RPOO© oO~NOUIA~ WN -

O =
V)

T
~oubhw

18

System.Array Class

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 1.0.X.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:

System.ICloneable
System.Collections.IList
System.Collections.1Collection
System.Collections.IEnumerable

Summary

Serves as the base class for arrays. Provides methods for creating,
copying, manipulating, searching, and sorting arrays.

Inherits From: System.Object
Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

This class is intended to be used as a base class by language
implementations that support arrays. Only the system can derive from
this type: derived classes of System.Array are not to be created by
the developer.

[Note: An array is a collection of identically typed data elements that
are accessed and referenced by sets of integral indices.

OCO~NOOUITRWNE

M
42
43

45
46

a7

The rank of an array is the number of dimensions in the array. Each
dimension has its own set of indices. An array with a rank greater than
one can have a different lower bound and a different number of
elements for each dimension. Multidimensional arrays (i.e. arrays with
a rank greater than one) are processed in row-major order.

The lower bound of a dimension is the starting index of that
dimension.

The length of an array is the total number of elements contained in all
of its dimensions.

A vector is a one-dimensional array with a lower bound of '0'.

If the implementer creates a derived class of System.Array, expected
System.Array behavior cannot be guaranteed. For information on
array-like objects with increased functionality, see the
System.Collections.lIList interface. For more information regarding
the use of arrays versus the use of collections, see Partition V of the
CLI Specification.] Every specific System.Array type has three
instance methods defined on it. While some programming languages
allow direct access to these methods, they are primarily intended to be
called by the output of compilers based on language syntax that deals
with arrays.

Get : Takes as many System.Int32 arguments as the array
has dimensions and returns the value stored at the given index.
It throws a System.lndexOutOfRangeException exception
for invalid indices.

Set : Takes as many System.Int32 arguments as the array
has dimensions, plus one additional argument (the last
argument) which has the same type as an array element. It
stores the final value in the specified index of the array. It
throws a System.IndexOutOfRangeException exception for
invalid indices.

Addr ess: Takes as many System.Int32 arguments as the
array has dimensions and returns the address of the element at
the given index. It throws a
System.IndexOutOfRangeException exception for invalid
indices.

In addition, every specific System.Array type has a constructor on it
that takes as many positive System.Int32 arguments as the array
has dimensions. The arguments specify the number of elements in
each dimension, and a lower bound of 0. Thus, a two-dimensional
array of System.Int32 objects would have a constructor that could be
called with (2, 4) as its arguments to create an array of eight zeros

with the first dimension indexed with O and 1 and the second

OCO~NOOUITRWNE

dimension indexed with O, 1, 2, and 3.

For all specific array types except vectors (i.e. those permitted to have
non-zero lower bounds and those with more than one dimension)
there is an additional constructor. It takes twice as many arguments
as the array has dimensions. The arguments are considered in pairs,
with the first of the pair specifying the lower bound for that dimension
and the second specifying the total number of elements in that
dimension. Thus, a two-dimensional array of System.Int32 objects
would also have a constructor that could be called with (-1, 2, 1, 3)
as its arguments, specifying an array of 6 zeros, with the first
dimension indexed by -1 and 0, and the second dimension indexed by
1, 2, and 3.

(6281 wWN =

»

Array() Constructor

Summary

Constructs a new instance of the System.Array class.

~NOo g1 bW N

10

11
12

13

14
15

17
18

19
20

22
23

Array.BinarySearch(System.Array,
System.Object) Method

Summary

Searches the specified one-dimensional System.Array for the
specified object.

Parameters

|array |A System.Array to search for an object.

A System.Object for which to search, or a null reference. [Note: A null
value reference will be considered to compare less than any non-null object,
or equal to another null reference.]

Return Value

A System.Int32 with one of the following values based on the result
of the search operation.

|The index of value in the array. |va|ue was found.
The bitwise complement of the first value was not found and the value of at

. least one element of array was greater
element that is larger than value.

than value.

The bitwise complement of value was not found, and value was
(array.GetLowerBound(0) + greater than the value of all array
array.Length). elements.

[Note: If value is not found, the caller can take the bitwise
complement of the return value to determine the index where value
would be found in array if it is sorted already.]

Description

OCO~NOOUIRRWNE

20
21
22

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0),
array.Length, value, null).

value is compared to each element of array using the
System.lIComparable interface of the element being compared - or
of value if the element being compared does not implement the
interface - until an element with a value greater than or equal to value
is found. If value does not implement the System.lIComparable
interface and is compared to an element that does not implement the
System.lIComparable interface, a System.ArgumentException
exception is thrown. If array is not already sorted, correct results are
not guaranteed.

[Note: A null reference can be compared with any type; therefore,
comparisons with a null reference do not generate exceptions.]

Exceptions

Exception Condition

Both value and at least one element of array do
not implement the System.lIComparable
interface.

Or

value is not assignment-compatible with at least

System.ArgumentException one element of array.

Or

array.UpperBound ==
System.Int32.MaxValue.

System.ArgumentNullException |array is null.

System.RankException array has more than one dimension.

1 Array.BinarySearch(System.Array,
2 System.Int32, System.Int32,

3 System.Object) Method

4

5

6

7

8

9

10

11 Summary

12 Searches the specified section of the specified one-dimensional
13 System.Array for the specified value.
14 Parameters
15
16
]array]A System.Array to search.
]index]A System.Int32 that contains the index at which searching starts.
| A System.Int32 that contains the number of elements to search,
ength g L
beginning with index.
A System.Object for which to search, or a null reference. [Note: A null
value reference will be considered to compare less than any non-null object,
or equal to another null reference.]
17
18 Return Value
19
20 A System.Int32 with one of the following values based on the result
21 of the search operation.

|The index of value in the array. |va|ue was found.

The bitwise complement of the |value was not found, and at least one array
first element that is larger than |element in the range of index to index + length
value. was greater than value.

value was not found, and value was greater than
all array elements in the range of index to index +
length.

The bitwise complement of
(index + length).

(o2} O WN EF

[Note: If value is not found, the caller can take the bitwise
complement of the return value to determine the index of the array
where value would be found in the range of index to index + length if
array is already sorted.]

Description

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0),
array.Length, value, null).

value is compared to each element of array using the
System.lIComparable interface of the element being compared - or
of value if the element being compared does not implement the
interface - until an element with a value greater than or equal to value
is found. If value does not implement the System.lIComparable
interface and is compared to an element that does not implement the
System.lIComparable interface, a System.ArgumentException
exception is thrown. If array is not already sorted, correct results are
not guaranteed.

[Note: A null reference can be compared with any type; therefore,
comparisons with a null reference do not generate exceptions.]

Exceptions

Exception Condition
System.ArgumentNullException array is null.
System.RankException array has more than one dimension.

index < array.GetLowerBound(0O).

System.ArgumentOutOfRangeException | °'

length < 0.

index and length do not specify a valid
range in array (i.e. index + length >

array.GetLowerBound(0) +
array.Length).

Or
System.ArgumentException

Either value or at least one element of
array does not implement the
System.lIComparable interface.

or

WN P

value is not assignment-compatible with
at least one element of array.

Or

array.UpperBound ==
System.Int32.MaxValue.

QO ook~ w N

H

18

19
20

21
22

Array.BinarySearch(System.Array,
System.Object,
System.Collections.1Comparer) Method

Summary

Searches the specified one-dimensional System.Array for the
specified value, using the specified System.Collections.IComparer
implementation.

Parameters

array

]A System.Array to search.

value

A System.Object for which to search, or a null reference. [Note: A null
reference will be considered to compare less than any non-null object,
or equal to another null reference.]

comparer

The System.Collections.lComparer implementation to use when
comparing elements. Specify a null reference to use the
System.lIComparable implementation of each element.

Return Value

A System.Int32 with one of the following values based on the result
of the search operation.

Returnvalue ~ Description

|The index of value in the array. |va|ue was found.

The bitwise complement of the first element value was not found, and at least one
that is larger than value. array element was greater than value.
The bitwise complement of value was not found, and value was

(array.GetLowerBound(0) + array.Length). |greater than all array elements.

10

25
26
27

[Note: If value is not found, the caller can take the bitwise
complement of the return value to determine the index where value
would be found in array if it is already sorted.]

Description

This version of System.Array.BinarySearch is equivalent to
System.Array.BinarySearch(array, array.GetLowerBound(0),
array.Length, value, comparer).

value is compared to each element of array using comparer until an
element with a value greater than or equal to value is found. If
comparer is null, the System.IComparable interface of the element
being compared - or of value if the element being compared does not
implement the interface - is used. If value does not implement the
System.lIComparable interface and is compared to an element that
does not implement the System.lIComparable interface, a
System.ArgumentException exception is thrown. If array is not
already sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore,
comparisons with a null reference do not generate exceptions.]

Exceptions

Exception Condition
comparer is null, and both value and at least
one element of array do not implement the
System.IComparable interface.
Or

comparer is null, and value is not assignment-

System.ArgumentException . .
4 9 P compatible with at least one element of array.

Or

array.UpperBound ==
System.Int32.MaxValue.

System.ArgumentNullException |array is null.
System.RankException array has more than one dimension.

