in tables D/6 to D/17.

The horizontal dimension of each table is the set of all
the states. If for any given state there is no valid event,
then the state does not appear in the table, i.e. no co-
lumn (see note D.3).

The vertical dimension of each table is the set of all re-
levant SPM request events, incoming message event and

SPM response events. For each event there is an entry,

i.e. a row.

Each valid intersection contains:

- one or more conditions (where relevant)
- one or more actions (where relevant); (
- the new state (always).

The conditions are those defined in table D/3.

The action generally consists of sending a message or is-
suing a local primitive event (indication event or confir-
mation event). Sometimes the event causing an action is lo-
cally enqueued, or causes other events to be dequeued or
cancelled. This is indicated by a store, recall or cancel
code:

"ST'" means store (enqueue);
- "RC" means recall (dequeue);
- "CL" means cancel (purge queue).

The new state is the state which is entered after the spe-

cified action is completed. All dequeued events are consider-

ed by the SPM with priority over any other incoming events.

An invalid intersection is shown by a stroked entry (see

note) . (

The applicability of some tables depends on whether certain
tokens are defined or not defined. Any such constraint is
explicitly stated.

All invalid intersection between states and incoming mes-
sage events are treated as protocol errors. The actions
are: issue EVE 102 ABORT indication event if the transport
connection is useable, then send AB message with reason
code = protocol error. The new state is STA 1 unconnected.

NOTE D.3

A state which does not appear in a given table may appear in another
table which has different applicability. Likewise for an intersection,
which is invalid in a given table may be valid in another table which
has different applicability.

FORMAL DESCRIPTION TABLES

The session protocol is described by using several tables:
this introduces redundancy but allows individual descrip-
tion of each sub-protocol. For editing reasons, in some

- 101 =~

cases the same table cannot contain all the states: then
consecutive tables are used.

In order to know how a SPM should behave when it is in a
given state Si and when a given event Ej occurs, find the
table(s) with the appropriate applicability, by using the
index in table D/5. If the appropriate table contains the
state Si and the event E., the action and the new state
etc. aré defined in the intersection (S., E.). Otherwise
the combination (Si, Ej) is invalid. . J

Table D/5 - Index of Formal Description Tables

Table Sub-protocol Codes for applicability
condition

D/6 | .Connection None

D/7 Data Tranfer DEF (DT)

D/8 Data Transfer DEF (DT), DEF (TR)

D/9 Data Transfer DEF (DT), "DEF (TR)

D/10 Data Transfer “DEF (DT)

D/10-1 Data Transfer “DEF (DT)

D/11 Mark B/C None

D/11-1 Mark B/C None

D/12 Mark D None

D/13 Resynchronize None

D/13-1 Resynchronize None

D/14 Disconnection DEF (TR)

D/15 Disconnection “DEF (TR)

D/16 Abort None

D/16-1 Abort None

D/17 Token Transfer None

D/17-1 Token Transfer None

NOTE D.4

The notation in the last column of the table D/5 is defined in table
D/3.

103

T VLS fOOOKXXX)
R
uot1edTPUTf 00000000 aSessau
' TPUT LXK XX
RRENER] Wttt IsnaTy
R
YOTT 3AZ oooooooo,o:%o vzT 9A3
24 ¢€1-L VIS
*ITFUOD a3essau
HSITIVLS3I L4320V
ZTIT 3A3 ZT JA3
S
’0’.‘.’.’0””‘”’ “JTPpUT a8essou
KLY Hs 118 v ST 1DANNOD
LK
oooo%oo%%%%% T0T 3AT 1T A3
T VIS 1sanbsx
1233y
4 puss YOT 3FAT
€1-L VIS asuodsax
HSITVL1S3
JVY pu=sg §Z JA3
1sanbax
YZ YIS HSITIVLST
N2 pussS T 3A3
asuodssx 23essau
HSITIV1Sd 143V SINIAT
I0F 1TBM I10F 1TeM| LDINNOONN
8 VIS YZ VIS T V1S SILVIS
UOT3DoUUO) 9/d 9Iqel
D

