ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

¢ STANDARD ECMA-82
LOCAL AREA NETWORKS
(CSMA/CD BASEBAND)
LINK LAYER
&

September 1982

Free copies of this document are available from ECMA,
European Computer Manufacturers Association

114 Rue du Rhone — 1204 Geneva (Switzerland)

* ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

(%) STANDARD ECMA-82

LOCAL AREA NETWORKS
(CSMA/CD BASEBAND)

LINK LAYER

September 1982

BRIEF HISTORY

Open Systems Interconnection standards are intended to facilitate
homogeneous interconnection of heterogeneous information process-
ing systems. This Standard is within the framework for the co-
ordination of standards for Open Systems Interconnection which is
defined by ISO 7498. It is based on the practical experience of
ECMA Member Companies world-wide, and the results of their active
participation in the current work of ISO, CCITT, TEEE and national
standardization bodies in Europe and the USA. It represents a
pragmatic and widely based consensus.

This standard is one of a series of standards to be developed
and published by ECMA in the field of Local Area Networks.
These ECMA standards refer to several LAN techniques:

- Carrier Sense Multiple Access with Collision Detection
(CSMA/CD)

- Token Techniques (Bus, Ring).

This Standard ECMA-82 was adopted by the General Assembly of
ECMA in June 1982.

TABLE OF CONTENTS

GENERAL

1.1 Scope
1.2 References
1.3 Definitions

1.3.1 Broadcast medium
1.3.2 Broadcast transmission
1.

N N

Collision Detection (CSMA/CD)
Collision

Data Terminal Equipment (DTE)
Jam

o O

Link Service Data Unit (LSDU)

.10 Medium Access Data Unit (MADU)
.11 Multicast

.12 Padding

.13 Preamble

|7 formance
GENERAL DISCRIPTION

SERVICE DEFINITION

3.1 Link Layer Service

3.1.1 Connectionless-Data-Transmission

Service
3.1.2 Connection Oriented Service

3.2 Physical Layer Service

FUNCTIONS WITHIN THE LAYER

4.1 Logical Link Control Sublayer
4.2 Functions within the Framing Sublayer

4.2.1 Transmission
4.2.2 Reception

4.3 Functions within the Media Management
layer

4.3.1 Normal Operation
4.3.2 Contention Operation
PROTOCOL FORMATS

5.1 Frame Structure
5.2 Physical Frame

5.2.1 Preamble
5.2.2 Start of Information Field
5.2.3 End of frame delimiter

.3 Carrier Sense Multiple Access with

Link Service Access Point (LSAP)

3
. +3
1.3
14593
153
1.3.9 Logical Link Control Data Unit (LLCDU)
1.3
14,3
153
153
Con

Page

e T gy S

NN NN

N

9

11
11
11
11

6.

Table of Contents (cont'd)

5.3 Media Access Data Unit
5.3.1 Destination DTE Address Field
5.3.2 Source DTE Address Field
5.3.3 LLCDU Octet Count
5.3.4 Padding
5.3.5 Frame Check Sequence Field

5.4 Logical Link Control Data Unit

o]

" Control Field
Data Field

C
4.1 Address Fields
. 2

3

v U
s i =

SPECIFIC PARAMETERS

APPENDIX A - FORMAL SPECIFICATION

A.
A.

1
2

~N O vl = N

Introduction

The ECMA CSMA/CD Media Access Procedural
Model

Frame Transmission Model

Frame Reception Model

Global Declarations

Frame Transmission

Frame Reception

Page

11

11
1.2
13
13
13
14
14

L5
15

15

16
16

16
22
24
206
29
33

1s

1.

1

GENERAL

Scope

For the purpose of compatible interconnection of data
processing equipment via a local area network using the
carrier sense multiple access with collision detection
technique (CSMA/CD), this Standard ECMA-82;

- defines in abstract form the services provided by the
Link Layer (see 3.1),

- defines the services assumed to be available at the
conceptual interface between the Link Layer and the
underlying Physical Layer (see 3.2),

- specifies the functions within the Link Layer (see 4),

- specifies the structure and encoding of the link-proto-
col-data-unit (see 5),

- specifies Link Layer protocol size and timing parameters
(see 60).

A particular emphasis of this Standard is to specify the
homogeneous externally visible characteristics needed

for interconnection compatibility, while avoiding unneces-
sary constraints upon and changes to the internal design
and implementation of the heterogeneous processing
equipment to be interconnected.

The operation of this protocol is of the connectionless-
data-transmission type. Extension to include connection-
oriented operation is for future study. The specification
of hardware and software implementation interfaces 1s out-
side the scope of this Standard.

References

ISO 7498 Data Processing - Open Systems Interconnec-
tion - Basic Reference Model.

ECMA-72 Transport Protocol.

ECMA-81 Local Area Networks (CSMA/CD Baseband) -
Physical Layer.

ECMA-80 Local Area Networks (CSMA/CD Baseband) -
Coaxial Cable System.

ECMA-TR/14 Local Area Networks Layers 1 to 4 Architecc-
ture and Protocols.

Definitions

For the purpose of this Standard the following definitions
apply.

.1 Broadcast medium

The class of media in which all stations are capable
of receiving a signal transmitted by any other station.

.2 Broadcast transmission

A transmission addressed to all stations on a broad-
cast medium.

W

W

WA

W

(O3]

.0

.9

<11

Carrier Sense Multiple Access with Collision Detection

(CSMA/CD)

The generic term for a class of link management pro-
cedure which allows:

- multiple stations to access a broadcast channel at
will (without explicit prior coordination),

- avoids contention via carrier sense and deference,
and

- resolves contention via collision detection and
retransmission.
Collision

The result of multiple transmission overlapping in
the transmission medium, resulting in corrupted data
and necessitating retransmission.

Data Terminal Equipment (DTE)

The source and sink for all communication on the net-
work. This includes all equipments attached to the
medium, including the means of connection.

Jam

An encoded bit sequence used for collision enforcement.

Link Service Access Point (LSAP)

The point at which Link Level Services are provided
by Link Level entity to a Network Level entity.

Link Service Data Unit (LSDU)

A unit of information which is exchanged between
Link Service Access Points (LSAP).

Logical Link Control Data Unit (LLCDU)

An element of the Link Level protocol frame. This
includes the Destination and Source Link Service
Access Points, a protocol control field and the ser-
vice user data.

Medium Access Data Unit (MADU)

A unit of Link Level data which is encapsulated by
the physical transmission frame. This includes the
destination and source DTE addresses, the LLCDU octet
count, the LLCDU, any padding and a frame check se-
quence.

Nglticast

An addressing mode in which a given frame is tar-
geted to a group of logically related stations.

Padding

Additional non-significant data required to prevent
short frames.

Preamble

A sequence of encoded bits which the Physical Layer

transmits before each frame to allow synchronization
of clocks and other Physical circuitry at other DTEs
on the network.