11

1 Array.BinarySearch(System.Array,
2 System.Int32, System.Int32,
3 System.Object,
4 System.Collections.IComparer) Method
5
6
7
8
9
10
11
12 Summary
13 Searches the specified section of the specified one-dimensional
14 System.Array for the specified value, using the specified
15 System.Collections.lComparer implementation.
16 Parameters
17
18
|array |A System.Array to search.
|index |A System.Int32 that contains the index at which searching starts.
A System.Int32 that contains the number of elements to search,
length p s
beginning with index.
A System.Object for which to search, or a null reference. [Note: A null
value reference will be considered to compare less than any non-null object,
or equal to another null reference.]
The System.Collections.IComparer implementation to use when
comparer comparing elements. Specify a null reference to use the
P System.lIComparable implementation of each element.
19
20 Return Value
21
22 A System.Int32 with one of the following values based on the result
23 of the search operation.

]The index of value in the array.]value was found.

12

» GrWN B

The bitwise complement of the |value was not found, and at least one array
first element that is larger than |element in the range of index to index + length
value. was greater than value.

The bitwise complement of

(index + length). length.

value was not found, and value was greater than
all array elements in the range of index to index +

[Note: If value is not found, the caller can take the bitwise
complement of the return value to determine the index of array where
value would be found in the range of index to index + length if array is

already sorted.]

Description

value is compared to each element of array using comparer until an
element with a value greater than or equal to value is found. If
comparer is null, the System.l1Comparable interface of the element
being compared - or of value if the element being compared does not
implement the interface -- is used. If value does not implement the
System.lIComparable interface and is compared to an element that
does not implement the System.lIComparable interface, a
System.ArgumentException exception is thrown. If array is not
already sorted, correct results are not guaranteed.

[Note: A null reference can be compared with any type; therefore,
comparisons with a null reference do not generate exceptions.]

Exceptions

Exception
System.ArgumentNullException
System.RankException

System.ArgumentOutOfRangeException

System.ArgumentException

Condition

array is null.

array has more than one dimension.
index < array.GetLowerBound(0O).

or

length < 0.

index and length do not specify a valid
range in array (i.e. index + length >
array.GetLowerBound(0) +
array.Length).

Or

comparer is null, and both value and at
least one element of arrav do not

13

implement the System.lComparable
interface.

Or

comparer is null, and value is not of
the same type as the elements of array.

or

array.UpperBound ==
System.Int32.MaxValue.

Example

This example demonstrates the System.Array.BinarySearch
method.

[C#]

usi ng System
cl ass Bi narySear chExanpl e {
public static void Min() {

int[] intAry ={ 0, 2, 4, 6, 8 };

Consol e. WitelLine("The indices and el enents of the
array are: ");

for (int i =0; i <intAry.Length; i++)

Console. Wite("[{0O}]: {1, -5}", i, intAry[i]);

Consol e. WitelLine();

SearchFor(intAry, 3);

SearchFor(intAry, 6);

SearchFor(intAry, 9);

}
public static void SearchFor(Array ar, Cbject value) {
int i = Array.BinarySearch(ar, 0, ar.Length, val ue,
nul 1) ;
Consol e. WiteLine();
if (i >0) {
Consol e. Wite("The object searched for, {0}, was
found ", value);
Consol e. WiteLine("at index {1}.", value, i);
else if (~i == ar.Length) {
Consol e. Wite("The object searched for, {0}, was ",
val ue);

Consol e. Wite("not found,\nand no object in the array
had ");
Consol e. WitelLine("greater value. ");
}
el se {
Consol e. Wite("The object searched for, {0}, was ",
val ue);

14

~NoOOTh~hWNE

Consol e. Wite("not found.\nThe next |arger object
at ");

}

’Cbnsole.VViteLine("index {0}.", ~i);

}
}

The output is

The indices and el enents of the array are:

[0]:0 [1]:2[2]:4[3]:6 [4]:8

The obj ect searched for, 3, was not found.

The next larger object is at index 2.

The obj ect searched for, 6, was found at index 3.
The obj ect searched for, 9, was not found,

and no object in the array had greater val ue.

15

16

o~NO O1hWw N

10
11

12
13
14

15
16

17
18
19

20
21

22

23
24
25

Array.Clear(System.Array, System.Int32,

System.Int32) Method

Summary

Sets the specified range of elements in the specified System.Array to
zero, false, or to a null reference, depending on the element type.

Parameters

|array |The System.Array to clear.
|index |A System.Int32 that contains the index at which clearing starts.
A System.Int32 that contains the number of elements to clear,
length S o
beginning with index.

Description

Reference-type elements will be set to null. Value-type elements will
be set to zero, except for System.Boolean elements, which will be

set to false.

Exceptions

|System.ArgumentNuIIException

|array is null.

System.ArgumentOutOfRangeException

index < array.GetLowerBound(0).
length < 0.

index and length do not specify a valid
range in array (i.e. index + length >
array.GetLowerBound(0) +
array.Length).

17

(6281 wWN =

oo N O

20
21
22
23

24

25
26

27

28
29

30

Array.Clone() Method

Summary
Returns a System.Object that is a copy of the current instance.

Return Value

A System.Object that is a copy of the current instance.
Description

[Note: This method is implemented to support the
System.ICloneable interface.]

Behaviors

Each of the elements of the current instance is copied to the clone. If
the elements are reference types, the references are copied. If the
elements are value-types, the values are copied. The clone is of the
same type as the current instance.

Default

As described above.
How and When to Override

Override this method to return a clone of an array.
Usage

Use this method to obtain the clone of an array.

Example

This example demonstrates the System.Array.Clone method.

[C#]

usi ng System

18

OCO~NOUITRWNE

public class Arrayd oneExanpl e {
public static void Miin() {

int[] intAAyOGrig ={ 3, 4, 5 };

/1 must explicitly convert clones object into an array
int[] intArydone = (int[]) intAryOig.done();
Consol e. Wite("The elenents of the first array are:

foreach(int i inintAryOrig)
Console. Wite("{0,3}", i);
Consol e. WitelLine();
Consol e. Wite("The el enents of the cloned array are:

foreach(int i in intAryd one)

Console. Wite("{0,3}", i);
Consol e. WitelLine();
/1l ear the values of the original array.
Array.Cear(intAryGrig, 0, 3);
Consol e. WiteLine("After clearing the first array,");
Consol e. Wite("The elenents of the first array are:

foreach(int i inintAryOrig)
Console. Wite("{0,3}", i);
Consol e. WiteLine();
Consol e. Wite("The elenents of the cloned array are:

foreach(int i in intAryd one)
Console. Wite("{0,3}", i);

The output is

The elenments of the first array are: 345

The el ements of the cloned array are: 3 4 5

After clearing the first array,

The el enments of the first array are: 0 0 0

19

A WONE

ol

The el enments of the cloned array are:

345

20

oY oOo0gh~Ww N

10

12

13
14

15

Array.Copy(System.Array, System.Array,
System.Int32) Method

Summary

Copies the specified number of elements from the specified source
array to the specified destination array.

Parameters

|sourceArray |A System.Array that contains the data to copy.

|destinationArray |A System.Array that receives the data.

A System.Int32 designating the number of elements to copy,

length starting with the first element and proceeding in order.

Description

This version of System.Array.Copy is equivalent to
System.Array.Copy (sourceArray, sourceArray.GetLowerBound(0),
destinationArray, destinationArray.GetLowerBound(0), length).

If sourceArray and destinationArray are of different types,
System.Array.Copy performs widening conversions on the elements
of sourceArray as necessary before storing the information in
destinationArray. Value types will be boxed when being converted to a
System.ODbject. If the necessary conversion is a narrowing
conversion, a System.ArrayTypeMismatchException exception is
thrown. [Note: For information regarding valid conversions performed
by this method, see System.Convert.]

If an exception is thrown while copying, the state of destinationArray
is undefined.

If sourceArray and destinationArray are the same array,

System.Array.Copy copies the source elements safely to their
destination, as if the copy were done through an intermediate array.

21

=

1 Exceptions
2
3

\Exception Condition

System.ArgumentNullException sourceArray or destinationArray is null.

sourceArray and destinationArray have
System.RankException different ranks.

The elements in both arrays are built-in
types, and converting from the type of
the elements of sourceArray into the
type of the elements in destinationArray
requires a narrowing conversion.

Or

Both arrays are built-in types, and one
array is a value-type array and the
other an array of interface type not
implemented by that value-type.

System.ArrayTypeMismatchException

Or

Both arrays are user-defined value
types and are not of the same type.

At least one of the elements in
sourceArray is not assignment-
System.InvalidCastException compatible with the type of
destinationArray.

System.ArgumentOutOfRangeException length < 0.

length < sourceArray.Length.

System.ArgumentException -or-

length < destinationArray.Length.

4

5 Example

6

7 This example demonstrates the System.Array.Copy method.
8

9 [C#]

0 usi ng System

1 public class ArrayCopyExanpl e {

22

OCO~NOUITRWNE

28

public static void Main() {
int[] intAryQig = newint[3];
doubl e[] dAryCopy = new doubl e[3];
for (int i =0; i <intAryOig.Length; i++)
intAryOrig[i] =i +3;
/lcopy the first 2 elenments of the source into the
destination
Array. Copy(int AryOrig, dAryCopy, 2);
Consol e. Wite("The elenents of the first array are:

")
for (int i =0; i <intAryOig.Length; i++)
Console. Wite("{0,3}", intAryOig[i]);
Consol e. WiteLine();
Consol e. Wite("The el enents of the copied array are:
")
for (int i =0; i < dAryCopy. Length; i++)
Console. Wite("{0,3}", dAryCopy[i]);
}

The output is

The el enments of the first array are: 3 45

The el enments of the copied array are: 3 4 0

23

RPOOW oO~NOUIM w N

e

Array.Copy(System.Array, System.Int32,
System.Array, System.Int32,
System.Int32) Method

Summary

Copies the specified number of elements from a source array starting
at the specified source index to a destination array starting at the
specified destination index.