R

105

4ST VLS $I-L VIS S VIS
uotrl adessau
-eJ[adued TAINVD
‘puod Id. LT 9A3
gST VLS | LS VST VIS ZT VIS €1-L VIS S VIS p VIS | 1s vz vis
UOTIEBDTIPUT | UOTIBDTPUT UOTIBDTPUT a8essou
@d11addxd | aglrraadxd @3L1agdxg ag1.1049dx3
90T dAd 90T IAd 90T AT 8T 9Ad
4ST VIS €T-L VIS S VIS
9099999999 QOO X
ROKAK0N wotaeatpur G0N ssesson
KK zoysuexy BOOXOLOPOOONKA waasnvat
SOBBRNEY vt aaa RIS viva
X OOOXXXXX) -
£1-L VIS QOOOOK X
1) puas 0"““““““"“““““““““ 3sanbaux
*puod 1d TIINVI
puqx&x&pwo < AT
Z1 VIS ¢T-L VIS
XXN00ERA asonbos
X3 puas X3 puas 000000000000000000 aga.LIa:adxd
OOOXXXX 9 dad
OOOKXXXX e
$I-L VIS
: UK o
10 pua ATASNVUL
21pu0d 10 KRS v AT
o8essauw |'ssaw (INOD *ITJUOdD *ssaw Y}y ["ssaw 4NOD a3essau SINHAT
(NASTY) Ud | a YUVW) dd D MAVW NASHU a Yaviw Ldad0v
1393Je 3Tem | 1313Je 3Tem 103 3Tem | @AILOIANNOD 103 3TEM I0J 3ITEBM 10J ITEM
4ST VLS VST VIS Z1 VIS €T-L VIS S VIS b VIS vz vis | saLvis
(1d) d49d IeFsuex] ®leBQ L/0 9T4BL

®

JST VIS 9 VIS ¢ VIS JST VIS 9 VIS a3essouw
uoTrl a8essou TIINVI
-eJ[edued T4INVD LT AT
puod ILd. LT dJAd
LS JST VIS LS 9 VIS ¢ VIS
1S JST VIS 1S 9 VIS ¢ VIS
UOT3IEBDTPUT a3essau UOTIEBDTIPUT a3essauw
ajLiaadxda ajrLiaadxd a3Liaadxdg agrLIaddxd
90T FAd 8T dA3 90T dAd 81 dAd
JST VIS 9 VIS ¢ VIS JST VIS 9 VIS adessau
uorjedIpur a3essou X MIASNVUL
UTISNVIL YFASNVIL Viva
yoT dAd vivd ST IAd
©puod ILd. ST dAd o
) 1senbaux
1sanbaix 0"0“0“0“0“0“0“0“0“0 TADINVD
TAINVD OO0 S dAd
S 9Ad SI099.99.9.9
1
Asoniax Swmmmwm“
o~ £ dX:
agrLidaadxd
= 9 dAd 9 dAd
! 3sanbax 1sanboaux
ATISNVIL Yd4SNVILL
b d9Ad v dAl
) XXX XS
(UOTSTTT0D) (uotsTITOD)
a8essau s3essau agessau SINTAT 'ssau (YOV adessou a3essau SINTIAL
(14) ¥d | XDV NASTY |LOINNOISIA NASTY) dd | ¥OV NASTY |LDINNOISIA
19313e ITBM 10¥ 3ITBM 10J 3ITEM I331¥e 3Tem 10J 31TEM I0J 3TEM
JST VIS 9 ViS ¢ VIS |SdLVLS JST VIS 9 VIS ¢ VIS SALVIS

(ML) 240.°(1d) d49d x19Fsuell e3BQ 6/0 9TIqEL (41) d49a°€(1a) d49q xsFysuea] ele(Q 8/d SIqEL

109

9 VIS S VIS ¥ VIS ¢ VIS adessau
uotrl} uotl TAONVD
-e[18dued -BII9OUBd LT dAd3
1S9 VIS S VIS v VIS ¢ VIS 1S VZ VIS
UOTIBDTPUT | UOTIBDITPUT a8essau
a3Lriaadxs agr1aadxd aqariaadxd
90T dAd 90T JAd 8T IAd
9 VIS S VIS ¥ V1S ¢ VIS adessou
) UOT3IBDTPUT | UOTIBDTPUT 00000000%0000000 YgISNVHL
YTASNVIL HFASNVYEL HOOOOOXK) vivad
yOT AT pot 3aT PR ST aad
3sanbax
TIONVI
S 9Ad
1sanbaux
aaLiaddxd
9 dAd
3sanbaix
UFISNVIL
v dAd
(uotstrT02)
a3essau a8essoaw | ‘ssaw JNOD a3essau a8essau SINTAT
MOV NASTY MOV NASTU a Y4VKW | LOINNODSIA Lda0dV
103 3TEM 10J 3ITEM 103 3ITEM 10J 3TEM 10J 1TEBM
9 VIS S VIS v VIS ¢ VIS VZ VIS SALVILS
(1@) d449q. ZIeysuel] ®B3le@ 0T/d SI9EL

