

Reference number

ECMA-123:2009

© Ecma International 2009

ECMA TR/1128
1st Edition / December 2023

Universal Disk Format
(UDF) specification –

Part 8 (Secure UDF)

COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2023

© Ecma International 2023
i

COPYRIGHT NOTICE

© 2023 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Secure UDF 1.00 ii February 26, 2002

Table of Contents

1 Introduction .. 1

1.1 History .. 2

1.2 References .. 2

1.3 Definitions .. 2

1.4 Document Terminology .. 4

2 Basic Restrictions and Requirements ... 5

3 Volume Data Structures ... 6

3.1 Domain Identifier ... 6

3.1.1 Uint8 Flags .. 6

3.1.2 char Identifier .. 6

3.1.3 char Identifier Suffix ... 6

3.2 Secure Partition Map ... 8

3.3 Partition Descriptor ... 8

3.3.1 struct EntityID ImplementationIdentifier .. 9

3.3.2 byte ImplementationUse[128] ... 9

4 Logical Volume Data Structures .. 11

4.1 User Identifier Stream .. 11

4.1.1 Type 1 User ID Stream .. 11

5 File & Directory Data Structures .. 14

5.1 Requirement Information Extended Attribute 14

5.1.1 Requirement Info Extended Attribute Format 15

5.2 Access Control Stream ... 16

5.2.1 EntityID Implementation Identifier ... 16

5.2.2 Uint32 Access Control Stream Type ... 16

5.2.3 Uint32 Number of Access Control Records 16

5.2.4 bytes Reserved ... 16

5.2.5 bytes Access Control Records .. 17

5.3 Data Privacy Stream ... 19

5.3.1 EntityID Implementation Identifier ... 19

5.3.2 Uint32 Data Privacy Stream Type ... 19

5.3.3 Uint32 Number of Data Privacy Records 19

5.3.4 bytes Reserved ... 19

5.3.5 bytes Data Privacy Records... 20

5.4 Data Integrity Stream ... 22

5.4.1 EntityID Implementation Identifier ... 22

5.4.2 Uint32 Data Integrity Stream Type ... 22

5.4.3 Uint32 Number of MAC Records .. 22

5.4.4 bytes Reserved ... 22

5.4.5 bytes MAC Record ... 23

5.5 Access Log Stream ... 25

5.5.1 EntityID Implementation Identifier ... 25

5.5.2 Uint32 Access Log Stream Type ... 25

Secure UDF 1.00 iii February 26, 2002

5.5.3 Uint32 Number of Access Log Records ... 25

5.5.4 Uint32 Strategy of File Access Logging .. 25

5.5.5 Uint32 Strategy of Directory Access Logging 25

5.5.6 Uint64 Max Access Log Size ... 26

5.5.7 Uint64 Head Pointer ... 26

5.5.8 Uint64 Tail Pointer .. 26

5.5.9 Uint64 Reserved. ... 26

5.5.10 bytes Access Log Record ... 26

5.6 License Stream .. 30

5.6.1 EntityID Implementation Identifier ... 30

5.6.2 Uint32 License Stream Type .. 30

5.6.3 Uint32 Number of License Records .. 30

5.6.4 bytes Reserved ... 30

5.6.5 bytes License Record ... 30

6 Appendix A Application notes (Export/Import) ... 32

6.1 Introduction .. 32

6.2 Appendix Structure .. 33

6.3 Export/Import Interface ... 34

6.3.1 UDF_OPENEXPORT. .. 34

6.3.2 UDF_EXPORT ... 36

6.3.3 UDF_CLOSEEXPORT ... 37

6.3.4 UDF_OPENIMPORT ... 38

6.3.5 UDF_IMPORT ... 39

6.3.6 UDF_CLOSEIMPORT ... 41

6.4 Packed Data ... 42

6.4.1 Packed Data Format.. 42

6.4.2 tag : SUDF_PACKDATA_TAG_T .. 43

6.4.3 Main Header : SUDF_PACKDATA_MAIN_HEADER_T 44

6.4.4 Sub-Header : SUDF_PACKDATA_SUB_HEADER_T 46

6.4.5 Trailer : SUDF_PACKDATA_TRAILER_T 49

6.5 Processing Flow of Authentication .. 50

6.6 A Supplementary Explanation .. 51

6.7 Authentication/Session Key Sharing Protocol 52

Secure UDF 1.00 1 February 26, 2002

1 Introduction

The Secure UDF specification defines a set of security enhancements to the

Universal Disk Format (UDF) specification. The primary goal of Secure UDF is

to provide support for encryption based security features that are transparent

to the user and their applications and is portable between different operating

system platforms. Secure UDF is designed to:

• Provide an encryption scheme that should work with any

application that is storing information on a Secure UDF volume

• Provide a common encryption scheme that all Secure UDF

implementations can support.

• Provide a non-proprietary publicly documented method for

supporting encryption in Secure UDF.

• Provide a mechanism that allows Secure UDF to take advantage

of all the features of Security Enhanced drives.

The following describe the primary reasons that security is needed in UDF:

• Native operating system security - Native operating system

security is not portable. For example, a UDF volume created

under Windows NT with specific NT security rights on specific

directories looses all protection if taken to a UNIX platform,

which does not support the NT security rights, resulting in

everything on the UDF volume being accessible.

• Removable Media - Another very important reason is that UDF

is used on removable media, which can easily be lost or stolen.

Removable media greatly increases the need to have some form

of portable protection for the information stored on UDF media.

To accomplish this task this document defines a new Domain. A domain

defines rules and restrictions on the use of ECMA 167. The domain defined

in this specification is known as the “OSTA Secure UDF” domain.

The long-term plan for Secure UDF is to integrate it into a future version of

the UDF specification as an optional feature. Until that time Secure UDF

shall be a separate Domain.

Secure UDF 1.00 2 February 26, 2002

To develop a Secure UDF implementation, a developer will need to reference

the following documents as a minimum:

• Secure UDF Specification (this document)

• Universal Disk Format Specification 2.01

• ECMA 167 3rd edition

1.1 History
The initial draft document that was submitted to OSTA as the first draft of

Secure UDF originated from the Optoelectronic Industry and Technology

Development Association (OITDA) of Japan. OITDA submitted the draft

based on the discussions of the Japanese Optical Industry.

1.2 References

ISO/IEC 13346:1999 Volume and file structure of write-once and rewritable media using

non-sequential recording for information interchange

ECMA 167 3rd Edition Volume and file structure of write-once and rewritable media using

non-sequential recording for information interchange

UDF Universal Disk Format Revision 2.01

ISO/IEC 9945-1:1990 Portable Operating System Interface (POSIX) -- Part 1: System

Application Program Interface (API) [C Language]

ISO 9160:1988 Information processing - Data encipherment - Physical layer

interoperability requirements

ISO 8372:1987 (2nd. confirmation 1997) Information processing - Modes of operation for a

64-bit block cipher algorithm

ISO/IEC 9797 Information technology - Security techniques - Data integrity

mechanism using a cryptographic check function employing a block

cipher algorithm

JIS/TR X 0040:2001 Security Extensions to Universal Disk Format (UDF)

1.3 Definitions

Secure UDF UDF that contains structures specified in this document.

Export Concatenating a default stream and all named streams, forwarding it to

an application one block at a time.

Import Receiving one block at a time from an application, and expanding it to a

default stream and named streams.

Contents Movie, image, audio data and so on. It is stored in default stream or user

Secure UDF 1.00 February 26, 2002 3

streams.

License Encrypted decryption key for encrypted contents (a default stream and

user streams).
DES Data Encryption Standard. See ISO 9160:1988.

CBC Cipher Block Chaining. See ISO 8372:1987.

MAC Message Authentication Code. See ISO/IEC 9797 and ISO/IEC

9798-1-4.

X.509 See ISO/IEC 9594-8:1995.

Secure UDF 1.00 February 26, 2002 4

1.4 Document Terminology

MayMayMayMay Indicates an action or feature that is optional.

OptionalOptionalOptionalOptional Describes a feature that may or may not be implemented. If

implemented, the feature shall be implemented as described.

ShallShallShallShall Indicates an action or feature that is mandatory and must be

implemented to claim compliance to this standard.

ShouldShouldShouldShould Indicates an action or feature that is optional, but its

implementation is strongly recommended.

ReservedReservedReservedReserved A reserved field is reserved for future use and shall be set to

zero. A reserved value is reserved for future use and shall not
be used.