1.4 Conformance

Equipment conforming to this Standard shall implement the
provisions specified in sections 4, 5 and 6.

There are no conformance requirements for the layer ser-
vices defined in section 3.

2. GENERAL DESCRIPTION

ECMA-TR/14 discusses the relationship between this Standard

and other ECMA Standards for Local Area Network intercon-
. nection. This relationship is illustrated diagrammatically
below.
ECMA-72 TRANSPORT LAYER

NETWORK LAYER

f

ECMA-82 LINK LAYER ECMA-TR/14
ECMA-81 PHYSICAL LAYER
ECMA-80 MEDTIUM

The Link Layer provides the means of data transmission via the
services provided by the Physical Layer.

The general structure of the Link Layer is illustrated in the
following figure.

LINK LAYER SERVICE

LOGICAL LINK CONTROL SUBLAYER

FRAMING SUBLAYER

MEDIUM MANAGEMENT SUBLAYER

PHYSICAL LAYER SERVICE

3. SERVICE DEFINITION

3.1 Link Layer Service

The service provided by the Link Layer to the Network Layer
1s defined in accordance with the ISO Basic Reference Model
for Open Systems Interconnection.

3+s1.1 Connectionless-Data-Transmission Service

The connectionless data transmission service provides a
means of communication without the establishment of a
Link Layer connection.

The data transfer may be point to point or multicast.

The primitives for connectionless-data-transmission are
- L DATA request ‘
- L DATA indication

The L DATA request primitive is passed to the Link Layer
to request that an LSDU be sent to one or more remote
LSAPs. The L DATA indication primitive is passed from
the Link Layer to indicate the arrival of an LSDU.

5.1.1.1 L DATA request

Function:

This primitive is the service request primitive for
the connectionless-data-transmission service.

Semantics:
The parameters are as follows:

L DATA request (source address, destination address,
LSDU) .

The source address and destination address parameters ‘
specify the DTEs and LSAPs involved in the transfer.

The destination address may specify either an indivi-

dual address or a multicast address. The LSDU para-

meter specifies the Link Service Data Unit to be
transmitted.

Generated:

This primitive is passed from the Network Layer to
the Link Layer to request that a LSDU be sent to one
or more remote LSAPs.

Effect:

Receipt of this primitive causes the Link Layer to
attempt to send the LSDU using connectionless proce-
dures.

3.1.1.2 1. DATA indicatiou

Function:

This primitive is the service indication primitive
for the connectionless-data-transmission service.

Semantics:
The parameters are as follows:

L DATA indication (source address, destination
address, LSDU).

The source address and destination address parame-
ters specify the DTEs and LSAPs involved in the
transfer. The destination address may be the address
of a local LSAP, or may be a multicast address spe-
cifying multiple LSAPs including a local LSAP. The
LSDU parameter specifies the Link Service Data Unit
which has been received.

Generated:

This primitive is passed from the Link Layer to the
‘ Network Layer to indicate the arrival of an LSDU.

Effect:

The effect of receipt of this primitive by the Net-
work Layer is outside the scope of this Standard.

(O3]
=
Do

Connection Oriented Service

Connection oriented services are not defined in this
Standard. The relationship between this Standard and
ECMA-71 (BAZ 8-LAP B) is for future study.

3.2 Physical Layer Service

The services assumed to be available from the Physical
Layer at the conceptual interface between the Link Layer
and the underlying Physical Layer, are as defined in
Standard ECMA-81.

The names of the Physical Layer services referred to in
. this Standard are:

- Signal Error Indication,

- Input Data Indication,

- Carrier Indication,

- Output Data Request,

- Output Complete Indication,
- Output Data Response,

- Output Request.

4. FUNCTIONS WITHIN THE LAYER

For the purposes of description, the functions within the
Link Layer are defined in terms of a functional partition-
ing into sublayers. There is no requirement for a correspond-
ing internal structure of implementations of the protocol.
The requirements are that the Link Layer behaviour externally
visible on the network shall be as defined below.

4.
4.2,

2

4.3.

Logical Link Control Sublayer

The function of the Logical Link Control Sublayer is to
request the transmission of a Link Service Data Unit
(LSDU). It concatenates the Destination Link Service
Access Point (DLSAP), the Source Link Service Acces
Point (SLSAP) and the Logical Link Control Data Unit
(LLCDU) into a suitable format for the framing sublayer.

Functions within the Framing Sublayer

1 Transmission

When the Logical Link Control Sublayer requests the
transmission of a frame, the Framing Sublayer constructs
the frame from the Logical Link Control Sublayer supplied
data. The frame structure and content is defines in sec-

tion 5. ‘

The CSMA/CD media access mechanism necessitates a mini-
mum frame length. The Framing Sublayer adds padding as
specified in section 5.

.2 Reception

The Framing Sublayer checks the frame's destination DTE
address field to decide whether the frame should be re-
ceived by this station. If so, it passes the contents

of the frame to the Logical Link Control Sublayer to

set up an appropriate status code. The status code is
generated by inspecting the Frame Check Sequence to
detect any damage to the frame, and by checking for
proper octet boundary alignment of the end of the frame.

The procedure for invalid frames is not defined.

Functions within the Media Management Sublayer

The functions within the Media Management Sublayer are
primarily concerned with avoiding, detecting and recover-
ing from contention with other DTEs on the Network. The
procedures defined below shall be used.

1 Normal operation

4.3.1.1 Transmission without contention

When a LLC sublayer of a transmitting DTE requests
transmission of a frame, the Framing Sublayer con-
structs the MADU from the LLC supplied data and
appends a Frame Check Sequence to provide error de-
tection. The frame is then handed to the Medium
Management Sublayer for transmission. The Medium
Management Sublayer initiates transmission by us-
ing the Physical Layer primitive: Output Request.
The Medium Management Sublayer then send each bit
of the MADU by using the Physical Layer primitive:
Output Data Response, in response to a Physical
Layer primitive: Output Data Request.

4.3.1.2

45035 . 1S

4,318

When transmission has completed without contention
the Medium Management Sublayer so informs the Phy-
sical Layer by sending the primitive: Output Complete
Indication, and awaits the next request for frame
transmission.

Reception without contention

At the receiving DTE, the arrival of a frame is first
detected by the Physical Layer which responds by
synchornizing with the incoming preamble, and by assert-
ing the Carrier Indication. As the encoded bits

arrive from the medium, they are decoded and translat-
ed back into binary data. The Physical Layer sends

an Input Data Indication for each bit to the Medium
Management Sublayer, where the leading bits are dis-
carded up to and including the end of the preamble

and start of information field delimiter.

The end of the Media Access Data Unit is signalled
by removing the Carrier Indication. The Media Access
Data Unit is then passed to the framing sublayer.

Carrier Deference

Traffic on the physical medium is monitored by means
of the Carrier Indication.