JST VIS ST VIS VST VIS 71 VIS €I-L VIS
uotl uotl uoTl adessau
-e[Iadued -e[12oued -eJT2dued TIINVD
LT dAd
LS OST VIS 4ST VIS | LS VST VIS Z1 VIS €1-L VIS
UoT}EeDTpUT UoT3IEBdIpUTL adessau
agrLiaadxd @3iraadxd | agriaddxd
90T FAd 90T dAd 8T dAd
DST VIS 451 VIS VST VIS Z1 VIS X ooooooo ¢€I-L VIS 5
Q4dBSSau
EOMHNUMﬁCM ﬂo.mumu.mﬁﬂﬂ “0“0“0“0“0“0“’“‘0 EOMUNUMv.:_.. mm&wze.w:.
dFISNVAL AFASNVYL oooooooo%%%%o AFASNVUL viva
vOT dA3 vOT A4 ooo:: LX) v0T dAd ST A3
4ST VIS 0T VIS ¢€T-L VIS
1sanbax
_ 1D puas 1D puas TIINVD
— S dAd
=i
451 V1S Z1 VIS 0T VIS €T-L VIS .
jsanbal
Xd puas Xq puas X4 puss | agLiaddxd
9 AT
45T VIS 0T VIS €1-L VIS
1sanbaix
La puas YAISNVYL
Ld puss v dAd
ssaw ()OV adessauw |*ssaw (INOD | "ssau :ANOD asuodsaux SINIAT
NASHY) ¥d | NASTY) ¥d | @ YUVKW) ud D MUVK a MIvW
1933Je 3Tem |I231Fe JTEM | I331Je JTem 10F 3JTIEM 10J 3TEM aAgLOaNNOD
DST VIS ST VIS VST VIS Z1 VIS 01 VIS €T-. VLIS | sdlLvis
(1) d49q. xe3Fsuea] eied T-01/0 °Iqel

113

*erqe3 STY3
UT SuOT3ITPUOD Id, PUB I@ 9Y3 2I0ULT ‘pIUTFSDP JOU ST USYOL BIBQ IY3 FT ‘OST¥
“poUTIOp ST USYOJ SZTUOIYOUAS BYI

¢ a FION
9 VIS S VIS a3essau
WITIANOD
D MUVNH
20T dAd
€1-L VIS 9 VIS S VIS ¥ VLS ¢ VIS
a8essou
WAT4NOD WY I:ANOD WJTANOD WY 14NOD
/49 XAVKH 2/4 YUVW D/4d YYVW g NIV
- VETIT JAd VETIT dAd VETIT dAd Vol HAd
¢€I-L VIS 9 VIS S VIS ¢ VIS
UOTIEDTIPUT UOTIBDIPUT
2/49 MIVKW /4 Y4VKW a8essau
VvOT AT V0T JAd /4 MAVW
*puod puod xS,
AS. lLa. (1a) i3a. VST dAd
6 VIS €1-L VIS asuodsau
WY TANOD
/49 NUVW
OW puos OW puas VLZ FIAT
WLT s B0 XA
puod As 1a DOOOOOOOO OOORXXXKD Db dAd
QOOOXXX) OOOOXXXXXY
€I-L VIS
(4 YHVW) 1sanbau
la pusas 4 MAVW
‘puod AS 1d Vv dAd
asuodsazx odessoau a8essow | *ssaw INOD adessou SINTAT
gFsvaTay ADV NASTY NIV NASHH a YdVW |LDINNODSId
103 3ITEM ag.LO9INN0D 10J 3TeEM 10J ITEM 10J 3ITEM 103 3TEM
6 VIS ¢1-L VIS 9 VIS S VIS f VIS ¢ VIS SALVIS
D/d MIej TI1/0d 919el

‘arqRl STYR
UT SUOT3ITPUOD Id, PuU® Id dY3l 9I0ULT ‘pIUTFIP 30U ST UIYOL B3IBRA 3Y3 FT ‘OSTY
*DAUTFSP ST USYOJ DZTUOIYOUAS 3YL
G a IION
JST VIS 4sT VIS ¢I-L VIS
adessau
WA IdANOD WA IdINOD
2/4 Y4VHW 3 MAVKW
VEIT JAd 297 dAd
JST VIS 48T VIS VST VIS Z1 VIS
adessau
WIIANOD WIIANOD WAT4NOD
/4 YUVKW 3/9 XUVKW 4 NUVW
VEIT FA3 VEIT dAd VOT dAd
. OST VIS 4ST VIS
adessau
/4 Y4VW
VST dAd
dST VIS ssuodsax
! WY T:ANOD
A OW puss 2/49 YWiVW
— VLiZ dAd
—
: 4ST VIS 3sanbau
2 MIVKW
v dAd
4ST VIS 1sanbaix
g AUVW
Vb dA3d
ssaw ()IV aBessou | *ssaw (4NOD | -Ssau ANOD asuodsaix SINIAT
NASTY) d¥d | (NASTU) dd | @ XYVW) dd D MUVKH a YUYW
19231Fe 3TeM [I93Je JTem | I931Je JTEM I10F 3TeM 103 3ITEM
JST VIS ST VIS VST VIS Z1 VIS 0T VLS SALVILS
0/9d dIeW T-1T1/d °19qel

