

 1

System.IO.Stream Class 1
 2
 3

[ILASM] 4
.class public abstract serializable Stream extends 5
System.MarshalByRefObject implements System.IDisposable 6

[C#] 7
public abstract class Stream: MarshalByRefObject, 8
IDisposable 9

Assembly Info: 10

• Name: mscorlib 11
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00] 12
• Version: 1.0.x.x 13
• Attributes: 14

o CLSCompliantAttribute(true) 15

Implements: 16

• System.IDisposable 17

Summary 18
 19

Abstract base class for all stream implementations. 20

Inherits From: System.MarshalByRefObject 21
 22
Library: BCL 23
 24
Thread Safety: All public static members of this type are safe for multithreaded 25
operations. No instance members are guaranteed to be thread safe. 26
 27
Description 28

Streams involve three fundamental operations: 29

• You can read from streams. Reading is the transfer of data 30
from a stream into a data structure, such as an array of bytes. 31

• You can write to streams. Writing is the transfer of data from a 32
data structure into a stream. 33

• Streams can support seeking. Seeking is the querying and 34
modifying of the current position within a stream. Seek 35
capability depends on the kind of backing store a stream has. 36

 2

For example, network streams have no unified concept of a 1
current position, and therefore typically do not support seeking. 2

All classes that represent streams inherit from the System.IO.Stream 3
class. The System.IO.Stream class and its subclasses provide a 4
generic view of data sources and repositories, isolating the 5
programmer from the specific details of the operating system and 6
underlying devices. 7
 8
Subclasses are required to provide implementations only for the 9
synchronous read and write methods. The asynchronous read and 10
write methods are implemented via the synchronous ones. [Note: The 11
System.IO.Stream synchronous read and write methods are 12
System.IO.Stream.Read and System.IO.Stream.Write. The 13
asynchronous read and write methods are 14
System.IO.Stream.BeginRead, System.IO.Stream.EndRead, 15
System.IO.Stream.BeginWrite, and 16
System.IO.Stream.EndWrite.] 17
 18
Depending on the underlying data source or repository, streams might 19
support only some of these capabilities. An application can query a 20
stream for its capabilities by using the System.IO.Stream.CanRead, 21
System.IO.Stream.CanWrite, and System.IO.Stream.CanSeek 22
properties. 23
 24
The System.IO.Stream.Read and System.IO.Stream.Write 25
methods read and write data in a variety of formats. For streams that 26
support seeking, the System.IO.Stream.Seek and 27
System.IO.Stream.SetLength methods, and the 28
System.IO.Stream.Position and System.IO.Stream.Length 29
properties can be used to query and modify the current position and 30
length of a stream. 31
 32
Some stream implementations perform local buffering of the 33
underlying data to improve performance. For such streams, the 34
System.IO.Stream.Flush method can be used to clear any internal 35
buffers and ensure that all data has been written to the underlying 36
data source or repository. 37
 38
Calling System.IO.Stream.Close on a System.IO.Stream flushes 39
any buffered data, essentially calling System.IO.Stream.Flush for 40
you. System.IO.Stream.Close also releases operating system 41
resources such as file handles, network connections, or memory used 42
for any internal buffering. The System.IO.BufferedStream class 43
provides the capability of wrapping a buffered stream around another 44
stream in order to improve read and write performance. 45
 46
If you need a System.IO.Stream with no backing store (i.e., a bit 47
bucket), use System.IO.Stream.Null. 48

49

 3

Stream() Constructor 1

[ILASM] 2
family specialname instance void .ctor() 3

[C#] 4
protected Stream() 5

Summary 6

Constructs a new instance of the System.IO.Stream class. 7

8

 4

Stream.Null Field 1

[ILASM] 2
.field public static initOnly class System.IO.Stream Null 3

[C#] 4
public static readonly Stream Null 5

Summary 6

Returns a System.IO.Stream with no backing store. 7

Description 8

[Note: System.IO.Stream.Null is used to redirect output to a stream 9
that does not consume any operating system resources. When the 10
methods of System.IO.Stream that provide writing are invoked on 11
System.IO.Stream.Null, they simply return, and no data is written. 12
System.IO.Stream.Null also implements a 13
System.IO.Stream.Read method that returns zero without reading 14
data.] 15