When the Carrier Indication is removed, there is a

further delay before any transmission is initiated.
This is the Inter Frame Gap defined in 4.3.1.4 and

section 6. After this, any pending transmission 1s

initiated before resuming monitoring of the Carrier
Indication.

Inter Frame Gap

As defined in 4.3.1.3, the rules for deferring to
passing frames ensure a minimum Inter Frame Gap.

This is intended to provide interframe recovery

time.

The Inter Frame Gap shall be of at least the duration
defined in Section 6. If necessary for implementation
reasons, a transmitting DTE may use a larger value
with a resulting decrease in its throughput.

4.3.2 Contention Operation

4.3.2.1

Collision Handling

After a DTE has finished deferring and has started
transmission, it is possible for collisions to occur
until acquisition of the network has been accomplish-
ed through the deference of all other DTEs.

The dynamics of collision handling are largely deter-
mined by a single parameter called the Slot Time.

S}

4.3.2.

4.3.2.3

This parameter describes three important aspects of
collision handling:

- It sets an upper bound on the acquisition time of
the network,

- It sets an upper bound on the length of a frame
generated by a collision,

- It is scheduling quantum for retransmission. In order
to fulfill all three functions, the Slot Time is re-
quired to be larger than the sum of the Physical
Layer round trip delay and the Media Access Layer
maximum Jam Size Time (see section 6). The Slot Time
defined in section 6 shall be used.

Collision Detection and Enforcement

Collisions are detected by monitoring the Signal Error
Indication provided by the Physical Layer. When a colli-
sion is detected during a frame transmission, the trans-
mission is not terminated immediately. Instead, the
transmission continues until additional bits specified
by Jam Size (see section 6) have been transmitted
(counting from when the Signal Error Indication was
sent). This collision enforcement or Jam guaranteeds
that the duration of the collision is sufficient to en-
sure its detection by all transmitting DTEs on the
network. The content of the Jam is unspecified: it may
be any fixed or variable pattern convenient to the

Data Link implemenation, but should not be the 32-bit
FCS value corresponding to the (partial) frame trans-
mitted prior to the Jam.

If while transmitting the preamble, the Signal Error
Indication occurs, any remaining preamble bits shall
be sent immediately followed by the Jam.

Collision Backoff and Retransmission

When a transmission attempt has terminated due to a
collision, it is retried by the transmitting DTE un-
til either it is successful, or a maximum number of
attempts (Attempt Limit defined in section 6) have
been made and all have terminated due to collisions.
No subsequent outgoing frame are transmitted until
all attempts to transmit a given frame are complet-
ed. The scheduling of the retransmission is determin-
ed by controlled randomization process called "trunc-
ated binary exponential backoff'". At the end of en-
forcing a collision (Jamming, see section 4.3.2:2),
the DTE delays before attempting to retransmit the
frame. The delay is an integral multiple of Slot
Time. The number of Slot Times to delay before the
retransmission attempt is chosen as a uniformly dis-
tributed random integer r in the range 0 r 2"k
where k = min (n, Backoff Limit, defined in section 6

5.

S

1

The above defines the most aggressive behaviour that
a DTE may exhibit in attempting to retransmit after

a collision. In the course of implementing the re-
transmission scheduling procedure, a DTE may intro-
duce extra delays which will degrade its own through-
put, but in no case shall a DTE's retransmission
scheduling result in a lower average delay between
retransmission attempts than the procdure defined a-
bove.

(O]
NS}
S~

Reception with Contention

At the receiving DTE, the bits resulting from a colli-
sion are received and decoded by the Physical Layer.

A Signal Error Indication at the receiving DTE is ig-
nored. Instead, the fragmentary frames received during
collisions are distinguished from valid frames by al-
ways being smaller than the shortest valid frame (see
Minimum Madu Size, defined in section 6). Such frag-
ments are discarded by receiving Medium Management
Sublayer.

PROTOCOL FORMATS

Frame Structure

The frame structure shall be as defined in sections 5.2, 5.3
and 5.4. This structure is illustrated in figure 3. The oc-
tets of the frame are transmitted from top to bottom and the
bits of each octet are transmitted from left to right.

p* octet PREAMBLE
Start of Information Field |
1 octet |
[
(ind@vidual[~ i i
aplEcast hit) | ESTINATION DTE ADDRESS .
octets } .
||]
6 octets SOURCE DTE ADDRESS |
M é
2 octets LLCDU octet count A h
VAN y
1 S |
1 octet DLSAP 1 i
G |
1 octet SLSAP I i
L £
1 octet Control
#
0 T D a
| 0 6 F ’ m
q* 1497 | DATA U a
to octets | ?
| * | L
1497 | | } |
~octets > AV4 | .
1 PAD 1 Lo
N i 1
4 octets FCS \L i ;
End of Frame Delimiter i
N N/

*p and q are defined in Section 0

FIGURE 3 - FRAME STRUCTURE

5.2 Physical Frame

The Physical Frame comprises a Preamble (see 5.2.1), follo-
wed by a Start of Information Field (see 5.2.2); then a Me-
dia Access Data Unit (see 5.3). It is terminated by an End
of Frame Delimiter (see 5.2.3).

5.2.1 Preamble

The Preamble is sent before the Start of Information
Field to allow the DTE circuitry to reach its steady-
state, with valid outputs throughout the system.

Upon request by the Link Layer to transmit the first bit
of a new MADU, the DTE shall first transmit the Preamble.

The Preamble bit pattern is presented to the Physical
Layer in the same manner as Link Layer information. The
pattern is an octet of value 10101010 (the left hand

. ONE is the first transmitted) repeated the number of
times defined in section 6.

5.2.2 Start of Information Field

The Start of Information Field (SIF) indicates the start
of a MADU and follows the Preamble. It is one octet in
length and has the pattern 10101011.

5.2.3 End of frame delimiter

A condition which is considered to exist for more than
3,5 but less than 5 bit times after the last FCS bit.

5.3 Media Access Data Unit

The Media Access Data Unit (MADU) is comprised of the follow-
ing sequence of fields: a Destination DTE Address Field

(see 5.3.1), a Source DTE Address Field (see 5.3.2), an

LLCDU octet count (see 5.3.3), a LLCDU (see 5.4), a Padding
Field if required (see 5.3.4), and a Frame Check Sequence
Field (see 5.3.5).

. The beginning and end of a MADU is defined by the Physical
Frame which encloses it.

5.3.1 Destination DTE Address Field

The Destination DTE Address Field itdentifies the DTE(s)
for which the frame is intended. It may be an individual
address or a multicast address. It may be a globally or
locally administrated address (the I/M bit of this field
is the first transmitted.

A
v

- 12 -

Individual address: the unique address associated with
a particular DTE on the LAN. A DTE's individual address
shall be distinct from the individual address of any
other DTE on the same LAN.