Secure UDF 1.00 February 26, 2002 5

2 Basic Restrictions and Requirements

The following table summarizes several of the basic restrictions and
requirements defined in this specification, which are in addition to the ones
described in the UDF specification. These restrictions & requirements as
well as additional ones are described in detail in the following sections of this
specification.

ItemItemItemItem Restrictions & RequirementsRestrictions & RequirementsRestrictions & RequirementsRestrictions & Requirements
Secure Partition The maximum number of Secure Partitions shall be one.

A Secure Partition shall not be created on media with a
virtual or sparable partition.

Secure UDF 1.00 February 26, 2002 6

3 Volume Data Structures

This section describes Secure UDF changes and additions to the UDF
Specification at the Volume space level. These changes include:

• An update to the Entity Identifier suffix to allow easy detection of
the presence of Secure UDF structures on a volume. This feature
will be critical once Secure UDF is merged into the main UDF
specification at some time in the future.

• Creation of a Secure Partition Map to describe the secure area on
a piece of media.

• Creation of a UDF Secure Partition descriptor that describes the
location and security characteristics of a Secure Partition.

3.1 Domain Identifier
Located within the Logical Volume Descriptor (UDF 2.2.4) is the Domain
Identifier field which is a EntityID structure. Secure UDF shall define the
fields of the Domain Identifier as follows:

struct EntityID { /*ECMA 167 1/7.4 */
 Uint8 Flags;
 char Identifier[23];
 char IdentifierSuffix[8];
}

3.1.1 Uint8 Flags
See 2.1.5.1 of UDF.

3.1.2 char Identifier
This field shall indicate that the contents of this logical volume conforms to
the Secure UDF domain defined in this document, therefore the Identifier
field of the Domain Identifer shall be set to:
 “*OSTA Secure UDF*OSTA Secure UDF*OSTA Secure UDF*OSTA Secure UDF”

This field shall contain “*OSTA Secure UDF*OSTA Secure UDF*OSTA Secure UDF*OSTA Secure UDF” which indicates that the volume
is in Secure UDF format.

3.1.3 char Identifier Suffix
The Identifier Suffix field of the Domain Identifier field contained within the Logical
Volume Descriptor shall be defined as follows:

Secure UDF 1.00 February 26, 2002 7

Domain Identifier Suffix field format for Secure UDFDomain Identifier Suffix field format for Secure UDFDomain Identifier Suffix field format for Secure UDFDomain Identifier Suffix field format for Secure UDF
RBP Length Name Contents

0 2 UDF Revision Uint16 (=#0201)
2 1 Domain Flags Uint8
3 2 Secure UDF Revision Level Uint16 (=#0100)
4 3 Reserved bytes (=#00)

Secure UDF Revision Level shall specify revision of this document for which
the Logical Volume is compatible. It shall be set to 1 to indicate this
document.

Domain FlagsDomain FlagsDomain FlagsDomain Flags
Bit Interpretation
0 Hard Write-Protect.
1 Soft Write-Protect
2 Secure UDF

3-7 Reserved

A Secure UDF flag value of ONE shall indicate that a logical volume contains
Secure UDF structures.

NOTE:NOTE:NOTE:NOTE: At some future time when Secure UDF is integrated into a new
version of UDF, this flag will allow an implementation to detect if Secure UDF
descriptors are present on a logical volume.

Secure UDF 1.00 February 26, 2002 8

3.2 Secure Partition Map
Secure UDF creates the concept of a Secure Partition, were information is
protected through the methods described in this document. There may be
additional protection methods used within the Secure Partition by a Security
Enhanced Drive.

The SecurePartitionMap identifies a Secure Partition Descriptor..

Layout of Type 2 parLayout of Type 2 parLayout of Type 2 parLayout of Type 2 partition map for secure partitiontition map for secure partitiontition map for secure partitiontition map for secure partition
RBP Length Name Contents

0 1 Partition Map Type Uint8 = 2
1 1 Partition Map Length Uint8 = 64
2 2 Reserved #00 bytes
4 32 Partition Identifier EntityID

36 2 Volume Sequence Number Uint16
38 2 Partition Number Uint16
40 24 Reserved #00 bytes

For Secure UDF, the Partition Identifier field shall specify:

 “*UDF Secure Partition*UDF Secure Partition*UDF Secure Partition*UDF Secure Partition”.

3.3 Partition Descriptor
The Partition Descriptor referenced by the Secure Partition Map shall be
defined as follows:

struct PartitionDescriptor { /* See ECMA 167 3/17 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
Uint16 PartitionFlags;
Uint16 PartitionNumber;
struct EntityID PartitionContents;
byte PartitionContentsUse[128];
Uint32 AccessType;
Uint32 PartitonStartingLocation;
Uint32 PartitionLength;
struct EntityIDstruct EntityIDstruct EntityIDstruct EntityID ImplementationIdentifierImplementationIdentifierImplementationIdentifierImplementationIdentifier;
bytebytebytebyte ImplementationUse[128]ImplementationUse[128]ImplementationUse[128]ImplementationUse[128];;;;
byte Reserved[156];

}

Unless otherwise specified below the fields of the Partition Descriptor shall be
defined according to ECMA 167 3/16.10.5.

Secure UDF 1.00 February 26, 2002 9

3.3.1 struct EntityID ImplementationIdentifier
This field shall specify “*UDF Secure Partition” as ID value and UDF Identifier Suffix
as suffix type.

3.3.2 byte ImplementationUse[128]
This field shall contain a struct encspec, which defines the encryption
information associated with the Secure Partition being defined.. Rest of this
field shall contain all #00.

3.3.2.1 struct encspec Encryption

Type 1 Type 1 Type 1 Type 1 struct struct struct struct encspecencspecencspecencspec EncryptionEncryptionEncryptionEncryption formatformatformatformat

RBP Length Name Contents
0 2 encspec Type Uint16
2 2 enspec Length Uint16
4 4 Encryption Algorithm Type Uint32
8 4 Encryption Algorithm Sub Type Uint32

12 4 Encryption Key Type Uint32
16 4 Encryption Key Sub Type Uint32
20 4 Type of User ID Uint32
24 *1 Encryption Key bytes

24+*1 *2 Padding bytes

3.3.2.1.1 Uint16 encspec Type

enspec Typeenspec Typeenspec Typeenspec Type
Type Interpretation

0 Shall mean the type of encspec is not defined by this field.
1 Shall mean that the encspec is a Type 1 encspec.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

3.3.2.1.2 Uint16 encspec Length
This field shall specify the length in bytes, of this encspec, including encspec
Type and encspec Length fields.

3.3.2.1.3 Uint32 Encryption Algorithm Type

EncryptionEncryptionEncryptionEncryption AlgorithmAlgorithmAlgorithmAlgorithm TypeTypeTypeType

Type Interpretation
0 Shall mean that the algorithm type is not specified by this field.
1 Shall mean that no algorithm is specified.
2 Shall mean that single DES-CBC is specified.
3 Shall mean that triple DES-CBC is specified.
4- Reserved

Secure UDF 1.00 February 26, 2002 10

3.3.2.1.4 Uint32 Encryption Algorithm Sub Type
This field shall specify sub type of encryption algorithm. It shall be specified
for each Encryption Algorithm Type.

3.3.2.1.5 Uint32 Encryption Key Type

EncryptionEncryptionEncryptionEncryption KeyKeyKeyKey TypeTypeTypeType

Type Interpretation
0 Shall mean that the encryption key type is not specified by this field.
1 Shall mean that the encryption key type is storage media specific key.
2 Shall mean that the encryption key type is storage drive specific key.
3 Shall mean that the encryption key type is system specific key.
4 Shall mean that the encryption key type is user specific key.
5 Shall mean that the encryption key is stored in Key field.
6- Reserved

3.3.2.1.6 Uint32 Encryption Key Sub Type
This field shall specify sub type of encryption key. It shall be specified for
each Encryption Key Type.

3.3.2.1.7 Uint32 Type of User ID
This field shall specify type of user ID (5.5.10.5) if Encryption Key Type
contains type of user specific key.

3.3.2.1.8 bytes Encryption Key
This field shall contain encryption key when the Encryption Key Type field
contains value 5.

3.3.2.1.9 bytes Padding
This field shall be ((encspec Length)-(24+*1)) bytes long and shall contain all
#00 bytes.

Secure UDF 1.00 February 26, 2002 11

4 Logical Volume Data Structures

This section describes changes and additions to the UDF Specification at the
Logical Volume level. These changes include:

• Creation of a single User Identifier Stream used to maintain User
Identification information in regards to the users who have access to
the secure information located on the media. The User Identifier
stream is a system stream associated with the entire Logical Volume,
and shall be located in the system stream directory of the File Set
Descriptor.

