

Reference number

ECMA-123:2009

© Ecma International 2009

ECMA TR/112­6
1st Edition / December 2023

Universal Disk Format
(UDF) specification –

Part 6 (Revision 1.50)

COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2023

© Ecma International 2023
i

COPYRIGHT NOTICE

© 2023 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

ii

CONTENTS

1. INTRODUCTION.. 1

1.1 Document Layout ... 2

1.2 Compliance ... 3

1.3 General References .. 3

1.3.1 References .. 3

1.3.2 Definitions .. 4

1.3.3 Terms ... 5

2. BASIC RESTRICTIONS & REQUIREMENTS .. 6

2.1 Part 1 - General .. 8

2.1.1 Character Sets .. 8

2.1.2 OSTA CS0 Charspec.. 9

2.1.3 Dstrings .. 9

2.1.4 Timestamp .. 10

2.1.5 Entity Identifier .. 10

2.2 Part 3 - Volume Structure ... 15

2.2.1 Descriptor Tag.. 15

2.2.2 Primary Volume Descriptor ... 15

2.2.3 Anchor Volume Descriptor Pointer .. 18

2.2.4 Logical Volume Descriptor .. 18

2.2.5 Unallocated Space Descriptor .. 20

2.2.6 Logical Volume Integrity Descriptor ... 20

2.2.7 Implemention Use Volume Descriptor ... 23

2.2.8 Virtual Partition Map ... 25

2.2.9 Sparable Partition Map ... 25

2.2.10 Virtual Allocation Table... 26

2.2.11 Sparing Table ... 28

2.3 Part 4 - File System .. 31

2.3.1 Descriptor Tag.. 31

2.3.2 File Set Descriptor .. 31

2.3.3 Partition Header Descriptor .. 34

2.3.4 File Identifier Descriptor .. 35

2.3.5 ICB Tag .. 36

2.3.6 File Entry ... 38

2.3.7 Unallocated Space Entry .. 39

2.3.8 Space Bitmap Descriptor .. 40

2.3.9 Partition Integrity Entry ... 40

2.3.10 Allocation Descriptors .. 40

2.3.11 Allocation Extent Descriptor .. 41

2.3.12 Pathname .. 42

2.3.13 Non-Allocatable Space List ... 42

iii

2.4 Part 5 - Record Structure .. 43

3. SYSTEM DEPENDENT REQUIREMENTS.. 44

3.1 Part 1 - General .. 44

3.1.1 Timestamp .. 44

3.2 Part 3 - Volume Structure ... 45

3.2.1 Logical Volume Header Descriptor .. 45

3.3 Part 4 - File System .. 46

3.3.1 File Identifier Descriptor .. 46

3.3.2 ICB Tag .. 47

3.3.3 File Entry ... 49

3.3.4 Extended Attributes .. 53

4. USER INTERFACE REQUIREMENTS .. 66

4.1 Part 3 - Volume Structure ... 66

4.2 Part 4 - File System .. 66

4.2.1 ICB Tag .. 66

4.2.2 File Identifier Descriptor .. 67

5. INFORMATIVE .. 74

5.1 Descriptor Lengths ... 74

5.2 Using Implementation Use Areas ... 74

5.2.1 Entity Identifiers ... 74

5.2.2 Orphan Space ... 74

5.3 Boot Descriptor ... 75

6. APPENDICES .. 76

6.1 UDF Entity Identifier Definitions ... 76

6.2 UDF Entity Identifier Values .. 77

6.3 Operating System Identifiers .. 78

6.4 OSTA Compressed Unicode Algorithm ... 80

6.5 CRC Calculation .. 82

6.6 Algorithm for Strategy Type 4096 .. 85

6.7 Identifier Translation Algorithms .. 86

6.7.1 DOS Algorithm .. 86

iv

6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm ... 90

6.8 Extended Attribute Checksum Algorithm ... 95

6.9 Requirements for DVD-ROM ... 96

6.9.1 Constraints imposed by UDF for DVD-Video ... 96

6.9.2 How to read a UDF disc ... 97

6.10 Recommendations for CD Media .. 100

6.10.1 Use of UDF on CD-R media .. 100

6.10.2 Use of UDF on CD-RW media .. 102

6.10.3 Multisession and Mixed Mode ... 105

7. UDF 1.50 ERRATA .. 108

7.1 Addition to sequentially written file systems .. 108

7.2 Correction for “Non-Allocatable Space” file ... 109

7.3 Correction for processing permissions .. 110

7.4 Sparing Packet Length errata ... 111

1

1. Introduction
The Universal Disk Format (UDF) specification defines a subset of the standard ECMA

167 2nd edition. The primary goal of the UDF is to maximize data interchange and

minimize the cost and complexity of implementing ECMA 167.

To accomplish this task this document defines a Domain. A domain defines rules and

restrictions on the use of ECMA 167. The domain defined in this specification is known as

the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of ECMA 167

on a per operating system basis:

Given some ECMA 167 structure X, for each field in structure X answer the following

questions for a given operating system:

1) When reading this field: If the operating system supports the data in

this field then what should it map to in the operating system?

2) When reading this field: If the operating system supports the data in

this field with certain limitations then how should the field be interpreted

under this operating system?

3) When reading this field: If the operating system does NOT support the

data in this field then how should the field be interpreted under this

operating system?

4) When writing this field: If the operating system supports the data for

this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT support the

data for this field then to what value should the field be set?

For some structures of ECMA 167 the answers to the above questions were self

explanatory and therefore those structures are not included in this document.

In some cases additional information is provided for each structure to help clarify the

standard.

This document should help make the task of implementing the ECMA 167 standard easier.

2

1.1 Document Layout
This document presents information on the treatment of structures defined under standard

ECMA 167.

This document is separated into the following 4 basic sections:

• Basic Restrictions and Requirements - defines the restrictions and

requirements which are operating system independent.

• System Dependent Requirements - defines the restrictions and requirements

which are operating system dependent.

• User Interface Requirements - defines the restrictions and requirements which

are related to the user interface.

• Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined under standard

ECMA 167. The following areas are covered :

Interpretation of a structure/field upon reading from media.

 Contents of a structure/field upon writing to media. Unless specified otherwise

writing refers only to creating a new structure on the media. When it applies to

updating an existing structure on the media it will be specifically noted as such.

The fields of each structure are listed first, followed by a description of each field with

respect to the categories listed above. In certain cases, one or more fields of a structure

are not described if the semantics associated with the field are obvious.

A word on terminology: in common with ECMA 167, this document will use shall to

indicate a mandatory action or requirement, may to indicate an optional action or

requirement, and should to indicate a preferred but still optional, action or requirement.

Also, special comments associated with fields and/or structures are prefaced by the

notification: "NOTE:"

3

1.2 Compliance
This document requires conformance to parts 1, 2, 3 and 4 of ECMA 167. Compliance

to part 5 of ECMA 167 is not supported by this document. Part 5 may be supported in a

later revision of this document.

NOTE: Due to the nature of CD media, Partitions may contain volume structures. This

violates ECMA 167 (3/8.5). Efforts are under way to revise ECMA 167 to

allow volume structures within write-once partitions.

For an implementation to claim compliance to this document the implementation shall

meet all the requirements (indicated by the word shall) specified in this document.

The following are a few points of clarification in regards to compliance:

• Multi-Volume support is optional. An implementation can claim compliance

and only support single volumes.

• Multi-Partition support is optional. An implementation can claim compliance

without supporting the special multi-partition case on a single volume defined

in this specification.

• Media support. An implementation can claim compliance and support a

single media type or any combination. All implementations should be able to

read any media that is physically accessable.

• File Name Translation - Any time an implementation has the need to

transform a filename to meet operating system restrictions it shall use the

algorithms specified in this document.

• Extended Attributes - All compliant implementations shall preserve existing

extended attributes encountered on the media. Implementations shall create

and maintain the extended attributes for the operating systems they support.

For example, an implementation that supports Macintosh shall preserve any

OS/2 extended attributes encountered on the media. An implementation that

supports Macintosh shall also create and maintain all Macintosh extended

attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA

document.

1.3 General References
1.3.1 References
ISO 9660:1988 Information Processing - Volume and File Structure of CD-ROM for Information

Interchange

IEC 908:1987 Compact disc digital audio system

ISO/IEC 10149:1993 Information technology - Data Interchange on read-only 120mm optical data

discs (CD-ROM based on the Philips/Sony “Yellow Book”)

Orange Book part-II Recordable Compact Disc System Part-II, N.V. Philips and Sony Corporation

4

Orange Book part-III Recordable Compact Disc System Part-III, N.V. Philips and Sony Corporation

ISO/IEC 13346:1995 Volume and file structure of write-once and rewritable media using non-

sequential recording for information interchange. This ISO/IEC standard is

equivalent to ECMA 167 2nd edition.

ECMA 167 European Computer Manufactures Association (ECMA) standard number 167.

Revision 2, and is available from https://www.ecma-international.org/. References

enclosed in [] in this document are references to ECMA 167. The references are in

the form [x/a.b.c], where x is the section number and a.b.c is the paragraph or

figure number.

1.3.2 Definitions
Audio session Audio session contains one or more audio tracks, and no data track.

Audio track Audio tracks are tracks that are designated to contain audio sectors specified in

the ISO/IEC 908.

CD-R CD-Recordable. A write once CD defined in Orange Book, part-II.

CD-RW CD-Rewritable. An overwritable CD defined in Orange Book, part-III.

Clean File System The file system on the media conforms to this specification.

Data track Data tracks are tracks that are designated to contain data sectors specified in the

ISO/IEC 10149.

Dirty File System A file system that is not a clean file system.

Fixed Packet An incremental recording method in which all packets in a given track are of a

length specified in the Track Descriptor Block. Addresses presented to a CD

drive are translated according to the Method 2 addressing specified in Orange

Book parts-II and -III.

ICB A control node in ECMA 167.

Logical Block Address An address relative to the beginning of a partition, as defined in ECMA 167.

Media Block Address The address of a sector as it appears on the medium, before any mapping

performed by the device.

Packet A recordable unit, which is an integer number of sectors.

Packet Size The number of user data sectors in a Packet.

Physical Address An address used when accessing the medium, as it would appear at the interface

to the device.

Random Access File System A file system for randomly writable media, either write once or

rewritable

Sequential File System A file system for sequentially written media (e.g. CD-R)

Session The tracks of a volume shall be organized into one or more sessions as specified

by the Orange Book part-II. A session shall be a sequence of one or more tracks,

the track numbers of which form a contiguous ascending sequence.

Track The sectors of a volume shall be organized into one or more tracks. A track shall

be a sequence of sectors, the sector numbers of which form a contiguous

ascending sequence. No sector shall belong to more than one track.

https://www.ecma-international.org/

5

Note: There may be gaps between tracks; that is, the last sector of a track need

not be adjacent to the first sector of the next track.

UDF OSTA Universal Disk Format

Variable Packet An incremental recording method in which each packet in a given track is of a

host determined length. Addresses presented to a CD drive are as specified in

Method 1 addressing in Orange Book parts II and III.

VAT ICB A File Entry ICB that describes a file containing a Virtual Allocation Table.

Virtual Address An address described by a Virtual Allocation Table entry.

VAT The Virtual Allocation Table (VAT) provides a Logical Block Address for each

Virtual Address. The Virtual Allocation Table is used with sequential write once

media.

1.3.3 Terms
May Indicates an action or feature that is optional.

Optional Describes a feature that may or may not be implemented. If implemented, the

feature shall be implemented as described.

Shall Indicates an action or feature that is mandatory and must be implemented to

claim compliance to this standard.

Should Indicates an action or feature that is optional, but its implementation is strongly

recommended.

Reserved A reserved field is reserved for future use and shall be set to zero. A reserved

value is reserved for future use and shall not be used.

6

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and requirements defined

in this specification. These restrictions & requirements as well as additional ones are

described in detail in the following sections of this specification.

Item Restrictions & Requirements

Logical Sector Size The Logical Sector Size for a specific volume shall be the

same as the physical sector size of the specific volume.

Logical Block Size The Logical Block Size for a Logical Volume shall be set to

the logical sector size of the volume or volume set on which

the specific logical volume resides.

Volume Sets All media within the same Volume Set shall have the same

physical sector size. Rewritable/Overwritable media and

WORM media shall not be mixed in/ be present in the same

volume set.

First 32K of Volume Space The first 32768 bytes of the Volume space shall not be used

for the recording of ECMA 167 structures. This area shall

not be referenced by the Unallocated Space Descriptor or

any other ECMA 167 descriptor. This is intended for use by

the native operating system.

Volume Recognition Sequence The Volume Recognition Sequence as described in part 2 of

ECMA 167 shall be recorded.

Timestamp All timestamps shall be recorded in local time. Time zones

shall be recorded on operating systems that support the

concept of a time zone.

Entity Identifiers Entity Identifiers shall be recorded in accordance with this

document. Unless otherwise specified in this specification

the Entity Identifiers shall contain a value that uniquely

identifies the implementation.

Descriptor CRCs CRCs shall be supported and calculated for all Descriptors,

except for the Space Bitmap Descriptor.

File Name Length Maximum of 255 bytes

Maximum Pathsize Maximum of 1023 bytes

Extent Length Maximum Extent Length shall be 2
30

- Logical Block Size

Primary Volume Descriptor There shall be exactly one prevailing Primary Volume

Descriptor recorded per volume.

Anchor Volume Descriptor Pointer Shall be recorded in at least 2 of the following 3 locations:

256, N-256, or N, where N is the last addressable sector of a

volume.

Partition Descriptor A Partition Access Type of Read-Only, Rewritable,

Overwritable and WORM shall be supported.

There shall be exactly one prevailing Partition Descriptor

recorded per volume, with one exception. For Volume Sets

that consist of single volume, the volume may contain 2

Partitions with 2 prevailing Partition Descriptors only if one

has an access type of read only and the other has an access

type of Rewritable or Overwritable. The Logical Volume

for this volume would consist of the contents of both
partitions.

7

Logical Volume Descriptor There shall be exactly one prevailing Logical Volume

Descriptor recorded per Volume Set.

The LogicalVolumeIdentifier field shall not be null and

should contain a identifier that aids in the identification of

the logical volume. Specifically, software generating

volumes conforming to this specification shall not set this

field to a fixed or trivial value. Duplicate disks which are

intended to be identical may contain the same value in this

field. This field is extremely important in logical volume

identification when multiple media are present within a

jukebox. This name is typically what is displayed to the

user.

Logical Volume Integrity Descriptor Shall be recorded.

Unallocated Space Descriptor A single prevailing Unallocated Space Descriptor shall be

recorded per volume.

File Set Descriptor There shall be exactly one File Set Descriptor recorded per

Logical Volume on Rewritable/Overwritable media. For

WORM media multiple File Set Descriptors may be

recorded based upon certain restrictions defined in this

document.

ICB Tag Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor The total length of a File Identifier Descriptor shall not

exceed the size of one Logical Block.

File Entry The total length of a File Entry shall not exceed the size of

one Logical Block.

Allocation Descriptors Only Short and Long Allocation Descriptors shall be

recorded.

Allocation Extent Descriptors The length of any single Allocation Extent Descriptor shall

not exceed the Logical Block Size.

Unallocated Space Entry The total length of an Unallocated Space Entry shall not

exceed the size of one Logical Block.

Space Bitmap Descriptor CRC not required.

Partition Integrity Entry Shall not be recorded.

Volume Descriptor Sequence Extent Both the main and reserve volume descriptor sequence

extents shall each have a minimum length of 16 logical

sectors.

Record Structure Record structure files, as defined in part 5 of ECMA 167,

shall not be created.

8

2.1 Part 1 - General
2.1.1 Character Sets

The character set used by UDF for the structures defined in this document is the

CS0 character set. The OSTA CS0 character set is defined as follows:

OSTA CS0 shall consist of the d-characters specified in the Unicode 1.1 standard

(excluding #FEFF and FFFE) stored in the OSTA Compressed Unicode format

which is defined as follows:

OSTA Compressed Unicode format

RBP Length Name Contents

0 1 Compression ID Uint8

1 ?? Compressed Bit Stream byte

The CompressionID shall identify the compression algorithm used to compress

the CompressedBitStream field. The following algorithms are currently

supported:

Compression Algorithm

Value Description

0 - 7 Reserved

8 Value indicates there are 8 bits per character

in the CompressedBitStream.

9-15 Reserved

16 Value indicates there are 16 bits per

character in the CompressedBitStream.

17-255 Reserved

For a CompressionID of 8 or 16, the value of the CompressionID shall specify

the number of BitsPerCharacter for the d-characters defined in the

CharacterBitStream field. Each sequence of CompressionID bits in the

CharacterBitStream field shall represent an OSTA Compressed Unicode d-

character. The bits of the character being encoded shall be added to the

CharacterBitStream from most- to least-significant-bit. The bits shall be added to

the CharacterBitStream starting from the most-significant-bit of the current byte

being encoded into.

NOTE: This encoding causes characters written with a CompressionID of 16 to

be effectively written in big endian format.

The value of the OSTA Compressed Unicode d-character interpreted as a Uint16

defines the value of the corresponding d-character in the Unicode 1.1 standard.

Refer to appendix on OSTA Compressed Unicode for sample C source code to

convert between OSTA Compressed Unicode and standard Unicode 1.1.

9

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

2.1.2 OSTA CS0 Charspec

struct Charspec {

Uint8 CharacterSetType;

byte CharacterSetInfo[63];

}

The CharacterSetType field shall have the value of 0 to indicate the CS0 coded

character set.

The CharacterSetInfo field shall contain the following byte values with the

remainder of the field set to a value of 0.

#4F, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73, #65,

#64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:

“OSTA Compressed Unicode”

2.1.3 Dstrings
The ECMA 167 standard, as well as this document, has normally defined byte positions

relative to 0. In section 7.2.12 of ECMA 167, dstrings are defined in terms of being

relative to 1. Since this offers an opportunity for confusion, the following shows what the

definition would be if described relative to 0.

7.2.12 Fixed-length character fields

A dstring of length n is a field of n bytes where d-characters (1/7.2) are recorded. The number of

bytes used to record the characters shall be recorded as a Uint8 (1/7.1.1) in byte n-1, where n is

the length of the field. The characters shall be recorded starting with the first byte of the field, and

any remaining byte positions after the characters up until byte n-2 inclusive shall be set to #00.

If the number of d-characters to be encoded is zero, the length of the dstring shall be zero.

NOTE: The length of a dstring includes the compression code byte(2.1.1) except for the

case of a zero length string. A zero length string shall be recorded by setting the entire

dstring field to all zeros.

10

2.1.4 Timestamp
struct timestamp { /* ECMA 167 1/7.3 */

Uint16 TypeAndTimezone;

Uint16 Year;

Uint8 Month;

Uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofMicroseconds;

Uint8 Microseconds;

}

2.1.4.1 Uint16 TypeAndTimezone;
For the following descriptions Type refers to the most significant 4 bits of this

field, and TimeZone refers to the least significant 12 bits of this field.

The time within the structure shall be interpreted as Local Time since Type

shall be equal to ONE for OSTA UDF compliant media.

Type shall be set to ONE to indicate Local Time.

Shall be interpreted as specifying the time zone for the location when this

field was last modified. If this field contains -2047 then the time zone has

not been specified.

For operating systems that support the concept of a time zone, the offset of

the time zone (in 1 minute increments), from Coordinated Universal Time,

shall be inserted in this field. Otherwise the time zone portion of this field

shall be set to -2047.

Note: Time zones West of Coordinated Universal Time have negative offsets.

For example, Eastern Standard Time is -300 minutes; Eastern Daylight

Time is -240 minutes.

2.1.5 Entity Identifier
struct EntityID { /* ECMA 167 1/7.4 */

Uint8 Flags;

char Identifier[23];

char IdentifierSuffix[8];

}

11

UDF classifies Entity Identifiers into 3 separate types as follows:

• Domain Entity Identifiers

• UDF Entity Identifiers

• Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers based

upon the different types mentioned above.

2.1.5.1 Uint8 Flags
Self explanatory.

Shall be set to ZERO.

2.1.5.2 char Identifier
Unless stated otherwise in this document this field shall be set to an identifier that

uniquely identifies the implementation. This methodology will allow for

identification of the implementation responsible for creating structures recorded

on media interchanged between different implementations.

If an implementation updates existing structures on the media written by other

implementations the updating implementation shall set the Identifier field to a

value that uniquely identifies the updating implementation.

The following table summarizes the Entity Identifier fields defined in the ECMA

167 standard and this document and shows to what values they shall be set.