Multicast address: a multi-destination address, may be
associated with one or more DTEs on a given LAN. There
are two kinds of multicast address: multicast group
address and broadcast address.

- Multicast group address: an address associated by
higher level convention with a group of logically
related DTEs.

- Braodcast address: a distinguished, predefined multi-
cast address which always denotes the set of all DTEs
on a given LAN. This field consists of 48 ONEs.

The first bit of the address distinguishes individual
from multicast addresses:

ZERO

individual address (I)

ONE multicast address (M)

Address Administration: there are two methods of assign-
ing addresses, Global Administration and Local Administra-
tion.

- Global Administration: with this method all individual
addresses are required to be distinct from the indivi-
dual address of any other DTE on any LAN. All multicast
addresses are required to be different such that no
group of logically related DTEs has the same address
as any other logically related DTEs. The procedure for
administration of these addresses is not defined in
this Standard.

- Local Administration: Each individual and multicast
address in any given LAN is assigned by the local
administration of the given LANs. The procedure for
administration of these addresses is not defined in
this Standard.

The second bit of the address distinguishes between
globally administrated and locally administrated addres-
568

ZERO = global administration
ONE = local administration

Source DTE Address Field

The Source DTE Address Field identifies the DTE sending
the frame. The source DTE Address Field is not interpret-
ed at the Link Layer. It is specified at the Link Layer
because a uniform convention for the placement of the
field is crucial for most higher level protocols.

The source address may be Globally or Locally ad-
ministrated. The I/M bit shall normally be ZERO; the
significance of it being set to ONE is undefined in
this Standard and is for future study. The second
bit is encoded as defined in 5.3.1 (the I/M bit of
this field is the first transmitted).

| |

LLCDU Octet Count

These two octets contain a binary value of the number
of octets in the LLCDU. The high order octet is trans-
mitted first. Each octet is transmitted low order bit
tirst.

Padding

Padding is used to fill a frame in order to meet the
minimum MADU size requirements (see 6). The

padding octet values are not defined in this Standard.

Frame Check Sequence Field

The Frame Check Sequence (FCS) field contains a
4-octet (32-bit) cyclic redundancy check (CRC) value.
This value is computed as a function of the contents
of all MADU fields except the frame check sequence
field itself. The encoding is defined by the generat-
ing polynomial:

G(x) = x32+x264,23,,22,,16, 12, 11, 10

+x8+x7+x5+x4+x2+x+l

Mathematically, the CRC value corresponding to a
given frame is defined by the following procedure:

- The first 32 bits of the frame are complemented.

- The n bits of the frame are the coefficients of
a polynomial M(x) of degree n-1. (The first bit
of the destination address field corresponds to
the xn-1 term and the last bit of the data field
corresponds to the x¥ term).

- M(x) is multiplied by x32 and divided by G(x),
producing a remainder R(x) of degree smaller
than 31.

- 14 -

- The coefficients of R(x) are a 32-bit sequence.

- The bit sequence of complemented and the result
is the CRC.

- The 32 bits of the CRC are transmitted in the order

51 30 1 0
x"7, X ceeX 4 X

.4 Logical Link Control Data Unit

The Logical Link Control Data Unit (LLCDU) relates to the
Logical Control Sublayer defined in section 4.1

All LLCDUs shall have the following format:

DLSAP SLSAP CONTROL DATA

(8 bits) (8 bits) (8 bits) (variable)

where

DLSAP = Destination Link Service Access Point address
field (see 5.4.1).

SLSAP = Source Link Service Access Point address field
(see 5.4.1).

CONTROL = Control field (see 5.4.2).

DATA = Data field (see 5.4.3).

5.4.1 Address Fields

Each LLCDU shall contain two logical address fields:
the Destination Kink Service Access Point address and
the Source Link Service Access Point address in that
order. The DLSAP address field shall specify the LSAP
for which the LLCDU is intended. The SLSAP address
field shall consist of an individual LSAP address

and it identifies the LSAP from which the transmis-
sion of the LLCDU was initiated.

DLSAP may be an individual address or a group address.

The format 1is

I
/ DDDDDDD
G

I1/G value ZERO
1/G value ONE

INDIVIDUAL DLSAP (or SLSAP)
GROUP ADDRESS DLSAP

The pattern 11111111 is for braodcast DLSAP address.
(the I/G bit of this field shall be the first trans-
mitted).

Control Field

[Oal
~
38}

This Control field is of one octet. For Connectionless-
Data-Transmission the value is 11000011.
The coding for other LLCDU types is for further studies.

5.4.3 Data Field

The Data field shall consist of any integral number
(including zero) of octets.

Because the format of a valid frame specifies an inte-
gral number of octets, only a collision or an error
can produce a frame with a length that is not an inte-
gral multiple of 8 bits.

6. SPECIFIC PARAMETERS

. The following specific parameter values referred to in

Section 4 and 5 shall be used:

Slot Time 512 bit times

Inter Frame Gap 9,6 us

Attempt Limit 160

Backoff Limit 10

Jam size 32 to 48 bits

Preamble length (p) 8 octets

Max MADU size lSlg octets

Min MADU size 64 octets (hence q = 43 octets).
These values are based on a 10 Mbit/s data rate, using the
physical medium defined in Standard ECMA-ZZ with a maximum
of length of 2,5 km.

"J.(J—

APPENDIX A

FORMAL SPECIFICATION

A.l Introduction

An algorithmic definition is given in this section, providing a procedural model for the ECMA
Media Access Method in the form of a program in the language Pascal. Note that whenever there
is any apparent ambiguity concerning the definition of some aspect of the EMCA Media Access
Method, it is the Chapters 4, 5, and 6 which should be consulted for the definitive statement.

A.2 The ECMA CSMA/CD Media Access Procedural Model

A.2.1 Overview of the Procedural Model

The functions of the ECMA CSMA/CD Medium Management and Framing Sublayers are
presented below, modeled as a program written in Pascal. This procedural model indicates the
functions to be provided in any ECMA CSMA/CD implementation. It is important to distinguish,
however, between the model and a real implementation. The model is optimized for simplicity and
clarity of presentation, while any realistic implementation must place heavier emphasis on such
constraints as efficiency and suitability to a particular implementation technology or computer
architecture. In this context, several important properties of the procedural model must be
considered.

A.2.2 Ground Rules for the Procedural Model

a) First, it must be emphasized that the description of the Medium Management and Framing
Sublayers in a programming language is in no way intended to imply that procedures must be
implemented as a program executed by a computer. The implementation may consist of any
appropriate technology including hardware, firmware, software, or any combination.

b) Similarly, it must be emphasized that it is the behavior of these implementations that must
match the standard, not their internal structure. The internal details of the procedural model are
useful only to the extent that they help specify that behavior clearly and precisely.