The intended purpose of the User Identifier Stream is to provide a portable
method for identifying Users. One possible method that this maybe
accomplished is by storing a copy of the users X.509 certificate that contains
all the necessary information to uniquely identify the User.

The very first time a newUser is referenced by any of the other security
descriptors defined is this document, a User ID Record shall be created within
the User Identifier Stream. This User ID Record may be referenced by any of
the other security descriptors defined in this document to uniquely identify
the User.

4.1 User Identifier Stream
User Identifier StreamUser Identifier StreamUser Identifier StreamUser Identifier Stream

Stream Name Stream Location Metadata Flag
“*UDF_UserID” File Set Descriptor 1

4.1.1 Type 1 User ID Stream

Type 1 User IDType 1 User IDType 1 User IDType 1 User ID Stream Stream Stream Stream Format Format Format Format

BP Length Name Contents
0 32 Implementation Identifier EntityID

32 4 User ID Stream Type Unit32
36 4 Number of User ID Records Uint32
40 4 Index Number to be used Uint32
44 84 Reserved bytes

128 * User ID Records bytes

Secure UDF 1.00 February 26, 2002 12

4.1.1.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

4.1.1.2 Uint32 User ID Stream Type

User IDUser IDUser IDUser ID Stream Type Stream Type Stream Type Stream Type Interpretation Interpretation Interpretation Interpretation

Type Interpretation
0 Shall mean that the User ID Stream is not specified by this field.
1 Shall mean that the User ID Stream is a Type 1 User ID Stream.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

4.1.1.3 Uint32 Number of User ID Records
This field shall specify the number of User ID Records. Deleted User ID
Record shall not be counted.

4.1.1.4 Uint32 Index Number to be used
This field shall contain index number to be used for next record. This value
shall be initialized to ZERO and incremented after creation of new record.

4.1.1.5 bytes Reserved
All bit of this field shall be set to ZERO.

4.1.1.6 bytes User ID Record

User IDUser IDUser IDUser ID Record Record Record Record
RBP Length Name Contents

0 4 Record Length Uint32
4 2 Flags Uint16
6 4 Index Number Uint32

10 4 Length of User ID (=L_UI) Uint32
14 L_UI User ID bytes

14+
L_UI

* Padding bytes

4.1.1.7 Uint32 Record Length
This field shall contain the length of this User ID Record in bytes. Shall be a
multiple of four bytes.

4.1.1.8 Uint16 Flags

FlagsFlagsFlagsFlags Interpretation Interpretation Interpretation Interpretation
Bit Interpretation

0-15 Reserved. Shall be set to ZERO.

4.1.1.9 Uint32 Index Number
This field shall contain index number corresponding to User ID field.

Secure UDF 1.00 February 26, 2002 13

4.1.1.10 Uint32 Length of User ID
This field shall contain length of User ID.

4.1.1.11 bytes User ID
This field shall contain the User ID.

NoteNoteNoteNote: User ID may be X.509 certificate and so on.

4.1.1.12 bytes Padding
This field shall be ((Record Length) – (14+L_UI)) bytes long and shall contain
all #00 bytes.

Secure UDF 1.00 February 26, 2002 14

5 File & Directory Data Structures

This section describes additions to the UDF Specification at the file and
directory level. These changes include the addition of a new extended
attribute and several new system streams that can be associated with either a
file or directory. The changes are as follows:

• Creation of a Requirement Information extended attribute to store a
files security requirements in regards to access control, data privacy,
data integrity and access logging.

• Creation of an Access Control Stream used to control access to the
default stream as well as any other stream associated with the file
entry.

• Creation of a Data Privacy Stream used to protect the contents of the
default stream as well as any other stream associated with the file
entry, through the use of encryption.

• Creation of a Data Integrity Stream used to assure data integrity of the
default stream as well as any other stream associated with the file
entry.

• Creation of an Access Log Stream used to provide an access audit trail
of the default stream as well as any other stream associated with the
file entry.

• Creation of a License Stream used to provide license control of the
default stream.

5.1 Requirement Information Extended Attribute

The Requirement Information extended attribute shall be used to store
security requirement information for the associated file. This extended
attribute shall be stored as an Implementation Use Extended Attribute whose
Implementation Identifier shall be set to:
 “*UDF *UDF *UDF *UDF Secure RequirementSecure RequirementSecure RequirementSecure Requirement”

Note:Note:Note:Note: A Secure UDF implementation shall apply the required functionality
according to this information. If the implementation does not have required
functionality, the implementation shall not access or modify the associated file
or directory.

Secure UDF 1.00 February 26, 2002 15

5.1.1 Requirement Info Extended Attribute Format

The Implementation Use area for this extended attribute shall be structured
as follows:

RequiremenRequiremenRequiremenRequirement Inft Inft Inft Info formato formato formato format
RBP Length Name Contents

0 2 Header Checksum Uint16
2 2 Length of Required Function (=L_RF) Uint16
4 L_RF Required Functions bytes

5.1.1.1 Uint16 Length of Required Function
This field shall specify length of Required Function field in bytes.

5.1.1.2 bytes Required Functions

Required FunctionsRequired FunctionsRequired FunctionsRequired Functions
Bit Interpretation
0 Shall mean that Access Control is required.
1 Shall mean that Data Privacy is required.
2 Shall mean that Data Integrity is required.
3 Shall mean that Access Logging is required.
4- Reserved

Secure UDF 1.00 February 26, 2002 16

5.2 Access Control Stream

The Access Control Stream is used to control access to the default stream as
well as any other stream associated with the file entry.

Access Control StreamAccess Control StreamAccess Control StreamAccess Control Stream
Stream Name Stream Location Metadata Flag

“*UDF_AccessControl” Any file/directory 1

Type 1 Type 1 Type 1 Type 1 Access Control StreamAccess Control StreamAccess Control StreamAccess Control Stream format format format format
BP Length Name Contents
0 32 Implementation Identifier EntityID
32 4 Access Control Stream Type Uint32
36 4 Number of Access Control Records Unit32
40 88 Reserved bytes
128 * Access Control Records bytes

5.2.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

5.2.2 Uint32 Access Control Stream Type

Access Control StreamAccess Control StreamAccess Control StreamAccess Control Stream Type Type Type Type Interpretation Interpretation Interpretation Interpretation

Type Interpretation
0 Shall mean that the Access Control Stream is not specified by this field.
1 Shall mean that the Access Control Stream is a Type 1 Access Control Stream.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

5.2.3 Uint32 Number of Access Control Records
This field shall specify the number of Access Control Records. Deleted Access
Control Record shall not be counted.

5.2.4 bytes Reserved
All bits of this field shall be set to ZERO.

Secure UDF 1.00 February 26, 2002 17

5.2.5 bytes Access Control Records

Access Control RecoAccess Control RecoAccess Control RecoAccess Control Recordrdrdrd Format Format Format Format

RBP Length Name Contents
0 4 Record Length Uint32
4 2 Flags Uint16
6 1 Length of Stream Name (=L_SN) Uint8
7 1 Reserved Uint8
8 L_SN Stream Name dchars

8+L_SN *1 Padding1 bytes
8+L_SN+

*1
4 Type of ACL Uint32

12+
L_SN+*1

4 Permission Uint32

16+
L_SN+*1

4 Type of ID Uint32

20+
L_SN+*1

4 ID/index of ID Uint32

24+
L_SN+*1

*2 Padding2 bytes

5.2.5.1 Uint32 Record Length
This field shall contain the length of this Access Control Record in bytes. Shall
be a multiple of four bytes.

5.2.5.2 Uint16 Flags

FlagsFlagsFlagsFlags Interpretation Interpretation Interpretation Interpretation
Bit Interpretation
0 If this bit is set to ONE, this record is deleted. If this bit is set to ZERO, this record is

under use.
1-15 Reserved. Shall be set to ZERO.

5.2.5.3 Uint8 Length of Stream Name
This field shall specify length of Stream Name. for all streams except for default stream.
For default stream, this field shall be set to ZERO.

5.2.5.4 Uint8 Reserved
All bits of this field shall be set to ZERO.

5.2.5.5 dchars Stream Name
This field shall specify stream name for which MAC is calculated.

5.2.5.6 bytes Padding1
This field shall be 4 * ip((8+L_SN+3)/4)-(8+L_SN) bytes long and shall contain all #00
bytes.