Entity Identifiers
Descriptor Field ID Value Suffix Type

Primary Volume

Descriptor

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Implementation Use

Volume Descriptor

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Implementation Use

Volume Descriptor

Implementation ID “*UDF LV Info” UDF Identifier Suffix

Partition Descriptor Implementation ID “*Developer ID” Implementation

Identifier Suffix

Logical Volume

Descriptor

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Logical Volume

Descriptor

Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier

Suffix

File Set Descriptor Domain ID "*OSTA UDF
Compliant"

DOMAIN Identifier

Suffix

File Identifier

Descriptor

Implementation ID “*Developer ID” Implementation

Identifier Suffix

(optional)

12

File Entry Implementation ID “*Developer ID” Implementation

Identifier Suffix

UDF Extended

Attribute

Implementation ID See Appendix UDF Identifier Suffix

Non-UDF Extended

Attribute

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Device Specification

Extended Attribute

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Logical Volume

Integrity Descriptor

Implementation ID “*Developer ID” Implementation

Identifier Suffix

Partition Integrity

Entry

Implementation ID N/A N/A

Virtual Partition Map Partition Type

Identifier

“*UDF Virtual

Partition”

UDF Identifier Suffix

Sparable Partition

Map

Partition Type

Identifier

“*UDF Sparable

Partition”

UDF Identifier Suffix

Virtual Allocation

Table

Entity ID “*UDF Virtual

Alloc Tbl”

UDF Identifier Suffix

Sparing Table Sparing Identifier “*UDF Sparing

Table”

UDF Identifier Suffix

NOTE: The value of the Entity Identifier field is interpreted as a sequence

of bytes, and not as a dstring specified in CS0. For ease of use the values

used by UDF for this field are specified in terms of ASCII character

strings. The actual sequence of bytes used for the Entity Identifiers

defined by UDF are specified in the appendix.

In the ID Value column in the above table “*Developer ID” refers to a Entity Identifier

that uniquely identifies the current implementation. The value specified should be used

when a new descriptor is created. Also, the value specified should be used for an existing

descriptor when anything within the scope of the specified EntityID field is modified.

NOTE: The value chosen for a “*Developer ID” should contain enough

information to identify the company and product name for an implementation.

For example, a company called XYZ with a UDF product called DataOne might

choose “*XYZ DataOne” as their developer ID. Also in the suffix of their

developer ID they may choose to record the current version number of their

DataOne product. This information is extremely helpful when trying to

determine which implementation wrote a bad structure on a piece of media when

multiple products from different companies have been recording on the media.

The Suffix Type column in the above table defines the format of the suffix to be used with

the corresponding Entity Identifier. These different suffix types are defined in the

following paragraphs.

13

NOTE: All Identifiers defined in this document (appendix 6.1) shall be registered

by OSTA as UDF Identifiers.

2.1.5.3 IdentifierSuffix
The format of the IdentifierSuffix field is dependent on the type of the Identifier.

In regard to OSTA Domain Entity Identifiers specified in this document (appendix

6.1) the IdentifierSuffix field shall be constructed as follows:

Domain IdentifierSuffix field format

RBP Length Name Contents

0 2 UDF Revision Uint16 (= #0150)

2 1 Domain Flags Uint8

3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0150 to indicate revision 1.50 of this

document. This field will allow an implementation to detect changes made in

newer revisions of this document. The OSTA Domain Identifiers are only used in

the Logical Volume Descriptor and the File Set Descriptor. The DomainFlags

field defines the following bit flags:

Domain Flags

Bit Description

0 Hard Write-Protect

1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user settable flag that indicates that the volume or

file system structures within the scope of the descriptor in which it resides are

write protected. A SoftWriteProtect flag value of ONE shall indicate user write

protected structures. This flag may be set or reset by the user. The

HardWriteProtect flag is an implementation settable flag that indicates that the

scope of the descriptor in which it resides is permanently write protected. A

HardWriteProtect flag value of ONE shall indicate a permanently write protected

structure. Once set this flag shall not be reset. The HardWriteProtect flag

overrides the SoftWriteProtect flag. These flags are only used in the Logical

Volume Descriptor and the File Set Descriptor. The flags in the Logical Volume

descriptor have precedence over the flags in the File Set Descriptors.

Implementation use Entity Identifiers defined by UDF (appendix 6.1) the

IdentifierSuffix field shall be constructed as follows:

UDF IdentifierSuffix

RBP Length Name Contents

0 2 UDF Revision Uint16 (= #0150)

2 1 OS Class Uint8

14

3 1 OS Identifier Uint8

4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the

Appendix on Operating System Identifiers.

For implementation use Entity Identifiers not defined by UDF the IdentifierSuffix

field shall be constructed as follows:

Implementation IdentifierSuffix

RBP Length Name Contents

0 1 OS Class Uint8

1 1 OS Identifier Uint8

2 6 Implementation Use Area bytes

NOTE: It is important to understand the intended use and importance of the OS Class and

OS Identifier fields. The main purpose of these fields is to aid in debugging when

problems are found on a UDF volume. The fields also provide useful information which

could be provided to the end user. When set correctly these two fields provide an

implementation with information such as the following:

• Identify under which operating system a particular structure was last modified.

• Identify under which operating system a specific file or directory was last

modified.

• If a developer supports multiple operating systems with their implementation,

it helps to determine under which operating system a problem may have

occurred.

15

2.2 Part 3 - Volume Structure
2.2.1 Descriptor Tag

struct tag { /* ECMA 167 3/7.2 */

Uint16 TagIdentifier;

Uint16 DescriptorVersion;

Uint8 TagChecksum;

byte Reserved;

Uint16 TagSerialNumber;

Uint16 DescriptorCRC;

Uint16 DescriptorCRCLength;

Uint32 TagLocation;

}

2.2.1.1 Uint16 TagSerialNumber
Ignored. Intended for disaster recovery.

Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously

recorded, upon volume re-initialization. It is suggested that: TagSerialNumber =

((TagSerialNumber of the Primary Volume Descriptor) + 1).

2.2.1.2 Uint16 DescriptorCRCLength

CRCs shall be supported and calculated for each descriptor. The value of this

field shall be set to (Size of the Descriptor) - (Length of Descriptor Tag). When

reading a descriptor the CRC should be validated.

2.2.2 Primary Volume Descriptor
struct PrimaryVolumeDescriptor { /* ECMA 167 3/10.1 */

struct tag DescriptorTag;

Uint32 VolumeDescriptorSequenceNumber;

Uint32 PrimaryVolumeDescriptorNumber;

dstring VolumeIdentifier[32];

Uint16 VolumeSequenceNumber;

Uint16 MaximumVolumeSequenceNumber;

Uint16 InterchangeLevel;

Uint16 MaximumInterchangeLevel;

Uint32 CharacterSetList;

Uint32 MaximumCharacterSetList;

dstring VolumeSetIdentifier[128];

struct charspec DescriptorCharacterSet;

struct charspec ExplanatoryCharacterSet;

struct extent_ad VolumeAbstract;

struct extent_ad VolumeCopyrightNotice;

struct EntityID ApplicationIdentifier;

16

struct timestamp RecordingDateandTime;

struct EntityID ImplementationIdentifier;

byte ImplementationUse[64];

Uint32 PredecessorVolumeDescriptorSequenceLocation;

Uint16 Flags;

byte Reserved[22];

}

2.2.2.1 Uint16 InterchangeLevel
Interpreted as specifying the current interchange level (as specified in

ECMA 167 3/11), of the contents of the associated volume and the

restrictions implied by the specified level.

If this volume is part of a multi-volume Volume Set then the level shall be

set to 3, otherwise the level shall be set to 2.

ECMA 167 requires an implementation to enforce the restrictions associated with

the specified current Interchange Level. The implementation may change the

value of this field as long as it does not exceed the value of the Maximum

Interchange Level field.

2.2.2.2 Uint16 MaximumInterchangeLevel
Interpreted as specifying the maximum interchange level (as specified in

ECMA 167 3/11), of the contents of the associated volume.

This field shall be set to level 3 (No Restrictions Apply), unless

specifically given a different value by the user.

NOTE: This field is used to determine the intent of the originator of the volume.

If this field has been set to 2 then the originator does not wish the volume to be

included in a multi-volume set (interchange level 3). The receiver may override

this field and set it to a 3 but the implementation should give the receiver a strict

warning explaining the intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList
Interpreted as specifying the character set(s) in use by any of the structures

defined in Part 3 of ECMA 167 (3/10.1.9).

Shall be set to indicate support for CS0 only as defined in 2.1.2.

17

2.2.2.4 Uint32 MaximumCharacterSetList
Interpreted as specifying the maximum supported character sets (as

specified in ECMA 167) which may be specified in the CharacterSetList

field.

Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetIdentifier
Interpreted as specifying the identifier for the volume set .

The first 16 characters of this field should be set to a unique value. The

remainder of the field may be set to any allowed value. Specifically,

software generating volumes conforming to this specification shall not set

this field to a fixed or trivial value. Duplicate disks which are intended to

be identical may contain the same value in this field.

NOTE: The intended purpose of this is to guarantee Volume Sets with

unique identifiers. The first 8 characters of the unique part should come

from a CS0 hexadecimal representation of a 32-bit time value. The

remaining 8 characters are free for implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet

Interpreted as specifying the character sets allowed in the Volume

Identifier and Volume Set Identifier fields.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacterSet

Interpreted as specifying the character sets used to interpret the contents of

the VolumeAbstract and VolumeCopyrightNotice extents.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.2.8 struct EntityID ImplementationIdentifier;

For more information on the proper handling of this field see section 2.1.5.

18

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorVolumeDescriptorPointer { /* ECMA 167 3/10.2 */

struct tag DescriptorTag;

struct extent_ad MainVolumeDescriptorSequenceExtent;

struct extent_ad ReserveVolumeDescriptorSequenceExtent;

byte Reserved[480];

}

NOTE: An AnchorVolumeDescriptorPointer structure shall be recorded in at

least 2 of the following 3 locations on the media :

• Logical Sector 256.

• Logical Sector (N - 256).

• N

NOTE: Unclosed CD-R media may have an Anchor Volume Descriptor Pointer

recorded at only sector 512. Upon close, CD-R media will conform to the rules

above.

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The main VolumeDescriptorSequenceExtent shall have a minimum length of 16

logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent
The reserve VolumeDescriptorSequenceExtent shall have a minimum length of 16

logical sectors.

2.2.4 Logical Volume Descriptor
struct LogicalVolumeDescriptor { /* ECMA 167 3/10.6 */

struct tag DescriptorTag;

Uint32 VolumeDescriptorSequenceNumber;

struct charspec DescriptorCharacterSet;

dstring LogicalVolumeIdentifier[128];

Uint32 LogicalBlockSize,

struct EntityID DomainIdentifier;

byte LogicalVolumeContentsUse[16];

Uint32 MapTableLength;

Uint32 NumberofPartitionMaps;

struct EntityID ImplementationIdentifier;

byte ImplementationUse[128];

extent_ad IntegritySequenceExtent,

byte PartitionMaps[??];

}

19

2.2.4.1 struct charspec DescriptorCharacterSet
Interpreted as specifying the character set allowed in the

LogicalVolumeIdentifier field.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.2.4.2 Uint32 LogicalBlockSize
Interpreted as specifying the Logical Block Size for the logical volume

identified by this LogicalVolumeDescriptor.

This field shall be set to the largest logical sector size encountered

amongst all the partitions on media that constitute the logical volume

identified by this LogicalVolumeDescriptor. Since UDF requires that all

Volumes within a VolumeSet have the same logical sector size, the

Logical Block Size will be the same as the logical sector size of the

Volume.

2.2.4.3 struct EntityID DomainIdentifier
Interpreted as specifying a domain specifying rules on the use of, and

restrictions on, certain fields in the descriptors. If this field is all zero then

it is ignored, otherwise the Entity Identifier rules are followed. NOTE: If

the field does not contain “*OSTA UDF Compliant” then an

implementation may deny the user access to the logical volume.

This field shall indicate that the contents of this logical volume conforms

to the domain defined in this document, therefore the DomainIdentifier

shall be set to:

"*OSTA UDF Compliant"

As described in the section on Entity Identifier the IdentifierSuffix field of

this EntityID shall contain the revision of this document for which the

contents of the Logical Volume is compatible. For more information on

the proper handling of this field see section 2.1.5.

NOTE: The IdentifierSuffix field of this EntityID contains

SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntityID ImplementationIdentifier;

For more information on the proper handling of this field see the section

on Entity Identifier.

2.2.4.5 struct extent_ad IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor. For

Rewriteable or Overwriteable media this shall be set to a minimum of 8K bytes.

20

WARNING: For WORM media this field should be set to an extent of some

substantial length. Once the WORM volume on which the Logical Volume

Integrity Descriptor resides is full a new volume must be added to the volume set

since the Logical Volume Integrity Descriptor must reside on the same volume as

the prevailing Logical Volume Descriptor.

2.2.4.6 byte PartitionMaps
For the purpose of interchange partition maps shall be limited to Partition Map

type 1, except type 2 maps as described in this document (2.2.8 and 2.2.9).

2.2.5 Unallocated Space Descriptor
struct UnallocatedSpaceDesc { /* ECMA 167 3/10.8 */

struct tag DescriptorTag;

Uint32 VolumeDescriptorSequenceNumber

Uint32 NumberofAllocationDescriptors;

extent_ad AllocationDescriptors[??];

}

This descriptor shall be recorded, even if there is no free volume space.

2.2.6 Logical Volume Integrity Descriptor
struct LogicalVolumeIntegrityDesc {/* ECMA 167 3/10.10 */

struct tag DescriptorTag,

Timestamp RecordingDateAndTime,

Uint32 IntegrityType,

struct extend_ad NextIntegrityExtent,

byte LogicalVolumeContentsUse[32],

Uint32 NumberOfPartitions,

Uint32 LengthOfImplementationUse,

Uint32 FreeSpaceTable[??],

Uint32 SizeTable[??],

byte ImplementationUse[??]

}

The Logical Volume Integrity Descriptor is a structure that shall be written any

time the contents of the associated Logical Volume is modified. Through the

contents of the Logical Volume Integrity Descriptor an implementation can easily

answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical

Volume was modified?

21

3) What is the total Logical Volume free space in logical blocks?

4) What is the total size of the Logical Volume in logical blocks?

5) What is the next available UniqueID for use within the Logical

Volume?

6) Has some other implementation modified the contents of the logical

volume since the last time that the original implementation which created

the logical volume accessed it.

2.2.6.1 byte LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on the

contents of this field.

2.2.6.2 Uint32 FreeSpaceTable
Since most operating systems require that an implementation provide the true free

space of a Logical Volume at mount time it is important that these values be

maintained. The optional value of #FFFFFFFF, which indicates that the amount

of available free space is not known, shall not be used.

NOTE: The FreeSpaceTable is guaranteed to be correct only when the Logical

Volume Integrity Descriptor is closed.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the total size

of a Logical Volume at mount time it is important that these values be maintained.

The optional value of #FFFFFFFF, which indicates that the partition size is not

known, shall not be used.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor shall be

structured as follows:

ImplementationUse format

RBP Length Name Contents

0 32 ImplementationID EntityID

32 4 Number of Files Uint32

36 4 Number of Directories Uint32

40 2 Minimum UDF Read Revision Uint16

42 2 Minimum UDF Write Revision Uint16

44 2 Maximum UDF Write Revision Uint16

46 ?? Implementation Use byte

Implementation ID - The implementation identifier EntityID of the

implementation which last modified anything within the scope of this

22

EntityID. The scope of this EntityID is the Logical Volume Descriptor,

and the contents of the associated Logical Volume. This field allows an

implementation to identify which implementation last modified the

contents of a Logical Volume.

Number of Files - The current number of files in the associated Logical

Volume. This information is needed by the Macintosh OS. All

implementations shall maintain this information. NOTE: This value does

not include Extended Attributes as part of the file count.

Number of Directories - The current number of directories in the

associated Logical Volume. This information is needed by the Macintosh

OS. All implementations shall maintain this information.

NOTE: The root directory shall be included in the directory count.

Minimum UDF Read Revision - Shall indicate the minimum recommended

revision of the UDF specification that an implementation is required to

support to successfully be able to read all potential structures on the

media. This number shall be stored in binary coded decimal format, for

example #0150 would indicate revision 1.50 of the UDF specification.

Minimum UDF Write Revision - Shall indicate the minimum revision of

the UDF specification that an implementation is required to support to

successfully be able to modify all structures on the media. This number

shall be stored in binary coded decimal format, for example #0150 would

indicate revision 1.50 of the UDF specification.

Maximum UDF Write Revision - Shall indicate the maximum revision of

the UDF specification that an implementation which has modified the

media has supported. An implementation shall update this field only if it

has modified the media and the level of the UDF specification it supports

is higher than the current value of this field. This number shall be stored

in binary coded decimal format, for example #0150 would indicate

revision 1.50 of the UDF specification.

Implementation Use - Contains implementation specific information

unique to the implementation identified by the Implementation ID.

23

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor {

struct tag DescriptorTag;

Uint32 VolumeDescriptorSequenceNumber;

struct EntityID ImplementationIdentifier;

byte ImplementationUse[460];

}

This section defines an UDF Implementation Use Volume Descriptor. This

descriptor shall be recorded on every Volume of a Volume Set. The Volume may

also contain additional Implementation Use Volume Descriptors which are

implementation specific. The intended purpose of this descriptor is to aid in the

identification of a Volume within a Volume Set that belongs to a specific Logical

Volume.

NOTE: An implementation may still record an additional Implementation Use

Volume Descriptor in its own format on the media. The UDF Implementation

Use Volume Descriptor does not preclude an additional descriptor.

2.2.7.1 EntityID Implementation Identifier
This field shall specify “*UDF LV Info”.

2.2.7.2 bytes Implementation Use
The implementation use area shall contain the following structure:

struct LVInformation {

struct charspec LVICharset,

dstring LogicalVolumeIdentifier[128],

dstring LVInfo1[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntityID ImplementionID,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset

Interpreted as specifying the character sets allowed in the

LogicalVolumeIdentifier and LVInfo fields.

Shall be set to indicate support for CS0 only as defined in 2.1.2.

.

2.2.7.2.2 dstring LogicalVolumeIdentifier

Identifies the Logical Volume referenced by this descriptor.

24

2.2.7.2.3 dstring LVInfo1

The fields LVInfo1, LVInfo2 and LVInfo3 should contain additional information

to aid in the identification of the media. For example the LVInfo fields could

contain information such as Owner Name, Organization Name, and Contact

Information.

2.2.7.2.4 struct EntityID ImplementionID

Refer to the section on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]

This area may be used by the implementation to store any additional

implementation specific information.

25

2.2.8 Virtual Partition Map
This is an extension of ECMA 167 to expand its scope to include sequentially written

media (eg. CD-R). This extension is for a partition map entry to describe a virtual space.

The Logical Volume Descriptor contains a list of partitions that make up a given volume.

As the virtual partition cannot be described in the same manner as a physical partition, a

Type 2 partition map defined below shall be used.

If a Virtual Partition Map is recorded, then the Logical Volume Descriptor shall contain

at least two partition maps. One partition map, shall be recorded as a Type 1 partition

map. One partition map, shall be recorded as a Type 2 partition map. The format of this

Type 2 partition map shall be as specified in the following table.

Layout of Type 2 partition map for virtual partition

RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntityID

36 2 Volume Sequence Number Uint16

38 2 Partition Number Uint16

40 24 Reserved #00 bytes

• Partition Type Identifier:

• Flags = 0

• Identifier = *UDF Virtual Partition

• IdentifierSuffix is recorded as in section 2.1.5.3

• Volume Sequence Number = volume upon which the VAT and Partition is recorded

• Partition Number = an identification of a partition within the volume identified by the volume

sequence number

2.2.9 Sparable Partition Map
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide

an apparent defect-free space for these systems, a partition of type 2 is used. The

partition map defines the partition number, packet size (see section 1.3.2), and size and

locations of the sparing tables. This type 2 map is intended to replace the type 1 map

normally found on the media. This map identifies not only the partition number and the

volume sequence number, but also identifies the packet length and the sparing tables. A

Sparable Partition Map shall not be recorded on disk/drive systems that perform defect

management.

26

Layout of Type 2 partition map for sparable partition

RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2

1 1 Partition Map Length Uint8 = 64

2 2 Reserved #00 bytes

4 32 Partition Type Identifier EntityID

36 2 Volume Sequence Number Uint16

38 2 Partition Number Uint16

40 2 Packet Length Uint16 = 32

42 1 Number of Sparing Tables (=N_ST) Uint8

43 1 Reserved #00 byte

44 4 Size of each sparing table Uint32

48 4 * N_ST Locations of sparing tables Uint32

48 + 4 * N_ST 16 - 4 * N_ST Pad #00 bytes

• Partition Type Identifier:

• Flags = 0

• Identifier = *UDF Sparable Partition

• IdentifierSuffix is recorded as in section 2.1.5.3.

• Partition Number = the number of this partition. Shall identify a Partition Descriptor

associated with this partition.

• Packet Length = the number of user data blocks per fixed packet. Shall be set to 32.

• Number of Sparing Tables = the number of redundant tables recorded. This shall be a value

in the range of 1 to 4.

• Size of each sparing table = Length, in bytes, allocated for each sparing table.

• Locations of sparing tables = the start locations of each sparing table specified as a media

block address. Implementations should align the start of each sparing table with the

beginning of a packet. Implementations should record at least two sparing tables in

physically distant locations.

2.2.10 Virtual Allocation Table
The Virtual Allocation Table (VAT) is used on sequentially written media(eg. CD-R) to

give the appearance of randomly writable media to the system. The existence of this

partition is identified in the partition maps. The VAT shall only be recorded on

sequentially written media (eg. CD-R).

The VAT is a map that translates Virtual Addresses to logical addresses. It shall be

recorded as a file identified by a File Entry ICB (VAT ICB) which allows great flexibility

in building the table. The VAT ICB is the last sector recorded in any transaction. The

VAT itself may be recorded at any location.

The VAT shall be identified by a File Entry ICB with a file type of 0. This ICB shall be

the last valid data sector recorded. Error recovery schemes can find the last valid VAT by

finding ICBs with file type 0 and examining the contents for the EntityID at the end of

the table.

