

 1

System.Security.CodeAccessPermission 1

Class 2
 3
 4

[ILASM] 5
.class public abstract serializable CodeAccessPermission 6
extends System.Object implements 7
System.Security.IPermission 8

[C#] 9
public abstract class CodeAccessPermission: IPermission 10

Assembly Info: 11

• Name: mscorlib 12
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 13
• Version: 1.0.x.x 14
• Attributes: 15

o CLSCompliantAttribute(true) 16

Implements: 17

• System.Security.IPermission 18

Summary 19
 20

Serves as the base class for all code access permissions. 21

Inherits From: System.Object 22
 23
Library: BCL 24
 25
Thread Safety: All public static members of this type are safe for multithreaded 26
operations. No instance members are guaranteed to be thread safe. 27
 28
Description 29

[Note: Classes derived from 30
System.Security.CodeAccessPermission are required to override 31
the following methods of the 32
System.Security.CodeAccessPermission class: 33

• System.Security.CodeAccessPermission.Copy - Creates a 34
System.Security.IPermission object of the same type and 35
containing the same values as the current instance. 36

• System.Security.CodeAccessPermission.FromXml - 37
Reconstructs the state of a 38

 2

System.Security.CodeAccessPermission object using an 1
XML encoding. 2

• System.Security.CodeAccessPermission.Intersect - 3
Returns a System.Security.IPermission object that is the 4
intersection of the current instance and the specified object. 5

• System.Security.CodeAccessPermission.IsSubsetOf - 6
Determines if the current instance is a subset of the specified 7
object. 8

• System.Security.CodeAccessPermission.ToXml - Creates 9
an XML encoding of the current instance. 10

• System.Security.CodeAccessPermission.Union - Returns a 11
System.Security.IPermission object that is the union of the 12
current instance and the specified object. 13

In addition, classes derived from 14
System.Security.CodeAccessPermission are required to implement 15
a constructor that takes a 16
System.Security.Permissions.PermissionState as its only 17
parameter.] 18
 19
The XML encoding of a System.Security.CodeAccessPermission 20
instance is defined below in EBNF format. The following conventions 21
are used: 22

• All non-literals in the grammar below are shown in normal type. 23

• All literals are in bold font. 24

The following meta-language symbols are used: 25

• '*' represents a meta-language symbol suffixing an expression 26
that can appear zero or more times. 27

• '?' represents a meta-language symbol suffixing an expression 28
that can appear zero or one time. 29

• '+' represents a meta-language symbol suffixing an expression 30
that can appear one or more times. 31

• '(',')' is used to group literals, non-literals, or a mixture of 32
literals and non-literals. 33

• '|' denotes an exclusive disjunction between two expressions. 34

• '::= ' denotes a production rule where a left hand non-literal is 35
replaced by a right hand expression containing literals, non-36
literals, or both. 37

 3

ClassName is the name of the class implementing the permission, such 1
as System.Security.Permissions.EnvironmentPermission. 2
 3
AssemblyName is the name of the assembly that contains the class 4
implementing the permission, such as mscorlib. 5
 6
Version is the three part version number indicating the version of the 7
assembly implementing the permission, such as 1.0.1. 8
 9
StrongNamePublicKeyToken is the strong name public key token 10
constituting the strong name of the assembly that implements the 11
permission. 12
 13
PermissionAttributes is any attribute and attribute value on the 14
System.Security.IPermission element used by the permission to 15
represent a particular permission state, for example, 16
unrestricted="true". 17
 18
PermissionXML is any valid XML used by the permission to represent 19
permission state. 20
 21
The XML encoding of a System.Security.CodeAccessPermission 22
instance is as follows: 23
 24
CodeAccessPermissionXML::= 25
 26
 27
<IPermission class=" 28
 29
 30
ClassName, 31
 32
 33
AssemblyName, 34
 35
 36
Version=Version, 37
 38
 39
Culture=neutral, 40
 41
 42
PublicKeyToken=StrongNamePublicKeyToken" 43
 44
 45
version="1" 46
 47
 48
(PermissionAttributes)* 49
 50
 51
> 52
 53
 54

