ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

ECMA STANDARD

on

FORTRAN

April 1965

Free copies of this standard ECMA-9 are available from
ECMA European Computer Manufacturers Association

114, rue du Rhone — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

ECMA STANDARD

on

FORTRAN

April 1965

BRIEF HISTORY

A Technical Committee of ECMA met for the first time in
January 1964 to prepare a standard on FORTRAN.

Representatives of the following companies participated
in the work of the committee:

A.E.I. Ltd

Compagnie des Machines Bull

N.V. Electrologica

Elliotf Bros. (London) Ltd

IBM-WTEC

I.C.T., International Computers & Tabulators Ltd
I.T.T. Europe Inc.

Ing. C. Olivetti & Co. S.p.A.

SETI, Société Européenne pour le Traitement de 1'Information

Sperry Rand International Corp.

The work has led to this Standard ECMA-8 adopted by the
General Assembly on April 30, 1965. In addition, the Committee
has collaborated with the following organizations:

American Standards Association (ASA)

International Organization for Standardization (ISO)

CONTENTS

INTRODUCTION
BASIC TERMINOLOGY
PROGRAM FORM

The FORTRAN Character Set
Lines

Statements

Statement Label

Symbolic Names

Ordering of Characters

WWWWwwWwWw
Uk W -

DATA TYPES

4,1 Data Type Association
4.2 Data Type Properties

DATA AND PROCEDURE IDENTIFICATION

5.1 Data and Procedure Names

5.1.1 Constants

5.1.2 Variable

5.1.3 Array

5.1.4 Procedures

Function Reference

Type Rules for Data and Procedure Identifiers
Dummy Arguments

oo O
W

EXPRESSIONS

6.1 Arithmetic Expressions
6.2 Relational Expressions
6.3 Logical Expressions

6.4 Evaluation of Expressions

STATEMENTS

7.1 Executable Statements

7.1.1 Assignment Statements

7.1.2 Control Statements
.1.2.1 GO TO Statements
Arithmetic IF Statement
Logical IF Statement
CALL Statement
RETURN Statement
CONTINUE Statement
STOP and PAUSE Statements
DO Statement

SRS RS IR PN IPS IR PN
DB DN NN
OO U W

e el el el

Page

(o)) ok B N

(o2}

©OWWOWOwWWOWwWNN N

10

10
11
11
11

12

12
12
13
14
14
15
15
15
15
15
16

Input/Output Statements

7.1.3.1 READ and WRITE Statements
7.1.3.2 Auxiliary Input/Output State-
ments

7.1.3.3 Printing of Formatted Records

7.2 Nonexecutable Statements

7.2.1 Specification Statements
2l Array Declarator
. DIMENSION Statement
COMMON Statement
EQUIVALENCE Statement
EXTERNAL Statement
Type Statement

SRS PSRN PN N
SESISICECR
NSRRI
B

*(7.2.2 Data Initialization Statement)
7.2.3 FORMAT Statement
8. PROCEDURES AND SUBPROGRAMS
8.1 Statement Functions
8.2 Intrinsic Functions and their Reference
8.3 External Functions
8.4 Subroutine
*(8.5 Block data Subprogram)
9. PROGRAMS
9.1 Program Components
9.2 Normal Execution Sequence
10. INTRA- AND INTERPROGRAM RELATIONSHIPS
10.1 Symbolic Names
10.2 Definition
10.3 Definition Requirements for Use of Entities
APPENDIX 1
APPENDIX 2

*

Blank in ECMA FORTRAN

Page

18
19
20

21

21
21
21
23
23
24
25
25

25

31

31
32
32
35

38
38.
38
38
38

41
46
47

48

1. INTRODUCTION

1.1. Purpose. This standard establishes the form for and
the interpretation of programs expressed in the FORTRAN lan-
guage for the purpose of promoting a high degree of inter-
changeability of such programs for use on a variety of auto-
matic data processing systems. A processor shall conform to
this standard provided it accepts and interprets as specified,
at least those forms and relationships described herein.

Insofar as the interpretation of the form and relationships
described are not affected, any statement of requirement could
be replaced by a statement expressing that the standard does
not provide an interpretation unless the requirement is met.
Further, any statement of prohibition could be replaced by a
statement expressing that the standard does not provide an
interpretation when the prohibition is violated.

The ECMA FORTRAN has been adopted by the International Organ-
ization for Standardization (ISO) as intermediate level (re-
ferred to as Intermediate FORTRAN) between "FORTRAN" and "Basic
FORTRAN" as will be described in the ISO Recommendation on
FORTRAN. The ECMA FORTRAN is a subset of the full ISO FORTRAN.
The FORTRANs are upwardly compatible from Basic to ECMA to ISO
FORTRAN. The wording of ECMA FORTRAN has been rephrased so as
to match the text of the ISO Recommendation.

Attached in Appendix 1 are those items which are available
in ECMA FORTRAN that are not available in Basic. Appendix 2
is a list of those items available in ISO FORTRAN that are
not available in ECMA FORTRAN.

The ISO FORTRAN and the ECMA FORTRAN use identical section
numbering. Where ECMA FORTRAN has no language content counter-
part to that defined in a particular section of ISO FORTRAN,
only the section number is retained.

1.2. Scope. This standard establishes:
(1) The form of a program written in the FORTRAN language.
(2) The form of writing input data to be processed by such
a program operating on automatic data processing systems.
(3) Rules for interpreting the meaning of such a program.
(4) The form of the output data resulting from the use of
such a program on automatic data processing systems,
provided that the rules of interpretation establish
an interpretation.
This standard does not prescribe:

(1) The mechanism by which programs are transformed for
use on a data processing system (the combination of
this mechanism and data processing system is called
a processor).

(2) The method of transcription of such programs or their
input or output data to or from a data processing
medium.

(3) The manual operations required for set-up and control

of the use of such programs on data processing equi-
ment.

(4) The results when the rules for interpretation fail
to establish an interpretation of such a program.

(5) The size or complexity of a program that will exceed
the capacity of any specific data processing system
or the capability of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY

This section introduces some basic terminology and some con-
cepts. A rigorous treatment of these is given in later sections.
Certain assumptions concerning the meaning of grammatical

forms and particular words are presented.

A program that can be used as a self-contained computing pro-
cedure is called an executable program (9.1.6).

An executable program consists of precisely one main program
and possibly one or more subprograms (9.1.6).

A main program is a set of statements and comments not contain-
ing a FUNCTION or SUBROUTINE statement (9.1.5).

A procedure subprogram is similar to a main program but is
headed by a FUNCTION or SUBROUTINE statement. A procedure sub-
program is sometimes referred to as a subprogram (9.1.3).

The term "program unit" will refer to either a main program or
subprogram (9.1.7).

Any program unit may reference an "external procedure"
(Section 8).

An external procedure that is defined by FORTRAN statements is
called a "procedure subprogram'. External procedures also may
be defined by other means. An external procedure may be an ex-
ternal function or an external subroutine. An external function
defined by FORTRAN statements headed by a FUNCTION statement

is called a "function subprogram'". An external subroutine de-
fined by FORTRAN statements headed by a SUBROUTINE statement

is called a "subroutine subprogram'.

(Sections 8 and 9).

Any program unit consists of statements and comments. A state-
ment is divided into physical sections called lines, the first
of which is called an initial line and the rest of which are
called continuation lines (3.2).

There is a type of line called a comment that is not a state-

ment and merely provides information for documentary purposes
(3.2).

The statements in FORTRAN fall into two broad classes execut-
able and nonexecutable. The executable statements specify the
action of the program while the nonexecutable statements de-

ions.

D—-

11 n-

ub-

or

is
ay
ex—
tion

e—

te-
rst

scribe the use of the program, the characteri_tics of the oper-
ands, editing information, statement functions, or data arrange-
ment (7.1, 7.2).

The syntactic elements of a statement are names and operators.

Names are used to reference objects such as data or procedures.
Operators including the imperative verbs, specify action upon

named objects. .

One class of name, the array name, deserves special mention.

An array name and the size of the identified array must be de-
fined in an array declarator (7.2.1.1). An array name quali-
fied only by a subscript is used to identify a particular element
of the array (5.1.3).

Data names and the arithmetic (or logical) operations may be
connected into expressions. Evaluation of such an expression
develops a value. This value is derived by performing the speci-
fied operations on the named data.

The identifiers used in FORTRAN are names and numbers. Data
are named. Procedures are named. Statements are labelled with
numbers. Input/output units are numbered (Sections 3, 6, 7).

At various places in this document there are statements with
associated lists of entries. In all such cases the list is as-
sumed to contain at least one entry unless an explicit excep-
tion is stated.

As an example, in the statement

SUBROUTINE s(al, az,...,an)

it is assumed that at least One symbolic name is included in the
list within parentheses. A list is a set of identifiable ele-
ments, each of which is separated from its successor by a com-
ma. Further, in a sentence a plural form of a noun will be as-
sumed to also specify the singular form of that noun as a special
case when the context of the sentence does not prohibit this
interpretation.

The term reference is used as a verb with special meaning as de-
fined in Section 5.

3. PROGRAM FORM

Every program unit is constructed of characters grouped into
lines and statements.

3.1. The Fortran Character Set. A program unit is written
using the following characters: A, B, C, D, E, F, G, H, I, J,
K; L) M) N’ O) P; Q: R; S) T: U) V; W, X; Y: Z’ O’ 1; 2; 3) 4:
5, 6, 7, 8, 9, and:

Character Name “of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

~ ANl ¥ L+

o

The order in which the characters are listed does not imply a
collating sequence.

3.1.1. Digits. A digit is one of the ten characters: 0, 1, 2,
3, 4, 5, 6, 7, 8, 9. Unless specified otherwise, a string of
digits will be interpreted in the decimal base number system
when a number system base interpretation is appropriate.

An octal digit is one of the eight characters: O, 1, 2, 3, 4,
5, 6, 7. These are only used in the STOP (7.1.2.7.1) and
PAUSE (7.1.2.7.2) statements.

3.1.2 Letters. A letter is one of the twenty-six characters:
A} B’ C) D) E’ F} G) H) I? J’ K) L) M’ NJ O! P) Q} R) SJ T’ U’
vV, W, X, Y, Z.

3.1.3. Alphanumeric Characters. An alphanumeric character is a
letter or a digit.

3.1.4 Special Characters. A special character is one of the ten
characters: blank, equals, plus, minus, asterisk, slash, left,
parenthesis, right parenthesis, comma and decimal point.

3.1.4.1. Blank Character. With the exception of the uses speci-
fied (3.2.2, 3.2.3, 3.2.4, 7.2.3.6, and 7.2.3.8) a blank charac-
ter has no meaning and may be used freely to improve the appear-
ance of the program subject to the restriction on continuation
lines in 3.3.

3.2 Lines. A line is a string of 72 characters. All characters
must be from the FORTRAN character set except as described in
7.2.3.8.

The character positions in a line are called columns and are
consecutively numbered 1, 2, 3,...,72. The number indicates the

ten
ft,

eci-
arac-—
pear-
ion

ers
in

the

- 5 -

sequential position of a character in the 1i = starting at the
left and proceeding to the right.