Parameters

|sourceArray |The System.Array that contains the data to copy.

A System.Int32 that contains the index in sourceArray from which

sourcelndex ; .
copying begins.

|destinationArray |The System.Array that receives the data.

A System.Int32 that contains the index in destinationArray at

destinationIndex which storing begins.

|Iength |A System.Int32 that contains the number of elements to copy.

Description

If sourceArray and destinationArray are of different types,
System.Array.Copy performs widening conversions on the elements
of sourceArray as necessary before storing the information in
destinationArray. Value types will be boxed when being converted to a
System.Object. If the necessary conversion is a narrowing
conversion, a System.ArrayTypeMismatchException exception is
thrown. [Note: For information regarding valid conversions performed
by this method, see System.Convert.]

If an exception is thrown while copying, the state of destinationArray
is undefined.

If sourceArray and destinationArray are the same array,

24

g bhw N

System.Array.Copy copies the source elements safely to their
destination as if the copy were done through an intermediate array.

Exceptions

|Exception

|Condition

System.ArgumentNullException

sourceArray or destinationArray is null.

System.RankException

sourceArray and destinationArray have
different ranks.

System.ArrayTypeMismatchException

The elements in both arrays are built-in
types, and converting from the type of
the elements of sourceArray into the
type of the elements in destinationArray
requires a narrowing conversion.

Or

Both arrays are built-in types, and one
array is a value-type array and the
other an array of interface type not
implemented by that value-type.

Or

Both arrays are user-defined value
types and are not of the same type.

System.InvalidCastException

At least one element in sourceArray is
assignment-incompatible with the type
of destinationArray.

System.ArgumentOutOfRangeException

sourcelndex <
sourceArray.GetLowerBound(0).

Or

destinationlndex <
destinationArray.GetLowerBound(0).

Or

length < 0.

System.ArgumentException

(sourcelndex + length) >
(sourceArray.GetLowerBound(0) +
sourceArray.Length).

25

WN -

(destinationIindex + length) >
(destinationArray.GetLowerBound(0) +
destinationArray.Length).

Example

This example demonstrates the System.Array.Copy method.

[C#]

usi ng System
cl ass ArrayCopyExanpl e {
public static void Main() {
int[] intAry ={ 0, 10, 20, 30, 40, 50 };
Consol e. Wite("The elenents of the array are: ");
foreach (int i in intAry)
Console. Wite("{0,3}", i);
Consol e. WiteLine();
Array. Copy(intAry, 2, intAry, 0, 4);
Consol e. WitelLine("After copying elenments 2 through 5
into elenents 0 through 4");
Consol e. Wite("The elenents of the array are: ");
foreach (int i in intAry)
Console. Wite("{0,3}", i);
Consol e. WiteLine();

The output is

The elenments of the array are: 0 10 20 30 40 50

After copying elenments 2 through 5 into elenents 0 through
4

The el enments of the array are: 20 30 40 50 40 50

26

27

~No O1h~Ww N

(oe]

10
11

12
13

14

Array.CopyTo(System.Array,
System.Int32) Method

Summary

Copies all the elements of the current instance to the specified one-
dimensional array starting at the specified relative index in the
destination array.

Parameters

array

A one-dimensional System.Array that is the destination of the
elements copied from the current instance.

index

A System.Int32 that contains the relative zero-based index in array at
which copying begins.

Description

[Note: This method is implemented to support the
System.Collections.1Collection interface. If implementing
System.Collections.1Collection is not explicitly required, use
System.Array.Copy to avoid an extra indirection.

index is a relative index, not the actual array index. If the index of
array is zero-based, this value is the same as the actual index at which
copying begins. If the lower bound of array is not zero, the value of
index is added to the lower bound of array to get the actual index at
which copying begins. For example, if the lower bound of array is 2
and the value of index is 1, the copying actually starts at index 3.

If this method throws an exception while copying, the state of array is

undefined.]

Behaviors

As described above.

Default

As described above.

28

3

4

O o~ o O1

10

11
12

13
14

15
16

17
18
19
20
21
22

How and When to Override

Override this method to copy elements of the current instance to a

specified array.

Usage

Use this method to copy elements of the current instance to a

specified array.

Exceptions

Exception
System.ArgumentNullException

System.RankException

System.ArgumentOutOfRangeException

System.ArgumentException

System.ArrayTypeMismatchException

Example

Condition
array is null.

The current instance has more than one
dimension.

index < 0.
array has more than one dimension.

Or

index is greater than or equal to
array.Length.

or

The number of elements in the current
instance is greater than the available
space from index to the end of array.

The type of the current instance cannot
be cast automatically to the type of
array.

The following example shows how to copy the elements of one

System.Array into another.

[C#]

usi ng System

public class ArrayCopyToExanpl e

{
public static void Min()

{

29

OCO~NOUITRWNE

Array aryOne = Array. Createl nstance(typeof (Chj ect),
3);

aryne. Set Val ue("one", 0);

aryOne. Set Val ue("two", 1);

aryOne. Set Val ue("t hree", 2);

Array aryTwo = Array. Creat el nst ance(t ypeof (bj ect),
5);
for (int i=0; i < aryTwo.Length; i++)
aryTwo. Set Val ue(i, i);

Consol e. WitelLine("The contents of the first array
are:");
)fmemh(OMem o in aryOne)

Console. Wite("{0} ", 0);
Consol e. WiteLine();
Consol e. WitelLine("The original contents of the
second array are:");
foreach (object o in aryTwo)

Console. Wite("{0} ", 0);
Consol e. WitelLine();

aryOne. CopyTo(aryTwo, 1);
Consol e. WitelLine("The new contents of the second
array are:");
foreach(object o in aryTwo)
Console. Wite("{0} ", 0);

}

The output is

The contents of the first array are:

one two three

The original contents of the second array are:
01234

The new contents of the second array are:

30

N

0O one two three 4

31

o~NO O1hWw N

10
11

12
13
14

15
16
17

18
19

20

21

23
24

26
27

28
29

30

Array.Createlnstance(System.Type,
System.Int32) Method

Summary

Constructs a zero-based, one-dimensional array with the specified
number of elements of the specified type.

Parameters

The System.Type of the elements contained in the new
System.Array instance.

elementType

A System.Int32 that contains the number of elements contained in

length the new System.Array instance.

Return Value

A zero-based, one-dimensional System.Array object containing
length elements of type elementType.

Description

Reference-type elements will be set to null. Value-type elements will
be set to zero, except for System.Boolean elements, which will be
set to false.

[Note: Unlike most classes, System.Array provides the
System.Array.Createlnstance method, instead of public
constructors, to allow for late bound access.]

Exceptions

Excepton ~ Conditon

|System.ArgumentNuIIException |e|ementType is null.

|System.ArgumentException |elementTvne is not a valid

32

31

System.Type.
System.ArgumentOutOfRangeException |length < 0.

Example

The following example shows how to create and initialize a one-
dimensional System.Array.

[C#]
usi ng System

public class ArrayCreatel nstanceExanpl e

{
public static void Main()
{
Array intAry = Array. Createl nstance(typeof(int),5);
for (int
i =i nt Ary. Get Lower Bound(0) ;i <=i nt Ary. Get Upper Bound(0) ;i ++)
i nt Ary. Set Val ue(i*3,i);
Consol e. Wite("The values of the array are:");
foreach (int i in intAry)
Console. Wite("{0} ",i);
}
}

The output is

The values of the array are: 0 3 6 9 12

33

1
2
3 Array.Createlnstance(System.Type,
4 System.Int32, System.Int32) Method
5
6
7
8
9
10
11
12 Summary
13 Creates a zero-based, two-dimensional array of the specified
14 System.Type and dimension lengths.
15 Parameters
16
17
The System.Type of the elements contained in the new
elementType .
System.Array instance.
lenathi A System.Int32 that contains the number of elements contained in
9 the first dimension of the new System.Array instance.
lenath2 A System.Int32 that contains the number of elements contained in
9 the second dimension of the new System.Array instance.
18
19 Return Value
20
21 A new zero-indexed, two-dimensional System.Array instance of
22 elementType objects with the size lengthl for the first dimension and
23 length2 for the second.

24 Description

25 Reference-type elements will be set to null. Value-type elements will
26 be set to zero, except for System.Boolean elements, which will be
27 set to false.

28

29 [Note: Unlike most classes, System.Array provides the

30 System.Array.Createlnstance method, instead of public

31 constructors, to allow for late bound access.]

1
2
3

(o2l &) SN

Exceptions

Exception Condition

System.ArgumentNullException elementType is null.

System.ArgumentException System.Type.

lengthl < 0.

System.ArgumentOutOfRangeException |"°"

length2 < 0.

Example

The following example shows how to create and initialize a two-
dimensional System.Array.

