

 1

System.IDisposable Interface 1
 2
 3

[ILASM] 4
.class interface public abstract IDisposable 5

[C#] 6
public interface IDisposable 7

Assembly Info: 8

• Name: mscorlib 9
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 10
• Version: 1.0.x.x 11
• Attributes: 12

o CLSCompliantAttribute(true) 13

Summary 14
 15

Implemented by classes that require explicit control over resource 16
cleanup. 17

Library: BCL 18
 19
Description 20

Objects that need to free resources that cannot safely be reclaimed by 21
the garbage collector implement the System.IDisposable interface. 22
 23
It is a version breaking change to add the System.IDisposable 24
interface to an existing class, as it changes the semantics of the class. 25
 26
[Note: System.IDisposable contains the 27
System.IDisposable.Dispose method. The consumer of an object 28
should call this method when the object is no longer needed. The 29
System.IDisposable interface is generally provided for the release of 30
unmanaged resources that need to be reclaimed in some order or time 31
dependent manner. It is important to note that the actual release of 32
these resources happens at the first call to 33
System.IDisposable.Dispose for any given object that supports this 34
interface. Programmers should take care to pair the creation of objects 35
that implement IDisposable with at most one invocation of the 36
Dispose method. Though it is legal to invoke Dispose more than 37
once, if this happens it may indicate the presence of a bug since such 38
an object is usually rendered otherwise unusable after the first 39
Dispose invocation.] 40

41

 2

IDisposable.Dispose() Method 1

[ILASM] 2
.method public hidebysig virtual abstract void Dispose() 3

[C#] 4
void Dispose() 5

Summary 6

Performs application-defined tasks associated with freeing or resetting 7
resources. 8

Description 9

[Note: This method is, by convention, used for all tasks associated 10
with freeing resources held by an object, or preparing an object for 11
reuse. 12
 13
When implementing the System.IDisposable.Dispose method, 14
objects should seek to ensure that all held resources are freed by 15
propagating the call through the containment hierarchy. For example, 16
if an object A allocates an object B, and B allocates an object C, then 17
A's System.IDisposable.Dispose implementation should call 18
System.IDisposable.Dispose on B, which should in turn call 19
System.IDisposable.Dispose on C. Objects should also call the 20
System.IDisposable.Dispose method of their base class if the base 21
class implements System.IDisposable. 22
 23
If an object's System.IDisposable.Dispose method is called more 24
than once, the object should ignore all calls after the first one. The 25
object should not throw an exception if its 26
System.IDisposable.Dispose method is called multiple times. 27
System.IDisposable.Dispose may throw an exception if an error 28
occurs because a resource has already been freed and 29
System.IDisposable.Dispose had not been called previously. 30
 31
A resource type may use a particular convention to denote an 32
allocated state versus a freed state. An example of this is stream 33
classes, which are traditionally thought of as open or closed. Classes 34
that have such conventions may choose to implement a public method 35
with a customized name, which calls the 36
System.IDisposable.Dispose method. 37
 38
Because the System.IDisposable.Dispose method must be called 39
explicitly, objects that implement System.IDisposable should also 40
implement a finalizer to handle freeing resources when 41
System.IDisposable.Dispose is not called. By default, the garbage 42
collector will automatically call an object's finalizer prior to reclaiming 43
its memory. However, once the System.IDisposable.Dispose 44
method has been called, it is typically unnecessary and/or undesirable 45
for the garbage collector to call the disposed object's finalizer. To 46

 3

prevent automatic finalization, System.IDisposable.Dispose 1
implementations can call System.GC.SuppressFinalize. For 2
additional information on implementing finalizers, see System.GC and 3
System.Object.Finalize.] 4

Example 5
 6

Resource classes should follow the pattern illustrated by this example: 7
 8
[C#] 9

class ResourceWrapper: BaseType, IDisposable { 10
 // Pointer to a external resource. 11
 private int handle; 12
 private OtherResource otherRes; //Other resource you use. 13
 private bool disposed = false; 14
 15
 public ResourceWrapper () { 16
 handle = //Allocate on the unmanaged side. 17
 otherRes = new OtherResource (...); 18
 } 19
 // Free your own state. 20
 private void freeState () { 21
 if (!disposed) { 22
 CloseHandle (handle); 23
 dispose = true; 24
 } 25
 } 26
 27
 // Free your own state, call dispose on all state you 28
hold, 29
 // and take yourself off the Finalization queue. 30
 public void Dispose () { 31
 freeState (); 32
 OtherRes.Dispose(); 33
 // If base type implements dispose, call it. 34
 base.Dispose(); 35
 GC.SuppressFinalize(this); 36
 } 37
 38
 // Free your own state (not other state you hold) 39
 // and give your base class a chance to finalize. 40
 ~ResourceWrapper (){ 41
 freeState(); 42
 } 43
} 44
 45

 46