16

 5

Stream.BeginRead(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILASM] 5
.method public hidebysig virtual class System.IAsyncResult 6
BeginRead(class System.Byte[] buffer, int32 offset, int32 7
count, class System.AsyncCallback callback, object state) 8

[C#] 9
public virtual IAsyncResult BeginRead(byte[] buffer, int 10
offset, int count, AsyncCallback callback, object state) 11

Summary 12

Begins an asynchronous read operation. 13

Parameters 14
 15
 16

Parameter Description

buffer The System.Byte array to read the data into.

offset A System.Int32 that specifies the byte offset in buffer at which to
begin writing data read from the stream.

count A System.Int32 that specifies the maximum number of bytes to read
from the stream.

callback A System.AsyncCallback delegate to be called when the read is
complete, or null.

state An application-defined object, or null.
 17
Return Value 18
 19

A System.IAsyncResult that contains information about the 20
asynchronous read operation, which could still be pending. 21

Description 22

This method starts an asynchronous read operation. To determine how 23
many bytes were read and release resources allocated by this method, 24
call the System.IO.Stream.EndRead method and specify the 25
System.IAsyncResult object returned by this method. [Note: The 26
System.IO.Stream.EndRead method should be called exactly once 27
for each call to System.IO.Stream.BeginRead.] 28
 29

 6

If the callback parameter is not null, the method referenced by 1
callback is invoked when the asynchronous operation completes. The 2
System.IAsyncResult object returned by this method is passed as 3
the argument to the method referenced by callback. 4
 5
The current position in the stream is updated when the asynchronous 6
read or write is issued, not when the I/O operation completes. 7
 8
Multiple simultaneous asynchronous requests render the request 9
completion order uncertain. 10
 11
The state parameter can be any object that the caller wishes to have 12
available for the duration of the asynchronous operation. This object is 13
available via the System.IAsyncResult.AsyncState property of the 14
object returned by this method. 15
 16
[Note: Use the System.IO.Stream.CanRead property to determine 17
whether the current instance supports reading.] 18

Behaviors 19

As described above. 20

Exceptions 21
 22
 23

Exception Condition

System.IO.IOException An I/O error occurred.

System.NotSupportedException The current System.IO.Stream does not
support reading.

 24
 25

26

 7

Stream.BeginWrite(System.Byte[], 1

System.Int32, System.Int32, 2

System.AsyncCallback, System.Object) 3

Method 4

[ILASM] 5
.method public hidebysig virtual class System.IAsyncResult 6
BeginWrite(class System.Byte[] buffer, int32 offset, int32 7
count, class System.AsyncCallback callback, object state) 8

[C#] 9
public virtual IAsyncResult BeginWrite(byte[] buffer, int 10
offset, int count, AsyncCallback callback, object state) 11

Summary 12

Begins an asynchronous write operation. 13

Parameters 14
 15
 16

Parameter Description

buffer The System.Byte array to be written to the current stream.

offset A System.Int32 that specifies the byte offset in buffer at which to
begin copying bytes to the current stream.

count A System.Int32 that specifies the maximum number of bytes to be
written to the current stream.

callback A System.AsyncCallback delegate to be called when the write is
complete, or null.

state An application-defined object, or null.
 17
Return Value 18
 19

A System.IAsyncResult that represents the asynchronous write, 20
which could still be pending. 21

Description 22

Pass the System.IAsyncResult returned by this method to 23
System.IO.Stream.EndWrite to ensure that the write completes and 24
frees resources appropriately. If an error occurs during an 25
asynchronous write, an exception will not be thrown until 26
System.IO.Stream.EndWrite is called with the 27
System.IAsyncResult returned by this method. [Note: If a failure is 28