117

~e7qe3 STY3 UT
SUOT3TPUOD XS, PU® AS 9y3 8I0ubT ‘paUTIIP IOU ST USHOL 9zZTUOIYoUAS Y3 FT ‘OSTY

-a7qR3 STY3

UT SuoT2TPUCS @, PuU® Id SYy3 2I0ubT pIUTIIP IOU ST USYOI BIBG SYI IT ‘osTY
*pauTIOp ST USYOJ NJ-puz SUI

9 a dIoN

% JUET-L VIS 9 VIS S V1S adessau

ISt VIS WY I:ANOD zmuw_umw‘

a YAvW

4¢TT dAd q91 A4

XXX s vis| vst vasRKKRS a8essoul

RRXREX) RRXRIRL, v

LK KRN vzs ana

N ¢ V1S -purt adessau
JST VIS 4ST VIS 01 ﬁm xmmm 9 VIS S VIS 0“0“0“0"0“0“0“ w o
QOOOXXXA gpoT dAd ooo%oo%%ooo gr0T 3Ad

RS puo> SO0 puos na.| a wivw
99999999 ue 99999999, pue (La)

00:0::0 AS. ‘1a. OOOKKKXY d9a. As. | dST dAd

gST VIS $1-L VIS “0“0"0“0“0“0“0] ssuodsaux

e CRUEEL Wl T:INOD

a v_mss %00%000000000 (4 YYVW

dd puas 00000000000000 4.7 UAH
ast vis POOOOXXXX X b VIS OXXXAKKD

RRXXXXRS (a Yy XERRIHKN +sanvos

QOOOOXXX) La puss %%%%%%%% ek

Q000K puo> na X000 & e

0’0‘0‘0‘0’0’0’0‘ pue XS 1a ’ 0 0 0 0 *

a3essau a3essouwfssou (4NOD| osuodsau ("1102) adessaufssau JNOD| ‘mwmmmws SINIAY
YOV NASHY | (NASTYU) ud| @ YUVW)IUd a MYVKW MOV NASTY [XOV NASTY a YUVWLOINNOOSIA
10J 3Tem [1931Je 3Tem | I331je JTem| 10J 3ITeM agLDdNN0D | 103 1tem| 103 3rem| 103 3Tem I0j ITEM

OST VIS 45T VLS VST VIS 0T VIS €1-L V1S 9 VLS S Vi1S v VLS € V1S | Salvl
ad XIeW Z1/d 91del

“(Z°s°z € @98)
S®TNI UOTINTOSSI UOTIUS3UOD 8Yy3z 03 HUTPIOoO® ‘3usAs mau ay3 1940 STTeAsId
(9suodsaz ® I0 JUSWS5DPITMOUNOE UP IOF ISYITD burirem) psxedszd sem wgs aya
YoTyM O3 NASTY SnoTadxzd ay3z FT ATUO pur JT pOTITISA ST W IBUUTM-SY, UOTITPUOD
- /°a JION
a8essou
AOV NASTY
0Z dAd
LS 9 vis JST VIS adessou
NIV NASTYU
TAVdIAd
2Z¢ 9Ad
I1 VIS
PUT NASTY
LOT dAd
I12UUTM Y adessauw
Jd S VIS NASTY
IauuTm QY 6T dAT
gsT VIS V9 VIS 9 VIS 4sT VIS 4ST VIS LS VZ VIS s8essau
NASHY
TIVdIdd
qz¢ dAd
i
o dsax y)v
— NASHY
= 87 aAd
1
S VIS S VIS S VIS OO 1sanbax
Sy puas Sy puas Sy puas 00000000000000000 (uopueqe)
(NAST™) (NASTY) (NASTY) QRS NASIY
dd puas dd puas d puss 0000000000000000 VL dAl
S VIS S VIS 999999999 1sanbai
Sy puas Sy puas 000000000000000000 (31e3591)
(NASTYH) (NASTY) RS NASTY
dd puss dd pusas 0’.’0"”."”“"0 gL dAd
asuodaix (uotstyyoD) adessaw | ‘ssaw ‘Juod adessouw SINIAd
gsva13d ADV NASTH AJV NASTH a MYVKW | LOINNOOSId Ld3adov
I0J 3Tem AILOINNOD 103 1TEM I0J 3TEeM I0J ITEM I0J 3Tem 10F 1Tem
6 VIS ¢I-L VIS 9 VIS S VIS v VIS ¢ VIS VZ VIS SALVILS
9ZTUOIYDUASSdY ¢I/d °Iqel

“(Z2°s°z°¢ 93s)

SSTNI UOTINTOSSI UOTIUSIUOD Y3 03 LUTPIODOR ‘IUSAS MBU 3Y3 ISA0 sTrRasdxd
(9suodsazr ® I0 JUBWI6PITMOUNO®R URP IOF I9y3Te® burirem) paredazd sem WIS duU3
yoTyM 03 NASFY snotaszd ay3 FT ATUO pu® FT PITFTIZA ST ,I9UUTM-SY, UOTITPUOD