3.2.1 Comment Line. The letter C in column 1 of a line desig-
nates that line as a comment line. A comment line must be im-
mediately followed by an initial line, another comment line,
or an end line.

A comment line does not affect the program in any way and is
available as a convenience for the programmer.

3.2.2 End Line. An end line is a line with the character blank
in columns 1 through 6, the characters E, N, and D, once each
in that order, in columns 7 through 72, preceded by, inter-
spersed with, or followed by the character blank. The end line
indicates, to the processor, the end of the written description
of a program unit (9.1.7). Every program unit must physically
terminate with an end line.

3.2.3 Initial Line. An initial line is a line that is neither
a comment line nor an end line and that contains the digit O
or the character blank in column 6. Columns 1 through 5 con-
tain the statement label or each contains the character blank.

3.2.4 Continuation Line. A continuation line is a line that con-
tains any character other than the digit O or the character
blank in column 6, and does not contain the character C in
column 1.

A continuation line may only follow an initial line or another
continuation line.

3.3 Statements. A statement consists of an initial line option-
ally followed by up to nine ordered continuation lines. The
statement is written in columns 7 through 72 of the lines.*

The order of the characters in the statement is columns 7 through
72 of the initial line followed, as applicable, by columns 7
through 72 of the first continuation line, columns 7 through 72
of the next continuation line, etc.

3.4 Statement Label. Optionally, a statement may be labelled so
that it may be referred to in other statements. A statement
label consists of from one to five digits. The value of the
integer represented is not significant but must be greater than
zero. The statement label may be placed anywhere in columns 1
through 5 of the initial line of the statement. The same state-
ment label may not be given to more than one statement in a pro-

gram unit. Leading zeros are not significant in differentiating
statement labels.

3.5 Symbolic Names. A symbolic name consists of from one to six
alphanumeric characters, the first of which must be alphabetic.
See 10.1 through 10.1.10 for a discussion of classification

* Note case of statement embedded in logical IF statement
See section 7.1.2.3.

- 6 -

of symbolic names and restrictions on their use.

3.6 Ordering of Characters. An ordering of characters is as-
sumed within a program unit. Thus any meaningful collection

of characters that constitutes names, lines, and statements

exists as a totally ordered set. This ordering is imposed by
the character position rule of 3.2 (which orders characters

within lines) and the order in which lines are presented for
processing.

4. DATA TYPES

Three different types of data are defined. These are integer,
real, and logical. Each type has a different mathematical sig-
nificance and many have different internal representation. Thus
the data type has a significance in the interpretation of the
associated operations with which a datum is involved. The data
type of a function defines the type of the datum it supplies

to the expression in which it appears.

4.1 Data Type Association. The name employed to identify a datum
or function carries the data type association. The form of the
string representing a constant defines both the value and the
data type.

A symbolic name representing a function, variable, or array
must have only a single data type association for each program
unit. Once associated with a particular data type, a specific
name implies that type for any differing usage of that sym-
bolic name that requires a data type association throughout the
program unit in which it is defined.

Data type may be established for a symbolic name by declara-

tion in a type-statement (7.2.1.6) for the integer, real, and
logical types. This specific declaration overrides the implied
association available for integer and real (5.3). |

4.2 Data Type Properties. The mathematical and the representation
properties for each of the data types are defined in the following
sections. For real and integer data, the value zero is considered
neither positive nor negative.

4.2.1 Integer Type. An integer datum is always an exact represent-
ation of an integer value. It may assume positive, negative, and
zero values. It may only assume integral values.

4.2.2 Real Type. A real datum is a processor approximation to
the value of a real number. It may assume positive, negative
and zero values.

4.2.3 (not used).
4.2.4 (not used).

4.2.5 Logical Type. A logical datum may assume only the truth

values of true or false.

4.2.6 (not used).

ion
wing
red

ent-
nd

-

4.3 Correspondence between storage and data. Each real logi-
cal and integer entity is counted as one storage unit.

5. DATA AND PROCEDURE IDENTIFICATION

Names are employed to reference or otherwise identify data and
procedures.

The term reference is used to indicate an identification of a
datum implying that the current value of the datum will be made
available during the execution of the statement containing the
reference. If the datum is identified but not necessarily made
available, the datum is said to be named. One case of special
interest in which the datum is named is that of assigning a value
to a datum, thus defining or redefining the datum.

The term, reference, is used to indicate an identification of a
procedure implying that the actions specified by the procedure
will be made available.

A complete and rigorous discussion of reference and definition,
including redefinition, is contained in Section 10.

5.1 Data and Procedure Names. A data name identifies a constant
a variable, an array or array element, or a block (7.2.1.3).
A procedure name identifies a function or a subroutine.

5.1.1 Constants. A constant is a datum that is defined by its
literal occurrence and therefore, may not be redefined.

An integer or real constant is said to be signed when it is
written immediately following a plus or minus. Also, for these
types, an optionally signed constant is either a constant or a
signed constant.

5.1.1.1 Integer constant. An integer constant is written as a non-
empty string of digits. The constant is the digit string inter-
preted as a decimal numeral.

9.1.1.2 Real Constant. A basic real constant is written as an
integer part, a decimal point, and a decimal fraction part in
that order. Both the integer part and the decimal part are strings

"~ of digits; either one of these strings may be empty but not

both. The constant is an approximation to the digit string inter-
preted as a decimal numeral.

A decimal exponent is written as the letter, E, followed by an
optionally signed integer constant. A decimal exponent is a mul-
tiplier (applied to the constant written immediately preceding
it) that is an approximation to the exponential form ten raised
to the power indicated by the integer written following the E.

A real constant is indicated by writing a basic real constant, a
basic real constant followed by a decimal exponent, or an integer
constant followed by a decimal exponent.

5.1.1.3 (not used).

5.1.1.4 (not used).

5.1.1.5 Logical Constant. The logical constants, true and false
are written .TRUE. and .FALSE. respectively.

5.1.1.6 (not used).

5.1.2 Variable. A variable is a datum that is identified by a
symbolic name (3.5). Such a datum may be referenced and defined.

5.1.3 Array. An array is an ordered set of data of one, two

or three dimensions. An array is identified by a symbolic name.
Identification of the entire ordered set is achieved via use
of the array name.

5.1.3.1 Array Element. An array element is one of the members

of the set of data of an array. An array element is identified,
by immediately following the array name with a qualifier, called
a subscript, which points to the particular element of the
array.

An array element may be referenced and defined.

5.1.3.2 Subscript. A subscript is written as a parenthesized list
of subscript expressions. Each subscript expression is separated
by a comma from its successor, if there is a successor. The
number of subscript expressions must correspond to the declared
dimensionality (7.2.1.1), except in an EQUIVALENCE statement
(7.2.1.4). Following evaluation of all of the subscript expres-
sions, the array element successor function (7.2.1.1.) determines
the identified array element.

5.1.3.3 Subscript Expressions. A subscript expression is written
as one of the following constructs:

c*v+k
cky=k
c*vy
v+k
v=k

v

k

where ¢ and k are integer constants and v is an integer variable
reference. See Section 6 for a discussion of evaluation of expres-
sions and 10.2.8 and 10.3 for requirements that apply to the use
of a variable in a subscript.

95.1.4 Procedures. A procedure (Section 8) is identified by a
symbolic name. A procedure is a statement function, an intrinsic
function, a basic external function, an external function, or an
external subroutine. Statement functions, intrinsic functions,
basic external functions, and external functions are referred to
as functions or function procedures; external subroutines as sub=
routines or subroutine procedures.

A function supplies a result to be used at the point of reference;
a subroutine does not. Functions are referenced in a manner dif-
ferent from subroutines.

e

ed

ist
ed

nes

S 1

Ce

- 9 -

5.2 Function Reference. A function reference consists of the
function name followed by an actual argument list enclosed in
parentheses. If the list contains more than one argument, the
arguments are separated by commas. The allowable forms of

function arguments are given in Section 8.

See 10.2.1 for a discussion of requirements that apply to func-
tion references.

5.3 Type Rules for Data and Procedure Identifiers. The type of
a constant is implicit in its name.

There is no type associated with a symbolic name that identifies
a subroutine.

A symbolic name thatidentifies a variable, an array, or a state-
ment function may have its type specified in a type-statement.
In the absence of an explicit declaration, the type is implied
by the first character of the name: I, J, XK, L, M, and N imply
type integer; any other letter implies type real.

A symbolic name that identifies an intrinsic function or a basic
external function when it is used to identify this designated pro-
cedure, has a type associated with it as specified in Tables 3

and 4.

In the program unit in which an external function is referenced,
its type definition is defined in the Same manner as for a vari-
able and an array. For a function subprogram, type is specified
either implicitly by its name or explicitly in the FUNCTION state-
ment.

The same type is associated with an array element as is asso-

ciated with the array name.

5.4 Dummy Arguments. A dummy argument of an external procedure
identifies a variable, array, subroutine, or external function.

When the use of an external function name is specified, the use
of a dummy argument is permissible if an external function name
will be associated with that dummy argument. (Section 8).

When the use of an external subroutine name is specified, the
use of a dummy argument is permissible if an external subroutine
name will be associated with that dummy argument.

When the use of a variable or array element reference is speci-
fied, the use of a dummy argument is permissible if a value of the
Same type will be made available through argument association.

Unless specified otherwise, when the use of a variable, array

Oor array element name is specified, the use of a dummy argument
is permissible provided that a proper association with an actual
argument is made.

The process of argument association is discussed in Sections 8
and 10.

6. EXPRESSIONS

This section gives the formation and evaluation rules for
arithmetic, relational, and logical expressions. A relational
expression appears only within the context of logical expres-
sions. An expression is formed from elements and operators.
See 10.3 for a discussion of requirements that apply to the
use of certain entities in expressions.

6.1 Arithmetic Expressions. An arithmetic expression is J
formed with arithmetic operators and arithmetic elements. Both
the expression and its constituent elements identify values !
of one of the types integer or real. The arithmetic operators
are:

Operator Representing
+ Addition, positive value (zero + elemént)
o Subtraction, negative value (zero-element)
* Multiplication A)
/ Division !
%k Exponentiation

The arithmetic elements are primary, factor, term, signed term,
simple arithmetic expression, and arithmetic expression.

A primary is an arithmetic expression enclosed in parentheses,
a constant, a variable reference, an array element reference,
or a function reference.

A factor is a primary or a construct of the form
primary**primary
A term is a factor or a construct of one of the forms

term/factor
or
term*term)

A signed term is a term immediately preceded by+or-.
A simple arithmetic expression is a term or two simple arith-
metic expressions separated by a + or -

An arithmetic expression is a simple arithmetic expression or
a signed term or either of the preceding forms immediately fol-
lowed by a + or - immediately followed by a simple arithmetic
expression.

A primary of any type may be exponentiated by an integer primar
and the resultant factor is of the same type as that of the
element being exponentiated. A real primary may be exponent-
iated by a real primary, and the resultant factor is of type
real. These are the only cases for which use of the exponent-
iation operator is defined.