¢) The handling of incoming and outgoing frames is rather stylized in the procedural model, in
the sense that frames are handled as single entities by most of the Medium Management Sublayer
and are only serialized for presentation to the Physical Layer. In reality, many implementations
will instead handle frames serially on a bit, octet or word basis. This approach has not been
reflected in the procedural model, since this would only complicate the description of the functions
without changing them in any way.

d) The model consists of algorithms designed to be executed by a number of concurrent
processes; these algorithms collectively implement the ECMA CSMA/CD procedure. The timing
dependencies introduced by the need for concurrent activity are resolved in two ways:

- Processes vs. External events: It is assumed that the algorithms are executed "very fast"
relative to external events, in the sense that a process never falls behind in its work and fails
to respond to an external event in a timely manner. For example, when a frame is to be
received, it is assumed that the Medium Management procedure ReceiveF'rame is always
called well before the frame in question has started to arrive.

- Processes vs. Processes: Among processes, no assumptions are made about relative speeds
of execution. This means that each interaction between two processes must be structured to

- 17 -

work correctly independent of their respective speeds. Note, however, that the timing of
interactions among processes is often, in part, an indirect reflection of the timing of external
events, in which case appropriate timing assumptions may still be made.

It is intended that the concurrency in the model reflect the parallelism intrinsic to the task of
implementing the ECMA Link Layer procedures, although the actual parallel structure of the
implementations is likely to vary.

A.2.3 Use of Pascal in the Procedural Model

Several observations need to be made about the way in which Pascal is used for the model,
including:

a) Some limitations of the language have been circumvented in order to simplify the
specification:

1) The elements of the program (variables, procedures, etec) are presented in logical
groupings, in top-down order. Certain Pascal ordering restrictions have thus been
circumvented to improve readability.

2) The process and cycle constructs of the Pascal derivative Concurrent Pascal have
been introduced to indicate the sites of autonomous concurrent activity. As used here, a
process is simply a parameterless procedure that begins execution at "the beginning of
time" rather than being invoked by a procedure call. A cycle statement represents the
main body of a process and is executed repeatedly forever.

3) The lack of variable array bounds in the language has been circumvented by treating
frames as if they are always of a single fixed size (which is never actually specified). In
fact, of course, the size of a frame depends on the size of its data field, hence the value of
the "pseudo-constant" frameSize should be thought of as varying in the long-term,
even though it is fixed for any given frame.

4) The use of a variant record to represent a frame (both as fields and as bits) follows the
letter but not the spirit of the Pascal Report, since it allows the underlying
representation to be viewed as two different data types.

b) The model makes no use of any explicit interprocess synchronization primitives . Instead,
all interprocess interaction is done via carefully stylized manipulation of shared variables.
For example, some variables are set by only one process and inspected by another process in
such a manner that the net result is independent of their execution speeds. While such
techniques are not generally suitable for the construction of large concurrent programs, they
simplify the model and more nearly resemble the methods appropriate to the most likely
implementation technologies (e.g. microcode, hardware state-machines, etc.)

A.24 Organization of the Procedural Model

The procedural model used here is based on five cooperating concurrent processes. Three are
actually defined in the Medium Management and Framing Sublayers. The remaining two
processes are provided by the LLC Sublayer and utilize the Framing Sublayer. The five processes
are thus:

- 18 -

LLC Sublayer :

Frame Transmitter Process Frame Receiver Process

Medium Management Sublayer:

Bit Transmitter Process Bit Receiver Process

Deference Process

This organization of the model is illustrated in Figure A-1 and reflects the fact that the
communication of entire frames is initiated by the LLC Sublayer, while the timing of collision
backoff and of individual bit transfers is based on interactions between the Medium Management
Sublayer and the Physical-Layer-dependent bit-time.

Figure A-1 depicts the static structure of the procedural model, showing how the various processes
and procedures interact by invoking each other. Figures A-2 and A-3 summarize the dynamic
behavior of the model during transmission and reception, focusing on the steps that must be
performed, rather than the procedural structure which performs them. The usage of the shared
state variables is not depicted in the figures, but is described in the comments and prose in the

following sections.

CFrameTransmit[eD C FrameReceiver

LLC Sublayer
et ;—
4
TransmitFrame RecciveFrame
TransmitDataEncap ReceiveDataDecap FRAMING
CRC32 RecognizeAddress
L Y
v Media Access Sublayer ’ A
TransmitLinkMgmt ReceivelLinkMgmt
WatchForCollision BackOff StartReceive
r Y
StartTransmit Random MEDIGM
MANAGEMENT
‘< BitTransmitter) (Deference)
r Y Y
StartJam NextBit RealTimeDelay BitReceiver
s _Y_
3
TransmitBit Wait ReceiveBit
Physical Layer
< TRANSMIT < RECEIVE »

Figure A-1 Relationship among CSMA/CD procedures

_/

(TransmitFrame j (ReceiveFrame
Y Y

start receiving

assemble frame

<
Y

done receiving?

deferring on?

. Start transmission

frame 100 small?
(collision)

collisionDetect ?

send jam recognize address?

transmission done?

Y
increment attempts
ves
* valid frame
check sequence?
ves
too many attempts ?
. extra bits?

Y no

compute

backoff

Y Y ¥

wait backoff disassemble
ume frame L

I)
y Y Y , Y Done:
™ alignment
(Done: Done: Done: Done: Done: Error
L transmitOK excessiveCollisionError lengthErrorj receiveOK | |frameCheckError
FrameTransmitter Process FrameReceiver Process
(Invoking Media Access TransmitFrame Operation) (Invoking Media Access ReceiveFrame Operation)

Figure A-2 Control Flow Summary

no

deferring on

)

channel free?

vail
interframe spacing

Y

deferring off

frameWaiting ?

Deference process

Figure A-3

21

transmission started?

transmit a bit

Y

end of frame?

transmission done

Bit Transmitter process

receiving started?

ves

> receive a bit

Y

Ves

no

receiving done

Bit Receiver process

Control Flow -- Media Access Sublayer

A.3 Frame Transmission Model
Frame transmission includes Framing and Medium Management aspects:

Transmit Framing includes the assembly of the outgoing frame (from the values provided by
the LLC Sublayer), minimum frame size enforcement, and frame check sequence

generation.

Transmit Medium Management includes carrier deference, interframe spacing, collision
detection and enforcement, and collision backoff and retransmission.

The performance of these functions by a transmitting Link Layer interacts with corresponding
actions by other Link Layers to jointly implement the ECMA CSMA/CD protocol.

A3.1 Transmit Framing

A.3.1.1 Frame Assembly

The fields of the CSMA/CD frame are set to the values provided by the LLC Sublayer as arguments
to the T'ransmitFrame operation, with the exception of the padding necessary to enforce the
minimum frame size, and the frame check sequence, which is set to the CRC value generated by the

Framing Sublayer .