27

This file, when small, can be embedded in the ICB that describes it. If it is larger, it can

be recorded in a sector or sectors preceding the ICB. The sectors do not have to be

contiguous, which allows writing only new parts of the table if desired. This allows small

incremental updates, even on disks with many directories. Each sector can hold entries

that represent up to 512 directories.

When the VAT is small (a small number of directories on the disk), the VAT is updated

by writing a new file ICB with the VAT embedded. When the VAT becomes too large to

fit in the ICB, writing a single sector with the VAT and a second sector with the ICB is

required. Beyond this point, more than one sector is required for the VAT. However, as

multiple extents are supported, updating the VAT may consist of writing only the sector

or sectors that need updating and writing the ICB with pointers to all of the pieces of the

VAT.

The Virtual Allocation Table is used to redirect requests for certain information to the

proper logical location. The indirection provided by this table provides the appearance of

direct overwrite capability. For example, the sector describing the root directory could be

referenced as virtual sector 1. A virtual sector is contained in a partition identified by a

virtual partition map entry. Over the course of updating the disk, the root directory may

change. When it changes, a new sector describing the root directory is written, and its

Logical Block Address is recorded as the Logical Block Address corresponding to virtual

sector 1. Nothing that references virtual sector 1 needs to change, as it still points to the

most current virtual sector 1 that exists, even though it exists at a new Logical Block

Address.

The use of virtual addressing allows any desired structure to become effectively

rewritable. The structure is rewritable when every pointer that references it does so only

by its Virtual Address. When a replacement structure is written, the virtual reference

does not need to change. The proper entry in the VAT is changed to reflect the new

Logical Block Address of the corresponding Virtual Address and all virtual references

then point to the new structure. All structures that require updating, such as directory

ICBs, shall be referenced by a Virtual Address. As each structure is updated, its

corresponding entry in the VAT ICB shall be updated.

The VAT shall be recorded as a sequence of Uint32 entries in a file. Each entry shall be

the offset, in sectors, into the physical partition in which the VAT is located. The first

entry shall be for the virtual partition sector 0, the second entry for virtual partition sector

1, etc. The Uint32 entries shall be followed by a EntityID and a Uint32 entry indicating

the location of the previous VAT ICB.

The entry for the previous VAT ICB allows for viewing the file system as it appeared in

an earlier state. If this field is #FFFFFFFF, then no such ICB is specified.

28

Virtual Allocation Tablestructure

Offset Name Contents

0 LBA of virtual sector 0 Uint32

4 LBA of virtual sector 1 Uint32

8 LBA of virtual sector 2 Uint32

... ... Uint32

2048 LBA of virtual sector 512 Uint32

... ... Uint32

N * 4 Entity Identifier EntityID

N * 4 + 32 Previous VAT ICB location Uint32

An entry of #FFFFFFFF indicates that the virtual sector is currently unused.

The LBA specified is located in the partition identified by the partition map.

The number of entries in the table can be determined from the VAT file size in the ICB:

Number of entries (N) =
FileSize − 36

4

The EntityID shall contain:

• Flags = 0

• Identifier = *UDF Virtual Alloc Tbl

• IdentifierSuffix is recorded as in UDF 2.1.5.3

2.2.11 Sparing Table
Certain disk/drive systems do not perform defect management (eg. CD-RW). To provide

an apparent defect-free space for these systems. Certain media can only be written in

groups of sectors (“packets”), further complicating relocation: a whole packet must be

relocated rather than only the sectors being written. To address this issue a sparable

partition is identified in the partition map, which further identifies the location of the

sparing tables. The sparing table identifies relocated areas on the media. Sparing tables

are identified by a sparable partition map. Sparing tables shall not be recorded on

disk/drive systems that perform defect management.

Sparing Tables point to space allocated for sparing and contains a list of mappings of

defective sectors to their replacements. Separate copies of the sparing tables shall be

recorded in separate packets. All instances of the sparing table shall be kept up to date.

Partitions map logical space to physical space. Normally, this is a linear mapping where

an offset and a length is specified. A sparable partition is based on this mapping, where

the offset and length of a partition within physical space is specified by a partition

descriptor. The sparing table further specifies an exception list of logical to physical

29

mappings. All mappings are one packet in length. The packet size is specified in the

sparable partition map.

Available sparing areas may be anywhere on the media, either inside or outside of a

partition. If located inside a partition, sparable space shall be marked as allocated and

shall be included in the Non-Allocatable Space List. The mapped locations should be

filled in at format time; the original locations are assigned dynamically as errors occur.

Each sparing table shall be structured as shown below.

Sparing Table layout

BP Length Name Contents

0 16 Descriptor Tag tag = 0

16 32 Sparing Identifier EntityID

48 2 Reallocation Table Length (=RT_L) Uint16

50 2 Reserved #00 bytes

52 4 Sequence Number Uint32

56 8*RT_L Map Entry Map Entries

This structure may be larger than a single sector if necessary.

• Descriptor Tag

Contains 0, indicating that the contents are not specified by ECMA 167.

• Sparing Identifier:

• Flags = 0

• Identifier = *UDF Sparing Table

• IdentifierSuffix is recorded as in UDF 2.1.5.3

• Reallocation Table Length

Indicates the number of entries in the Map Entry table.

• Sequence Number

Contains a number that shall be incremented each time the sparing table is updated.

• Map Entry

A map entry is described in the table below. Maps shall be sorted in ascending order by the

Original Location field.

Map Entry description

RBP Length Name Contents

0 4 Original Location Uint32

4 4 Mapped Location Uint32

• Original Location

Logical Block Address of the packet to be spared. The address of a packet is the address of

the first user data block of a packet. If this field is #FFFFFFFF, then this entry is available for

sparing. If this field is #FFFFFFF0, then the corresponding mapped location is marked as

30

defective and should not be used for mapping. Original Locations of #FFFFFFF1 through

#FFFFFFFE are reserved.

• Mapped Location

Physical Block Address of active data. Requests to the original packet location are redirected

to the packet location identified here. All Mapped Location entries shall be valid, including

those entries for which the Original Location is #FFFFFFF0, #FFFFFFFF, or reserved. If the

mapped location overlaps a partition, that partition shall have that space marked as allocated

and that space shall be part of the Non-Allocatable Space list.

31

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { /* ECMA 167 4/7.2 */

Uint16 TagIdentifier;

Uint16 DescriptorVersion;

Uint8 TagChecksum;

byte Reserved;

Uint16 TagSerialNumber;

Uint16 DescriptorCRC;

Uint16 DescriptorCRCLength;

Uint32 TagLocation;

}

2.3.1.1 Uint16 TagSerialNumber
Ignored.

Reset to a unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones previously

recorded, upon volume re-initialization. The intended use of this field is for

disaster recovery. The TagSerialNumber for all descriptors in Part 4 should be

the same as the serial number used in the associated File Set Descriptor

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless otherwise

noted. The value of this field shall be set to: (Size of the Descriptor) - (Length of

Descriptor Tag). When reading a descriptor the CRC should be validated.

2.3.2 File Set Descriptor
struct FileSetDescriptor { /* ECMA 167 4/14.1 */

struct tag DescriptorTag;

struct timestamp RecordingDateandTime;

Uint16 InterchangeLevel;

Uint16 MaximumInterchangeLevel;

Uint32 CharacterSetList;

Uint32 MaximumCharacterSetList;

Uint32 FileSetNumber;

Uint32 FileSetDescriptorNumber;

struct charspec LogicalVolumeIdentifierCharacterSet;

dstring LogicalVolumeIdentifier[128];

struct charspec FileSetCharacterSet;

dstring FileSetIdentifer[32];

dstring CopyrightFileIdentifier[32];

dstring AbstractFileIdentifier[32];

32

struct long_ad RootDirectoryICB;

struct EntityID DomainIdentifier;

struct long_ad NextExtent;

byte Reserved[48];

}

Only one FileSet descriptor shall be recorded. On WORM media, multiple

FileSets may be recorded.

The UDF provision for multiple File Sets is as follows:

• Multiple FileSets are only allowed on WORM media.

• The default FileSet shall be the one with the highest FileSetNumber.

• Only the default FileSet may be flagged as writable. All other FileSets

in the sequence shall be flagged HardWriteProtect (see EntityID

definition).

• No writable FileSet shall reference any metadata structures which are

referenced (directly or indirectly) by any other FileSet. Writable

FileSets may, however, reference the actual file data extents.

Within a FileSet on WORM, if all files and directories have been recorded with

ICB strategy type 4, then the DomainID of the corresponding FileSet Descriptor

shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the ability to

have multiple archive images on the media. For example one FileSet could

represent a backup of a certain set of information made at a specific point in time.

The next FileSet could represent another backup of the same set of information

made at a later point in time.

2.3.2.1 Uint16 InterchangeLevel
Interpreted as specifying the current interchange level (as specified in

ECMA 167 4/15), of the contents of the associated file set and the

restrictions implied by the specified level.

Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the specified

current Interchange Level.

33

2.3.2.2 Uint16 MaximumInterchangeLevel
Interpreted as specifying the maximum interchange level of the contents of

the associated file set. This value restricts to what the current Interchange

Level field may be set.

Shall be set to level 3.

2.3.2.3 Uint32 CharacterSetList
Interpreted as specifying the character set(s) specified by any field, whose

contents are specified to be a charspec, of any descriptor specified in Part

4 of ECMA 167 and recorded in the file set described by this

descriptor.

Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.4 Uint32 MaximumCharacterSetList
Interpreted as specifying the maximum supported character set in the

associated file set and the restrictions implied by the specified level.

Shall be set to indicate support for CS0 only as defined in 2.1.2.

2.3.2.5 struct charspec LogicalVolumeIdentifierCharacterSet

Interpreted as specifying the d-characters allowed in the Logical Volume

Identifier field.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.6 struct charspec FileSetCharacterSet
Interpreted as specifying the d-characters allowed in dstring fields defined

in Part 4 of ECMA 167 that are within the scope of the FileSetDescriptor.

Shall be set to indicate support for CS0 as defined in 2.1.2.

2.3.2.7 struct EntityID DomainIdentifier

Interpreted as specifying a domain specifying rules on the use of, and

restrictions on, certain fields in the descriptors. If this field is NULL then

it is ignored, otherwise the Entity Identifier rules are followed.

This field shall indicate that the scope of this File Set Descriptor conforms

to the domain defined in this document, therefore the

ImplementationIdentifier shall be set to:

"*OSTA UDF Compliant"

34

As described in the section on Entity Identifier the IdentifierSuffix field of

this EntityID shall contain the revision of this document for which the

contents of the Logical Volume is compatible. For more information on

the proper handling of this field see the section on Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains

SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor
struct PartitionHeaderDescriptor { /* ECMA 167 4/14.3 */

struct short_ad UnallocatedSpaceTable;

struct short_ad UnallocatedSpaceBitmap;

struct short_ad PartitionIntegrityTable;

struct short_ad FreedSpaceTable;

struct short_ad FreedSpaceBitmap;

byte Reserved[88];

}

As a point of clarification the logical blocks represented as Unallocated are blocks

that are ready to be written without any preprocessing. In the case of Rewritable

media this would be a write without an erase pass. The logical blocks

represented as Freed are blocks that are not ready to be written, and require some

form of preprocessing. In the case of Rewritable media this would be a write

with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent across a

Logical Volume. Space Tables and Space Bitmaps shall not both be used at the

same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIntegrityTable
Shall be set to all zeros since PartitionIntegrityEntrys are not used.

35

2.3.4 File Identifier Descriptor
struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */

struct tag DescriptorTag;

Uint16 FileVersionNumber;

Uint8 FileCharacteristics;

Uint8 LengthofFileIdentifier;

struct long_ad ICB;

Uint16 LengthOfImplementationUse;

byte ImplementationUse[??];

char FileIdentifier[??];

byte Padding[??];

}

The File Identifier Descriptor shall be restricted to the length of one Logical

Block.

2.3.4.1 Uint16 FileVersionNumber
There shall be only one version of a file as specified below with the value

being set to 1.

Shall be set to 1.

2.3.4.2 Uint16 Lengthof ImplementationUse

Shall specifiy the length of the ImplementationUse field.

Shall specifiy the length of the ImplementationUse field. This field may

be ZERO, indicating that the ImplementationUse field has not been used.

2.3.4.3 byte ImplementationUse
If the LengthofImplementationUse field is non ZERO then the first 32

bytes of this field shall be interpreted as specifying the implementation

identifier EntityID of the implementation which last modified the File

Identifier Descriptor.

If the LengthofImplementationUse field is non ZERO then the first 32

bytes of this field shall be set to the implementation identifier EntityID of

the current implementation.

NOTE: For additional information on the proper handling of this field refer to

the section on Entity Identifier.

This field allows an implementation to identify which implementation last created

and/or modified a specific File Identifier Descriptor .

36

2.3.5 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;

Uint16 StrategyType;

byte StrategyParameter[2];

Uint16 NumberofEntries;

byte Reserved;

Uint8 FileType;

Lb_addr ParentICBLocation;

Uint16 Flags;

}

2.3.5.1 Uint16 StrategyType
The contents of this field specifies the ICB strategy type used. For the

purposes of read access an implementation shall support strategy types 4

and 4096.

Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended for

primary use on WORM media, but may also be used on rewritable and

overwritable media.

2.3.5.2 Uint8 FileType
As a point of clarification a value of 5 shall be used for a standard byte

addressable file, not 0.

2.3.5.3 ParentICBLocation
The use of this field by is optional.

NOTE: In ECMA 167-4/14.6.7 it states that “If this field contains 0, then no such

ICB is specified.” This is a flaw in the ISO standard in that an implementation

could store an ICB at logical block address 0. Therefore, if you decide to use this

field, do not store an ICB at logical block address 0.

2.3.5.4 Uint16 Flags
Bits 0-2: These bits specify the type of allocation descriptors used. Refer to the

section on Allocation Descriptors for the guidelines on choosing which type of

allocation descriptor to use.

37

Bit 3 (Sorted):

For OSTA UDF compliant media this bit shall indicate (ZERO) that

directories may be unsorted.

Shall be set to ZERO.

Bit 4 (Non-relocatable):

For OSTA UDF compliant media this bit may indicate (ONE) that the file

is non-relocatable. An implementation may reset this bit to ZERO to

indicate that the file is relocatable if the implementation can not assure

that the file will not be relocated.

Should be set to ZERO.

Bit 9 (Contiguous):

For OSTA UDF compliant media this bit may indicate (ONE) that the file

is contiguous. An implementation may reset this bit to ZERO to indicate

that the file may be non-contiguous if the implementation can not assure

that the file is contiguous.

Should be set to ZERO.

Bit 11 (Transformed):

For OSTA UDF compliant media this bit shall indicate (ZERO) that no

transformation has taken place.

Shall be set to ZERO.

The methods used for data compression and other forms of data transformation

might be addressed in a future OSTA document.

Bit 12 (Multi-versions):

For OSTA UDF compliant media this bit shall indicate (ZERO) that multi-

versioned files are not present.

Shall be set to ZERO.

38

2.3.6 File Entry
struct FileEntry { /* ECMA 167 4/14.9 */

struct tag DescriptorTag;

struct icbtag ICBTag;

Uint32 Uid;

Uint32 Gid;

Uint32 Permissions;

Uint16 FileLinkCount;

Uint8 RecordFormat;

Uint8 RecordDisplayAttributes;

Uint32 RecordLength;

Uint64 InformationLength;

Uint64 LogicalBlocksRecorded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributeICB;

struct EntityID ImplementationIdentifier;

Uint64 UniqueID,

Uint32 LengthofExtendedAttributes;

Uint32 LengthofAllocationDescriptors;

byte ExtendedAttributes[??];

byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

2.3.6.1 Uint8 RecordFormat;
For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this

field.

Shall be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes;
For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this

field.

Shall be set to ZERO.

39

2.3.6.3 Uint8 RecordLength;
For OSTA UDF compliant media this bit shall indicate (ZERO) that the

structure of the information recorded in the file is not specified by this

field.

Shall be set to ZERO.

2.3.6.4 struct EntityID ImplementationIdentifier;
Refer to the section on Entity Identifier.

2.3.6.5 Uint64 UniqueID

For the root directory of a file set this value shall be set to ZERO.

It is required that this value be maintained and unique for every file and directory

in the LogicalVolume. This includes FileEntry descriptors defined for Extended

Attribute spaces. The FileEntry for the Extended Attribute space shall contain the

same UniqueID as the file to which it is attached.

NOTE: The UniqueID values 1-15 shall be reserved for the use of Macintosh

implementations.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { /* ECMA 167 4/14.11 */

struct tag DescriptorTag;

struct icbtag ICBTag;

Uint32 LengthofAllocationDescriptors;

byte AllocationDescriptors[??];

}

NOTE: The maximum length of an UnallocatedSpaceEntry shall be one Logical

Block.

2.3.7.1 byte AllocationDescriptors
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors specify

an extent type (ECMA 167 4/14.14.1.1). For the allocation descriptors specified

for the UnallocatedSpaceEntry the type shall be set to a value of 1 to indicate

extent allocated but not recorded, or shall be set to a value of 3 to indicate the

extent is the next extent of allocation descriptors. This next extent of allocation

descriptors shall be limited to the length of one Logical Block.

AllocationDescriptors shall be ordered sequentially in ascending location order.

No overlapping AllocationDescriptors shall exist in the table. For example,

40

ad.location = 2, ad.length = 2048 (logical block size = 1024) then

nextad.location = 3 is not allowed. Adjacent AllocationDescriptors shall not be

contiguous. For example ad.location = 2, ad.length = 1024 (logical block size =

1024), nextad.location = 3 is not allowed and would instead be a single

AllocationDescriptor, ad.location = 2, ad.length = 2048. The only case where

adjacent AllocationDescriptors may be contiguous is when the ad.length of one of

the adjacent AllocationDescriptors is equal to the maximum

AllocationDescriptors length.

2.3.8 Space Bitmap Descriptor
struct SpaceBitmap { /* ECMA 167 4/14.12 */

struct Tag DescriptorTag;

Uint32 NumberOfBits;

Uint32 NumberOfBytes;

byte Bitmap[??];

}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the Descriptor

Tag for the SpaceBitmap descriptor is optional. If the CRC is not maintained then

both the DescriptorCRC and DescriptorCRCLength fields shall be ZERO.

2.3.9 Partition Integrity Entry
struct PartitionIntegrityEntry { /* ECMA 167 4/14.13 */

struct tag DescriptorTag;

struct icbtag ICBTag;

struct timestamp RecordingTime;

Uint8 IntegrityType;

byte Reserved[175];

struct EntityID ImplementationIdentifier;

byte ImplementationUse[256];

}

With the functionality of the Logical Volume Integrity Descriptor this descriptor

is not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors
When constructing the data area of a file an implementation has several types of

allocation descriptors from which to choose. The following guidelines shall be followed

in choosing the proper allocation descriptor to be used:

41

Short Allocation Descriptor - For a Logical Volume that resides on a single

Volume with no intent to expand the Logical Volume beyond the single volume

Short Allocation Descriptors should be used. For example a Logical Volume

created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangeLevel.

Long Allocation Descriptor - For a Logical Volume that resides on a single

Logical Volume with intent to later expand the Logical Volume beyond the single

volume, or a Logical Volume that resides on multiple Volumes Long Allocation

Descriptors should be used. For example a Logical Volume created for a

jukebox.

NOTE: There is a benefit of using Long Allocation Descriptors even on a single

volume, which is the support of tracking erased extents on rewritable media. See

section 2.3.10.1 for additional information.

For both Short and Long Allocation Descriptors, if the 30 least significant bits of the

ExtentLength field is 0, then the 2 most significant bits shall be 0.

2.3.10.1 Long Allocation Descriptor
struct long_ad { /* ECMA 167 4/14.14.2 */

Uint32 ExtentLength;

Lb_addr ExtentLocation;

byte ImplementationUse[6];

}

To allow use of the ImplementationUse field by UDF and also by

implementations the following structure shall be recorded within the 6 byte

Implementation Use field.

struct ADImpUse

{

Uint16 flags;

byte impUse[4];

}

/*

* ADImpUse Flags (NOTE: bits 1-15 reserved for future use by UDF)

*/

#define EXTENTErased (0x01)

In the interests of efficiency on Rewritable media that benefits from

preprocessing, the EXTENTErased flag shall be set to ONE to indicate an erased

extent. This applies only to extents of type not recorded but allocated.

2.3.11 Allocation Extent Descriptor
struct AllocationExtentDescriptor { /* ECMA 167 4/14.5 */

42

struct tag DescriptorTag;

Uint32 PreviousAllocationExtentLocation;

Uint32 LengthOfAllocationDescriptors;

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical block in

length.

2.3.11.1 Uint12 PreviousAllocationExtentLocation
The previous allocation extent location shall not be used as specified

below.

Shall be set to 0.

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { /* ECMA 167 4/14.16.1 */

Uint8 ComponentType;

Uint8 LengthofComponentIdentifier;

Uint16 ComponentFileVersionNumber;

char ComponentIdentifier[];

}

2.3.12.1.1 Uint16 ComponentFileVersionNumber

There shall be only one version of a file as specified below with the value

being set to ZERO.

Shall be set to ZERO.