 8

detected from the underlying OS (such as if a floppy is ejected in the 1
middle of the operation), the results of the write operation are 2
undefined.] 3
 4
If the callback parameter is not null, the method referenced by 5
callback is invoked when the asynchronous operation completes. The 6
System.IAsyncResult object returned by this method is passed as 7
the argument to the method referenced by callback. 8
 9
The state parameter can be any object that the caller wishes to have 10
available for the duration of the asynchronous operation. This object is 11
available via the System.IAsyncResult.AsyncState property of the 12
object returned by this method. 13
 14
If a stream is writable, writing at the end of it expands the stream. 15
 16
The current position in the stream is updated when you issue the 17
asynchronous read or write, not when the I/O operation completes. 18
Multiple simultaneous asynchronous requests render the request 19
completion order uncertain. 20
 21
[Note: buffer should generally be greater than 64 KB. 22
 23
Use the System.IO.Stream.CanWrite property to determine whether 24
the current instance supports writing.] 25

Behaviors 26

As described above. 27

Exceptions 28
 29
 30

Exception Condition

System.NotSupportedException The current System.IO.Stream does not
support writing.

System.IO.IOException An I/O error occurred.
 31
 32

33

 9

Stream.Close() Method 1

[ILASM] 2
.method public hidebysig virtual void Close() 3

[C#] 4
public virtual void Close() 5

Summary 6

Closes the current stream and releases any resources associated with 7
the current stream. 8

Description 9

Following a call to this method, other operations on the stream might 10
throw exceptions. If the stream is already closed, a call to 11
System.IO.Stream.Close throws no exceptions. 12
 13
[Note: If this method is called while an asynchronous read or write is 14
pending for a stream, the behavior of the stream is undefined.] 15

Behaviors 16

As described above. 17

18

 10

Stream.CreateWaitHandle() Method 1

[ILASM] 2
.method family hidebysig virtual class 3
System.Threading.WaitHandle CreateWaitHandle() 4

[C#] 5
protected virtual WaitHandle CreateWaitHandle() 6

Summary 7

Allocates a System.Threading.WaitHandle object. 8

Return Value 9
 10

A reference to the allocated System.Threading.WaitHandle. 11

Description 12

When called for the first time this method creates a 13
System.Threading.WaitHandle object and returns it. On subsequent 14
calls, the System.IO.Stream.CreateWaitHandle method returns a 15
reference to the same wait handle. 16
 17
[Note: System.IO.Stream.CreateWaitHandle is useful if you 18
implement the asynchronous methods and require a way of blocking in 19
System.IO.Stream.EndRead or System.IO.Stream.EndWrite until 20
the asynchronous operation is complete.] 21

22

 11

Stream.EndRead(System.IAsyncResult) 1

Method 2

[ILASM] 3
.method public hidebysig virtual int32 EndRead(class 4
System.IAsyncResult asyncResult) 5

[C#] 6
public virtual int EndRead(IAsyncResult asyncResult) 7

Summary 8

Ends a pending asynchronous read request. 9

Parameters 10
 11
 12

Parameter Description

asyncResult The System.IAsyncResult object that references the pending
asynchronous read request.

 13
Return Value 14
 15

A System.Int32 that indicates the number of bytes read from the 16
stream, between 0 and the number of bytes specified via the 17
System.IO.Stream.BeginRead count parameter. Streams only 18
return 0 at the end of the stream, otherwise, they block until at least 1 19
byte is available. 20

Description 21

System.IO.Stream.EndRead blocks until the I/O operation has 22
completed. 23

Behaviors 24

As described above. 25

Exceptions 26
 27
 28

Exception Condition

System.ArgumentNullException asyncResult is null.

System.ArgumentException
asyncResult did not originate from a
System.IO.Stream.BeginRead method on the
current stream.

 12

 1
 2

3

 13

Stream.EndWrite(System.IAsyncResult) 1

Method 2

[ILASM] 3
.method public hidebysig virtual void EndWrite(class 4
System.IAsyncResult asyncResult) 5

[C#] 6
public virtual void EndWrite(IAsyncResult asyncResult) 7

Summary 8

Ends an asynchronous write operation. 9

Parameters 10
 11
 12

Parameter Description

asyncResult A System.IAsyncResult that references the outstanding asynchronous
I/O request.

 13
Description 14

System.IO.Stream.EndWrite is required to be called exactly once 15
for every System.IO.Stream.BeginWrite. 16
System.IO.Stream.EndWrite blocks until the write I/O operation has 17
completed. 18

Behaviors 19

As described above. 20

Exceptions 21
 22
 23

Exception Condition

System.ArgumentNullException The asyncResult parameter is null.