,°d JION
o)
€1-L VIS 4sT VIS
WITJuod a3essau
NASTY OV NASTY
pIT 9Ad 0Z A4
000000 adessauw
oo““onono“o“o“o MOV NASTY
OO TAVdIdd
QAKX d7¢ A3
11 VIS ast Vvis
OTPUT NASTHY adessou
LOT dAd NASHY
1auutm Sy, | IdUUIM SY LOT FAT 61 dAd
10 9ST VIS 4ST VIS 4ST VIS ST V1S a8essau
NASTY
qUVdIUd
4z¢ dAd
€I-L VIS asuodsaui
Vi puas 0"0“0“0 YOV
Oi2v NASHY) OO0 NS
dd puas %% 87 dAd
9 VIS S VIS S VIS S VIS S VIS 1sanboux
Sy —.:._mwm wm ﬂ:wm SU _u:Om NASHY U _u:mm :_thmn_mv
(NASTY) (NASTY) (NASTY) |su “d4d puas (NASTY) NASTY
dd puss dd puss ¥d puds | 1auurm Sy, Ud puas VL IAd
9 VIS S VIS S VLS S VIS
00“0“0“0“0“0“0“0 Sy puss (3sonbau
0000%00%%%00 Sy puas Sy puss (NASTY) Sy puas 11e3591)
00000000%00000 { (NASTY) (NASTY) dd puas (NASHY) NASTY
@3%00 (X) Ud puas dd puas | Iauutm Y, dd puas 4L AT
(sy) ud
(s4) ud 13y3o
13yjoue I33lje -ue I133jje ‘ssauw ()OV adessau 'ssau(ANOD ‘'ssaw 4NOD asuodsazx asuodsaix SINIAT
NASTY NASHY | (NASTY) ¥d | (NASTU) ¥d | 0 NAVW) dd D NYVKW NASTY a WAVKW
mau p1o
1037 1Iem JOJ 3ITeM | 193Fe 3TeMm | 1931JB 3IITM | I33FJe 2TEM 10} 1TeM 103 3Ttm I0J 1Tem
ast vis V9 VIS JST VIS 451 VIS VST VIS Z1 VIS IT VIS 0T VIS | SiILVIS

9zTUOXIYDdULSaY T-$T1/d °19el

*8T7qeP3 STY3 UT SUCTITPUOD Jd, pu® Id 9Y3
870uUbT ‘paUTISp 10U ST USYOI ©IBd 9Y3 II

g a aIon
OO, st vis =
XA wazzuc furrues | sgessou
_:oooooooooooooooo FAILY9AN FATLVOAN JIHSINTII
.:%%%%%%%% asvaTId ISVaATIY LON
V 00000000 4911 dA3 49TT dAd ¢¢ dAd
OO0 OO D T vis
XKL SR SO, warsuos | o3essou
OO0 OO0 OO0
OO0 OO0 SOOOOOOO0] LvWa T4V |
QN0 EOXRR0NE ERCR0NCL asvata | 1oannoos1a
K XRRRXRA] QROUK] vort and | v ana
XX
T VIS DORRIKEREA .5 vas Sepis o vis 5V
OO0
ooooo%oooooo%oo% asva 1y asvaTay
0%%%%%%%%% €0T dAd €0T dAd adessau
oooo:oooooo%oo% puo> puods I, HSINIA
XXXy dl. 1a. pue Lda. €T dAd
QOOXXXXX c1-2 VIS asuodsai
ooooooooooo%oo%o TALLYOAN
RS e,
000000000000000000 AN puas 497 dAd
XXX I VIS asuodsou
LVWNYTAd:0V
R0
QOO Nd puss V9Z IAd
as1 vis OO0 S VIS OO0
RS Nd puss XRUREE sonbax
XKD puo> KOO0 asvanau
QRRRXRXRX AL PUE 10 O E g
*ssaw (YOV a3essau WwITJUod asuodsax (uorstTyOD) odessauw adessau SINIAT
NASHY) ud | (NASTY) ¥d J MUV 4SvaTad NIV NASHA AIJV NASHY | LDIANNODSIA
1333e 3TeMm | 1933B 3TeEM IO 3ITEM 10J 1TeM Ag1DINNO)D 10J 31TIEBM 10J 3TIeM I103J 1IBM
JST VIS 48T VIS Z1 VIS 6 YIS ¢I-L VIS 9 VIS S VIS ¢ VIS S4LVILS
(1) 49@ UuOoT1d9UUODSIQ +I1/d °Iqel