2.3.13 Non-Allocatable Space List
ECMA 167 does not provide for a mechanism to describe defective areas on media or

areas not usable due to allocation outside of the file system. The Non-Allocatable Space

List provides a method to describe space not usable by the file system. The Non-

Allocatable Space List shall be recorded only on media systems that do not do defect

management (eg. CD-RW).

The Non-Allocatable Space List shall be generated at format time. All space indicated by

the Non-Allocatable Space List shall also be marked as allocated in the free space map.

The Non-Allocatable Space List shall be recorded as a file of the root directory. The file

name “Non-Allocatable Space” (#4E, #6F, #6E, #2D, #41, #6C,

#6C,#6F,#61,#74,#61,#62,#6C,#65, #20, #70, #61, #63, #65) shall be used. The file shall

43

be marked with the attributes Hidden (bit 0 of file characteristics set to ONE) and System

(bit 10 of ICB flags field set to ONE). The name may be recorded in any legal word size.

The information length of this file shall be zero. This file shall have all Non-Allocatable

sectors identified by its allocation extents. The allocation extents shall indicate that each

extent is allocated but not recorded. This list shall include both defective sectors found at

format time and space allocated for sparing at format time.

2.4 Part 5 - Record Structure
Record structure files shall not be created. If they are encountered on the media and they

are not supported by the implementation they shall be treated as an uninterpreted stream

of bytes.

44

3. System Dependent Requirements

3.1 Part 1 - General
3.1.1 Timestamp

struct timestamp { /* ECMA 167 1/7.3 */

Uint16 TypeAndTimezone;

Uint16 Year;

Uint8 Month;

Uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofMicroseconds;

Uint8 Microseconds;

}

3.1.1.1 Uint8 Centiseconds;
For operating systems that do not support the concept of

centiseconds the implementation shall ignore this field.

For operating systems that do not support the concept of

centiseconds the implementation shall set this field to ZERO.

3.1.1.2 Uint8 HundredsofMicroseconds;
For operating systems that do not support the concept of hundreds

of Microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of a

hundreds of Microseconds the implementation shall set this field to

ZERO.

3.1.1.3 Uint8 Microseconds;
For operating systems that do not support the concept of

microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of

microseconds the implementation shall set this field to ZERO.

45

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { /* ECMA 167 4/14.15 */

Uint64 UniqueID,

bytes reserved[24]

}

3.2.1.1 Uint64 UniqueID
This field contains the next UniqueID value which should be used.

NOTE: For compatibility with Macintosh systems implementations should keep

this value less than the maximum value of a Int32 (231 - 1).

46

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */

struct tag DescriptorTag;

Uint16 FileVersionNumber;

Uint8 FileCharacteristics;

Uint8 LengthofFileIdentifier;

struct long_ad ICB;

Uint16 LengthofImplementationUse;

byte ImplementationUse[??];

char FileIdentifier[??];

byte Padding[??];

}

NOTE: All UDF directories shall include a File Identifier Descriptor that

indicates the location of the parent directory. The File Identifier Descriptor

describing the parent directory shall be the first File Identifier Descriptor recorded

in the directory. The parent directory of the Root directory shall be Root, as

stated in ECMA 167-4, section 8.6

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics under

various operating systems.

3.3.1.1.1 MS-DOS, OS/2, Windows 95, Windows NT, Macintosh

If Bit 0 is set to ONE, the file shall be considered a "hidden" file.

If Bit 1 is set to ONE, the file shall be considered a "directory."

If Bit 2 is set to ONE, the file shall be considered "deleted."

If Bit 3 is set to ONE, the ICB field within the associated FileIdentifier

structure shall be considered as identifying the "parent" directory of

the directory that this descriptor is recorded in

If the file is designated as a "hidden" file, Bit 0 shall be set to ONE.

If the file is designated as a "directory," Bit 1 shall be set to ONE.

If the file is designated as "deleted," Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX

Under UNIX these bits shall be processed the same as specified in

3.3.1.1.1., except for hidden files which will be processed as normal non-

hidden files.

47

3.3.2 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;

Uint16 StrategyType;

byte StrategyParameter[2];

Uint16 NumberofEntries;

byte Reserved;

Uint8 FileType;

Lb_addr ParentICBLocation;

Uint16 Flags;

}

3.3.2.1 Uint16 Flags

3.3.2.1.1 MS-DOS, OS/2, Windows 95, Windows NT

Bits 6 & 7 (Setuid & Setgid):

Ignored.

In the interests of maintaining security under environments which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the

following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are modified .

• A file is written to (the contents of the data associated with a file

are modified).

Bit 8 (Sticky):

Ignored.

Shall be set to ZERO.

Bit 10 (System):

Mapped to the MS-DOS / OS/2 system bit.

Mapped from the MS-DOS / OS/2 system bit.

48

3.3.2.1.2 Macintosh

Bits 6 & 7 (Setuid & Setgid):

Ignored.

In the interests of maintaining security under environments which do

support these bits; bits 6 and 7 shall be set to ZERO if any one of the

following conditions are true :

• A file is created.

• The attributes/permissions associated with a file, are modified .

• A file is written to (the contents of the data associated with a file

are modified).

Bit 8 (Sticky):

Ignored.

Shall be set to ZERO.

Bit 10 (System):

Ignored.

Shall be set to ZERO.

3.3.2.1.3 UNIX

Bits 6, 7 & 8 (Setuid, Setgid, Sticky):

These bits are mapped to/from the corresponding standard UNIX file system bits.

Bit 10 (System):

Ignored.

Shall be set to ZERO upon file creation only, otherwise maintained.

49

3.3.3 File Entry
struct FileEntry { /* ECMA 167 4/14.9 */

struct tag DescriptorTag;

struct icbtag ICBTag;

Uint32 Uid;

Uint32 Gid;

Uint32 Permissions;

Uint16 FileLinkCount;

Uint8 RecordFormat;

Uint8 RecordDisplayAttributes;

Uint32 RecordLength;

Uint64 InformationLength;

Uint64 LogicalBlocksRecorded;

struct timestamp AccessTime;

struct timestamp ModificationTime;

struct timestamp AttributeTime;

Uint32 Checkpoint;

struct long_ad ExtendedAttributeICB;

struct EntityID ImplementationIdentifier;

Uint64 UniqueID,

Uint32 LengthofExtendedAttributes;

Uint32 LengthofAllocationDescriptors;

byte ExtendedAttributes[??];

byte AllocationDescriptors[??];

}

NOTE: The total length of a FileEntry shall not exceed the size of one logical

block.

3.3.3.1 Uint32 Uid
For operating systems that do not support the concept of a user identifier

the implementation shall ignore this field. For operating systems that do

support this field a value of 232 - 1 shall indicate an invalid UID, otherwise

the field contains a valid user identifier.

For operating systems that do not support the concept of a user identifier

the implementation shall set this field to 232 - 1 to indicate an invalid UID,

unless otherwise specified by the user.

3.3.3.2 Uint32 Gid
For operating systems that do not support the concept of a group identifier

the implementation shall ignore this field. For operating systems that do

support this field a value of 232 - 1 shall indicate an invalid GID, otherwise

the field contains a valid group identifier.

50

For operating systems that do not support the concept of a group identifier

the implementation shall set this field to 232 - 1 to indicate an invalid GID,

unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions;
/* Definitions: */

/* Bit for a File for a Directory */

/* */

/* Execute May execute file May search directory */

/* Write May change file contents May create and delete files */

/* Read May examine file contents May list files in directory */

/* ChAttr May change file attributes May change dir attributes */

/* Delete May delete file May delete directory */

#define OTHER_Execute 0x00000001

#define OTHER_Write 0x00000002

#define OTHER_Read 0x00000004

#define OTHER_ChAttr 0x00000008

#define OTHER_Delete 0x00000010

#define GROUP_Execute 0x00000020

#define GROUP_Write 0x00000040

#define GROUP_Read 0x00000080

#define GROUP_ChAttr 0x00000100

#define GROUP_Delete 0x00000200

#define OWNER_Execute 0x00000400

#define OWNER_Write 0x00000800

#define OWNER_Read 0x00001000

#define OWNER_ChAttr 0x00002000

#define OWNER_Delete 0x00004000

The concept of permissions which deals with security is not completely portable between

operating systems. This document attempts to maintain consistency among

implementations in processing the permission bits by addressing the following basic

issues:

1. How should an implementation handle Owner, Group and Other permissions

when the operating system has no concept of User and Group Ids?

2. How should an implementation process permission bits when encountered,

specifically permission bits that do not directly map to an operating system

supported permission bit?

3. What default values should be used for permission bits that do not directly

map to an operating system supported permission bit when creating a new

file?

User, Group and Other
In general, for operating systems that do not support User and Group Ids the following

algorithm should be used when processing permission bits:

When reading a specific permission, the logical OR of all three (owner, group,

other) permissions should be the value checked. For example a file would be

51

considered writable if the logical OR of OWNER_Write, GROUP_Write and

OTHER_Write was equal to one.

When setting a specific permission the implementation should set all three (owner,

group, other) sets of permission bits. For example to mark a file as writable the

OWNER_Write, GROUP_Write and OTHER_Write should all be set to one.

Processing Permissions
Implementation shall process the permission bits according to the following table which

describes how to process the permission bits under the operating systems covered by this

document. The table addresses the issues associated with permission bits that do not

directly map to an operating system supported permission bit.

Permission File/Directory Description DOS OS/2 Win

95

Win

NT

Mac

OS

UNIX

Read file The file may be read E E E E E E

Read directory The directory may be read E E E E E E

Write file The file’s contents may be modified E E E E E E

Write directory Files or subdirectories may be created,

deleted or renamed

E E E E E E

Execute file The file by be executed. I I I I I E

Execute directory The directory may be searched for a

specific file or subdirectory.

E E E E E E

Attribute file The file’s permissions may be changed. E E E E E E

Attribute directory The directory’s permissions may be

changed.

E E E E E E

Delete file The file may be deleted. E E E E E E

Delete directory The directory may be deleted. E E E E E E

E - Enforce, I - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has special

meaning. This bit enables a directory to be searched, but not have its contents listed. For

example assume a directory called PRIVATE exists which only has the Execute

permission and does not have the Read permission bit set. The contents of the directory

PRIVATE can not be listed. Assume there is a file within the PRIVATE directory called

README. The user can get access to the README file since the PRIVATE directory is

searchable.

To be able to list the contents of a directory both the Read and Execute permission bits

must be set for the directory. To be able to create, delete and rename a file or

subdirectory both the Write and Execute permission bits must be set for the directory.

To get a better understanding of the Execute bit for a directory reference any UNIX book

that covers file and directory permissions. The rules defined by the Execute bit for a

directory shall be enforced by all implementations.

NOTE: To be able to delete a file or subdirectory the Delete permission bit for the file or

subdirectory must be set, and both the Write and Execute permission bits must be set for

the directory it occupies.

52

Default Permission Values
For the operating systems covered by this document the following table describes what

default values should be used for permission bits that do not directly map to an operating

system supported permission bit when creating a new file.

Permission File/Directory Description DOS OS/2 Win

95

Win

NT

Mac

OS

UNIX

Read file The file may be read 1 1 1 1 1 U

Read directory The directory may be read, only if the

directory is also marked as Execute.

1 1 1 1 1 U

Write file The file’s contents may be modified U U U U U U

Write directory Files or subdirectories may be

renamed, added, or deleted, only if the

directory is also marked as Execute.

U U U U U U

Execute file The file by be executed. 0 0 0 0 0 U

Execute directory The directory may be searched for a

specific file or subdirectory.

1 1 1 1 1 U

Attribute file The file’s permissions may be changed. 1 1 1 1 1 Note 1

Attribute directory The directory’s permissions may be

changed.

1 1 1 1 1 Note 1

Delete file The file may be deleted. Note 2 Note 2 Note

2

Note 2 Note 2 Note 2

Delete directory The directory may be deleted. Note 2 Note 2 Note

2

Note 2 Note 2 Note 2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of a file/directory may change its attributes.

NOTE 2: The Delete permission bit should be set based upon the status of the Write

permission bit. Under DOS, OS/2 and Macintosh, if a file or directory is marked as

writable (Write permission set) then the file is considered deletable and the Delete

permission bit should be set. If a file is read only then the Delete permission bit should

not be set. This applies to file create as well as changing attributes of a file.

3.3.3.4 Uint64 UniqueID
NOTE: For some operating systems (i.e. Macintosh) this value needs to be less

than the max value of a Int32 (231 - 1). Under the Macintosh operating system this

value is used to represent the Macintosh directory/file ID. Therefore an

implementation should attempt to keep this value less than the max value of a

Int32 (231 - 1). The values 1-15 shall be reserved for the use of Macintosh

implementations.

3.3.3.5 byte Extended Attributes
Certain extended attributes should be recorded in this field of the FileEntry for

performance reasons. Other extended attributes should be recorded in an ICB

pointed to by the field ExtendedAttributeICB. In the section on Extended

Attributes it will be specified which extended attributes should be recorded in this

field.

53

3.3.4 Extended Attributes
In order to handle some of the longer Extended Attributes (EAs) which may vary in

length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block shall

be block aligned by starting and ending on a logical block boundary.

2. Smaller EAs shall be constrained to an attribute length which is a multiple of

4 bytes.

3. The Extended Attribute space shall appear as a single contiguous logical space

constructed as follows:

ECMA 167 EAs

Non block aligned Implementation Use EAs

Block aligned Implementation Use EAs

Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /* ECMA 167 4/14.10.1 */

struct tag DescriptorTag;

Uint32 ImplementationAttributesLocation;

Uint32 ApplicationAttributesLocation;

}

If the attributes associated with the location fields highlighted above do not exist,

then the value of the location field shall point to the byte after the extended

attribute space.

3.3.4.2 Alternate Permissions
struct AlternatePermissionsExtendedAttribute { /* ECMA 167 4/14.10.4 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint16 OwnerIdentification;

Uint16 GroupIdentification;

Uint16 Permission;

}

This structure shall not be recorded.

54

3.3.4.3 File Times Extended Attribute
struct FileTimesExtendedAttribute { /* ECMA 167 4/14.10.5 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 DataLength;

Uint32 FileTimeExistence;

byte FileTimes;

}

3.3.4.3.1 Uint32 FileTimeExistance

3.3.4.3.1.1 Macintosh OS

This field shall be set to indicate that only the file creation time has been

recorded.

3.3.4.3.1.2 Other OS

This structure need not be recorded.

3.3.4.3.2 byte FileTimes

3.3.4.3.2.1 Macintosh OS

Shall be interpreted as the creation time of the associated file.

Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a Macintosh

implementation shall use the ModificationTime field of the File Entry to

represent the file creation time.

3.3.4.3.2.2 Other OS

This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ECMA 167 4/14.10.7 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUseLength; /* (=IU_L) */

Uint32 MajorDeviceIdentification;

Uint32 MinorDeviceIdentification;

byte ImplementationUse[IU_L];

}

55

The following paradigm shall be followed by an implementation that creates a

Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute associated

with it, the contents of the FileType field in the icbtag structure be set to 6

(indicating a block special device file), OR 7 (indicating a character

special device file).

If the contents of the FileType field in the icbtag structure do not equal 6

or 7, the DeviceSpecificationExtendedAttribute associated with a file shall

be ignored.

In the event that the contents of the FileType field in the icbtag structure

equal 6 or 7, and the file does not have a

DeviceSpecificationExtendedAttribute associated with it, access to the file

shall be denied.

For operating system environments that do not provide for the semantics

associated with a block special device file, requests to

open/read/write/close a file that has the

DeviceSpecificationExtendedAttribute associated with it shall be denied.

All implementations shall record a developer ID in the ImplementationUse

field that uniquely identifies the current implementation.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ECMA 167 4/14.10.8 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUseLength; /* (=IU_L) */

struct EntityID ImplementationIdentifier;

byte ImplementationUse[IU_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For

variable length extended attributes defined using the Implementation Use

Extended Attribute the Attribute Length field should be large enough to leave

padding space between the end of the Implementation Use field and the end of the

Implementation Use Extended Attribute.

The following sections describe how the Implementation Use Extended Attribute

is used under various operating systems to store operating system specific

extended attributes.

56

The structures defined in the following sections contain a header checksum field.

This field represents a 16-bit checksum of the Implementation Use Extended

Attribute header. The fields AttributeType through ImplementationIdentifier

inclusively represent the data covered by the checksum. The header checksum

field is used to aid in disaster recovery of the extended attribute space. C source

code for the header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes

encountered on the media. Implementations shall create and support the extended

attributes for the operating system they currently support. For example, a

Macintosh implementation shall preserve any OS/2 extended attributes

encountered on the media. It shall also create and support all Macintosh extended

attributes specified in this document.

3.3.4.5.1 All Operating Systems

3.3.4.5.1.1 FreeEASpace

This extended attribute shall be used to indicate unused space within the

extended attribute space. This extended attributes shall be stored as an

Implementation Use Extended Attribute whose ImplementationIdentifier

shall be set to:

"*UDF FreeEASpace"

The ImplementationUse area for this extended attribute shall be structured

as follows:

FreeEASpace format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 IU_L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total

size of other extended attributes without rewriting the complete extended

attribute space. The FreeEASpace extended attribute may be overwritten

and the space re-used by any implementation who sees a need to overwrite

it.

3.3.4.5.1.2 DVD Copyright Management Information

This extended attribute shall be used to store DVD Copyright

Management Information. This extended attribute shall be stored as an

Implementation Use Extended Attribute whose ImplementationIdentifier

shall be set to:

"*UDF DVD CGMS Info"

57

The ImplementationUse area for this extended attribute shall be structured

as follows:

DVD CGMS Info format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 1 CGMS Information byte

3 1 Data Structure Type Uint8

4 4 Protection System Information bytes

This extended attribute allows DVD Copyright Management Information

to be stored. The interpretation of this format shall be defined in the DVD

specification published by the DVD Consortium (see 6.9.3). Support for

this extended attribute is optional.

3.3.4.5.2 MS-DOS, Windows 95, Windows NT

Ignored.

Not supported. Extended attributes for existing files on the media shall be

preserved.

3.3.4.5.3 OS/2

OS/2 supports an unlimited number of extended attributes which shall be

supported through the use of the following two Implementation Use Extended

Attributes.

3.3.4.5.3.1 OS2EA

This extended attribute contains all OS/2 definable extended attributes

which shall be stored as an Implementation Use Extended Attribute whose

ImplementationIdentifier shall be set to:

"*UDF OS/2 EA"

The ImplementationUse area for this extended attribute shall be structured

as follows:

OS2EA format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 IU_L-2 OS/2 Extended Attributes FEA

58

The OS2ExtendedAttributes field contains a table of OS/2 Full EAs (FEA)

as shown below.

FEA format

RBP Length Name Contents

0 1 Flags Uint8

1 1 Length of Name (=L_N) Uint8

2 2 Length of Value (=L_V) Uint16

4 L_N Name bytes

4+L_N L_V Value bytes

For a complete description of Full EAs (FEA) please reference the

following IBM document:

"Installable File System for OS/2 Version 2.0"

OS/2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.4.5.3.2 OS2EALength

This attribute specifies the OS/2 Extended Attribute information length.

Since this value needs to be reported back to OS/2 under certain directory

operations, for performance reasons it should be recorded in the

ExtendedAttributes field of the FileEntry. This extended attribute shall be

stored as an Implementation Use Extended Attribute whose

ImplementationIdentifier shall be set to:

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be structured

as follows:

OS2EALength format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 4 OS/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall be

equal to the ImplementationUseLength field of the OS2EA extended

attribute - 2.

3.3.4.5.4 Macintosh OS

The Macintosh OS requires the use of the following four extended

attributes.

59

3.3.4.5.4.1 MacVolumeInfo

This extended attribute contains Macintosh volume information which

shall be stored as an Implementation Use Extended Attribute whose

ImplementationIdentifier shall be set to:

"*UDF Mac VolumeInfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:

MacVolumeInfo format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 12 Last Modification Date timestamp

14 12 Last Backup Date timestamp

26 32 Volume Finder Information Uint32

The MacVolumeInfo extended attribute shall be recorded as an extended

attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderInfo

This extended attribute contains Macintosh Finder information for the

associated file or directory. Since this information is accessed frequently,

for performance reasons it should be recorded in the ExtendedAttributes

field of the FileEntry.

The MacFinderInfo extended attribute shall be stored as an

Implementation Use Extended Attribute whose ImplementationIdentifier

shall be set to:

"*UDF Mac FinderInfo"

The ImplementationUse area for this extended attribute shall be structured

as follows:

MacFinderInfo format for a directory

RBP Length Name Contents

0 2 Header Checksum Uint16

2 2 Reserved for padding (=0) Uint16

4 4 Parent Directory ID Uint32

8 16 Directory Information UDFDInfo

24 16 Directory Extended Information UDFDXInfo

60

MacFinderInfo format for a file

RBP Length Name Contents

0 2 Header Checksum Uint16

2 2 Reserved for padding (=0) Uint16

4 4 Parent Directory ID Uint32

8 16 File Information UDFFInfo

24 16 File Extended Information UDFFXInfo

40 4 Resource Fork Data Length Uint32

44 4 Resource Fork Allocated Length Uint32

The MacFinderInfo extended attribute shall be recorded as an extended

attribute of every file and directory within the Logical Volume.