By use of the arithmetic operators other than exponentiation,
any admissible element may be combined with another admissible
element of the same type, and the resultant element is of the

e

term,

ses,
1ce,

Lth-

1 or
>tic

orimar
ne
nt-

ype
nt-

Lon,
sible
the

= 11 =

same type.

6.2 Relational Expressions. A relational expression consists
of two arithmetic expressions separated by a relational oper-
ator and will have the value true or false as the relation is
true or false, respectively. Both arithmetic expressions must
be of the same type, either real or integer. The relational
operators are:

Operator Representing
LT, Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

6.3 Logical Expressions. A logical expression is formed with
logical operators and logical elements and has the value true
or false. The logical operators are:

Operator Representing
.OR. Logical disjunction
.AND. Logical conjunction
. NOT. Logical negation

The logical elements are logical primary, logical factor, logical
term, and logical expression.

A logical primary is a logical expression enclosed in parentheses,
a relational expression, a logical constant, a logical variable
reference, a logical array element reference, or a logical func-
tion reference.

A logical factor is a logical primary or .NOT. followed by a
logical primary.

A logical term is a logical factor or a construct of the form:

logical term .AND. logical term

A logical expression is a logical term or a construct of the form:

logical expression .OR. logical expression

6.4 Evaluation of Expressions. A part of an expression need be
evaluated only if such action is necessary to establish the
value of the expression. The rules for formation of expressions
imply the binding strength of operators. It should be noted that
the range of the subtraction operator is the term that immedi-
ately succeeds it. The evaluation may proceed according to any
valid formation sequence (except as modified in the following
paragraph) .

When two elements are combined by an operator, the order of
evaluation of the elements is optional. If mathematical use

- 12 -

of operators is associative, commutative, or both, full use
of these facts may be made to revise orders of combination, ;
provided only that integrity of parenthesized expressions is
not violated. The value of an integer factor or term is the
nearest integer whose magnitude does not exceed the magni-
tude of the mathematical value represented by that factor or
term. The associative and commutative laws do not apply in
the evaluation of integer terms containing division, hence
the evaluation of such terms must effectively proceed from
left to right.

Any use of an array element name requires the evaluation of
its subscript. The evaluation of functions appearing in an
expression may not validly alter the value of any other ele-
ment within the expressions, assignment statement, or CALL
statement in which the function reference appears. The type

of the expression in which a function reference or subscript
appears does not affect, nor is it affected by, the evaluation
of the actual arguments or subscript. P

No factor may be evaluated that requires a negative valued
primary to be raised to a real exponent. No factor may be
evaluated that requires raising a zero valued primary to a
zero valued exponent.

No element may be evaluated whose value is not mathematically
defined.

7. STATEMENTS i

A statement may be classified as executable or nonexecutable.
Executable statements specify actions; nonexecutable state- ‘
ments describe the characteristics and arrangement of data,
editing information, statement functions, and classification

of program units.

7.1 Executable Statements. There are three types of execut-
able statements: \

(1) Assignment statements
(2) Control statements.
(3) Input/output statements.

7.1.1 Assignment Statements. There are three types of assign-
ment statements:

(1) Arithmetic assignment statement.
(2) Logical assignment statement.
(3) GO TO assignment statement.

7.1.1.1 Arithmetic Assignment Statement. An arithmetic assign
ment statement is of the form:

v = €

where v is a variable name or array element name of type other
than logical and e is an arithmetic expression. Execution of
this statement causes the evaluation of the expression e and
the altering of v according to Table 1.

7.1.1.2 Logical Assignment Statement. A logical assignment \

e - 13 -~
49,

is statement is of the form

e vV = e

where v is a logical variable name or a logical array element
name and e is a logical expression. Execution of this state-
ment causes the logical expression to be evaluated and its
value to be assigned to the logical entity.

7.1.1.3 GO TO Assignment Statement. A GO TO assignment state-
F 1 ment is of the form:

ASSIGN k TO i

e-] where k is a statement label and i is an integer variable name.
After execution of such a statement, subsequent execution of

€ any assigned GO TO statement (Section 7.1.2.1.2) using that
pt integer variable will cause the statement identified by the
tion assigned statement label to be executed next, provided there
has been no intervening redefinition (9.2) of the variable.
l The statement label must refer to an executable statement in
\ the same program unit in which the ASSIGN statement appears.
Once having been mentioned in an ASSIGN statement, an integer
variable may not be referenced in any statement other than an
11y assigned GO TO statement until it has been redefined (Section
10.2.3) .
o TABLE 1. Rules for Assignment of e to v
5 3 If v Type Is And e Type Is The Assignment Rule Is *
on
Integer Integer Assign
1t- Integer Real Fix & Assign
Real Integer Float & Assign
Real Real Assign

* Notes (1) Assign means transmit the resulting value, without
3ign- change, to the entity.
(2) Fix means truncate any fractional part of the result
and transform that value to the form of an integer datum.
(3) Float means transform the value to the form of a real
datum.
‘ 7.1.2 Control Statements. There are eight types of control state-
lSSigﬂ ments:

(1) GO TO statements.
(2) arithmetic IF statement.
: (3) 1logical IF statement.

yther
of (4) CALL statement.
nd (5) RETURN statement.

(6) CONTINUE statement.
(7) STOP and PAUSE statements.
nt (8) DO statement.

T

The statement labels used in a control statement must be asso-,
ciated with executable statements within the same program unit
in which the control statement appears.

7.1.2.1 GO TO Statements. There are three types of GO TO
statements:

(1) Unconditional GO TO Statement.
(2) Assigned GO TO Statement.
(3) Computed GO TO Statement.

- 14 -

7.1.2.1.1 Unconditional GO TO Statement. An unconditional GO
TO statement is of the form:

GO TO k

where k is a statement label.

Execution of this statement causes the statement identified by
the statement label to be executed next.

7.1.2.1.2 Assigned GO TO Statement. An assigned GO TO state- ’
ment is of the form:

GO TO i, (kl’ k2"" kn)
where i is an integer variable reference, and the k's are
statement labels.

At the time of execution of an assigned GO TO statement, the
current value of i must have been assigned by the previous ex-
ecution of an ASSIGN statement to be one of the statement labell
in the parenthesized list, and such an execution causes the
statement identified by that statement label to be executed nex

7.1.2.1.3 Computed GO TO Statement. A computed GO TO statement
is of the form:

GO TO (kl, k .,kn),l

9"
where the k's are statement labels and i is an integer variable,
reference. See 10.2.8 and 10.3 for a discussion of requiremenw>
that apply to the use of a variable in a computed GO TO state-
ment.

Execution of this statement causes the statement identified by
the statement label k. to be executed next, where j is the valu
of i at the time of tﬂe execution. This statement is defined
only for values such that 1< j£ n.

7.1.2.2 Arithmetic IF Statement. An arithmetic IF Statement is
of the form:

IF (e) kl’ k2, k3

where e is any arithmetic expression of type integer or real
and the k's are statement labels.

The arithmetic IF is a three-way branch. Execution of this
statement causes evaluation of the expression e following whicl
the statement identified by the statement label k., k2, or k

is executed next as the value of e is less than zéro, zero, or
greater than zero, respectively.

by

ex-
abels

 nex!

ent

able
ents

| by
valu

. is

/hich

- 15 =

7.1.2.3 Logical IF Statement. A logical IF statement is of
the form:

IF (e) S

where e is a logical expression and S is any executable state-
ment except a DO statement or another logical IF statement.
Upon execution of this statement, the logical expression e

is evaluated. If the value of e is false, statement S is ex-
ecuted as though it were a CONTINUE statement. If the value

of e is true, statement S is executed.

7.1.2.4 CALL Statement. A CALL statement is of one of the
forms:

CALL s (al, az,...,an)

or
CALL s

where s is the name of a subroutine and the a's are actual
arguments (8.4.2).

The inception of execution of a CALL statement references

the designated subroutine. Return of control from the de-

signated subroutine completes execution of the CALL state-
ment.

7.1.2.5 RETURN Statement. A RETURN statement is of the form:
RETURN

A RETURN statement marks the logical end of a procedure sub-
program and, thus, may only appear in a procedure subprogram.

Execution of this statement when it appears in a subroutine
subprogram causes return of control to the current calling
program unit.

Execution of this statement when it appears in a function
subprogram causes return of control to the current calling
program unit. At this time the value of the function (8.3.1)
is made available.

7.1.2.6 CONTINUE Statement. A CONTINUE statement is of the
form:

CONTINUE

Execution of this statement causes continuation of normal ex-
ecution sequence.

7.1.2.7 The STOP and PAUSE statements. The STOP and PAUSE state-
ments are program control statements.

7.1.2.7.1 STOP Statement. A STOP statement is of one of the
forms:
STOP n

or
STOP

where n is an octal digit string of length from one to five.

Execution of this statement causes termination of execution
of the executable program.

7.1.2.7.2 PAUSE Statement. A PAUSE statement is of one of the
forms:

PAUSE n
or
PAUSE

where n is an octal digit string of length from one to five.

The inception of execution of this statement causes a cess-
ation of execution of this executable program. Execution

must be resumable. At the time of cessation of execution the
octal digit string is accessible. The decision to resume ex-
ecution is not under control of the program, but if execution
is resumed without otherwise changing the state of the pro-
cessor, the completion of the PAUSE statement causes continu-
ation of normal execution sequence.

7.1.2.8 DO Statement. A DO statement is of one of the forms:

DO ni=m m m

1’ 72 73

DO ni=m

where

(1) n is the statement label of an executable statement. This
statement, called the terminal statement of the associated DO,
must physically follow and be in the same program unit as that
DO statement. The terminal statement may not be a GO TO of any
form, arithmetic IF, RETURN, STOP, PAUSE or DO statement, nor
a logical IF containing any of these forms.

(2) i is an integer variable name; this variable is called the
control variable.

(3) m,, called the initial parameter; m,, called the terminal
paraméter; and m,, called the incrementation parameter, are
each either an integer constant or integer variable reference.
If the second form of the DO statement is used so that m, is
not explicitly stated, a value of one is implied for the in-
crementation parameter. At time of execution of the DO state-
ment, ml, mz, and m3 must be greater than zero.

Associated with each DO statement is a range that is defined
to be those executable statements from and including the first
executable statement following the DO, to and including the
terminal statement associated with the DO. A special situation
occurs when the range of a DO contains another DO statement.
In this case, the range of the contained DO must be a subset
of the range of the containing DO.

B

- 17 =

A DO statement is used to define a loop. The action succeed-
ing execution of a DO statement is described by the follo-
wing five steps:

1. The control variable is assigned the value represented by
the initial parameter. This value must be less than or equal
to the value represented by the terminal parameter.

2. The range of the DO is executed.

3. If control reaches the terminal statement, and after execu-
tion of the terminal statement, the control variable of the
most récently executed DO statement associated with the ter-
minal statement is incremented by the value represented by

the associated incrementation parameter.