125

99999999, dessouw
OO eI
RS0 LON
QOOOXXX) .
9999999, €€ dAd
0999999999 I VIS 1 VIS
w1 m 3J K.wm 0“0“0“0“0“0“0“0“0“0 WITJuod adessou
WA T4dY ooooooo%%%oooooo LYWA T4V -
: g 4SvITId NNODST(
<wm,~\m MNM 0000000000000%00% VOTT dAd pT A4
JS1 VLS wﬁwﬁw 6 VLS 9 VIS S VIS 6 VIS 6 VLS 0000000000000“000“0
*DTpUT DIpuUT adessou
o vwww mw«mwww uwﬁm Y asvaia 0000000000000000000 HSINId
(1a)J3a "puod 1a. €OT A $0T 3Ad ooo:oooooooo%ooo $T 4A3
QOOXXXXX) OOOOOOOTXIIIIXIXXX] - dsuodsal
R i
XRXRLRLD XXXXEEROBXXXIREON 352" v
3 ssuodsou
P QOOOOXXX) LYWH L1V
000000000 ASVATIY
Na puas 0000000000‘0’0’0‘0’ V9Z ‘Ad
¢ VIS
N puas
puod [Ld
‘ssauw(y)V[ssaw ANOD asuodsax (uoTSTI[T0D) adessau ssaw JINOD adessou SLNIAG
NASHY Jid J MUVH ASvdT1d9d ADV NASTY AIJV NASTYU (MYV JLIANNOISIA aa
101Je 3JTem| I0J 3Iem I0J 3TeMm AILDIANNOD J0J 3TEM I0J 3TEM 10F JTem I0J 1TEM LIOANNOONN
JST VLS ZI V1S 6 VLS ¢I-L VIS 9 V1S S VIS ¥ VIS ¢ VIS 1 VIS SALV.L
(d41) d49Q. UOT3IDLUU0dSIQ ST/Q 9TIqel

127

T VIS T VIS T VIS T VIS T ViS T VIS T VIS T VIS
“JTpUT *DJTIpUT “DIpPUTL *OTIpUT *JTpuUT *DIpUT "JIpUT *OTPpUT o8essou
rdogav Lyogayv nogy Ly04gyv oav yoav ldogv nogyv Laogav
Z0T JA3 ¢0T JAd Z0T JAd 20T FAd ¢0T dIAd Z0T 3A3 20T JAH Z0T dAd 1¢ dIAd
T VIS T VIS T VIS T VLS T VIS T VIS T VIS 1 VIS 1sanbau
Lyoqav
gy puss gy puss gy puss gy puss vy puas Vv puss qy puas ay puss Z AAA
(sy)
(s¥) ud ¥d 19ylio SLNFAA
13yjoue I31je -ue x213je ssau ())OV o8essoaw | "ssauw (NOD | Ssauw INOD asuodsaux asuodsaux
NASTY Mau NASIY PIO NASTY) ¥d | (NASTY) U4 | @ YVW) ud D NYUVYW NASTY a YAVW
103 3TeM IOy 3TeM | 193Je 3ITem [191Fe ITeM | I931Je 1TemM 10J 1TEM 10F 1TeM J0J 1TIEM
ast VIS Y9 VIS JST VIS 4sT VIS VST VIS Z1 VIS IT VIS 01 VIS SALVILS
j10qy T-9T1/0d °Iqel
1 VIS T VIS T VIS T VIS T VIS T VIS T VIS T VIS T VLS
‘oTput dTput ‘orpurt oTpul ToTpur ‘OTpurt *oTpur ‘oTput adessau
Lao4yv Lyogyvy AR:(0)0 Ldoqyv Lyogvy aogyv njoay 09y M09V
70T JAT}Z0T FAT 20T dAd Z0T dIAd Z0T dAd Z0T dAd Z01 dAd Z0T dA3 1€ JAd
T VIS T VIS T VIS T VIS T VIS T VIS T VIS T VIS 1sonbaux
Lioay
gy pusasj gy puss dv puss dy puss qvy puss gy puss gv puss qy puss 7 AT
osuodsax k *dsax (uoTSTIT10D) o3essaw | *ssauw JNOD s3essauw o8essau SLNAAT
gSvaTIu! TIVLSH ADV NASTY AJV NASTH a MAVW NNODJSId 14300V
103 3TemjiIoF 1TEM dg1DINNOD I0J 1TIBM X0J 3TeM 103 1TEM 103 31EM 10F 1TEM NNODNN
6 VIS 8 VLS ¢I-L VIS 9 VIS S VIS ¥ VIS ¢ VIS VZ VIS 1 VIS SALVL
1I0Qy 91/Q °1qel

129

" (SNIXOI FAID) Id puds ST UOTIO® Y3 usy3l
/pauTFopun IO SpTS AW ISYITS ST USYOL ©IBA 9Y3I II