The following structures used within the MacFinderInfo structure are

listed below for clarity. For complete information on these structures refer

to the Macintosh books called "Inside Macintosh". The volume and page

number listed with each structure correspond to a specific "Inside

Macintosh" volume and page.

UDFPoint format (Volume I, page 139)

RBP Length Name Contents

0 2 v Int16

2 2 h Int16

UDFRect format (Volume I, page 141)

RBP Length Name Contents

0 2 top Int16

2 2 left Int16

4 2 bottom Int16

6 2 right Int16

UDFDInfo format (Volume IV, page 105)

RBP Length Name Contents

0 8 frRect UDFRect

8 2 frFlags Int16

10 4 frLocation UDFPoint

14 2 frView Int16

UDFDXInfo format (Volume IV, page 106)

RBP Length Name Contents

0 4 frScroll UDFPoint

4 4 frOpenChain Int32

8 1 frScript Uint8

9 1 frXflags Uint8

10 2 frComment Int16

12 4 frPutAway Int32

61

UDFFInfo format (Volume II, page 84)

RBP Length Name Contents

0 4 fdType Uint32

4 4 fdCreator Uint32

8 2 fdFlags Uint16

10 4 fdLocation UDFPoint

14 2 fdFldr Int16

UDFFXInfo format (Volume IV, page 105)

RBP Length Name Contents

0 2 fdIconID Int16

2 6 fdUnused bytes

8 1 fdScript Int8

9 1 fdXFlags Int8

10 2 fdComment Int16

12 4 fdPutAway Int32

NOTE: The above mentioned structures have there original Macintosh

names preceded by "UDF" to indicate that they are actually different from

the original Macintosh structures. On the media the UDF structures are

stored little endian as opposed to the original Macintosh structures which

are in big endian format.

3.3.4.5.4.3 MacUniqueIDTable

This extended attribute contains a table used to look up the FileEntry for a

specified UniqueID. This table shall be stored as an Implementation Use

Extended Attribute whose ImplementationIdentifier shall be set to:

"*UDF Mac UniqueIDTable"

The ImplementationUse area for this extended attribute shall be structured

as follows:

MacUniqueIDTable format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 2 Reserved for padding (=0) Uint16

4 4 Number of Unique ID Maps (=N_DID) Uint32

8 N_DID x 8 Unique ID Maps UniqueIDMap

UniqueIDMap format

RBP Length Name Contents

0 8 File Entry Location small_ad

62

small_ad format

RBP Length Name Contents

0 2 Extent Length Uint16

2 6 Extent Location lb_addr (4/7.1)

This UniqueIDTable is used to look up the corresponding FileEntry for a

specified Macintosh directory/file ID (UniqueID). For example, given

some Macintosh directory/file ID i the corresponding FileEntry location

may be found in the (i-2) UniqueIDMap in the UniqueIDTable. The

correspondence of directory/file ID to UniqueID is (Directory/file ID -2)

because Macintosh directory/file IDs start at 2 while UniqueIDs start at 0.

In the Macintosh the root directory always has a directory ID of 2, which

corresponds to the requirement of having the UniqueID of the root

FileEntry have the value of 0.

If the value of the Extent Length field of the File Entry Location is 0 then

the corresponding UniqueID is free.

The MacUniqueIDTable extended attribute shall be recorded as an

extended attribute of the root directory.

The MacUniqueIDTable is created and updated only by implementations

that support the Macintosh. When the Logical Volume is modified by

implementations that do not support the MacUniqueIDTable can become

out of date in the following ways:

• Files can exist on the media which are not referenced in the

MacUniqueIDTable. This can result from a non-Macintosh

implementation creating a new file on the media.

• Files in the UniqueID table may no longer exist on the media. This

can result from a non-Macintosh implementation deleting a file on

the media

The Macintosh uses the UniqueID to directly address a file on the media

without reference to its file name. This will only happen if the file was

originally created by an implementation that supports the Macintosh.

Therefore any new files added to the logical volume by non-Macintosh

implementations will always be referenced by file name first, never by

UniqueID. At the first access of the file by file name, the Macintosh

implementation can detect that this UniqueID is not in the

MacUniqueIDTable and update the table appropriately.

The second problem is a little more difficult to address. The problem

occurs when a Macintosh implementation gets a reference to a file on the

media given a UniqueID. The Macintosh implementation needs to make

sure that the file the UniqueID references still exists. The following things

can be done:

63

• Verify that the File Entry (FE) pointed to by the UniqueID contains

the same UniqueID.

• AND Verify that the block that contains the FE is not on the free

list. This could occur when the file is deleted by a non-Macintosh

implementation, and the FE has not been overwritten.

The only case that these two tests do not catch is when a file has been

deleted by a non-Macintosh implementation, and the logical block

associated with the FE has been reassigned to a new file, and the new file

has used the block in an extent of Allocated but not recorded.

3.3.4.5.4.4 MacResourceFork

This extended attribute contains the Macintosh resource fork data for the

associated file. The resource fork data shall be stored as an

Implementation Use Extended Attribute whose ImplementationIdentifier

shall be set to:

"*UDF Mac ResourceFork"

The ImplementationUse area for this extended attribute shall be structured

as follows:

MacResourceFork format

RBP Length Name Contents

0 2 HeaderChecksum Uint16

2 IU_L-2 Resource Fork Data bytes

The MacResourceFork extended attribute shall be recorded as an extended

attribute of all files, with > 0 bytes in the resource fork, within the Logical

Volume.

The two fields of the MacFinderInfo extended attribute the reference the

MacResourceFork extended attributes are defined as follows:

Resource Fork Data Length - Shall be set to the length of the

actual data considered to be part of the resource fork.

Resource Fork Allocated Length - Shall be set to the total amount

of space in bytes allocated to the resource fork.

3.3.4.5.5 UNIX

Ignored.

Not supported. Extended attributes for existing files on the media

shall be preserved.

64

3.3.4.6 Application Use Extended Attribute

struct ApplicationUseExtendedAttribute { /* ECMA 167 4/14.10.9 */

Uint32 AttributeType; /* = 65536 */

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ApplicationUseLength; /* (=AU_L) */

struct EntityID ApplicationIdentifier;

byte ApplicationUse[AU_L];

}

The AttributeLength field specifies the length of the entire extended attribute. For

variable length extended attributes defined using the Application Use Extended

Attribute the Attribute Length field should be large enough to leave padding space

between the end of the ApplicationUse field and the end of the Application Use

Extended Attribute.

The structures defined in the following section contains a header checksum field.

This field represents a 16-bit checksum of the Application Use Extended Attribute

header. The fields AttributeType through ApplicationIdentifier inclusively

represent the data covered by the checksum. The header checksum field is used to

aid in disaster recovery of the extended attribute space. C source code for the

header checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended attributes

encountered on the media. Implementations shall create and support the extended

attributes for the operating system they currently support. For example, a

Macintosh implementation shall preserve any OS/2 extended attributes

encountered on the media. It shall also create and support all Macintosh extended

attributes specified in this document.

3.3.4.6.1 All Operating Systems

This extended attribute shall be used to indicate unused space within the extended

attribute space reserved for Application Use Extended Attributes. This extended

attribute shall be stored as an Application Use Extended Attribute whose

ApplicationIdentifier shall be set to:

"*UDF FreeAppEASpace"

65

The ApplicationUse area for this extended attribute shall be structured as follows:

FreeAppEASpace format

RBP Length Name Contents

0 2 Header Checksum Uint16

2 IU_L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow the total size of

other extended attributes without rewriting the complete extended attribute space.

The FreeAppEASpace extended attribute may be overwritten and the space re-

used by any implementation who sees a need to overwrite it.

66

4. User Interface Requirements

4.1 Part 3 - Volume Structure

Part 3 of ECMA 167 contains various Identifiers which, depending upon the

implementation, may have to be presented to the user.

• VolumeIdentifier

• VolumeSetIdentifier

• LogicalVolumeID

These identifiers, which are stored in CS0, may have to go through some form of

translation to be displayable to the user. Therefore when an implementation must

perform an OS specific translation on the above listed identifiers the

implementation shall use the algorithms described in section 4.1.2.1.

C source code for the translation algorithms may be found in the appendices of

this document.

4.2 Part 4 - File System

4.2.1 ICB Tag
struct icbtag { /* ECMA 167 4/14.6 */

Uint32 PriorRecordedNumberofDirectEntries;

Uint16 StrategyType;

byte StrategyParameter[2];

Uint16 NumberofEntries;

byte Reserved; /* == #00 */

Uint8 FileType;

Lb_addr ParentICBLocation;

Uint16 Flags;

}

4.2.1.1 FileType

Any open/close/read/write requests for file(s) that have any of the following

values in this field shall result in an Access Denied error condition under non-

UNIX operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character device), 9

(FIFO), and 10 (C_ISSOCK).

Any open/close/read/write requests to a file of type 12 (SymbolicLink) shall

access the file/directory to which the symbolic link is pointing.

67

4.2.2 File Identifier Descriptor
struct FileIdentifierDescriptor { /* ECMA 167 4/14.4 */

struct tag DescriptorTag;

Uint16 FileVersionNumber;

Uint8 FileCharacteristics;

Uint8 LengthofFileIdentifier;

struct long_ad ICB;

Uint16 LengthofImplementationUse;

byte ImplementationUse[??];

char FileIdentifier[??];

byte Padding[??];

}

4.2.2.1 char FileIdentifier
Since most operating systems have their own specifications as to characteristics of

a legal FileIdentifier, this becomes a problem with interchange. Therefore since

all implementations must perform some form of FileIdentifier translation it would

be to the users advantage if all implementations used the same algorithm.

The problems with FileIdentifier translations fall within one or more of the

following categories:

• Name Length -Most operating systems have some fixed limit for

the length of a file identifier.

• Invalid Characters - Most operating systems have certain

characters considered as being illegal within a file identifier name.

• Displayable Characters - Since UDF supports the Unicode

character set standard characters within a file identifier may be

encountered which are not displayable on the receiving system.

• Case Insensitive - Some operating systems are case insensitive in

regards to file identifiers. For example OS/2 preserves the original

case of the file identifier when the file is created, but uses a case

insensitive operations when accessing the file identifier. In OS/2

“Abc” and “ABC” would be the same file name.

• Reserved Names - Some operating systems have certain names that

cannot be used for a file identifier name.

The following sections outline the FileIdentifier translation algorithm for each

specific operating system covered by this document. This algorithm shall be used

by all OSTA UDF compliant implementations. The algorithm only applies when

68

reading an illegal FileIdentifier. The original FileIdentifier name on the media

should not be modified. This algorithm shall be applied by any implementation

which performs some form of FileIdentifier translation to meet operating system

file identifier restrictions.

All OSTA UDF compliant implementations shall support the UDF translation

algorithms, but may support additional algorithms. If multiple algorithms are

supported the user of the implementation shall be provided with a method to

select the UDF translation algorithms. It is recommended that the default

displayable algorithm be the UDF defined algorithm.

The primary goal of these algorithms is to produce a unique file name that meets

the specific operating system restrictions without having to scan the entire

directory in which the file resides.

C source code for the following algorithms may be found in the appendices of this

document.

NOTE: In the definition of the following algorithms anytime a d-character is

specified in quotes, the Unicode hexadecimal value will also be specified. In

addition the following algorithms reference “CS0 Hex representation”, which

corresponds to using the Unicode values #0030 - #0039, and #0041 - #0046 to

represent a value in hex.

The following algorithms could still result in name-collisions being reported to

the user of an implementation. However, the rationale includes the need for

efficient access to the contents of a directory and consistent name translations

across logical volume mounts and file system driver implementations, while

allowing the user to obtain access to any file within the directory (through

possibly renaming a file).

Definitions:

A FileIdentifier shall be considered as being composed of two parts, a file name

and file extension.

The character '.' (#002E) shall be considered as the separator for the FileIdentifier

of a file; characters appearing subsequent to the last '.' (#002E) shall be considered

as constituting the file extension if and only if it is less than or equal to 5

characters in length, otherwise the file extension shall not exist. Characters

appearing prior to the file extension, excluding the last '.' (#002E), shall be

considered as constituting the file name.

NOTE: Even though OS/2, Macintosh, and UNIX do not have an official

concept of a filename extension it is common file naming conventions to

end a file with “.” followed by a 1 to 5 character extension. Therefore the

69

following algorithms attempt to preserve the file extension up to a

maximum of 5 characters.

4.2.2.1.1 MS-DOS

Due to the restrictions imposed by the MS DOS operating system environments

on the FileIdentifier associated with a file the following methodology shall be

employed to handle FileIdentifier(s) under the above-mentioned operating system

environments :

Restrictions: The file name component of the FileIdentifier shall not exceed 8

characters. The file extension component of the FileIdentifier shall not exceed 3

characters.

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,

a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid MS-DOS file

identifier then do not apply the following steps.

3. Remove Spaces: All embedded spaces within the identifier shall be

removed.

4. Invalid Characters: A FileIdentifier that contains characters considered

invalid within a file name or file extension (as defined above), or not

displayable in the current environment, shall have them translated into

"_" (#005F). (the file identifier on the media is NOT modified).

Multiple sequential invalid or non-displayable characters shall be

translated into a single “_” (#005F) character. Reference the appendix

on invalid characters for a complete list.

5. Leading Periods: In the event that there do not exist any characters

prior to the first "." (#002E) character, leading "." (#002E) characters

shall be disregarded up to the first non “.” (#002E) character, in the

application of this heuristic.

6. Multiple Periods: In the event that the FileIdentifier contains multiple

"." (#002E) characters, all characters appearing subsequent to the last

'.' (#002E) shall be considered as constituting the file extension if and

only if it is less than or equal to 5 characters in length, otherwise the

file extension shall not exist. Characters appearing prior to the file

extension, excluding the last '.' (#002E), shall be considered as

constituting the file name. All embedded "." (#002E) characters within

the file name shall be removed.

7. Long Extension: In the event that the number of characters constituting

the file extension at this step in the process is greater than 3, the file

extension shall be regarded as having been composed of the first 3

characters amongst the characters constituting the file extension at this

step in the process.

8. Long Filename: In the event that the number of characters constituting

the file name at this step in the process is greater than 8, the file name

shall be truncated to 4 characters.

70

9. FileIdentifier CRC: Since through the above process character

information from the original FileIdentifier is lost the chance of

creating a duplicate FileIdentifier in the same directory increases. To

greatly reduce the chance of having a duplicate FileIdentifier the file

name shall be modified to contain a CRC of the original FileIdentifier.

The file name shall be composed of the first 4 characters constituting

the file name at this step in the process; followed by a 4 digit CS0 Hex

representation of the 16-bit CRC of the original CS0 FileIdentifier.

NOTE: All other algorithms except DOS precede the CRC by a

separator '#' (#0023). Due to the limited number of characters in a

DOS file name a separator for the CRC is not used.

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 OS/2

Due to the restrictions imposed by the OS/2 operating system environment, on the

FileIdentifier associated with a file the following methodology shall be employed

to handle FileIdentifier(s) under the above-mentioned operating system

environment:

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,

a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid OS/2 file

identifier then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered

invalid within an OS/2 file name, or not displayable in the current

environment shall have them translated into "_" (#005F). Multiple

sequential invalid or non-displayable characters shall be translated into

a single “_” (#005F) character. Reference the appendix on invalid

characters for a complete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)

shall be removed.

5. FileIdentifier CRC: Since through the above process character

information from the original FileIdentifier is lost the chance of

creating a duplicate FileIdentifier in the same directory increases. To

greatly reduce the chance of having a duplicate FileIdentifier the file

name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be

composed of up to the first (254 - (length of (new file extension) + 1

(for the '.')) - 5 (for the #CRC)) characters constituting the file name at

this step in the process, followed by the separator '#' (#0023); followed

by a 4 digit CS0 Hex representation of the 16-bit CRC of the original

CS0 FileIdentifier, followed by '.' (#002E) and the file extension at this

step in the process.

71

Otherwise if there is no file extension the new FileIdentifier shall be

composed of up to the first (254 - 5 (for the #CRC)) characters

constituting the file name at this step in the process. Followed by the

separator '#' (#0023); followed by a 4 digit CS0 Hex representation of

the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.3 Macintosh

Due to the restrictions imposed by the Macintosh operating system environment,

on the FileIdentifier associated with a file the following methodology shall be

employed to handle FileIdentifier(s) under the above-mentioned operating system

environment :

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,

a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid Macintosh file

identifier then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered

invalid within a Macintosh file name, or not displayable in the current

environment, shall have them translated into "_" (#005F). Multiple

sequential invalid or non-displayable characters shall be translated into

a single “_” (#005F) character. Reference the appendix on invalid

characters for a complete list

4. Long FileIdentifier - In the event that the number of characters

constituting the FileIdentifier at this step in the process is greater than

31 (maximum name length for the Macintosh operating system), the

new FileIdentifier will consist of the first 26 characters of the

FileIdentifier at this step in the process.

5. FileIdentifier CRC Since through the above process character

information from the original FileIdentifier is lost the chance of

creating a duplicate FileIdentifier in the same directory increases. To

greatly reduce the chance of having a duplicate FileIdentifier the file

name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be

composed of up to the first (31 - (length of (new file extension) + 1 (for

the '.')) - 5 (for the #CRC)) characters constituting the file name at this

step in the process, followed by the separator '#' (#0023); followed by

a 4 digit CS0 Hex representation of the 16-bit CRC of the original CS0

FileIdentifier, followed by '.' (#002E) and the file extension at this step

in the process.

Otherwise if there is no file extension the new FileIdentifier shall be

composed of up to the first (31 - 5(for the #CRC)) characters

constituting the file name at this step in the process. Followed by the

separator '#' (#0023); followed by a 4 digit CS0 Hex representation of

the 16-bit CRC of the original CS0 FileIdentifier.

72

4.2.2.1.4 Windows 95 & Windows NT

Due to the restrictions imposed by the Windows 95 and Windows NT operating

system environments, on the FileIdentifier associated with a file the following

methodology shall be employed to handle FileIdentifier(s) under the above-

mentioned operating system environment:

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,

a case-insensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid file identifier for

Windows 95 or Windows NT then do not apply the following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered

invalid within a file name of the supported operating system, or not

displayable in the current environment shall have them translated into

"_" (#005F). Multiple sequential invalid or non-displayable characters

shall be translated into a single “_” (#005F) character. Reference the

appendix on invalid characters for a complete list.

4. Trailing Periods and Spaces: All trailing “.” (#002E) and “ “ (#0020)

shall be removed.

5. FileIdentifier CRC: Since through the above process character

information from the original FileIdentifier is lost the chance of

creating a duplicate FileIdentifier in the same directory increases. To

greatly reduce the chance of having a duplicate FileIdentifier the file

name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be

composed of up to the first (255 - (length of (new file extension) + 1

(for the '.')) - 5 (for the #CRC)) characters constituting the file name at

this step in the process, followed by the separator '#' (#0023); followed

by a 4 digit CS0 Hex representation of the 16-bit CRC of the original

CS0 FileIdentifier, followed by '.' (#002E) and the file extension at this

step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be

composed of up to the first (255 - 5 (for the #CRC)) characters

constituting the file name at this step in the process. Followed by the

separator '#' (#0023); followed by a 4 digit CS0 Hex representation of

the 16-bit CRC of the original CS0 FileIdentifier.

4.2.2.1.5 UNIX

Due to the restrictions imposed by UNIX operating system environments, on the

FileIdentifier associated with a file the following methodology shall be employed

to handle FileIdentifier(s) under the above-mentioned operating system

environment:

73

1. FileIdentifier Lookup: Upon request for a "lookUp" of a FileIdentifier,

a case-sensitive comparison shall be performed.

2. Validate FileIdentifer: If the FileIdentifier is a valid UNIX file

identifier for the current system environment then do not apply the

following steps.

3. Invalid Characters: A FileIdentifier that contains characters considered

invalid within a UNIX file name for the current system environment,

or not displayable in the current environment shall have them

translated into "_" (#005E). Multiple sequential invalid or non-

displayable characters shall be translated into a single “_” (#005E)

character. Reference the appendix on invalid characters for a complete

list

4. Long FileIdentifier - In the event that the number of characters

constituting the FileIdentifier at this step in the process is greater than

MAXNameLength (maximum name length for the specific UNIX

operating system), the new FileIdentifier will consist of the first

MAXNameLength-5 characters of the FileIdentifier at this step in the

process.

5. FileIdentifier CRC Since through the above process character

information from the original FileIdentifier is lost the chance of

creating a duplicate FileIdentifier in the same directory increases. To

greatly reduce the chance of having a duplicate FileIdentifier the file

name shall be modified to contain a CRC of the original FileIdentifier.

If there is a file extension then the new FileIdentifier shall be

composed of up to the first (MAXNameLength - (length of (new file

extension) + 1 (for the '.')) - 5 (for the #CRC)) characters constituting

the file name at this step in the process, followed by the separator '#'

(#0023); followed by a 4 digit CS0 Hex representation of the 16-bit

CRC of the original CS0 FileIdentifier, followed by '.' (#002E) and the

file extension at this step in the process.

Otherwise if there is no file extension the new FileIdentifier shall be

composed of up to the first (MAXNameLength - 5 (for the #CRC))

characters constituting the file name at this step in the process.

Followed by the separator '#' (#0023); followed by a 4 digit CS0 Hex

representation of of the 16-bit CRC of the original CS0 FileIdentifier.

74

5. Informative

5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the Descriptors

described in ECMA 167.