Secure UDF 1.00 February 26, 2002 18

5.2.5.7 Uint32 Type of ACL

Type of ACL Type of ACL Type of ACL Type of ACL InterpretationInterpretationInterpretationInterpretation
Type Interpretation

1 Shall mean that the type of ACL is “USER_OBJ”.
2 Shall mean that the type of ACL is “USER”.
4 Shall mean that the type of ACL is “GROUP_OBJ”.
8 Shall mean that the type of ACL is “GROUP”.

16 Shall mean that the type of ACL is “CLASS_OBJ”.
32 Shall mean that the type of ACL is “OTHER_OBJ”.

65536 Shall mean that the type of ACL is “ACL_DEFAULT”.
65537 Shall mean that the type of ACL is “DEF_USER_OBJ”.
65538 Shall mean that the type of ACL is “DEF_USER”.
65540 Shall mean that the type of ACL is “DEF_GROUP_OBJ”.
65544 Shall mean that the type of ACL is “DEF_GROUP”.
65552 Shall mean that the type of ACL is “DEF_CLASS_OBJ”.
65568 Shall mean that the type of ACL is “DEF_OTHER_OBJ”.

DEF_* can be set only to directory and corresponding permission shall be
applied to all files and directories under the directory. Bit by bit product value
of CLASS_OBJ and USER, GROUP_OBJ, GROUP is used for USER,
GROPU_OBJ, GROUP as permissions respectively. Bit by bit product value of
DEF_CALSS_OBJ and DEF_USER, DEF_GROUP_OBJ, DEF_GROUP is
used for DEF_USER, DEF_GROUP_OBJ, DEF_GROUP as permissions
respectively. Any other type are reserved.

5.2.5.8 Uint32 Permission
This field shall specify permission.

Permission InterpretationPermission InterpretationPermission InterpretationPermission Interpretation
Bit Interpretation
0 Shall mean that the file can be read.
1 Shall mean that the file can be written.
2 Shall mean that the file can be executed.
3 Shall mean that the file can be deleted.
4- Reserved. Shall be set to ZERO.

5.2.5.9 Uint32 Type of ID
This field shall contain type of ID (5.5.10.5).

5.2.5.10 Uint32 ID/index of ID
This field shall contain ID or index of ID according to the Type of ID field..

5.2.5.11 Bytes Padding2
This field shall be ((Record Length) – (24+L_SN+*1)) bytes long and shall
contain all #00 bytes.

Secure UDF 1.00 February 26, 2002 19

5.3 Data Privacy Stream

The Data Privacy Stream used to protect the contents of the default stream as
well as any other stream associated with the file entry, through the use of
encryption

Data Privacy Stream
Stream Name Stream Location Metadata Flag

“*UDF_DataPrivacy” Any file/directory 1

Type 1 Data PrivacyType 1 Data PrivacyType 1 Data PrivacyType 1 Data Privacy Stream Stream Stream Stream Format Format Format Format
BP Length Name Contents
0 32 Implementation Identifier EntityID

32 4 Data Privacy Stream Type Unit32
36 4 Number of Data Privacy Records Uint32
40 88 Reserved bytes

128 * Data Privacy Records bytes

5.3.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

5.3.2 Uint32 Data Privacy Stream Type

Data Privacy StreamData Privacy StreamData Privacy StreamData Privacy Stream Type Type Type Type Interpretation Interpretation Interpretation Interpretation

Type Interpretation
0 Shall mean that the Data Privacy Stream is not specified by this field.
1 Shall mean that the Data Privacy Stream is a Type 1 Data Privacy

Stream.
2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of

the medium.

5.3.3 Uint32 Number of Data Privacy Records
This field shall specify the number of Data Privacy Records. Deleted Data
Privacy Record shall not be counted.

5.3.4 bytes Reserved
All bits of this field shall be set to ZERO.

Secure UDF 1.00 February 26, 2002 20

5.3.5 bytes Data Privacy Records

Data Privacy RecordData Privacy RecordData Privacy RecordData Privacy Record

RBP Length Name Contents
0 4 Record Length Uint32
4 2 Flags Uint16
6 2 Number of Encryption Uint16
8 1 Length of Stream Name (=L_SN) Uint8
9 1 Reserved Uint8

10 L_SN Stream Name dchars
10+

L_SN
*1 Padding bytes

10+
L_SN+*1

*2 Encryptions Encspec[]

10+
L_SN+*1

+*2

*3 Padding bytes

5.3.5.1 Uint32 Record Length
This field shall contain the length of this Data Privacy Record in bytes. Shall
be a multiple of four bytes.

5.3.5.2 Uint16 Flags

FlagsFlagsFlagsFlags Interpretation Interpretation Interpretation Interpretation
Bit Interpretation
0 If this bit is set to ONE, this record is deleted. If this bit is set to ZERO, this record is

under use.
1-15 Reserved. Shall be set to ZERO.

5.3.5.3 Uint16 Number of Encryption
This field shall specify number of Encryption.

5.3.5.4 Uint8 Length of Stream Name
This field shall specify length of Stream Name. for all streams except for default stream.
For default stream, this field shall be set to ZERO.

5.3.5.5 Uint8 Reserved
All bit of this field shall be set to ZERO.

5.3.5.6 dchars Stream Name
This field shall specify stream name for which MAC is calculated.

5.3.5.7 bytes Padding
This field shall be 4 * ip((10+L_SN+3)/4)-(10+L_SN) bytes long and shall contain all
#00 bytes.

Secure UDF 1.00 February 26, 2002 21

5.3.5.8 Encspec Encryption
This field shall be specified in 3.3.2.1.

5.3.5.9 Padding
This field shall be ((Record Length) – (10+L_SN+*1+*2)) bytes long and shall contain
all #00 bytes.

Secure UDF 1.00 February 26, 2002 22

5.4 Data Integrity Stream
The Data Integrity Stream used to assure data integrity of the default stream
as well as any other stream associated with the file entry, through the
calculation of a Message Authentication Code (MAC).

Data Integrity StreamData Integrity StreamData Integrity StreamData Integrity Stream
Stream Name Stream Location Metadata Flag

“*UDF_DataIntegrity” Any file/directory 1

TypeTypeTypeType 1 Data Integrity 1 Data Integrity 1 Data Integrity 1 Data Integrity stream stream stream stream format format format format
BP Length Name Contents
0 32 Implementation Identifier EntityID

32 4 Data Integrity Stream Type Uint32
36 4 Number of MAC Records Uint32
40 88 Reserved bytes

128 * MAC Records bytes

5.4.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

5.4.2 Uint32 Data Integrity Stream Type

Data Integrity StreamData Integrity StreamData Integrity StreamData Integrity Stream TypeTypeTypeType Interpretation Interpretation Interpretation Interpretation
Type Interpretation

0 Shall mean that the Data Integrity Stream is not specified by this field.
1 Shall mean that the Data Integrity Stream is a Type 1 Data Integrity Stream.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the

medium.

5.4.3 Uint32 Number of MAC Records
This field shall specify the number of MAC Records. Deleted MAC Record
shall not be counted.

5.4.4 bytes Reserved
All bits of this field shall be set to ZERO.

Secure UDF 1.00 February 26, 2002 23

5.4.5 bytes MAC Record

MACMACMACMAC Record Record Record Record format format format format
RBP Length Name Contents

0 4 Record Length Uint32
4 2 Flags Uint16
6 1 Length of Stream Name (=L_SN) Uint8
7 1 Reserved Uint8
8 L_SN Stream Name dchars

8+
L_SN

*1 Padding bytes

8+
L_SN+*1

2 MAC Calculation Type Uint16

10+
L_SN+*1

16 Algorithm ID encspec

26+
L_SN+*1

2 Length of MAC (=L_MA) Uint16

28+
L_SN+*1

L_MA MAC bytes

28+
L_SN+*1
+L_MA

*2 Padding bytes

5.4.5.1 Uint32 Record Length
This field shall contain the length of this MAC Record in bytes. Shall be a
multiple of four bytes.

5.4.5.2 Uint16 Flags

FlagsFlagsFlagsFlags Interpretation Interpretation Interpretation Interpretation
Bit Interpretation
0 If this bit is set to ONE, this record is deleted. If this bit is set to ZERO, this record is

under use.
1-15 Reserved. Shall be set to ZERO.

5.4.5.3 Uint8 Length of Stream Name
This field shall specify the length of Stream Name. for all streams except for the default
stream. For the default stream, this field shall be set to ZERO.

5.4.5.4 Uint8 Reserved
All bits of this field shall be set to ZERO.

5.4.5.5 dchars Stream Name
This field shall specify the stream name for which the MAC is calculated.