System.ArgumentException
asyncResult did not originate from a
System.IO.Stream.BeginWrite method on the
current stream.

 24
 25

26

 14

Stream.Flush() Method 1

[ILASM] 2
.method public hidebysig virtual abstract void Flush() 3

[C#] 4
public abstract void Flush() 5

Summary 6

Flushes the internal buffer. 7

Description 8

[Note: Implementers should use this method to move any information 9
from an underlying buffer to its destination. The 10
System.IO.Stream.Flush method should clear the buffer, but the 11
stream should not be closed. Depending upon the state of the object, 12
the current position within the stream might need to be modified (for 13
example, if the underlying stream supports seeking). For additional 14
information see System.IO.Stream.CanSeek.] 15

Behaviors 16

As described above. 17

How and When to Override 18

Override System.IO.Stream.Flush on streams that implement a 19
buffer. 20

Exceptions 21
 22
 23

Exception Condition

System.IO.IOException An I/O error occurs, such as the file being already closed.
 24
 25

26

 15

Stream.Read(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILASM] 3
.method public hidebysig virtual abstract int32 Read(class 4
System.Byte[] buffer, int32 offset, int32 count) 5

[C#] 6
public abstract int Read(byte[] buffer, int offset, int 7
count) 8

Summary 9

Reads a sequence of bytes from the current stream and advances the 10
position within the stream by the number of bytes read. 11

Parameters 12
 13
 14

Parameter Description

buffer
A System.Byte array. When this method returns, the elements between
offset and (offset + count) are replaced by the bytes read from the
current source.

offset A System.Int32 that specifies the zero based byte offset in buffer at
which to begin storing the data read from the current stream.

count A System.Int32 that specifies the maximum number of bytes to be
read from the current stream.

 15
Return Value 16
 17

A System.Int32 that specifies the total number of bytes read into the 18
buffer, or zero if the end of the stream has been reached before any 19
data can be read. 20

Description 21

[Note: Use the System.IO.Stream.CanRead property to determine 22
whether the current instance supports reading.] 23

Behaviors 24

As described above. 25

Exceptions 26
 27
 28

 16

Exception Condition

System.ArgumentException (offset + count) is greater than the
length of buffer.

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException offset or count is less than zero.

System.IO.IOException An I/O error occurred.

System.NotSupportedException The current stream does not support
reading.

 1
 2

3

 17

Stream.ReadByte() Method 1

[ILASM] 2
.method public hidebysig virtual int32 ReadByte() 3

[C#] 4
public virtual int ReadByte() 5

Summary 6

Reads a byte from the stream and advances the position within the 7
stream by one byte. 8

Return Value 9
 10

The unsigned byte cast to a System.Int32, or -1 if at the end of the 11
stream. 12

Description 13

Behaviors 14

As described above. 15
 16
[Note: Use the System.IO.Stream.CanRead property to determine 17
whether the current instance supports reading.] 18

Exceptions 19
 20
 21

Exception Condition

System.IO.IOException The stream is closed.

System.NotSupportedException The stream does not support reading.
 22
 23

24

 18

Stream.Seek(System.Int64, 1

System.IO.SeekOrigin) Method 2

[ILASM] 3
.method public hidebysig virtual abstract int64 Seek(int64 4
offset, valuetype System.IO.SeekOrigin origin) 5

[C#] 6
public abstract long Seek(long offset, SeekOrigin origin) 7

Summary 8

Sets the position within the current stream. 9

Parameters 10
 11
 12

Parameter Description

offset A System.Int64 that specifies the byte offset relative to origin.

origin A System.IO.SeekOrigin value indicating the reference point used to
obtain the new position.