[C#]

usi ng System
public class Create2DArrayExanpl e

public static void Min()
{
int i, j;
Array ary = Array. Createl nstance(typeof(int), 5, 3);
for(i = ary. Get LowerBound(0); i <=
ary. Get Upper Bound(0); i++)
{

for(j = ary.GetLowerBound(1l); j <=
ary. Get Upper Bound(1); j++)
{

} }
Consol e. WitelLine("The elenents of the array are:");
for(i = ary. GetLowerBound(0); i <=
ary. Get Upper Bound(0); i ++)
{

ary. SetVal ue((10*i + j), i, j);

for(j = ary.GetLowerBound(1); j <=
ary. Get Upper Bound(1); j++)

Console. Wite("{0, 2} ", ary.CetValue(i, j));

Consol e. WiteLine();

elementType is not a valid

35

=

O Voo~NOUIRhW N

=

The output is

The el enments of the array are:
0 1 2
10 11 12
20 21 22
30 31 32
40 41 42

N -

13

14
15

16
17

18

19
20

22
23
24

25

Array.Createlnstance(System.Type,
System.Int32, System.Int32,
System.Int32) Method

Summary

Creates a zero-based, three-dimensional array of the specified
System.Type and dimension lengths.

Parameters

elementType

The System.Type of the elements contained in the new
System.Array instance.

A System.Int32 that contains the number of elements contained in

lengthl the first dimension of the new System.Array instance.

lenath2 A System.Int32 that contains the number of elements contained in
9 the second dimension of the new System.Array instance.

length3 A System.Int32 that contains the number of elements contained in

the third dimension of the new System.Array instance.

Return Value

A new zero-based, three-dimensional System.Array instance of
elementType objects with the size lengthl for the first dimension,
length2 for the second, and length3 for the third.

Description

Reference-type elements will be set to null. Value-type elements will
be set to zero, except for System.Boolean elements, which will be

set to false.

37

~N O 01 ArWNPE

[@R{elye0)

11

13
14

15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35

[Note: Unlike most classes, System.Array provides the
System.Array.Createlnstance method, instead of public
constructors, to allow for late bound access.]

Exceptions

Exception Condition
System.ArgumentNullException elementType is null.

elementType is not a valid
System.Type.

lengthl < O.

System.ArgumentException

Or
System.ArgumentOutOfRangeException length2 < 0.
or

length3 < 0.

Example

The following example shows how to create and initialize a three-
dimensional System.Array.

[C#]

usi ng System

public class Creat e3DArrayExanpl e

{
public static void Min()
{
int i, j, k;
Array ary = Array. Greatel nstance(typeof(int), 2, 4,
3);

for(i = ary. GetLowerBound(0); i <=
ary. Get Upper Bound(0); i ++)
{

for(j = ary.GetLowerBound(1); j <=
ary. Get Upper Bound(1); j++)

for(k = ary. Get Lower Bound(2); k <=
ary. Get Upper Bound(2); k++)
{

ary. Set Val ue((100*i + 10*j + k), i, j, Kk);

38

OCO~NOUITRWNE

}
}
Consol e. WitelLine("The elenents of the array are:");
for(i = ary. GetLowerBound(0); i <=
ary. Get Upper Bound(0); i++)
{

for(j = ary.CetlLowerBound(1); j <=
ary. Get Upper Bound(1); j++)

{
for(k = ary. Get Lower Bound(2); k <=

23

24
25
26
27
28
29
30
31
32
33

35

ary. Get Upper Bound(2); k++)
{

k)

}
}

The output is

The el enments of the array are:

0
10
20
30

100
110
120
130

}

1
11
21
31

101
111
121
131

}

Consol e. Wi teLine();

2
12
22
32

102
112
122
132

Console. Wite("{0, 3} ", ary.CetValue(i, j,

Consol e. Wi teLine();

39

OO 0~NOOl A W N -

e

=
N

13
14

15
16
17

Array.Createlnstance(System.Type,
System.Int32[]) Method

Summary

Creates a zero-based, multidimensional array of the specified
System.Type and dimension lengths.

Parameters

elementType

The System.Type of the elements contained in the new
System.Array instance.

lengths

A one-dimensional array of System.Int32 objects that contains the
size of each dimension of the new System.Array instance.

Return Value

A new zero-based, multidimensional System.Array instance of the
specified System.Type with the specified length for each dimension.
The System.Array.Rank of the new instance is equal to
lengths.Length.

Description

The number of elements in lengths is required to equal the number of
dimensions in the new System.Array instance. Each element of
lengths specifies the length of the corresponding dimension in the new

instance.

Reference-type elements will be set to null. Value-type elements will
be set to zero, except for System.Boolean elements, which will be

set to false.

o U1h WN -

10
11

12
13

14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38

[Note: Unlike most classes, System.Array provides the
System.Array.Createlnstance method, instead of public
constructors, to allow for late bound access.]

Exceptions

Exception Condition
System.ArgumentNullException

elementType is not a valid
System.Type.

System.ArgumentException -or-

lengths.Length = 0.

System.ArgumentOutOfRangeException |A value in lengths is less than zero.

Example

The following example shows how to create and initialize a
multidimensional System.Array.

[C#]

usi ng System

public class CreateMil ti D mArrayExanpl e

{
public static void Min()

{
int i, j, k;
int[] indexAry = {2, 4, 5};
Array ary = Array. Creat el nstance(typeof (int),
i ndexAry);
for(i = ary. GetLowerBound(0); i <=
ary. Get Upper Bound(0); i ++)
{

for(j = ary.GetLowerBound(1); j <=
ary. Get Upper Bound(1); j++)

{
for(k = ary. Get Lower Bound(2); k <=
ary. Get Upper Bound(2); k++)
{

ary. Set Val ue((100*i + 10*j + k), i, j, Kk);
}
}

Consol e. WiteLine("The elenents of the array are:");

elementType orlengths is null.

41

OCO~NOUITRWNE

20

21
22
23
24
25
26
27
28
29
30

31

for(i = ary. Get LowerBound(0); i <=
ary. Get Upper Bound(0); i++)
{

for(j = ary.CetlLowerBound(1); j <=
ary. Get Upper Bound(1); j++)
{

for(k = ary. Get LowerBound(2); k <=
ary. Get Upper Bound(2); k++)
{

Console. Wite("{0, 3} ", ary.CetValue(i,
k));

}
Consol e. Wi teLine();

Consol e. WiteLine();

}
}
}

The output is

The el enments of the array are:
o 1 2 3 4

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

100 101 102 103 104
110 111 112 113 114
120 121 122 123 124
130 131 132 133 134

j ’

42

OO 0~NOOl A W N -

e

=
N

13
14

15
16
17

18

19
20

Array.Createlnstance(System.Type,
System.Int32[], System.Int32[]) Method

Summary

Creates a multidimensional array of the specified System.Type and
dimension lengths, with the specified lower bounds.

Parameters

elementType

The System.Type of the elements contained in the new
System.Array instance.

lengths

A one-dimensional array of System.Int32 objects that contains the
size of each dimension of the new System.Array instance.

lowerBounds

A one-dimensional array of System.Int32 objects that contains the
lower bound of each dimension of the new System.Array instance.

Return Value

A new multidimensional System.Array of the specified System.Type
with the specified length and lower bound for each dimension.

Description

The lengths and lowerBounds are required to have the same number
of elements. The number of elements in lengths equals the number of
dimensions in the new System.Array instance

Each element of lengths specifies the length of the corresponding

dimension in

the new System.Array instance.

Each element of lowerBounds specifies the lower bound of the

corresponding dimension in the new System.Array instance.

Reference-type elements will be set to null. Value-type elements will
be set to zero, except for System.Boolean elements, which will be
set to false.

[Note: Unlike most classes, System.Array provides the
System.Array.Createlnstance method, instead of public
constructors, to allow for late bound access.]

OCO~NOOUITRRWNE

10 Exceptions

11
12
Exception Condition
elementType, lengths, or lowerBounds
System.ArgumentNullException is null.
elementType is not a valid
System.Type.
Or
System.ArgumentException lengths.Length = 0.
or
lengths and lowerBounds do not contain
the same number of elements.
System.ArgumentOutOfRangeException |A value in lengths is less than zero.
13
14 Example
15
16 The following example shows how to create and initialize a
17 multidimensional System.Array with specified low bounds.
18
19 [c#]
20
21 usi ng System
22
23 public class MiltiD nmNonZer oBoundExanpl e
24 {
25 public static void Min()
26 {
27 int i, j, k;
28 int[] indexAry = {4, 2, 3};
29 int[] | owboundAry = {3, 2, 1};
30 Array ary = Array. Createl nstance(typeof (int),
31 i ndexAry, | owboundAry);

OCO~NOUITRWNE

for(i = ary. Get LowerBound(0); i <=
ary. Get Upper Bound(0); i++)
{

for(j = ary. GetLowerBound(1l); j <=

ary. Get Upper Bound(1); j++)

for(k = ary. Get Lower Bound(2);
ary. Get Upper Bound(2); k++)
{

ary. Set Val ue((100*i + 10*j

}
}

Consol e. WiteLine("The elenents of the array are:");

for(i = ary. Get LowerBound(0); i <=
ary. Get Upper Bound(0); i++)
{

k <=

+ k),

for(j = ary. GetLowerBound(1l); j <=

ary. Get Upper Bound(1); j++)
{

for(k = ary. Get Lower Bound(2);
ary. Get Upper Bound(2); k++)
{

k <=

) J)

k) ;

Console. Wite("{0, 3} ", ary.CGetValue(i

k)

}
Consol e. Wi teLine();

}
Consol e. Wi teLine();
}
}
}

The output is

The el enments of the array are:
321 322 323
331 332 333

421 422 423
431 432 433

521 522 523
531 532 533

621 622 623
631 632 633

45

[—

o0l BN

[ILASM]
. met hod public hidebysig virtual class

Syst em Col | ecti ons. | Enuner at or Get Enuner at or ()

[C#]
public virtual |Enunerator GetEnumnerator()

Summary

Returns a System.Collections.IEnumerator for the current instance.