5.4.5.6 bytes Padding
This field shall be 4 * ip((8+L_SN+3)/4)-(8+L_SN) bytes long and shall contain all #00
bytes.

Secure UDF 1.00 February 26, 2002 24

5.4.5.7 Uint16 MAC Calculation Type
This field shall specify mode for MAC calculation.

MACMACMACMAC Calculation Type Calculation Type Calculation Type Calculation Type Interpretation Interpretation Interpretation Interpretation
Type Interpretation

0 Shall mean that the Calculation Type is not specified by this field.
1 Shall mean that the MAC is calculated from concatenated data of time stamp and stream

body.
2 Shall mean that the MAC is calculated from concatenated data of time stamp, secret

information and stream body.
3-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

Note: Secret information contains system identifier, drive identifier, media identifier and logical sector
number.

5.4.5.8 Encspec Algorithm ID
This field shall specify an encspec as defined in 3.3.2.1.

5.4.5.9 Uint16 Length of MAC
This field shall specify the length of the MAC.

5.4.5.10 bytes MAC
This field shall specify MAC calculated from file or each stream or directory.

5.4.5.11 bytes Padding
This field shall be ((Record Length) – (28+L_SN+*1+L_MA)) bytes long and
shall contain all #00 bytes.

Secure UDF 1.00 February 26, 2002 25

5.5 Access Log Stream
The Access Log Stream is used to provide an access audit trail of the default
stream as well as any other stream associated with the file entry.

Access Log StreamAccess Log StreamAccess Log StreamAccess Log Stream
Stream Name Stream Location Metadata Flag

“*UDF_AccessLog” Any file/directory 1

Type 1 Access Log Stream Format
BP Length Name Contents
0 32 Implementation Identifier EntityID

32 4 Access Log Stream Type Unit32
36 4 Number of Access Log Records Uint32
40 4 Strategy of File Access Logging Uint32
44 4 Strategy of Directory Access Logging Uint32
48 8 Max Access Log Size Uint64
56 8 Head Pointer Uint64
64 8 Tail Pointer Uint64
72 56 Reserved bytes

128 * Access Log Records bytes

5.5.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

5.5.2 Uint32 Access Log Stream Type

Access Log StreamAccess Log StreamAccess Log StreamAccess Log Stream Type Type Type Type Interpretation Interpretation Interpretation Interpretation
Type Interpretation

0 Shall mean that the Access Log Stream is not specified by this field.
1 Shall mean that the Access Log Stream is a Type 1 Access Log Stream.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

5.5.3 Uint32 Number of Access Log Records
This field shall specify the number of Access Log Records. Deleted Access Log
Record shall not be counted.

5.5.4 Uint32 Strategy of File Access Logging
This field shall specify the strategy of access logging by bit mask of Action for
file. If some bit is set to ONE, corresponding Action shall be recorded.

5.5.5 Uint32 Strategy of Directory Access Logging
This field shall specify the strategy of access logging by bit mask of Action for

Secure UDF 1.00 February 26, 2002 26

directory. If some bit is set to ONE, corresponding Action shall be recorded.

5.5.6 Uint64 Max Access Log Size
This field shall specify allowed max size of access log. If size of access log
reached this value, the oldest Access Log Record(s) shall be erased. Value
ZERO means that the size of access log is not limited.

5.5.7 Uint64 Head Pointer
This field shall specify byte position of first byte of oldest Access Log Record in
ring buffer.

5.5.8 Uint64 Tail Pointer
This field shall specify byte position of next byte of newest Access Log Record
in ring buffer.

5.5.9 Uint64 Reserved
Reserved for future use. All bit of this field shall be set to ZERO.

5.5.10 bytes Access Log Record

Access Log Record FormatAccess Log Record FormatAccess Log Record FormatAccess Log Record Format
RBP Length Name Contents

0 4 Record Length Uint32
4 8 Sequence Number Uint64

12 16 Action Time Stamp timestamp
28 4 Action Uint32
32 4 Type of User ID Uint32
36 4 User ID/index of User ID bytes
40 4 Length of Action Dependent Area

(=L_AD)
Uint32

44 L_AD Action Dependent Area bytes
44+

L_AD

*

Padding

bytes

5.5.10.1 Uint32 Record Length
This field shall contain the length of this Access Log Record in bytes. Shall be
a multiple of four bytes.

5.5.10.2 Uint64 Sequence Number
This field shall specify sequence number of Access Log Record. The sequence
number is assigned in ascending order from value ZERO.

5.5.10.3 timestamp Action Time Stamp
This field shall contain date and time when action to a file has been taken. It
shall indicate time that file is closed.

Secure UDF 1.00 February 26, 2002 27

5.5.10.4 Uint32 Action
This filed shall contain action identifier.

If target is file, action interpretation shall be subject to following.

Action InterpretationAction InterpretationAction InterpretationAction Interpretation (File Operation) (File Operation) (File Operation) (File Operation)
Bit Interpretation
0 Make a target file secure
1 Make a target file un-secure
2 Read target file
3 Write target file
4 Reserved. Shall be set to ZERO.
5 Reserved. Shall be set to ZERO.
6 Truncate target file
7 Read attributes of target file
8 Write attributes of target file
9 Read a user stream under target file

10 Write a user stream under target file
11 Truncate a user stream under target file
12 Create a user stream under target file
13 Remove a user stream under target file
14 Rename a user stream under target file
15 Export target file and corresponding streams
16 Import target file and corresponding streams

17-31 Reserved. Shall be set to ZERO.

If target is directory, action interpretation shall be subject to following:

Action InterpretationAction InterpretationAction InterpretationAction Interpretation (Directory Operation) (Directory Operation) (Directory Operation) (Directory Operation)
Bit Interpretation
0 Make a target directory secure
1 Make a target directory un-secure
2 Read target directory
3 Create file/directory or hard link under target directory
4 Remove file/directory or hard link under target directory
5 Rename file/directory or hard link under target directory
6 Reserved. Shall be set to ZERO.
7 Read attributes of target directory
8 Write attributes of target directory
9 Read a user stream under target directory

10 Write a user stream under target directory
11 Truncate a user stream under target directory
12 Create a user stream under target directory
13 Remove a user stream under target directory
14 Rename a user stream under target directory
15 Export target directory and corresponding streams
16 Import target directory and corresponding streams

17-31 Reserved. Shall be set to ZERO.

Secure UDF 1.00 February 26, 2002 28

5.5.10.5 Uint32 Type of User ID
This field shall contain type of User ID.

Type of User IDType of User IDType of User IDType of User ID Interpretation Interpretation Interpretation Interpretation
Type Interpretation

0 Shall mean that the type of ID is not specified by this field.
1 Shall mean that the type of ID is POSIX user ID.
2 Shall mean that the type of ID is certificate of X.509
3- Reserved

5.5.10.6 Bytes User ID or index of User ID
This field shall contain user ID or index of User ID by whom action to a file has been
taken.

5.5.10.7 Uint32 Length of Action Dependent Area
This field contains length of action dependent area in bytes.

5.5.10.8 bytes Action Dependent Area
This field contains action dependent information.

If one bit from bit number 9 to bit number 14 is set to ONE, user stream name
shall be set as following structure.

Action dependent areaAction dependent areaAction dependent areaAction dependent area formatformatformatformat
RBP Length Name Contents

0 1 Length of Stream Name (=L_SN) Uint8
1 1 Reserved Uint8
2 L_SN Stream Name dchars

2+L_SN * Padding bytes

5.5.10.8.1 Uint8 Length of Stream Name
This field shall specify length of stream name.

5.5.10.8.2 Uint8 Reserved
All bit of this field shall be set to ZERO.

5.5.10.8.3 dchars Stream Name
This field shall specify stream name.

5.5.10.8.4 bytes Padding
This field shall be ((L_AD-(2+L_SN)) bytes long and shall contain all #00
bytes.

Secure UDF 1.00 February 26, 2002 29

If bit number 15 or bit number 16 is set to ONE, environment information
shall be set as following structure.

envspec envspec envspec envspec formatformatformatformat
RBP Length Name Contents

0 128 Logical Volume Identifier dstring
128 6 Logical Block Address lb_addr
134 * Padding bytes

5.5.10.8.5 dstring Logical Volume Identifier
This field shall contain Logical Volume Identifier where action has been
taken.

5.5.10.8.6 lb_addr Logical Block Address
This field shall contain Logical Block Address where action has been taken.

5.5.10.8.7 bytes Padding
This field shall be (L_AD – 134) bytes long and shall contain all #00 bytes.

5.5.10.9 bytes Padding
This field shall be ((Record Length) – (44+L_AD)) bytes long and shall contain
all #00 bytes.