4. If the value of the control variable after incrementation

is less than or equal to the value represented by the associ-
ated terminal parameter, the action as described starting at
step 2 is repeated with the understanding that the range in
question is that of the DO, the control variable of which was
most recently incremented. If the value of the control variable
is greater than the value represented by its associated termi-
nal parameter, the DO is said to have been satisfied and the
control variable becomes undefined.

ments referring to the terminal statement in question, the
control variable of the next most recently executed DO state-
‘ ment is incremented by the value represented by its associ-
: ated incrementation parameter and the action as described in
step 4 is repeated until all DO statements referring to the
particular termination statement are satisfied, at which time
the first executable statement following the terminal state-
ment is executed.
In the remainder of this section (7.1.2.8) a logical IF state-
ment containing a GO TO or arithmetic IF statement form is |
regarded as a GO TO or arithmetic IF statement respectively.

5. At this point, if there were one or more other DO state-
|

Upon exiting from the range of a DO by execution of a GO TO
statement or an arithmetic IF statement, that is, other than
by satisfying the DO, the control variable of the DO is de-
fined and is equal to the most recent value attained as de-
fined in the foregoing.

A GO TO statement or an arithmetic IF statement may not cause
control to pass into the range of a DO from outside its range.
When a procedure reference occurs in the range of a DO, the
actions of that procedure are considered to be temporarily

1 within that range, i.e., during the execution of that refer-
ence.

The control variable of a DO may not be redefined during the
execution of the range of that DO. The parameters must remain
constant during execution of the range of that DO.

If a statement is the terminal statement of more than one DO

- 18 -

statement, the statement label of that terminal statement may
not be used in any GO TO or arithmetic IF statement that occurs
anywhere but in the range of the most deeply contained DO with
that terminal statement.

7.1.3 Input/Output Statements. There are two types of input/
output statements:

(1) READ and WRITE statements.
(2) Auxiliary input/output statements.

The first type consists of the statements that cause transfer
of records of sequential files to and from internal storage,
respectively. The second type consists of the BACKSPACE and
REWIND statements that provide for positioning of such an
external file, and ENDFILE, which provides for demarcation of
such an external file.

In the following descriptions, u and f identify input/output
units and format specifications, respectively. An input/out-
put unit is identified by an integer value and u may be either
an integer constant or an integer variable reference whose
value then identifies the unit. The format specification is
described in 7.2.3. The statement label of a FORMAT statement
is represented by f. The identified statement must appear in
the same program unit as the input/output statement.

A particular unit has a single sequential file associated with
it. The most general case of such a unit has the following
properties:

(1) If the unit contains one or more records, those records
exist as a totally ordered set.

(2) There exists a unique position of the unit called its
initial point. If a unit contains no records, that unit is
positioned at its initial point. If the unit is at its initial
point and contains records, the first record of the unit is
defined as the next record.

(3) If a unit is not positioned at its initial point, there
exists a unique preceding record associated with that position.
The least of any records in the ordering described by (1)
following this preceding record is defined as the next record
of that position.

(4) Upon completion of execution of a WRITE or ENDFILE state-
ment, there exist no records following the records created by
that statement.

(5) When the next record is transmitted, the position of the
unit is changed so that this next record becomes the preceding
record.

If a unit does not provide for some of the properties given in
the preceding, certain statements that will be defined may

not refer to that unit. The use of such a statement is not de-
fined for that unit.

- 19 -

; 7.1.3.1 READ and WRITE Statements. The READ and WRITE state-
ments specify transfer of information. Each such statement
may include a list of the names of variables, arrays and
array elements. The named elements are assigned values on
input and have their values transferred on output.

Records may be formatted or unformatted. A formatted record
consists of a string of the characters. The transfer of such
a record requires that a format specification be referenced
to supply the number of records transferred by the execution
of a formatted READ or WRITE is dependent upon the list and
referenced format specification (7.2.3.4). An unformatted
record consists of a string of representations of values.
When an unformatted or formatted READ statement is executed,
the required records on the identified unit must be, respec-
tively, unformatted or formatted records.

7.1.3.1.1 Input/Output Lists. The input list specifies the
names of the variables and array elements to which values
are assigned on input. The output list specifies the ref-
erences to variables and array elements whose values are
transmitted. The input and output lists are of the same form.

Lists are formed in the following manner. A simple list is a
variable name, an array element name, or an array name, OI
two simple lists separated by a comma.

A list is a simple list, a simple list enclosed in parenthe-
ses, a DO-implied list, or two lists separated by a comma.

A DO-implied list is a list followed by a comma and a DO-
implied specification, all enclosed in parentheses.

A PO-implied specification is of one of the forms:

i=my, my, mg
or
i=m, my

The elements i, m., m2, and m.,, are as defined for the DO state-
ment (7.1.2.8). Tﬁe range of BO—implied specification is the
list of the DO-implied list and, for input lists, i, m,, m,,

and m3, may appear, within that range, only in subscripts.

A variable name or array element name specifies itself. An
array name specifies all of the array element names defined
by the array declarator, and they are specified in the order
given by the array element successor function (7.2.1.1.1).

The elements of a list are specified in the order of their occur-
rence from left to right. The elements of a list in a DO-
implied list are specified for each cyclée of the implied DO.

7.1.3.1.2 Formatted READ. A formatted READ statement is of one of
the forms:

READ (u,f) k
or
READ (u, f)

—

- 20 -

where k is a list.

Execution of this statement causes the input of the next records
from the unit identified by u. The information is scanned and
converted as specified by the format specification identified
by f. The resulting values are assigned to the elements speci-
fied by the list. See however 7.2.3.4.

7.1.3.1.3 Formatted WRITE. A formatted WRITE statement is of
one of the forms:

WRITE (u,f) k
or
WRITE (u,f)

where k is a list.

Execution of this statement creates the next records on the
unit identified by u. The list specifies a sequence of values.
These are converted and positioned as specified by the format
specification identified by f. See however 7.2.3.4.

7.1.3.1.4 Unformatted READ. An unformatted READ statement is of
one of the forms:

READ (u) k

or
READ (u)

where k is a list.

Execution of this statement causes the input of the next record
from the unit identified by u,and, if there is a list, these
values are assigned to the sequence of elements specified by
the list. The sequence of values required by the list may not
exceed the sequence of values from the unformatted record.

7.1.3.1.5 Unformatted WRITE. An unformatted WRITE statement is
of the form:

WRITE (u) k
where k is a list.

Execution of this statement creates the next record on the unit
identified by u of the sequence of values specified by the list.

7.1.3.2 Auxiliary Input/Output Statements. There are three types
of auxiliary input/output statements:

(1) REWIND statement.
(2) BACKSPACE statement.
(3) ENDFILE statement.

7.1.3.2.1 REWIND Statement. A REWIND statement is of the form:
REWIND u

Execution of this statement causes the unit identified by u to
be positioned at its initial point.

7.1.3.2.2 BACKSPACE Statement. A BACKSPACE statement is of the
form:

BACKSPACE u

T’—*

- 21 -

Jf the unit identified by u is positioned at its initial point,
execution of this statement has no effect. Otherwise, the ex-
ecution of this statement results in the positioning of the .
unit identified by u so that what had been the preceding record
prior to that execution becomes the next record.

7.1.3.2.3 ENDFILE Statement. An ENDFILE statement is of the
forme

ENDFILE u

Execution of this statement causes the recording of an endfile
record on the unit identified by u. The endfile record is an
unique record signifying a demarcation of a sequential file.
Action is undefined when an endfile record is encountered du-
ring execution of a READ statement.

7.1.3.3 Printing of Formatted Record. When formatted records are
prepared for printing, the first character of the record is not

printed.
P The first character of such a record determines vertical spacing
as follows:

Character Vertical Spacing Before Printing
Blank One line
0] Two lines
1 To first line of next page
+ No advance

7.2 Nonexecutable Statements. There are four types of nonexe-
cutable statements:

(1) Specification statements.

(2) FORMAT statement.

(3) Function defining statements.
(4) Subprogram statements.

See 10.1.2 for a discussion of restrictions on appearances of
P symbolic names in such statements.

The function defining statements are the statements defining
the statement function and discussed in 8.1.1. The subprogram
statements are FUNCTION statements or SUBROUTINE statements,
which are discussed in 8.3.1 and 8.4.1 respectively.

7.2.1 Specification Statements. There are five types of specifi-
cation statements:

(1) DIMENSION statement.
(2) COMMON statement.

(3) EQUIVALENCE statement.
(4) EXTERNAL statement.
(5) Type-statements.

Vi

7.2.1.1 Array-Declarator. An array declarator specifies an array
used in a program unit.

The array declarator indicates the symbolic name, the number of
dimensions (one, two, or three), and the size of each of the
dimensions. The array declarator statement may be a type state-

I R R

- 22 -

ment, DIMENSION, or COMMON statement.
An array declarator has the form:

v (i)
where:

(1) v, called the declarator name, is a symbolic name,

(2) (i), called the declarator subscript, is composed of 1,2,

or 3 expressions, each of which may be an integer constant or

an integer variable name. Each expression is separated by a

comma from its successor if there are more than one of them.

In the case where i contains no integer variable, i is called the
constant declarator subscript.

The appearance of a declarator subscript in a declarator state-
ment serves to inform the processor that the declarator name is
an array name. The number of subscript expressions specified for
the array indicates its dimensionality. The magnitude of the
values given for the subscript expressions indicates the maxi-
mum value that the subscript may attain in any array element
name.

No array element name may contain a subscript that, during ex-
ecution of the executable program, assumes a value less than
one or larger than the maximum length specified in the array
declarator.

7.2.1.1.1 Array Element Successor Function and Value of a
Subscript. For a given dimensionality subscript declarator,
and subscript, the value of a subscript pointing to an array
element and the maximum value a subscript may attain is indi-
cated in Table 2. A subscript expression must be greater than
Zero.

The value of the array element successor function is obtained
by adding one to the entry in the subscript value column. Any
array element whose subscript has this value is the successor
to the original element. The last element of the array is the
one whose subscript value is the maximum subscript value and
has no successor element.

TABLE 2. Value of a Subscript

Dimen- Subscript Subscript | Subscript Value | Maximum Sub-
sionality | Declarator script Value
1 (A) (a) a A
2 (A, B) (a, Db) atA (b - 1) A-B
3 (A, B, ©) (a, b, c) a+A (b - 1) A:B-C
+ A*B:(c - 1)

Notes. (1) a, b, and c¢c are subscript expressions.

(2) A, B, and C are dimensions.

he

T

- 23 ~

7.2.1.1.2 Adjustable Dimension. If any of the entries in a
declarator subscript is an integer variable name, the array
is called an adjustable array, and the variable names are
called adjustable dimensions. Such an array may only appear
in a procedure subprogram. The dummy argument list of the
subprograms must contain the array name and the integer vari-
able names that represent the adjustable dimensions.

The values of the actual arguments that represent array dimen-
sions in the argument list of the reference must be defined
(10.2) prior to calling the subprogram and may not be re-
defined or undefined during execution of the subprogram. The
maximum size of the actual array may not be exceeded. For
every array appearing in an executable program (9.1.6),

there must be at least one constant array declarator associ-
ated through subprogram references.