Return Value

A System.Collections.IEnumerator for the current instance.

Description

A System.Collections.IEnumerator grants read-access to the
elements of a System.Array.

[Note: This method is implemented to support the
System.Collections.IEnumerator interface. For more information
regarding the use of an enumerator, see
System.Collections.lIEnumerator.]

Behaviors

Initially, the enumerator is positioned before the first element of the
current instance. System.Collections.lIEnumerator.Reset returns
the enumerator to this position. Therefore, after an enumerator is
created or after a System.Collections.l[Enumerator.Reset,
System.Collections.IEnumerator.MoveNext is required to be called
to advance the enumerator to the first element of the collection before
reading the value of System.Collections.IEnumerator.Current.

The enumerator is in an invalid state if it is positioned before the first
element or after the last element of the current instance. Whenever
the enumerator is in an invalid state, a call to
System.Collections.l[Enumerator.Current is required to throw a
System.InvalidOperationException.

System.Collections.lEnumerator.Current returns the same object
until either System.Collections.IEnumerator.MoveNext or
System.Collections.IEnumerator.Reset is called.

Once the enumerator of the current instance is moved immediately
past the last element of the current instance, subsequent calls to

46

w NP

~Noobh

(oe]

10

11

12
13

14
15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30

31

32
33

35

System.Collections.IEnumerator.MoveNext return false and the
enumerator remains positioned immediately past the last element.

Default

Multidimensional arrays will be processed in Row-major form.

[Note: For some multidimensional System.Array objects, it may be
desirable for an enumerator to process them in Column-major form.]

How and When to Override

Override this method to provide read-access to the current instance.
Usage

Use this method to iterate over the elements of the current instance.

Example

This example demonstrates the System.Array.GetEnumerator
method.

[C#]

usi ng System
usi ng System Col | ecti ons;
public class ArrayGet Enunerator {
public static void Min() {

string[,] strAry = {{"1","one"}, {"2", "two"}, {"3",
"three"}};

Consol e. Wite("The elenents of the array are: ");

| Enuner at or seEnum = strAry. Get Enumer at or () ;

whi | e (sEnum MoveNext ())

Console. Wite(" {0}", sEnum Current);

The output is

The elenments of the array are: 1 one 2 two 3 three

a7

N -

O ol A W

10

12
13

15

16

17
18

19
20

21

22
23

25

26
27

28

F

Array.GetLowerBound(System.Int32)
Method

Summary

Returns the lower bound of the specified dimension in the current
instance.

Parameters

A System.Int32 that contains the zero-based dimension of the current
instance whose lower bound is to be determined.

dimension

Return Value

A System.Int32 that contains the lower bound of the specified
dimension in the current instance.

Description

[Note: For example, System.Array.GetLowerBound (0) returns the
lower bound of the first dimension of the current instance, and
System.Array.GetLowerBound(System.Array.Rank - 1) returns
the lower bound of the last dimension of the current instance.]

Exceptions

Excepton ~ Conditon

dimension < 0.

System. IndexOutOfRangeException | °'

dimension is equal to or greater than the
Svstem.Arrav.Rank oropertv of the

48

wWN PP

current instance.

49

N -

16

17
18

19
20

21

22
23

25

26
27

28

F

Array.GetUpperBound(System.Int32)
Method

Summary

Returns the upper bound of the specified dimension in the current
instance.

Parameters

A System.Int32 that contains the zero-based dimension of the current
instance whose upper bound is to be determined.

dimension

Return Value

A System.Int32 that contains the upper bound of the specified
dimension in the current instance.

Description

[Note: For example, System.Array.GetUpperBound (0) returns the
upper bound of the first dimension of the current instance, and
System.Array.GetUpperBound(System.Array.Rank - 1) returns
the upper bound of the last dimension of the current instance.]

Exceptions

Excepton ~ Conditon

dimension < 0.

System.IndexOutOfRangeException |-or-

dimension is eaual to or areater than the

50

wWN PP

System.Array.Rank property of the
current instance.

51

N -

ooy ook~ w

10
11

12
13
14

Array.GetValue(System.Int32[]) Method

Summary

Gets the value at the specified position in the current multidimensional
instance.

Parameters

A one-dimensional array of System.Int32 objects that contains the
indices that specify the position of the element in the current instance
whose value to get.

indices

Return Value

A System.Object that contains the value at the specified position in
the current instance.

Description

The number of elements in indices is required to be equal to the
number of dimensions in the current instance. All elements in indices
collectively specify the position of the desired element in the current
instance.

[Note: Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether any
of the values in indices are out of bounds.]

Exceptions

]System.ArgumentNuIIException \indices is null.

52

WN B

System.ArgumentException

The number of dimensions in the current
instance is not equal to the number of
elements in indices.

System.IndexOutOfRangeException

At least one element in indices is outside the
range of valid indices for the corresponding
dimension of the current instance.

53

o0 A~ WN =

10
11

12

13

14
15

16
17

18
19
21

22
23
24

25
26
27

Array.GetValue(System

.Int32) Method

Summary

Gets the value at the specified position in the current one-dimensional

instance.

Parameters

index

current instance.

A System.Int32 that contains the position of the value to get from the

Return Value

A System.Object that contains the value at the specified position in

the current instance.

Description

[Note: Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether index

is out of bounds.]

Exceptions

Excepton ~ Conditon

System.ArgumentException

The current instance has more than one
dimension.

System.IndexOutOfRangeException

index is outside the range of valid indices for
the current instance.

Example

ooo~NOoOYUIh WNE

19

This example demonstrates the System.Array.GetValue method.

[C#]

usi ng System
public class ArrayGet Val ueExanpl e {
public static void Min() {
String[] strAry = { "one", "two", "three", "four",

"five" };
Consol e. Wite("The el enents of the array are: ");
for(int i =0; i < strAry.Length; i++)
Console. Wite(" "{0}" ", strAry. GetVal ue(i));
}

The output is

The el enments of the array are: 'one' 'two' 'three' 'four'
"five'

55

N -

O ol A W

10

12
13

15

16

17
18

Int32,

Array.GetValue(System
System.Int32) Method

Summary

Gets the value at the specified position in the current two-dimensional

instance.

Parameters

. A System.Int32 that contains the first-dimension index of the element
index1 . .

in the current instance to get.
. A System.Int32 that contains the second-dimension index of the
index2 . .

element in the current instance to get.

Return Value

A System.Object that contains the value at the specified position in

the current instance.

Description

[Note: Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether any

of the indices are out of bounds.]

Exceptions

System.ArgumentException

The current instance does not have exactly
two dimensions.

System.IndexOutOfRangeException

At least one of index1 or index2 is outside
the ranae of valid indexes for the

56

wWN PP

corresponding dimension of the current
instance.

57

N -

O ol A W

16

17
18

19
20

21

22
23
24

25
26

27

Array.GetValue(System.Int32,
System.Int32, System.Int32) Method

Summary

Gets the value at the specified position in the current three-
dimensional instance.

Parameters

. A System.Int32 that contains the first-dimension index of the element
index1 . .

in the current instance to get.
. A System.Int32 that contains the second-dimension index of the
index2 . .

element in the current instance to get.
. A System.Int32 that contains the third-dimension index of the element
index3 - -

in the current instance to get.

Return Value

A System.Object that contains the value at the specified position in
the current instance.

Description

[Note: Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether any
of the indices are out of bounds.]

Exceptions

|System.ArgumentException |The current instance does nat have exactlv

58

WN B

|three dimensions.

At least one ofindex1 or index2 or index3 is
outside the range of valid indexes for the

System.IndexOutOfRangeException |corresponding dimension of the current
instance.

59

~No O1h~Ww N

(oe]

10

11
12
13

Array.lndexOf(System.Array,
System.Object) Method

Summary

Searches the specified one-dimensional System.Array, returning the
index of the first occurrence of the specified System.Object.

Parameters

]array]A one-dimensional System.Array to search.

]value]A System.Object to locate in array.

Return Value

A System.Int32 containing the index of the first occurrence of value
in array, if found; otherwise, array.GetLowerBound(O) - 1. [Note: For
a vector, if value is not found, the return value will be -1. This
provides the caller with a standard code for a failed search.]

Description

This version of System.Array.IndexOf is equivalent to
System.Array.IndexOf(array, value, array.GetLowerBound(0),
(array.Length - array.GetLowerBound(0))).

The elements will be compared using the semantics of the
System.Object.Equals method. For user-defined types,
System.Object.Equals is actually called.

Exceptions

]System.ArgumentNuIIException]array is null.

]System.RankException]array has more than one dimension.

60

WN -

28

Example

The following example demonstrates the System.Array.lndexOf
method.