Secure UDF 1.00 February 26, 2002 30

5.6 License Stream
The License Stream used to provide license control of the default stream.

LicenseLicenseLicenseLicense Stream Stream Stream Stream
Stream Name Stream Location Metadata Flag

“*UDF_License” Any file 1

Type 1 Type 1 Type 1 Type 1 LicenseLicenseLicenseLicense Stream Stream Stream Stream format format format format
BP Length Name Contents
0 32 Implementation Identifier EntityID

32 4 License Stream Type Uint32
36 4 Number of License Records Unit32
40 88 Reserved bytes

128 * License Records bytes

5.6.1 EntityID Implementation Identifier
For more information on the proper handling of this field see section 2.1.5 of
UDF.

5.6.2 Uint32 License Stream Type

LicenseLicenseLicenseLicense Stream Type Stream Type Stream Type Stream Types s s s
Type Interpretation

0 Shall mean that the License Stream is not specified by this field.
1 Shall mean that the License Stream is a Type 1 License Stream.

2-63 Reserved
64- Shall be subject to agreement between the originator and recipient of the medium.

5.6.3 Uint32 Number of License Records
This field shall specify the number of License Records. Deleted License Record
shall not be counted.

5.6.4 bytes Reserved
All bit of this field shall be set to ZERO.

5.6.5 bytes License Record

LicenseLicenseLicenseLicense Record Format Record Format Record Format Record Format
RBP Length Name Contents

0 4 Record Length Uint32
4 * License bytes

5.6.5.1 Unit32 Record Length
This field shall contain the length of this License Record in bytes. Shall be a
multiple of four bytes.

Secure UDF 1.00 February 26, 2002 31

5.6.5.2 bytes License
This field shall contain license. Detail format of this field shall be subject to
agreement between the originator and recipient of the medium.

Secure UDF 1.00 February 26, 2002 32

6 Appendix A Application notes (Export/Import)

6.1 Introduction

Security information, such as MAC (Message Authentication Code) for data
integrity, is stored as system named stream on a Secure UDF volume. When a
default stream is transferred to another Secure UDF volume, the security
information should be transferred with the default stream. Export/Import
functionality provides a means to read/write all streams including system
named streams, and create a structure called Packed Data. This Packed
Data structure would contain all the necessary information (default stream,
associated system streams, user streams, extended attributes and UserID
information associated with the file) to transfer to another SecureUDF system
using some form of communication. If needed, a MAC is added to the Packed
Data in order to guarantee integrity of the packed data.

This appendix is a technical guide for implementers who would like to
implement Export/Import functionality in a Secure UDF file system
implementation.

Secure UDF 1.00 February 26, 2002 33

6.2 Appendix Structure

Following figure shows the structure of this Appendix.

Section 6.3 describes file system API of Export/Import functionality.

Section 6.4 describes format of packed data that file transfer module can get
through the Export/Import API.

Section 6.7 describes protocol for authentication, session key sharing between
source and destination systems, and protocol for transfer of encrypted “packed
data” from source system to destination system.

Note:Note:Note:Note: Structure of the figure described above is an example of
implementation. The other implementation can be allowed for each developer.
For example, File transfer module can be integrated into Secure UDF-FS.

Secure UDF-FS

Storage Media

Packed
Data

Format

Export/Import Interface

File Transfer Module
Authentication/Session Key Sharing Protocol

Default/System/User Streams

Secure Streams

Computer System

Secure UDF

Section 6.3

Section 6.4

Section 6.7

Secure UDF 1.00 February 26, 2002 34

6.3 Export/Import Interface
This section describes what a file system API may look like for an
Export/Import interface to a Secure UDF implementation. This interface
could be provided through some type of operating system IOCTL interface.

6.3.1 UDF_OPENEXPORT
Name
 UDF_OPENEXPORT request code – Prepare for exporting all streams

specified by default stream, and the default stream

Synopsis
 #include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct UDF_OPENEXPORT_CMD_T
*arg)

Description

UDF_OPENEXPORT prepares for exporting all streams specified by
defaults stream, and the default stream. Argument keyid shell be
given to calculate MAC for packed data. If the file is not secured file or
secured file that the data integrity feature is not applied, the key id is
ignored. And also, if value 0xffffffffUL is given as keyid, default key is
used for the calculation.

 fd: File descriptor of default stream that user would like to export.

cmd: UDF_OPENEXPORT (request code)

arg: Address of argument structure

struct UDF_OPENEXPORT_CMD_T {
 unsigned int keyid; /* Keyid (Input) */
 }

Return Value

ioctl return ZERO if invocation succeed, or non-ZERO if error
occurred.

Errors
 EBADF fd is not a valid file descriptor.

 ENOMEM There are enough memory for kernel.

Secure UDF 1.00 February 26, 2002 35

 EPERM Implementation detects unauthorized modification for
Secure file specified by fd.

 ENODATA Value 0xffffffffUL is given as keyid for target file on the

system that the default key is not defined.

Secure UDF 1.00 February 26, 2002 36

6.3.2 UDF_EXPORT

Name

UDF_EXPORT request code - Export Packed Data by specified block
size

Synopsis

#include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct UDF_EXPORT_CMD_T *arg)

Description

Read a packed data by specified size and store it into read buffer. If
read pointer reaches end of packed data, ZERO value is set to count.
size shall be bigger than 512 bytes and smaller than 4096, and the size
shall be multiple integral of 512 bytes.

fd: File descriptor of default stream that user would like to export.

cmd: UDF_EXPORT (request code)

arg: Address of argument structure

struct UDF_EXPORT_CMD_T {

char *buf; /* Buffer address (Input) */
int size; /* Buffer size (Input) */
int count; /* Bytes count exported (Output) */

}

Return Value

ioctl return ZERO and bytes count exported is set to count if
invocation succeed, or non-ZERO if error occurred.

ENOMEM There are enough memory for kernel.

 EBADF fd is not a valid file descriptor.

 EINVAL size is not valid.

EFAULT Address specified by buf is not valid.

ENETDOWN Implementation detect any error on encryption,
authentication or trusted time module.

Secure UDF 1.00 February 26, 2002 37

6.3.3 UDF_CLOSEEXPORT

Name

UDF_CLOSEEXPORT request code – Release all resources used for
export functionality

Synopsis

#include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct
UDF_CLOSEEXPORT_CMD_T *arg)

fd: File descriptor of default stream that user would like to export.

cmd: UDF_CLOSEEXPORT (request code)

arg: Address of argument structure

struct UDF_CLOSEEXPORT_CMD_T {
 /* Nothing */
 }

Description
 Release all resources used for export functionality.

Return Value
 Always return ZERO value.

Secure UDF 1.00 February 26, 2002 38

6.3.4 UDF_OPENIMPORT

Name

UDF_OPENIMPORT request code - Prepare for importing all streams
specified by default stream, and the default stream

Synopsis

#include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct UDF_OPENIMPORT_CMD_T
*arg)

fd: File descriptor of file with size ZERO. The empty file shall be
created in prior to invoke UDF_OPENIMPORT.

cmd: UDF_OPENIMPORT (request code)

arg: Address of argument structure

struct UDF_OPENIMPORT_CMD_T {

 unsigned int keyid; /* Key ID for packed data */
unsigned int i_keyid; /* Key ID for data integrity */

}

Description

Prepare for importing all streams specified by default stream, and the
default stream. If file descriptor that is not empty is specified, the file
is overwritten. If file descriptor that is already secured, EBADF is
returned. Argument keyid shall be given for checking integrity of
packed data. Argument i_keyid shall be given for calculating MAC for
data integrity.

Return Value

ioctl return ZERO if invocation succeed, or non-ZERO if error
occurred.

EBADF fd is not a valid file descriptor.

ENOTEMPTY File specified by argument fd is not empty.

ENOMEM There are enough memory for kernel.

Secure UDF 1.00 February 26, 2002 39

6.3.5 UDF_IMPORT

Name

UDF_IMPORT request code - Import Packed Data by specified block
size

Synopsis

#include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct UDF_IMPORT_CMD_T *arg)

fd: File descriptor used for UDF_OPENIMPORT.

cmd: UDF_IMPORT (request code)

arg: Address of argument structure

struct UDF_IMPORT_CMD_T {
 char *buf; /* Buffer address (Input) */
 int size; /* Buffer size (Input) */
 int count; /* Bytes count imported(Output) */

}

Description

Write a packed data stored in write buffer by specified size. If write
pointer reaches end of packed data, count returns ZERO value. In this
case implementation shall invoke UDF_CLOSEIMPORT. “size” shall
be as same value as “size” specified in export.