 4

(PermissionXML)? 1
 2
 3
</IPermission> 4
 5

6

 5

CodeAccessPermission() Constructor 1

[ILASM] 2
family specialname instance void .ctor() 3

[C#] 4
protected CodeAccessPermission() 5

Summary 6

Constructs a new instance of the 7
System.Security.CodeAccessPermission class. 8

9

 6

CodeAccessPermission.Assert() Method 1

[ILASM] 2
.method public final hidebysig virtual void Assert() 3

[C#] 4
public void Assert() 5

Summary 6

Asserts that calling code can access the resource identified by the 7
current instance through the code that calls this method, even if 8
callers have not been granted permission to access the resource. 9

Description 10

Calling System.Security.CodeAccessPermission.Assert stops the 11
permission check on callers that are after the code performing the 12
assert. An assertion is effective only if the code that calls 13
System.Security.CodeAccessPermission.Assert passes the 14
security check for the permission that it is asserting. 15
 16
[Note: Even if the callers that are after the code performing the assert 17
do not have the requisite permissions, they can still access resources 18
through the code that calls this method. Because the assertion only 19
applies to the callers of the code performing the assert, a security 20
check for the asserted permission may still fail if the code calling 21
System.Security.CodeAccessPermission.Assert has not itself been 22
granted that permission. 23
 24
A call to System.Security.CodeAccessPermission.Assert is 25
effective until the code containing the call returns to its caller. 26
 27
Caution: Because calling 28
System.Security.CodeAccessPermission.Assert removes the 29
requirement that all code be granted permission to access the 30
specified resource, it can open up security vulnerabilities if used 31
incorrectly or inappropriately.] 32

Exceptions 33
 34
 35

Exception Condition

System.Security.SecurityException
The calling code does not have
System.Security.Permissions.SecurityPermissionFlag.
Assertion.

 36
Permissions 37
 38
 39

 7

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to call
System.Security.CodeAccessPermission.Assert. See
System.Security.Permissions.SecurityPermissionFlag.
Assertion.

 1
 2

3

 8

CodeAccessPermission.Copy() Method 1

[ILASM] 2
.method public hidebysig virtual abstract class 3
System.Security.IPermission Copy() 4

[C#] 5
public abstract IPermission Copy() 6

Summary 7

Returns a System.Security.CodeAccessPermission containing the 8
same values as the current instance. 9

Return Value 10
 11

A new System.Security.CodeAccessPermission instance that is 12
value equal to the current instance. 13

Description 14

[Note: This method is implemented to support the 15
System.Security.IPermission interface.] 16

Behaviors 17

The object returned by this method is required be the same type as 18
the current instance and to represent the same access to resources as 19
the current instance. 20

How and When to Override 21

Override this method to create a copy an instance in a type derived 22
from System.Security.CodeAccessPermission. 23

Usage 24

Use this method to obtain a copy of the current instance that has 25
values identical to those of the current instance. 26

27

 9

CodeAccessPermission.Demand() Method 1

[ILASM] 2
.method public final hidebysig virtual void Demand() 3

[C#] 4
public void Demand() 5

Summary 6

Forces a System.Security.SecurityException if all callers do not 7
have the permission specified by the current instance. 8

Description 9

The permissions of the code that calls this method are not examined; 10
the check begins from the immediate caller of that code and continues 11
until all callers have been checked, one of the callers invokes 12
System.Security.CodeAccessPermission.Assert, or a caller has 13
been found that is not granted the demanded permission, in which 14
case a System.Security.SecurityException is thrown. 15
 16
[Note: System.Security.CodeAccessPermission.Demand is 17
typically used by shared libraries to ensure that callers have 18
permission to access a resource. For example, a method in a shared 19
library calls System.Security.CodeAccessPermission.Demand for 20
the necessary System.Security.Permissions.FileIOPermission 21
before performing a file operation requested by the caller. 22
 23
This method is implemented to support the 24
System.Security.IPermission interface.] 25

Exceptions 26
 27
 28

Exception Condition

System.Security.SecurityException

A caller does not have the permission specified by
the current instance.

A caller has called
System.Security.CodeAccessPermission.Deny
for the resource protected by the current
instance.