[C#]

usi ng System
public class Arrayl ndexOrExanpl e {
public static void Min() {
int[] intAhy ={ 0, 1, 2, 0, 1};
Consol e. Wite("The values of the array are: ");
foreach(int i in intAry)
Console. Wite("{0,5}", i);
Consol e. WiteLine();
int j = Array.IndexOf(intAry, 1);
Consol e. WitelLine("The first occurrence of 1 is at
i ndex {0}", j);
}

}

The output is

The values of the array are: 01201

The first occurrence of 1 is at index 1

61

o~NO O1hWw N

10
11
12
13

15

Array.lndexOf(System.Array,
System.Object, System.Int32) Method

Summary
Searches the specified one-dimensional System.Array, returning the
index of the first occurrence of the specified System.Object between
the specified index and the last element.

Parameters

|array |A one-dimensional System.Array to search.

|va|ue |A System.Object to locate in array.

|start|ndex |A System.Int32 that contains the index at which searching starts.

Return Value

A System.Int32 containing the index of the first occurrence of value
in array, within the range startindex through the last element of array,
if found; otherwise, array.GetLowerBound(0) - 1. [Note: For a vector,
if value is not found, the return value will be -1. This provides the
caller with a standard code for the failed search.]

Description

This version of System.Array.IndexOf is equivalent to
System.Array.IndexOf (array, value, startindex, (array.Length -
startindex)).

The elements will be compared using the semantics of the
System.Object.Equals method. For user-defined types,
System.Object.Equals is actually called.

Exceptions

62

WN P

System.ArgumentNullException

array is null.

System.ArgumentOutOfRangeException

startindex is outside the range of valid
indexes for array.

|System.Ran KException

|array has more than one dimension.

63

1 Array.lndexOf(System.Array,
2 System.Object, System.Int32,
3 System.Int32) Method

4

5

6

7

8

9

10

11 Summary

12 Searches the specified one-dimensional System.Array, returning the
13 index of the first occurrence of the specified System.Object in the
14 specified range.
15 Parameters
16
17
]array]A one-dimensional System.Array to search.
]value]A System.Object to locate in array.
]startlndex]A System.Int32 that contains the index at which searching starts.
A System.Int32 that contains the number of elements to search,
count g .
beginning with startindex.
18
19 Return Value
20
21 A System.Int32 containing the index of the first occurrence of value
22 in array, within the range startindex through startindex + count, if
23 found; otherwise, array.GetLowerBound(0) - 1. [Note: For a vector, if
24 value is not found, the return value will be -1. This provides the caller
25 with a standard code for the failed search.]

26 Description

27 The elements will be compared using the semantics of the
28 System.Object.Equals method. For user-defined types,
29 System.Object.Equals is actually called.

1 Exceptions
2
3
Exception ~ Conditon

array is null.

System.ArgumentNullException

startlndex is outside the range of valid
indices for array.

-or-
count < 0.

System.ArgumentOutOfRangeException |-or-

The sum of count and startindex does
not specify a valid range in array (i.e.
count + startindex >
array.GetLowerBound(0) +
array.Length).

System.RankException array has more than one dimension.

65

~No Oo1h~ w N -

(oe]

F

Array.Initialize() Method

Summary

Initializes every element of the current instance of value-type objects
by calling the default constructor of that value type.

Description

This method cannot be used on reference-type arrays.

If the current instance is not a value-type System.Array or if the
value type does not have a default constructor, the current instance is
not modified.

The current instance can have any lower bound and any number of
dimensions.

[Note: This method can be used only on value types that have
constructors.]

66

~No O1h~Ww N

(oe]

10

11
12
13

Array.LastlndexOf(System.Array,
System.Object) Method

Summary

Searches the specified one-dimensional System.Array, returning the
index of the last occurrence of the specified System.Object.

Parameters

]array]A one-dimensional System.Array to search.

]value]A System.Object to locate in array.

Return Value

A System.Int32 containing the index of the last occurrence in array
of value, if found; otherwise, array.GetLowerBound(0) - 1. [Note: For
a vector, if value is not found, the return value will be -1. This
provides the caller with a standard code for the failed search.]

Description

This version of System.Array.LastlndexOf is equivalent to
System.Array.LastlndexOf(array, value, (array.GetLowerBound(O)
+ array.Length), array.Length).

The elements will be compared using the semantics of the
System.Object.Equals method. For user-defined types,
System.Object.Equals is actually called.

Exceptions

]System.ArgumentNuIIException]array is null.

]System.RankException]array has more than one dimension.

67

WN -

30

Example

The following example demonstrates the System.Array.LastlndexOf
method.

[C#]

usi ng System
public class ArraylLast| ndexOf Exanpl e {

public static void Main() {
int[] intAhy ={ 0, 1, 2, 0, 1};
Consol e. Wite("The values of the array are: ");
foreach(int i in intAry)
Console. Wite("{0,5}", i);
Consol e. WiteLine();
int j = Array. LastlndexO(intAry, 1);
Consol e. WiteLine("The | ast occurrence of 1 is at
i ndex {0}", j);
}

}

The output is

The values of the array are: 01201

The last occurrence of 1 is at index 4

68

o~NO O1hWw N

10
11
12
13

15

Array.LastlndexOf(System.Array,
System.Object, System.Int32) Method

Summary
Searches the specified one-dimensional System.Array, returning the
index of the last occurrence of the specified System.Object between
the specified index and the first element.

Parameters

|array |A one-dimensional System.Array to search.

|va|ue |A System.Object to locate in array.

|start|ndex |A System.Int32 that contains the index at which searching starts.

Return Value

A System.Int32 containing the index of the last occurrence of value
in the range startindex through the lower bound of array, if found;
otherwise, array.GetLowerBound(0) - 1. [Note: For a vector, if value is
not found, the return value will be -1. This provides the caller with a
standard code for the failed search.]

Description

This version of System.Array.LastlndexOf is equivalent to
System.Array.LastlndexOf(array, value, startindex, (array.Length -
startindex)).

The elements will be compared using the semantics of the
System.Object.Equals method. For user-defined types,
System.Object.Equals is actually called.

Exceptions

69

WN P

System.ArgumentNullException

array is null.

System.ArgumentOutOfRangeException

startindex is outside the range of valid
indices for array.

|System.Ran KException

|array has more than one dimension.

70

Array.LastlndexOf(System.Array,
System.Object, System.Int32,
System.Int32) Method

QO ook~ w N

H

11 Summary

12 Searches the specified one-dimensional System.Array, returning the
13 index of the last occurrence of the specified System.Object in the
14 specified range.
15 Parameters
16
17
]array]A one-dimensional System.Array to search.
]value]A System.Object to locate in array.
]startlndex]A System.Int32 that contains the index at which searching starts.
A System.Int32 that contains the number of elements to search,
count g i
beginning with startindex.
18
19 Return Value
20
21 A System.Int32 containing the index of the last occurrence of value
22 in array, within the range startindex + count through startindex, if
23 found; otherwise, array.GetLowerBound(0) - 1. [Note: For a vector, if
24 value is not found, the return value will be -1. This provides the caller
25 with a standard code for the failed search.]

26 Description

27 The elements will be compared using the semantics of the
28 System.Object.Equals method. For user-defined types,
29 System.Object.Equals is actually called.

71

1
2

3

o 01

Exceptions

System.ArgumentNullException

array is null.

System.ArgumentOutOfRangeException

startlndex is outside the range of valid
indices for array.

-or-
count < 0.
-or-

count and startindex do not specify a
valid range in array.

|System .RankException

|array has more than one dimension.

72

o0 A~ WN =

10
11

12

13
14

15
16
17

18
19

20

21
22
23

Array.Reverse(System.Array) Method

Summary

Reverses the sequence of the elements in the specified one-
dimensional System.Array.

Parameters

\array \The one-dimensional System.Array to reverse.

Description

This version of System.Array.Reverse is equivalent to
System.Array.Reverse(array, array.GetLowerBound(0),
array.Length).

Exceptions

|System.ArgumentNuIIException |array is null.
\System.RankException \array has more than one dimension.

73

o~NO O1hWw N

10
11

12
13
14

15
16

18

19
20

22
23

24
25

Array.Reverse(System.Array,
System.Int32, System.Int32) Method

Summary

Reverses the sequence of the elements in the specified range of the
specified one-dimensional System.Array.

Parameters

|array |The one-dimensional System.Array to reverse.
|index |A System.Int32 that contains the index at which reversing starts.
]Iength]A System.Int32 that contains the number of elements to reverse.

Exceptions

]System.ArgumentNuIIException \array is null.

]System.RankException \array is multidimensional.

index < array.GetLowerBound(0).

System.ArgumentOutOfRangeException length < 0.

index and length do not specify a valid
range in array (i.e. index + length >
array.GetLowerBound(0) +
array.Length).

System.ArgumentException

Example

The following example demonstrates the System.Array.Reverse
method.

[C#]

74

OCO~NOUITRWNE

26

usi ng System
public class ArrayReverseExanpl e {
public static void Main() {
string[] strAry = { "one", "two", "three" };
Consol e. Wite("The elenents of the array are:");
foreach(string str in strAry)
Console. Wite(" {0}", str);
Array. Reverse(strAry);
Consol e. WiteLine();
Consol e. WitelLine("After reversing the array,");
Console. Wite("the elenents of the array are:");
foreach(string str in strAry)
Console. Wite(" {0}", str);

}

The output is

The el ements of the array are: one two three

After reversing the array,

the elenments of the array are: three two one

75

~No O1h~Ww N

10

11
12
13

Array.SetValue(System.Object,
System.Int32) Method

Summary

Sets the value of the element at the specified position in the current
one-dimensional instance.