Descriptor Length

Anchor Volume Descriptor Pointer 512

Volume Descriptor Pointer 512

Implementation Use Volume Descriptor 512

Partition Descriptor 512

Logical Volume Descriptor no max

Unallocated Space Descriptor no max

Terminating Descriptor 512

Logical Volume Integrity Descriptor no max

File Set Descriptor 512

File Identifier Descriptor Maximum of a

Logical Block Size

Allocation Extent Descriptor 24

Indirect Entry 52

Terminal Entry 36

File Entry Maximum of a

Logical Block Size

Unallocated Space Entry Maximum of a

Logical Block Size

Space Bit Map Descriptor no max

Partition Integrity Entry N/A

5.2 Using Implementation Use Areas
5.2.1 Entity Identifiers

Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space
Orphan space may exist within a logical volume, but it is not recommended since

it may be reallocated by some type of logical volume repair facility. Orphan

space is defined as space that is not directly or indirectly referenced by any of the

non-implementation use descriptors defined in ECMA 167.

NOTE: Any allocated extent for which the only reference resides within an

implementation use field is considered orphan space.

75

5.3 Boot Descriptor

Please refer to the "OSTA Native Implementation Specification" document for

information on the Boot Descriptor.

76

6. Appendices

6.1 UDF Entity Identifier Definitions

Entity Identifier Description

"*OSTA UDF Compliant" Indicates the contents of the specified logical volume or file set

is complaint with domain defined by this document.

“*UDF LV Info” Contains additional Logical Volume identification information.

"*UDF FreeEASpace" Contains free unused space within the implementation extended

attribute space.

“*UDF FreeAppEASpace” Contains free unused space within the application extended

attribute space.

“*UDF DVD CGMS Info” Contains DVD Copyright Management Information

"*UDF OS/2 EA" Contains OS/2 extended attribute data.

"*UDF OS/2 EALength" Contains OS/2 extended attribute length.

"*UDF Mac VolumeInfo" Contains Macintosh volume information.

"*UDF Mac FinderInfo" Contains Macintosh finder information.

"*UDF Mac UniqueIDTable" Contains Macintosh UniqueID Table which is used to map a

Unique ID to a File Entry.

"*UDF Mac ResourceFork" Contains Macintosh resource fork information.

“*UDF Virtual Partition” Describes UDF Virtual Partition

“*UDF Sparable Partition” Describes UDF Sparable Partition

“*UDF Virtual Alloc Tbl” Contains information for handling rewriting to sequentially

written media.

“*UDF Sparing Table” Contains information for handling defective areas on the media

77

6.2 UDF Entity Identifier Values

Entity Identifier Byte Value

"*OSTA UDF Compliant" #2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43, #6F,

#6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info” #2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66, #6F

"*UDF FreeEASpace" #2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41, #53,

#70, #61, #63, #65

"*UDF FreeAppEASpace" #2A, #55, #44, #46, #20,

#46, #72, #65, #65, #41, #70, #70,
#45, #41, #53, #70, #61, #63, #65

“*UDF DVD CGMS Info” #2A, #55, #44, #46, #20, #44, #56, #44, #20,
#43, #47, #4D, #53, #20, #49, #6E, #66, #6F

"*UDF OS/2 EA" #2A, #55, #44, #46, #41, #20, #45, #41

"*UDF OS/2 EALength" #2A, #55, #44, #46, #20, #45, #41, #4C, #65, #6E, #67, #74,
#68

"*UDF Mac VolumeInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F, #6C,
#75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69, #6E,
#64, #65, #72, #49, #6E, #66, #6F

"*UDF Mac UniqueIDTable" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #55, #6E, #69,
#71, #75, #65, #49, #44, #54, #61, #62, #6C, #65

"*UDF Mac ResourceFork" #2A, #55, #44, #46, #20, #4D, #61, #63, #20, #52, #65, #73,
#6F, #75, #72, #63, #65, #46, #6F, #72, #6B

“*UDF Virtual Partition” #2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,
#20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Sparable Partition” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #61, #62, #6C,
#65, #20, #50, #61, #72, #74, #69, #74, #69, #6F, #6E

“*UDF Virtual Alloc Tbl” #2A, #55, #44, #46, #20, #56, #69, #72, #74, #75, #61, #6C,
#20, #41, #6C, #6C, #6F, #63, #20, #54, #62, #6C

“*UDF Sparing Table” #2A, #55, #44, #46, #20, #53, #70, #61, #72, #69, #6E, #67,
#20, #54, #61, #62, #6C, #65

78

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class and OS

Identifier fields in the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the

specified descriptor was recorded. The valid values for this field are as follows:

Value Operating System Class

0 Undefined

1 DOS

2 OS/2

3 Macintosh OS

4 UNIX

5 Windows 9x

6 Windows NT

7-255 Reserved

The OS Identifier field will identify under which operating system the specified

descriptor was recorded. The valid values for this field are as follows:

OS
Class

OS
Identifier

Operating System Identified

0 Any Value Undefined

1 0 DOS/Windows 3.x

2 0 OS/2

3 0 Macintosh OS System 7

4 0 UNIX - Generic

4 1 UNIX - IBM AIX

4 2 UNIX - SUN OS / Solaris

4 3 UNIX - HP/UX

4 4 UNIX - Silicon Graphics Irix

4 5 UNIX - Linux

4 6 UNIX - MKLinux

4 7 UNIX - FreeBSD

5 0 Windows 95

6 0 Windows NT

For the most update list of values for OS Class and OS Identifier please contact OSTA

and request a copy of the UDF Entity Identifier Directory. This directory will also

contain Implementation Identifiers of ISVs who have provided the necessary information

to OSTA.

79

80

6.4 OSTA Compressed Unicode Algorithm
/***

* OSTA compliant Unicode compression, uncompression routines.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

#include <stddef.h>

/***

* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

/***

* Takes an OSTA CS0 compressed unicode name, and converts
* it to Unicode.
* The Unicode output will be in the byte order
* that the local compiler uses for 16-bit values.
* NOTE: This routine only performs error checking on the compID.
* It is up to the user to ensure that the unicode buffer is large
* enough, and that the compressed unicode name is correct.
*
* RETURN VALUE
*
* The number of unicode characters which were uncompressed.

* A -1 is returned if the compression ID is invalid.

*/

int UncompressUnicode(

int numberOfBytes, /* (Input) number of bytes read from media. */

byte *UDFCompressed, /* (Input) bytes read from media. */

unicode_t *unicode) /* (Output) uncompressed unicode characters. */

{

unsigned int compID;

int returnValue, unicodeIndex, byteIndex;

/* Use UDFCompressed to store current byte being read. */

compID = UDFCompressed[0];

/* First check for valid compID. */

if (compID != 8 && compID != 16)

{

returnValue = -1;

}

else

{

unicodeIndex = 0;

byteIndex = 1;

/* Loop through all the bytes. */

while (byteIndex < numberOfBytes)

{

if (compID == 16)

{

/*Move the first byte to the high bits of the unicode char. */

unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;

}

else

{

unicode[unicodeIndex] = 0;

}

if (byteIndex < numberOfBytes)

{

81

/*Then the next byte to the low bits. */

unicode[unicodeIndex] |= UDFCompressed[byteIndex++];

}

unicodeIndex++;

}

returnValue = unicodeIndex;

}

return(returnValue);

}

/***

* DESCRIPTION:
* Takes a string of unicode wide characters and returns an OSTA CS0
* compressed unicode string. The unicode MUST be in the byte order of
* the compiler in order to obtain correct results. Returns an error

* if the compression ID is invalid.
*
* NOTE: This routine assumes the implementation already knows, by
* the local environment, how many bits are appropriate and
* therefore does no checking to test if the input characters fit
* into that number of bits or not.
*
* RETURN VALUE
*
* The total number of bytes in the compressed OSTA CS0 string,

* including the compression ID.

* A -1 is returned if the compression ID is invalid.

*/

int CompressUnicode(

int numberOfChars, /* (Input) number of unicode characters. */

int compID, /* (Input) compression ID to be used. */

unicode_t *unicode, /* (Input) unicode characters to compress. */

byte *UDFCompressed) /* (Output) compressed string, as bytes. */

{

int byteIndex, unicodeIndex;

if (compID != 8 && compID != 16)

{

byteIndex = -1; /* Unsupported compression ID ! */

}

else

{

/* Place compression code in first byte. */

UDFCompressed[0] = compID;

byteIndex = 1;

unicodeIndex = 0;

while (unicodeIndex < numberOfChars)

{

if (compID == 16)

{

/* First, place the high bits of the char

* into the byte stream.

*/

UDFCompressed[byteIndex++] =

(unicode[unicodeIndex] & 0xFF00) >> 8;

}

/*Then place the low bits into the stream. */

UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;

unicodeIndex++;

}

}

return(byteIndex);

}

82

6.5 CRC Calculation

The following C program may be used to calculate the CRC-CCITT checksum

used in the TAG descriptors of ECMA 167.

/*

* CRC 010041

*/

static unsigned short crc_table[256] = {

 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,

0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,

0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,

0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,

0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,

0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,

0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,

0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,

0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,

0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,

0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,

0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,

0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,

0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,

0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,

0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,

0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,

0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,

0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,

0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,

0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,

0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,

0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,

0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,

0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,

0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,

0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,

0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,

0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,

0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,

0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,

0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0

};

unsigned short

cksum(s, n)

register unsigned char *s;

register int n;

{

register unsigned short crc=0;

while (n-- > 0)

crc = crc_table[(crc>>8 ^ *s++) & 0xff] ^ (crc<<8);

return crc;

}

#ifdef MAIN

unsigned char bytes[] = { 0x70, 0x6A, 0x77 };

main()

{

unsigned short x;

x = cksum(bytes, sizeof bytes);

printf("checksum: calculated=%4.4x, correct=%4.4x\en", x, 0x3299);

83

exit(0);

}

#endif

84

The CRC table in the previous listing was generated by the following program:

#include <stdio.h>

/*

* a.out 010041 for CRC-CCITT

*/

main(argc, argv)

int argc; char *argv[];

{

unsigned long crc, poly;

int n, i;

sscanf(argv[1], "%lo", &poly);

if(poly & 0xffff0000){

fprintf(stderr, "polynomial is too large\en");

exit(1);

}

printf("/*\en * CRC 0%o\en */\en", poly);

printf("static unsigned short crc_table[256] = {\en");

for(n = 0; n < 256; n++){

if(n % 8 == 0)

printf(" ");

crc = n << 8;

for(i = 0; i < 8;

i++){ if(crc &

0x8000)

crc = (crc << 1) ^ poly;

else

crc <<= 1;

crc &= 0xFFFF;

}

if(n == 255)

printf("0x%04X ", crc);

else

printf("0x%04X, ", crc);

if(n % 8 == 7)

printf("\en");

}

printf("};\en");

exit(0);

}

All the above CRC code was devised by Don P. Mitchell of AT&T Bell Laboratories and

Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols,"

Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.

Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.

85

DE

IE

DE

IE

DE

IE

6.6 Algorithm for Strategy Type 4096
This section describes a strategy for constructing an ICB hierarchy. For strategy type

4096 the root ICB hierarchy shall contain 1 direct entry and 1 indirect entry. To indicate

that there is 1 direct entry a 1 shall be recorded as a Uint16 in the StrategyParameter field

of the ICB Tag field. A value of 2 shall be recorded in the MaximumNumberOfEntries

field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also contain 1

direct entry and 1 indirect entry, where the indirect entry specifies the address of another

ICB of the same type. See the figure below:

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct entries.

86

6.7 Identifier Translation Algorithms
The following sample source code examples implement the file identifier translation

algorithms described in this document.

The following basic algorithms may also be used to handle OS specific translations of the

VolumeIdentifier, VolumeSetIdentifier, LogicalVolumeID and FileSetID.

6.7.1 DOS Algorithm

/***

* OSTA UDF compliant file name translation routine for DOS.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

#include <stddef.h>

#define DOS_NAME_LEN 8

#define DOS_EXT_LEN 3

#define ILLEGAL_CHAR_MARK 0x005F

#define TRUE 1

#define FALSE 0

#define PERIOD 0x002E

#define SPACE 0x0020

/***

* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/

typedef unsigned short unicode_t;

typedef unsigned char byte;

/*** PROTOTYPES ***/

unsigned short cksum(register unsigned char *s, register int n);

int IsIllegal(unicode_t current);

/* Define functions or macros to both determine if a character

* is printable and compute the uppercase version of a character
* under your implementation.
*/

int UnicodeIsPrint(unicode_t);

unicode_t UnicodeToUpper(unicode_t);

/***

* Translate udfName to dosName using OSTA compliant.
* dosName must be a unicode string with min length of 12.
*
* RETURN VALUE
* Number of unicode characters in dosName.

*/

int UDFDOSName(

unicode_t *dosName, /* (Output)DOS compatible name. */

unicode_t *udfName, /* (Input) Name from UDF volume. */

int udfLen, /* (Input) Length of UDF Name. */

byte *fidName, /* (Input) Bytes as read from media */

int fidNameLen)/* (Input) Number of bytes in fidName.*/

{

int index, dosIndex = 0, extIndex = 0, lastPeriodIndex;

87

int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;

unsigned short valueCRC;

unicode_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */

const char hexChar[] = "0123456789ABCDEF";

for (index = 0 ; index < udfLen ; index++)

{

current = udfName[index];

current = UnicodeToUpper(current);

if (current == PERIOD)

{

if (dosIndex==0 || hasExt)

{

/* Ignore leading periods or any other than

* used for extension.

*/

needsCRC = TRUE;

}

else

{

/* First, find last character which is NOT a period

* or space.

*/

lastPeriodIndex = udfLen - 1;

while(lastPeriodIndex >=0 &&

(udfName[lastPeriodIndex]== PERIOD ||

udfName[lastPeriodIndex] == SPACE))

{

lastPeriodIndex--;

}

/* Now search for last remaining period. */

while(lastPeriodIndex >= 0 &&

udfName[lastPeriodIndex] != PERIOD)

{

lastPeriodIndex--;

}

/* See if the period we found was the last or not. */

if (lastPeriodIndex != index)

{

needsCRC = TRUE; /* If not, name needs translation. */

}

/* As long as the period was not trailing,

* the file name has an extension.

*/

if (lastPeriodIndex >= 0)

{

hasExt = TRUE;

}

}

}

else

{

if ((!hasExt && dosIndex == DOS_NAME_LEN) ||

extIndex == DOS_EXT_LEN)

{

/* File name or extension is too long for DOS. */

needsCRC = TRUE;

}

else

{

if (current == SPACE) /* Ignore spaces. */

88

{

needsCRC = TRUE;

}

else

{

/* Look for illegal or unprintable characters. */

if (IsIllegal(current) || !UnicodeIsPrint(current))

{

needsCRC = TRUE;

current = ILLEGAL_CHAR_MARK;

/* Skip Illegal characters(even spaces),

* but not periods.

*/

while(index+1 < udfLen

&& (IsIllegal(udfName[index+1])

|| !UnicodeIsPrint(udfName[index+1]))

&& udfName[index+1] != PERIOD)

{

index++;

}

}

/* Add current char to either file name or ext. */

if (writingExt)

{

ext[extIndex++] = current;

}

else

{

dosName[dosIndex++] = current;

}

}

}

}

/* See if we are done with file name, either because we reached

* the end of the file name length, or the final period.

*/

if (!writingExt && hasExt && (dosIndex == DOS_NAME_LEN ||

index == lastPeriodIndex))

{

/* If so, and the name has an extension, start reading it. */

writingExt = TRUE;

/* Extension starts after last period. */

index = lastPeriodIndex;

}

}

/*Now handle CRC if needed. */

if (needsCRC)

{

/* Add CRC to end of file name or at position 4. */

if (dosIndex >4)

{

dosIndex = 4;

}

valueCRC = cksum(fidName, fidNameLen);

/* Convert 16-bit CRC to hex characters. */

dosName[dosIndex++] = hexChar[(valueCRC & 0xf000) >> 12]

dosName[dosIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];

dosName[dosIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];

dosName[dosIndex++] = hexChar[(valueCRC & 0x000f)];

}

/* Add extension, if any. */

if (extIndex != 0)

{

89

dosName[dosIndex++] = PERIOD;

for (index = 0; index < extIndex; index++)

{

dosName[dosIndex++] = ext[index];

}

}

return(dosIndex);

}

/***

* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by DOS version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.

*/

int UnicodeInString(

unsigned char *string, /* (Input) String to search through. */

unicode_t ch) /* (Input) Unicode char to search for. */

{

int found = FALSE;

while (*string != '\0' && found == FALSE)

{

/* These types should compare, since both are unsigned numbers. */

if (*string == ch)

{

found = TRUE;

}

string++;

}

return(found);

}

/***

* Decides whether character passed is an illegal character for a
* DOS file name.
*
* RETURN VALUE
*
* Non-zero if file character is illegal.

*/

int IsIllegal(

unicode_t ch) /* (Input) character to test. */

{

/* Genuine illegal char's for DOS. */

if (ch < 0x20 || UnicodeInString("\\/:*?\"<>|", ch))

{

return(1);

}

else

{

return(0);

}

}

90

6.7.2 OS/2, Macintosh,Windows 95, Windows NT and UNIX Algorithm
/***

* OSTA UDF compliant file name translation routine for OS/2,
* Windows 95, Windows NT, Macintosh and UNIX.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

/***

* To use these routines with different operating systems.
*
* OS/2
* Define OS2

* Define MAXLEN = 254

*
* Windows 95
* Define WIN_95

* Define MAXLEN = 255

*
* Windows NT
* Define WIN_NT

* Define MAXLEN = 255

*
* Macintosh:
* Define MAC.

* Define MAXLEN = 31.

*
* UNIX
* Define UNIX.

* Define MAXLEN as specified by unix version.

*/

#define ILLEGAL_CHAR_MARK 0x005F

#define CRC_MARK 0x0023

#define EXT_SIZE 5

#define TRUE 1

#define FALSE 0

#define PERIOD 0x002E

#define SPACE 0x0020

/***

* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/

typedef unsigned int unicode_t;

typedef unsigned char byte;

/*** PROTOTYPES ***/

int IsIllegal(unicode_t ch);

unsigned short cksum(unsigned char *s, int n);

/* Define a function or macro which determines if a Unicode character is

* printable under your implementation.
*/

int UnicodeIsPrint(unicode_t);

/***

* Translates a long file name to one using a MAXLEN and an illegal
* char set in accord with the OSTA requirements. Assumes the name has

* already been translated to Unicode.
*
* RETURN VALUE
*

91

* Number of unicode characters in translated name.

*/

int UDFTransName(

unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/

unicode_t *udfName, /* (Input) Name from UDF volume.*/

int udfLen, /* (Input) Length of UDF Name. */

byte *fidName, /* (Input) Bytes as read from media. */

int fidNameLen) /* (Input) Number of bytes in fidName. */

{

int index, newIndex = 0, needsCRC = FALSE;

int extIndex, newExtIndex = 0, hasExt = FALSE;

#ifdef (OS2 | WIN_95 | WIN_NT)

int trailIndex = 0;

#endif

unsigned short valueCRC;

unicode_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udfLen; index++)

{

current = udfName[index];

if (IsIllegal(current) || !UnicodeIsPrint(current))

{

needsCRC = TRUE;

/* Replace Illegal and non-displayable chars with underscore. */

current = ILLEGAL_CHAR_MARK;

/* Skip any other illegal or non-displayable characters. */

while(index+1 < udfLen && (IsIllegal(udfName[index+1])

|| !UnicodeIsPrint(udfName[index+1])))

{

index++;

}

}

/* Record position of extension, if one is found. */

if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)

{

if (udfLen == index + 1)

{

/* A trailing period is NOT an extension. */

hasExt = FALSE;

}

else

{

hasExt = TRUE;

extIndex = index;

newExtIndex = newIndex;

}

}

#ifdef (OS2 | WIN_95 | WIN_NT)

/* Record position of last char which is NOT period or space. */

else if (current != PERIOD && current != SPACE)

{

trailIndex = newIndex;

}

#endif

if (newIndex < MAXLEN)

{

newName[newIndex++] = current;

}

else

{

needsCRC = TRUE;

}

}

92

#ifdef (OS2 | WIN_95 | WIN_NT)

/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */

if (trailIndex != newIndex - 1)

{

newIndex = trailIndex + 1;

needsCRC = TRUE;

hasExt = FALSE; /* Trailing period does not make an extension. */

}

#endif

if (needsCRC)

{

unicode_t ext[EXT_SIZE];

int localExtIndex = 0;

if (hasExt)

{

int maxFilenameLen;

/* Translate extension, and store it in ext. */

for(index = 0; index<EXT_SIZE && extIndex + index +1 < udfLen;

index++)

{

current = udfName[extIndex + index + 1];

if (IsIllegal(current) || !isprint(current))

{

needsCRC = 1;

/* Replace Illegal and non-displayable chars

* with underscore.

*/

current = ILLEGAL_CHAR_MARK;

/* Skip any other illegal or non-displayable

* characters.