In a subprogram, a symbolic name that appears in a COMMON
statement may not identify an adjustable array.

7.2.1.2 DIMENSION Statement. A DIMENSION statement is of the
form:

DIMENSION vl(il), v2(12),...,vn(1n)

where each v(i) is an array declarator.
7.2.1.3. COMMON Statement. A COMMON statement is of the form:
COMMON / xl/ al/.../ xn/ a_

where each a is a nonempty list of variable names, array names,
or array declarators (no dummy arguments are permitted) and

each x is a symbolic name or is empty. If x. is empty, the first
two slashes are optional. Each x is a block name, a name that
bears no relationship to any variable or array having the same
name. This holds true for any such variable or array in the

same or any other program unit. See 10.1.1 for a discussion

of restrictions on uses of block names.

In any given COMMON statement, the entities occurring between
block name x and the next block name (or the end of the state-
ment if no block name follows) are declared to be in common
block x. All entities from the beginning of the statement un-
til the appearance of a block name, or all entities in the
statement if no block name appears, are declared to be in blank
or unlabelled common. Alternatively, the appearance of two
slashes with no block name between them declares the entities
that follow to be in blank common,

A given common block name may occur more than once in-a

COMMON statement or in a program unit. The processor will string
together in a given common block all entities so assigned in

the order of their appearance (10.1.2). The first element of an
array will follow the immediately preceding entity, if one exists,
and the last element of an array will immediately precede the
next entity, if one exists.

The size of a common block in a program unit is the sum of the

_

- 24 -

storage required for the elements introduced through COMMON
and EQUIVALENCE statements. The sizes of labelled common blocks)
with the same label in the program units that comprise an ex-
ecutable program must be the same. The sizes of blank common
in the various program units that are to be executed together
need not be the same. Size is measured in terms of storage
units (7.2.1.3.1).

7.2.1.3.1 Correspondence of Common Blocks. If all of the pro-
gram units of an executable program that contain any definition
of a common block of a particular name define that block such
thats

(1) There is identity in type for all entities deined in the
corresponding position from the beginning of that block, and
(2) 1f the block is labelled and the same number of entities

is defined for the block;

then the values in the corresponding positions (counted by the
number of preceding storage units) are the same quantity in the

I
|
executable program. b

For common blocks with the same number of storage -units (4.3)
or blank common:

(1) In all program units which have defined the identical type
to a given position (counted by the number of preceding stor-
age units) references to that position refer to the same quanti-
ty.

(2) A correct reference is made to a particular position assum-
ing a given type if the most recent value assignment to that
position was of the same type.

7.2.1.4 EQUIVALENCE Statement. An EQUIVALENCE statement is of
the form:

EQUIVALENCE (kl), (k2)’°"’(kn)

in which each k is a list of the form:

Ay, Bg,ee.,d . P

Each a is either a variable name or an array element name (not
a dummy argument), the subscript of which contains only con-

r stants, and m is greater than or equal to two. The number of

subscript expressions of an array element name must correspond

‘ in number to the dimensionality of the array declarator or must
be one (the array element successor function defines a relation

‘ by which an array can be made equivalent to a one dimensional
array of the same length).

The EQUIVALENCE statement is used to permit the sharing of
storage by two or more entities. Each element in a given list

is assigned the same storage (or part of the same storage) by

the processor. The EQUIVALENCE statement should not be used

to equate mathematically two or more entities. If a two storage
unit entity is equivalenced to a one storage unit entity, the
latter will share space with the first storage unit of the former.

The assignment of storage to variables and arrays declared direc-

- @

- b5 -

1y in a COMMON statement is determined solely by consideration
of their type and the COMMON and array declarator statements.
Entities so declared are always assigned unique storage, contig-
uous in the order declared in the COMMON statement.

The effect of an EQUIVALENCE statement upon common assignment
may be the lengthening of a common block; the only such length-
ening permitted is that which extends a common block beyond

the last assignment for that block made directly by a COMMON
statement.

When two variables or array elements share storage because of
the effects of EQUIVALENCE statements, the symbolic names of
the variables or arrays in question may not both appear in
COMMON statements in the same program unit.

Information contained in 7.2.1.1.1,7.2.1.3.1, and the present
section suffices to describe the possibilities of additional
cases of sharing of storage between array elements and enti-
ties of common blocks. It is incorrect to cause either direct-
ly or indirectly a single storage unit to contain more than
one element of the same array.

7.2.1.5 EXTERNAL Statement. An EXTERNAL statement is of the
form:

EXTERNAL vy Vosreees Vo

where each v is an external procedure name.

Appearance of a name in an EXTERNAL statement declares that
name to be an external procedure name. If an external proce-
dure name is used as an argument to another external procedure,
it must appear in an EXTERNAL statement in the program unit in
which it is so used.

7.2.1.6 Type-statements. A type-statement is of the form:
t v

v e s oy V
1} 2) ’n

where t is INTEGER, REAL, OR LOGICAL, and each v is a variable
name, an array name, a function name, or an array declarator.

A type-statement is used to override or confirm the implicit
typing, to declare entities to be of type logical, and may supply
dimension information.

The appearance of a symbolic name in a type-statement serves
to inform the processor that it is of the specified data type
for all appearances in the program unit. See, however, the
restriction in 8.3.1 second paragraph. '

7.2.2 (not used).

7.2.3 Format Statement. FORMAT statements are used in conjunc-
tion with the input/output of formatted records to provide con-
version and editing information between the internal represent-
ation and the external character strings.

A FORMAT statement is of the form:

FORMAT (qltlzltzzz...tnznqz)

_

.

- 26 -

where:
. i fication.
(1) (qltlzltzzz...tnznqz) is the format specification
(2) Each q is a series of slashes or is empty.
(3) Each t is a field descriptor or group of field descriptors.
(4) Each z is a field separator.

(5) n may be zero.
A FORMAT statement must be labelled.

7.2.3.1 Field Descriptors. The format field descriptors are of
the forms:

srFw.d
srEw.d

riw

rLw
thth"’hn
nX

where::

(1) The letters F, E, I, L, H, and X indicate the manner of
conversion and editing between the internal and external re-
presentations and are called the conversion codes.

(2) w and n are nonzero integer constants representing the width
of the field in the external character string.

(3) d is an integer constant representing the number of digits
in the fractional part of the external character string.

(4) r, the repeat count, is an optional nonzero integer con-
stant indicating the number of times to repeat the succeeding
basic field descriptor.

(5) s is optional and represents a scale factor designator.

(6) Each h is one of the characters capable of representation
by the processor.

For all descriptors, the field width must be specified. For
descriptors of the form w.d , the d must be specified, even if
it is zero. Further, w must be greater than or equal to d.

The phrase basic field descriptor will be used to signify the
field descriptor unmodified by s or r.

The internal representation of external fields will correspond
to the internal representation of the corresponding type con-
stants (4.2 and 5.1.1).

7.2.3.2 Field Separators. The format field separators are the
slash and the comma. A series of slashes is also a field sepa-
rator. The field descriptors or groups of field descriptors
are separated by a field separator.

The slash is used not only to separate field descriptors, but

to specify demarcation of formatted records. A formatted re-

cord is a string of characters. The lengths of the strings for
a given external medium are dependent upon both the processor

and the external medium.

= 97 =

The processing of the number of characters that can be con-
tained in a record by an external medium does not of itself
cause the introduction or inception of processing of the
next record.

7.2.3.3 Repeat Specifications. Repetition of the field de-
scriptors (except nH and nX) is accomplished by using the
repeat coumnt. If the input/output list warrants, the speci-
fied conversion will be interpreted repetitively up to the
specified number of times.

Repetition of a group of field descriptors or field separa-
tors is accomplished by enclosing them within parentheses and
optionally preceding the left parenthesis with an integer
constant called the group repeat count indicating the number
of times to interpret the enclosed grouping. If no group re-
peat count is specified, a group repeat count of one is as-
sumed. This form of grouping is called a basic group.

A further grouping may be formed by enclosing field descrip-
tors, field separators, or basic groups within parentheses.
Again, a group repeat count may be specified. The parenthe-
ses belonging to the format specification are not considered
as group delineating parentheses.

7.2.3.4 Format Control Interaction with an Input/output List.
The inception of execution of a formatted READ or formatted
WRITE statement initiates format control. Each action of format
control depends on information jointly provided respectively

by the next element of the input/output list, if one exists,
and the next field descriptor obtained from the format speci-
fication. If there is an input/output list, at least one field
descriptor other than nH or nX must exist.

When a READ statement is executed under format control one
record is read when the format control is initiated, and
thereafter additional records are read only as the format
specification demands. Such action may not require more
characters of a record that it contains.

When a WRITE statement is executed under format control, writ-
ing of a record occurs each time the format specification de-

mands that a new record be started. Termination of format con-
trol causes writing of the current record.

Except for the effects of repeat counts, the format specific-
ation is interpreted from left to right.

To each I, ¥, E or L basic descriptor interpreted in a format
specification, there corresponds one element specified by the
input/output list. To each H or X basic descriptor there is no
corresponding element specified by the input/output 1list, and
the format control communicates information directly with the
record. Whenever a slash is encountered, the format specific-
ation demands that a new record start or the preceding record
terminate. During a READ operation, any unprocessed characters
of the current record will be skipped at the time of termin-
ation of format control or when a slash is encountered.

- R -

Whenever the format control encounters an I, F, E, or L
basic descriptor in a format specification, it determines
if there is a corresponding element specified by the input/
output list. If there is such an element, it transmits ap-
propriately converted information between the element and
the record and proceeds. If there is no corresponding ele-
ment, the format control terminates.

If, however, the format control proceeds to the last outer
right parenthesis of the format specification, a test is

made to determine if another list element is specified. If
not, control terminates. However, if another list element

is specified, the format control demands a new record start
and control reverts to that group repeat specification termin-
ated by the last preceding right parenthesis, or if none
exists, then to the first left parenthesis of the format
specification. Note, this action of itself has no effect on
the scale factor.

7.2.3.5 Scale Factor. A scale factor designator is defined
for use with the F and E conversions and is of the form:
nP

where n, the scale factor, is an integer constant or minus
followed by an integer constant.

When the format control is initiated, a scale factor of zero
is established. Once a scale factor has been established, it
applies to all subsequently interpreted F and E field des-
criptors, until another scale factor is encountered, and
then that scale factor is established.

7.2.3.5.1 Scale Factor Effects. The scale factor n affects
the appropriate conversions in the following manner:

(1) For F and E input conversions (provided no exponent exists
in the external field) and F output conversions, the scale
factor effect is as follows:

externally represented number equals internally represented
number times the quantity ten raised to the nth power.

(2) For F and E input, the scale factor has no effect if
there is an exponent in the external field.

(3) For E output, the basic real constant part of the output
quantity is multiplied by 10™ and the exponent is reduced by
n.

7.2.3.6 Numeric Conversions. The numeric field descriptors
I, F, and E are used to specify input/output of integer and
real data.