6°0 FION
9 VIS S VIS ¥ VIS ¢ VIS 2dessau
‘OTpuUT oTpur SN0
L dATD AT HATO
80T IAd 80T dAd [Z HdAd
9 VIS S VIS v VLS ¢ VIS a3essau
OTpuTt ‘OTpuUl NINO.L
L dSvd1d L 9Sva1d ASVITd
60T A4 60T dAd €7 A1
O 1sonbau
’0’0‘0’0‘0’0‘0’0’0’ SNANXO.L
1sonbau
SN:NO.L
ISV I
6 AAl
(uotrstyyrOD) afessauw | "ssam JNO) s8essou SLNIAY
ADV NASHY AIV NASHY a MAVA NNODSTQ
10J 3Tem I10J 1tem 10J 3TeMm 10J 31LM
9 VLS S VIS b VLS ¢ VIS SHLVIS

I3FsuUeI] USYOJ

LT/Q 9T1qel

131

*(SNIX¥OI FAID) IQ PUas ST UOTIOP Jy3z Usyz
‘peurIopun I0 SpTS AW IIYITS ST USYOI ®IBQ Y3 II

6°d JION
JST VIS 4ST VIS VST VIS 1 VIS €I-L VIS odessom
*OTpuT *OTpuUT JTpUT SNAINOL
L FAID L FAI9 1 JAID dAIo
80T AT 80T IAT 80T IAI 1Z JA]
JST VIS 4s1 VIS VST VIS 1 VIS €1-L VIS a3essaum
*oTput *oTpur JTpur NINOL
1l 3sva1d L 3svaid 1 3svald asvITd
60T IAT 60T TAT 60T FAT €7 JAT
4ST VIS 01 VIS ¢1-L VIS 3sanbax
SNANOL
(210U 995) JATH
19 puas 19 puss 8 AT
4ST VIS 0T VIS €1-L VIS 1sanbad
SNTNOJ
asviad
1d puss 1d puss 6 JAT
“ssau C_U< o8essowm |'ssaw mn—ZOU ‘ssaum JNOD asuodsax SINIAT
NASTU) dd | (NASTY) Ud | d NAVW) dd J NUVW a YAV
houmm 1TEeM hvu,«m u««wi Houwm H._HNI .—.O.« HNGZ kow ITEeM QNFUNZZOU
JST VIS ST VIS VST VIS 71 VIS 0T VIS €I-L VIS | STLVIS

I9Fsuel] ueyol T-.T/Q 9Tqel

= 133 -

APPENDIX E

EXTENSIONS

GENERAL
This appendix'is not an integral part of the standard.

It is provided to aid understanding and use of the standard
by explaining some future extensions and related matters
which have been considered by ECMA during its development.

This is a basic session protocol, designed to allow such
extension to be added in a modular way which preserves
compatibility.

LIAISON WITH OTHER STANDARDIZATION BODIES

During the development of this standard by ECMA, there has
been close liaison with several other standards bodies, es-
pecially the ISO Open System Interconnection Sub-committee
(ISO0/TCY97/SC16).

ECMA is an active contributor to the development of ISO ses-
sion layer standards by SCl16/WG-6. The technical content of
this ECMA standard has a high degree of commonality with

the current (1981) ISO work, which is till at a formative
stage prior to agreement of ISO standards. The intention is
that future developments will continue to benefit from this
close liaison.

ADDITIONAL SUBSETS

The standard defines general session layer concepts, services
and protocol, and then uses these in the definition of
subsets, which are the definitive items for purposes of con-
formance and variety control.

The subsets defined in this basic standard are designed for
certain specific requirements (see 2.3). The concepts, ser-
vice and protocol defined in the standard are limited to
what is needed for these subsets.

When other requirements have been agreed in sufficient de-
tail and with sufficient generality to be standardized, it
will be possible to define additional standard subsets to

meet these requirements, and to extend the concepts, ser-

vices and protocol accordingly.

For example, it is anticipated that future development of
the more sophisticated classes of virtual terminal protocol
will require a richer set of session services and protocol.

Eas

4

«D

- 134 -

FLEXIBILITY FOR FUTURE EXTENSION

The flexibility for future modular extension while preserv-
ing compatibility is obtained in three main ways.

Firstly, the concepts, services and protocol included in
this initial session layer standard have been selected to
support this purpose. They are sufficiently open-ended to
allow future development.

Secondly, the definition of four different aspects of the
protocol has been decoupled:

- the protocol for exchange of session-protocol-data-units
(see subsection 3.2)

- the protocol for transport-service-mapping (see subsection
3:3.) '

- the encoding of session-protocol-data-units (see subsec-
tion 3.4)

- the protocol subsets (see subsection 3.5)

To a certain degree, each of these can be changed independ-
ently, without affecting the others.

Thirdly the encoding is designed to be highly flexible:

- all variables within an element of protocol are individu-
ally fully encoded wherever practicable (instead of collec-
tive encoding of groups of variables, restricting the
possible combinations),

- self-defining formats are used to enable future insertion
of new variables and extension of existing ones,

- where future extensions are already anticipated, reserved
fields and reserved values have been provided for them.