A.3.1.2 Frame Check Sequence Generation

The CRC value is generated and inserted in the frame check sequence field.
A.3.2 Transmit Medium Management

A.3.2.1 Carrier Deference

Even when it has nothing to transmit, the CSMA/CD Medium Management Sublayer monitors the
physical medium for traffic by watching the carrierSense signal provided by the Physical Layer.
(Note: Assertion of Carrier Indication by the Physical Layer causes the carrierSense signal to
become true and removing Carrier Indication causes it to become false). Whenever the medium is
busy, the CSMA/CD Medium Management Sublayer defers to the passing frame by delaying any
pending transmission of its own. After the last bit of the passing frame (i.e., when carrierSense
changes from true to false), the CSMA/CD Medium Management Sublayer continues to defer for a
proper interframe spacing, interFrameGap (see Section A.3.2.2). .At the end of that time, if it
has a frame waiting to be transmitted, transmission is initiated independent of the value of
carrierSense. When transmission has completed (or immediately, if there was nothing to
transmit) the CSMA/CD Medium Management Sublayer resumes its original monitoring of
carrierSense.

When a frame is submitted by the LLC Sublayer for transmission, the transmission is initiated as
soon as possible, but in conformance with the rules of deference stated above.

A.3.2.2 Interframe Spacing

As defined in Section A.3.2.1, the rules for deferring to passing frames insure a minimum
interframe spacing of interFrameGap sec. This is intended to provide interframe recovery time

w 3% =

for other CSMA/CD Medium Management Sublayer and for the physical medium.

Note that interF'rameGap is the minimum value of the interframe spacing. If necessary for
implementation reasons, a transmitting sublayer may use a larger value with a resulting decrease
in its throughput.

A.3.2.3 Collision Handling

Once a Medium Management Sublayer has finished deferring and has started transmission, it is
still possible for it to experience contention for the medium. Collisions can occur until acquisition
of the network has been accomplished through the deference of all other stations’ Medium
Management sublayers.

The dynamics of collision handling are largely determined by a single parameter called the slot
time. This single parameter describes three important aspects of collision handling:

- It is an upper bound on the aquisition time of the medium.
- It is an upper bound on the length of a frame generated by a collision.
- It is the scheduling quantum for retransmission.

In order to fulfill all three functions, the slot time must be larger than the sum of the Physical
Layer round-trip propagation time and the Medium Management Sublayer maximum jam time.

A.3.2.3.1 Collision Detection and Enforcement

Collisions are detected by monitoring the Signal Error Indication signal, collisionDetect,
provided by the Physical Layer. When a collision is detected during a frame transmission, the
transmission is not terminated immediately. Instead, the transmission continues until additional
bits specified by JamSize have been transmitted (counting from the time collisionDetect went
on). This collision enforcement or "jam" guarantees that the duration of the collision is sufficient to
insure its detection by all transmitting stations on the network. The content of the jam is
unspecified; it may be any fixed or variable pattern convenient to the Data Link implementation.
It should not be the 32-bit CRC value corresponding to the (partial) frame transmitted prior to the
jam,

A.3.2.3.2 Collision Backoff and Retransmission

When a transmission attempt has terminated due to a collision, it is retried by the transmitting
Medium Management Sublayer until either it is successful, or a maximum number of attempts,
attemptLimit, have been made and all have terminated due to collisions. Note that all attempts
to transmit a given frame are completed before any subsequent outgoing frames are transmitted.

The scheduling of the retransmissions is determined by a controlled randomization process called
"truncated binary exponential backoff". At the end of enforcing a collision (jamming), the Medium
Management Sublayer delays before attempting to retransmit the frame. The delay is an integral
multiple of slotTime. The number of slot times to delay before the nth retransmission attempt is
chosen as a uniformly distributed random integer r in the range 0 < r < 2k where k = min(n, 10).
If all attemptLimit attempts fail, this event is reported as an error.

Note that the values given above define the most aggressive behavior that a station may exhibit in
attempting to retransmit after a collision. In the course of implementing the retransmission
scheduling procedure, a station may introduce extra delays which will degrade its own throughput,
but in no case may a station’s retransmission scheduling result in a lower average delay between

retransmission attempts than the procedure defined above.

A.3.3 Minimum Frame Size

The CSMA/CD Media Access mechanism requires that a minimum frame length of slotT'ime bits
be transmitted. If frameSize is less than slotTime, then the CSMA/CD Framing Sublayer must
append extraoctets, or a pad, after the end of the LLC data field but prior to calculating, and
appending, the FCS. The number of pad units must be sufficient to ensure that the frame is at
least slotT'ime bits. The pad is determined using the value in the length field passed by the LLC
Sublayer.

Ad Frame Reception Model
Frame reception includes both data decapsulation and Medium Management aspects:

Receive Frame Handling comprises address recognition, frame check sequence validation,
and frame disassembly to pass the fields of the received frame to the LLC Sublayer.

Receive Medium Management’ recognizes collision fragments from incoming frames .
The performance of these functions by a receivingLink Layer interacts with corresponding actions
by other Link Layers to jointly implement the ECMA CSMA/CD protocol.
Ad.l Receive Frame Handling

Ad.1.1 Address Recognition

The Framing Sublayer is capable of recognizing individual and group addresses.

A.4.1.1.1 Individual Addresses
The Framing Sublayer recognizes and accepts any frame whose destination field contains the
individual address of the station.

A.4.1.1.2 Multicast Addresses
The Framing Sublayer recognizes and accepts any frame whose destination field contains the
broadcast address, or selected multicast group addresses as specified by higher layers..

A.4.1.2 Frame Check Sequence Validation

FCS validation is essentially identical to FCS generation. If the bits of the incoming frame
(exclusive of the FCS field itself) do not generate a CRC value identical to the one received, an error
has occurred and is reported as such.

A.4.1.3 Frame Disassembly
The frame is disassembled and the fields are passed to the LLC Sublayer via the output parameters
of the ReceiveF'rame operation.

A4.1.4 Physical Frame Management

The Framing Sublayer recognizes the boundaries of an incoming physical frame by monitoring the
carrierSense signal provided by the Physical Layer. There are three possible length errors that
can occur, which indicate ill-framed data: the frame may be too long,, it may be too short, or its
length may not be an integral number of octets.

A.4.1.4.1 Maximum Frame Size

The receiving Framing Sublayer is not required to enforce the frame size limit, but it is allowed to
truncate frames longer than 1518 octets and report this event as an (implementation-dependent)
error.

A.4.1.4.2 Minimum Frame Handling
The receiving Framing Sublayer will remove any padding added by the transmitting DTE.

A.4.1.4.3 Integral Number of Octets in Frame

Since the format of a valid frame specifies an integral number of octets, only a collision or an error
can produce a frame with a length that is not an integral multiple of 8. Complete frames (i.e., not
rejected as collision fragments; see Section A.4.2.1) that do not contain an integral number of octets
are truncated to the nearest octet boundary. If frame check sequence validation detects an error in
such a frame, the status code alignmentError is reported.