(1) With all numeric input conversions, leading blanks are
not significant and other blanks are zero. Plus signs may be
omitted. A field of all blanks is considered to be zero.

(2) With the F and E input conversions, a decimal point ap-
pearing in the input field overrides the decimal point spe01-
fication supplied by the field descriptor.

- 29 -

(3) With all output conversions, the output field is right
justified. If the number of characters produced by the con-
version is smaller than the field width, leading blanks will
be inserted in the output field.

(4) With all output conversions, the external representation
of a negative value must be signed; a positive value may be
signed.

(5) The number of characters produced by an output conver-
sion must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field descriptor
Iw indicates that the external field occupies w positions as
an integer. The value of the list item appears, or is to
appear, internally as an integer datum.

In the external input field, the character string must be in
the form of an integer constant or signed integer constant
(5.1.1.1),except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary,
followed by a minus if the value of the internal datum is
negative, or an optional plus otherwise, followed by the
magnitude of the internal value converted to an integer con-
stant. :

7.2.3.6.2 Real Conversions. There are two conversions avail-
able for use with real data: F and E.

The numeric field descriptor Fw.d indicates that the external
field occupies w positions, the fractional part of which con-
sists of d digits. The value of the list item appears, or is
to appear, internally as a real datum.

The basic form of the external input field consists of an op-
tional sign, followed by a string of digits optionally con-
taining a decimal point. The basic form may be followed by
an exponent of one of the following forms:

(1) Signed integer constant.

(2) E. followed by an integer constant.

(3) E followed by a signed integer constant.

The external output field consists of blanks, if necessary,
followed by a minus if the intermnal value is negative, or an
optional plus otherwise, followed by string of digits contain-
ing a decimal point representing the magnitude of the internal
value, as modified by the established scale factor, rounded to
d fractional digits.

The numeric field descriptqr Ew.d indicates that the external
field occupies w positions, the fractional part of which con-
sists of d digits. The value of the list item appears, or is
to appear, internally as a real datum.

The form of the external input field is the same as for the F
conversion.

The standard form of the external output field for a scale
factor of zero is :

‘g O'xl. o -XdY

OE signifies no character position or minus in that position.

= J0 =

where

(1) xl...x are the d most significant rounded digits of the
value of tge data to be output.

(2) Y is of one of the forms: |
E % y;v,
or

and has the significance of a decimal exponent (an altern-
ative for the plus in the first of these forms is the charac- |
ter blank). |

(3) The digit O in the aforementioned standard form may op-
tionally be replaced by no character position.

(4) Each y is a digit.

The séale factor n controls the decimal normalization be-

tween the number part and the exponent part such that:

(1) If n£ 0, there will be exactly -n leading zeros and d+n |
significant digits after the decimal point.

(2) If n)0, there will be exactly n significant digits to the
left of the decimal point and d-n+l to the right of the deci-
mal point.

7.2.3.6.3 (not used).
7.2.3.6.4 (not used).

7.2.3.7 Logical Conversion. The logical field descriptor Lw
indicates that the external field occupies w positions as a
string of information as defined below. The list item appears,
or is to appear, internally as a logical datum.

The external input field must consist of optional blanks fol-
lowed by a T or F followed by optional characters, for true
and false, respectively.

The external output field consists of w-1 blanks followed by
a T or F as the value of the internal datum is true or
false, respectively.

7.2.3.8 Hollerith Field Descriptor. Hollerith information may
be transmitfed by means of the field descriptor nH.

The nH descriptor causes Hollerith information to be read into,
or written from, the n characters (including blanks) follow-
ing the nH descriptor in the format specification itself.

7.2.3.9 Blank Field Descriptor. The field descriptor for
blanks is nX. On input, n characters of the external input
record are skipped. On output, n blanks are inserted in the
external output record.

7.2.3.10 (not used).

- 81 -

8. PROCEDURES AND SUBPROGRAMS

There are four categories of procedures: statement functions,
intrinsic functions, external functions, and external sub-
routines. The first three categories are referred to col-
lectively as functions or function procedures, the last as
subroutines or subroutine procedures. Function subprograms
and subroutine subprograms are classified as procedure
subprograms. Type rules for function procedures are given

in D:3s

8.1 Statement Functions. A statement function is defined in-
ternally to the program unit in which it is referenced. It is
defined by a single statement similar in form to an arith-
metic or logical assignment statement.

In a given program unit, all statement function definitions
must precede the first executable statement of the program
unit and must follow the specification statements, if any.
The name of a statement function must mot appeaf in an e

. EXTERNAL statement, nor as a variable name or an array name
in the same program unit.

8.1.1 Defining Statement Functions. A statement function is
defined by a statement of the form:

f(alf PRI) = e

where f is the function name, e is an expression and the re-

lationship between f and e must conform to the assignment

rules in 7.1.1.1 and 7.1.1.2. The a's are distinct variable

names, called the dummy arguments of the function. Since

these are dummy arguments, their names, which serve only to
indicate type, number, and order of arguments, may be the
same as variable names of the same type appearing elsewhere
in the program unit.

Aside from the dummy arguments, the expression e may only con-
tain:
(1) Constants. |
(2) Variable references. |
(3) Intrinsic function references.
(4) References to previously defined statement
functions.
(5) External function references.

8.1.2 Referencing Statement Functions. A statement function

is referenced by using its reference (5.2) as a primary in an
arithmetic or logical expression. The actual arguments, which
constitute the argument list, must agree in order, number, and
type with the corresponding dummy arguments. An actual argument
in a statement function reference may be any expression of the
same type as the corresponding dummy argument.

Execution of a statement function reference results in an as-
sociation (10.2.2) of actual argument values with the corre-
sponding dummy arguments in the expression of the function de-
finition, and an evaluation of the expression. Following this,
the resultant value is made available to the expression that con-

IR

- 82 -

tained the function reference.

8.2 Intrinsic Functions and Their Reference. The symbolic

names of the intrinsic functions (see Table 3) are prede-

fined to the processor and have a special meaning and type
if the name satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference
as a primary in an arithmetic or logical expression. The
actual arguments, which constitute the argument list, must
agree in type, number, and order with the specification

in Table 3 and may be any expression of the specified type.
The intrinsic functions AMOD, MOD, SIGN, and ISIGN are not
defined when the value of the second argument is zero.

Execution of an intrinsic function reference results in the
actions specified in Table 3 based on the values of the
actual arguments. Following this, the resultant value is
made available to the expression that contained the func-
tion reference.

8.3 External Functions.An external function is defined extern-
ally to the program unit that references it. An external func-
tion defined by FORTRAN statements headed by a FUNCTION state-
ment is called a function subprogram.

8.3.1 Defining Function Subprograms. A FUNCTION statement is
of the form:

t FUNCTION f (al,az,...,an)
where:
(1) t is either INTEGER, REAL or LOGICAL, or is empty.
(2) f is the symbolic name of the function to be defined.

(3) The a's, called the dummy arguments, are each either a
variable name, an array name, or an external procedure name.

Function subprograms are constructed as specified in 9.1.3
with the following restrictions:

(1) The symbolic name of the function must also appear as a
variable name in the defining subprogram. During every execu-
tion of the subprogram, this variable must be defined and, once
defined, may be referenced or redefined. The value of the vari-
able at the time of execution of any RETURN statement in this
subprogram is called the value of the function.

(2) The symbolic name of the function must not appear in any
nonexecutable statement in this program unit, except as the
symbolic name of the function in the FUNCTION statement.

(3) The symbolic names of the dummy arguments may not appear
in an EQUIVALENCE or COMMON statement in the function subpro-
gram.

(4) The function subprogram may define or redefine one or
more of its arguments so as to effectively return results in
addition to the value of the function.

(5) The function subprogram may contain any statements except

- 33 =

SUBROUTINE, another FUNCTION statement, or any statement that
directly or indirectly references the function being defined.

(6) The function subprogram must contain at least one RETURN
statement.

8.3.2 Referencing External Functions. An external function is
referenced by using its reference (5.2) as a primary in an
arithmetic or logical expression. The actual arguments, which
constitute the argument list, must agree in order, number, and
type with the corresponding dummy arguments in the defining
program unit. An actual argument in an external function re-
ference may be one of the following:

(1) A variable name.

(2) An array element name.

(3) An array name.

(4) Any other expression.

(5) The name of an external procedure.

If an actudl argument is an external function name or a sub-
routine name, then the corresponding dummy argument must be
used as an external function name or a subroutine name, re-
spectively.

TABLE 3.

Intrinsic Functions

\J
Number . Type of: '
Intrinsic Function| Definition of Argu- Symbolic
ments SRS .-
Argument | Functiop
—
Absolute Value fa} 1 ABS Real Real
IABS Integer |Integer
Truncation Sign of a 1 AINT Real Real
times lar- INT Real Integer
gest integer
< fay
Remindering * a, (mod az) 2 AMOD Real Real
(see note be- MOD Integer |Integer
low)
Choosing Lar- Max (al’aZ"') = 2 AMAXO Integer |Real
gest Value AMAX1 Real Real
MAXO Integer |Integer
MAX1 Real Integer
Choosing Smal- Min(al,az-.) = 2 AMINO Integer |Real
lest Value AMIN1 Real Real
MINO Integer |Integer
MIN1 Real Integer
Float Conversion 1 FLOAT Integer |Real
from integer
to real
Fix Conversion 1 IFIX Real Integer
from real to
__Jlinteger
Transfer of Sign of a 2 SIGN Real Real
Sign times |aq| ISIGN Integer |Integer
Positive Differ- al—Min(al,az) 2 DIM Real Real
ence IDIM Integer |Integer

* The function MOD or AMOD (al,

ag) is defined as ap- [él/a] ag,
where [x] is the integer whose magnitude does not exceed The
magnitude of x and whose sign is the same as x.

\

=838 =

If an actual argument corresponds to a dummy argument that
is defined or redefined in the referenced subprogram, the
actual argument must be a variable name, an array element
name, or an array name. Execution of an external function
reference as described in the foregoing, results in an as-
sociation (10.2.2) of actual arguments with all appearan-
ces of dummy arguments in executable statements, function
definition statements, and as adjustable dimensions in the
defining subprogram. If the actual argument is as specified
in item (4) in the foregoing, this association is by value
rather than by name. Following these associations, execu-
tion of the first executable statement of the defining sub-
program is undertaken. An actual argument which is an

array element name containing variables in the subscript
could in every case be replaced by the same argument with

a constant subscript containing the same values as would be
derived by computing the variable subscript just before the
association of arguments takes place.

If a dummy argument of an external function is an array name,
the corresponding actual argument must be an array name or
array element name (10.1.3).

If a function reference causes a dummy argument in the refer-
enced function to become associated with another dummy argu-

ment in the same function or with an entity in common, a de-

finition of either within the function is prohibited.

Unless it is a dummy argument, an external function is also
referenced (in that it must be defined) by the appearance
of its symbolic name in an EXTERNAL statement.

8.3.3 Basic External Functions. FORTRAN processors must sup-
ply the external functions listed in Table 4. Referencing of
these functions is accomplished as described in (8.3.2). Argu-
ments for which the result of these functions is not mathe-
matically defined or is of type other than that specified are

improper.