 13
Return Value 14
 15

A System.Int64 that specifies the new position within the current 16
stream. 17

Description 18

[Note: Use the System.IO.Stream.CanSeek property to determine 19
whether the current instance supports seeking.] 20

Behaviors 21

If offset is negative, the new position is required to precede the 22
position specified by origin by the number of bytes specified by offset. 23
If offset is zero, the new position is required to be the position 24
specified by origin. If offset is positive, the new position is required to 25
follow the position specified by origin by the number of bytes specified 26
by offset. 27

How and When to Override 28

If you intend to use a file as a backing store for a stream 29
implementation, you are required to override 30
System.IO.Stream.Seek to set the System.IO.Stream.Position 31

 19

property one byte beyond the end of the stream. Opening a new file 1
and then writing to it requires that the position be set to one byte 2
beyond the end of the stream. The position cannot be set to more than 3
one byte beyond the end of the stream. 4
 5
Classes derived from System.IO.Stream that support seeking are 6
required to override this method. 7

Exceptions 8
 9
 10

Exception Condition

System.NotSupportedException
The stream does not support seeking, such as
if the stream is constructed from a pipe or
console output.

System.ObjectDisposedException The current System.IO.Stream is closed.
System.IO.IOException An I/O error has occurred.

 11
 12

13

 20

Stream.SetLength(System.Int64) Method 1

[ILASM] 2
.method public hidebysig virtual abstract void 3
SetLength(int64 value) 4

[C#] 5
public abstract void SetLength(long value) 6

Summary 7

Sets the length of the current stream. 8

Parameters 9
 10
 11

Parameter Description

value A System.Int64 that specifies the desired length of the current stream
in bytes.

 12
Description 13

[Note: Use the System.IO.Stream.CanWrite property to determine 14
whether the current instance supports writing, and the 15
System.IO.Stream.CanSeek property to determine whether seeking 16
is supported.] 17

Behaviors 18

If the specified value is less than the current length of the stream, the 19
stream is truncated. If the specified value is larger than the current 20
length of the stream, the stream is expanded. If the stream is 21
expanded, the contents of the stream between the old and the new 22
length are initialized to zeros. 23

Default 24

There is no default implementation. 25

How and When to Override 26

Classes derived from System.IO.Stream are required to support both 27
writing and seeking for System.IO.Stream.SetLength to work. 28

Exceptions 29
 30
 31

Exception Condition

 21

System.NotSupportedException
The stream does not support both writing and
seeking, such as if the stream is constructed
from a pipe or console output.

System.ObjectDisposedException The current System.IO.Stream is closed.
System.IO.IOException An I/O error occurred.

 1
 2

3

 22

Stream.System.IDisposable.Dispose() 1

Method 2

[ILASM] 3
.method private final hidebysig virtual void 4
System.IDisposable.Dispose() 5

[C#] 6
void IDisposable.Dispose() 7

Summary 8

Implemented to support the System.IDisposable interface. [Note: 9
For more information, see System.IDisposable.Dispose.] 10

11

 23

Stream.Write(System.Byte[], 1

System.Int32, System.Int32) Method 2

[ILASM] 3
.method public hidebysig virtual abstract void Write(class 4
System.Byte[] buffer, int32 offset, int32 count) 5

[C#] 6
public abstract void Write(byte[] buffer, int offset, int 7
count) 8

Summary 9

Writes a sequence of bytes to the current stream and advances the 10
current position within the current stream by the number of bytes 11
written. 12

Parameters 13
 14
 15

Parameter Description

buffer A System.Byte array containing the data to write.

offset A System.Int32 that specifies the zero based byte offset in buffer at
which to begin copying bytes to the current stream.

count A System.Int32 that specifies the number of bytes to be written to the
current stream.

 16
Description 17

[Note: Use the System.IO.Stream.CanWrite property to determine 18
whether the current instance supports writing.] 19

Behaviors 20

If the write operation is successful, the position within the stream 21
advances by the number of bytes written. If an exception occurs, the 22
position within the stream remains unchanged. 23

Exceptions 24
 25
 26

Exception Condition

System.ArgumentException (offset + count) is greater than the
length of buffer.

System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException offset or count is negative.

System.IO.IOException An I/O error occurred.

 24

System.NotSupportedException The stream does not support writing.
 1
 2

3

 25

Stream.WriteByte(System.Byte) Method 1

[ILASM] 2
.method public hidebysig virtual void WriteByte(unsigned 3
int8 value) 4

[C#] 5
public virtual void WriteByte(byte value) 6

Summary 7

Writes a System.Byte to the current position in the stream and 8
advances the position within the stream by one byte. 9

Parameters 10
 11
 12

Parameter Description

value The System.Byte to write to the stream.
 13
Description 14

[Note: Use the System.IO.Stream.CanWrite property to determine 15
whether the current instance supports writing.] 16

Behaviors 17

As described above. 18

Exceptions 19
 20
 21

Exception Condition

System.IO.IOException The stream is closed.