*/

while(index + 1 < EXT_SIZE

&& (IsIllegal(udfName[extIndex + index + 2])

|| !isprint(udfName[extIndex + index + 2])))

{

index++;

}

}

ext[localExtIndex++] = current;

}

/* Truncate filename to leave room for extension and CRC. */

maxFilenameLen = ((MAXLEN - 4) - localExtIndex - 1);

if (newIndex > maxFilenameLen)

{

newIndex = maxFilenameLen;

}

else

{

newIndex = newExtIndex;

}

}

else if (newIndex > MAXLEN - 5)

{

/*If no extension, make sure to leave room for CRC. */

newIndex = MAXLEN - 5;

}

newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC from original filename from FileIdentifier. */

valueCRC = cksum(fidName, fidNameLen);

/* Convert 16-bits of CRC to hex characters. */

newName[newIndex++] = hexChar[(valueCRC & 0xf000) >> 12];

newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];

newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];

93

newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

/* Place a translated extension at end, if found. */

if (hasExt)

{

newName[newIndex++] = PERIOD;

for (index = 0;index < localExtIndex ;index++)

{

newName[newIndex++] = ext[index];

}

}

}

return(newIndex);

}

#ifdef (OS2 | WIN_95 | WIN_NT)

/***

* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by OS2 version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.

*/

int UnicodeInString(

unsigned char *string, /* (Input) String to search through. */

unicode_t ch) /* (Input) Unicode char to search for. */

{

int found = FALSE;

while (*string != '\0' && found == FALSE)

{

/* These types should compare, since both are unsigned numbers. */

if (*string == ch)

{

found = TRUE;

}

string++;

}

return(found);

}

#endif /* OS2 */

/***

* Decides whether the given character is illegal for a given OS.
*
* RETURN VALUE
*
* Non-zero if char is illegal.

*/

int IsIllegal(unicode_t ch)

{

#ifdef MAC

/* Only illegal character on the MAC is the colon. */

if (ch == 0x003A)

{

return(1);

}

else

{

return(0);

}

#elif defined UNIX

/* Illegal UNIX characters are NULL and slash. */

if (ch == 0x0000 || ch == 0x002F)

94

{

return(1);

}

else

{

return(0);

}

#elif defined (OS2 | WIN_95 | WIN_NT)

/* Illegal char's for OS/2 according to WARP toolkit. */

if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))

{

return(1);

}

else

{

return(0);

}

#endif

}

95

6.8 Extended Attribute Checksum Algorithm

/*

* Calculates a 16-bit checksum of the Implementation Use
* Extended Attribute header. The fields AttributeType

* through ImplementationIdentifier inclusively represent the
* data covered by the checksum (48 bytes).
*
*/

Uint16 ComputeEAChecksum(byte *data)

{

Uint16 checksum = 0;

Uint count;

for(count = 0; count < 48; count++)

{

checksum += *data++;

}

return(checksum);

}

96

6.9 Requirements for DVD-ROM
This appendix defines the requirements and restrictions for UDF formatted DVD-ROM

discs.

• DVD-ROM discs shall be mastered with the UDF file system

• DVD-ROM discs shall consist of a single volume and a single partition.

NOTE:. The disc may also include the ISO 9660 file system. If the disc contains both

UDF and ISO 9660 file systems it shall be known as a UDF Bridge disc. This UDF

Bridge disc will allow playing DVD-ROM media in computers which may only support

ISO 9660. As UDF computer implementations are provided, the need for ISO 9660 will

disappear, and future discs should contain only UDF.

6.9.1 Constraints imposed by UDF for DVD-Video

This section describes the restrictions and requirements for UDF formatted DVD-Video

discs for dedicated DVD content players. DVD-Video is one specific application of

DVD-ROM using the UDF format for the home consumer market. Due to limited

computing resources within a DVD player, restrictions and requirements were created so

that a DVD player would not have to support every feature of the UDF specification.

All DVD-Video discs shall be mastered to contain all required data as specified by

ECMA 167 and UDF. This will ease playing of DVD-Video in computer systems.

Examples of such data include the time, date, permission bits, and a free space map

(indicating no free space). While DVD player implementations may ignore these fields,

a UDF computer system implementation will not. Both entertainment-based and

computer-based content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division described is

integer arithmetic; all denominators shall be 2^n, such that all divisions may be carried

out via logical shift operations.

• A DVD player shall only support UDF and not ISO 9660.

• Originating systems shall constrain individual files to be less than than or equal to 2

- Logical Block Size bytes in length.

• The data of each file shall be recorded as a single extent. Each File Entry shall be

recorded using the ICB Strategy Type 4.

• File and directory names shall be compressed as 8 bits per character using OSTA

Compressed Unicode format .

30

97

• A DVD player shall not be required to follow symbolic links to any files.

• The DVD-Video files shall be stored in a subdirectory named "VIDEO_TS" directly

under the root directory. Directory names are standardized in the DVD Specifications

for Read-Only Disc document.

NOTE: The DVD Specifications for Read-Only Disc is a document, developed by

the DVD Consortium, that describes the names of all DVD-Video files and a DVD-

Video directory which will be stored on the media, and additionally describes the

contents of the DVD-Video files.

• The file named "VIDEO_TS.IFO" in the VIDEO_TS subdirectory shall be read first.

All the above constraints apply only to the directory and files which the DVD player

needs to access. There may be other files and directories on the media which are not

intended for the DVD player and do not meet the above listed constraints. These other

files and directories are ignored by the DVD player. This is what enables the ability to

have both entertainment-based and computer-based content on the same disc.

6.9.2 How to read a UDF disc

This section describes the basic procedures that a DVD player would go through to read a

UDF formatted DVD-Video disc.

6.9.2.1 Step 1. Volume Recognition Sequence

Find an ECMA 167 Descriptor in a volume recognition area which shall start at logical

sector 16.

6.9.2.2 Step 2. Anchor Volume Descriptor Pointer

The Anchor Volume Descriptor Pointer which is located at an anchor point must be

found. Duplicate anchor points shall be recorded at logical sector 256 and logical

sector n, where n is the highest numbered logical sector on the disc.

A DVD player only needs to look at logical sector 256; the copy at logical sector n is

redundant and only needed for defect tolerance. The Anchor Volume Descriptor

Pointer contains three things of interest:

1. Static structures that may be used to identify and verify integrity of the disc.

2. Location of the Main Volume Descriptor Sequence (absolute logical sector

number)

3. Length of the Main Volume Descriptor Sequence (bytes)

The data located in bytes 0-3 and 5 of the Anchor Volume Descriptor Pointer may be

used for format verification if desired. Verifying the checksum in byte 4 and CRC in

bytes 8-11 are good additional verifications to perform. MVDS_Location and

MVDS_Length are read from this structure.

98

6.9.2.3 Step 3. Volume Descriptor Sequence

Read logical sectors:

MVDS_Location through MVDS_Location + (MVDS_Length - 1) / SectorSize

The logical sector size shall be 2048 bytes for DVD media. If this sequence can not

be read, a Reserve Volume Descriptor Sequence should be read.

The Partition Descriptor shall be a descriptor with a tag identifier of 5. The partition

number and partition location shall be recorded in logical sector number.

Partition_Location and Partition_Length are obtained from this structure.

The Logical Volume Descriptor shall be a descriptor with a tag identifier of 6. The

location and length of the File Set Descriptor shall be recorded in logical block

number.

FSD_Location, and FSD_Length are returned from this structure.

6.9.2.4 Step 4. File Set Descriptor

The File Set Descriptor is located at logical sector numbers:

Partition_Location + FSD_Location through

Partition_Location + FSD_Location + (FSD_Length - 1) / BlockSize

RootDir_Location and RootDir_Length shall be read from the File Set Descriptor in

logical block number.

6.9.2.5 Step 5. Root Directory File Entry

RootDir_Location and RootDir_Length define the location of a File Entry. The File

Entry describes the data space and permissions of the root directory.

The location and length of the Root Directory is returned.

6.9.2.6 Step 6. Root Directory

Parse the data in the root directory extent to find the VIDEO_TS subdirectory.

Find the VIDEO_TS File Identifier Descriptor. The name shall be in 8 bit

compressed UDF format. Verify that VIDEO_TS is a directory.

Read the File Identifier Descriptor and find the location and length of a File Entry

describing the VIDEO_TS directory.

6.9.2.7 Step 7. File Entry of VIDEO_TS

The File Entry found in the step above describes the data space and permissions of

the VIDEO_TS directory.

99

The location and length of the VIDEO_TS directory is returned.

6.9.2.8 Step 8. VIDEO_TS directory

The extent found in the step above contains sets of File Identifier Descriptors. In this

pass, verify that the entry points to a file and is named VIDEO_TS.IFO.

6.9.2.9 Step 9. File Entry of VIDEO_TS.IFO

The File Entry found in the step above describes the data space and permissions of

the VIDEO_TS.IFO file.

The location and length of the VIDEO_TS.IFO file is returned.

Further files can be found in the same manner as the VIDEO_TS.IFO file when

needed.

100

6.10 Recommendations for CD Media
CD Media (CD-R and CD-RW) requires special consideration due to its nature. CD was

originally designed for read-only applications which affects the way in which it is written.

The following guidelines are established to ensure interchange.

The VAT may be located by using READ TRACK INFORMATION (for unfinished

media) or READ TOC or READ CD RECORDED CAPACITY for finished media. See

X3T10-1048D (SCSI-3 Multi Media Commands).

Each file and directory shall be described by a single direct ICB. The ICB should be

written after the file data to allow for data underruns during writing, which will cause

logical gaps in the file data. The ICB can be written afterward which will correctly

identify all extents of the file data. The ICB shall be written in the data track, the file

system track (if it exists), or both.

6.10.1 Use of UDF on CD-R media
ECMA 167 requires an Anchor Volume Descriptor Pointer (AVDP) at sector 256 and

either N or (N - 256), where n is the last recorded Physical Address on the media. UDF

requires that the AVDP be recorded at both sector 256 and sector (N - 256) when each

session is closed. The file system may be in an intermediate state before closing and still

be interchangeable, but not strictly in compliance with ECMA 167. In the intermediate

state, only one AVDP exists. It should exist at sector 256, but if this is not possible due

to a track reservation, it shall exist at sector 512.

Implementations should place file system control structures into virtual space and file

data into real space. Reader implementations may cache the entire VAT; the size of the

VAT should be considered by any UDF originating software. Computer based

implemenations are expected to handle VAT sizes of at least 64K bytes; dedicated player

implementations may handle only smaller sizes.

6.10.1.1 Requirements

• Writing shall use Mode 1 or Mode 2 Form 1 sectors. On one disc, either Mode 1 or

Mode 2 Form 1 shall be used; a mixture of Mode 1 and Mode 2 Form 1 sectors on

one disc is not allowed.

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data

files and by the UDF structures shall have the following value:

File number = 0

Channel number = 0

Submode = 08h

Coding information = 0

101

• An intermediate state is allowed on CD-R media in which only one AVDP is

recorded; this single AVDP shall be at sector 256 or sector 512 and according to the

multisession rules below.

• Sequential file system writing shall be performed with variable packet writing. This

allows maximum space efficiency for large and small updates. Variable packet

writing is more compatible with CD-ROM drives as current models do not support

method 2 addressing required by fixed packets.

• The Logical Volume Integrity descriptor shall be recorded and the volume marked as

open. Logical volume integrity can be verified by finding the VAT ICB at the last

recorded Physical Address. If the VAT ICB is present, the volume is clean; otherwise

it is dirty.

• The Partition Header descriptor, if recorded, shall specify no Unallocated Space

Table, no Unallocated Space Bitmap, no Partition Integrity Table, no Freed Space

Table, and no Freed Space Bitmap. The drive is capable of reporting free space

directly, eliminating the need for a separate descriptor.

• Each surface shall contain 0 or 1 read only partitions, 0 or 1 write once partitions, and

0 or 1 virtual partitions. CD media should contain 1 write once partition and 1 virtual

partition.

6.10.1.2 “Bridge” formats

ISO 9660 requires a Primary Volume Descriptor (PVD) at sector 16. If an ISO 9660 file

system is desired, it may contain references to the same files as those referenced by

ECMA 167 structures, or reference a different set of files, or a combination of the two.

It is assumed that early implementations will record some ISO 9660 structures but that as

implementations of UDF become available, the need for ISO 9660 structures will

decrease.

If an ISO 9660 bridge disc contains Mode 2 Form 1 sectors, then the CD-ROM XA

extensions of ISO 9660 must be used.

6.10.1.3 End of session data
A session is closed to enable reading by CD-ROM drives. The last complete session on

the disc shall conform completely to ECMA 167 and have two AVDPs recorded. This

shall be accomplished by writing data according to End of session data table below.

Although not shown in the following example, the data may be written in multiple

packets.

102

End of session data
Count Description

1 Anchor Volume Descriptor Pointer

255 Implementation specific. May contain user

data, file system structures, and/or link areas.

1 VAT ICB.

The implementation specific data may contain repeated copies of the VAT and VAT ICB.

Compatibility with drives that do not accurately report the location of the last sector will

be enhanced. Implementations shall ensure that enough space is available to record the

end of session data. Recording the end of session data brings a volume into compliance

with ECMA 167.

6.10.2 Use of UDF on CD-RW media
CD-RW media is randomly readable and block writable. This means that while any

individual sector may be read, writing must occur in blocks containing multiple sectors.

CD-RW systems do not provide for sparing of bad areas. Writing rules and sparing

mechanisms have been defined.

6.10.2.1 Requirements

• Writing which conforms to this section of the standard shall be performed using fixed

length packets.

• Writing shall be performed using Mode 1 or Mode 2, Form 1 sectors. On one disc,

either Mode 1 or Mode 2 Form 1 shall be used.

• If Mode 2 Form 1 is used, then the subheader bytes of all sectors used by the user data

files and by the UDF structures shall have the following value:

File number = 0

Channel number = 0

Submode = 08h

Coding information = 0

103

• The host shall perform read/modify/write to enable the apparent writing of single 2K

sectors.

• The packet length shall be set when the disc is formatted. The packet length shall be

32 sectors (64 KB).

• The host shall maintain a list of defects on the disc using a Non-Allocatable Space

List (see 2.3.13).

• Sparing shall be managed by the host via the sparable partition and a sparing table.

• Discs shall be formatted prior to use.

6.10.2.2 Formatting
Formatting shall consist of writing a lead-in, user data area, and lead-out. These areas

may be written in any order. This physical format may be followed by a verification

pass. Defects found during the verification pass shall be enumerated in the Non-

Allocatable Space list (2.3.13). Finally, file system root structures shall be recorded.

These mandatory file system and root structures include the Volume Recognition

Sequence, Anchor Volume Descriptor Pointers, a Volume Descriptor Sequence, a File Set

Descriptor and a Root Directory.

The Anchor Volume Descriptor Pointers shall be recorded at sectors 256 and N - 256,

where N is the Physical Address of the last addressable sector.

Allocation for sparing shall occur during the format process. The sparing allocation may

be zero in length.

The free space descriptors shall be recorded and shall reflect space allocated to defective

areas and sector sparing areas.

The format may include all available space on the medium. However, if requested by the

user, a subset may be formatted to save formatting time. That smaller format may be

later “grown” to the full available space.

104

6.10.2.3 Growing the Format
If the medium is partially formatted, it may be later grown to a larger size. This operation

consists of:

• Optionally erase the lead-in of the last session.

• Optionally erase the lead-out of the last session.

• Write packets beginning immediately after the last previously recorded packet.

• Update the sparing table to reflect any new spare areas

• Adjust the partition map as appropriate

• Update the free space map to show new available area

• Move the last AVDP to the new N - 256

• Write the lead-in (which reflects the new track size)

• Write the lead-out

6.10.2.4 Host Based Defect Management
The host shall perform defect management operations. The CD format was defined

without any defect management; to be compatible with existing technology and

components, the host must manage defects. There are two levels of defect management:

Marking bad sectors at format time and on-line sparing. The host shall keep the tables on

the media current.

6.10.2.5 Read Modify Write Operation
CD-RW media requires large writable units, as each unit incurs a 14KB overhead. The

file system requires a 2KB writable unit. The difference in write sizes is handled by a

read-modify-write operation by the host. An entire packet is read, the appropriate

portions are modified, and the entire packet written to the CD.

Note that packets may not be aligned to 32 sector boundaries.

6.10.2.6 Levels of Compliance
6.10.2.6.1 Level 1

The disc shall be formatted with exactly one lead-in, program area, and lead-out. The

program area shall contain exactly one track. The start of the partition shall be on a

packet boundary. The partition length shall be an integral multiple of the packet size.

6.10.2.6.2 Level 2

The last session shall contain the UDF file system. All prior sessions shall be contained

in one read-only partition.

105

6.10.2.6.3 Level 3

No restrictions shall apply.

6.10.3 Multisession and Mixed Mode
The Volume Recognition Sequence and Anchor Volume Descriptor Pointer locations are

specified by ECMA 167 to be at a location relative to the beginning of the disc. The

beginning of a disc shall be determined from a base address S for the purposes of finding

the VRS and AVDP.

‘S’ is the Physical Address of the first data sector in the first recorded data track in the

last existent session of the volume. ‘S’ is the same value currently used in multisession

ISO 9660 recording. The first track in the session shall be a data track.

‘N’ is the physical sector number of the last recorded data sector on a disc.

If random write mode is used, the media may be formatted with zero or one audio

sessions followed by exactly one writable data session containing one track. Other

session configurations are possible but not described here. There shall be no more than

one writable partition or session at one time, and this session shall be the last session on

the disc.

6.10.3.1 Volume Recognition Sequence
The following descriptions are added to UDF (see also ECMA 167 Part 2) in order to handle a

multisession disc.

• The volume recognition area of the UDF Bridge format shall be the part of the

volume space starting at sector S + 16.

• The volume recognition space shall end in the track in which it begins. As a result of

this definition, the volume recognition area always exists in the last session of a disc.

• When recorded in Random Access mode, a duplicate Volume Recognition Sequence

shall be recorded beginning at sector N - 256.

6.10.3.2 Anchor Volume Descriptor Pointer
Anchor Volume Descriptor Pointers (AVDP) shall be recorded at the following logical

sector numbers: S + 256 and N - 256. The AVDP at sector N - 256 shall be recorded

before closing a session; it may not be recorded while a session is open.

6.10.3.3 UDF Bridge format

The UDF Bridge format allows UDF to be added to a disc that may contain another file

system. A UDF Bridge disc shall contain a UDF file system in its last session. The last

session shall follow the rules described in “Multisession and Mixed Mode” section above.

The disc may contain sessions that are based on ISO 9660, audio, vendor unique, or a

combination of file systems. The UDF Bridge format allows CD enhanced discs to be

created.

106

The UDF session may contain pointers to data in other sessions, pointers to data only
within the UDF session, or a combination of both. Some examples of UDF Bridge discs
are shown below.

Multisession UDF disc

CD enhanced disc

256 sectors

16 sectors

1st Recorded Track in the last session

LSN=SLSN=0

256 sectors

16 sectors

Access to LSN=256Access to LSN=16+x

: Anchor point

: Volume recognition area

First Session

N - 256

1st session 2nd session

UDF Session

Playable by conventional CD-Player Used by UDF

107

ISO 9660 converted to UDF

Foreign format converted to UDF

1st session 3rd session

9660 Session UDF Session

Written by conventional 9660 formatter software

Managed by UDF

9660 Session

2nd session

1st session 3rd session

Data Session UDF Session

Written by another file system

Managed by UDF

Data Session

2nd session

108

7. UDF 1.50 ERRATA

7.1 Addition to sequentially written file systems

Description:
Sequential File Systems in UDF 1.5 are missing some information that Random-Access File Systems

provide: the current volume name and the number of files & directories on the volume. This information is

added to the VAT File Entry in an optional Extended Attribute.

Change:
Add the following paragraph:

3.3.4.5.1.3 Logical Volume Extended Information

The LVExtensionEA is stored only in VAT File Entries. It is optional. It shall only be used on UDF

1.5 compliant media, not on UDF 2.0 or later (UDF 2.0 provides already a different solution).

This extended attribute shall be stored as an Implementation Use Extended Attribute whose

ImplementationIdentifier shall be set to:

“*UDF VAT LVExtension”

LVExtensionEA format
RBP Length Name Contents

0 2 Header Checksum Uint16

2 8 Verification ID Uint64

10 4 Number Of Files Uint32

14 4 Number Of Directories Uint32

18 128 Logical Volume Identifier dstring

Verification ID – When writing this EA, a copy of the Unique ID field in the VAT ICB’s File Entry shall

be stored here. When reading, this value helps identifying whether the values in Number Of Files &

Directories are accurate: Only when this field is identical to the Unqiue ID field, those values are valid,

otherwise the reader shall assume that the fields are invalid. The values shall only be updated when the

Number of Files & Directories is known, otherwise these values shall not be modified or all filled with zero

bytes.

Number Of Files – Same as in 2.2.6.4

Number Of Directories – Same as in 2.2.6.4

Logical Volume Identifier – Specifies the current logical volume name as assigned by the user. This name

can be different from the L.V.I. in both the LVD and the FSD. When it is different, this value precedes the

other values.

109

7.2 Correction for “Non-Allocatable Space” file

Description:

Name for sparing file “Non-Allocatable Space” has wrong translation in

representation (In 2.3.13 in UDF 1.5)

Change:

In 2.3.13, replace the text

(#4E,#6F,#6E,#2D,#41,#6C,#6C,#6F,#61,#74,#61,#62,#6C,#65,#20,#70,#6

1,#63,#65)

with

(#4E,#6F,#6E,#2D,#41,#6C,#6C,#6F,#63,#61,#74,#61,#62,#6C,#65,#20,#5

3,#70,#61,#63,#65)

110

7.3 Correction for processing permissions

Description:

The Attribute and Delete permissions should be changed from Enforce to

Ignore for UNIX.

