
 

 1

System.Runtime.CompilerServices.Method1 

ImplOptions Enum  2 
 3 
 4 

[ILASM] 5 
.class public sealed serializable MethodImplOptions extends 6 
System.Enum  7 

[C#] 8 
public enum MethodImplOptions  9 

Assembly Info:  10 

• Name: mscorlib 11 
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 12 
• Version: 1.0.x.x 13 
• Attributes:  14 

o CLSCompliantAttribute(true) 15 

Summary 16 
 17 

Defines the details of how a method is implemented. 18 

Inherits From: System.Enum 19 
 20 
Library: RuntimeInfrastructure 21 
 22 
Description 23 

This enumeration is used by 24 
System.Runtime.CompilerServices.MethodImplAttribute.  25 

26 



 

 2

MethodImplOptions.ForwardRef Field  1 

[ILASM] 2 
.field public static literal valuetype 3 
System.Runtime.CompilerServices.MethodImplOptions 4 
ForwardRef = 16  5 

[C#] 6 
ForwardRef = 16  7 

Summary 8 

Specifies that the method is declared, but its implementation is 9 
provided elsewhere.  10 
 11 
[Note: For most languages, it is recommended that the notion of 12 
"forward" be attached to methods using language syntax instead of 13 
custom attributes.] 14 

15 



 

 3

MethodImplOptions.InternalCall Field  1 

[ILASM] 2 
.field public static literal valuetype 3 
System.Runtime.CompilerServices.MethodImplOptions 4 
InternalCall = 4096  5 

[C#] 6 
InternalCall = 4096  7 

Summary 8 

Specifies an internal call. 9 
 10 
[Note: An internal call is a call to a method implemented within the 11 
system itself, providing additional functionality that regular managed 12 
code cannot provide. System.Object.MemberwiseClone is an 13 
example of an internally called method.] 14 

15 



 

 4

MethodImplOptions.NoInlining Field  1 

[ILASM] 2 
.field public static literal valuetype 3 
System.Runtime.CompilerServices.MethodImplOptions 4 
NoInlining = 8  5 

[C#] 6 
NoInlining = 8  7 

Summary 8 

Specifies that the method is not permitted to be inlined. 9 

10 



 

 5

MethodImplOptions.Synchronized Field  1 

[ILASM] 2 
.field public static literal valuetype 3 
System.Runtime.CompilerServices.MethodImplOptions 4 
Synchronized = 32  5 

[C#] 6 
Synchronized = 32  7 

Summary 8 

Specifies the method can be executed by only one thread at a time. 9 
 10 
This option specifies that before a thread can execute the target 11 
method, the thread is required to acquire a lock on either the current 12 
instance or the System.Type object for the method's class. If the 13 
target method is an instance method, the lock is on the current 14 
instance. If the target is a static method, the lock is on the 15 
System.Type object. Specifying this option causes the target method 16 
to behave as though its statements are enclosed by 17 
System.Threading.Monitor.Enter and 18 
System.Threading.Monitor.Exit statements locking the previous 19 
described object. This option and the System.Threading.Monitor 20 
methods are functionally equivalent, and both are functionally 21 
equivalent to enclosing the target method's code in a C# lock (this) 22 
statement.  23 
 24 
[Note: Because this option holds the lock for the duration of the target 25 
method, it should be used only when the entire method must be single 26 
threaded. Use the System.Threading.Monitor methods (or the C# 27 
lock statement) if the object lock can be taken after the method 28 
begins, or released before the method ends. Any mechanism that uses 29 
locks can cause an application to experience deadlocks and 30 
performance degradation; for these reasons, use this option with care. 31 
 32 
For most languages, it is recommended that the notion of 33 
"synchronized" be attached to methods using language syntax instead 34 
of custom attributes.]  35 

36 



 

 6

MethodImplOptions.Unmanaged Field  1 

[ILASM] 2 
.field public static literal valuetype 3 
System.Runtime.CompilerServices.MethodImplOptions Unmanaged 4 
= 4  5 

[C#] 6 
Unmanaged = 4  7 

Summary 8 

Specifies that the method is implemented in unmanaged code. 9 

 10 