A.4.2 Receive Media Access Management

A.4.2.1 Collision Filtering

The smallest valid frame must be a least one slotT'ime in length. Any frame containing less than
slotTime bits is presumed to be a fragment resulting from a collision and is discarded by the
receiving Medium Management Sublayer. Since occasional collisions are a normal part of the
Medium Management procedure, the discarding of such a fragment is not reported as an error to
the LLC Sublayer.

A5 Global Declarations

This section provides detailed formal specifications for the CSMA/CD Media Access Mechanism. It
is a specification of generic features and parameters to be used in systems implementing this
ECMA media access method.

A.5.1 Common Constants and Types

The following declarations of constants and types are used by the frame transmission and reception
sections:

const
addressSize = 48 ; {in bits}
lengthSize = 16; ({in bits}
dataSize = ...; {LLCData,see A.2.3, note 3}
padSize = ...; {inbits, = max(0,slotTime-dataSize), see A.2.3, note 3}
creSize = 32; {32 bit CRC = 4 octets}
. frameSize = ...; { = 2*addressSize + lengthSize + dataSize + padSize + crcSize,
see A.2.3, note 3}

slotTime = 512; {unitoftime for collision handling and minimum frame handling}

type
Bit = 0..1;
AddressValue = array [1..addressSize] of Bit;
LengthValue = array [1..lengthSize] of Bit
DataValue = array [1..dataSize] of Bit;
PadValue = array [0..padSize] of Bit;
CRCValue = array [1..crcSize] of Bit;
ViewPoint = (fields, bits); {Two ways to view the contents of a frame}
Frame = record {FormatofMedia Access frame}
case view: ViewPoint of
fields: (

. destinationField: AddressValue;
sourceField: AddressValue;
lengthField: LengthValue;
dataField: DataValue;
padField: PadValue;
fesField: CRCValue);

bits: (
contents: array [1..frameSize] of Bit)
end; {Frame}

A.5.2 Transmit State Variables

The following items are specific to frame transmission.

const

- 27 -

interFrameSpacing = 9.6; {minimum time between frames in us}
attemptLimit = 16; {Max number of times attempt transmission}
backOffLimit =10; {Limiton number of times to back off}
jamSize = 48; ({in bits}

var
outgoingFrame: Frame; {The frame to be transmitted)}
currentTransmitBit, lastTransmitBit: 1..frameSize; {Positions of current and
last outgoing bits in outgoingFrame}
deferring: Boolean; {Implies any pending transmission must wait for the medium to
clear}
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
attempts: 0..attemptLimit; (Number of transmission attempts on outgoingFrame}
newCollision: Boolean; {Indicates that a collision has occurred but has not yet been
Jammed}
transmitSucceeding: Boolean; {Running indicator of whether transmission is
succeeding}

A.5.3 Receive State Variables
The following items are specific to frame reception.

var
incomingFrame: Frame; {The frame being received}
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}
receiving: Boolean; {Indicates that frame reception is in progress}
excessBits: 0..7; {Count of excess trailing bits beyond octet boundary}
receiveSucceeding: Boolean; {Running indicator of whether reception is
succeeding} :
validLength: Boolean; {Indicator of whether received frame has a length error}

A.5.4 Summary of Interlayer Interfaces

The interface to the LLC Sublayer is summarized below:

type
TransmitStatus = (transmitOK, excessiveCollisionError); {Result of
TransmitFrame operation}
ReceiveStatus = (
receiveOK, lengthError, frameCheckError, alignmentError); {Result of
ReceiveFrame operation}

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthParam: LengthValue;
dataParam: DataValue): TransmitStatus; {Transmits one frame}

function ReceiveFrame (
vardestinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthParam: LengthValue;
var dataParam: DataValue): ReceiveStatus; {Receives one frame}

: - 28 -

The interface to the Physical Layer is summarized below:

var
carrierSense: Boolean; {Indicates incoming bits}
transmitting: Boolean; {Indicates outgoing bits}
collisionDetect: Boolean; {Indicates medium contention}

procedure TransmitBit (bitParam: Bit); {Transmits one bit}
function ReceiveBit: Bit; {Receives one bit}

procedure Wait (bitTimes: integer); {Waits for indicated number of bit-times}

A.5.5 State Variable Initialization

The procedure Initialize must be run when the Medium Management and Framing Sublayers
begin operation, before any of the processes begin execution. Initialize sets certain crucial shared

state variables to their initial values. (All other global variables are appropriately reinitialized
‘ before each use.) Initialize then waits for the medium to be idle, and starts operation of the
various processes.

procedure Initialize;
begin
frameWaiting : = false;
deferring : = false;
newCollision : = false;
transmitting : = false; {In interface to Physical Layer; see below)}
receiving : = false;
while carrierSense do nothing;
{Start execution of all processes}
end; {Initialize}

A.6 Frame Transmission
The algorithms in this section define frame transmission.

The function TransmitFrame implements the frame transmission operation provided to the
LLC Sublayer:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthParam: LengthValue;
dataParam: DataValue): TransmitStatus;
procedure TransmitDataKEncap; ... {nested procedure; see body below}

begin
padParam := ComputePadParam,;
TransmitDataEncap;

TransmitFrame := TransmitLinkMgmt
end; {TransmitFrame}

First, TransmitFrame calls the internal procedure ComputePadParam to generate an
arbitrary array of type PadValue. TransmitDataEncap then is called to construct the frame.
Next, TransmitLinkMgmt is called to perform the actual transmission. The
TransmitStatus returned indicates the success or failure of the transmission attempt.

ComputePadParam builds the array padParam used in TransmitDataEncap to pad the
frame to the minimum frame size.

function ComputePadParam: PadValue;
begin

ComputePadParam : = {Build an array of size PadSize of arbitrary bits}
end; {ComputePadParam} '

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence
field:

procedure TransmitDataEncap;
begin
with outgoingFrame do
begin
{assemble frame}
view : = fields;
destinationField : = destinationParam;
sourceField : = sourceParam,;
lengthField : = lengthParam,;
dataField : = dataParam;
padField : = padParam;
fesField : = CRC32(outgoingFrame);
view : = bits
end {assemble frame}
end; {TransmitDataEncap}

TransmitLinkMgmt attempts to transmit the frame, deferring first to any passing traffic. If a
collision occurs, transmission is terminated properly and retransmission is scheduled following a

suitable backoff interval:

function TransmitLinkMgmt: TransmitStatus;
begin
attempts : = 0; transmitSucceeding : = false;
while attempts < attemptLimit and not transmitSucceeding do
begin {loop}
if attempts > 0 then BackOff;
frameWaiting : = true;
while deferring do nothing; {defer to passing frame, if any}
frameWaiting : = false;
StartTransmit;
while transmitting do WatchForCollision;
attempts : = attempts+1
end; {loop}
if transmitSucceeding then TransmitLinkMgmt : = transmitOK
else TransmitLinkMgmt : = excessiveCollisionError
end; {TransmitLinkMgmt}

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the
BitTransmitter process that bit transmission should begin:

procedure StartTransmit;

begin
currentTransmitBit := 1;
lastTransmitBit : = frameSize;
transmitSucceeding : = true;
transmitting : = true

end; {StartTransmit}

Once frame transmission has been initiated, TransmitLinkMgmt monitors the medium for
contention by repeatedly calling WatchForCollision:

procedure WatchForCollision;
begin
if transmitSucceeding and collisionDetect then
begin
newCollision : = true;
transmitSucceeding : = false
end
end; {(WatchForCollision}

WatchForCollision, upon detecting a collision, updates newCollision to insure proper
jamming by the BitT'ransmitter process.