These encoding characteristics allow future protocol changes
with least possible impact on the then existing implementa-
tions.

PERFORMANCE

Performance efficiency is an important consideration in the
design of the protocol, the primary concern has been to
limit the quantity of interactions needed to achieve a par-
ticular purpose and the principal means of achieving better
efficiency are:

- 135 -

- mapping the most frequently occuring elements (i.e. data
transfer, data delimiting, token transfer and marks) into
one SPDU and optimizing the encoding accordingly (i.e. the
DT) «

- minimizing the number of '"handshakes' needed in certain
frequently occuring actions (e.g. connection-establishment,
connection-termination, synchronization-points).

- provision for blocking of multiple SSDUs into an SPDU.

i E.6 COMPLETENESS OF THE SERVICE DESCRIPTION

The definition of the abstract session-service (see section 2)
provides a detailed specification of the service primi-
tives and their parameters. It also defines the sequences
0 of primitives within each service structure, and the general

1 interactions between service structures (i.e. whether effects

| are destructive or non-destructive, normal or expedited).
However, it does not define the complete detail of how all
primitives interact at an SSAP (i.e. what primitives
can be issued in which conditions, and what happens when
certain events collide).

The definitive specification of interactions is only in the
formal description of the protocol (see appendix D).

Some preliminary work has been done on comprehensive form-
al description of the abstract services, additional to and
separate from the formal description of the protocol. This
involves the development of a new notation for formal des-
cription of services (the issues are general to all services
not particular to the session service). This work is not

yet ready for standardization; it is a candidate for inclu-
sion in future versions of the standard.

‘ E.7 ADDITIONAL FACILITIES

The standard does not include session layer fast-connect/
disconnect and connectionless-data-transmission facilities.
The inclusion of these is for further study. Some prelimina-
ry design has been studied.

No other requirements for major additional facilities have
been identified (except re-negotiation, see E.8). All the
other extensions are refinements of facilities already in-
cluded in the standard.

E.8 NEGOTIATION ENHANCEMENTS

In this standard, session-connection parameters are nego-
tiated in a very simple way, At session-connection esta-
blishment, the characteristics are mostly determined by the
initiator (the acceptor choice is essentially to accept or
reJect the connection). There is no means to change the ses-
sion-connection-parameters during the lifetime of a session-
connection.

Es

.10

.11

- 136 -

ECMA has developed more sophisticated negotiation proce-
dures for other OSI protocols. The current design is a pro-
per subset of these procedures. Preliminary designs for

such enhancements (including renegotiation of session-connec-
tion parameters) have been studied and certain encodings
have been reserved for this use.

SYNCHRONIZATION ENHANCEMENTS

Preliminary designs have been studied for extension of the
synchronization concepts, services and protocol defined in
this standard. Encodings have been reserved for this use.

The main topics are: provision of additional subtypes of
synchronization—points and marks, extra handshakes, various
kinds of quiescence, nprackets", and concurrent marking

of synchronization points independently in each direction ‘
of flow. ' ’

TOKENS ENHANCEMENTS

It is foreseen that some requirements for additional types
of token and additional kinds of token manipulation could
arise.

Additonal tokens are probably needed to support enhanced
session services. There may be a need for "free-tokens"
manipulated by the session-service, but with semantics de-
fined by the ss-users transparently to the session service.

There may be a need to provide an "ynassigned'" state and an
"assigned both ends" state for tokens and the means to move
them between these and other states.

Some preliminary designs have been studied and some encodings
have been reserved for these extensions.
TRANSPORT MAPPING ENHANCEMENTS

The standard defines a very simple transport mapping. Can-
didate enhancements are:

a) use of "fast-connect/disconnect" and "connectionless"
transport services;

b) a variant which optionally avoids use of the transport
expedited data transfer service, enabling use of the
lowest transport protocol classes (this probably involves
a restricted session service);

c) protocol for the use of multiple consecutive transport-
connections by the same-session connection;

d) associated with the above is protocol to give resilience
to transport failures;

e) protocol to enable the same transport-connection to be re-
used by multiple consecutive session-connections;

et o

«l2

- 137

f) protocol to allow session-connection establishment in
either direction on a transport connection;

g) protocol to use the data parameters of the transport
connection-establishment phase (i.e synchronous esta-
blishment of session-connection and transport-connection;
this depends mainly on clarification of size variables).

Some preliminary designs have been studied (e.g. use of an
ABORT ACK message), and some encodings have been reserved
(e.g. the transport disconnection code in FINISH, DISCONNECT
and ABORT messages).

CONFORMANCE TESTING

This standard does not specify detailed testing methods
to verify conformance. The technical work to define such
testing methods is as yet only at a formative stage. It
is intended to specify conformance testing and associated
diagnostic aids in a future version of the standard.