System.NotSupportedException The stream does not support writing.
 22
 23

24

 26

Stream.CanRead Property 1

[ILASM] 2
.property bool CanRead { public hidebysig virtual abstract 3
specialname bool get_CanRead() } 4

[C#] 5
public abstract bool CanRead { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream 8
supports reading. 9

Property Value 10
 11

true if the stream supports reading; otherwise, false. 12

Description 13

If a class derived from System.IO.Stream does not support reading, 14
the following methods throw a System.NotSupportedException: 15
System.IO.Stream.BeginRead, System.IO.Stream.Read and 16
System.IO.Stream.ReadByte. 17

Behaviors 18

As described above. 19

20

 27

Stream.CanSeek Property 1

[ILASM] 2
.property bool CanSeek { public hidebysig virtual abstract 3
specialname bool get_CanSeek() } 4

[C#] 5
public abstract bool CanSeek { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream 8
supports seeking. 9

Property Value 10
 11

true if the stream supports seeking; otherwise, false. 12

Description 13

If a class derived from System.IO.Stream does not support seeking, 14
the following methods throw a System.NotSupportedException: 15
System.IO.Stream.Length, System.IO.Stream.SetLength, 16
System.IO.Stream.Position, or System.IO.Stream.Seek. 17

Behaviors 18

As described above. 19

20

 28

Stream.CanWrite Property 1

[ILASM] 2
.property bool CanWrite { public hidebysig virtual abstract 3
specialname bool get_CanWrite() } 4

[C#] 5
public abstract bool CanWrite { get; } 6

Summary 7

Gets a System.Boolean value indicating whether the current stream 8
supports writing. 9

Property Value 10
 11

true if the stream supports writing; otherwise, false. 12

Description 13

If a class derived from System.IO.Stream does not support writing, 14
the following methods throw a System.NotSupportedException: 15
System.IO.Stream.Write, System.IO.Stream.WriteByte, and 16
System.IO.Stream.BeginWrite. 17

Behaviors 18

As described above. 19

20

 29

Stream.Length Property 1

[ILASM] 2
.property int64 Length { public hidebysig virtual abstract 3
specialname int64 get_Length() } 4

[C#] 5
public abstract long Length { get; } 6

Summary 7

Gets the length in bytes of the stream. 8

Property Value 9
 10

A System.Int64 value representing the length of the stream in bytes. 11

Description 12

[Note: Use the System.IO.Stream.CanSeek property to determine 13
whether the current instance supports seeking.] 14

Behaviors 15

This property is read-only. 16

Exceptions 17
 18
 19

Exception Condition

System.NotSupportedException The stream does not support seeking.
 20
 21

22

 30

Stream.Position Property 1

[ILASM] 2
.property int64 Position { public hidebysig virtual 3
abstract specialname int64 get_Position() public hidebysig 4
virtual abstract specialname void set_Position(int64 value) 5
} 6

[C#] 7
public abstract long Position { get; set; } 8

Summary 9

Gets or sets the position within the current stream. 10

Property Value 11
 12

A System.Int64 that specifies the current position within the stream. 13

Description 14

The stream is required to support seeking to get or set the position. 15
[Note: Use the System.IO.Stream.CanSeek property to determine 16
whether the current instance supports seeking.] 17
 18
Classes that derive from System.IO.Stream are required to provide 19
an implementation of this property. 20
 21
[Note: If you intend to use a file as a backing store for a stream 22
implementation, opening a new file and then writing to it requires that 23
the position be set to just beyond the last byte so you can append to 24
the file. The position cannot be set more than one byte beyond the end 25
of the stream.] 26

Behaviors 27

As described above. 28

Exceptions 29
 30
 31

Exception Condition

System.IO.IOException An I/O error has occurred, such as the stream
being closed.

System.NotSupportedException The stream does not support seeking.
 32
 33