Parameters

]value]A System.Object that contains the new value for the specified element.
index A System.Int32 that contains the index of the element whose value is
to be set.

Description

[Note: Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether index
is out of bounds.

For more information regarding valid conversions that will be
performed by this method, see System.Convert.]

Exceptions

The current instance has more than one
dimension.

System.ArgumentException -or-

value is not assignment-compatible with the
element type of the current instance.

index is outside the range of valid indices for
System.IndexOutOfRangeException [the current instance.

76

WN B

77

N -

O ol A W

Array.SetValue(System.Object,
System.Int32, System.Int32) Method

Summary

Sets the value of the element at the specified position in the current
two-dimensional instance.

Parameters

|va|ue

|A System.Object that contains the new value for the specified element.

. A System.Int32 that contains the first-dimension index of the element
index1 . -

in the current instance to set.
. A System.Int32 that contains the second-dimension index of the
index2 . .

element in the current instance to set.

Description

[Note: For more information regarding valid conversions that will be
performed by this method, see System.Convert.

Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether any
of the indices are out of bounds.]

Exceptions

Excepton ~ Conditon

The current instance does not have exactly
two dimensions.

System.ArgumentException

-0r-

78

WN B

value is not assignment-compatible with the
element type of the current instance.

System.IndexOutOfRangeException

At least one of index1 or index2 is outside
the range of valid indices for the
corresponding dimension of the current
instance.

79

= OO 0o ~NO g b~ W N -

O =
V)

B
AW

e
o ul

H
\'

Array.SetValue(System.Object,
System.Int32, System.Int32,
System.Int32) Method

Summary

Sets the value of the element at the specified position in the current
three-dimensional instance.

Parameters

|va|ue

|A System.Object that contains the new value for the specified element.
. A System.Int32 that contains the first-dimension index of the element
index1 .)

in the current instance to set.
. A System.Int32 that contains the second-dimension index of the
index2 . .

element in the current instance to set.
. A System.Int32 that contains the third-dimension index of the element
index3 . .

in the current instance to set.

Description

[Note: For more information regarding valid conversions that will be
performed by this method, see System.Convert.

Use the System.Array.GetLowerBound and
System.Array.GetUpperBound methods to determine whether any
of the indices are out of bounds.]

Exceptions

Exception ~ Conditon

80

The current instance does not have exactly
three dimensions.

System.ArgumentException -or-

value is not assignment-compatible with the
element type of the current instance.

At least one of index1, index2, or index3 is
outside the range of valid indices for the
corresponding dimension of the current
instance.

System.IndexOutOfRangeException

WN B

81

N -

O ol A W

Array.SetValue(System.Object,
System.Int32[]) Method

Summary

Sets the value of the element at the specified position in the current
multidimensional instance.

Parameters

|va|ue |A System.Object that contains the new value for the specified element.

A one-dimensional array of System.Int32 objects that contains the
indices that specify the position of the element in the current instance to
set.

indices

Description

The number of elements in indices is required to be equal to the
number of dimensions in the current instance. All elements in indices
collectively specify the position of the desired element in the current
instance.

[Note: For more information regarding valid conversions that will be
performed by this method, see System.Convert.

Use the System.Array.GetLowerBound and

System.Array.GetUpperBound methods to determine whether any
of the values in indices is out of bounds.]

Exceptions

Excepton ~ Conditon

|System.ArgumentNuIIException |indices is null.

82

WN B

System.ArgumentException

The number of dimensions in the current
instance is not equal to the number of
elements in indices.

Or

value is not assignment-compatible with the
element type of the current instance.

System.IndexOutOfRangeException

At least one element in indices is outside the
range of valid indices for the corresponding
dimension of the current instance.

83

o0 A~ WN =

24
25
26

27

28
29

30
31

Array.Sort(System.Array) Method

Summary

Sorts the elements of the specified one-dimensional System.Array.

Parameters

|array |A one-dimensional System.Array to sort.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(array, null, array.GetLowerBound(0),
array.Length, null).

Each element of array is required to implement the
System.lIComparable interface to be capable of comparisons with
every other element in array.

Exceptions

]System.ArgumentNuIIException]array is null.

]System.RankException]array has more than one dimension.

One or more elements in array do not implement

System.ArgumentException the System.lIComparable interface.

Example

This example demonstrates the System.Array.Sort method.

[C#]

usi ng System
public class ArraySortExanple {

OCO~NOUITRWNE

21

public static void Main() {
string[] strAry = { "All's", "well", "that"
"wel " };
Consol e. Wite("The original string array is
foreach (String str in strAry)
Console. Wite(str + " ");
Consol e. WiteLine();
Array. Sort(strAry);
Consol e. Wite("The sorted string array is:
foreach (string str in strAry)
Console. Wite(str + " ");

}

The output is

The original string array is: All's well that end

The sorted string array is: All's ends that well

, "endS" ,

")

")

s wel |

wel |

85

~No O1h~Ww N

(oe]

10
11

12
13

14

Array.Sort(System.Array, System.Array)
Method

Summary

Sorts the specified pair of one-dimensional System.Array objects
(one containing a set of keys and the other containing corresponding
items) based on the keys in the first specified System.Array.

Parameters

]keys]A one-dimensional System.Array that contains the keys to sort.

A one-dimensional System.Array that contains the items that
correspond to each of element of keys. Specify a null reference to sort

items only keys.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(keys, items, keys.GetLowerBound(0),
keys.Length, null).

Each key in keys is required to have a corresponding item in items.
The sort is performed according to the order of keys. After a key is
repositioned during the sort, the corresponding item in items is
similarly repositioned. Only keys.Length elements of items are sorted.
Therefore, items is sorted according to the arrangement of the
corresponding keys in keys. If the sort is not successfully completed,
the results are unspecified.

Each element of keys is required to implement the
System.lIComparable interface to be capable of comparisons with
every other element in keys.

Exceptions

86

System.ArgumentNullException

keys is null.

keys has more than one dimension.

Or

System.RankException

System.ArgumentException

Example

items is not a null reference and has more than
one dimension.

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

Or

items is not a null reference, and keys.Length >
items.Length.

Or

One or more elements in keys do not implement
the System.IComparable interface.

This example demonstrates the System.Array.Sort method.

[C#]

usi ng

System

public class ArraySort Exanpl e {
public static void Main() {

"wel | "}

string[] strAry = { "All's", "well", "that", "ends",

int[] intAry ={ 3, 4, 0, 1, 2 };
Consol e. Wite("The original string array is: ");
foreach (string str in strAry)

Console. Wite(str + " ");
Consol e. WitelLine();
Consol e. Wite("The key array is: ");
foreach (int i in intAry)

Console. Wite(i + " ");
Consol e. WiteLine();
Array. Sort(intAry, strAry);
Consol e. Wite("The sorted string array is: ");
foreach (string str in strAry)
Console. Wite(str + " ");

87

O ©WoO~NOUITRWN R

=

11

The output is

The original string array is: All's well

The key array is:

34012

The sorted string array is:

t hat ends wel |

that ends well Al's well

88

~No O1h~Ww N

(oe]

10

11
12
13

14
15

16
17
18
19
20
21
22

23
24

25

Array.Sort(System.Array,
System.Int32) Method

System.Int32,

Summary

Sorts the elements in the specified range of the specified one-

dimensional System.Array.

Parameters

]array \A one-dimensional System.Array to sort.
|index |A System.Int32 that contains the index at which sorting starts.
\Iength \A System.Int32 that contains the number of elements to sort.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(array, null, index, length, null).

Each element of array is required to implement the
System.lIComparable interface to be capable of comparisons with
every other element in array. If the sort is not successfully completed,

the results are unspecified.

Exceptions

|System.ArgumentNuIIException

|array is null.

]System .RankException

\array has more than one dimension.

System.ArgumentOutOfRangeException

index < array.GetLowerBound(0).
Or

length < 0.

System.ArgumentException

index and length do not specify a valid
ranae in arrav.

89

WN P

Or

One or more elements in array do not
implement the System.lComparable
interface.

90

oY oOo0gh~Ww N

10

11
12

14

15
16

17

Array.Sort(System.Array, System.Array,
System.Int32, System.Int32) Method

Summary

Sorts the specified ranges of the specified pair of one-dimensional
System.Array objects (one containing a set of keys and the other
containing corresponding items) based on the keys in the first
specified System.Array.

Parameters

]keys]A one-dimensional System.Array that contains the keys to sort.

A one-dimensional System.Array that contains the items that

items correspond to each element in keys. Specify a null reference to sort only
keys.

]index]A System.Int32 that contains the index at which sort begins.

]Iength]A System.Int32 that contains the number of elements to sort.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(keys, items, index, length, null).

Each key in keys is required to have a corresponding item in items.
The sort is performed according to the order of keys. After a key is
repositioned during the sort, the corresponding item in items is
similarly repositioned. Therefore, items is sorted according to the
arrangement of the corresponding keys in keys. If the sort is not
successfully completed, the results are undefined.

Each element of keys is required to implement the

System.lIComparable interface to be capable of comparisons with
every other element in keys.

91

1
2
3

o 01

Exceptions

Excepton ~ Conditon

System.ArgumentNullException

keys is null.

