oo~ [0 >N WN P

(o]

11
12

14

15

16

System.Threading.Timer Class

[ILASM]
.class public sealed Timer extends

Syst em Mar shal ByRef Obj ect i npl ements System | Di sposabl e

[C#]
public seal ed class Tiner: Mrshal ByRef Obj ect, |D sposable

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 1.0.X.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:
System.IDisposable

Summary

Provides a mechanism for executing methods at specified intervals.
Inherits From: System.MarshalByRefObject

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

A System.Threading.TimerCallback delegate is used to specify the
methods associated with a Timer. The methods do not execute in the
thread that created the timer; they execute in a separate thread that
is automatically allocated by the system. The timer delegate is
specified when the timer is constructed, and cannot be changed.

When creating a timer, the application specifies an amount of time to
wait before the first invocation of the delegate methods (due time),
and an amount of time to wait between subsequent invocations
(period). A timer invokes its methods once when its due time elapses,
and invokes its methods once per period thereafter. These values may
be changed, or the timer disabled using the
System.Threading.Timer.Change method.

When a timer is no longer needed, use the
System.Threading.Timer.Dispose method to free the resources
held by the timer.

Example

The following example demonstrates the features of the
System.Threading.Timer class.

[C#]

usi ng System
usi ng System Thr eadi ng;

cl ass Ti mer Exanpl eSt ate {
public int counter = O;
public Tinmer tnr;

}

class App {
public static void Min() {
Ti mer Exanpl eState s = new Ti mer Exanpl eSt at e() ;

/1l Create the del egate that invokes nethods for the
tiner.

Ti mer Cal | back timerDel egate = new
Ti mer Cal | back(CheckSt at us) ;

/1 Create a tinmer that waits one second, then invokes
every second.
Timer timer = new Tinmer(tinerDel egate, s, 1000, 1000);

/1l Keep a handle to the tinmer, so it can be disposed.
s.tnmr = tiner;

/1 The main thread does nothing until the tiner is
di sposed.
while (s.tmr I'= null)
Thr ead. Sl eep(0);
Consol e. WiteLine("Ti mer exanple done.");

/1 The following nethod is called by the tinmer's
del egat e.

static void CheckStatus(Chject state) {
Ti mer Exanpl eState s = (Ti ner Exanpl eSt ate) state;
S. count er ++;
Consol e. WitelLine("{0} Checking Status
{1}.", Dat eTi me. Now. Ti neOX Day, s.counter);
if (s.counter == 5) {
/1 Shorten the period. Wait 10 seconds to restart
the timer.
(s.tnr).Change(10000, 100);
Consol e. Wi telLi ne("changed...");

~NoOOTh~hWNE

if (s.counter == 10) {
Consol e. WitelLine("disposing of tiner...");
s.tnr. D spose();
s.tnt = null;

}

An example of some output is

10: 51: 40. 5809015 Checking Status 1.

10: 51: 41. 5823515 Checking Status 2.

10: 51: 42. 5838015 Checking Status 3.

10: 51: 43. 5852515 Checking Status 4.

10: 51: 44. 5867015 Checki ng Status 5.

changed. ..

10: 51: 54. 5911870 Checking Status 6.

OCO~NOUITRWNE

10: 51: 54. 6913320 Checking Status 7.

10: 51:54. 7914770 Checking Status 8.

10: 51: 54. 8916220 Checking Status 9.

10: 51: 54. 9917670 Checking Status 10.

di sposing of timer...

Ti mer exanpl e done.

The exact timings returned by this example will vary.

QO ook~ w N

H

12

13
14
15

Timer(System.Threading.TimerCallback,
System.Object, System.Int32,
System.Int32) Constructor

Summary

Constructs and initializes a new instance of the Timer class.

Parameters

]callback]A System.Threading.TimerCallback delegate.

A System.Object containing application-specific information relevant to

state the methods invoked by callback, or null.
A System.Int32 containing the amount of time to delay before callback
dueTime invokes its methods, in milliseconds. Specify

System.Threading.Timeout.Infinite to prevent the timer from
starting. Specify zero to start the timer immediately.

A System.Int32 containing the time interval between invocations of the
period methods referenced by callback, in milliseconds. Specify
System.Threading.Timeout. Infinite to disable periodic signaling.

Description

callback invokes its methods once after dueTime elapses, and then
invokes its methods each time the period time interval elapses.

If dueTime is zero, callback performs its first invocation immediately.
If dueTime is System.Threading.Timeout.Infinite, callback does
not invoke its methods; the timer is disabled, but may be re-enabled
using the System.Threading.Timer.Change method.

If period is zero or System.Threading.Timeout.Infinite and
dueTime is not System.Threading.Timeout.Infinite, callback
invokes its methods exactly once; the periodic behavior of the timer is
disabled, but may be re-enabled using the
System.Threading.Timer.Change method.

W NP

Exceptions

dueTime or period is negative and is not
System.ArgumentOutOfRangeException |equal to
System.Threading.Timeout. Infinite.

|System.ArgumentNuIIException |ca||back is a null reference.

RPOOW oO~NOUIM w N

e

=
N

13

14
15

16

Timer(System.Threading.TimerCallback,
System.Object, System.TimeSpan,
System.TimeSpan) Constructor

Summary

Constructs and initializes a new instance of the Timer class.

Parameters

|ca||back |A System.Threading.TimerCallback delegate.

A System.Object containing application-specific information relevant to
the methods invoked by callback, or null.