Return Value

ioctl return ZERO and bytes count imported is set to count if
invocation succeed, or non-ZERO if error occurred.

ENOMEM There is not enough memory for kernel.

 EBADF fd is not a valid file descriptor.

 EINVAL size is not a valid or packed data is not valid.

 EFAULT Address specified by buf is not valid.

 EBADE Packed data is secure file and implementation detect

Secure UDF 1.00 February 26, 2002 40

unauthorized modification of the packed data.

ENETDOWN Implementation detect any error on encryption,
authentication or trusted time module.

EUMATCH Import function of packed data that requires data

Integrity is directed on system that does not have MAC
verification mechanism.

 EMEDIUMTYPE File type of packed data is different from that of

file specified by fd.

Secure UDF 1.00 February 26, 2002 41

6.3.6 UDF_CLOSEIMPORT

Name

UDF_CLOSEIMPORT request code - Release all resources used for
import functionality

Synopsis

#include <udf_ioctl.h>

int ioctl(int fd, unsigned int cmd, struct
UDF_CLOSEIMPORT_CMD_T *arg)

fd: File descriptor used for UDF_OPENIMPORT.

cmd: UDF_CLOSEIMPORT (request code)

arg: Address of argument structure

struct UDF_CLOSEIMPORT_CMD_T {
 /* Nothing */

}

Description
 Release all resources used for import functionality

Return Value
 Always return ZERO value.

Secure UDF 1.00 February 26, 2002 42

6.4 Packed Data
Export/Import functionality of Secure UDF file system handles “Packed Data”.
Packed Data consist of default stream and all user/system streams
corresponding to the default stream. Using this functionality, file system
implementation can transfer all streams to another file system through
network. “Packed Data Format” specifies structure of Packed Data.

6.4.1 Packed Data Format
Structure of Packed Data is shown below.

Main Header

Extended Attribute

Default Stream

Sub Header for Stream 1

Stream 1

.

.

.
Sub Header for Stream N

Stream N

Trailer

Length of each box is specified by block size as argument of
EXPORT/IMPORT function. If the box cannot be filled with data, padding
shall be inserted. The padding contains all #00 bytes.

Packed Data shall contain UserID stream specified by file set descriptor if
some stream contains data that relate to UserID stream. For example, User
ID field of access log stream may contain index of X.509 certificate, and
mapping between the index and the X.509 certificate is defined in the UserID
stream. UserID stream shall be stored as first sub-stream in the packed data.

Secure UDF 1.00 February 26, 2002 43

6.4.2 tag : SUDF_PACKDATA_TAG_T

BP Length Name Contents
0 2 tagcrc Uint16
2 2 tagcrclen Uint16
4 2 tagid Uint16
6 2 tagversion Uint16
8 8 reserve bytes

6.4.2.1 Uint16 tagcrc
This field shall specify CRC value calculated from specified area. The area
shall be specified in next field.

6.4.2.2 Uint16 tagcrclen
This field shall specify length of area calculated by CRC.

6.4.2.3 Uint16 tagid
This field shall specify tag identifier used for Packed Data.

Type Interpretation
1 Main Header
2 Sub Header
3 Trailer

6.4.2.4 Uint16 tagversion
This field shall specify version number of Packed Data. Upper one byte shall
contain major number and lower one byte shall contain minor number. (=1.1)

Secure UDF 1.00 February 26, 2002 44

6.4.3 Main Header : SUDF_PACKDATA_MAIN_HEADER_T

BP Length Name Contents
0 16 tag SUDF_PACKDATA_TAG_T
16 2 blksiz Uint16 (*1)
18 2 Padding bytes (all #00)
20 4 entmax Uint32 (*2)
24 4 keyid Uint32 (*2)
28 8 mac

(padding1)
UDFSVC_MAC_T (*3)
(bytes)

36 20 icbtag UDF_icbtag (*4)
56 4 uid Uint32 (*2)
60 4 gid Uint32 (*2)
64 4 permissions Uint32 (*2)
68 8 informlen Uint64 (*5)
76 12 actime UDF_timestamp (*6)
88 12 motime UDF_timestamp (*6)
100 12 crtime UDF_timestamp (*6)
112 12 attime UDF_timestamp (*6)
124 4 inoflgs Uint32 (*2)
128 4 i_keyid Uint32 (*2)
132 8 i_mac

(padding2)
UDFSC_MAC_T (*3)
(bytes)

140 4 log_strategy Uint32 (*2)
144 4 ealen (=L_EA) Uint32
148 364 reserve bytes

Note: In case that kernel is configured as “Secure UDF does not supported”,
definitions in braces are applied.

Note: This specification allows only a Triple DES-MAC algorithm to generate
the MAC.

6.4.3.1 tag
See 3.1. tagid = 1.

6.4.3.2 blksiz
This field shall specify size of block when export functionality is invoked. This
value shall be as same as size field of UDF_EXPORT_CMD_T.

6.4.3.3 entmax
This field shall specify number of exported streams including default stream,
all system streams and all user streams.

Secure UDF 1.00 February 26, 2002 45

6.4.3.4 keyid
This field shall specify key identifier used for generating/verifying MAC
(6.4.3.5).

6.4.3.5 mac
This field shall specify MAC calculated from
SUDF_PACKDATA_MAIN_HEADER_T using key specified by
keyid(6.4.3.4). In this calculation, keyid, i_keyid, mac and i_mac shall be set to
ZERO.

6.4.3.6 icbtag
This field shall specify icbtag(ECMA 167 4/14.9, 4/14.17) for default stream.

6.4.3.7 uid
This field shall specify user identifier(ECMA 167 4/14.9, 4/14.17) for default
stream.

6.4.3.8 gid
This field shall specify group identifier(ECMA 167 4/14.9, 4/14.17) for default
stream.

6.4.3.9 permissions
This field shall specify permissions(ECMA 167 4/14.9, 4/14.17) for default
stream.

6.4.3.10 informlen
This field shall specify size(ECMA 167 4/14.9, 4/14.17) of default stream.

6.4.3.11 actime
This field shall specify last access time(ECMA 167 4/14.9, 4/14.17) for default
stream.

6.4.3.12 motime
This field shall specify last modification time(ECMA 167 4/14.9, 4/14.17) for
default stream.

6.4.3.13 crtime
This field shall specify creation time(ECMA 167 4/14.9, 4/14.17) for default
stream.

6.4.3.14 attime
This field shall specify last modification time(ECMA 167 4/14.9, 4/14.17) of
attribute for default stream.

Secure UDF 1.00 February 26, 2002 46

6.4.3.15 inoflgs
This field shall specify expanded attribute for default stream.

BitBitBitBit InterpretationInterpretationInterpretationInterpretation
0 i_meta flag of extended inode structure

(means stream is system stream)
1 i_secure flag of extended inode structure

(means file is secured)
2 Reserved
3 i_integrity flag of extended inode structure

(means that integrity check shall be applied)
4 i_logging flag of extended inode structure

(means that access logging shall be applied)
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 validity of i_stream_len field of extended inode structure

(shows existence of stream directory)
10-31 reserved

6.4.3.16 i_keyid
This field shall specify key identifier used for integrity check functionality for
default stream.

6.4.3.17 i_mac
This field shall specify MAC calculated from
SUDF_PACKDATA_MAIN_HEADER_T using i_keyid. In this calculation,
keyid, i_keyid, mac and i_mac shall be set to ZERO.

6.4.3.18 log_strategy
This field shall specify strategy of access logging.

6.4.3.19 ealen
This field shall specify length of extended attribute.

6.4.4 Sub-Header : SUDF_PACKDATA_SUB_HEADER_T

BP Length Name Contents
0 16 tag SUDF_PACKDATA_TAG_T
16 20 icbtag UDF_icbtag (*4)
36 4 uid Uint32 (*2)
40 4 gid Uint32 (*2)
44 4 permissions Uint32 (*2)
48 8 informlen Uint64 (*5)
56 12 actime UDF_timestamp (*6)

Secure UDF 1.00 February 26, 2002 47

68 12 motime UDF_timestamp (*6)
80 12 crtime UDF_timestamp (*6)
92 12 attime UDF_timestamp (*6)
104 4 inoflgs Uint32 (*2)
108 2 namelen (=L_NM) Uint16 (*1)
110 L_NM + 1 name bytes
111+L_NM 401-L_NM reserved bytes

6.4.4.1 tag
See 3.1.tagid = 2.