8.4 Subroutine. An external subroutine is defined externally

to the program unit that references it. An external subroutine
defined by FORTRAN statements headed by a SUBROUTINE state-
ment is called a subroutine subprogram.

- 36 -

TABLE 4. Basic External Functions.
RagiLe ExFernal Definition Number Symbolic Iype of:
Function
of Argu- Name
ments Argument|Function
Exponential g2 1 EXP Real Real
Natural Loga- loge(a) 1 ALOG Real Real
rithm
Common Loga- logio (a) 1 ALOG10 Real Real
rithm
Trigonometric sin (a) 1 SIN Real Real
Sine
Trigonometric cos (a) 1 CoSs Real Real
Cosine
Hyperbolic tanh (a) 1 TANH Real Real
Tangent
Square Root (a)l/2 1 SQRT Real Real
Arctangent arctan(a) 1 ATAN Real Real
arctan(aj/a9) 2 ATAN2 Real Real

8.4.1 Defining Subroutine Subprograms. A SUBROUTINE statement is
of one of the forms:

SUBROUTINE s (aj, ag,...,a

)
or

SUBROUTINE s
where:

(1) s is the symbolic name of the subroutine to be defined.
(2) The a's, called the dummy arguments, are each either a variable
name, an array name, or an external procedure name.

Subroutine subprograms are constructed as specified in 9.1.3 with
the following restrictions:

(1) The symbolic name of the subroutine must not appear in any
statement in this subprogram except as the symbolic name of the
subroutine in the SUBROUTINE statement itself.

(2) The symbolic names of the dummy arguments may not appear in an
EQUIVALENCE or COMMON statement in the subprogram.

= 37 =

(3) The subroutine subprogram may define or redefine one or
more of its arguments so as to effectively return results.

(4) The subroutine subprogram may contain any statements ex-
cept FUNCTION, another SUBROUTINE statement, or any state-

B ment that directly or indirectly references the subroutine
being defined.

(5) The subroutine subprogram must contain at least one
RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is referenced

by a CALL statement (7.1.2.4). The actual arguments, which
constitute the argument list, must agree in order, number,
and type with the corresponding dummy arguments in the de-
fining program. An actual argument in a subroutine reference
may be one of the following:

(1) A variable name.
(2) An array element name.
(3) An array name.

(4) any other expression.
(5) The name of an external procedure.

If an actual argument is an external function name or a sub-
routine name, the corresponding dummy argument must be used
as an external function name or a subroutine name, respecti-=
vely.

If an actual argument corresponds to a dummy argument that

is defined or redefined in the referenced subprogram, the ac-
tual argument must be a variable name, an array element name
or an array name.

Execution of a subroutine reference as described in the fore-
going results in an association of actual arguments with all
appearances of dummy arguments in executable statements, func-
- tion definition statements, and as adjustable dimensions in
the defining subprogram. If the actual argument is as speci-
fied in item (4) in the foregoing, this association is by
.P value rather than by name. Following these associations, ex-
ecution of the first executable statement of the defining
subprogram is undertaken.

An actual argument which is an array element name containing
variables in the subscript could in every case be replaced by
the same argument with a constant subscript containing the
same values as would be derived by computing the variable sub-

e script just before the association of arguments takes place.

If a dummy argument of an external function is an array name,
the corresponding actual argument must be an array name or
array element name (10.1.3).

If a subroutine reference causes a dummy argument in the re-
ferenced subroutine to become associated with another dummy

argument in the same subroutine or with an entity in common,
a definition of either entity within the subroutine is pro-

1 hibited.

Unless it is a dummy argument, a subroutine is also referenced

- 38 -

(in that it must be defined) by the appearance of its symbolic
name in an EXTERNAL statement.

8.5 (not used).

9. PROGRAMS

An executable program is a collection of statements, comment
lines, and end lines that completely (except for input data
values and their effects) describe a computing procedure.

9.1 Program Components. Programs consist of program parts,
program bodies, and subprogram statements.

9.1.1 Program Part. A program part is a collection of execut-
able statements, FORMAT statements, and statement function
definitions. A program part must contain at least one execu-
table statement, however it need not contain any statements
from those of the latter two classes of statements. The state-
ment function definitions must precede the first executable
statement.

9.1.2 Program Body. A program body is a collection of specif-
ication statements, FORMAT statements or both, or neither,
followed by a program part, followed by an end line.

9.1.3 Subprogram. A subprogram consists of a SUBROUTINE or
FUNCTION statement followed by a program body.

9.1.4 (not used)

9.1.5 Main Program. A main program consists of a program body.

9.1.6 Executable Program. An executable program consists of a
main program plus any number of subprograms, external proce-
dures, or both.

9.1.7 Program Unit. A program unit is a main program or a sub-
program.

9.2 Normal Execution Sequence. When an executable program be-
gins operation, execution commences with the execution of the
first executable statement of the main program. A subprogram,
when referenced, starts execution with execution of the first
executable statement of that subprogram. Unless a statement
is a GO TO, arithmetic IF, RETURN, or STOP statement or the
terminal statement of a DO, completion of execution of that
statement causes execution of the next following executable
statement. The sequence of execution following execution

of any of these statements is described in Section 7. A
program part may not (in the sense of 1.1) contain an ex-
ecutable statement that can never be executed.

10. INTRA- AND INTERPROGRAM RELATIONSHIPS.

10.1 Symbolic Names. A symbolic name has been defined to con-

sist of from one to six alphanumeric characters, the first of
which must be alphabetic. Sequences of characters that are
format field descriptors or uniquely identify certain state-
ment types,

-~ 39 -

e.g., GO TO, READ, FORMAT, etc., are not symbolic names in
such occurrences nor do they form the first characters of
symbolic names in these cases. In a program unit, a symbolic
name (perhaps qualified by a subscript) must identify an ele-
ment of one (and usually only one) of the following classes:

Class I An array and the eements of that array.
Class II A variable.

Class III A statement function.

Class 1V An intrinsic function.

Class V An external function.

Class VI A subroutine.

Class VII An external procedure which cannot be

classified as either a subroutine or
an external function in the program
unit in question.

Class VIII A block name.

10.1.1 Restrictions on Class. A symbolic name in Class VIII
in a program unit may also be in any one of the Classes I, II,
or III in that program unit.

In the program unit in which a symbolic name in Class V ap-
pears immediately following the word FUNCTION in a FUNCTION
statement, that name must also be in Class II.

Once a symbolic name is used in Class V, VI, VII, or VIII in
any unit of an executable program, no other program unit of
that executable program may use that name to identify an en-
tity of these classes other than the one originally identified.
In the totality of the program units that make up an execu-
table program, a Class VII name must be associated with a

Class V or VI name. Class VII can only exist locally in program
units.

In a program unit, no symbolic name can be in more than one

class except as noted in the foregoing. There are no restric-

tions on uses of symbolic names in different program units

‘b of an executable program other than those noted in the fore-
going.

10.1.2 Implications of Mentions in Specification Statements.

A symbolic name is in Class I if and only if it appears as a

declarator name. Only one such appearance for a symbolic name
in a program unit is permitted.

A symbolic name that appears in a COMMON statement (other than
as a block name) is either in Class I, or in Class II but not
Class V.(8.3.1). Only one such appearance for a symbolic name
in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE statement is
either in Class I, or in Class II but not Class V.(8.3.1).

A symbolic name that appears in a type-statement cannot be in
Class VI or Class VII. Only one such appearance for a sym-
bolic name in a program unit is permitted.

A symbolic name that appears in an EXTERNAL statement is in
either Class V, Class VI, or Class VII. Only one such ap-

_

- 40 -

pearance for a symbolic name in a program unit is permitted.

10.1.3 Array and Array Element. In a program unit, any ap-
pearance of a symbolic name that identifies an array must be
immediately followed by a subscript, except for the follow-
ing cases:

(1) In the list of an input/output statement.

(2) In a list of dummy arguments.

(3) In the list of actual arguments in a reference to
an external procedure.

(4) In a COMMON statement.

(5) In a type-statement.

Only when an actual argument of an external procedure refer-
ence is an array name or an array element name may the cor-
responding dummy argument be an array name. If the actual
argument is an array name, the length of the dummy argument
array must be no greater than the length of the actual ar-
gument array. If the actual argument is an array element name,
the length of the dummy argument array must be less than or
equal to the length of the actual argument array plus one minus
the value of the subscript of the array element.

10.1.4 External Procedures. The only case when a symbolic name
is in Class VII occurs when that name appears only in an
EXTERNAL statement and as an actual argument to an external
procedure in a program unit.

Only when an actual argument of an external procedure refer-
ence is an external procedure name may the corresponding dummy
argument be an external procedure name.

In the execution of an executable program, a procedure subpro-
gram may not be referenced twice without the execution of a
RETURN statement in that procedure having intervened.

10.1.5 Subroutine. A symbolic name is in Class VI if it appears:

(1) Immediately following the word SUBROUTINE in a SUBROUTINE
statement.

(2) Immediately following the word CALL in a CALL statement.

10.1.6 Statement Function. A symbolic name is in Class III
in a program unit if and only if it meets all three of the
following conditions:

(1) It does not appear in an EXTERNAL statement nor is it in
Class 1I.

(2) Every appearance of the name, except in a type-statement,
is immediately followed by a left parenthesis.

(3) A function defining statement (8.1.1) is present for that
symbolic name.

10.1.7 Intrinsic Function. A symbolic name is in Class IV in
a4 program unit if and only if it meets all four of the follow-
ing conditions:

(1) It does not appear in an EXTERNAL statement nor is it in

’

B — |
- 4] -

Class I or Class III.

(2) The symbolic name appears in the name column of the
table in Section 8.2.

(3) The symbolic name does not appear in a type-statement
of type different from the intrinsic type specified in the
table.

(4) Every appearance of the symbolic name (except in a
type-statement as described in the foregoing) is immedi-
ately followed by an actual argument list enclosed in
parentheses.

The use of an intrinsic function in a program unit of an
executable program does not preclude the use of the same
symbolic name to identify some other entity in a different
program unit of that executable program.

J 10.1.8 External Function. A symbolic name is in Class V if
its

FUNCTION statement.

(2) Is not in Class I, Class III, Class IV or Class VI and
appears immediately followed by a left parenthesis on every
occurrence except in a type-statement, in an EXTERNAL state-
ment, or as an actual argument. There must be at least one
such appearance in the program unit in which it is so

used.

10.1.9 Variable. In a program unit, a symbolic name is in
Class II if it meets all three of the following conditions:

(1) It is not in Class VI or Class VII.

(2) It is never immediately followed by a left parenthesis
unless it is immediately preceded by the word FUNCTION in a
FUNCTION statement.

| (3) It occurs other than in a Class VIII appearance.

‘» 10.1.10 Block Name. A symbolic name is in Class VIII if and
only if it is used as a block name in a COMMON statement.