 29
 30

31

 10

CodeAccessPermission.Deny() Method 1

[ILASM] 2
.method public final hidebysig virtual void Deny() 3

[C#] 4
public void Deny() 5

Summary 6

Denies access to the resources specified by the current instance 7
through the code that calls this method. 8

Description 9

This method prevents callers from accessing the protected resource 10
through the code that calls this method, even if those callers have 11
been granted permission to access it. 12
 13
The call to System.Security.CodeAccessPermission.Deny is 14
effective until the calling code returns. 15
 16
[Note: System.Security.CodeAccessPermission.Deny is ignored 17
for a permission not granted because a demand for that permission 18
will not succeed. 19
 20
System.Security.CodeAccessPermission.Deny can limit the 21
liability of the programmer or prevent accidental security 22
vulnerabilities because it prevents the method that calls 23
System.Security.CodeAccessPermission.Deny from being used to 24
access the resource protected by the denied permission.] 25

26

 11

CodeAccessPermission.FromXml(System.S1

ecurity.SecurityElement) Method 2

[ILASM] 3
.method public hidebysig virtual abstract void 4
FromXml(class System.Security.SecurityElement elem) 5

[C#] 6
public abstract void FromXml(SecurityElement elem) 7

Summary 8

Reconstructs the state of a 9
System.Security.CodeAccessPermission object using the specified 10
XML encoding. 11

Parameters 12
 13
 14

Parameter Description

elem
A System.Security.SecurityElement instance containing the XML
encoding to use to reconstruct the state of a
System.Security.CodeAccessPermission object.

 15
Description 16

Behaviors 17

The values of the current instance are set to the values of the 18
permission object encoded in elem. 19

How and When to Override 20

Override this method to reconstruct subclasses of 21
System.Security.CodeAccessPermission. 22

Usage 23

This method is called by the system. 24
 25
[Note: For the XML encoding for this class, see the 26
System.Security.CodeAccessPermission class page.] 27

Exceptions 28
 29
 30

Exception Condition

System.ArgumentException elem does not contain the XML encoding for a

 12

instance of the same type as the current instance.

The version number of elem is not valid.

 1
 2

3

 13

CodeAccessPermission.Intersect(System.1

Security.IPermission) Method 2

[ILASM] 3
.method public hidebysig virtual abstract class 4
System.Security.IPermission Intersect(class 5
System.Security.IPermission target) 6

[C#] 7
public abstract IPermission Intersect(IPermission target) 8

Summary 9

Returns a System.Security.CodeAccessPermission object that is 10
the intersection of the current instance and the specified object. 11

Parameters 12
 13
 14

Parameter Description

target A System.Security.CodeAccessPermission instance to intersect with
the current instance.

 15
Return Value 16
 17

A new System.Security.CodeAccessPermission instance that 18
represents the intersection of the current instance and target. If the 19
intersection is empty or target is null, returns null. If the current 20
instance is unrestricted, returns a copy of target. If target is 21
unrestricted, returns a copy of the current instance. 22

Description 23

[Note: This method is implemented to support the 24
System.Security.IPermission interface.] 25

Behaviors 26

As described above. 27

How and When to Override 28

Override this method to provide a mechanism for creating an 29
intersection of two System.Security.IPermission objects that are of 30
the same type and are derived from 31
System.Security.CodeAccessPermission. 32

 14

Usage 1

The intersection of two permissions is a permission that secures the 2
resources and operations secured by both permissions. Specifically, it 3
represents the minimum permission such that any demand that passes 4
both permissions will also pass their intersection. 5

Exceptions 6
 7
 8

Exception Condition

System.ArgumentException target is not null and is not a
System.Security.CodeAccessPermission object.

 9
 10

11

 15

CodeAccessPermission.IsSubsetOf(Syste1

m.Security.IPermission) Method 2

[ILASM] 3
.method public hidebysig virtual abstract bool 4
IsSubsetOf(class System.Security.IPermission target) 5

[C#] 6
public abstract bool IsSubsetOf(IPermission target) 7

Summary 8

Determines whether the current instance is a subset of the specified 9
object. 10

Parameters 11
 12
 13

Parameter Description

target
A System.Security.CodeAccessPermission instance that is to be
tested for the subset relationship.