Change:

In section 3.3.3.3, replace

Attribute directory The file's permissions may be changed. E E E E E E

Attribute directory The directory's permissions may be

changed.

E E E E E E

Delete file The file may be deleted. E E E E E E

Delete directory The directory may be deleted. E E E E E E

With

Attribute directory The file's permissions may be changed. E E E E E I

Attribute directory The directory's permissions may be

changed.

E E E E E I

Delete file The file may be deleted. E E E E E I

Delete directory The directory may be deleted. E E E E E I

111

7.4 Sparing Packet Length errata

Description:
The Sparing Packet Length is equal to a fixed value being 32, see 2.2.9. The value of 32

must be allowed for all media in order to avoid that existing UDF implementations are

broken while they are according to the current UDF 1.50 and 2.00 specification.

Changes:

In 2.2.9, table "Layout of Type 2 partition map for sparable partition"

replace:

Packet Length Uint16 = 32

by: Packet Length Uint16

and below the table replace:

• Packet Length = the number of user data blocks per fixed packet. Shall be set

to 32.

by:

Packet Length = the number of user data blocks per sparing packet. Shall be

set to 32. The sole exception is that some implementations may use

16 for DVD media but this may reduce compatibility. When 32 is

used for DVD, then 2 ECC blocks are spared together using one

Sparing Table entry.

112

A

Allocation Descriptor, 7, 36, 40, 41

Allocation Extent Descriptor, 41

Anchor Volume Descriptor Pointer, 6, 18

C

CD-R, 2, 3, 4, 25, 26, 100, 101, 102, 104

CD-RW, 2, 100, 102

Charspec, 9

Checksum, 56, 57, 58, 59, 60, 61, 65, 95

CRC, 15, 31, 40, 82, 84

CS0, 8, 9, 12, 16, 17, 19, 23, 33, 66, 68, 70

D

defect management, 25, 28, 104

Descriptor Tag, 15, 31, 40

Domain, i, 11, 13

DOS, 46, 47, 51, 52, 57, 69, 78, 86, 87, 88, 89, 110

Dstrings, 9

DVD, 2, 56, 57, 76, 77, 96, 97, 98, 99, 108

DVD Copyright Management Information, 56, 57, 76,

108

DVD-Video, 96, 97

E

ECMA 167, 1

Entity Identifier, 6, 10, 11, 15, 16, 17, 18, 19, 21, 23,

32, 33, 34, 35, 38, 39, 40, 49, 55, 64, 76, 77

Extended Attributes, 3, 22, 52, 53, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 76

Extent Length, 6, 62, 108

F

File Entry, 7, 12, 38, 49, 54, 61, 76

File Identifier Descriptor, 11, 35, 46, 67

File Set Descriptor, 7, 11, 31, 33

FreeSpaceTable, 20, 21

H

HardWriteProtect, 13, 19, 32, 34

I

ICB, 7, 35, 36, 46, 47, 52, 66, 67

ICB Tag, 7, 36, 47, 66

Implementation Use Volume Descriptor, 11, 23, 74

ImplementationIdentifier, 16, 17, 18, 19, 23, 33, 38,

39, 40, 49, 55, 56, 57, 58, 59, 61, 63, 64

L

Logical Block Size, 6, 7, 19

Logical Sector Size, 6

Logical Volume Descriptor, 7, 11, 18, 20, 22

Logical Volume Header Descriptor, 21, 45

Logical Volume Integrity Descriptor, 12, 19, 20, 40

LogicalVolumeIdentifier, 7

M

Macintosh, 3, 22, 39, 45, 46, 48, 52, 54, 56, 58, 59,

60, 61, 62, 63, 64, 68, 71, 76, 78, 90, 110

N

NetWare, 79

Non-Allocatable Space, 29, 30, 42, 103

O

Orphan Space, 74

OS/2, 3, 46, 47, 51, 52, 56, 57, 58, 64, 67, 68, 70, 76,

77, 78, 90, 94, 110

Overwritable, 6

P

packet, 4, 5, 25, 26, 28, 29, 30, 101, 102, 103, 104

Partition Descriptor, 6, 11, 74, 98

Partition Header Descriptor, 34

Partition Integrity Entry, 7, 12, 40

Pathname, 42

Primary Volume Descriptor, 6, 11, 15

R

Read-Only, 6

Records, 7, 43

Rewritable, 6, 34, 41

S

SizeTable, 20, 21

SoftWriteProtect, 13, 19, 34

Sparable Partition Map, 25

Sparing Table, 12, 26, 28, 29, 76, 77

strategy, 7, 32, 36

SymbolicLink, 66

T

TagSerialNumber, 15, 31

Timestamp, 6, 10, 20, 44

113

U

Unallocated Space Descriptor, 7, 20

Unicode, 8, 9, 67, 68, 80

UniqueID, 21, 38, 39, 45, 49, 52, 61, 62, 63, 76, 77,

108

UNIX, 46, 48, 63, 72, 73

V

VAT, 5, 25, 26, 27, 28, 51, 100, 101, 102

Virtual Allocation Table, 5, 26, 27, 28

virtual partition, 25, 27, 101

Virtual Partition Map, 25

W

Windows, 46, 47, 57, 69

Windows 95, 46, 47, 72, 78, 110

Windows NT, 46, 47, 57, 72, 78, 79, 90, 110

WORM, 6, 20, 32

The following pages are as follows: Num. of Pages

UNICODE.C Unicode sample source code 2

DOSNAME.C UDF DOS filename translation 4

UDFTRANS.C UDF OS/2, Macintosh and UNIX 5

 filename translation

FILE_ID.DIZ BBS Description file 1

/***
* OSTA compliant Unicode compression, uncompression routines.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/
#include <stddef.h>

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to be unsigned 16-bit.
*/
typedef unsigned short unicode_t;
typedef unsigned char byte;

/***
* Takes an OSTA CS0 compressed unicode name, and converts it to Unicode.
* The Unicode output will be in the byte order
* that the local compiler uses for 16-bit values.
* NOTE: This routine only performs error checking on the compID.
* It is up to the user to ensure that the unicode buffer is large enough,
* and that the compressed unicode name is correct.
*
* RETURN VALUE
*
* The number of unicode characters which were uncompressed.
* A -1 is returned if the compression ID is invalid.
*/
int UncompressUnicode(
int numberOfBytes, /* (Input) number of bytes read from media. */
byte *UDFCompressed, /* (Input) bytes read from media. */
unicode_t *unicode) /* (Output) uncompressed unicode characters. */
{

unsigned int compID;
int returnValue, unicodeIndex, byteIndex;

/* Use UDFCompressed to store current byte being read. */
compID = UDFCompressed[0];

/* First check for valid compID. */
if (compID != 8 && compID != 16)
{

returnValue = -1;
}
else
{

unicodeIndex = 0;
byteIndex = 1;

/* Loop through all the bytes. */
while (byteIndex < numberOfBytes)
{

if (compID == 16)
{

/*Move the first byte to the high bits of the unicode char. */
unicode[unicodeIndex] = UDFCompressed[byteIndex++] << 8;

} else unicode[unicodeIndex]=0;
if (byteIndex < numberOfBytes)
{

/*Then the next byte to the low bits. */
unicode[unicodeIndex] |= UDFCompressed[byteIndex++];

}
unicodeIndex++;

}
returnValue = unicodeIndex;

}
return(returnValue);

}

/***
* DESCRIPTION:
* Takes a string of unicode wide characters and returns an OSTA CS0
* compressed unicode string. The unicode MUST be in the byte order of
* the compiler in order to obtain correct results. Returns an error
* if the compression ID is invalid.
*
* NOTE: This routine assumes the implementation already knows, by
* the local environment, how many bits are appropriate and therefore does
* no checking to test if the input characters fit into that number of
* bits or not.
*
* RETURN VALUE
*
* The total number of bytes in the compressed OSTA CS0 string,
* including the compression ID.
* A -1 is returned if the compression ID is invalid.
*/
int CompressUnicode(
int numberOfChars, /* (Input) number of unicode characters. */
int compID, /* (Input) compression ID to be used. */
unicode_t *unicode, /* (Input) unicode characters to compress. */
byte *UDFCompressed) /* (Output) compressed string, as bytes. */
{

int byteIndex, unicodeIndex;

if (compID != 8 && compID != 16)
{

byteIndex = -1; /* Unsupported compression ID ! */
}
else
{

/* Place compression code in first byte. */
UDFCompressed[0] = compID;

byteIndex = 1;
unicodeIndex = 0;
while (unicodeIndex < numberOfChars)
{

if (compID == 16)
{

/*First, place the high bits of the char into the byte stream. */
UDFCompressed[byteIndex++] = (unicode[unicodeIndex] & 0xFF00) >> 8;

}
/*Then place the low bits into the stream. */
UDFCompressed[byteIndex++] = unicode[unicodeIndex] & 0x00FF;
unicodeIndex++;

}
}

return(byteIndex);
}

/***
* OSTA UDF compliant file name translation routine for DOS.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

#include <stddef.h>

#define DOS_NAME_LEN 8
#define DOS_EXT_LEN 3
#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK 0x0023
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to be unsigned 16-bit.
*/
typedef unsigned short unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
unsigned short cksum(register unsigned char *s, register int n);
int IsIllegal(unicode_t current);

/* Define functions or macros to both determine if a character is printable
* and compute the uppercase version of a character under your implementation.
*/
int UnicodeIsPrint(unicode_t);
unicode_t UnicodeToUpper(unicode_t);

/***
* Translate udfName to dosName using OSTA compliant.
* dosName must be a unicode string with min length of 12.
*
* RETURN VALUE
* Number of unicode characters in dosName.
*/
int UDFDOSName(
unicode_t *dosName, /* (Output) DOS compatible name. */
unicode_t *udfName, /* (Input) Name from UDF volume. */
int udfLen, /* (Input) Length of UDF Name. */
byte *fidName, /* (Input) Bytes as read from media. */
int fidNameLen)/* (Input) Number of bytes in fidName. */
{

int index, dosIndex = 0, extIndex = 0, lastPeriodIndex;
int needsCRC = FALSE, hasExt = FALSE, writingExt = FALSE;
unsigned short valueCRC;
unicode_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index = 0 ; index < udfLen ; index++)
{

current = udfName[index];
current = UnicodeToUpper(current);

if (current == PERIOD)
{

if (dosIndex==0 || hasExt)
{

/* Ignore leading periods or any other than used for extension. */
needsCRC = TRUE;

}
else
{

/* First, find last character which is NOT a period or space. */
lastPeriodIndex = udfLen - 1;
while (lastPeriodIndex >= 0 && (udfName[lastPeriodIndex] == PERIOD

|| udfName[lastPeriodIndex] == SPACE))
{

lastPeriodIndex--;
}

/* Now search for last remaining period. */
while (lastPeriodIndex >= 0 && udfName[lastPeriodIndex] != PERIOD)
{

lastPeriodIndex--;
}

/* See if the period we found was the last or not. */
if (lastPeriodIndex != index)
{

needsCRC = TRUE; /* If not, name needs translation. */
}

/* As long as the period was not trailing,
* the file name has an extension.
*/
if (lastPeriodIndex >= 0)
{

hasExt = TRUE;
}

}
}
else
{

if ((!hasExt && dosIndex == DOS_NAME_LEN) || extIndex == DOS_EXT_LEN)
{

/* File name or extension is too long for DOS. */
needsCRC = TRUE;

}
else
{

if (current == SPACE) /* Ignore spaces. */
{

needsCRC = TRUE;
}
else
{

/* Look for illegal or unprintable characters. */
if (IsIllegal(current) || !UnicodeIsPrint(current))
{

needsCRC = TRUE;
current = ILLEGAL_CHAR_MARK;
/* Skip Illegal characters(even spaces), but not periods. */
while(index+1 < udfLen

&& (IsIllegal(udfName[index+1])
|| !UnicodeIsPrint(udfName[index+1]))

&& udfName[index+1] != PERIOD)
{

index++;
}

}

/* Add current char to either file name or ext. */
if (writingExt)
{

ext[extIndex++] = current;
}
else
{

dosName[dosIndex++] = current;
}

}
}

}
/* See if we are done with file name, either because we reached
* the end of the file name length, or the final period.
*/
if (!writingExt && hasExt && (dosIndex == DOS_NAME_LEN ||

index == lastPeriodIndex))
{

/* If so, and the name has an extension, start reading it. */
writingExt = TRUE;
/* Extension starts after last period. */
index = lastPeriodIndex;

}
}

/*Now handle CRC if needed. */
if (needsCRC)
{

/* Add CRC to end of file name or at position 4. */
if (dosIndex >4)
{

dosIndex = 4;
}

dosName[dosIndex++] = CRC_MARK;
valueCRC = cksum(fidName, fidNameLen);

/* Convert lower 12-bits of CRC to hex characters. */
dosName[dosIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
dosName[dosIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
dosName[dosIndex++] = hexChar[(valueCRC & 0x000f)];

}

/* Add extension, if any. */
if (extIndex != 0)
{

dosName[dosIndex++] = PERIOD;
for (index = 0; index < extIndex; index++)
{

dosName[dosIndex++] = ext[index];
}

}

return(dosIndex);

}

/***
* Decides if a Unicode character matches one of a list of ASCII characters.
* Used by DOS version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.
*/
int UnicodeInString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{

int found = FALSE;
while (*string != '\0' && found == FALSE)
{

/* These types should compare, since both are unsigned numbers. */
if (*string == ch)
{

found = TRUE;
}
string++;

}
return(found);

}

/***
* Decides whether character passed is an illegal character for a
* DOS file name.
*
* RETURN VALUE
*
* Non-zero if file character is illegal.
*/
int IsIllegal(
unicode_t ch) /* (Input) character to test. */
{

/* Genuine illegal char's for DOS. */
if (ch < 0x20 || UnicodeInString("\\/:*?\"<>|", ch))
{

return(1);
}
else
{

return(0);
}

}

/***
* OSTA UDF compliant file name translation routine for OS/2,
* Windows 95, Windows NT, Macintosh and UNIX.
* Copyright 1995 Micro Design International, Inc.
* Written by Jason M. Rinn.
* Micro Design International gives permission for the free use of the
* following source code.
*/

/***
* To use these routines with different operating systems.
*
* OS/2
* Define OS2
* Define MAXLEN = 254
*
* Windows 95
* Define WIN_95
* Define MAXLEN = 255
*
* Windows NT
* Define WIN_NT
* Define MAXLEN = 255
*
* Macintosh:
* Define MAC.
* Define MAXLEN = 31.
*
* UNIX
* Define UNIX.
* Define MAXLEN as specified by unix version.
*/

#define ILLEGAL_CHAR_MARK 0x005F
#define CRC_MARK 0x0023
#define EXT_SIZE 5
#define TRUE 1
#define FALSE 0
#define PERIOD 0x002E
#define SPACE 0x0020

/***
* The following two typedef's are to remove compiler dependancies.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
typedef unsigned int unicode_t;
typedef unsigned char byte;

/*** PROTOTYPES ***/
int IsIllegal(unicode_t ch);
unsigned short cksum(unsigned char *s, int n);

/* Define a function or macro which determines if a Unicode character is
* printable under your implementation.
*/
int UnicodeIsPrint(unicode_t);

/***
* Translates a long file name to one using a MAXLEN and an illegal
* char set in accord with the OSTA requirements. Assumes the name has

* already been translated to Unicode.
*
* RETURN VALUE
*
* Number of unicode characters in translated name.
*/
int UDFTransName(
unicode_t *newName,/*(Output)Translated name. Must be of length MAXLEN*/
unicode_t *udfName, /* (Input) Name from UDF volume.*/
int udfLen, /* (Input) Length of UDF Name. */
byte *fidName, /* (Input) Bytes as read from media. */
int fidNameLen) /* (Input) Number of bytes in fidName. */
{

int index, newIndex = 0, needsCRC = FALSE;
int extIndex, newExtIndex = 0, hasExt = FALSE;

#ifdef (OS2 | WIN_95 | WIN_NT)
int trailIndex = 0;

#endif
unsigned short valueCRC;
unicode_t current;
const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udfLen; index++)
{

current = udfName[index];

if (IsIllegal(current) || !UnicodeIsPrint(current))
{

needsCRC = TRUE;
/* Replace Illegal and non-displayable chars with underscore. */
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable characters. */
while(index+1 < udfLen && (IsIllegal(udfName[index+1])

|| !UnicodeIsPrint(udfName[index+1])))
{

index++;
}

}

/* Record position of extension, if one is found. */
if (current == PERIOD && (udfLen - index -1) <= EXT_SIZE)
{

if (udfLen == index + 1)
{

/* A trailing period is NOT an extension. */
hasExt = FALSE;

}
else
{

hasExt = TRUE;
extIndex = index;
newExtIndex = newIndex;

}
}

#ifdef (OS2 | WIN_95 | WIN_NT)
/* Record position of last char which is NOT period or space. */
else if (current != PERIOD && current != SPACE)
{

trailIndex = newIndex;
}

#endif

if (newIndex < MAXLEN)
{

newName[newIndex++] = current;
}
else
{

needsCRC = TRUE;
}

}

#ifdef (OS2 | WIN_95 | WIN_NT)
/* For OS2, 95 & NT, truncate any trailing periods and\or spaces. */
if (trailIndex != newIndex - 1)
{

newIndex = trailIndex + 1;
needsCRC = TRUE;
hasExt = FALSE; /* Trailing period does not make an extension. */

}
#endif

if (needsCRC)
{

unicode_t ext[EXT_SIZE];
int localExtIndex = 0;
if (hasExt)
{

int maxFilenameLen;
/* Translate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extIndex + index +1 < udfLen;

index++)
{

current = udfName[extIndex + index + 1];

if (IsIllegal(current) || !isprint(current))
{

needsCRC = 1;
/* Replace Illegal and non-displayable chars
* with underscore.
*/
current = ILLEGAL_CHAR_MARK;
/* Skip any other illegal or non-displayable
* characters.
*/
while(index + 1 < EXT_SIZE

&& (IsIllegal(udfName[extIndex + index + 2])
|| !isprint(udfName[extIndex + index + 2])))

{
index++;

}
}
ext[localExtIndex++] = current;

}

/* Truncate filename to leave room for extension and CRC. */
maxFilenameLen = ((MAXLEN - 4) - localExtIndex - 1);
if (newIndex > maxFilenameLen)
{

newIndex = maxFilenameLen;
}
else
{

newIndex = newExtIndex;
}

}
else if (newIndex > MAXLEN - 5)
{

/*If no extension, make sure to leave room for CRC. */
newIndex = MAXLEN - 5;

}
newName[newIndex++] = CRC_MARK; /* Add mark for CRC. */

/*Calculate CRC from original filename from FileIdentifier. */
valueCRC = cksum(fidName, fidNameLen);
/* Convert 16-bits of CRC to hex characters. */
newName[newIndex++] = hexChar[(valueCRC & 0xf000) >> 12];
newName[newIndex++] = hexChar[(valueCRC & 0x0f00) >> 8];
newName[newIndex++] = hexChar[(valueCRC & 0x00f0) >> 4];
newName[newIndex++] = hexChar[(valueCRC & 0x000f)];

/* Place a translated extension at end, if found. */
if (hasExt)
{

newName[newIndex++] = PERIOD;
for (index = 0;index < localExtIndex ;index++)
{

newName[newIndex++] = ext[index];
}

}
}
return(newIndex);

}

#ifdef (OS2 | WIN_95 | WIN_NT)
/***
* Decides if a Unicode character matches one of a list
* of ASCII characters.
* Used by OS2 version of IsIllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASCII subset of Unicode.
* Works very similarly to the standard C function strchr().
*
* RETURN VALUE
*
* Non-zero if the Unicode character is in the given ASCII string.
*/
int UnicodeInString(
unsigned char *string, /* (Input) String to search through. */
unicode_t ch) /* (Input) Unicode char to search for. */
{

int found = FALSE;
while (*string != '\0' && found == FALSE)
{

/* These types should compare, since both are unsigned numbers. */
if (*string == ch)
{

found = TRUE;
}
string++;

}
return(found);

}
#endif /* OS2 */

/***

* Decides whether the given character is illegal for a given OS.
*
* RETURN VALUE
*
* Non-zero if char is illegal.
*/
int IsIllegal(unicode_t ch)
{
#ifdef MAC

/* Only illegal character on the MAC is the colon. */
if (ch == 0x003A)
{

return(1);
}
else
{

return(0);
}

#elif defined UNIX
/* Illegal UNIX characters are NULL and slash. */
if (ch == 0x0000 || ch == 0x002F)
{

return(1);
}
else
{

return(0);
}

#elif defined (OS2 | WIN_95 | WIN_NT)
/* Illegal char's for OS/2 according to WARP toolkit. */
if (ch < 0x0020 || UnicodeInString("\\/:*?\"<>|", ch))
{

return(1);
}
else
{

return(0);
}

#endif
}

UDF Specification v1.02 - A specification
describing the Universal Disk Format
developed by the Optical Storage Technology
Association (OSTA). This specification is
for developers who plan to implement UDF
which is based upon the ISO 13346 standard.
UDF is a file system format standard that
enables file interchange among different
operating systems.

© Ecma International 2023