10.2 Definition. There are two levels of definition of nu-
meric values, first level definition and second level defini-
tion. The concept of definition on the first level applies

to array elements and variables; that of second level de-
finition to integer variables only. These concepts are de-
fined in terms of progressions of execution; and thus, an
executable program, complete and in execution, is assumed

in what follows.

(1) Appears immediately following the word FUNCTION in a

There are two other varieties of definition that should be
noted. The first, effected by a GO TO assignment and referring
to an integer variable being defined with other than an in-
teger value, is discussed in 7.1.1.3 and 7.1.2.1.2; the
second, which refers to when an external procedure may be
referenced, will be discussed in the next section.

w In what follows, otherwise unqualified use of the terms de-
finition and undefinition (or their alternate forms) as

- 42 -

applied to variables and array elements will imply modi-
fication by the phrase on the first level.

10.2.1 Definition of Procedures. If an executable program
contains information describing an external procedure, such
an external procedure with the applicable symbolic name

is defined for use in that executable program. An external
function reference or subroutine reference (as the case may
be) to that symbolic name may then appear in the executable
program, provided that number of arguments agrees between
definition and reference. In addition, for an external func-
tion, the type of function must agree between definition
and reference. Other restrictions on agreements are con-
tained in 8.3.1, 8.3.2, 8.4.1, 8.4.2, 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always
defined and may be referenced subject to the restrictions
alluded to in the foregoing.

A symbolic name in Class III or Class IV is defined for such
use.

10.2.2 Associations That Effect Definition. Entities may be-
come associated by:

(1) COMMON association.
(2) EQUIVALENCE association.
(3) Argument substitution.

Multiple association to one or more entities can be the re-
sult of combinations of the foregoing. Any definition or un-
definition of one of a set of associated entities effects
the definition or undefinition of each entity of the entire
set.

For purposes of definition, in a program unit there is no
association between any two entities both of which appear

in COMMON statements. Further, there is no other agsociation
for common and equivalenced entities other than those stated
in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference is

an array name, an array element name, or a variable name, then
the discussions in 10.1.3 and 10.2.1 allow an association of
dummy arguments with the actual arguments only between the
time of execution of the first executable statement of the
procedure and the inception of execution of the next encoun-
tered RETURN statement of that procedure. Note specifically
that this association can be carried through more than one
level of external procedure reference.

In what follows, variables Oor array elements associated by
the information in 7.2.1.3.1 and 7.2.1.4 will be equivalent
if and only if they are of the same type.

If an entity of a given type becomes defined, then all as-
sociated entities of different type become undefined at the
same time, while all associated entities of the same type
become defined unless otherwise noted.

- 43 -

Association by argument substitution is only valid in the
case of identity of type, so the rule in this case is that
an entity created by argument substitution is defined at
time of entry if and only if the actual argument was de-
fined. If an entity created by argument substitution be-
comes defined or undefined (while the association exists)
during execution of a subprogram, then the corresponding
actual entities in all calling program units becomes de-
fined or undefined accordingly.

10.2.3 Events That Effect Definition. Any entity is unde-
fined at the time of the first execution of the first

executable statement of the main program. Redefinition of
a defined entity is always permissible except for certain
integer variables (7.1.2.8, 7.1.3.1.1., and 7.2.1.1.2) or
certain entities in subprogram (6.4., 8.3.2., and 8.4.2).

Variables and array elements become defined or redefined as
follows:

(1) Completion of execution of an arithmetic or logical assign-
ment statement causes definition of the entity that precedes
the equals.

(2) As execution of an input statement proceeds, each entity,
which is assigned a value of its corresponding type from the

input medium is defined at the time of such association. Only
at the completion of execution of the statement do associated
entities of the same type become defined.

(3) Completion of execution of a DO statement causes defini-
tion of the control variable.

(4) Inception of execution of action specified by a DO-im-
plied list causes definition of the control variable.

Variables and array elements become undefined as follows:

(1) At the time a DO is satisfied, the control variable be-
comes undefined.

(2) Completion of execution of an ASSIGN statement causes
undefinition of the integer variable in the statement.

(3) Certain entities in function subprograms (10.2.9) become
undefined.

(4) Completion of execution of action specified by a DO-im-
plied list causes undefinition of the control variable.

(5) When an associated entity of different type becomes de-
fined.

(6) When an associated entity of the same type becomes un-
defined.

10.2.4 Entities in Blank Common

Entities in blank common and those entities associated with
them, once defined by any of the rules previously mentioned,
remain defined until they become undefined.

- 44 -

name appears as a block name in the program unit. If a main
program or referenced subprogram contains a labelled common
block name, any entity in the block (and its associates)
once defined remain defined until they become undefined.

If a subprogram contains a labelled common block name that
is not contained in any program unit currently referencing
the subprogram directly or indirectly, the execution of a
RETURN statement in the subprogram causes undefinition of
all entities in the block (and their associates) except for
initially defined entities that have maintained their ini-
tial definitions.

10.2.6 Entities Not in Common. An entity not in common is
initially undefined.

Such entities once defined by any of the rules previously
mentioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of ex-
ecution of a RETURN statement in that subprogram causes

all such entities and their associates at that time to be-
come undefined. In this respect, it should be noted that
the association between dummy arguments and actual arguments
is terminated at the inception of execution of the RETURN
statement.

10.2.7 Basic Block. In a program unit, a basic block is a
group of one or more executable statements defined as
follows. The following statements are block terminal statements:

(1) DO statement.

(2) CALL statement.

(3) GO TO statement of all types.

(4) Arithmetic IF statement.

(5) STOP statement.

(6) RETURN statement.

(7) The first executable statement, if it exists, pre-
ceding a statement whose label is mentioned in a GO TO or
arithmetic IF statement.

(8) An arithmetic statement in which an integer vari-
able precedes the equals.

(9) A READ statement with an integer variable in the 1list.

(10) A logical IF containing any of the admissible forms
given in the foregoing.

The following statements are block initial statements:

(1) The first executable statement of a program unit.
(2) The first executable statement, if it exists, following
a block terminal statement.

Every block initial statement defines a basic block. If that

initial statement is also a block terminal statement, the |
basic block consists of that one statement. Otherwise, the
basic block consists of the initial statement and all execu-
table statements that follow until a block terminal statement
is encountered. The terminal statement is included in the
basic block.

3 i

nents:

list.
rms

- 45 -

10.2.7.1 Last Executable Statement. In a program unit the

last executable statement (which cannot be part of a logi-

cal IF) must be one of the following statements: GO TO state-
ment, arithmetic IF statement, STOP statement or RETURN state-
ment.

10.2.8 Second Level Definition. Integer variables must be
defined on the second level when used in subscripts and
computed GO TO statements.

Redefinition of an integer entity causes all associated
variables to be undefined for use on the second level du-
ring this execution of this program unit until the associated
integer variable is explicitly redefined.

Except as just noted, an integer variable is defined on the
second level upon execution of the initial statement of a
basic block only if both of the following conditions apply:

(1) The variable is used in a subscript or in a computed
GO TO in the basic block in question.

(2) The variable is defined on the first level at the time
of execution of the initial statement in question. |

This definition persists until one of the following happens:

(1) Completion of execution of the terminal statement of the
basic block in question.

(2) The variable in question becomes undefined or receives
a new definition on the first level.

At this time, the variable becomes undefined on the second
level.

In addition, the occurrence of an integer variable in the
list of an input statement in which that integer variable
appears following in a subscript causes that variable to

be defined on the second level. This definition persists un-
til one of the following happens:

(1) Completion of execution of the terminal statement of the
basic block containing the input statement.

(2) The variable becomes undefined or receives a new defini-
tion on the first level.

An integer variable defined as the control variable of a DO-
implied list is defined on the second level over the range
of that DO-implied list and only over that range.

10.2.9 Certain Entities in Function Subprograms. If a func-
tion subprogram is referenced more than once with an iden-
tical argument list in a single statement, the execution of
that subprogram must yield identical results for those cases
mentioned, no matter what the order of evaluation of the
statement.

If a statement contains a factor that may not be evaluated
(6.4), and if this factor contains a function reference, then

I e

= A6 =

all entities that might be defined in that reference be-
come undefined at the completion of evaluation of the ex-
pression containing the factor.

10.3 Definition Requirements for Use of Entities. Any vari-
able referenced in a subscript or a computed GO TO must be
defined on the second level at the time of this use.

Any variable, array element, or function referenced as a
primary in an expression and any subroutine referenced by
a CALL statement must be defined at the time of this use.
In the case where an actual argument in the argument list
of an external procedure reference is a variable name or
an array element name, this in itself is not a require-
ment that the entity be defined at the time of the proce-
dure reterence; however, when such an argument is an ex-
ternal procedure name, it must be defined.

Any variable used as an initial value, terminal value, or
incrementation value of a DO statement or a DO-implied ‘
list must be defined at the time of this use.

Any variable used to identify an input/output unit must
be defined at the time of this use.

At the time of execution of a RETURN statement in a func-
tion subprogram, the value (8.3.1) of that function must
be defined.

At the time of execution of an output statement, every en-
tity whose value is to be transferred to the output me-

dium must be defined unless the output is under control of

a format specification and the corresponding conversion code
is A. If the output is under control of a format specifi-
cation, a correct association of conversion code with type
of entity is required unless the conversion code is A. The
following are the correct associations: I with integer;

E and F with real and L with logical.

- 47 -
APPENDIX 1
ITEMS INCLUDED IN ECMA FORTRAN
WHICH HAVE BEEN EXCLUDED FROM BASIC
FORTRAN
1. Up to nine continuation cards (5 in Basic)
2. Six Character identifiers (5 in Basic)
3. Logical data
4. Logical IF
5. Relational and Logical expressions
6. Type statements
7. EXTERNAL statements
8. 3-dimensional arrays (2 in Basic)
9. Adjustable dimensions
10. If dummy argument is an array, actual argument may be
an array element
11. DIMENSION information may appear in COMMON statements
12, Named COMMON blocks
13. GO TO assignment statement and assigned GO TO
14. 5 octal digits in STOP and PAUSE (4 in Basic)
15. Print Carriage Control
16. Scale Factor
17. Input of numbers with exponent when the Field Description
is Fw.d.
18. Embedded and trailing blanks are treated as zeros during
numeric input conversion
19. Second level of parentheses in FORMAT statements
20. Side effects in FUNCTION
21. The functions AINT, INT, AMOD, MOD, AMAX0, AMAX1, MAXO,
MAX1, AMINO, AMINI1, MINO, MIN1, DIM, IDIM, ATAN2, ALOGI10.
22. COMMON, EQUIVALENCE, DIMENSION do not have to be ordered.

- 48 -

APPENDIX 2

© 00 N & o B W N

=
o

ITEMS OF ISO FORTRAN WHICH HAVE BEEN

EXCLUDED FROM ECMA FORTRAN

Up to 19 continuation cards (9 in ECMA)
Currency sign

COMPLEX data

Double length data

COMPLEX and DOUBLE functions

Hollerith data type

Extended range of DO statement

FORMAT input at run time

G, A, and D field descriptors

Data initialization statement and Block Data program.