6.4.4.2 icbtag
This field shall specify icbtag(ECMA 167 4/14.9,4/14.17) for corresponding
stream.

6.4.4.3 uid
This field shall specify user identifier(ECMA 167 4/14.9, 4/14.17) for
corresponding stream.

6.4.4.4 gid
This field shall specify group identifier(ECMA 167 4/14.9, 4/14.17) for
corresponding stream.

6.4.4.5 permissions
This field shall specify permissions(ECMA 167 4/14.9, 4/14.17) for
corresponding stream.

6.4.4.6 informlen
This field shall specify size(ECMA 167 4/14.9, 4/14.17) of corresponding
stream.

6.4.4.7 actime
This field shall specify last access time(ECMA 167 4/14.9, 4/14.17) for
corresponding stream.

6.4.4.8 motime
This field shall specify last modification time(ECMA 167 4/14.9, 4/14.17) for
corresponding stream.

6.4.4.9 crtime
This field shall specify creation time(ECMA 167 4/14.17) for corresponding
stream.

Secure UDF 1.00 February 26, 2002 48

6.4.4.10 attime
This field shall specify last modification time(ECMA 167 4/14.9, 4/14.17) of
attribute for corresponding stream.

6.4.4.11 inoflgs
This field shall specify expanded attribute for default stream. See 3.2.15.

6.4.4.12 namelen
This field shall specify length of stream name.

6.4.4.13 name
This field shall specify stream name.

Secure UDF 1.00 February 26, 2002 49

6.4.5 Trailer : SUDF_PACKDATA_TRAILER_T
Note: In case that kernel is configured as “Secure UDF does not supported”,
definitions in braces are applied.

BP Length Name Contents
0 16 tag SUDF_PACKDATA_TAG_T
16 2 crc Uint16 (*1)
18 2 Padding bytes (all #00)
20 8 crclen Uint64 (*5)
28 4 userid Uint32 (*2)
32 12 timestamp UDF_timestamp (*6)
44 8 mac

(padding)
UDFSVC_MAC_T (*3)
(bytes)

52 460 reserved bytes

6.4.5.1 tag
See 3.1. tagid = 3.

6.4.5.2 crc
This field shall specify CRC value calculated from all packed data except for
trailer.

6.4.5.3 crclen
This field shall specify length of all packed data except for trailer in bytes.

6.4.5.4 userid
This field shall specify user identifier who invoked export functionality. This
value is used for verifying MAC.

6.4.5.5 timestamp
This field shall specify date and time when export functionality is invoked.
This value is used for verifying MAC.

6.4.5.6 mac
This field shall specify MAC value calculated from all packed data except for
trailer, userid(6.4.5.4) and timestamp(6.4.5.5) using key specified by
keyid(6.4.3.4).

6.4.5.7 Data (Default stream and each stream)
This field shall contains default stream, each user/system streams.

Secure UDF 1.00 February 26, 2002 50

6.5 Processing Flow of Authentication
When import functionality is invoked, implementation shall perform
authentication of packed data described below.

1) Perform CRC Check of main header, each sub-header and trailer using
each tagcrclen and tagcrc(6.4.2.1).

2) If packed data is secure file, that data integrity functionality was

applied implementation shall perform check whether keys specified by
keyid and i_keyid are as same as keys on export side host (using mac,
i_mac of SUDF_PACKDATA_MAIN_HEADER_T. See 6.4.3.5, 6.4.3.17).

3) If packed data is secure file, that data integrity functionality was

applied, implementation shall check authenticity of all packed data
except for trailer using keyid and mac of main header.

4) If packed data is not secure file, that data integrity functionality was

applied, implementation shall check CRC of all packed data except for
trailer.

Secure UDF 1.00 February 26, 2002 51

6.6 A Supplementary Explanation
Following are relationship between arguments of Export/Import API and
Packed Data.

 - UDF_OPENEXPORT_CMD_T

 keyid
 (If 0xffffffffUL is specified)

Default key identifier specified by udfformat(8) is used and the key
identifier is stored in keyid field of SUDF_PACKDATA_MAIN_HEADER_T.

 (If 0xffffffffULis not specfied)
Given argument “keyid” is stored in keyid field of
SUDF_PACKDATA_MAIN_HEADER_T.

 - UDF_EXPORT_CMD_T

Given argument “size” is stored in blksiz field of
SUDF_PACKDATA_MAIN_HEADER_T.

 - UDF_OPENIMPORT_CMD_T

 keyid
 (If 0xffffffffUL is specified)

A value in keyid field of SUDF_PACKDATA_MAIN_HEADER_T is used for
Import.

 (If 0xffffffffULis not specified)
 Given argument “keyid” is used for Import.

 i_keyid
 (If 0xffffffffUL is specfied)

A value in i_keyid field of SUDF_PACKDATA_MAIN_HEADER_T is used
for integrity check functionality of default stream.

 (If 0xffffffffUL is not specified)

Given argument “i_keyed” is used for integrity check functionality of
default stream.

 - UDF_IMPORT_CMD_T

Given argument “size” is stored in blksiz field of
SUDF_PACKDATA_MAIN_HEADER_T.

 *1: Uint16 : ECMA 167 1/7.1.3
 *2: Uint32 : ECMA 167 1/7.1.5
 *3: UDFSVC_MAC_T : sudf_security.h
 *4: UDF_icbtag : ECMA 167 4/14.6
 *5: Uint64 : ECMA 167 1/7.1.7
 *6: UDF_timestamp : ECMA 167 1/7.3

Secure UDF 1.00 February 26, 2002 52

6.7 Authentication/Session Key Sharing Protocol
There are many protocols(*1) to authenticate each other and share session key
used for encrypting data. File transfer module can use preferable protocol
under agreement between sender and receiver. Following figure shows an
example of the protocol briefly.

(*1) ISO/IEC 11770-3:1999, Information technology – Security techniques
– Key management – Part3: Mechanisms using asymmetric techniques

(1) Sender generates a random number Rs, concatenates it with S, encrypts it

by public key of receiver and sends it to receiver.
(2) Receiver decrypts encrypted Rs using Sr. Receiver generates a random

number Rr, concatenates it with Rs, encrypts it by Ps and sends it to
sender.

(3) Sender decrypts encrypted Rs and Rr and checks whether Rs is as same as
that sender generated phase (1). If same, sender send back receiver Rr
encrypted by Pr. Receiver checks whether Rr is as same as that receiver
generated phase (2). If same, both sender and receiver create session key
from Rs and Rr using function f(Rs, Rr). In general, function may be
exclusive or of Rs and Rr.

The session key is used to encrypt data to be transferred from sender to
receiver, and passed to file system API to calculate MAC in file system.

Note: Transferring exported data to medium that have no physical secure
area from medium that have physical secure area may cause a decline of
security level. It depends on security policy on each systems whether the
system can allow the transfer or not.

File Transfer
Module (Sender)

File Transfer
Module (Receiver)

PsPr

Ss Sr

Pr(Rs, S)

Ps(Rs, Rr)

Pr(Rr)

Ps : Public key of sender
Pr : Public key of receiver
Ss : Secret key of sender
Sr : Secret key of receiver
Rs : Random number generated on sender
Rr : Random number generated on receiver
S : Information indicates that sender is S

(1)

(2)

(3)Rs Rr

Secure UDF 1.00 53 February 26, 2002

Access Control Record 16, 17

Access Control Stream 14, 16

Access Log Stream 14, 25

CBC ... 3, 9

Data Integrity Stream 14, 22

Data Privacy Stream 14, 19

DES 3, 9, 44

Domain .. 1, 7

DOS ... 54

ECMA 167 1

Encryption 1, 3, 9, 10, 20, 21, 36, 40

encspec 9, 10, 23, 24

Export ... 2, 27, 32, 33, 34, 36, 42, 51

extended attribute 14, 15, 32, 46

Import2, 27, 32, 33, 34, 39, 40, 42,

51

License. 3, 30, 31

License Stream 14, 30

MAC3, 17, 20, 22, 23, 24, 32, 34, 38,

40, 44, 45, 46, 49, 51, 52

Macintosh 54

OS/2 ... 54

OS/400 ... 54

Partition Descriptor 8

Requirement Information 14

Secure Partition Map 6, 8, 9

system stream 14, 32, 42, 49

system stream directory 11

User ID . 9, 10, 11, 12, 13, 26, 28, 42

User Identifier Stream 11

Windows 95 54

Windows NT 54

WORM .. 54

X.509 3, 13, 28, 42

© Ecma International 2023

	Insert from: "Final draft TR UDF part 8.pdf"
	空白ページ