System.RankException

keys has more than one dimension.
Or

items is not a null reference and has
more than one dimension.

System.ArgumentOutOfRangeException

index < keys.GetLowerBound(0).
Or

length < 0.

System.ArgumentException

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

-0r-

index and length do not specify a valid
range in key.

Or

items is not a null reference, and index
and length do not specify a valid range
in items.

Or

One or more elements in keys do not

implement the System.lIComparable
interface.

92

oo~ OOh~hWw N

10
11

12
13
14

Array.Sort(System.Array,
System.Collections.1Comparer) Method

Summary

Sorts the elements in the specified one-dimensional System.Array
using the specified System.Collections.IComparer implementation.

Parameters

|array |The one-dimensional System.Array to sort.

The System.Collections.IComparer implementation to use when
comparing elements. Specify a null reference to use the

comparer System.IComparable implementation of each element.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(array, null, array.GetLowerBound(0),
array.Length, comparer).

If comparer is a null reference, each element of array is required to
implement the System.lIComparable interface to be capable of
comparisons with every other element in array. If the sort is not
successfully completed, the results are unspecified.

Exceptions

]System.ArgumentNuIIException]array is null.

]System.RankException]array has more than one dimension.

comparer is a null reference, and one or more
System.ArgumentException elements in array do not implement the
System.IComparable interface.

93

WN B

94

oY oOo0gh~Ww N

10

11
12

14

15
16

17

Array.Sort(System.Array, System.Array,
System.Collections.1Comparer) Method

Summary

Sorts the specified pair of one-dimensional System.Array objects
(one containing a set of keys and the other containing corresponding
items) based on the keys in the first specified System.Array using the
specified System.Collections.IComparer implementation.

Parameters

]keys]A one-dimensional System.Array that contains the keys to sort.

A one-dimensional System.Array that contains the items that
correspond to each element in keys. Specify a null reference to sort only

items keys.
The System.Collections.IComparer implementation to use when
comparing elements. Specify a null reference to use the

comparer

System.IComparable implementation of each element.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(keys, items, keys.GetLowerBound(0),
keys.Length, comparer).

Each key in keys is required to have a corresponding item in items.
The sort is performed according to the order of keys. After a key is
repositioned during the sort, the corresponding item in items is
similarly repositioned. Only keys.Length elements of items are sorted.
Therefore, items is sorted according to the arrangement of the
corresponding keys in keys. If the sort is not successfully completed,
the results are unspecified.

If comparer is a null reference, each element of keys is required to

95

g bhw N~

o0 ~N O

implement the System.lComparable interface to be capable of
comparisons with every other element in keys.

Exceptions

keys is null.

System.ArgumentNullException

keys has more than one dimension.

Or
System.RankException
items is not a null reference and has more than
one dimension.

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

-0r-

items is not a null reference, and keys.Length >
System.ArgumentException items.Length.

or
comparer is a null reference, and one or more

elements in the keys do not implement the
System.IComparable interface.

96

QO ook~ w N

H

Array.Sort(System.Array, System.Int32,
System.Int32,
System.Collections.1Comparer) Method

Summary
Sorts the elements in the specified section of the specified one-

dimensional System.Array using the specified
System.Collections.IComparer implementation.

Parameters

]array]A one-dimensional System.Array to sort.
]index]A System.Int32 that contains the index at which sorting starts.
]Iength]A System.Int32 that contains the number of elements to sort.

The System.Collections.IComparer implementation to use when
comparing elements. Specify a null reference to use the

comparer System.lComparable implementation of each element.

Description

This version of System.Array.Sort is equivalent to
System.Array.Sort(array, null, index, length, comparer).

If comparer is a null reference, each element of array is required to
implement the System.lIComparable interface to be capable of
comparisons with every other element in array. If the sort is not
successfully completed, the results are unspecified.

Exceptions

Excepton ~ Conditon

|System.ArgumentNuIIException |array is null.

97

WN B

|System .RankException

|array has more than one dimension.

System.ArgumentOutOfRangeException

index < array.GetLowerBound(0).
Or

length < 0.

System.ArgumentException

index and length do not specify a valid
range in array.

Or

comparer is a null reference, and one or
more elements in array do not
implement the System.lComparable
interface.

98

QO ook~ w N

H

Array.Sort(System.Array, System.Array,
System.Int32, System.Int32,
System.Collections.1Comparer) Method

Summary

Sorts the specified range of the specified pair of one-dimensional
System.Array objects (one containing a set of keys and the other
containing corresponding items) based on the keys in the first
specified System.Array using the specified
System.Collections.IComparer implementation.

Parameters

|keys |A one-dimensional System.Array that contains the keys to sort.

A one-dimensional System.Array that contains the items that

items correspond to each element of keys. Specify a null reference to sort only

keys.
|index |A System.Int32 that contains the index at which sorting starts.
|Iength |A System.Int32 that contains the number of elements to sort.
The System.Collections.IComparer implementation to use when
comparer comparing elements. Specify a null reference to use the

System.IComparable implementation of each element.

Description

Each key in keys is required to have a corresponding item in items.
The sort is performed according to the order of keys. After a key is
repositioned during the sort, the corresponding item in items is
similarly repositioned. Only keys.Length elements of items will be
sorted. Therefore, items is sorted according to the arrangement of the
corresponding keys in keys. If the sort is not successfully completed,
the results are undefined.

99

OO0k WNE

If comparer is a null reference, each element of keys is required to
implement the System.lComparable interface to be capable of
comparisons with every other element in keys.

Exceptions

System.ArgumentNullException

keys is null.

System.RankException

keys has more than one dimension.
or

items is not a null reference and has
more than one dimension.

System.ArgumentOutOfRangeException

index < keys.GetLowerBound(0O).
Or

length < 0.

System.ArgumentException

items is not a null reference, and
keys.GetLowerBound(0) does not equal
items.GetLowerBound(0).

-0r-

index and length do not specify a valid
range in key.

-0r-

items is not a null reference, and index
and length do not specify a valid range
in items.

-0r-

comparer is a null reference, and one or
more elements in keys do not
implement the System.lComparable
interface.

100

Array.System.Collections.IList.Add(Syste
m.Object) Method

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see System.Collections.lList.Add.]

101

~NOo g1 bW N

10
11

Array.System.Collections.IList.Clear()
Method

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see System.Collections.lList.Clear.]

102

~NOo g1 bW N

10

12

Array.System.Collections.IList.Contains(S
ystem.Object) Method

Summary
Implemented to support the System.Collections.IList interface.

[Note: For more information, see
System.Collections.lList.Contains.]

103

~NOo g1 bW N

10

12

Array.System.Collections.IList.IndexOf(Sy
stem.Object) Method

Summary
Implemented to support the System.Collections.IList interface.

[Note: For more information, see
System.Collections.IList.IndexOf.]

104

~NOo g1 bW N

10
11

Array.System.Collections.lList.Insert(Syst
em.Int32, System.Object) Method

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see System.Collections.lList.Insert.]

105

~NOo g1 bW N

10

12

Array.System.Collections.IList.Remove(Sy
stem.Object) Method

Summary
Implemented to support the System.Collections.IList interface.

[Note: For more information, see
System.Collections.lList.Remove.]

106

~NOo g1 bW N

10

12

Array.System.Collections.lList.RemoveAt(
System.Int32) Method

Summary
Implemented to support the System.Collections.IList interface.

[Note: For more information, see
System.Collections.lList.RemoveAt.]

107

H

o0 A~ WN

Array.IsFixedSize Property

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see
System.Collections.lList.IsFixedSize.]

108

H

o0 A~ WN

Array.IsReadOnly Property

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see
System.Collections.IList.IsReadOnly.]

109

H

~NOo Ok~ WN

10

12

Array.lIsSynchronized Property

Summary

Implemented to support the System.Collections.ICollection
interface. [Note: For more information, see
System.Collections.ICollection.lsSynchronized.]

110

H

o0 A~ WN

\'

10
11

12
13

14
15
16

Array.Length Property

Summary

Gets the total number of elements in all the dimensions of the current
instance.

Property Value
A System.Int32 that contains the total number of elements in all the
dimensions of the current instance.

Description

This property is read-only.

111

W N

O ~NO (3]

10
11

12
13
14

15

Array.LongLength Property

Summary

Gets the total number of elements in all the dimensions of the current
instance.

Property Value

A System.Int64 value containing the length of the array.
Description
This property is read-only.

[Note: For additional information, see System.Array.Length.]

112

o0 A~ WN =

\'

11
12

13
14
15

Array.Rank Property

Summary

Gets the rank (number of dimensions) of the current instance.

Property Value

A System.Int32 that contains the rank (number of dimensions) of the
current instance.

Description

This property is read-only.

113

~No O~ WN =

10
11

12

Array.SyncRoot Property

Summary

Implemented to support the System.Collections.ICollection
interface. [Note: For more information, see
System.Collections. ICollection.SyncRoot.]

114

co~N O01ThWw N

10
11
12

13

Array.System.Collections.1Collection.Coun

t Property

Summary

Implemented to support the System.Collections.ICollection
interface. [Note: For more information, see
System.Collections.ICollection.Count.]

115

00 ~~NoUh~Ww N

10

11
12

13

Array.System.Collections.IList.ltem
Property

Summary

Implemented to support the System.Collections.IList interface.
[Note: For more information, see System.Collections.IList.Item.]

116