A System.TimeSpan set to the amount of time to delay before callback
invokes its methods. Set the value to

System.Threading.Timeout. Infinite milliseconds to prevent the timer
from starting. Specify zero to start the timer immediately.

state

dueTime

A System.TimeSpan set to the time interval between invocations of
the methods referenced by callback. Set the value to
System.Threading.Timeout. Infinite milliseconds to disable periodic
signaling.

period

Description

The callback delegate invokes its methods once after dueTime elapses,
and then invokes its methods each time the period time interval
elapses.

If dueTime, in milliseconds, is zero, callback performs its first
invocation immediately. If dueTime is
System.Threading.Timeout. Infinite, no method invocation occurs.
The timer is disabled, but may be re-enabled using the
System.Threading.Timer.Change method.

If period is zero or System.Threading.Timeout. Infinite milliseconds

~Noo h~AWNE

10

and dueTime is not System.Threading.Timeout.Infinite, callback
invokes its methods exactly once. The periodic behavior of the timer is

disabled, but may be re-enabled using the

System.Threading.Timer.Change method.

Exceptions

Exception ~ Conditon

System.ArgumentOutOfRangeException

The number of milliseconds in the value
of dueTime or period is negative and
not equal to
System.Threading.Timeout.Infinite,
or is greater than
System.Int32.MaxValue.

|System.ArgumentNuIIException

|ca||back is a null reference.

1 Timer.Change(System.Int32,
2 System.Int32) Method
3
4
5
6
7
8 Summary
9 Changes the start time and interval between method invocations for a
10 timer.
11 Parameters
12
13
A System.Int32 containing the amount of time to delay before the
delegate specified at System.Threading.Timer construction time
dueTime invokes its methods, in milliseconds. Specify
System.Threading.Timeout. Infinite to prevent the timer from
restarting. Specify zero to restart the timer immediately.
A System.Int32 containing the time interval between invocations of the
eriod methods referenced by the delegate specified at
P System.Threading.Timer construction time, in milliseconds. Specify
System.Threading.Timeout. Infinite to disable periodic signaling.
14
15 Return Vvalue
16
17 true if the current instance has not been disposed; otherwise, false.

18 Description

19 The delegate specified at System.Threading.Timer construction time
20 invokes its methods once after dueTime elapses, and then invokes its
21 methods each time the period time interval elapses.

22

23 If dueTime is zero, the delegate specified at

24 System.Threading.Timer construction time performs its next

25 invocation immediately. If dueTime is

26 System.Threading.Timeout.Infinite, no method invocation occurs.
27 The timer is disabled, but may be re-enabled by calling this method
28 and specifying a non-negative value for dueTime.

29

30 If period is zero or System.Threading.Timeout.Infinite and

O~NO OR~WNE

10
11

dueTime is not System.Threading.Timeout.Infinite, the delegate
specified at System.Threading.Timer construction time invokes its
methods exactly once. The periodic behavior of the timer is disabled,
but may be re-enabled by calling this method and specifying a positive
value for period.

Exceptions

dueTime or period is negative and is not

System.ArgumentOutOfRangeException |equal to
System.Threading.Timeout.Infinite.

10

~No O1h~Ww N

(oe]

10

11
12
13

14

15
16

Timer.Change(System.TimeSpan,
System.TimeSpan) Method

Summary

Changes the start time and interval between method invocations for a

timer.

Parameters

dueTime

A System.TimeSpan set to the amount of time to delay before the
delegate specified at System.Threading.Timer construction time
invokes its methods. Specify System.Threading.Timeout.Infinite
milliseconds to prevent the timer from restarting. Specify zero to restart
the timer immediately.

period

A System.TimeSpan set to the time interval between invocations of
the methods referenced by the delegate specified at
System.Threading.Timer construction time. Specify
System.Threading.Timeout. Infinite milliseconds to disable periodic
signaling.

Return Value

true if the current instance has not been disposed; otherwise, false.

Description

The delegate specified at System.Threading.Timer construction time
invokes its methods once after dueTime elapses, and then invokes its
methods each time the period time interval elapses.

If dueTime, in milliseconds, is zero, the delegate specified at
System.Threading.Timer construction time performs its next
invocation immediately. If dueTime is
System.Threading.Timeout. Infinite milliseconds, no method
invocation occurs. The timer is disabled, but may be re-enabled by
calling this method and specifying a non-negative value for dueTime.

11

~ OUIRhWNE

If period is zero or System.Threading.Timeout. Infinite milliseconds
and dueTime is not System.Threading.Timeout.Infinite
milliseconds, the delegate specified at System.Threading.Timer
construction time invokes its methods exactly once. The periodic
behavior of the timer is disabled, but may be re-enabled by calling this
method and specifying a positive value for period.

12

(6281 wWN =

QO 00 N O

Timer.Dispose() Method

Summary
Releases the resources held by the current instance.
Description

[Note: This method is implemented to support the
System.IDisposable interface.]

13

~No O1h~Ww N

(oe]

10

12

13

14
15

26
27
28

Timer.Dispose(System.Threading.WaitHan
dle) Method

Summary

Releases the resources held by the current instance.

Parameters

Specifies a System.Threading.WaitHandle to be signaled when the
timer has been disposed of.

notifyObject

Return Value

true if the call succeeds; otherwise, false.
Description

When this method completes, the System.Threading.WaitHandle
specified by notifyObject is signaled.

This method calls System.GC.SuppressFinalize to prevent the
garbage collector from finalizing the current instance.

Exceptions

\System.ArgumentNuIIException \notifyObject is null.

14

(6281 wWN =

o N O

Timer.Finalize() Method

Summary
Releases the resources held by the current instance.

Description
[Note: Application code does not call this method; it is automatically
invoked by during garbage collection unless finalization by the garbage
collector has been disabled. For more information, see

System.GC.SuppressFinalize, and System.Object.Finalize.

This method overrides System.Object.Finalize.]

15