After transmission of the jam has completed, if TransmitLinkMgmt determines that another
attempt should be made, BackOffis called to schedule the next attempt to retransmit the frame.

- 31 -

var maxBackOff: 2..1024; {Working variable of BackOff}

procedure BackOff;

begin
if attempts = 1 then maxBackOff:= 2 else if attempts < backOffLimit
then maxBackOff: = maxBackOff*2;
Wait(slotTime*Random(0, maxBackOff))

end; {BackOff}

function Random (low, high: integer): integer;
begin

Random := ...{uniformly distributed random integer r such that low < r < high}
end; {Random}

BackOff performs the truncated binary exponential backoff computation and then waits for the
selected multiple of the slot time.

The Deference process runs asynchronously to continuously compute the proper value for the
variable deferring.

process Deference;
begin
cycle{main loop}
while not carrierSense do nothing; {watch for carrier to appear}
deferring := true; {delay startofnew transmissions}
while carrierSense do nothing; {wait for carrier to disappear}
RealTimeDelay(interFrameSpacing);
deferring : = false; {allow new transmissions to proceed}
while frameWaiting do nothing {allow waiting transmission (if any)}
end {main loop}
end; {Deference}

procedure RealTimeDelay (usec: real);
begin

{Wait for the specified number of microseconds}
end; {RealTimeDelay}

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the
Physical Layer’s T'ransmitBit operation:

process BitTransmitter;
begin
cycle {outer loop}
while transmitting do
begin {inner loop}
TransmitBit(outgoingFrame[currentTransmitBit]); {send next bitto
Physical Layer}
if newCollision then StartJam else NextBit
end finner loop}
end {outer loop}
end; (BitTransmitter}

procedure NextBit;
begin
currentTransmitBit : = currentTransmitBit+1;
transmitting : = (currentTransmitBit < lastTransmitBit)
end; {NextBit}

procedure StartJam,;

begin
currentTransmitBit := 1;
lastTransmitBit : = jamSize;
newCollision : = false

end; {StartJam}

BitTransmitter, upon detecting a new collision, immediately enforces it by calling StartJam to
initiate the transmission of the jam. The jam should contain a sufficient number of bits of
arbitrary data so that it is assured that both comunicating stations detect the collision.
(Startdam uses the first set of bits of the frame up to JamSize, merely to simplify this program).

AT Frame Reception
The algorithms in this section defines ECMA CSMA/CD frame reception:

The procedure ReceiveF'rame implements the frame reception operation provided to the LIC
Sublayer:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthParam: LengthValue;
vardataParam: DataValue): ReceiveStatus;
function ReceiveDataDecap: ReceiveStatus; ... {nested function;
see body below}
begin
repeat
ReceiveLinkMgmt;
ReceiveFrame : = ReceiveDataDecap;
until receiveSucceeding
end; {ReceiveFrame}

ReceiveFrame calls RecetveLinkMgmt to receive the next valid frame, and then calls the
internal procedure ReceiveDataDecap to return the frame’s fields to the LLC Sublayer if the
frame’s address indicates that it should do so. It also removes any padding added by the
transmitting DTE. The returned ReceiveStatus indicates the presence or absence of detected
transmission errors in the frame.

function ReceiveDataDecap: ReceiveStatus;
begin
receiveSucceeding: =
RecognizeAddress(incomingFrame.destinationField);
if receiveSucceeding then with incomingFrame do
begin {disassemble frame}
view : = fields;
destinationParam : = destinationField;
sourceParam : = sourceField;
lengthParam : = lengthField;
dataParam := RemovePad(lengthField, dataField);
if fcsField = CRC32(incomingFrame) then
begin
if validLength then ReceiveDataDecap : = receiveOK
else ReceiveDataDecap : = lengthError
end
else
begin
if excessBits = 0 then ReceiveDataDecap : = frameCheckError
else ReceiveDataDecap : = alignmentError
end;
view : = bits
end {disassemble frame}
end; {ReceiveDataDecap)}

3
function RecognizeAddress (address: AddressValue): Boolean;
begin
RecognizeAddress : = ... {Returns true for the set of physical, broadcast, and
multicast-group addresses corresponding to this station}
end; {RecognizeAddress}
function RemovePad(
var lengthParam: LengthValue
var dataParam: DataValue): DataValue;
begin
RemovePad : = {Strips lengthParam bits from the data field and returns the
LLCDataF'ield};
validLength: = {Check to determine if value represented by lengthParam matches
received dataSize}
‘ end; {RemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments
from collisions by comparing them to the minimum valid frame size:

procedure ReceiveLinkMgmt;
begin
repeat
StartReceive;
while receiving do nothing; {wait for frame to finish arriving}
excessBits : = frameSize mod 8;
frameSize : = frameSize — excessBits; {truncate to octet boundary}
receiveSucceeding : = (frameSize =slotTime); {reject collision fragments)
until receiveSucceeding
end; {ReceiveLinkMgmt}

procedure StartReceive;

begin
currentReceiveBit := 1;
receiving : = true

‘ end; {StartReceive}

b

- 35 -

The BitReceiver process run asynchronously, receiving bits from the medium at the rate
determined by the Physical Layer’s RecetveBit operation:

process BitReceiver;
var b: Bit;
begin
cycle {outer loop}
while receiving do
begin {inner loop}
b := ReceiveBit; {Get next bit from physical link}
if carrierSense then
begin{append bit to frame}
incomingFrame[currentReceiveBit] : = b;
currentReceiveBit : = currentReceiveBit + 1
end; {append bit to frame)}
receiving : = carrierSense
end {inner loop}
end {outer loop}
end; {BitReceiver}

3.12 Common procedures

The function CRC32 is used by both the transmit and receive algorithms to generate a 32 bit CRC
value:

function CRC32 (f: Frame): CRCValue;
begin
CRC32 := {The 32-bit CRC }
end; {CRC32}
Purely to enhance readability, the following procedure is also defined:

procedure nothing; begin end;

The idle state of a process (i.e., while waiting for some event) is cast as repeated calls on this
procedure.