 14
Return Value 15
 16

true if the current instance is a subset of target; otherwise, false. If 17
the current instance is unrestricted, and target is not, returns false. If 18
target is unrestricted, returns true. 19

Description 20

[Note: This method is implemented to support the 21
System.Security.IPermission interface.] 22

Behaviors 23

As described above. 24

How and When to Override 25

Override this method to implement the test for the subset relationship 26
in types derived from System.Security.CodeAccessPermission. 27

Usage 28

 16

The current instance is a subset of target if the current instance 1
specifies a set of accesses to resources that is wholly contained by 2
target. For example, a permission that represents read access to a file 3
is a subset of a permission that represents read and write access to 4
the file. 5
 6
If this method returns true, the current instance does not describe a 7
level of access to a set of resources that is not already described by 8
target. 9

Exceptions 10
 11
 12

Exception Condition

System.ArgumentException target is not null and is not of type
System.Security.CodeAccessPermission.

 13
 14

15

 17

CodeAccessPermission.ToString() Method 1

[ILASM] 2
.method public hidebysig virtual string ToString() 3

[C#] 4
public override string ToString() 5

Summary 6

Returns the XML representation of the state of the current instance. 7

Return Value 8
 9

A System.String containing the XML representation of the state of the 10
current instance. 11

Description 12

[Note: The XML representation of the current instance is obtained by 13
first calling System.Security.CodeAccessPermission.ToXml, then 14
calling System.Object.ToString on the object returned by that 15
method. 16
 17
This method overrides System.Object.ToString.] 18

19

 18

CodeAccessPermission.ToXml() Method 1

[ILASM] 2
.method public hidebysig virtual abstract class 3
System.Security.SecurityElement ToXml() 4

[C#] 5
public abstract SecurityElement ToXml() 6

Summary 7

Returns the XML encoding of the current instance. 8

Return Value 9
 10

A System.Security.SecurityElement containing an XML encoding of 11
the state of the current instance. 12

Behaviors 13

The object returned by this method is required to use the XML 14
encoding for the System.Security.CodeAccessPermission class as 15
defined on the class page. The state of the current instance is required 16
to be reproducible by invoking 17
System.Security.CodeAccessPermission.FromXml on an instance 18
of System.Security.CodeAccessPermission using the object 19
returned by this method. 20

How and When to Override 21

Override this method to return an object containing the XML encoding 22
for types derived from System.Security.CodeAccessPermission. 23

Usage 24

This method is called by the system. 25

26

 19

CodeAccessPermission.Union(System.Sec1

urity.IPermission) Method 2

[ILASM] 3
.method public hidebysig virtual class 4
System.Security.IPermission Union(class 5
System.Security.IPermission other) 6

[C#] 7
public virtual IPermission Union(IPermission other) 8

Summary 9

Returns a System.Security.CodeAccessPermission object that is 10
the union of the current instance and the specified object. 11

Parameters 12
 13
 14

Parameter Description

other A System.Security.IPermission object of the same type as the
current instance to be combined with the current instance.

 15
Return Value 16
 17

If other is null, returns a copy of the current instance using the 18
System.Security.IPermission.Copy method. 19

Description 20

[Note: This method is implemented to support the 21
System.Security.IPermission interface.] 22

Behaviors 23

This method returns a new 24
System.Security.CodeAccessPermission instance that represents 25
the union of the current instance and other. If the current instance or 26
other is unrestricted, returns a 27
System.Security.CodeAccessPermission instance that is 28
unrestricted. If other is null, returns a copy of the current instance 29
using the System.Security.IPermission.Copy method. 30

Default 31

If other is not null, this method throws a 32
System.NotSupportedException exception; otherwise, returns a 33
copy of the current instance. 34

 20

How and When to Override 1

Override this method to provide a mechanism for creating the union of 2
two System.Security.IPermission objects that are of the same type 3
and are derived from System.Security.CodeAccessPermission. 4

Usage 5

The result of a call to 6
System.Security.CodeAccessPermission.Union is a permission 7
that represents all of the access to resources represented by both the 8
current instance and other. Any demand that passes either permission 9
passes their union. 10

Exceptions 11
 12
 13

Exception Condition

System.ArgumentException other is not of type
System.Security.CodeAccessPermission.

System.NotSupportedException other is not null.
 14
 15

